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1 Introduction

There are various approaches to modeling and forecasting (seasonally unadjusted) sea-
sonal time series, see Franses (1996¢) for a recent survey. One approach builds on the
work of Box and Jenkins (1970) and relies on moving average models for double dif-
ferenced time series (so-called seasonal ARIMA [SARIMA] models). Another approach
assumes that seasonal time series can be decomposed into trend, cycle, seasonal and irreg-
ular components, see Harvey (1989). Reduced forms of the resultant models have many
similarities with the aforementioned SARIMA models. A third approach questions the
aforementioned adequacy of the double differencing filter in SARIMA models and mainly
addresses the issue of how many unit roots should be imposed in autoregressive models,
see Hylleberg et al. (1990, HEGY). Finally, a fourth approach assumes the seasonal vari-
ation is best described by allowing the parameters in an autoregression to vary with the
seasons, that is, the so-called periodic autoregression [PAR]. Of course, on may want to
consider periodic ARMA models, but is rarely done in practice. Periodic autoregressions
have been frequently used in environmental and hydrological studies, see Franses (1996b)
for a summary of early references, but it was introduced into the economic literature by
Osborn (1988) and Osborn and Smith (1989). The latter study focused on out-of-sample
forecasting of quarterly UK consumption series. Since that study the literature on pe-
riodic models has developed substantially, and in this chapter we will highlight some of
these issues in more detail. Specifically, we will address unit roots and deterministic terms
and how they should be incorporated in a PAR model. There have appeared several stud-
ies on evaluating forecasts from PAR models, see Novales and Flores de Fruto (1997),
Wells (1997), Herwartz (1997, 1999) and Franses and Paap (1996) and they yield mixed
results. The novelty of this chapter is that we take explicit account of a proper inclusion
of deterministic terms in our PAR models and that we use encompassing tests to formally
evaluate forecast performance. Following the seminal study in Osborn and Smith (1989),
we will also consider various UK consumption series.

In Section 2, we first discuss several preliminaries on PAR models, like representation,
estimation, unit roots and deterministic terms. In Section 3 we discuss out-of-sample

forecasting. In Section 4 we consider PAR models for forecasting several quarterly UK



consumption series. In Section 5, we conclude this chapter with some remarks.

2 Preliminaries

In this section we give a brief overview of periodic autoregressions. The discussion draws
heavily from material covered in detail in Franses (1996a,b), Boswijk and Franses (1996),
Boswijk et al. (1997), Franses and Paap (1994, 1996) and Paap and Franses (1999).
In Section 2.1 we consider representation and estimation. Section 2.2 deals with unit
roots and periodic integration. To save notation we consider in these two sections models
without intercept and trend. As these are very relevant in practice, we dedicate Section 2.3

to this issue.

2.1 Representation and Parameter Estimation

Consider a univariate time series y; which is observed quarterly for N years, that is
t=1,2,...,n = N/4. A periodic autoregressive model of order p [PAR(p)] for y,; can be

written as

Yr = Q1 sYt—1 + -+ Pp sYrp + Et, (1)

or dgp,s(L)yt = &4, where L is the usual lag operator, and where ¢, through ¢, are
autoregressive parameters which may take different values across the seasons s =1, 2, 3, 4.
The disturbance ¢; is assumed to be a standard white noise process with constant variance
o?. Of course, this assumption may be relaxed by allowing for different variances o2 in
each season.

The periodic process described by model (1) is nonstationary as the variance and
autocovariances are time-varying within the year. For some purposes a more convenient
representation of a PAR(p) process is given by rewriting it in a time-invariant form. As
the PAR(p) model considers different AR(p) models for different seasons, it seems natural
to rewrite it as a model for annual observations, see also Gladyshev (1961), Tiao and
Grupe (1980), Osborn (1991) and Liitkepohl (1993). In general, the PAR(p) process
in (1) can be rewritten as an AR(P) model for the 4-dimensional vector process Yy =

YirYor,Ysr,Yar), T =1,2,...,N, where Y, 7 is the observation in season s in year



T, s =1,2,3,4, and where P = 1 + [(p — 1)/4], where [-] denotes the integer function.

The corresponding vector autoregressive [VAR] model is given by
CI)OYT = @1YT_1 + -+ (I)pYT_p + &7, (2)

where ep = (€17, €21, €31, €41)', With &5 7 is the value of the error process ¢; in season s

in year 7. The &y, ®; to p are (4 x 4) parameter matrices with elements

Po(i,j) =1 1=
=0 Jj >

L 3

=—¢iji J<i 3)

Pp(i,J) = bivar—jir
fort=1,2,3,4,7=1,2,3,4and k = 1,2,..., P. The lower triangular of ®;, shows that

(2) is in fact a recursive set of equations.

As an example, consider the PAR(2) model

Yr = O1,Y1—1 + P2.Ys—2 + 4, (4)
which can be written as
QoY = Q1 Yr_1 + e, (5)
with
1 0 0 0 0 0 g1 011
_ _¢1,2 1 0 0 o 0 0 0 ¢272
o= —Pa3 —P13 1 0 and @ = 00 O 0 (6)
0  —¢oa —P1a 1 00 0 0

In order to avoid confusion with multivariate time series models, one often refers to models
like (5) as the vector of quarters [VQ] representation. Notice from (5) and (6) that one
can also write a nonperiodic AR model in a VQ representation.

There are two useful versions of (2) for the analysis of unit roots and for forecasting.

The first is given by simply pre-multiplying (2) with ®,!, that is
YT = (pal(I)lYT,l—F"'—l—q)alq)pYT,p +(I)616T. (7)

which amounts to a genuine VAR(P) for Yr. When e ~ N(0,0%1,), it follows that
®yter ~ N(0,0%20, (@, 1)"). It is easy to see that ;" for any PAR process is also a lower
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triangular matrix. For example, for the PAR(2) model in (5) it can be found that

1 0 0 O
1 0 O
-1 — b1,2 3
° 12013+ 23 P13 1 0 (8)
P12013014 + Q12024 + P23014 P13014+ Poa P14 1

This implies that the first two columns of ®;'®; contain only zeros, that is

0 0 2.1 11
‘1)51‘1’1 _ 0 0 P1,202,1 D12011 + P22
0 0 (P1,201,3 + d2,3) P21 $1,1P1,201,3 + d1,102,3 + d13022
0 0 (f1,201,301,4+ D1202,4 + P2301.4)02.1  (P1,201,301,4 + P12P2,4 + P2,301,4) P11

(9)

displaying that Y7 depends only on the third and fourth quarters in Y ;.
A second version of (2) is based on the possibility of decomposing a p-th order poly-
nomial 1,(L) with at least k real roots as ¢,_x(L)(1 — 94L) ... (1 — ¢ L). Hence, it can

be useful to rewrite (2) as

[0, (L) Up(L)... Uy (L)] Yy = er, (10)

where the W;(L), ¢ = 1,...,k are (4 x 4) matrices with elements that are first order
polynomials in L and W,_(L) is a matrix polynomial of order (p — k). An example is

again given by the PAR(2) process in (5), which can be written as

U (L)W (L)Yr = er, (11)
with
1 0 0 —ﬂlL 1 0 0 —OélL
| =6 1 0 0 | e 1 0 0
(D) =1 —B; 1 0 W) =1 —az 1 0 » (12)
0 0 -5 1 0 0 —ay 1
such that (4) becomes
(1= BL)(1 = as L)y, = &4 (13)
This expression equals
Yo — oY1 = Bs(Yi—1 — Qs_1Yi—2) + &4, (14)
as the backward shift operator L also operates on «y, that is, La, = ag_; for all

s =1,2,3,4 and with ag = ay.



Parameter Estimation

To estimate the parameters in a PAR model, we use seasonal dummy variables D, which
are equal to 1 if ¢ corresponds to season s, and zero elsewhere. The parameters of the

PAR(p) model in (1) can be estimated by considering the regression model

4 4
Y = Z d)l,st,tyt—l + e+ Z d)p,st,tyt—p + &y (15)
s=1 s=1

Under normality of the error process £, and with fixed starting values, the maximum
likelihood [ML] estimators of the parameters ¢; 4, @ = 1,2,...,p and s = 1,2,3,4, are
obtained from ordinary least squares [OLS] estimation of (15). For alternative estimation
methods and asymptotic results, see Pagano (1978) and Troutman (1979). Notice that
the available sample for estimating the periodic parameters is in fact N = n/4, that is,
the number of observations can be small.

Once the parameters in a PAR(p) process have been estimated, an important next
step involves testing for periodic variation in the autoregressive parameters. Boswijk and

Franses (1996) show that the likelihood ratio test for the null hypothesis
Hy:¢is=¢;fors=1,2,3,4andi=1,2,...,p, (16)

has an asymptotic x?(3p) distribution, whether the y; series has units root or not. We
denote by Fle the F-version of this test. An important implication of this result is that
(15) can be estimated for the y; series itself, that is, there is no need to a priori difference
the y; series to remove stochastic trends when one wants to test for periodicity. This
suggests that, for practical purposes, it seems most convenient to start with estimating
the model in (15) and testing the Hy in (16). In a second step one may then test for unit
roots in periodic models or nonperiodic models depending on the outcome of the test.
An additional advantage is that this sequence of steps allows the possibility of having a
periodic differencing filter, which is useful in case of periodic integration. We address this

issue in more detail in the next subsection.

Order Selection

To determine the order p of a periodic autoregression, Franses and Paap (1994) recommend

to use the BIC in combination with diagnostic tests on residual autocorrelation. As we



are dealing with periodic time series models, it seems sensible to opt for an LM test for
periodic serial correlation in the residuals. This test corresponds to a standard F-test for

the significance of the p; parameter in the following auxiliary regression

Ev = VsYi—1 + - VpsY—p T Psfr1 + N, (17)

where &; are the estimated residuals of (15), see Franses (1993). Of course, one may also
consider the nonperiodic version, where one imposes in (17) that p; = p for all s. Finally,

standard tests for normality and ARCH effects can also be applied.

2.2 Unit Roots and Periodic Integration

To analyze the presence of stochastic trends in 3; we consider the solutions to the char-

acteristic equation of (5), that is, the solutions to
By — D12 — -+ — Ppz"| = 0. (18)

When k solutions to (18) are on the unit circle, the Y7 process, and also the y; process,
has k unit roots. Notice that the number of unit roots in 1; equals that in Y7, and that,
for example, no additional unit roots are introduced in the multivariate representation.
We illustrate this with several examples.

As a first example, consider the PAR(2) process in (4) for which the characteristic

equation is

1 0 —P212 —P1.1%

— 012 1 0 —Pa0%
By — B2 = ’ 2% _g 19
[®o 17 —Pa3 —P13 1 0 (19)

0 —Pou —Psi2 1

which becomes

L — (oobr13014 + P22024 + P2101201,3 + D2,102,3 + P1,101,201,301.4
+ ¢1101 2024 + P11014P23)% + ¢2,1¢2,2¢2,3¢2,422 =0. (20)
Hence, when the nonlinear parameter restriction

G22013014 + P22P24 + 021012013 + P21023 + P1,101201,301,4
+ O11P1,2024 + G1,101,402,3 — P21022023024 =1 (21)



is imposed on the parameters, the PAR(2) model contains a single unit root.
When (19) yields two real-valued solutions, one can also analyze the characteristic

equation
[Ws(2) ¥ (2)| = 0. (22)
It is easy to see that this equation equals

(1 = B16205042) (1 — arapazasz) = 0, (23)

and hence that the PAR(2) model has one unit root when either 36,038, = 1 or
aijasazay = 1, and has at most two unit roots when both products equal unity. Obvi-
ously, the maximum number of unity solutions to the characteristic equation of a PAR(p)
process is equal to p.

The expression (23) shows that one may need to consider a periodic differencing filter

to remove the stochastic trend. Consider the simple PAR(1) model

Yr = QY1 + &, (24)
which can be written as (5) with
1 0 0 0 000 o
W= 0" oy 10| ™ ¥={ 500 0 @
0 0 —ay 1 000 O
The characteristic equation is
|Py — P12 = (1 — aqapazayz) =0, (26)

and hence the PAR(1) process has a unit root when ayasazay = 1. In case one or more a
values are unequal to «, that is, when oy # « for all s, and ayasazay = 1, the y; process
is said to be periodically integrated of order 1 [PI(1)]. Periodic integration of order 2 can
similarly be defined in terms of the ay and (§; parameters in the PAR(2) process using
(23). The concept of periodic integration was first defined in Osborn (1988).

As the periodic AR(1) process nests the y, = ay,_1 +¢y, it is obvious that a unit root in

a PAR(1) process implies a unit root in the nonperiodic AR(1) process. The characteristic
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equation is then (1 —a*z) = 0. Hence, when o = 1, the Y7 process has a single unit root.
Also, when o = —1, the process Yr has a unit root. The first case corresponds to the
simple random walk process, that is, the case where y; has a nonseasonal unit root, while
the second case corresponds to the case where ¥, has a seasonal unit root, see Hylleberg
et al. (1990). In other words, both the nonseasonal and the seasonal unit root process are
nested within the PAR(1) process. This suggests a simple testing strategy, that is, first
investigating the presence of a unit root by testing whether ayasaszay = 1, and second to
test whether a;, = 1 or oy = —1 for all s. Boswijk and Franses (1996) show that, given
araeazay = 1, these latter tests are x?(3) distributed. See also Boswijk et al. (1997) for

testing for so-called seasonal unit roots along a similar line.

Testing for Periodic Integration

To test for periodic integration in the PAR(p) model (1), Boswijk and Franses (1996)
consider a likelihood ratio [LR] test. The test statistic equals

LRpr = n[ln(SSRy) — In(SSR,)], (27)

where SSRy and SSR, denote the sum of the squared residuals of the estimated PAR(p)
model under the restriction of periodic integration and without this restriction, respec-
tively. The latter can be obtained directly from the estimated residuals of the regression
model (15). To obtain the residuals under the null, one has to estimate the PAR(p) model
under the nonlinear restriction of periodic integration using nonlinear least squares [NLS].
As this restriction may be complex in higher order PAR models, it is more convenient to

consider the generalization of (14) to a PAR(p) model, that is,

p—1
(g — asyi—1) = Z Bis(Yt—i — Qs—iYr—1-3) + €1, (28)
i=1

with a4 = a5 and where the restriction of periodic integration is simply ajasaszay = 1.
Again, this model can be estimated with NLS.

The asymptotic distribution of the LRp; test statistic (27) under periodic integration
is the same as the asymptotic distribution of the square of the standard unit root ¢-test of
Dickey and Fuller (1979), see Boswijk and Franses (1996). The critical values are given in
the first row of Table 15.1 of Johansen (1995). It is also possible to consider a one-sided

9



test by taking the square root of (27). The sign of the resulting statistic is negative if
all roots of the characteristic equation (18) are outside the unit circle and positive in all
other cases. Under the null hypothesis, this test statistic has the same distribution as
Fuller’s (1976) 7 statistic.

Similar to the standard Dickey-Fuller case, the asymptotic distribution of the test
statistic depends on the presence of deterministic terms in the test equation. In the
next subsection we discuss the role of intercepts and trends in periodic autoregressions
and the appropriate asymptotic distribution of LRp; statistic for periodic integration for
different specifications. This discussion is particularly relevant as a trend will dominate

out-of-sample forecast patterns.

2.3 Intercepts and Trends

So far, the periodic models did not include any deterministic terms. Seasonal intercepts

and seasonal linear trends can be added to (1) in a linear way, that is,

Yr = s + TsTt + Q1 sY—1 + .. 4+ GpsYr—p + €4, (29)

where T, = [(t — 1)/4] 4+ 1 represents an annual linear deterministic trend and p, and 7,
s =1,2,3,4 are seasonal dummy and trend parameters. In general, unrestricted periodic
processes like (29) can generate data with diverging seasonal trends, which may not be
plausible in all practical cases. Common seasonal linear deterministic trends require
parameter restrictions on seasonal trend parameters 7,. Note that the simple restriction
71 = T = 13 = 74 does not correspond to common seasonal trends, because the 7

parameters do not represent the slope of the trend in each season.

Periodic Trend-Stationarity

To analyze the role of the linear trend under periodic trend-stationarity we rewrite (29)

as
P
(e — py — 7, Ty) = Z Gis (Ye—i =ty — To_Ti—i) + &1 (30)
i=1

where p; and 7, are nonlinear functions of the p,, 7, and ¢;, parameters and where

Wy_ap = My and 7,4, = 7, This model can easily be estimated using NLS. The restriction

10



for common linear seasonal deterministic trends is given by 77 = 75 = 73 = 7. This
restriction can be tested with a standard likelihood ratio test, which is x*(3) distributed.
The restriction for the absence of linear deterministic trends is simply 7" = 75 = 73 =

T, =0.
Periodic Integration

The presence of a linear deterministic trend in an autoregression for y; with an imposed
unit root corresponds to the presence of quadratic trend in g;. Likewise, an inclusion of
linear deterministic trends in a periodically integrated autoregression [PIAR] assumes the
presence of seasonal quadratic trends in y;. To discuss the role of trends in a PIAR we
distinguish three cases: the presence of no quadratic trends [NQT], common (seasonal)
linear trends [CLT] and no linear trends [NLT].

To discuss these three cases it convenient to write (29) using (28) as

p—1
(?Jt — QY1 — M:* - T:*Tt) = Z ﬁi,s(yt—i — Qs—iYpt—1—5 — M:ii - Ts*fiTt—i) + & (31)
=1

with ayoeazoy = 1 and where pf*, 7*

+* and (; s are again non-linear functions of p, 75

and ¢; ¢ parameters and p;*,, = p;* and 7%, = 7;*. Note that it is not possible to write
(29) like (30) under the restriction of periodic integration. To analyze the role of the
deterministic terms, it is convenient to write (31) in VQ representation. The restrictions
on the deterministic elements follow from applying Granger’s representation theorem to
this VQ representation, see Paap and Franses (1999) for a complete derivation.

For example, it follows that the restriction for NQT in 1; corresponds to
7+ arasauty” + ooyt ot =0, (32)

or to the trivial solution 71" = 75" = 73* = 7;* = 0. To obtain CLT in y;, one has to

impose the four restrictions
"= (1—as)d fors=1,2,3,4, (33)
where d is given by
d =y + agpy” + azaqps” + asaszag i (34)

11



Finally, the restriction for the absence of linear deterministic trends [NLT] in y; is given

by
oyt gyt + azaqpst + gzt =0 and =1 =1 =7"=0. (35)

Of course, a special case is the trivial solution p;* = 7, = 0 for all s.

All restrictions can be tested with standard likelihood ratio tests. Under the restriction
of periodic integration, these tests are asymptotically x*(v) distributed, where v denotes
the number of restrictions. Finally, these restrictions are also valid in nonperiodic AR

models or PAR models for the first differences of a time series.

Deterministic Components and Testing for Periodic Integration

The inclusion of deterministic components in the test equation for periodic integration
changes the asymptotic distribution of the LRp; statistic. If one includes only seasonal
dummies, the percentiles of the asymptotic distribution of the statistic is tabulated in the
first row of Table A.2 of Johansen and Juselius (1990). If one also includes seasonal linear
deterministic trends, the asymptotic distribution is given by the square of Fuller’s (1976)
T, statistic. As this asymptotic distribution has virtually no mass on the positive part
of the line, one can simply take the square of the corresponding critical values of the 7,
statistic. Obviously, the asymptotic distributions of the one-sided LR statistics are the
same as the asymptotic distribution of Fuller’s (1976) 7, and 7. statistics.

Finally, it is also possible to perform a joint test on periodic integration and the
absence of quadratic (or linear) trends under the null hypothesis. For example, one may
test jointly for the presence of periodic integration and the absence of quadratic trends,
that is, restriction (32) using a LR test. Hence, one compares specification (29) with (31)
under the restriction (32). The asymptotic distribution of this joint test is tabulated in
the first row of Table 15.4 of Johansen (1995). Likewise, one may test with a LR test,
under the restriction that m = 7 = 73 = 74, for the presence of periodic integration and
for the absence of linear deterministic trends (35). The asymptotic distribution of this
joint test is tabulated in the first row of Table 15.2 of Johansen (1995). In the empirical

section below, we will apply the various tests.
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3 Forecasting

Once the parameters in the PAR models have been estimated, and appropriate parameter
restrictions for unit roots and deterministic terms have been imposed, one can use the
resultant model for out-of-sample forecasting. In this section, we first consider generating

forecasts, and then briefly turn to their evaluation.

Point and Interval Forecasts

Forecasting with PAR models proceeds roughly in the same way as with standard AR
models, see Franses (1996a) for an extensive discussion. To illustrate this, we consider

the PAR(1) model in (24). The 1-step ahead forecast made at ¢t = n is simply

?jn—l—l = En[yn-i—l] = E[asyn + 6n-i—l] = QYn, (36)

where we assume that time n + 1 corresponds to season s. The forecast error y,11 — Jn+1

2

is £,41 and hence the variance of the 1-step ahead forecast equals 0°. Likewise, we can

construct the 2-, 3- and 4-steps ahead forecast, which equal
Unt2 = Enlynio] = Elas 10500 + enyo + @op18n] = asp1049n
Un+3 = EnlYnis) = Enl0aioUnio + €nt1] = Qiotsi106Yn (37)
Unta = Enlynra] = Enleei3ynis + Enis] = Qs 30sp001105Yn.
In case of periodic integration the 4-steps ahead forecast simplifies to 9,4 = y,. Note
that the expressions for the forecasts depend on the season in which you start to forecast.
The forecast errors belonging to these forecasts are
Unt+2 — Yn+2 = Ent2 + Os1€n+41
Un+3 — Yn+3 = Eng3 T Qsp2En42 + QsqoQs 18041 (38)
Ynt4 = Yn+a = Enta T Qs13En43 T Qeg30is126n42 + Qg 30s 1204 1En 41
and hence the variances of the forecast errors equal 0?(1+a?,,), o*(1+aZ , + a2 a2, )
and 0%(1 4 o2, 5+ a2 302, , + a2 502,02, ), respectively. These forecast error variances
also depend on the season in which one generates forecasts. The variances can be used to
construct forecast intervals in the standard way.
In general it is more convenient to use the VQ representation to compute forecasts

and forecast error variances. Forecasts can then be generated along the same lines as for
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VAR models, see Liitkepohl (1993). Consider again the PAR(1) model in (24). The VQ
representation is given by (5) and (25). The forecasts made at t = n = 4N for the next

year ( the forecasting origin is quarter 4) using the VQ representation are given by
Vi1 = B[Yyi1] = B[ 10, Yy + &) ten ] = &5, Vy. (39)

The forecast errors equal f/N — Yy =5 15N+1 and hence the covariance matrix of the
forecast errors is simply o?(®;'(®;')’). It is easy to show that the diagonal elements of
this matrix correspond to the forecast error variances derived above.

Likewise, the forecast for 2-years ahead, that is 5- to 8-steps ahead for the quarterly

series y; is given by
Vivia = EVpa] = E[(®'®1)* Yy + B lenin + (B ' 01) Py ey ] = (5 ®1)*Yy.  (40)

where the corresponding covariance matrix for the forecast errors is given by o (®; ' (@) +
(@, ®, 1) (@, @1 ®,")"). The covariances between 1-year ahead and 2-years ahead fore-
cast follow directly from E[(Yyys — Yago) (Ysr — Yau1)] = 02(@5 1 (g 1) @ (D5 1)").
Multi-year ahead forecasts can be generated in a similar way. Note that if the series is
periodically integrated, it can be shown that the matrix (®,'®;) is idempotent, which may
simplify the expressions for the forecasts and forecast error covariances. For instance, it
follows from (40) that the 2-years ahead forecasts for Y, generated by a PIAR(1) model
without deterministic elements is equal to the 1-year ahead forecast. This shows that
forecasts from a PIAR(1) model are the same as those of the seasonally integrated model

Ay = Yy — Yi—4 = Uy, Where u; is white noise.

Evaluating Forecasts

To compare forecasts generated by PAR models with forecasts from alternative periodic
or nonperiodic models, one can consider the familiar Root Mean Squared Prediction Error
[RMSPE]. One may also opt for an encompassing test. In brief, one then estimates the

following regression equation for the generated forecasts

(gnJrh - yn+h) = 7(gn+h - gnJrh) + Tn+h» (41)

where y,., is the forecast generated by a competing model, see Clements and Hendry

(1993). If v = 0, the forecasts ¢, encompass forecasts generated by the competing
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model ¢,,,. This restriction can be tested using a standard F-test. As the variance of
the h-step ahead forecast error of PAR models depends on the season in which we start

to forecast, one should estimate (41) with different variances for 7, in each season.

4 Empirical Illustration

Our data concern real nondurable consumption in the United Kingdom on food, alcohol,
clothing, energy, other goods, services, and total nondurable consumption (which does
not include services). The sample ranges from 1955.1-1994.1V. We use the sample 1955.1-
1988.1V for model construction and estimation, and we reserve the period 1989.1-1994.1V
for out-of-sample forecasting. All series are log transformed. In Section 4.1, we test
for periodicity in the series and construct PAR models. In Section 4.2, we estimate
nonperiodic models for the series that turn out to be periodic, as we aim to evaluate
these relative to the PAR models in our forecasting exercise. In Section 4.3, we compare

forecasts generated by the various models.

4.1 Periodic Models

We construct periodic autoregressions with seasonal dummies and seasonal trends for
the seven series under consideration. In the first step we determine the appropriate
lag order of the PAR models. This lag order is determined using the BIC criterion in
combination with LM tests for (periodic) serial correlation. The estimated lag orders of
the PAR models are given in the second column of Table 1. For these lag orders the
PAR models pass diagnostic tests for first, and first-to-fourth order serial correlation, and
ARCH effects in the residuals. The third column of Table 1 shows the Fl.-statistics that
the autoregressive parameters are the same over the seasons. For three out of seven series,
this restriction cannot be rejected at the 5% level of significance. As the main focus of
this chapter concerns periodic models, we will not consider these series any further.

For the other four periodic time series, we proceed with testing for the presence of
periodic integration. The fourth column of Table 1 shows the outcomes of the LRp; test
for the presence of periodic integration. None of the LRp; statistics is significant at the

5% level of significance, if we compare the results with the squares of the percentiles of
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the asymptotic distribution of the 7, statistic of Fuller (1976) (If we perform a joint test
for periodic integration and the absence of quadratic trends (not reported here), we arrive
at the same conclusion.). As the remaining roots of the characteristic equation (18) are
far outside the unit circle, we do not consider tests for multiple unit roots.

The next step in our model selection strategy concerns testing for restrictions on the
deterministic components in the periodic integrated autoregressions. The fifth column
of Table 1 shows the outcomes of the LR test for the absence of a quadratic trend (32).
If we compare the outcomes with the percentiles of a x*(1) distribution, we conclude
that this restriction cannot be rejected for each of the series. The stronger condition
71 = 1o = 13 = 74 = 0 is clearly rejected for all series as can be seen from the sixth column
of the table, where we mention that this test statistic is asymptotically x*(4) distributed.
The seventh column shows the results of the LR test statistic for the restriction of common
linear deterministic trends given in (33) in an unrestricted PIAR model. If we compare
the results with the percentiles of the x?(4) distribution, we conclude that this restriction
is only rejected for the alcohol series.

Finally, we test with a LR test in the resulting PTAR model (31) with the appropriate
restrictions on the deterministic terms indicated by the above test results, whether a; =
ay; = a3 = a4 = 1 and hence whether the periodic differencing filter (1 — a,L) can
be simplified to the nonperiodic filter A; = (1 — L) to obtain stationarity. If this is
the case, we end up with a periodic autoregression for the first differences of the time
series. Column 8 of Table 1 displays the test results. If we compare the results with the
percentiles of the x?(3) distribution, we conclude that the restriction is only valid for the
alcohol series. A LR test whether the seasonal differencing filter (1 + L) is appropriate
(p = ag = a3 = ay = —1) is not considered here as the estimated a; parameters are all
close to 1 (and hence far from —1).

In the final column of Table 1 we present the final model suggested by the sequence of
tests. For the alcohol series we have a PAR model in first differences with no quadratic
trend, for clothing and energy we have a PIAR model with a common linear deterministic
trend, while for total nondurable consumption we have a PIAR model without quadratic

trends.
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4.2 Nonperiodic Models

As competing models for our four periodic autoregressions, we consider two nonperiodic
models, which roughly correspond to the alternative approaches discussed in the intro-
duction. First, we consider autoregressive models resulting from tests for the presence
of (seasonal) unit roots. Second, we consider SARIMA models for the four series, which
usually amount to the so-called airline model.

To construct nonperiodic autoregressions for alcohol, energy, clothing and total con-
sumption, we first test for the presence of (seasonal) unit roots using the HEGY test
equation of Hylleberg et al. (1990), that is

4

Agye =Y pDeg+rt+m(L+ L+ L7+ Ly +mo(—1+ L — L+ L)y +
s=1
k

(ms + ML) (14 L)y + Y 0idayei + &0, (42)
i=1
where Ayy; = (1— L)y, = y;—v;_4. The presence of a nonseasonal unit root 1 corresponds
to the restriction m; = 0. This can be tested with a t-test. The presence of the three
seasonal unit roots, —1,¢, —¢ corresponds to the restriction my = w3 = m4 = 0, which can
be tested with an F-test. Critical values of these tests can be found in Hylleberg et al.
(1990) and Ghysels et al. (1994).

Table 2 shows the results of the tests for unit roots in a nonperiodic autoregression.
The second column shows the lags that are included in the test equation (42). These lags
are determined using a similar approach as that taken for the periodic models. The third
column of this table shows the ¢-test for m; = 0. This test statistic is not significant at the
5% level of significance for all four variables and hence we cannot reject the presence of a
nonseasonal unit root. The test results for the presence of the three seasonal unit roots are
given in the fourth column of Table 2. The presence of these seasonal unit roots is rejected
for alcohol, energy and clothing series and hence we arrive at an autoregressive model for
the first differences of these series with seasonal dummies. For total consumption, we
cannot reject the presence of seasonal unit roots and we end up with an autoregressive
model for the fourth differences of the series. The last column of the table displays the
finally selected models.
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The second type of nonperiodic time series models we consider in our forecasting
comparison, is the so-called airline model, where one imposes the differencing filter A; A,
for the series. Using the standard model selection strategy, we find that the following

airline model
A1Agy; = (1 —0L)(1 — ALY)e, (43)

is adequate for alcohol, energy and the total consumption. For the clothing series we
replace (43) by a moving average model of order 5, where we impose the MA(2) and

MA(3) parameters to equal zero.

4.3 Forecast Comparison

In this subsection we report on the performance of the three models in out-of-sample
forecasting. We consider 1-, 4-, and 8-step ahead forecasting for y, in Table 3. We
consider similar forecasts fore each of the quarters separately in Table 4. In Table 5 we
consider forecasting Ay, and Ayy, as this may be relevant in practice even though this
transformation does not match with most models.

The results in Table 3 for the RMSPE criterion show that in 4 of the 12 cases the PAR
model yields the smallest value, while this occurs for the HEGY-AR and airline model in
6 and 2 cases, respectively. For the energy series the PAR model outperforms the other
models on all three horizons. In case the PAR model does not produce the best forecasts,
the average difference in RMSPE between the PAR model and the best performing model
is 0.46. For the AR-HEGY and the airline model this average difference equals 1.18 and
0.50, respectively. This shows that the PAR model still performs reasonably well if it is
not the best forecasting model. This is however not the case for the AR-HEGY model.

The forecasting encompassing test results in the second panel of Table 3 indicate that
in 2 cases the forecasts generated by the PAR and the HEGY-AR models encompass
each other (4- and 8-step ahead clothing). In most other cases forecasts generated by
the PAR model do not encompass forecasts generated by the AR-HEGY model and wvice
versa. The PAR model gets only encompassed by the AR-HEGY model in three cases
(1-, 4-, and 8-step ahead total nondurable consumption) and the HEGY-AR model gets

only encompassed twice by the PAR model. In contracts, the PAR model encompasses
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the airline model 5 times, while it gets encompassed by that model only three times.
Hence, it seems that PAR models generally outperform airline models, while they do not
frequently improve on the HEGY-AR models.

In Table 4 we present the ranks (based on RMSPE) of the three models for each
quarter. We observe mixed results, although the PAR model seems most useful for the
alcohol and energy series. The last row of the table gives the average rank across the twelve
different forecasting runs (4 variables, 3 horizons). Clearly, the PAR model obtains the
lowest rank for quarters 1, 2 and 3, while the HEGY-AR models give the most accurate
forecast for quarter 4. The airline model appears not to give useful forecasts.

Finally in Table 5 we give the RMSPEs for forecasts of Ay, and Ayy;, which may
sometimes be of interest in practice. In the first panel, concerning A;y,, we observe that
even though the A; transformation appears relevant for the alcohol, energy and clothing
series, the corresponding forecast are outperformed by PAR models (3 times) and airline
models (once). For total consumption we notice that the HEGY-AR model is best for 4-
and 8-step ahead forecasts. From the second panel of Table 5, dealing with forecasts for
the annual growth rates, we observe that the PAR model beats alternative models in 4 of
the 8 cases.

In sum, it seems that a carefully constructed PAR model, when proper account is
taken of unit roots and deterministic terms, oftentimes yields better forecasts compared

to those generated from HEGY-AR and airline models.

5 Concluding Remarks

In the last few years it could be noticed that periodic time series models became increas-
ingly popular for describing and forecasting univariate seasonal time series. In this chapter
we have discussed some important aspects of these models, and we have evaluated their
forecasting performance. We showed that when the PAR models are properly specified,
that is, when proper care is taken of unit roots and deterministic trends, they tend to
outperform often considered alternative models.

A next important step on the research agenda concerns the forecasting properties of

multivariate PAR models. These models are considerably more complicated to specify and
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analyze with respect to unit roots and deterministic terms. It is therefore of significant

importance to examine if these efforts results in accurate forecasts.
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Tables

Table 1: Specification tests in PAR models for the seven nondurable consumption series.

series order Fper LRPI LRNQT LRT:() LRCLT LRAl final model
alcohol 2 2.97* 4.70 0.09  33.13"* 10.32 4.94 A;PAR(1), NQT
energy 4 3.11%** 0.04 0.06 12.84™ 439 28.94** PIAR(4), CLT
food 3 1.67 nonperiodic
clothing 2 2.29* 4.87 2.19  14.30"* 4.85 82.93** PIAR(2), CLT
other 5) 1.19 nonperiodic
services 5) 1.55 nonperiodic
total 1 7.26™* 6.32 0.20  30.36™* 70.00* 21.59** PIAR(2), NQT

Note: The cells contain the values of various F- and LR test statistics. ***, **  * denote significant

at 1, 5, 10%, respectively.

Table 2: HEGY tests in nonperiodic AR models.

series lags  t(m)  F(me,m3,my) final model
alcohol 1 —1.05 6.08** Ay, AR(4), SD
energy 0 —1.04 12.76** Ay, AR(3), SD
clothing 1 —1.80 711 Ay, AR(4), SD
total 1,45 —2.68 1.16 Ay, AR(5), const

Note: In the final column we give the selected AR order for the
appropriately differenced series and whether this model contains
seasonal dummies [SD]. ***, ** * denote significant at 1, 5, 10%,

respectively.
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Table 3: RMSPEs and encompassing tests for forecasts of y, generated by the three

models. Forecasting sample is 1989.1-1994.1V.

RMSPE x100 encompassing tests?
series horizon PAR AR Airline FPAR/AR FAR/PAR FPAR/Air FAir/PAR
1 4.38  3.22 3.23 11.19*** 6.46™  15.29"* 10.01***
alcohol 4 3.85 4.04 3.66 0.31 12.32% 5.84** 1.06
8 5.61  8.16 6.57 3.50* 50.97*  0.87 10.65***
1 3.81  4.70 4.08 0.33 9.53**  4.02* 8.81**
energy 4 3.15  4.04 3.77 4.21*  29.93* 0.43 9.47*
8 3.84 6.12 5.21 14.76***  51.80* 0.26 9.45**
1 3.32  2.60 3.15 42.89*** 8.93***  35.24*** 2.41
clothing 4 3.39  3.30 3.67 0.51 1.22 1.76 7.96*
8 6.05  6.00 6.53 0.36 0.81 1.62 4.197
1 214 121 1.25 4225 1.04 48.78*** 1.60
total 4 1.92 1.74 1.63 5.98** 0.89 12.96** 3.47*
8 3.85  3.60 3.92 3.33* 0.46 5.78** 6.17

! Fu p denotes a F-type statistic for the null hypothesis that forecasts generated by model A
encompass forecasts generated by model B, where we allow for seasonal heteroscedasticity in the
test equation. ***, ** * denote significant at 1, 5, 10%, respectively.
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Table 4: Forecasting rank per quarter! for y; based on the RMSPE. Forecasting sample
is 1989.1-1994.1V.

PAR AR airline
quarter quarter quarter
series horizon 1 Im I Iv I II TIII IV I Im I Iv

1 3 3 1 3 1 2 3 2 2 1 2 1
alcohol 4 31 1 2 3 3 3 1 2 2 1
8 1 1 1 1 3 3 3 2 2 2 2 3
1 1 2 2 2 3 1 3 1 2 3 1 3
energy 4 1 1 1 1 3 3 3 2 2 2 2 3
8 1 1 1 1 3 3 3 2 2 2 2 3
1 1 3 2 2 2 2 1 1 3 1 3 3
clothing 4 1 3 1 2 1 3 1 3 2 2 3
8 2 1 1 2 1 3 2 1 3 2 3 3
1 2 3 3 2 1 2 1 3 1 1 3
total 4 3 2 3 3 2 1 2 1 3 1 1
8 2 1 3 3 1 2 2 1 3 3 1 2
average rank 1.8 18 1.7 20 20 22 25 1.6 23 20 18 24

'Rank 1 corresponds to the smallest RMSPE for the corresponding quarter, while rank 3 corre-
sponds to the largest RMSPE.
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Table 5: RMSPE for forecasting quarterly and annual growth rates
(Ayy; and Ayy;) for 1989.1-1990.1V.

quart. growth rates annual growth rates
series  horizon PAR AR  Air. PAR AR  Air.

o4 555 3.6 3.49 385 4.04 3.66
alcono 8 6.09 5.67 6.53 3.79 471  4.55
4 374 414  4.03 315 4.04 377

energy
8 498 466 4.29 384 437 4.09
othi 4 331 291 3.34 339 330 3.67
clothing o 332 378 3.67 3.49 3.49 371
| 4 188  0.98 1.01 192 174 1.63
tota 8 1.78  1.18 1.23 206 1.97 2.44
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