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Abstract

A preliminary Cusum chart based on individual observations is developed
from the uniformly most powerful test for the detection of linear trends. This
Cusum chart is compared with several of its competitors which are based on the
likelihood ratio test and on transformations of standardized recursive residuals on
which for instance the Q-chart methodology is based. It turns out that the new
proposed Cusum chart is not only superior in the detection of linear trend out-
of-control conditions, but also in the detection of other out-of-control situations.
Approximate control limits, determined from simulation, and an example of its
use in practice are given for the proposed Cusum chart.
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1 Introduction

Control charts are basic and powerful tools in Statistical Process Control [SPC] and are
widely accepted and applied techniques for controlling various industrial processes.
Originated by Shewhart in 1924 [cf. Shewhart (1931)], the effectiveness of control
charts is due in part to their simplicity. In fact these charts are simple graphs with time
on the horizontal axis and a quality characteristic such as sample mean or sample range
plotted on the vertical axis. Shewhart developed the use of 3-sigma control limits as
action limits, i.e. if the quality characteristic is outside these limits then the process is
called out-of-control and action is needed to eliminate the special cause.

Another technique to control an industrial process was developed by Page (1954).
He proposed the so-called Cumulative-sum [Cusum] chart. This technique plots the
cumulative sums of deviations of the sample values of a quality characteristic from
a target value against time. There are two ways to represent Cusums, the tabular [or
algorithmic] Cusum, and the V-mask form of the Cusum.

It is said [cf. Montgomery (1996)] that Shewhart-type control charts for averages
are very effective if the magnitude of the shift is 1.5-sigma to 2-sigma or larger. For
smaller shifts, the Cusum is a good alternative or additional tests for special causes [cf.
Nelson (1984)] are needed to improve the effectiveness of the Shewhart-type control
chart.

In the literature two situations of using control charts are distinguished: stage 1
[retrospective] and stage 2 [prospective]. In stage 1 historical data are analyzed to
decide if the process is in statistical control and to estimate the in-control parameters
of the process. The next stage, the so-called prospective stage 2, is started when the
analysis of past data did not reveal any out-of-control signals. It is very important that
all special causes are detected in stage 1 because this leads to a better understanding of
the process and it avoids inflation of the estimates of the parameters needed for stage 2.
In course of time the preliminary estimates are revised based on available data from
stage 2, and again we are in a stage 1 situation. This updating and checking of the
parameters is a recurrent phenomena, but one hopes to move into a situation where
out-of-control signals are fairly rare.

Today’s manufacturing environment hardly resembles the high volume production
of the twenties to the early eighties, in which period SPC charting methods were intro-
duced. Current manufacturing practice is typically characterized by either frequent set
up changes to accommodate a wide range of different products [short run processes],
or intrinsically low production volumes of the same type of product. Printed circuit
boards for specialized applications are an example of the first situation, the produc-
tion of wafer steppers for semiconductor production is an example of the last. The
last few years there is a revival of interest to handle these problems. The increasing
use of computers for SPC applications enables industrial statisticians to consider other
approaches from mathematical statistics that are more powerful in discovering special
causes.

Quesenberry (1991, 1995) introdua@echarts and Del Castillo and Montgomery
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(1994) developed some enhancements and alternative methods. All these methods re-
quire the use of a computer. The present study was motivated by a recent paper of
Sullivan and Woodall (1996), where a preliminary control chart for individual obser-
vations based on a likelihood ratio test was developed; this chart cannot be applied
in a stage 2 situation, and hence is exclusively intended for the stage 1 situation. It
is remarkable that some of the new proposed charts have been based on well-known
papers in econometrics. For instance ehart methodology can be written as a
transformation of standardized recursive residuals as proposed in section 2.3 of Brown,
Durbin and Evans (1975). Also the likelihood ratio test [LRT] control chart in Sullivan
and Woodall (1996) is strongly related to Quandt’s log-likelihood ratio technique [cf.
Quandt (1960)].

Hence, in this paper we consider individual observations and we focus on the retro-
spective [stage 1] situation. The structure of the paper is as follows. After introducing
standardized recursive residuals and Q-statistics, we develop a new Cusum-type chart
for the detection of linear trends based on the uniformly most powerful test, and com-
pare this new chart with the LRT chart of Sullivan and Woodall (1996), the Cusum
chart of Brown, Durbin and Evans (1975); it turns out that the proposed Cusum chart
has the best properties to detect trends and shifts in the data. In the appendix a gener-
alisation of the proposed chart is given.

2 Recursive residuals and)-statistics

In recent years many control charts have been suggested which build@rsthéstics
proposed in Quesenberry (1991). In this section we show how results concerning re-
cursive residuals [well-known in econometrics] can be used to give a complete de-
scription of the joint distribution of)-statistics.

Consider the linear model

X,=2f+¢, i=12...

where theg;’s are independent normal random variables with expectation zero and
variances?, andg is an unknowrp-dimensional vector. Le¥; denote thé x p matrix
with rowsz}, 25, ..., 2z}, and let

X1
Bi=(Z2) " Zi |
Xi
be the least squares estimatorsoét timei. Brown, Durbin and Evans (1975) intro-
duced the standardized recursive residual
X — Z;Bi—l

Y, = :
Vi+2(Z0Z)

Y Z’:p—i_]‘7p_'_27"'7 (1)
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and showed that the random variabigs,, Y,,.», . . . are independent normal variables
with expectation zero and varianeé.
In practical applications? typically is unknown, and needs to be estimated. At

time ; the estimator .
1 < A\ 2
St =3 (X~ 4h) 2)
Pi=
can be used. In section 2.3 of Brown, Durbin and Evans (1975) a cumulative sum chart
is proposed which applies a V-mask procedure to the cumulative sum

Z

with Y; and S,, given by (1) and (2). We shall refer to this chart as the BDE Cusum
chart.
In Lemma 2 of Brown, Durbin and Evans (1975) the recursive formula

(i—-p)Si=(@G—-p-1)S;, +Y7

is given, which implies thaf? , only depends o, y,...,Y; 1, and hence is inde-
pendent ofy;. Since(i —p — 1)52 /0% has ay?- distribution withi — p — 1 degrees of
freedom, it follows by standard statistical theory thats; | has at- dlstrlbutlon with
the same degrees of freedom for p + 2.

We now show that3/S,, ..., Y, /S, are independent. First, we show that; /S;
andY; »/S;,; are independent: sincg; is a complete and sufficient statistic for
ifonly X, X5, ..., X, ; are observed, it follows from the fact that the distribution of
Y;,1/S; does not depend ar? thatY;, ,/S; andsS;,, are independent; moreover, since
Y3/Ss,...,Y;/S;_1 andS; may considered to be functions &, ...,Y;, it immedi-
ately follows from the independence betwesn...,Y; andY;,; thatY;/S; ; and
Y;.1/S; are independent. The general statement follows by an induction argument.

In the special case wherg is equal to the scalar 1 for evefywe have thap is
equal to 1, and:;Bi,l is equal toX;_,, the mean of\}, ..., X;_,; it follows that (1)
and (2) specialize to

~ X -
Y, = ! ,/Z L i=2.3,..., 3)
\/1—1— 2—1

S? = - ! zi:(Xj _Xjfl)Q- (4)

Transforming the ratid;/S; 1, we obtain the following statistics

Qi - q)il <Gip1 <%>> )
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which were called)-statistics in Quesenberry (1991). Hdre' denotes the inverse of
the standard normal cumulative distribution function, ahddenotes the-cumulative
distribution function withv degrees of freedom. It immediately follows from our de-
scription of the joint distribution o¥3/5,, Y4/Ss, ... thatQs, Q4, . . . are independent
standard normal random variables.

In the remainder of this paper the special case- 1 for all i will be used as a
model for the process under in-control conditions.

3 A new Cusum chart

In this section we propose a Cusum chart which to the best of our knowledge did not
appear in literature before. The proposed Cusum chart originates from exploring the
behavior ofY; as defined by (3) under the linear model

where theg;’s are independent normal random variables with expectation zero and
unknown variance?. In Appendix A a more general model is considered. We may

write
i — 1 Ul 9
Y; = | = (i— '>9+5i:— i(i— 1)+,
l = 2

— 1 1 it
51': ! - €; — il
) ) -

Observe that,, .. ., 6, are independent normal random variables with expectation zero
and common variance?, whereas, is degenerate in zero.

Let us for the moment suppose thdtis known. The joint density of5, ..., Y is
given by

(2r0%)” (- exp{—— (Zyj 92%\/ (G —1)+ ZJJ—1>}

which can be rewritten in the form

h(yz, - y)k(0) exp{U(y2, ..., y:)c(0)},

where

where

0(9):@

is an increasing function of the parametett follows [cf. Lehmann (1994), Corollary
3.2, p. 80] that the joint density af,, . . ., Y; has a monotone likelihood ratio in

Ui = U(Ys, ..., V) :iwj(j—n



with respect t&. Thus, ifY5,...,Y; are observed, then the one-sided test based on
U; is uniformly most powerful fo¥ [cf. Lehmann (1994), Theorem 2(i), p.78]. This
suggests that charts for detecting linear trend should be constructed by cumulating

Y;+/j(j — 1) rather thart; itself.

Observe that/; has expectatiol 3°}_, j(j — 1) and variancer® 35_, j(j — 1).
Thus, both the expectation and the variancé&/pére linear iny’_, j(j — 1), which
indicates that plotting/; versus}j;:2 j(j — 1) is preferable over plotting/; versusi.
Moreover, since a nonzero value btorresponds to a linear trend in the plotigf
versuszg'.zzj(j — 1), applying a V-mask procedure to this plot seems reasonable.

It was shown in Lucas (1982) [cf. Montgomery (1996)] that a V-mask cumulative
sum chart may be represented by means of a pair of so-called tabular cumulative sums.
Following the same line of reasoning, one may show that the V-mask procedure applied
to the plot ofU; versusz§:2 j(j —1) is equivalent to imposing a control limfiton the
pair of one-sided cumulative surig; andS;, ; defined by

Sui =max (0, Syt +\/i(i — 1) (Vi = £1/i(i — 1)),
Spi=max (0,5 1 +4/i(i — 1) (=Y = fy/i(i = 1)),

wheref is the so-called reference value. The one-sided cumulative SymandsS, ;
share their time-scale withi;; that is, they should be plotted vers§§:2j(j - 1)
rather than.

The charts just described distinguish themselves from the classical cumulative sum
charts by employing a transformed time-scale. Although time-transformations are sel-
dom used in statistical process control, they are being used in other industrial applica-
tions of statistics. For example, the Total Time on Test plot in reliability [cf. Barlow
and Campo (1975)].

A disturbing effect of the time-transformation is that the time instgnte, j(j —

1) at which the “last” observation in the sample is observed, does not depend linearly
on the sample size anymore. This can be repaired by introducing

(6)

3
S FTeEy v

and plottingh, U; versush? 27— j(j — 1) rather than plotting/; versusy_?_, j(j — 1)
[observe that the variance bfU,, is given byo?(n — 1)]. Equivalently, one may plot
the tabular Cusumis, Sz ; andb,, Sy ; versush? >0 d(j —1).

Until now, we have only considered the situation where the variafiée known.
Wheno? is unknown, a problem occurs due to the dependence of the control limits on
o%. However, this dependence is readily removed by dividjrig [or equivalently, by
dividing the the tabular Cusuntg Sy, ; andb, Sy ;] by the estimatolS,, as defined in

(4).



Let h, denote the control limit for the tabular Cusumssy, ;/S, andb,Su,;/S,
which yields an overall in-control signalling probability In Table 1 values ok, are
given for f = 0 and various choices of andn. These values are based on 10,000
simulations, which may yield inaccurate results for very smallOur adherence to
f = 0 will be explained later, in the discussion of our simulation results.

n Control limits

hooot  hooos oot ho.05
5| 397 389 384 3.56
10| 796 7.32 7.03 6.05
15| 10.78 9.98 9.46 7.93
20| 13.61 12.27 11.54 9.5(
25| 15.62 13.93 13.10 10.7
30| 17.08 15.49 1452 119
35(119.18 16.79 15.75 13.2
40| 19.94 18.16 17.20 14.0
4512196 19.48 18.48 15.0
50| 23.17 21.04 19.36 16.0
60| 26.58 23.10 21.72 17.6
70| 28.89 24.89 23.02 19.0
80| 31.75 26.04 25.02 20.7
90| 32.09 28.78 26.94 22.2

OO/~ OO WO F PB~WO

Table 1: Simulated control limits, for tabular Cusums$,,S; /S, and
b, Sw,i/ S, With f = 0, resulting in an overall in-control signalling prob-
ability o = 0.001,0.005,0.01,0.05. Control limits are based on 10,000
simulations.

For n sufficiently large, theoretical considerations based on formula (11.12) in
Billingsley (1968) yield thathg gg1, h0.005, ho.01 andhgos may be approximated by
V/13.41n, v/10.41n, v/9.14n and+/6.24n, respectively. Plots of the values in Table 1
versusn suggest the following refinements:

hooo ~ \/13.41n — 19.41/n,

hooos ~ /10.41n — 13.35/n,
hoot ~ 1/9.14n — 11.34/n,

hogs ~ \/6.24n — 7.87/n,
which may be used fat > 50.




Proposed Multiplied by BDE LRT

) X; Y; | Cusumchart | b,/S, = 0.04519 chart chart
lower  upper| lower upper| lower upper

1 -69| 0.0000 .00 .00 .0000 .0000; .0000 .0000] .0000
2 .56 .8839 .00 1.25( .0000 .0565 .0000 .7033| 1.5212
3 -96| -.7308| 1.79 .00| .0809 .0000; .5814 1218 2.7731
4 -11 .2194| 1.03 76| .0465 .0343 .4069 .2964| 4.2768
5 -25 .0447 .83 96| .0375 .0434| .3713 .3320| 6.2854
6 45 .6755 .00 4.66| .0000 .2106, .0000 .8695| 6.4847
7 -26| -.0864 .56 4.10| .0253 1853 .0688 .8007| 8.6341
8 .68 .8045 .00 10.12 .0000 4573 .0000 1.4408 8.2412
9 22 .2758 .00 12.46| .0000 5631 .0000 1.6602 9.9020
10 -2.10| -1.9543| 18.54 .00| .8378 .0000| 1.5550 .1053 6.6637
11 .65 .8543| 9.58 8.96| .4329 4049 .8752 .7850| 6.5225
12 -1.49| -1.2690| 24.16 .00| 1.0918 .0000 1.8850 .0000 7.9783
13 -2.49| -2.1281| 50.74 .00| 2.2930 .0000 3.5782 .0000 11.8817
14 -1.11| -.6404| 59.38 .00| 2.6834 .0000 4.0878 .0000 16.4430
15 .23 .6983| 49.26  10.12| 2.2261 4573 3.5321 .5557| 16.7887
16 2.16| 2.5220| 10.19 49.19 .4605 2.2229 1.5255 2.5623 12.0269
17 1.95| 2.1652 .00 8490/ .0000 3.8367| .0000 4.2851 9.0592
18 1.54| 1.6430 .00 113.64/ .0000 5.1355 .0000 5.5924 6.9959
19 .67 .7073 .00 126.72| .0000 5.7266 .0000 6.1551 6.2337
20 1.09| 1.0804 .00 147.78 .0000 6.6783 .0000 7.0147 4.9985
21 1.37| 1.3009 .00 174.44| .0000 7.8831 .0000 8.0498 3.6331
22 .69 .5760 .00 186.82| .0000 8.4426 .0000 8.5081 3.2395
23 2.26| 2.0858 .00 233.74| .0000 10.5630 .0000 10.1677 1.6164
24 1.86| 1.6055 .00 271.46/ .0000 12.2676 .0000 11.4452 .7447
25 .62 .3250 .00 279.42) .0000 12.6273 .0000 11.7037  .4149
26 -1.04| -1.3155| 33.54 245.88 1.5157 11.1114 1.0467 10.657Q0 2.4402
27 2.30| 2.0117 .00 299.18, .0000 13.5203 .0000 12.2576 2.4140
28 .07| -2513| 6.91 292.27| .3123 13.2080 .2000 12.0577 2.6496
29 1.49| 1.1528 .00 325.12| .0000 14.6925 .0000 12.9749 .0000
30 .52 .1600 .00 329.84| .0000 14.9058 .0000 13.1022 .0000

Table 2: Application to the data in Table 2 in Sullivan and Woodall (1996).

The following charts are computed: the propsed Cusum chart [appropri-
ately rescaled], the BDE Cusum chart in tabular form, and the LRT chart
[using (1) in Sullivan and Woodall (1996)].



4 A practical example

In this section we illustrate by means of an example that the proposed Cusum chart
is not only superior in the detection of linear trend out-of-control conditions, but is
highly efficient in the detection of other out-of-control conditions as well. In the next
section this shall be confirmed by means of a simulation study.

The example concerns data given in Table 2 in Sullivan and Woodall (1996). Thirty
observationsXy, ... X3, were generated from a standard normal distribution, and a
value 1 was added to the last fifteen observati®ins . . ., X3,. Thus, the data exhibit
a sudden shift in the middle of the sample.

Table 2 presents the dafg;, the recursive residuals;, the tabular Cusums;
andSy,, the appropriately rescaled tabular Cuswpts;, ;/.S,, andb,, Sy /S, [observe
that 0.04519 is the ratio df, = 0.05680 and.S,, = 1.2568], the BDE Cusum chart in
tabular form, and the LRT chart.

The upper tabular Cusumy Sy ;/S, takes a maximal value 14.9058, which is be-
yond 14.52, the value dfy; for n = 30 as given by Table 1. This indicates the
existence of a sudden shift. Moreover, observe that this maximal value starts to build
up after thel 5"* observation, which indicates the location of a special cause.

The tabular Cusums, Sy, ;/S,, andb, Sy /S, were designed to have comparable
in-control behavior as the BDE tabular Cusums. Thus, for the BDE Cusums the control
limits in Table 1 roughly hold. The upper BDE Cusum takes a maximal value 13.1022,
somewhere betweén, ,; andhg os.

In contrast, the LRT chart has rather different behavior. Its maximal value is
16.7887, which is close to 16.09, a control limit which yields a 5 percent in-control
overall signalling probability for the LRT chart [obtained by simulation]. The location
of the maximal value of the LRT chatrt [in this case 15] is the maximum likelihood
estimator of the location of the sudden shift.

Graphical representations of the charts in Table 2 are found in Figure 1. In addition,
Figure 1 represents the Cusum and Shewhart charts from Quesenberry (1995) based
on ()-statistics [respectively referred to as theCusum and thé)-chart].

The Q-Cusum chart is rather similar to the BDE Cusum chart, especially later in
the sample. Of course, this is a consequence of the close relation b&pastatistics
and recursive residuals. The upper tab@)a€Cusum takes a maximal value 13.1695,
in the vicinity of the maximal value taken by the upper tabular BDE Cusum.

The Q-chart itself, a Shewhart chart based @sstatistics, is not very efficient in
detecting sudden shifts, as Figure 1 illustrates. @Mhehart takes values between -
2.6288 and 2.2414, which is quite in accordance with the in-control behavior of the
Q-chart.
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Figure 1: Charts of data from Table 2 in Sullivan and Woodall (1996). On
the upper row the proposed Cusum chart and the BDE chart, on the lower
row the likelihood ratio test chart, the-Cusum chart, and th@-chart;

in all Cusum charts we have takgnequal to zero [cf. (6)]. According

to our simulations the respective control limits 11.93, 12.01, 16.09, 12.17
and 3.12 yield a 5 percent in-control overall signalling probability

5 A comparison of the methods

In this section the proposed Cusum chart and several of its competitors are compared.
Comparison will be made with the chart in section 2.3 of Brown, Durbin and Evans
(1975), the LRT chart of Sullivan and Woodall (1996), and the Cusum and Shewhart
charts from Quesenberry (1995) basedpstatistics. Note that the traditional indi-
vidual Shewhart chart based on the moving range is not included in the comparison
because Sullivan and Woodall (1996) show that this chart was clearly inferior to the
LRT chart.

Under six different out-of-control conditions 10,000 samples of size6, 12, 18,
24, 30 were simulated according to the model

Xi=a,+€, 1=1,...,n,
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where the;’s are independent standard normal random variablesggmdepend on
the condition. Under the in-control condition alls are equal to 0.

Under each of the out-of-control conditions the deviance from in-control condition
is indicated by the quantity

Alag,...,a,) = 2": (a; — @)?,

wherea denotes the mean af, . . ., a,,. Below the structure of the;’s in each of the
six out-of control conditions is described.

Condition LTO Thea;’s are linearly dependent on In this case a difference of
betweern:; anda, corresponds to the valug416, .3138,.3052,.3010, .2985 of
Alay ..., a,) forn =6,12,18,24, 30 respectively.

Condition LT1 Thea;'s are constant up to relative positiafi3 within the sample,
and linearly dependent arfrom this position onwards. In this case a difference
of o betweenu; anda,, corresponds to the valu&r27, .3536, .3469, .3436, .3416
of A(ay ..., a,) forn =6,12,18,24, 30 respectively.

Condition LT2 The a;’'s are constant up to relative positidii2, and linearly de-
pendent oni from this position onwards. In this case a differencesobe-
tweena; anda, corresponds to the valugg849, .3544, .3440, .3387,.3355 of
Alay ..., a,) forn = 6,12, 18,24, 30 respectively.

Condition LT3 The ¢;'s are constant up to relative positi@ji3, and linearly de-
pendent oni from this position onwards. In this case a differencesobe-
tweena; anda, corresponds to the valugs819,.3359,.3203,.3125,.3078 of
Alay ..., a,) forn =6,12,18,24, 30 respectively.

Condition SS2 Thea;'s exhibit a sudden shift at relative positiofi2. Observe that a
shift of o over the whole sample corresponds to the valQe0 of A(a; .. ., a,).

Condition SS3 Thea,;’s exhibit a sudden shift at relative positiop3. Observe that a
shift of o over the whole sample corresponds to the valae4 of A(a; .. ., a,).

Under each of the six out-of-control conditions we estimated the signalling probabil-
ities of the charts in Figure 1. All charts were designed to have an overall in-control
signalling probability equal to 0.05.

Observe that in all Cusum charts we have takesgual to zero. This was done to
allow fair comparison with the LRT chart. In a certain seiisgcts as a cut-off value:
Cusum charts are insensitive to departures which are relatively small with respect to
f. Only Cusum charts witlf set to zero share the ability of the LRT chart to detect
all departures in the long run. Later in this section we shall comment on the effect of
choosing a positive value gfon the performance of Cusum charts.
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—e=.  Q-Cusum chart per row out-of-control conditions LTO, SS2, SS3, on the
....... Q-chart lower row out-of-control conditions LT1, LT2, LT3.

Figure 2 summarizes the simulation results/ioe 6 in six plots; every plot per-
tains to one of the out-of-control conditions LTO, SS2, SS3, LT1, LT2, LT3]. Striking
in these plots is the so-called “masking effect”, a consequence of using non-robust
variance estimators. The masking effect is most prominently present in the behavior
of the Q-chart under condition LTO, and in the behavior of the BDE Cusum chart un-
der conditions SS2, LT2 and LT3: here the signalling probability clearly tends to zero
asA(ay,...,a,) grows large. To a lesser extent the masking effect shows up in the
behavior of the LRT chart under condition LTO. The proposed Cusum chart and also
the -Cusum chart seem less vulnerable.

For relatively small values ok (a4, .. ., a,) [where the masking effect is virtually
absent] the Cusum charts show the best performance, aigtthart the worst.

The simulation results fon = 12 are summarized in the six plots of Figure 3.
In all plots the proposed Cusum chart is clearly better than the other charts, at some
distance followed by th€-Cusum chart. The masking effect is still clearly present in
the behavior of the BDE Cusum chart under conditions SS3, LT2 and LT3.

The simulation results for = 18, which are summarized in the six plots of Fig-
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....... Q-chart lower row out-of-control conditions LT1, LT2, LT3.

ure 4, roughly yield the same conclusion. However, the BDE Cusum chart appears to
be recovering from the masking effect and starts to catch up witteisum chart.
Forn = 24 andn = 30 the same conclusions hold.

Our simulation study did also include many variants of the three types of Cusum
charts considered in this paper. Obviously, variants can be obtained by varying the
value of f [cf. (6)]. Except for smalk, all Cusum charts witlf positive showed worse
performance than their counterparts wjttequal to zero. Thus, a positive value fof
decreases the sensitivity of the chart, but may offer better protection to the masking
effect.

Other variants are obtained by reversing the order in which the cumulation takes
place, or by reversing the order in which the recursive residuals are computed. The
four possibilities are given in Table 3. Although Schweder (1976) advocates the use of
backward Cusums when the situation is initially in-control, we argue in Appendix A
that there is no special advantage in using backward Cusums over forward Cusums.
However, time-reversion does matter. For instance, it greatly improves the behavior of
the BDE Cusum chart under conditions SS2, SS3, LT1, LT2 and LT3 for 18. It
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1.000 1.000 1.000,

0.000, 0.000, 0.000, 1
0.000 1.300 0.000 1.300 0.000 1.300

1.000_, 1.000_

0.000, 0.000, 1
0.000 1.300 0.000 1.300 0.000 1.300
Legend
—— proposed Cusum chart Figure 4: Simulation results for sample size 18: sig-
=== BDE chart

e LRT chart nalling probability versusA(a,...,a,). On the up-
—=  Q-Cusum chart per row out-of-control conditions LTO, SS2, SS3, on the
O-chart lower row out-of-control conditions LT1, LT2, LT3.

also improves the behavior of tligCusum chart under conditions LT1, LT2 and LT3.

If we include the time-reversed versions in our comparisons, the time-reversed
BDE Cusum chart is to preferred if the sample size is sufficiently large and out-of-
control conditions emerge relatively late [LT2, LT3]. It immediately follows that the
“ordinary” BDE Cusum chart is to be preferred if the sample size is sufficiently large
and out-of-control conditions emerge relatively early. Under all other circumstances
the proposed Cusum chart shows the strongest performance.

A Appendix: a generalized Cusum chart
In this appendix we generalize the proposed Cusum chart. Suppose that instead of (5)

the linear model
Xl:u+cl9+e,, 221,2, (8)
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Order of computing Order of cumulation

recursive residuals  not reversed reversed
not reversed forward Cusum  backward Cusum
reversed time-reversed time-reversed

backward Cusum forward Cusum

Table 3: Variants of Cusum charts obtained reversing the order of cumu-
lation and/or the order of computing recursive residuals.

holds. As before, the;’s are independent normal random variables with expectation
zero and unknown variane€. Under this model we may show that

whered; is as before, and

i—1 1 =
d; = - 7 e— il -
i (C 2—1].2:16])

The joint density oft5, . . ., Y; has a monotone likelihood ratio in

U, =3 d,Y;.
71=2

with respect tod. Thus, ifYs,...,Y; are observed [and? is known], then the one-
sided test based al; is uniformly most powerful fo). One may show that/; is
in fact the score statistic for this problem. Box and Ramirez (1992) proposed a score
chart in a stage 2 context.

Observe that both the expectation and the variancg; aire linear inz;l:2 d?,
which suggests applying a V-mask procedure to the plbt tszrfarsusz;?:2 d?, or equiv-
alently, imposing a control limik on the pair of one-sided cumulative susig; and
St,; defined by

Sh; = max (0, Sy + d; (Y; — fd;)),

SL,i — Imax (0, SL,i—l + dz (—Y; — fdl)) .

We shall refer toSy; andS;, ; as the upper and lower Cusum, respectively.
ldeally, the one-sided cumulative surig; and S;; should be plotted versus
L, d2.
J=2"
In cases? is unknown, the charts are readily adapted by plugging in the estimator
S? as defined in (4).
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Observe that the BDE Cusum chart is in fact a special case of our chari/;sith
being constant. Observe that in our derivation constamtire obtained when thg's
satisfy approximately

cl~cl+—Zc]

Rewriting this expression yields

(1+Z ) ~ i (147 +log(i — 1)),

wherey = 0.5772 - - - denotes Euler’'s constant. This suggests that the BDE Cusum
chart is in particular strong in detecting out-of-control condition which show up rela-
tively early in the sample.

Finally, consider a situation in which an in-control period is followed by an out-
of-control period. Since every; belonging to the in-control period is equal to zero, it
follows from the theory above that the uniformly most powerful one-sided test is based
on a statistic of the form .

Uz* = Z d]Y}
7=t

where: denotes the start of the out-of-control period At a first glance this seems
to suggest that in this situation plottidg" versusy_?_; ] may be preferable over
plotting U; vers,USZ);:2 df. In the special case that evety belonging to the out-of-
control period is equal to 1, the chart based grreduces to the backward cumulative
sum described in Schweder (1976) [cf. also Hinkley (1973)]. However, a closer look
reveals that the signalling probability of the upper forward Cusum should coincide with
the signalling probability of the lower backward Cusum. Similar statements hold true
for the signalling probabilities of the lower forward Cusum and the upper backward
Cusum, and the signalling probabilities of the two-sided forward Cusum and the two-
sided backward Cusum. Thus, there is no special advantage in using backward Cusums
over forward Cusums.
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