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TESTING FOR SELECTIVITY BIAS IN PANEL DATA MODELS*

By MAaARNO VERBEEK AND THEO Niman!

We discuss several tests to check for the presence of selectivity bias in
cstimators based on panel data. One approach to test for selectivity bias is to
specify the selection mechanism cxplicitly and estimate it jointly with the
model of intercst. Alternatively, one can derive the asymptotically efficient
LM test. Both approaches are computationally demanding. In this paper, we
propose the use of simple variable addition and (quasi-} Hausman tests for
selectivity bias that do not require any knowledge of the response process. We
compare the power of these tests with the asymptotically efficient test using
Monte Carlo methods.

{. INTRODUCTION

Missing observations are a rule rather than an exception in panel data sets. It is
commaon practice in applied economic analysis of panel data to analyze only the
observations on units for which a complete time series is available. Since the
seminal contributions of Heckman (1976, 1979) and Hausman and Wise (1979) it is
well known that inferences based on either the balanced sub-panel (with the
complete obscrvations only} or the unbalanced panel without correcting for
selectivity bias, mayv be subject to bias if the nonresponse is endogenously
determined, Even if the response process is known, estimation of the full model
including a response equation explaining the missing observations, is, in general,
rather cumbersome (compare Ridder 1990, Verbeck 1990). Therefore, it is worth-
while to have some simple tests to check for the presence of selectivity bias which
can be performed first. An obvious choice for such a test is the Lagrange Multiplier
test, which requires estimation of the model under the null hypothesis only. As will
be shown in this paper, the computation of the LM test statistic is still rather
cumbersome and, in addition, its value is highly dependent on the specification of
the response mechanism and the distributional assumptions. In this paper we will
therefore consider several simpler tests to check for the presence of selectivity bias
without the necessity of having to estimate the full model or to specify a response
equation. A consequential advantage of these tests is that they can be performed in
a simple way in cases with wave nonresponse, where all observations on the
variables of the model are missing for some individnals in some periods, as well as
itern nenresponse. where eonly information on the endogenous variable is missing.

For case of presentation we will in this paper restrict attention to the linear
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682 MARNO VERBEEK AND THEQ NIJMANM

regression model, although several of the tests can straightforwardly be generalizac
to nonlinear models. Consider

(1) Yu=xuBta;tey, t=1,...,T, i=1,...N,

where x;, is a &k dimensional row vector of exogenous variables relating to the ith
cross sectional unit at period ¢, 8 is a column vector of unknown parameters of
interest, @; and &; are unobserved i.i.d. random variables with expectation zere
and variance ol and o?, respectively, which are mutually independent. The
variables in x;, are assumed to be strictly exogenous, i.e., E{e;lx;,; = 0 for all /,
s, t and E{a;|x;,} = 0 forall ¢, r. For simplicity we assume that the model does not
contain an intercept term and that means have been removed from all data. 7 and
N denote the number of periods and the number of cross sectional units (individ-
uals, households, firms) in the panel, respectively.

Whether or not observations for y;, are available is denoted by the dummy
variable r;,, such that r;, = | if y;, is observed and r;, = Q otherwise. In addition,
we define ¢; = 111, r;y, so that ¢; = 1 if and only if v, is observed for all 1.
Observations on x;, are assumed (o be available when r;; = 1. A commonly used
assumption to describe the process generating r;, is based on a latent variable
specification. In that case, r;, is determined by the sign of r},, given by, for
example,

(2) rE=zay+ EFty,, =1L, T i=1, .., N,

with z;; a row vector of exogenous variables, possibly contaising (partly) the saimic
variables as x;,. and 7;, an unobserved random variable. The term &7 accounts for
unobserved time-invariant individual-specific effects. Now, r;, = 1if % > 0 and
zero otherwise. For the moment however, we shall not use additional assumgtions
on the process that determines r;. Only in Section 4, where the LM fest is
discussed, we shall assume that specification (2) holds,

When estimating 8 in (1) using the available cbservations one is implicitly
conditioning upen the outcome of the selection process, i.e.. upon ry, = 1. The
problem of selectivity bias arises from the fact that this conditioning may affect the
uncbserved determinants of y,,, in particular, this may occur if the indicator
variable r;, is not independent of the individual efiect a; or the ¢rror term £,
Similar problems arise if one concentrafes attention to the complete observations
only, i.e., to those cross-secticnal units for which a complete time series is available
(forming a balanced sub-panel). In this case one is implicitly conditioning upon
c; = Liry = .rip = 1)

In this paper attention will be paid to several simple testing procedures that can
be used to check whether selectivity bias is seriously present. First, in Section 2,
we analyze two well known estimators, the fixed effects (FE! and the random
effects (RE) estimator, and discuss the conditions for no selectivity bias in these
estimators. It appears that the condition that r;, is independent of both «; and &,
in (1) is not necessary (though sufficient) for consistency. Mareover, it is shown that
the fixed effects estimator is more robust for selectivity bias than the random efiects
estimator. Section 3 shows how differences betweer the FE and RE sstimators
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TESTING FGR SELECTIVITY BIAS 683

from a balanced and unbalanced design can be used to construct simple (quasi-)
Hausman tests of selectivity bias. Moreover, some simple variable addition tests
are suggested. Neither of these tests does require knowledge of the process that
determines r;;.

In Section 4 we introduce and specify a latent variable specification to describe
the selection process r;,. If this description is correct and data are available to
identify its unknown parameters, the Lagrange Multiplicr test for independence of
ri and a; + g; can be computed and is asymptotically efficient. Moreover, it is
possible to use a twe step estimation and testing procedure based on the results of
Heckman (1976, 1979). Both of these tests are computationally not very attractive.
To illustrate the findings of Sectipn 2 and to obtain some idea about the power of
the tests proposed in Section 3, we perform a Monte Carlo study, the results of
which are reported in Sections 5 and 6. Finally, Section 7 contains some concluding
remarks.

2. SELECTIVITY BIAS IN THE FiXED AND RANDOM EFFECTS ESTIMATORS

I this section we derive conditions for consistency of the fixed effects (or
“within’’) estimator for the regression coefficients 8 in (1). Subsequently, we
congsider the random effects estimator. Since most panel data sets are characterized
by a large number of cross sectional observations covering a fairly short time
period, we shall concentrate on consistency for N — = and keep T fixed. T is
assumed to be strictly larger than one.

If we define £;; as the value of x;, in deviation from its (observed) individual
mean, le.

T T T
- W .
(3) Xip = Xy 2, Xistiy z Figs if 2 Fig > 0
s 1 s=1 y=1
=0 otherwise,

and analogously for ¥, the FE estimator based on the unbalanced panel is given
by (compare Hsiao 1986, p. 3112

N T N Fi
(4) néFE(U) = z }: EnEiry E 2 Xi¥uri

=11 i=lr=1
and the one based on the balanced sub-panel by
i~ 1 -

YW o1
(5) BFE(B): . Z, }4‘ XXy Z 2 Ky
l

\i=17= i=1 =1

% This estimator is only defined if at least one individual is observed more than once; for finite samples
there will generally be a small bist nonzere protability that this is not the case, but for practical purposes
this can be ignored. Similar remarks hold for all other estimators presented below.
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684 MARNO VERBEEK AND THEQ NIJMAN

Obviously, Bp£(.) is unbiased and consistent’ for 8 if selection is determined
independently of a; and ;. Using ¥;, = ;8 + £, onc immediately sees that this
condition is too strong, since independence of r; = (r;, ..., r;y)’ and the
transformed error ferm £; also guarantees unbiasedness and consistency. It is
straightforward to show that an even weaker condition for consistency of Bpg(U)
and Bpg(B) is that?

{(6) El&ylritra =0, t=1,....06 i=1,...,N
or
(7) E{gjflf.’,'}(.',' = 0, = !, P T i=1,...., N,

respectively. Consequently, a sutficient condition® for both coenditions (6) and (7) to
hold is that

(R) Elgglrit=0 t=1,...T; i=1, .., N.

First of all, it should be noted that (8) does not involve a,. Thus, the fact that
selection (indicated by r;,) depends upon the individual effects o, in the model of
interest does not introduce a selectivity bias in the fixed effects estimators. la
addition, if selection affects the conditional expectation of cach of the ervor terms
Eil, - » &7 in the same way, selectivity bias will also not occur. In all these casecs
selectivity may have an effect on the structural equation (1), but since this effect is
fixed for a given individual over all periods in which its dependent variable is
observed, it is absorbed in the fixed effect and no consistency problems arise for the
FE estimator. In Section 4 some more attention to condition (8) will be paid in the
context of the latent variable equation (2) explaining r;,.

Next we consider the random effects estimator (compare Hsiao 1986, p. 34 {t.).
First, we stack the observations for each cross sectional unit into vectors and
matrices, i.e.

¥i Xil €0
yi=1 8L Xi=] |
Yir T eir

;s

Let T; denote the number of pericds unit / is observed, ie. T; = »L, ri. Foreach
cross sectional unit we define a 7; x T matrix R; transforming v; into the
T;-dimensional vector of observed values y PP say. This matrix R; is obtaired by
deleting the rows of the T-dimensional identity matrix cerrespording to the
unobserved elements. Now we can write ¥°% = R;y;. Defining o = {1, 1, ... . 1Y

3 Throughout the paper. we assume that the usual regularity conditions are met.

4 The conditional expectations in the sequel are also conditivaal on the exogenous variables. but for
the sake of notation these are omitted.

5 A case in which this sufficient condition is not necessarily met. but condition (6) holds, is the
situation where observations are missing deterministically (givea x;,) (E{r;[x,} = r;, = 0). for exumple.
if being on vacation implies nonrespnnse.
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TESTING FOR SELECTIVITY BIAS 685

of dimension 7', the variance covariance matirix of the error term in (1) can be
written as

Q= Via, + &;}= ol + ol

Writing ©2; = R;Q0R} and Xf = R,.X;, the random effects estimator based on the
unbalanced panel is given by®

N Y,

(9 Bes(Uy =1 S xem @) xets| | xobs(q,) lyete|.

i=1 =1

If onlv the complete observations in the panel are used the random effects estimator
is given by

N Vol N

(IO) BK.E(B} = E X;QilX‘-Ci 2 X;Q—]yjcj ,

i=1 i=1

Note that these estimators can easily be computed using QLS on transformed data
even if the unbalanced panel is used (see, e.g., Baltagi 1985 or Wansbcek and
Kapteyn 1989).

The estimators Bge(.) are consistent if

(n Ef{a;, Y eylrib=0, t=1,....7, i=1,..,N.

Clearly, this condition is stronger than condition {(8) needed for consistency of the
fixed effects estimator and consequently, we can conclude that the fixed effects
estimator is more robust with respect to nonrandom selectivity than the random
effects estimator. This may be a reason to prefer the fixed effects estimator although
of course some efficiency is lost by this choice if in fact condition (11} holds.
Assuming normality of the error terms in (1) and a probit mode! to describe the
sclection process r;,, this point is further elaborated in Section 4.

Before we propose several simple tests to check for the presence of selectivity
bias, it is important to note two things. First, the conditions for consistency of the
fixed effects and random effects estimators are different and, second, there is no
reason why the inconsistencies in estimators based on the balanced sub-panel and
those on the unbalanced panel would coincide. These two points enable us to
construct tests for the presence of selectivity bias {or, in fact, for consistency of the
FE of RE estimators) using only the four simple estimators presented above. This
will be the main theme of the next section.

3. SIMPLE TESTS FOR SELECTIVITY BIAS

In Section 2 four estimators of 8 have been presented which are all consistent in
the absence of nonrandom selection (i.e. if r;; is independent of @; and £;,), namely

® For expository purpeses we ignore the fact that in practice unknown variances have to be replaced
by consistent estimates.

Copyright © 2001. All Rights Reseved.



686 MARNO VERBEEK AND THEC NIIMAN

the fixed effects estimators based on the balanced sub-panel and the unbalanced
panel and the random effects estimators based on the balanced and unbalanced
panel. In general, it is quite unlikely that the pscudo true valoes, i.e. the probability
limits under the true data generating process, of either two estimators are identical,
unless both estimators are consistent. Therefore, it is possible to construct 2 test for
selectivity bias based on the differences between either two, three or four

estimators.
Let us stack all four estimators into a 44 dirmensional vecter 8 as follows,
(12) B=(Bre(B). Bre(U)', Bre(B), Bre(U))'.

Under weak regularity assumptions 8 is asymptotically normally distributed
according to

—_— L
(13) VN(B — B) > N0, V),

where 8 denotes the vector of pseudo true values. Frem (13) it immediately foltows
that the hypothesis DB = 0 can be tested using

(14) £y = NA'D'(DVD'Y DA,

which is asymptotically distributed as a central Chi-square with ¢ degrees of
freedom under the null hypothesis DZ = 0. where A~ denotes a generalized
inverse of A and ¢ is the rank of DVD',

In order to be able to compulte the test statistics in (14) fer appropriate choices
of 13, an estimator for the ful!l matrix V is needed. Using the definitions of the four
estimators given in (4}, (3), (9) and (10), it is a straightforward exercise to determine
their variances and their covariances. Denoting V, = V{B8pp(B)}, Vi =
V{Bre(U)}, Vi = V{Bre(B)} and Vyy = V{Bre (U0}, it follows that all blocks in
the matrix V arc a function of the variance covariance mairices of the four
estimators in 3 only. In particular, it holds that

Viie Vn Vs Vaa
Vi, VaVi'Ve Va

5 = 2
(1 v Vi3 Vs
Via

Using (15) any test statistic given in (14) can casily be compuied. Two obvious
candidates from the tests that compare two out of four possible estimators, are
those comparing the fixed or random effects estimators from the balanced sub-pane!
and the unbalanced pancl. where D = Dy = [f — {00 or D = 3 = [00f — {],
respectively. Two other choices, Dy = [/ 0 — /0] and Dy = [0 70 — I], result
in the standard Hausman specification test for uncorrelated individual effects (see,
c.g., Hsiao 1986, p. 48} and its generalization to an unbalanced panel, respectively.
A fifth test compares the FE estimator in the balanced sub-panel and the BE
estimator in the unbalanced panel (Ds = [1 00 — I]), while for the last possible
test D¢ = [0 7 — I 0]. Obviously, alternative tests which compare threc or meve
estimators of 8 are possible.
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TESTING FOR SELECTIVITY BIAS 687

Since the tests proposed above are based on the comparison of two estimators for
the same parameter vector and since some special cases correspond to well known
Hausman tests in the literature we shall refer to them as (quasi-) Hausman tests.
Unlike in the standard case our tests are based on estimators which are all
incorsistent under the alternative. In the very unlikely case where all estimators
would have identical asymptotic biases these tests will have no power at all.
Keeping this in mind the null hypotheses (H{:D;8 = 0) of the tests above can be
translated into hypotheses in terms of estimator consistency.

Let us define

HEE.E{£,]r;} = 0 (the fixed effects estimators are consistent),

and
HEE E{a; + £,|r;} = 0 (the RE and FE estimators are consistent).

The null hypothesis (dencted by Hy) of nonrandom selection, i.e. the hypothesis
that r;, and «; and ¢;, are independent, is the strongest hypothesis (since it implies
all the others). However, for conducting inferences it is not relevant whether Hy is
true or not. but whether H(}"’E or H(f E are correct, since inferences will be based on
cither the random effects or the fixed effects estimator. Notice that the latter
hypothesis is implied by the former, i.e. whenever the random effects estimator is
consistent, the fixed effects estimator is consistent as well. The (quasi-) Hausman
tests may be appropriate instruments for checking the consistency of these
estimators, although they are only able to test for the weaker hypotheses H{.
Consequently, a rejectior: of H{ (for some i = I, ..., 6) by the corresponding
Hausman test, implies that H§Z shou'd be rejected. If H{ is rejected, H{® should
be rejected as well. However, the converse is not true.

Note that if both H{TE and H{* are false, all estimators are inconsistent. In that
case knowledge of the selection process can be used to model selection simulta-
neously with model (1) to obtain consistent random effects or fixed effects
estimators correcting for selectivity, However, the joint estimation of a selection
process and model (1) may be computationally demanding, unless some simplifying
distriburional assumptions are made. See, for example, Ridder (1990) or Verbeek
(1990). In addition, the restrictions needed to identify 8 may be stronger than one
would like, while the resulting estimates will depend heavily on the available prior
information (compare Manski 1989, 1990).

Note that only the first test statistic (based on I}y) is appropriate for checking
H{E. while any other test statistic can be used for HEE. The optimal testing
procedure seems to be to test for the stronger hypothesis first (H£F), and, if this
test rejects, test subsequently for the weaker one (H{F). Of course, it is preferable
to use the most powerful test out of all possible tests for the hypothesis H&E.
However, the analysis of statistical power is extremely difficult if not impossible,
not only because the test statistics are not mutually independent, but also because
we are working with Hausman specification tests for which the null hypotheses Hé
cannot be written down in a simple parametric form. Therefore, standard results on
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the power of Hausman tests (compare Holly 1982} and on sequential testing {ses,
e.g., Mizon 1977, Holly 1987) are not directly apglicable in this situation.

Of course alternative tests for selectivity can bhe constructed. Remember that
selectivity bias in model (1) occurs because the conditional expectation of the error
term a; + &, does not equal zero. If this conditional expectation E{a; + &;|r;}
were known (possibly apart from one or more proporticnality factors) one coula
add it as an extra regressor (or combination of regressors) in (1) such that the new
error term has expectation zero (given x;, and r;). Subsequently, the parameters in
the extended model can be estimated consistently using standard methods. This is
the essence of the well known two step estimation procedure in the cross sectional
sample selection model proposed by Heckman (1976, 1979) and the simple two step
estimators for models with censored endogenous regressors and sample seleciion
suggested by Vella (1990). An application for the case of nonresponse in pane! dulz
is presented hy Nijman and Verbeek (1990).

Of course, the cenditional expectation E{a; + &;|r;} is not known (or identifi-
able) unless the selection process is known (or identifiable), and thercfore this
procedure will have the same drawbacks as joint estimation of the model and the
selection process, although the computational burden may be somewhat less. As a
testing procedure it may be worthwhile to try to approximate the conditional
expectation in a simple way and to check whether it enters medel (1) significantly.
Since F{a; + c;|r;} will be a function of r;, the functional form of which depends
upon the joint distribution of &; + &; and r;, one can think of two more or less
distinct ways of approximating it. Firstly, one can have one or more variables, z;,,
say, that are likely to determine the probability of selection (ie. affect the
distribution of 7;), and enter these variables in a convenient form, for example as
a low order polynomial. The resulting test would then be a joint test ¢f the
hypothesis that, conditional on x;;, ¥;, does not depend on (this function of) z;, and
the hypothesis of no selectivity bias. Alternatively, one can choose some function
of r; itself, from which it is known that it should not enter the model significantly
under the hypotbesis of no selectivity bias. The resulting test is a test of the
selectivity bias hypothesis only. In the sequel we shall concentrate on this second
approach and consider three possible variables that can be included in the
regression equation. First, T, = > I, ri, the number of waves individual {
participates, second ¢; = 11, r;, a0-1 variable equal to ] if and only i individuai
i is observed in all periods and third, r; ;. indicating whether individuat 7 is
observed in the previous period or not. Note that r; ; = 0 by assumption. To test
the significance of these variables in (1) we are forced to use the unbalanced pancl
since in the balanced panel the added variables are identical for all individuals and
thus incorporated in the intercept term. Since the additional variables are constant
over time for each individual in the first two cases, the corresponding parameters
are not identified in the case where the individual effects ; are treated as fixed. We
shall therefore concentrate attention to random effects estimators.

Although one could expect that the added variables have an influence on the
relationship between y;, and x;; if there is selective nonresponse. there is no reascn
why this effect would be linear and thus the power of the tests may be doubtful. If
we denote the coefficient for the added variable w, say, by vy, then the null
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hypothesis of the variable addition test is Hy':y,, = 0. Note that Hy implies H§
but that the converse is not true,

4. SPECIFICATION OF THE RESPONSE MECHANISM AND THE LM TEST FOR SELECTIVITY
BIAS

In this section we assume that response r;, is determined by a random effects
probit model, an assumption which is often made in empirical applications
(compare Hausman and Wise 1979, Nijman and Verbeek 1990, Ridder 1990). Under
this assumption and assuming normality of the error terms in (1} it is possible to
derive the LM test statistic for the null hypothesis that #;, is independent of the
unobserved determinants of y; («; and g,). Furthermore, we pay some more
attention to the conditions for consistency of the FE and RE estimators in the
context of this example.

Suppose r;, is determined by the sign of a latent variable +%,, which is generated
by

(16) rh=zyyt by, t=1,..,T; i=1,..,N,

where z,, is a row vector of exogenous variables, usually containing partly the same
variables as x;, 7; denotes an unobserved random variable and £} is an
individual-specific effect. In order to account for possible correlation between &%

and the explanatory variables z;,, we follow Chamberlain (1984) in assuming that,
(17) Ef=zymy tzpmy ot gy + &,

where ¢; is independent of all z;,’s. Substitution in (16) yields

(18) rh =y ytagm tipmy ot ipwr + &4 .

To be able to identify the parameters in (I8) it is essential to assume that
observations on z;, arc available for both r;, = 1 and r;, = 0. Note that this
assumption is not required when performing the (quasi-} Hausman tests or variable
addition tests preposed in Section 3. The unobserved random variables in (1) and
{18) are assumed to be normally distributed according to

g; ol
2
n; Tend ol
19 ~ N| 0,
( ) é‘l_ O 0 o_g »
a; 0 0 Tae Ui
where £; = (&, «.., &) and u; = (1, .., nr)'. For identification of the

probit model we will impose (as usual) a2 + ¢f = 1. Of course, one can test the
medel assumptions implied by (18) and (19) along the lines discussed in, for
example, Lee (1984) and Lec and Maddala (1985).

Under these assumptions the expectation of ;, given selection is given by (see
the Appendix)
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2 T

T, lis .
(200 Efeglrt =5 |ElE + malrid = ————s S50 B{&, + nilr,
1‘ 0_;] {‘fl 7?11] r} U% N ?-U_é S}:[ {fl "7:5'-”1} ,
while the conditional expectation of «; given selection is given by (see the
Appendix)
T g !

2 Ela;|ri} = ”T—i"f"a' Z E{é + mylrit

o, t 1oy [T

The conditional expectation E{¢;, + w;)r;} i1s a complicated function (see the
Appendix} of the variables in z;, and reduces to “‘Heckman’s (1979) lambda™ if
there is no individual effect in the probit model (o = 0).

Under the normality assumption the indcpcndence of v, and (e, £4) 18
equivalent to v,y = o, = 0. Clearly, this condition implies that (I1) holds,
implying consistency of both the random effects and the fixed effccts estimators.
For the transformed error term #;, (20) implies that

o, T d
(22) E{e'a\r,-}-:d—;’ E{E+ mulrd — 20 roElE + fn_-,-!h}/i ris

7 5=1 v o= 1

!

From this it immediately follows that condition (8) is fulfilicd and the fixed effects
estimator is consistent if either o, = 0 or E{§; + 7;|r;} does not vary over time.
The latter condition implies (see the Appendix) that there is no selectivity bias if the
probability of an individual of being observed is constant over time, even if o,
0. This will occur when z,, v is constant over time. Since (22) does not contain o,
a correlation between the individual effects in the structural equation (1) and the
probit equation (18) dees not result in a bias in the fixed effects estimator.

The condition that E{& + 1, |r;} does not vary with ¢ is clearly not sufficient for
consistency of B . For the latter we either need that E{¢; + 1, 17;} 18 constant and
T > = (since the FE-estimator and the RE-estimator are equivalent when T tenids
to infinity)” or that E1& + m;|r;} is constant and 6,4 + 7y = £, which does not
seem to be very likely in practice.

The actual magnitude of the inconsistencies of the estimators is determined by
the projection of the conditional expectations derived above on the (transformed)
x;’s. Although it is possible to analyze the effects of changes in model parameters
on the conditional expectation of the {transformed) crior term analyticaltly {com-
parc Ridder 1990}, it is, in general, virtually impossible to give analytical cxpres-
sions in terms of the model parameters for projections of these expectations on the
explanatory variables, i.e. of the biases in the estimators. To obtain some insight in
the numerical importance of the bias in the four estimators discussed above, we wil]
present some numerical results in the next section.

Given the model in (1) and {18) and the assumed normality of the error terms in
(19} is it pessible to write down the likelihood function (compare Ridder 199G} and

7 This equivalence also holds when the model is not correctly specified., as in our case.
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to derive the Lagrange Multiplier test statistic for the null hypothesis Hy oy, =
o4¢ = U. The loghikelihood function involves the joint disiribution of the observed
y-values in y£?* and the response indicator r;. In particular, the loglikelihood

contribution of individual 7 is given by
(23) L, =tog iy, r)) = log flry| y2%) + log Ay ™),

where we are using f(.) as generic notation for any density/mass function. The
second term in the right-hand side of (23) is the log of a T';-variate normal density
function, while the first term is the loglikelihood function of a (conditional)
T-variatc probit model (see the Appendix for details).

Denoting the full vector of parameters involved in (23) {including o, and o,,,) by

g, the Lagrange Multiplier test statistic is given by

Boany [ X oarian) X au

24 = LS| 250 a0 2
i= 1 .l—] i=1 Bﬁéﬁ
where f is the ML estimate for 6 under Hy:0,; = o,y = 0. Since there does not
appear to be any form of block diagonality of the Fisher information matrix under
the null, the scores with respect to all parameters in the inodel are required to
compute this test statistic from the first derivatives of the loglikelihood. For the
cross sectional case the LM test for selectivity is discussed in Lee and Maddala
(1985).

Because under Hy the two terms in the right-hand side of (23) depend on
nonoverlapping subsets of the vector of parameters, the score contributions with
respect to the parameters in (1) can be found in Hsiao (1986, p. 39),8 while those for
the parameters in {18) can be derived from a standard random effects probit
likelihood (see the Appendix}. The most difficult score confributions are those with
respect to the two covariances v, and o,,: the latter even requires double
numerical integration (see the Appendix). Because estimation under H requires
numerical integration (for cach individual) for the probit part of the model and
computation of each score contribution also requires numerical integration over
one or two dimensions, the LM test is rather unattractive in applied work.

For the cross sectional sample selection model Heckman (1976, 1979) proposed
a simple way to test for selectivity bias and to obtain consistent estimators. As
discussed in Ridder (1990} this method can be generalized to the case of panel data,
where two correction terms to cquation (1) arc added instead of just the one
variable known as Heckman’s lambda (or the inverted Mill's ratio). These two
correction terms are the conditional expectations of the two error terms («; and g;;)
given the sampling scheme, as given in (20) and (21) evaluated at the (consistent)
parameter estimates of the probit model under the null hvpothesis (see Nijman and
Verbeek 1990 for an application). The two unknown covariances o, and o, are
not included in these correction terms but are the corresponding true coefficients in

¥ Note that (3.3.20) in Hsiao (1986) coniains a printing error; the first - sign on the second ling should
read a + sign.
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equation (1). Obviously, consistent estimation of these coefficients o, and o,
allows one to check whether nonresponse is selective ol not. Since estimation of
the parameters in the response cquation as well as computation of the conditional
expectation of & + w; in (20) and (21) requires numerical integration, these
generalized Heckman (1979) method is still computationally unattractive. There-
fore, it may be worthwhile to have some simple variables that can be used instead
to approximate the true correction terms to check for selective nonresponse. for
example thosc suggested in the previous section.

If the specification of the response process in (18) is correct, the lLagrange
Multiplier test is known to be asymptotically efficient for testing the null hypothesis
Hy. To obtain some idea about the power of the alternative simple tests we
performed a Monte Carlo study under this assumption, the results of which are
presented in the next twe sections. In Scction 5 we introduce the Monte Carlo
model and present estimates for the pseudo true values of the four estimators in
(12), giving insight in the importance of the selectivity bias in these ¢stimators. In
Section 6 some numerical results on the power of the simple tests in comparison
with the Lagrange Multiplier test arc presented.

5. NUMERICAL RESULTS ON THE PSEUDO TRUL VALUES OF THE RE AND FE
ESTIMATQRS

In this section we will present some numerical results on the pseudo true values
of Bpy and Bre. defined as the probability limits of these estinmators under the tive
data generating process. For expository purposes we consider a simple model
consisting of equations (1) and (18) with only one exogenous variable included
besides the constant term.

This exogenous variable {z;, = x;) is assumed to be gencrated by a Gaussian
AR(1) process with mean zero, autocorrelation coefficient p, and variznce 0‘3. For
simplicity we have imposed equality of all #,’s in (17). The model used for
simulation is thus given by

(23) Yi = Biag bt ey
(26) o= va T vk oAk Y E T sy

where ¥; is the average value of the x;;’s over time. We concentrate on a mode!
with only one explanatory variable, since it ehicidates the discussion most clearly.
Including an additionzl variable in (25) that is uncorrelated with x,, essentially
would not change the results, while inclusicn of a variable that is correlated with
x;; would result in biases that depend heavily on the sign and magnitude of this
correlation. Similar remarks hold for the inclusion of additiona! variables in (26).

We consider two possible specifications for the selection equation, one in which
a is a priori sct to zero {(in which case the probability of selection in period 7 is
determined by x;,), and one in which | is a priori set to zero such ihat the average
vatue of x;, over time determines the selection probability. Given this choice of
specification, the relative biases of the estimators for 8, in this model, defined as
(B, — B1YB,, where B, is the pseude true value of the respective estimators for 8.
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TABLE t
RELATIVE INCONSISTEMCLES (IN PERCENT} IN THE FE AND RE ESTIMATORS FROM A BALANCED AND
UNBALANCED PANEL

Reference situation (REF): T = 3, Rﬁ =0.1, R} =09,p, =0.1, p, = 0.7, py = 0.5,
pr = 0.1 and p,; = 0.5

R} = R} = Pa = pe = Pe = pg = Pog =
estimator REF 0.9 0.1 0.9 0.3 (1) 0.9 0.9
A m=0,p, =09
FE(B) —78 -8 — 45 -25 - W -6l —28 -7
RE(B) -79 -9 —49 ~27 -93 -6l -39 -81
FE(U) —93 -10 —~30 —133 -101 =77 —37 —98
RE(L) —116 --13 53 -39 ~115 —88 —56 -121
B: 7=0,poy =0
RE(B} —6 | -5 -2 -6 -6 =17 —11
RE(U) —6 ~1 —4 —6 =7 -5 -19 -12
C: 71 =0, pq =09
RE(B) —34 -3 ~38 -1 —17 —27 ~17 -3
RE(U) —74 -7 —44 -4 —41 —61 -32 ~75

1. Relative inconsistency of an estimator is defined as its pseudo true value minus the true value
divided by the true value {multiplied by 100 percent).

2. The number of replications in each situation is chosen such that all (Monte Carlo) standard
crrors are smaller than 0.5 percent.

3. All simulation results are obtained using the NAG-library subrontines GOSCCF and GOSDDF.

4, From the analytical results we know that the fixed effects estimators are consistent in panels
8 and C, which was confirmed by the Monte Carlo results.

depend on 7, the number of time periods, and the following cight hyper-
parameters.

P = aﬁ(ag + Uez)—l, the importance of the individual effect in equation (25);
pe = crg, the importance of the individual effect in the selection equation;
P, the autocorrelation coefficient of x;;
po = P(ve), the (unconditional) probability of observation when x;; = 0 for
all ¢,
R} = pial(Bia} + ai + o)™, the (theoretical) R? of equation (1);
R}, the (theoretical) R? of the selection equation:
RY = yial(yio? + ) ' ifa=0,o0r
R} = wlal(w?of + )7V if g =0, with o = ¢2(3 + 4p, + 2p2)/9
(the variance of ¥;);
Pen = Teplo,0y, the correlation between the error shocks in (25) and (26);
Pog, the correlation between the individual effects in (25) and (26).

If we assume that all correlations are nonnegative, all of the hyperparameters are
restricted to the interval [0, 1], so that one has some more feeling what “*small’’ and
*“large’’ values for these parameters mean. Without loss of generality, it is assumed
that y; = 0 or w = 0. In Table | estimated relative biases (relative differences
between the estimated pseudo true values and the true values) of the four
estimators discussed above are given for several combinations of parameter values
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and T = 3. The numbei of replications is chosen in such a way that all (Mowie
Carlo) standard errors are smaller than 0.005. In the table the parameter values are
chosen as follows. Therc is onc “‘reference sitvation’ characterized by T = 3,
R} =01,R}=09,p,=01,p, =07T,.pg =05, p; = 0.1 and pe = 0.5.
Three alternative combinations of # and p,,, are considered given in panels A, B
and C. The columns in the table correspond to the reference sitvation (REF) or ihis
situation with only one of the paramcter values changed. For example, the column
with heading p, = 0.3 refers to the reference situation given above with g, = 9.3
instead of 0.7. If = = 0 and p,,, = 0.9 (panel A) we see in this column that the fixed
effects estimator based on the balanced panel suffers from an inconsistency of --20
percent, while the same figure for the random effects estimator from the unbalanced
panel is —115 percent. The standard errors implied by the Monte Carlo experiment
are such that the true relative inconsistencies are with a 95 percent probability
within a | percent point range of the reported values.

Although. as always, it is difficult to draw definitive conclusions from rcsults for
specific parameter values the results in Table 1 suggest the following peints.

The biases in the estimators can be substantial. In some cases it is even possibie
that the sign of the pseude true value is opposite to the sign of the true value of 3.
Moreover, like other simulation results {(not reported in this paper} suggest, if the
true 8, parameter is equal to zero (which implies that R =0), a significant effeci
of the explanatory variable cn y;; can be found. This phenomenon is alse known
from the standard {cross section) sample selection mode! of Heckman (1979).

Although the fact that the conditions for the fixed effects estimator to be
consistent arc weaker than those for the random cfiects estunator does rot
necessarily imply that the bias in the latter is always larger than that in the first, our
simulations show that this is in fact the case. If there is a difference between the RI:
and FE pseudo true values, it is in favor of the latter estimator. This result is caused
by the fact that we have assumed that p,, > 0. In the not very likely situation where
Pag < 0and p,, > 0, the bias in the random eflects estimator may in fact be smaller.
If the amount of bias is used as criterion for choosing an estimator, it is obvious
from our analvtical and numecrical results that the fixed effects estimator is likely to
be preferable to the random effects estimator.

For almost all situations we consider, the bias in the estimator based on the
unbalanced panel is larger (in absolute value) than that in the same estimator based
on the balanced panel; if it is smaller the difference between the two estimates is
negligible given the size of the Mente Carlo experiment. This somewhat surprising
result suggests that a balanced panel may be preferred to an unbalanced panel. A
possible explanation for this result might be that the individuals that arc ae!
observed in all periods have on average a lower probability of being observed, this
also a lower probability in those periods they are observed, implying a larger
correction term in the regression equation. In the standard sample selection model
of Heckman this would mean that for those individuals Heckman's lambda deviates
more from zero.

Keeping ali parameters fixed at some level except ong, it may be possible to say
something about the change of the bias if that one parameter is changed. It is
evident from the analytical resuits and also from the numerical results above that
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rsein R, 2 will cause a decrease in the absolute value of the bias, simply because a
rising K 2 diminishes the role of the error terms a; and g;,. Oo the other hand, a rise
in R} mcreases the absolute value of the bias, since it increases the correlation
betu een the probabilities of being observed and the explanatory variable(s) x;,. For
Po = (yO = 0), an increase in p, diminishes this correlation and therefore
decreases the absolute value of the bias. Obviously, increasing the (absolute values
of the) correlation coefficients p.,, o p,, (already being nonnegative) causes a rise
in the absolute value of the bias of all estimators. A more important individual effect
in equation (25), p,, seems to reduce the absolute vatue of the bias; the effect of p,
and p; is ambiguous.

6. NUMERICAL RESULTS ON THE POWER OF THE TESTS

In Section 3 a number of tests were proposed which can be used to check
whether selectivity bias is present or not. In this section we present numerical
results on the power properties of the quasi-Hausman tests, the variable addition
tests and the LM test of Scction 4 for the Monte Carlo model introduced in Section
5. We shall not consider the generalized Heckman test because it is as hard to
compute but asymptotically less powerful than the asymptotically optimal La-
grange Multiplier test.

For simplicity we restrict ourselves to an analysis of the asymptotic local power.
That is, we consider the power of our tests under a sequence of local alternatives,
in general 0 = @, + &/ /N for some vector 8, where 8, denotes the parameter
value under the null hypothesis (compare Engle 1984 or Holly 1987). Under such a
sequence of local alternatives our tests (or their x* equivalents) are asymptoticaily
noncentrally y° distributed, with a decentrality parameter A determined by 8. For
the (quasi-) Hausman tests, for example, and a sequence of local alternatives given
by B = B + 8/VN it holds that

A . . L - -
(Q7) £r = NB'R'(RVR') R — xX3'R'(RVR') R&) = xjAg), N — .

Since the power of a test is a direct function of its decentrality parameter, we report
decentrality parameters only.

We interpret the particular alternative implied by the Monte Carlo model as being
one in a sequence of local alternatives. For all cases in the Monte Carlo set-up we
choosea Sample size? of N = 25,000 to estimate the pseudo true values Bby 9. We
estimate § by 5 -—\/n( 6 — 8), which gives us (an estimate for) the decentrality
parameter for sample size n. In Table 2 decentrality parameters for n = 500 are
reported. From these decentrality parameters one can compute the probability of
rejection of the null hypothesis in a sample of 500 observations based on an
approximaticn by the asymptotic distribution. Considering, for example, the
reference situation in panel A (7 = 0, p,, = 0.9), we sce that the Hausman test
comparing the RE estimators from the unbalanced panel and the balanced sub-

¥ Sample size refers to the number of individuals in the panel, including those that are observed onty
once or twice.
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TaBLE 2
DECENTRALITY PARAMETERS OF THFE CHI-SQUARE DISTRIBUTIONS OF SEVERAL TESTS FOR
SELECTIVITY Bia§ AT n = 500 anp I = 3

Reference sitvation (REF): T = 3, R? — 0.1, R} = ~0.9:pﬂ = 0.1, p, = 0.7, py = 0.5,
pe =0.1and p,; = 0.5

] Bl = RI= p.=  po=  pu=  pr=  pae -
test DF REF 0.9 0.1 0.9 0.3 o) 0.9 0.9
A: 7m=0,p, =09
Quasi-Hausman tests:
| 1 i.41 1.27 0.07 2.00 0.31 1.52 0.26 1.05
2 1 7.23 6.00 0.06 3.55 1.53 7.42 1.84 7.33
3 1 0.8% 0.72 0.03 1.76 0.60 0.43 1.13 0.72
4 1 2.07 .81 0.01 355 0.85 1.43 1.37 1.66
5 2 2.04 1.64 0.04 2.02 0.8% 1.83 .39 2.49
6 2 7.27 6.04 0.10 4.25 .69 7.48 244 7.34
Variable addition tests:
7 1 0.01 0.01 0.04 0.14 0.03 0.11 0.10 0.04
8 1 0.03 0.03 0.00 0.24 0.04 0.04 0.17 0.14
9 1 0.02 0.0 0.01 0.02 0.00 0.14 0.03 0.02
Lagrange Multiplier test:
LM 2 55.1 49.2 5.46 31.3 38.5 57.3 14.1 66.3
7= 0, ey = 0

Quasi-Hausman tests:
2 1 0.07 0.06 0.00 0.02 0.00 0.02 0.00 0.00
3 1 0.12 0.35 0.06 .72 0.09 0.01 0.81 0.41
4 1 0.06 0.45 0.04 0.18 0.04 0.00 0.81 0.38
5 2 0.17 0.44 0.60 0.7 0.12 0.02 0.98 0.57
6 2 0.15 0.36 0.07 0.73 0.11 0.05 0.84 0.46
Variable addition tests:
7 1 0.09 0.07 1.88 .61 0.32 0.22 1.23 0.59
8 1 0.06 0.09 1.31 0.39 0.17 0.21 0.98 0.64
9 1 0.00 0.12 0.16 0.00 0.14 0.04 0.27 0.15
Lagrange Multiplier test;
LM 21 1.33 0.13 4,12 4.95 1.06 1.15 5.92 3.74
C: Y1 =0 pey = 0.9
Quasi-Hausman tests:
2 1 19.6 19.4 0.10 1.47 11.4 20.7 8.96 17.7
3 1 19.9 18.3 373 6.68 2.4 15.2 4.35 19.3
4 1 16.0 14.7 1.56 2.50 15.1 12.7 il 15.3
5 2 30.6 29.3 3.73 7.60 27.1 28.3 11.9 29.2
6 2 29.4 284 3.74 6.86 24.5 27.5 11.4 27.9
Variable addition tests;
7 1 29.9 276 0.09 3.9z 36.7 27.40 16.0 249
) 1 22.7 21.6 0.08 116 3.6 21.6 3.9 18.5
9 1 2.80 229 (.05 0.04 5.85 2.10 0.59 2.19
Lagrange Multiplier test;
LM 2 75.9 73.6 13.7 20.1 83.8 66.8 12.1 83.0

1. Fixed Effects (Balanced vs. Unbalanced)

2. Random Effects (Balanced vs. Unbalanced)

3. Unbalanced (Random Effccts vs. Fised Effects)

4. Fixed Effects, Balanced vs. Random Effects, Unbalanced

5. Balanced (FE vs. RE) and Unbalanced (FE vs. RE)

6. RE (Balanced vs. Unbalanced) and F¥. Balanced vs. RE, Unbalanced

7. %, riy

8. [I, r;

9. 1 -

YIf the restriction p,, = 0 is imposed a priori, this test has one degree of freedom.
Estimated decentrality parameters are based on 25.000 individua) observations. Estimates for
decentrality parameters for sample size » can he obtained by nultiplying the numbers by #/500,
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TABLE 3
FROBABILITIES GF REJECTION (AT 5 PERCENT) FOR SEVERAL DFCENTRALITY PARAMETERS

Decentrality parameter

DF 0 1 2 3 4 5 10 20
1 0.05 0.17 0.29 0.41 0.52 0.61 0.89 0.95
2 0.05 0.13 0.23 0.32 0.42 0.50 0.82 0.99

panel has a decentrality parameter of 7.23, implying a 77 percent probability of
rejection at a nominal size of 5 percent (if # == 500). If the available sample contains
1000 individuals, the decentrality parameter is twice as large (14.46) corresponding
to a 97 percent probability of rejection. Similarly, the implied probabilities of
rejection (at a nominal size of 5 percent) for six (quasi-) Hausman tests, three
variable addition tests and the LM test for any number of observations can be
computed using Table 3.

Note that the estimated decentrality parameters in Table 2 are not normally but
(noncentrally} Chi-squarz distributed, which makes computation of confidence
intervals difficult. Based on the asymptotic normality of the parameter estimators
the variance of A approximately satisfies

. n’ N
(28) ViAL = ﬁf d+ ; A

wherc A is the number of degrees of freedom, and where we use the fact that NinA
is Chi-square distributed. It is important to note that this variance increases with
the true value A. For large enough A the corresponding standard error for N =
25,000 and # = 500 is (approximately) given by 0.283VA.

Looking at panel A of Table 2 first, where both H(‘,F'E and HEE are false, we see
that in this case none of the variatle addition tests has any power. Obviously, thesc
variables are under these data generating processes not capable of approximating
the Heckman (1979) like correction terms. This is probably due to the fact that our
simple variables are not capable of capturing the time variation in these correction
terms (due to z; ¥). With regard to the Hausman tests, the results in Table 2 suggest
that the test based on comparison of the random effects estimators in the balanced
and the unbatanced pane! (the second test) is more powerful than all other tests
based on comparison of two estimators. Looking at the tests that compare two pairs
of estimators {the fifth and the sixth test in Table 2), the latter seems to perform
relatively well, although it is not performing uniformly better than the best one
degree of freedom test. The test statistic based on comparing all four estimators
(which is not reported in the Table) does not result in a very powerful test compared
to those tests based on two pairs of estimators, since the additional degree of
freedom has a much more dominant effect on the power than a (fairly small) rise in
the decentrality parameter. For panel A of Table 2, the LM test is obviously far
more powerful then any Hausman test. Note that the power of all tests reduces
substantially if the R? of the selection equation is reduced from 0.9 to 0.1; the bias
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in the estimators is however still suhstantial (53 nercent for the random eFects
estimator from the unbalanced pancl).

If 0., = 0, i.e. if the error shocks in the structural equation and the selection
equation are uncorrelated, but o, # 0 (so Hg" is true and H [ is not; panel B) all
tests seem to have limited power only, Even the power of the LM test is very
limited in this case, in which, of course, the null hypothesis H, is only violated in
one direction o, # 0). Since the bias in the fixed effects estimators is zero in this
case, while that in the random cffects estimators is smali (compare Tablc 1), this
does not scem to be a sitaation to worry abhout.

As shown in panel C of Table 2, the power of all tests appears to be larger in the
case where the response is determined by an individual effect which is correlated
with the regressor {7 # 0 and y; = 0) than in the case where the regressor itself
determines the response (# = & and vy, # 0). Note that for the Hausman tests
comparing FE and RE estimators we have a standard sitnation in which one of the
estimators in the test statistic is consistent even if the null hypothesis does not hold.
Remarkably, the variable addition tests have fairly good power properties as well.
especially the one based on adding the number of waves an individual is partici-
pating (2, ;). The one based on including +; ,_| has only very limited power.
Concerning the Hausinan tests, the one compuring the RE and FE estimator in the
unbalanced panel, which is the standard Hausman test for uncerrelated individual
effects, has the largest power of the one degree of frecdoin tests. In some cases it
is worthwhile to combine two restrictions and perform a two degrees of freedom
test. It should be clear from the simulation results in the table that it is well possible
that the standard Hausman (1978) specification test for testing the hypothesis that
the individual effects are uncorrelated with the zxplanatory variables rejects due to
the presence of selectivity bias.

Unfortunately, none of the simple tesis seems to have uniformly better power
properties than the others, so we cannot recommend one particular test, The power
of all tests seems to depend crucially on the fact whether #{E is false or, if it is
true, why H{ is true {0, = 0or vy, = 07 In the latter case (y, = §) the power
of most simple tests is quite reasonable. whilz it is not if o,,) = 0. In line with the
Monte Carle results above, we arc tempted to say that both the second and the third
Hausman test (RE, balanced versus unbalanced, and unbalanced, FE versus RE,
respectively) perforiii relatively well and may be a good choics in applied work.
The best choice for a variable addition test seems to be to include X, r;, in the
structural equation.

So far, we have only considered numerical analyses for a three wave panel (T =
3). If T increases, the number of individuals in the balanced subpane! (kecping al!
parameters fixed) will decrease, which may increase the differences found between
the estimators from the balanced and the unbalanced panel. Meoreover, ihe
difference between the fixed effects estimator and the random effects estimator for
a given sample will get smaller. since the weight of the between estimator in the
random effects estimator is inversely related with ¥ (compare Hsiso 1986, p. 36).
This suggests that the power of the Hausman tests comparing cstimators from the
balanced and unbalanced panel will increase with 1 and that of the standard
Hausman specification tests wili decrease with 7. For larger T the second Hausman

Rights.Reseved. ..
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test (comparing the random effects estimators from the balanced and unbalanced
panel) is probably the mest attractive way to test hypothesis H 625 .

7. CONCLUDING REMARKS

Ini this paper we suggested severa! simple tests to check the presence of selective
nonresponse in a panel data model. We considered the selectivity bias of the fixed
and random effects estimators and showed that the FE estimator is more robust to
nonresponse biases than the RE estimator. Several simple Hausman tests have
been suggested which are based on the differences in the pseudo true values of
these ¢stimators. Fusthermore, some variable addition tests are proposed which
can be used to test for selectivity bias. Neither of these tests requires estimation of
the model under selectivity nor a specification of the response mechanism.

Our theoretical results show that the conditions for consistency of a fixed effects
estimator are weaker than that for a consistent random effects estimator. In
addition, a Monte Carlo study shows that the bias of the FE estimator is likely to
be smaller than that of the RE estimator in cases where both estimators are
inconsistent. The numerical results also indicate that the bias resulting from a
balanced sub-panel is likzly to be smaller than that from the unbalanced panel.

Although the proposed Hausman and variable addition tests have poor power
properties in some cases, thev may be a good instrument for checking the
importance of the selectivity problem. In particular when response is partly
determined by an individual effect which is correluted with the regressor the power
of several Hausman tests and variable addition tests is quite reasonable in
comparison with the Lagrange Multiplier test. For practical purposes at least two
Hausman tests can be recommended: the one comparing the random effects
estimators from the balarced and unbalanced panel, and the one comparing the RE
and FE estimators in the unbalanced panel (the standard Hausman test for
correlated individual effects). A test that is even simpler is the variable addition test
including T; = X, r;, in the specification of equation (1). This test also seems to
perform quite reasonable in practice,

For ease of presentation attention in this paper was restricted to the linear
regression model, although several of the tests can straightforwardly be generalized
to nonlinear models. For example, for any model that is identified from both the
unbalanced panel and the balanced sub-panel, it is possible to compute a simple
Hausman test comparing the corresponding two estimators. Moreover, adding 1;
or ¢; as an additional explanatory variable is possible in virtually any kind of model
and consequently, its significance can be tested straightforwardly, yielding very
simple checks for the presence of selectivity bias.

Tilburg University, The Netherlands
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APPENDIX
SOME TECHNICAL DETAILS

The Derivation of (20) and (21). From (19) it is readily verified that

o Ui 0 Uafl,’
(29) £ ~N|O0, oll Gonl
Eit tm; (ri-%aéu'i
which yields
2
_ erf Ug
(30) F{E,lg,f- + "fh} I- T T e (grl’ -+ Ti:
Un To «f b n
and proves (20) and (22) if we use the definition of %; and take expectations
conditional upon r;y, ..., ri7. It also follows that
5 .
. Tag | o' ,
(3D Efa €0 + i} = - t (1 - Toii ol i )(E:t il

which proves (21) after taking conditional expectations upon r;;, .- , r;r.
Moreover, since £{£;{r;} is fixed over time and since (dropping the z;, m, terms
for notational convenience)

iy t {
n . 0- L
(32) Enylr} = f e ) de i =
¢
Ty
where ¢ and @ are the standard normal density and distribution function,
respectively, and f(£;|r;) is the conditional density of £; given selection (see Ridder

1990}, it is evident that there is no selectivity bias if z,, ¥ is constant over time. i.2.
if the probability of an individual of being observed is constant for all .

The Lagrange Multiplier Test Statistic for Selectivity Bias. The loglikelthood
contribution of an individual / in the full model is given by

(33) L;=log fir]|R;¥:) AR,y

where fir;|R,y,) is the likelihood function of a (conditional} T-variate probit model
and f{R;y;) is the likelihood function of a 7;-dimensional linear error compognients
model (compare Hsiao 1986, p. 38). The second term is simple and can he written
as

T T, -1 R . )
(34) log fiRv;) = —— !og 27 — —5 log o log (c2+ T;0l)
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The first term in (33) is somewhat more complicated because we have to derive the
conditional distribution of the error term in the probit model. From (19) and
defining vy, = r;(a; + ;) (where r;, is treated as nonstochastic), the conditional
expectation of the error term £; + 7, is given by

2 T
. Ten Uy
(35) E{& + nilva, oo vird =1y 5 vy — —5— F a7 > vis

T o L s=1

Fot d

(L85 N 1

T 2_2 Uis = Cjr, 32Y
T, Ti(ra s b

Using (19) the conditional variance of & + m;; can also be derived. It is
straightforward to show that the conditional distribution of §; + #;, given v, ... ,
v;p corresponds with the (unconditional) distribution of the sum of three normai
variables u;, + v|; + ry vy, whose distribution is characterized by

Elv;t= Efvyt =0, Eluy} = cy,

2
¥,

2 1, 2 )
Viu} =0, —rya.jo; say

V{V”}: G’é - TjO'ig(G’i‘f‘T;(Ti) "l‘—"w|, Say

2 —2 2 2y -1
V{iwy} = f:r,_:,]af,,(rE (ol + Tiol) ' = w,, say

— 2 2y -1
cov ){V“, VZE}W*O"G‘EO'E,?(O'F‘{’TI'U“) = bz, Say

and all other covariznces equal to zero. For notational convenience we do not
explicitly add an index i to the (co)variances s, and w@. Note that c;; = 0, st2 = 012,,
wy = crg' and w> = 0 undler Hy. Like in the unconditional error components probit
model (éomparc Heckman 1981}, the likelihood function can be written as (drop-

ping the z;, @, terms for notational convenience)

1
. Zuvy oy T vy TRy vy
(36) AriRiyi) = Eg) 1 &y 22

r=1

5y

where the expectation is taken over #y; and vy, and d;, = 2r; ~ 1. It is this
likelihood functicn that has to be differentiated w.i.t. the unknown parameters vy,
crg, o, and o, However, the expectation operator depends on the unknown
parameter vector @ (because the density of v; and v, is not defined with respect
to the same measure under Hy and the alternative), implying that the order of
taking expectations and differentiating is not interchangeable. This problem can
easily be solved by defining two new integration variables that are both standard

Copyright ® 2001. All Rights Reseved.
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normally distributed (under the null and the alternative), 7 and T, say. Then we
obtain

¥y toy tagry HhyT
BT ArilRiye) ﬂ ( LA A ?-)cb(nwr:)d-ndrz
=1

8,

where

ai,=w1]”2+rj,w|2m2_'/2 and by =rylw,; - w]zd} e

Since fiR;v;} does not depend on Tey and o, differentiating the log of the
expression above and cvaluating the result under Hy yields the scores w.r.i. the
two covariances. Using the fact that for any clement ¢ of the parameter vector (.

2z
o-'q’ 0‘51}: a’af)v

oL, afiri|R;y;)

(38) ;?E = Tf(r.-l&y;)

with

2 afrilRiy) . _TI o) 300

@) = ”z]% ) =55 B0 dry .

the score w.r.t. o, can easily be derived using the following equality (under H)

aq) - + ’[r o it d 172
(40) ) ¢( M') it ( Ca 9@ n).

0T ¢ L Uy \0T o 00,

Similarly, for v, we use

dd, () 2uy o\ diy | oo ,
(@) St gl g, BT G (0 e e Tl ),
i1 o, Oy \OU .y ' )

from which the score w.r.t. o, under ¥, can easily be derived. Note that both 7
and 7, occur in the integrand such that numerical integration over two dimensions
will be required.

For the scores w.r.l. yand 0' =1 a'% it suffices under Hy to lock at aflr;)/ay
and afir;)/do,, where (comparc Heckman 1981)

(42) (r)mJ’ I[ ¢( ”ya——)mmdn.

Both scores will require numecrical integration over one dimension.
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