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Abstract

A preliminary Cusum chart based on individual observations is developed
from the uniformly most powerful test for the detection of linear trends. This
Cusum chart is compared with several of its competitors which are based on the
likelihood ratio test and on transformations of standardized recursive residuals on
which for instance the Q-chart methodology is based. It turns out that the new
proposed Cusum chart is not only superior in the detection of linear trend out-
of-control conditions, but also in the detection of other out-of-control situations.
Approximate control limits, determined from simulation, and an example of its
use in practice are given for the proposed Cusum chart.
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1 Introduction

Control charts are basic and powerful tools in Statistical Process Control [SPC] and are
widely accepted and applied techniques for controlling various industrial processes.
Originated by Shewhart in 1924 [cf. Shewhart (1931)], the effectiveness of control
charts is due in part to their simplicity. In fact these charts are simple graphs with time
on the horizontal axis and a quality characteristic such as sample mean or sample range
plotted on the vertical axis. Shewhart developed the use of 3-sigma control limits as
action limits, i.e. if the quality characteristic is outside these limits then the process is
called out-of-control and action is needed to eliminate the special cause.

Another technique to control an industrial process was developed by Page (1954).
He proposed the so-called Cumulative-sum [Cusum] chart. This technique plots the
cumulative sums of deviations of the sample values of a quality characteristic from
a target value against time. There are two ways to represent Cusums, the tabular [or
algorithmic] Cusum, and the V-mask form of the Cusum.

It is said [cf. Montgomery (1996)] that Shewhart-type control charts for averages
are very effective if the magnitude of the shift is 1.5-sigma to 2-sigma or larger. For
smaller shifts, the Cusum is a good alternative or additional tests for special causes [cf.
Nelson (1984)] are needed to improve the effectiveness of the Shewhart-type control
chart.

In the literature two situations of using control charts are distinguished: stage 1
[retrospective] and stage 2 [prospective]. In stage 1 historical data are analyzed to
decide if the process is in statistical control and to estimate the in-control parameters
of the process. The next stage, the so-called prospective stage 2, is started when the
analysis of past data did not reveal any out-of-control signals. It is very important that
all special causes are detected in stage 1 because this leads to a better understanding of
the process and it avoids inflation of the estimates of the parameters needed for stage 2.
In course of time the preliminary estimates are revised based on available data from
stage 2, and again we are in a stage 1 situation. This updating and checking of the
parameters is a recurrent phenomena, but one hopes to move into a situation where
out-of-control signals are fairly rare.

Today’s manufacturing environment hardly resembles the high volume production
of the twenties to the early eighties, in which period SPC charting methods were intro-
duced. Current manufacturing practice is typically characterized by either frequent set
up changes to accommodate a wide range of different products [short run processes],
or intrinsically low production volumes of the same type of product. Printed circuit
boards for specialized applications are an example of the first situation, the produc-
tion of wafer steppers for semiconductor production is an example of the last. The
last few years there is a revival of interest to handle these problems. The increasing
use of computers for SPC applications enables industrial statisticians to consider other
approaches from mathematical statistics that are more powerful in discovering special
causes.

Quesenberry (1991, 1995) introducedQ-charts and Del Castillo and Montgomery
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(1994) developed some enhancements and alternative methods. All these methods re-
quire the use of a computer. The present study was motivated by a recent paper of
Sullivan and Woodall (1996), where a preliminary control chart for individual obser-
vations based on a likelihood ratio test was developed; this chart cannot be applied
in a stage 2 situation, and hence is exclusively intended for the stage 1 situation. It
is remarkable that some of the new proposed charts have been based on well-known
papers in econometrics. For instance theQ-chart methodology can be written as a
transformation of standardized recursive residuals as proposed in section 2.3 of Brown,
Durbin and Evans (1975). Also the likelihood ratio test [LRT] control chart in Sullivan
and Woodall (1996) is strongly related to Quandt’s log-likelihood ratio technique [cf.
Quandt (1960)].

Hence, in this paper we consider individual observations and we focus on the retro-
spective [stage 1] situation. The structure of the paper is as follows. After introducing
standardized recursive residuals and Q-statistics, we develop a new Cusum-type chart
for the detection of linear trends based on the uniformly most powerful test, and com-
pare this new chart with the LRT chart of Sullivan and Woodall (1996), the Cusum
chart of Brown, Durbin and Evans (1975); it turns out that the proposed Cusum chart
has the best properties to detect trends and shifts in the data. In the appendix a gener-
alisation of the proposed chart is given.

2 Recursive residuals andQ-statistics

In recent years many control charts have been suggested which build on theQ-statistics
proposed in Quesenberry (1991). In this section we show how results concerning re-
cursive residuals [well-known in econometrics] can be used to give a complete de-
scription of the joint distribution ofQ-statistics.

Consider the linear model

Xi = z0i� + �i; i = 1; 2; : : :

where the�i’s are independent normal random variables with expectation zero and
variance�2, and� is an unknownp-dimensional vector. LetZi denote thei� p matrix
with rowsz01; z

0

2; : : : ; z
0

i, and let

�̂i = (Z 0

iZi)
�1

Zi

0
BB@

X1

...
Xi

1
CCA

be the least squares estimator of� at timei. Brown, Durbin and Evans (1975) intro-
duced the standardized recursive residual

Yi =
Xi � z0i�̂i�1q

1 + z0i (Z
0

i�1Zi�1)
�1

zi
; i = p+ 1; p+ 2; : : : ; (1)
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and showed that the random variablesYp+1; Yp+2; : : : are independent normal variables
with expectation zero and variance�2.

In practical applications�2 typically is unknown, and needs to be estimated. At
time i the estimator

S2
i =

1

i� p

iX
j=1

�
Xj � z0j�̂i

�2
(2)

can be used. In section 2.3 of Brown, Durbin and Evans (1975) a cumulative sum chart
is proposed which applies a V-mask procedure to the cumulative sum

1

Sn

iX
j=1

Yj;

with Yj andSn given by (1) and (2). We shall refer to this chart as the BDE Cusum
chart.

In Lemma 2 of Brown, Durbin and Evans (1975) the recursive formula

(i� p)S2
i = (i� p� 1)S2

i�1 + Y 2
i

is given, which implies thatS2
i�1 only depends onYp+1; : : : ; Yi�1, and hence is inde-

pendent ofYi. Since(i� p� 1)S2
i�1=�

2 has a�2-distribution withi� p� 1 degrees of
freedom, it follows by standard statistical theory thatYi=Si�1 has at-distribution with
the same degrees of freedom fori � p+ 2.

We now show thatY3=S2; : : : ; Yn=Sn�1 are independent. First, we show thatYi+1=Si

andYi+2=Si+1 are independent: sinceSi+1 is a complete and sufficient statistic for�
if only X1; X2; : : : ; Xi+1 are observed, it follows from the fact that the distribution of
Yi+1=Si does not depend on�2 thatYi+1=Si andSi+1 are independent; moreover, since
Y3=S2; : : : ; Yi=Si�1 andSi may considered to be functions ofY2; : : : ; Yi, it immedi-
ately follows from the independence betweenY2; : : : ; Yi andYi+1 that Yi=Si�1 and
Yi+1=Si are independent. The general statement follows by an induction argument.

In the special case wherezi is equal to the scalar 1 for everyi, we have thatp is
equal to 1, andz0i�̂i�1 is equal to �Xi�1, the mean ofX1; : : : ; Xi�1; it follows that (1)
and (2) specialize to

Yi =
Xi � �Xi�1q
1 + (i� 1)�1

=

s
i� 1

i

�
Xi � �Xi�1

�
; i = 2; 3; : : : ; (3)

S2
i =

1

i� 1

iX
j=1

�
Xj � �Xj�1

�2
: (4)

Transforming the ratioYi=Si�1, we obtain the following statistics

Qi = ��1

 
Gi�p�1

 
Yi

Si�1

!!
;
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which were calledQ-statistics in Quesenberry (1991). Here��1 denotes the inverse of
the standard normal cumulative distribution function, andG� denotes thet-cumulative
distribution function with� degrees of freedom. It immediately follows from our de-
scription of the joint distribution ofY3=S2; Y4=S3; : : : thatQ3; Q4; : : : are independent
standard normal random variables.

In the remainder of this paper the special casezi = 1 for all i will be used as a
model for the process under in-control conditions.

3 A new Cusum chart

In this section we propose a Cusum chart which to the best of our knowledge did not
appear in literature before. The proposed Cusum chart originates from exploring the
behavior ofYi as defined by (3) under the linear model

Xi = �+ i� + �i; i = 1; 2; : : : (5)

where the�i’s are independent normal random variables with expectation zero and
unknown variance�2. In Appendix A a more general model is considered. We may
write

Yi =

s
i� 1

i

0
@i� 1

i� 1

i�1X
j=1

j

1
A � + �i =

�

2

q
i(i� 1) + �i;

where

�i =

s
i� 1

i

0
@�i � 1

i� 1

i�1X
j=1

�j

1
A :

Observe that�2; : : : ; �n are independent normal random variables with expectation zero
and common variance�2, whereas�1 is degenerate in zero.

Let us for the moment suppose that�2 is known. The joint density ofY2; : : : ; Yi is
given by

�
2��2

�
�(i�1)=2

exp

8<
:� 1

2�2

0
@ iX

j=2

y2j � �
iX

j=2

yj

q
j(j � 1) +

�2

4

iX
j=2

j(j � 1)

1
A
9=
; ;

which can be rewritten in the form

h(y2; : : : ; yi)k(�) exp fU(y2; : : : ; yi)c(�)g ;
where

c (�) =
�

2�2

is an increasing function of the parameter�. It follows [cf. Lehmann (1994), Corollary
3.2, p. 80] that the joint density ofY2; : : : ; Yi has a monotone likelihood ratio in

Ui = U(Y2; : : : ; Yi) =
iX

j=2

Yj

q
j(j � 1)
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with respect to�. Thus, ifY2; : : : ; Yi are observed, then the one-sided test based on
Ui is uniformly most powerful for� [cf. Lehmann (1994), Theorem 2(i), p.78]. This
suggests that charts for detecting linear trend should be constructed by cumulating
Yj
q
j(j � 1) rather thanYj itself.

Observe thatUi has expectation�
Pi

j=2 j(j � 1) and variance�2
Pi

j=2 j(j � 1).
Thus, both the expectation and the variance ofUi are linear in

Pi
j=2 j(j � 1), which

indicates that plottingUi versus
Pi

j=2 j(j � 1) is preferable over plottingUi versusi.
Moreover, since a nonzero value of� corresponds to a linear trend in the plot ofUi

versus
Pi

j=2 j(j � 1), applying a V-mask procedure to this plot seems reasonable.
It was shown in Lucas (1982) [cf. Montgomery (1996)] that a V-mask cumulative

sum chart may be represented by means of a pair of so-called tabular cumulative sums.
Following the same line of reasoning, one may show that the V-mask procedure applied
to the plot ofUi versus

Pi
j=2 j(j�1) is equivalent to imposing a control limith on the

pair of one-sided cumulative sumsSH;i andSL;i defined by

SH;i = max
�
0; SH;i�1 +

q
i(i� 1)

�
Yi � f

q
i(i� 1)

��
;

SL;i = max
�
0; SL;i�1 +

q
i(i� 1)

�
�Yi � f

q
i(i� 1)

��
;

(6)

wheref is the so-called reference value. The one-sided cumulative sumsSH;i andSL;i

share their time-scale withUi; that is, they should be plotted versus
Pi

j=2 j(j � 1)
rather thani.

The charts just described distinguish themselves from the classical cumulative sum
charts by employing a transformed time-scale. Although time-transformations are sel-
dom used in statistical process control, they are being used in other industrial applica-
tions of statistics. For example, the Total Time on Test plot in reliability [cf. Barlow
and Campo (1975)].

A disturbing effect of the time-transformation is that the time instance
Pn

j=2 j(j �
1) at which the “last” observation in the sample is observed, does not depend linearly
on the sample size anymore. This can be repaired by introducing

bn =

s
3

n(n+ 1)
(7)

and plottingbnUi versusb2n
Pn

j=2 j(j � 1) rather than plottingUi versus
Pn

j=2 j(j � 1)

[observe that the variance ofbnUn is given by�2(n� 1)]. Equivalently, one may plot
the tabular CusumsbnSL;i andbnSH;i versusb2n

Pn
j=2 j(j � 1).

Until now, we have only considered the situation where the variance�2 is known.
When�2 is unknown, a problem occurs due to the dependence of the control limits on
�2. However, this dependence is readily removed by dividingbnUi [or equivalently, by
dividing the the tabular CusumsbnSL;i andbnSH;i] by the estimatorSn as defined in
(4).
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Let h� denote the control limit for the tabular CusumsbnSL;i=Sn andbnSH;i=Sn

which yields an overall in-control signalling probability�. In Table 1 values ofh� are
given for f = 0 and various choices of� andn. These values are based on 10,000
simulations, which may yield inaccurate results for very small�. Our adherence to
f = 0 will be explained later, in the discussion of our simulation results.

n Control limits
h0:001 h0:005 h0:01 h0:05

5 3.97 3.89 3.84 3.56
10 7.96 7.32 7.03 6.05
15 10.78 9.98 9.46 7.93
20 13.61 12.27 11.54 9.50
25 15.62 13.93 13.10 10.79
30 17.08 15.49 14.52 11.93
35 19.18 16.79 15.75 13.24
40 19.94 18.16 17.20 14.01
45 21.96 19.48 18.48 15.06
50 23.17 21.04 19.36 16.03
60 26.58 23.10 21.72 17.66
70 28.89 24.89 23.02 19.08
80 31.75 26.04 25.02 20.74
90 32.09 28.78 26.94 22.25

Table 1: Simulated control limitsh� for tabular CusumsbnSL;i=Sn and
bnSH;i=Sn with f = 0, resulting in an overall in-control signalling prob-
ability � = 0:001; 0:005; 0:01; 0:05. Control limits are based on 10,000
simulations.

For n sufficiently large, theoretical considerations based on formula (11.12) in
Billingsley (1968) yield thath0:001, h0:005, h0:01 andh0:05 may be approximated byp
13:41n,

p
10:41n,

p
9:14n and

p
6:24n, respectively. Plots of the values in Table 1

versusn suggest the following refinements:

h0:001 �
q
13:41n� 19:41

p
n;

h0:005 �
q
10:41n� 13:35

p
n;

h0:01 �
q
9:14n� 11:34

p
n;

h0:05 �
q
6:24n� 7:87

p
n;

which may be used forn � 50.
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Proposed Multiplied by BDE LRT
i Xi Yi Cusum chart bn=Sn = 0:04519 chart chart

lower upper lower upper lower upper
1 -.69 0.0000 .00 .00 .0000 .0000 .0000 .0000 .0000
2 .56 .8839 .00 1.25 .0000 .0565 .0000 .7033 1.5212
3 -.96 -.7308 1.79 .00 .0809 .0000 .5814 .1218 2.7731
4 -.11 .2194 1.03 .76 .0465 .0343 .4069 .2964 4.2768
5 -.25 .0447 .83 .96 .0375 .0434 .3713 .3320 6.2854
6 .45 .6755 .00 4.66 .0000 .2106 .0000 .8695 6.4847
7 -.26 -.0864 .56 4.10 .0253 .1853 .0688 .8007 8.6341
8 .68 .8045 .00 10.12 .0000 .4573 .0000 1.4408 8.2412
9 .22 .2758 .00 12.46 .0000 .5631 .0000 1.6602 9.9020

10 -2.10 -1.9543 18.54 .00 .8378 .0000 1.5550 .1053 6.6637
11 .65 .8543 9.58 8.96 .4329 .4049 .8752 .7850 6.5225
12 -1.49 -1.2690 24.16 .00 1.0918 .0000 1.8850 .0000 7.9783
13 -2.49 -2.1281 50.74 .00 2.2930 .0000 3.5782 .0000 11.8817
14 -1.11 -.6404 59.38 .00 2.6834 .0000 4.0878 .0000 16.4430
15 .23 .6983 49.26 10.12 2.2261 .4573 3.5321 .5557 16.7887
16 2.16 2.5220 10.19 49.19 .4605 2.2229 1.5255 2.5623 12.0269
17 1.95 2.1652 .00 84.90 .0000 3.8367 .0000 4.2851 9.0592
18 1.54 1.6430 .00 113.64 .0000 5.1355 .0000 5.5924 6.9959
19 .67 .7073 .00 126.72 .0000 5.7266 .0000 6.1551 6.2337
20 1.09 1.0804 .00 147.78 .0000 6.6783 .0000 7.0147 4.9985
21 1.37 1.3009 .00 174.44 .0000 7.8831 .0000 8.0498 3.6331
22 .69 .5760 .00 186.82 .0000 8.4426 .0000 8.5081 3.2395
23 2.26 2.0858 .00 233.74 .0000 10.5630 .0000 10.1677 1.6164
24 1.86 1.6055 .00 271.46 .0000 12.2676 .0000 11.4452 .7447
25 .62 .3250 .00 279.42 .0000 12.6273 .0000 11.7037 .4149
26 -1.04 -1.3155 33.54 245.88 1.5157 11.1116 1.0467 10.6570 2.4402
27 2.30 2.0117 .00 299.18 .0000 13.5203 .0000 12.2576 2.4140
28 .07 -.2513 6.91 292.27 .3123 13.2080 .2000 12.0577 2.6496
29 1.49 1.1528 .00 325.12 .0000 14.6925 .0000 12.9749 .0000
30 .52 .1600 .00 329.84 .0000 14.9058 .0000 13.1022 .0000

Table 2: Application to the data in Table 2 in Sullivan and Woodall (1996).
The following charts are computed: the propsed Cusum chart [appropri-
ately rescaled], the BDE Cusum chart in tabular form, and the LRT chart
[using (1) in Sullivan and Woodall (1996)].
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4 A practical example

In this section we illustrate by means of an example that the proposed Cusum chart
is not only superior in the detection of linear trend out-of-control conditions, but is
highly efficient in the detection of other out-of-control conditions as well. In the next
section this shall be confirmed by means of a simulation study.

The example concerns data given in Table 2 in Sullivan and Woodall (1996). Thirty
observationsX1; : : :X30 were generated from a standard normal distribution, and a
value 1 was added to the last fifteen observationsX16; : : : ; X30. Thus, the data exhibit
a sudden shift in the middle of the sample.

Table 2 presents the dataXi, the recursive residualsYi, the tabular CusumsSL;i

andSH;i, the appropriately rescaled tabular CusumsbnSL;i=Sn andbnSH;i=Sn [observe
that 0.04519 is the ratio ofbn = 0:05680 andSn = 1:2568], the BDE Cusum chart in
tabular form, and the LRT chart.

The upper tabular CusumbnSH;i=Sn takes a maximal value 14.9058, which is be-
yond 14.52, the value ofh0:01 for n = 30 as given by Table 1. This indicates the
existence of a sudden shift. Moreover, observe that this maximal value starts to build
up after the15th observation, which indicates the location of a special cause.

The tabular CusumsbnSL;i=Sn andbnSH;i=Sn were designed to have comparable
in-control behavior as the BDE tabular Cusums. Thus, for the BDE Cusums the control
limits in Table 1 roughly hold. The upper BDE Cusum takes a maximal value 13.1022,
somewhere betweenh0:01 andh0:05.

In contrast, the LRT chart has rather different behavior. Its maximal value is
16.7887, which is close to 16.09, a control limit which yields a 5 percent in-control
overall signalling probability for the LRT chart [obtained by simulation]. The location
of the maximal value of the LRT chart [in this casei = 15] is the maximum likelihood
estimator of the location of the sudden shift.

Graphical representations of the charts in Table 2 are found in Figure 1. In addition,
Figure 1 represents the Cusum and Shewhart charts from Quesenberry (1995) based
onQ-statistics [respectively referred to as theQ-Cusum and theQ-chart].

TheQ-Cusum chart is rather similar to the BDE Cusum chart, especially later in
the sample. Of course, this is a consequence of the close relation betweenQ-statistics
and recursive residuals. The upper tabularQ-Cusum takes a maximal value 13.1695,
in the vicinity of the maximal value taken by the upper tabular BDE Cusum.

TheQ-chart itself, a Shewhart chart based onQ-statistics, is not very efficient in
detecting sudden shifts, as Figure 1 illustrates. TheQ-chart takes values between -
2.6288 and 2.2414, which is quite in accordance with the in-control behavior of the
Q-chart.
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Figure 1: Charts of data from Table 2 in Sullivan and Woodall (1996). On
the upper row the proposed Cusum chart and the BDE chart, on the lower
row the likelihood ratio test chart, theQ-Cusum chart, and theQ-chart;
in all Cusum charts we have takenf equal to zero [cf. (6)]. According
to our simulations the respective control limits 11.93, 12.01, 16.09, 12.17
and 3.12 yield a 5 percent in-control overall signalling probability

5 A comparison of the methods

In this section the proposed Cusum chart and several of its competitors are compared.
Comparison will be made with the chart in section 2.3 of Brown, Durbin and Evans
(1975), the LRT chart of Sullivan and Woodall (1996), and the Cusum and Shewhart
charts from Quesenberry (1995) based onQ-statistics. Note that the traditional indi-
vidual Shewhart chart based on the moving range is not included in the comparison
because Sullivan and Woodall (1996) show that this chart was clearly inferior to the
LRT chart.

Under six different out-of-control conditions 10,000 samples of sizen = 6; 12; 18;
24; 30 were simulated according to the model

Xi = ai + �i; i = 1; : : : ; n;
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where the�i’s are independent standard normal random variables, andai’s depend on
the condition. Under the in-control condition allai’s are equal to 0.

Under each of the out-of-control conditions the deviance from in-control condition
is indicated by the quantity

�(a1; : : : ; an) =

vuut nX
i=1

(ai � �a)
2
;

where�a denotes the mean ofa1; : : : ; an. Below the structure of theai’s in each of the
six out-of control conditions is described.

Condition LT0 The ai’s are linearly dependent oni. In this case a difference of�
betweena1 andan corresponds to the value:3416; :3138; :3052; :3010; :2985 of
�(a1 : : : ; an) for n = 6; 12; 18; 24; 30 respectively.

Condition LT1 The ai’s are constant up to relative position1=3 within the sample,
and linearly dependent oni from this position onwards. In this case a difference
of � betweena1 andan corresponds to the value:3727; :3536; :3469; :3436; :3416
of �(a1 : : : ; an) for n = 6; 12; 18; 24; 30 respectively.

Condition LT2 The ai’s are constant up to relative position1=2, and linearly de-
pendent oni from this position onwards. In this case a difference of� be-
tweena1 and an corresponds to the value:3849; :3544; :3440; :3387; :3355 of
�(a1 : : : ; an) for n = 6; 12; 18; 24; 30 respectively.

Condition LT3 The ai’s are constant up to relative position2=3, and linearly de-
pendent oni from this position onwards. In this case a difference of� be-
tweena1 and an corresponds to the value:3819; :3359; :3203; :3125; :3078 of
�(a1 : : : ; an) for n = 6; 12; 18; 24; 30 respectively.

Condition SS2 Theai’s exhibit a sudden shift at relative position1=2. Observe that a
shift of� over the whole sample corresponds to the value:5000 of �(a1 : : : ; an).

Condition SS3 Theai’s exhibit a sudden shift at relative position2=3. Observe that a
shift of� over the whole sample corresponds to the value:4714 of �(a1 : : : ; an).

Under each of the six out-of-control conditions we estimated the signalling probabil-
ities of the charts in Figure 1. All charts were designed to have an overall in-control
signalling probability equal to 0.05.

Observe that in all Cusum charts we have takenf equal to zero. This was done to
allow fair comparison with the LRT chart. In a certain sensef acts as a cut-off value:
Cusum charts are insensitive to departures which are relatively small with respect to
f . Only Cusum charts withf set to zero share the ability of the LRT chart to detect
all departures in the long run. Later in this section we shall comment on the effect of
choosing a positive value off on the performance of Cusum charts.
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Figure 2: Simulation results for sample size 6: sig-
nalling probability versus�(a1; : : : ; an). On the up-
per row out-of-control conditions LT0, SS2, SS3, on the
lower row out-of-control conditions LT1, LT2, LT3.

Figure 2 summarizes the simulation results forn = 6 in six plots; every plot per-
tains to one of the out-of-control conditions LT0, SS2, SS3, LT1, LT2, LT3]. Striking
in these plots is the so-called “masking effect”, a consequence of using non-robust
variance estimators. The masking effect is most prominently present in the behavior
of theQ-chart under condition LT0, and in the behavior of the BDE Cusum chart un-
der conditions SS2, LT2 and LT3: here the signalling probability clearly tends to zero
as�(a1; : : : ; an) grows large. To a lesser extent the masking effect shows up in the
behavior of the LRT chart under condition LT0. The proposed Cusum chart and also
theQ-Cusum chart seem less vulnerable.

For relatively small values of�(a1; : : : ; an) [where the masking effect is virtually
absent] the Cusum charts show the best performance, and theQ-chart the worst.

The simulation results forn = 12 are summarized in the six plots of Figure 3.
In all plots the proposed Cusum chart is clearly better than the other charts, at some
distance followed by theQ-Cusum chart. The masking effect is still clearly present in
the behavior of the BDE Cusum chart under conditions SS3, LT2 and LT3.

The simulation results forn = 18, which are summarized in the six plots of Fig-
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Figure 3: Simulation results for sample size 12: sig-
nalling probability versus�(a1; : : : ; an). On the up-
per row out-of-control conditions LT0, SS2, SS3, on the
lower row out-of-control conditions LT1, LT2, LT3.

ure 4, roughly yield the same conclusion. However, the BDE Cusum chart appears to
be recovering from the masking effect and starts to catch up with theQ-Cusum chart.
Forn = 24 andn = 30 the same conclusions hold.

Our simulation study did also include many variants of the three types of Cusum
charts considered in this paper. Obviously, variants can be obtained by varying the
value off [cf. (6)]. Except for smalln, all Cusum charts withf positive showed worse
performance than their counterparts withf equal to zero. Thus, a positive value off

decreases the sensitivity of the chart, but may offer better protection to the masking
effect.

Other variants are obtained by reversing the order in which the cumulation takes
place, or by reversing the order in which the recursive residuals are computed. The
four possibilities are given in Table 3. Although Schweder (1976) advocates the use of
backward Cusums when the situation is initially in-control, we argue in Appendix A
that there is no special advantage in using backward Cusums over forward Cusums.
However, time-reversion does matter. For instance, it greatly improves the behavior of
the BDE Cusum chart under conditions SS2, SS3, LT1, LT2 and LT3 forn � 18. It
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Figure 4: Simulation results for sample size 18: sig-
nalling probability versus�(a1; : : : ; an). On the up-
per row out-of-control conditions LT0, SS2, SS3, on the
lower row out-of-control conditions LT1, LT2, LT3.

also improves the behavior of theQ-Cusum chart under conditions LT1, LT2 and LT3.
If we include the time-reversed versions in our comparisons, the time-reversed

BDE Cusum chart is to preferred if the sample size is sufficiently large and out-of-
control conditions emerge relatively late [LT2, LT3]. It immediately follows that the
“ordinary” BDE Cusum chart is to be preferred if the sample size is sufficiently large
and out-of-control conditions emerge relatively early. Under all other circumstances
the proposed Cusum chart shows the strongest performance.

A Appendix: a generalized Cusum chart

In this appendix we generalize the proposed Cusum chart. Suppose that instead of (5)
the linear model

Xi = �+ ci� + �i; i = 1; 2; : : : (8)
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Order of computing Order of cumulation
recursive residuals not reversed reversed

not reversed forward Cusum backward Cusum
reversed time-reversed time-reversed

backward Cusum forward Cusum

Table 3: Variants of Cusum charts obtained reversing the order of cumu-
lation and/or the order of computing recursive residuals.

holds. As before, the�i’s are independent normal random variables with expectation
zero and unknown variance�2. Under this model we may show that

Yi = di� + �i

where�i is as before, and

di =

s
i� 1

i

0
@ci � 1

i� 1

i�1X
j=1

cj

1
A :

The joint density ofY2; : : : ; Yi has a monotone likelihood ratio in

Ui =
iX

j=2

djYj:

with respect to�. Thus, ifY2; : : : ; Yi are observed [and�2 is known], then the one-
sided test based onUi is uniformly most powerful for�. One may show thatUi is
in fact the score statistic for this problem. Box and Ramirez (1992) proposed a score
chart in a stage 2 context.

Observe that both the expectation and the variance ofUi are linear in
Pi

j=2 d
2
j ,

which suggests applying a V-mask procedure to the plot ofUi versus
Pi

j=2 d
2
j , or equiv-

alently, imposing a control limith on the pair of one-sided cumulative sumsSH;i and
SL;i defined by

SH;i = max (0; SH;i�1 + di (Yi � fdi)) ;

SL;i = max (0; SL;i�1 + di (�Yi � fdi)) :

We shall refer toSH;i andSL;i as the upper and lower Cusum, respectively.
Ideally, the one-sided cumulative sumsSH;i and SL;i should be plotted versusPi

j=2 d
2
j .

In case�2 is unknown, the charts are readily adapted by plugging in the estimator
S2
n as defined in (4).

15



Observe that the BDE Cusum chart is in fact a special case of our chart, withdi’s
being constant. Observe that in our derivation constantdi’s are obtained when theci’s
satisfy approximately

ci � c1 +
1

i� 1

i�1X
j=1

cj:

Rewriting this expression yields

ci � c1

0
@1 + i�1X

j=1

1

j

1
A � c1 (1 + 
 + log(i� 1)) ;

where
 = 0:5772 � � � denotes Euler’s constant. This suggests that the BDE Cusum
chart is in particular strong in detecting out-of-control condition which show up rela-
tively early in the sample.

Finally, consider a situation in which an in-control period is followed by an out-
of-control period. Since everydj belonging to the in-control period is equal to zero, it
follows from the theory above that the uniformly most powerful one-sided test is based
on a statistic of the form

U�

i =
nX
j=i

djYj;

wherei denotes the start of the out-of-control period. At a first glance this seems
to suggest that in this situation plottingU�

i versus
Pn

j=i d
2
j may be preferable over

plottingUi versus
Pi

j=2 d
2
j . In the special case that everydj belonging to the out-of-

control period is equal to 1, the chart based onU�

i reduces to the backward cumulative
sum described in Schweder (1976) [cf. also Hinkley (1973)]. However, a closer look
reveals that the signalling probability of the upper forward Cusum should coincide with
the signalling probability of the lower backward Cusum. Similar statements hold true
for the signalling probabilities of the lower forward Cusum and the upper backward
Cusum, and the signalling probabilities of the two-sided forward Cusum and the two-
sided backward Cusum. Thus, there is no special advantage in using backward Cusums
over forward Cusums.
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