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Abstract

This chapter is concerned with forecasting univariate seasonal time series data

using periodic autoregressive models� We show how one should account for unit

roots and deterministic terms when generating out�of�sample forecasts� We illus�

trate the models for various quarterly UK consumption series�
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� Introduction

There are various approaches to modeling and forecasting �seasonally unadjusted� sea�

sonal time series� see Franses �����c� for a recent survey� One approach builds on the

work of Box and Jenkins ���	
� and relies on moving average models for double dif�

ferenced time series �so�called seasonal ARIMA �SARIMA� models�� Another approach

assumes that seasonal time series can be decomposed into trend� cycle� seasonal and irreg�

ular components� see Harvey ���
��� Reduced forms of the resultant models have many

similarities with the aforementioned SARIMA models� A third approach questions the

aforementioned adequacy of the double di�erencing �lter in SARIMA models and mainly

addresses the issue of how many unit roots should be imposed in autoregressive models�

see Hylleberg et al� ����
� HEGY�� Finally� a fourth approach assumes the seasonal vari�

ation is best described by allowing the parameters in an autoregression to vary with the

seasons� that is� the so�called periodic autoregression �PAR�� Of course� on may want to

consider periodic ARMA models� but is rarely done in practice� Periodic autoregressions

have been frequently used in environmental and hydrological studies� see Franses �����b�

for a summary of early references� but it was introduced into the economic literature by

Osborn ���

� and Osborn and Smith ���
��� The latter study focused on out�of�sample

forecasting of quarterly UK consumption series� Since that study the literature on pe�

riodic models has developed substantially� and in this chapter we will highlight some of

these issues in more detail� Speci�cally� we will address unit roots and deterministic terms

and how they should be incorporated in a PAR model� There have appeared several stud�

ies on evaluating forecasts from PAR models� see Novales and Flores de Fruto ����	��

Wells ����	�� Herwartz ����	� ����� and Franses and Paap ������ and they yield mixed

results� The novelty of this chapter is that we take explicit account of a proper inclusion

of deterministic terms in our PAR models and that we use encompassing tests to formally

evaluate forecast performance� Following the seminal study in Osborn and Smith ���
���

we will also consider various UK consumption series�

In Section �� we �rst discuss several preliminaries on PAR models� like representation�

estimation� unit roots and deterministic terms� In Section � we discuss out�of�sample

forecasting� In Section � we consider PAR models for forecasting several quarterly UK
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consumption series� In Section �� we conclude this chapter with some remarks�

� Preliminaries

In this section we give a brief overview of periodic autoregressions� The discussion draws

heavily from material covered in detail in Franses �����a�b�� Boswijk and Franses �������

Boswijk et al� ����	�� Franses and Paap ������ ����� and Paap and Franses �������

In Section ��� we consider representation and estimation� Section ��� deals with unit

roots and periodic integration� To save notation we consider in these two sections models

without intercept and trend� As these are very relevant in practice� we dedicate Section ���

to this issue�

��� Representation and Parameter Estimation

Consider a univariate time series yt which is observed quarterly for N years� that is

t � �� �� � � � � n � N��� A periodic autoregressive model of order p �PAR�p�� for yt can be

written as

yt � ���syt�� � � � �� �p�syt�p � �t� ���

or ��p�s�L�yt � �t� where L is the usual lag operator� and where ���s through �p�s are

autoregressive parameters which may take di�erent values across the seasons s � �� �� �� ��

The disturbance �t is assumed to be a standard white noise process with constant variance

��� Of course� this assumption may be relaxed by allowing for di�erent variances ��s in

each season�

The periodic process described by model ��� is nonstationary as the variance and

autocovariances are time�varying within the year� For some purposes a more convenient

representation of a PAR�p� process is given by rewriting it in a time�invariant form� As

the PAR�p� model considers di�erent AR�p� models for di�erent seasons� it seems natural

to rewrite it as a model for annual observations� see also Gladyshev ������� Tiao and

Grupe ���

�� Osborn ������ and L�utkepohl ������� In general� the PAR�p� process

in ��� can be rewritten as an AR�P � model for the ��dimensional vector process YT �

�Y��T � Y��T � Y��T � Y��T �
�� T � �� �� � � � � N � where Ys�T is the observation in season s in year
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T � s � �� �� �� �� and where P � � � ��p � ������ where ��� denotes the integer function�

The corresponding vector autoregressive �VAR� model is given by

��YT � ��YT�� � � � �� �PYT�P � �T � ���

where �T � ����T � ���T � ���T � ���T �
�� with �s�T is the value of the error process �t in season s

in year T � The ��� �� to �P are ��� �� parameter matrices with elements

���i� j� � � i � j
� 
 j � i
� ��i�j�i j 	 i

�k�i� j� � �i��k�j�i�

���

for i � �� �� �� �� j � �� �� �� � and k � �� �� � � � � P � The lower triangular of �� shows that

��� is in fact a recursive set of equations�

As an example� consider the PAR��� model

yt � ���syt�� � ���syt�� � �t� ���

which can be written as

��YT � ��YT�� � �T � ���

with

�� �

�
BB�

� 
 
 

����� � 
 

����� ����� � 


 ����� ����� �

�
CCA and �� �

�
BB�

 
 ���� ����

 
 
 ����

 
 
 


 
 
 


�
CCA � ���

In order to avoid confusion with multivariate time series models� one often refers to models

like ��� as the vector of quarters �VQ� representation� Notice from ��� and ��� that one

can also write a nonperiodic AR model in a VQ representation�

There are two useful versions of ��� for the analysis of unit roots and for forecasting�

The �rst is given by simply pre�multiplying ��� with ���
� � that is

YT � �
��
� ��YT�� � � � �� ���

� �PYT�P � ���
� �T � �	�

which amounts to a genuine VAR�P � for YT � When �T � N��� ��I��� it follows that

���
� �T � N��� �����

� ��
��
� �

��� It is easy to see that ���
� for any PAR process is also a lower

�



triangular matrix� For example� for the PAR��� model in ��� it can be found that

���
� �

�
BB�

� 
 
 

���� � 
 


�������� � ���� ���� � 

������������ � �������� � �������� �������� � ���� ���� �

�
CCA � �
�

This implies that the �rst two columns of ���
� �� contain only zeros� that is

���

�
���

�
BB�

� � ���� ����
� � �������� �������� � ����
� � ��������� � ��������� ������������ � �������� � ��������
� � ������������� � �������� � ������������� ������������� � �������� � �������������

�
CCA�

���

displaying that YT depends only on the third and fourth quarters in YT���

A second version of ��� is based on the possibility of decomposing a p�th order poly�

nomial �
p�L� with at least k real roots as �
p�k�L���� 
kL� � � � ��� 
�L�� Hence� it can

be useful to rewrite ��� as

� ��p�k�L� �k�L� � � ����L�� YT � �T � ��
�

where the �i�L�� i � �� � � � � k are �� � �� matrices with elements that are �rst order

polynomials in L and ��p�k�L� is a matrix polynomial of order �p � k�� An example is

again given by the PAR��� process in ���� which can be written as

���L����L�YT � �T � ����

with

���L� �

�
BB�

� 
 
 ���L
��� � 
 


 ��� � 


 
 ��� �

�
CCA � ���L� �

�
BB�

� 
 
 ���L
��� � 
 


 ��� � 


 
 ��� �

�
CCA � ����

such that ��� becomes

��� �sL���� �sL�yt � �t� ����

This expression equals

yt � �syt�� � �s�yt�� � �s��yt��� � �t� ����

as the backward shift operator L also operates on �s� that is� L�s � �s�� for all

s � �� �� �� � and with �� � ���
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Parameter Estimation

To estimate the parameters in a PAR model� we use seasonal dummy variables Ds�t which

are equal to � if t corresponds to season s� and zero elsewhere� The parameters of the

PAR�p� model in ��� can be estimated by considering the regression model

yt �
�X

s��

���sDs�tyt�� � � � ��
�X

s��

�p�sDs�tyt�p � �t� ����

Under normality of the error process �t and with �xed starting values� the maximum

likelihood �ML� estimators of the parameters �i�s� i � �� �� � � � � p and s � �� �� �� �� are

obtained from ordinary least squares �OLS� estimation of ����� For alternative estimation

methods and asymptotic results� see Pagano ���	
� and Troutman ���	��� Notice that

the available sample for estimating the periodic parameters is in fact N � n��� that is�

the number of observations can be small�

Once the parameters in a PAR�p� process have been estimated� an important next

step involves testing for periodic variation in the autoregressive parameters� Boswijk and

Franses ������ show that the likelihood ratio test for the null hypothesis

H� � �i�s � �i for s � �� �� �� � and i � �� �� � � � � p� ����

has an asymptotic 
���p� distribution� whether the yt series has units root or not� We

denote by Fper the F �version of this test� An important implication of this result is that

���� can be estimated for the yt series itself� that is� there is no need to a priori di�erence

the yt series to remove stochastic trends when one wants to test for periodicity� This

suggests that� for practical purposes� it seems most convenient to start with estimating

the model in ���� and testing the H� in ����� In a second step one may then test for unit

roots in periodic models or nonperiodic models depending on the outcome of the test�

An additional advantage is that this sequence of steps allows the possibility of having a

periodic di�erencing �lter� which is useful in case of periodic integration� We address this

issue in more detail in the next subsection�

Order Selection

To determine the order p of a periodic autoregression� Franses and Paap ������ recommend

to use the BIC in combination with diagnostic tests on residual autocorrelation� As we
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are dealing with periodic time series models� it seems sensible to opt for an LM test for

periodic serial correlation in the residuals� This test corresponds to a standard F �test for

the signi�cance of the �s parameter in the following auxiliary regression

��t � ���syt�� � � � �� �p�syt�p � �s��t�� � �t� ��	�

where ��t are the estimated residuals of ����� see Franses ������� Of course� one may also

consider the nonperiodic version� where one imposes in ��	� that �s � � for all s� Finally�

standard tests for normality and ARCH e�ects can also be applied�

��� Unit Roots and Periodic Integration

To analyze the presence of stochastic trends in yt we consider the solutions to the char�

acteristic equation of ���� that is� the solutions to

j�� � ��z � � � � � �P z
P j � 
� ��
�

When k solutions to ��
� are on the unit circle� the YT process� and also the yt process�

has k unit roots� Notice that the number of unit roots in yt equals that in YT � and that�

for example� no additional unit roots are introduced in the multivariate representation�

We illustrate this with several examples�

As a �rst example� consider the PAR��� process in ��� for which the characteristic

equation is

j�� � ��zj �

��������

� 
 �����z �����z
����� � 
 �����z
����� ����� � 


 ����� �����z �

��������
� 
� ����

which becomes

�� ������������� � �������� � ������������ � �������� � ����������������

� ������������ � �������������z � ����������������z
� � 
� ��
�

Hence� when the nonlinear parameter restriction

������������ � �������� � ������������ � �������� � ����������������

� ������������ � ������������ � ���������������� � � ����

	



is imposed on the parameters� the PAR��� model contains a single unit root�

When ���� yields two real�valued solutions� one can also analyze the characteristic

equation

j���z����z�j � 
� ����

It is easy to see that this equation equals

��� ��������z���� ��������z� � 
� ����

and hence that the PAR��� model has one unit root when either �������� � � or

�������� � �� and has at most two unit roots when both products equal unity� Obvi�

ously� the maximum number of unity solutions to the characteristic equation of a PAR�p�

process is equal to p�

The expression ���� shows that one may need to consider a periodic di�erencing �lter

to remove the stochastic trend� Consider the simple PAR��� model

yt � �syt�� � �t� ����

which can be written as ��� with

�� �

�
BB�

� 
 
 

��� � 
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 ��� �

�
CCA and �� �

�
BB�
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�
CCA � ����

The characteristic equation is

j�� � ��zj � ��� ��������z� � 
� ����

and hence the PAR��� process has a unit root when �������� � �� In case one or more �s

values are unequal to �� that is� when �s �� � for all s� and �������� � �� the yt process

is said to be periodically integrated of order � �PI����� Periodic integration of order � can

similarly be de�ned in terms of the �s and �s parameters in the PAR��� process using

����� The concept of periodic integration was �rst de�ned in Osborn ���

��

As the periodic AR��� process nests the yt � �yt����t� it is obvious that a unit root in

a PAR��� process implies a unit root in the nonperiodic AR��� process� The characteristic






equation is then �����z� � 
� Hence� when � � �� the YT process has a single unit root�

Also� when � � ��� the process YT has a unit root� The �rst case corresponds to the

simple random walk process� that is� the case where yt has a nonseasonal unit root� while

the second case corresponds to the case where yt has a seasonal unit root� see Hylleberg

et al� ����
�� In other words� both the nonseasonal and the seasonal unit root process are

nested within the PAR��� process� This suggests a simple testing strategy� that is� �rst

investigating the presence of a unit root by testing whether �������� � �� and second to

test whether �s � � or �s � �� for all s� Boswijk and Franses ������ show that� given

�������� � �� these latter tests are 

���� distributed� See also Boswijk et al� ����	� for

testing for so�called seasonal unit roots along a similar line�

Testing for Periodic Integration

To test for periodic integration in the PAR�p� model ���� Boswijk and Franses ������

consider a likelihood ratio �LR� test� The test statistic equals

LRPI � n�ln�SSR��� ln�SSRa��� ��	�

where SSR� and SSRa denote the sum of the squared residuals of the estimated PAR�p�

model under the restriction of periodic integration and without this restriction� respec�

tively� The latter can be obtained directly from the estimated residuals of the regression

model ����� To obtain the residuals under the null� one has to estimate the PAR�p� model

under the nonlinear restriction of periodic integration using nonlinear least squares �NLS��

As this restriction may be complex in higher order PAR models� it is more convenient to

consider the generalization of ���� to a PAR�p� model� that is�

�yt � �syt��� �

p��X
i��

�i�s�yt�i � �s�iyt���i� � �t� ��
�

with �s��k � �s and where the restriction of periodic integration is simply �������� � ��

Again� this model can be estimated with NLS�

The asymptotic distribution of the LRPI test statistic ��	� under periodic integration

is the same as the asymptotic distribution of the square of the standard unit root t�test of

Dickey and Fuller ���	��� see Boswijk and Franses ������� The critical values are given in

the �rst row of Table ���� of Johansen ������� It is also possible to consider a one�sided
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test by taking the square root of ��	�� The sign of the resulting statistic is negative if

all roots of the characteristic equation ��
� are outside the unit circle and positive in all

other cases� Under the null hypothesis� this test statistic has the same distribution as

Fuller�s ���	�� � statistic�

Similar to the standard Dickey�Fuller case� the asymptotic distribution of the test

statistic depends on the presence of deterministic terms in the test equation� In the

next subsection we discuss the role of intercepts and trends in periodic autoregressions

and the appropriate asymptotic distribution of LRPI statistic for periodic integration for

di�erent speci�cations� This discussion is particularly relevant as a trend will dominate

out�of�sample forecast patterns�

��� Intercepts and Trends

So far� the periodic models did not include any deterministic terms� Seasonal intercepts

and seasonal linear trends can be added to ��� in a linear way� that is�

yt � �s � �sTt � ���syt�� � ��� �p�syt�p � �t� ����

where Tt � ��t� ����� � � represents an annual linear deterministic trend and �s and �s

s � �� �� �� � are seasonal dummy and trend parameters� In general� unrestricted periodic

processes like ���� can generate data with diverging seasonal trends� which may not be

plausible in all practical cases� Common seasonal linear deterministic trends require

parameter restrictions on seasonal trend parameters �s� Note that the simple restriction

�� � �� � �� � �� does not correspond to common seasonal trends� because the �s

parameters do not represent the slope of the trend in each season�

Periodic Trend�Stationarity

To analyze the role of the linear trend under periodic trend�stationarity we rewrite ����

as

�yt � ��s � � �s Tt� �

pX
i��

�i�s�yt�i � ��s�i � � �s�iTt�i� � �t� ��
�

where ��s and � �s are nonlinear functions of the �s� �s and �i�s parameters and where

��s��k � ��s and �
�

s��k � � �s � This model can easily be estimated using NLS� The restriction
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for common linear seasonal deterministic trends is given by � �� � � �� � � �� � � �� � This

restriction can be tested with a standard likelihood ratio test� which is 
���� distributed�

The restriction for the absence of linear deterministic trends is simply � �� � � �� � � �� �

� �� � 
�

Periodic Integration

The presence of a linear deterministic trend in an autoregression for yt with an imposed

unit root corresponds to the presence of quadratic trend in yt� Likewise� an inclusion of

linear deterministic trends in a periodically integrated autoregression �PIAR� assumes the

presence of seasonal quadratic trends in yt� To discuss the role of trends in a PIAR we

distinguish three cases� the presence of no quadratic trends �NQT�� common �seasonal�

linear trends �CLT� and no linear trends �NLT��

To discuss these three cases it convenient to write ���� using ��
� as

�yt � �syt�� � ���s � � ��s Tt� �

p��X
i��

�i�s�yt�i � �s�iyt���i � ���s�i � � ��s�iTt�i� � �t ����

with �������� � � and where �
��

s � �
��

s and �i�s are again non�linear functions of �s� �s

and �i�s parameters and �
��

s��k � ���s and �
��

s��k � � ��s � Note that it is not possible to write

���� like ��
� under the restriction of periodic integration� To analyze the role of the

deterministic terms� it is convenient to write ���� in VQ representation� The restrictions

on the deterministic elements follow from applying Granger�s representation theorem to

this VQ representation� see Paap and Franses ������ for a complete derivation�

For example� it follows that the restriction for NQT in yt corresponds to

� ��� � �������
��

� � �����
��

� � ���
��

� � 
� ����

or to the trivial solution � ��� � � ��� � � ��� � � ��� � 
� To obtain CLT in yt� one has to

impose the four restrictions

� ��s � ��� �s�d for s � �� �� �� �� ����

where d is given by

d � ���� � ���
��

� � �����
��

� � �������
��

� � ����

��



Finally� the restriction for the absence of linear deterministic trends �NLT� in yt is given

by

���� � ���
��

� � �����
��

� � �������
��

� � 
 and � ��� � � ��� � � ��� � � ��� � 
� ����

Of course� a special case is the trivial solution ���s � � ��s � 
 for all s�

All restrictions can be tested with standard likelihood ratio tests� Under the restriction

of periodic integration� these tests are asymptotically 
���� distributed� where � denotes

the number of restrictions� Finally� these restrictions are also valid in nonperiodic AR

models or PAR models for the �rst di�erences of a time series�

Deterministic Components and Testing for Periodic Integration

The inclusion of deterministic components in the test equation for periodic integration

changes the asymptotic distribution of the LRPI statistic� If one includes only seasonal

dummies� the percentiles of the asymptotic distribution of the statistic is tabulated in the

�rst row of Table A�� of Johansen and Juselius ����
�� If one also includes seasonal linear

deterministic trends� the asymptotic distribution is given by the square of Fuller�s ���	��

�� statistic� As this asymptotic distribution has virtually no mass on the positive part

of the line� one can simply take the square of the corresponding critical values of the ��

statistic� Obviously� the asymptotic distributions of the one�sided LR statistics are the

same as the asymptotic distribution of Fuller�s ���	�� �� and �� statistics�

Finally� it is also possible to perform a joint test on periodic integration and the

absence of quadratic �or linear� trends under the null hypothesis� For example� one may

test jointly for the presence of periodic integration and the absence of quadratic trends�

that is� restriction ���� using a LR test� Hence� one compares speci�cation ���� with ����

under the restriction ����� The asymptotic distribution of this joint test is tabulated in

the �rst row of Table ���� of Johansen ������� Likewise� one may test with a LR test�

under the restriction that �� � �� � �� � ��� for the presence of periodic integration and

for the absence of linear deterministic trends ����� The asymptotic distribution of this

joint test is tabulated in the �rst row of Table ���� of Johansen ������� In the empirical

section below� we will apply the various tests�

��



� Forecasting

Once the parameters in the PAR models have been estimated� and appropriate parameter

restrictions for unit roots and deterministic terms have been imposed� one can use the

resultant model for out�of�sample forecasting� In this section� we �rst consider generating

forecasts� and then brie�y turn to their evaluation�

Point and Interval Forecasts

Forecasting with PAR models proceeds roughly in the same way as with standard AR

models� see Franses �����a� for an extensive discussion� To illustrate this� we consider

the PAR��� model in ����� The ��step ahead forecast made at t � n is simply

�yn�� � En�yn��� � E��syn � �n��� � �syn� ����

where we assume that time n�� corresponds to season s� The forecast error yn��� �yn��

is �n�� and hence the variance of the ��step ahead forecast equals �
�� Likewise� we can

construct the ��� �� and ��steps ahead forecast� which equal

�yn�� � En�yn��� � E��s���syn � �n�� � �s���n� � �s���syn

�yn�� � En�yn��� � En��s��yn�� � �n��� � �s���s���syn

�yn�� � En�yn��� � En��s��yn�� � �n��� � �s���s���s���syn�

��	�

In case of periodic integration the ��steps ahead forecast simpli�es to �yn�� � yn� Note

that the expressions for the forecasts depend on the season in which you start to forecast�

The forecast errors belonging to these forecasts are

�yn�� � yn�� � �n�� � �s���n��

�yn�� � yn�� � �n�� � �s���n�� � �s���s���n��

�yn�� � yn�� � �n�� � �s���n�� � �s���s���n�� � �s���s���s���n��

��
�

and hence the variances of the forecast errors equal �������s���� �
������s�����s���

�
s���

and ���� � ��s�� � ��s���
�
s�� � ��s���

�
s���

�
s���� respectively� These forecast error variances

also depend on the season in which one generates forecasts� The variances can be used to

construct forecast intervals in the standard way�

In general it is more convenient to use the VQ representation to compute forecasts

and forecast error variances� Forecasts can then be generated along the same lines as for

��



VAR models� see L�utkepohl ������� Consider again the PAR��� model in ����� The VQ

representation is given by ��� and ����� The forecasts made at t � n � �N for the next

year � the forecasting origin is quarter �� using the VQ representation are given by

�YN�� � E�YN��� � E��
��
� ��YN � �

��
� �N��� � �

��
� ��YN � ����

The forecast errors equal �YN � YN � �
��
� �N�� and hence the covariance matrix of the

forecast errors is simply ������
� ��

��
� �

��� It is easy to show that the diagonal elements of

this matrix correspond to the forecast error variances derived above�

Likewise� the forecast for ��years ahead� that is �� to 
�steps ahead for the quarterly

series yt is given by

�YN�� � E�YN��� � E���
��
� ���

�YN � �
��
� �N�� � ��

��
� ����

��
� �N��� � ��

��
� ���

�YN � ��
�

where the corresponding covariance matrix for the forecast errors is given by ������
� ��

��
� �

��

����
� ���

��
� ���

��
� ���

��
� �

��� The covariances between ��year ahead and ��years ahead fore�

cast follow directly from E�� �YN�� � YN���� �YN�� � YN���
�� � ������

� ��
��
� �

���

���
��
� �

���

Multi�year ahead forecasts can be generated in a similar way� Note that if the series is

periodically integrated� it can be shown that the matrix ����
� ��� is idempotent� which may

simplify the expressions for the forecasts and forecast error covariances� For instance� it

follows from ��
� that the ��years ahead forecasts for YT generated by a PIAR��� model

without deterministic elements is equal to the ��year ahead forecast� This shows that

forecasts from a PIAR��� model are the same as those of the seasonally integrated model

��yt � yt � yt�� � ut� where ut is white noise�

Evaluating Forecasts

To compare forecasts generated by PAR models with forecasts from alternative periodic

or nonperiodic models� one can consider the familiar Root Mean Squared Prediction Error

�RMSPE�� One may also opt for an encompassing test� In brief� one then estimates the

following regression equation for the generated forecasts

��yn�h � yn�h� � ���yn�h � �yn�h� � �n�h� ����

where �yn�h is the forecast generated by a competing model� see Clements and Hendry

������� If � � 
� the forecasts �yn�h encompass forecasts generated by the competing

��



model �yn�h� This restriction can be tested using a standard F �test� As the variance of

the h�step ahead forecast error of PAR models depends on the season in which we start

to forecast� one should estimate ���� with di�erent variances for �n�h in each season�

� Empirical Illustration

Our data concern real nondurable consumption in the United Kingdom on food� alcohol�

clothing� energy� other goods� services� and total nondurable consumption �which does

not include services�� The sample ranges from �����I������IV� We use the sample �����I�

��

�IV for model construction and estimation� and we reserve the period ��
��I������IV

for out�of�sample forecasting� All series are log transformed� In Section ���� we test

for periodicity in the series and construct PAR models� In Section ���� we estimate

nonperiodic models for the series that turn out to be periodic� as we aim to evaluate

these relative to the PAR models in our forecasting exercise� In Section ���� we compare

forecasts generated by the various models�

��� Periodic Models

We construct periodic autoregressions with seasonal dummies and seasonal trends for

the seven series under consideration� In the �rst step we determine the appropriate

lag order of the PAR models� This lag order is determined using the BIC criterion in

combination with LM tests for �periodic� serial correlation� The estimated lag orders of

the PAR models are given in the second column of Table �� For these lag orders the

PAR models pass diagnostic tests for �rst� and �rst�to�fourth order serial correlation� and

ARCH e�ects in the residuals� The third column of Table � shows the Fper�statistics that

the autoregressive parameters are the same over the seasons� For three out of seven series�

this restriction cannot be rejected at the � level of signi�cance� As the main focus of

this chapter concerns periodic models� we will not consider these series any further�

For the other four periodic time series� we proceed with testing for the presence of

periodic integration� The fourth column of Table � shows the outcomes of the LRPI test

for the presence of periodic integration� None of the LRPI statistics is signi�cant at the

� level of signi�cance� if we compare the results with the squares of the percentiles of

��



the asymptotic distribution of the �� statistic of Fuller ���	�� �If we perform a joint test

for periodic integration and the absence of quadratic trends �not reported here�� we arrive

at the same conclusion��� As the remaining roots of the characteristic equation ��
� are

far outside the unit circle� we do not consider tests for multiple unit roots�

The next step in our model selection strategy concerns testing for restrictions on the

deterministic components in the periodic integrated autoregressions� The �fth column

of Table � shows the outcomes of the LR test for the absence of a quadratic trend �����

If we compare the outcomes with the percentiles of a 
���� distribution� we conclude

that this restriction cannot be rejected for each of the series� The stronger condition

�� � �� � �� � �� � 
 is clearly rejected for all series as can be seen from the sixth column

of the table� where we mention that this test statistic is asymptotically 
���� distributed�

The seventh column shows the results of the LR test statistic for the restriction of common

linear deterministic trends given in ���� in an unrestricted PIAR model� If we compare

the results with the percentiles of the 
���� distribution� we conclude that this restriction

is only rejected for the alcohol series�

Finally� we test with a LR test in the resulting PIAR model ���� with the appropriate

restrictions on the deterministic terms indicated by the above test results� whether �� �

�� � �� � �� � � and hence whether the periodic di�erencing �lter �� � �sL� can

be simpli�ed to the nonperiodic �lter �� � �� � L� to obtain stationarity� If this is

the case� we end up with a periodic autoregression for the �rst di�erences of the time

series� Column 
 of Table � displays the test results� If we compare the results with the

percentiles of the 
���� distribution� we conclude that the restriction is only valid for the

alcohol series� A LR test whether the seasonal di�erencing �lter �� � L� is appropriate

��� � �� � �� � �� � ��� is not considered here as the estimated �s parameters are all

close to � �and hence far from ����

In the �nal column of Table � we present the �nal model suggested by the sequence of

tests� For the alcohol series we have a PAR model in �rst di�erences with no quadratic

trend� for clothing and energy we have a PIAR model with a common linear deterministic

trend� while for total nondurable consumption we have a PIAR model without quadratic

trends�

��



��� Nonperiodic Models

As competing models for our four periodic autoregressions� we consider two nonperiodic

models� which roughly correspond to the alternative approaches discussed in the intro�

duction� First� we consider autoregressive models resulting from tests for the presence

of �seasonal� unit roots� Second� we consider SARIMA models for the four series� which

usually amount to the so�called airline model�

To construct nonperiodic autoregressions for alcohol� energy� clothing and total con�

sumption� we �rst test for the presence of �seasonal� unit roots using the HEGY test

equation of Hylleberg et al� ����
�� that is

��yt �
�X

s��

�sDs�t � �t � ���� � L� L� � L��yt�� � ����� � L� L� � L��yt�� �

��� � ��L��� � L��yt�� �
kX

i��

�i��yt�i � �t� ����

where ��yt � ���L
��yt � yt�yt��� The presence of a nonseasonal unit root � corresponds

to the restriction �� � 
� This can be tested with a t�test� The presence of the three

seasonal unit roots� ��� i��i corresponds to the restriction �� � �� � �� � 
� which can

be tested with an F �test� Critical values of these tests can be found in Hylleberg et al�

����
� and Ghysels et al� �������

Table � shows the results of the tests for unit roots in a nonperiodic autoregression�

The second column shows the lags that are included in the test equation ����� These lags

are determined using a similar approach as that taken for the periodic models� The third

column of this table shows the t�test for �� � 
� This test statistic is not signi�cant at the

� level of signi�cance for all four variables and hence we cannot reject the presence of a

nonseasonal unit root� The test results for the presence of the three seasonal unit roots are

given in the fourth column of Table �� The presence of these seasonal unit roots is rejected

for alcohol� energy and clothing series and hence we arrive at an autoregressive model for

the �rst di�erences of these series with seasonal dummies� For total consumption� we

cannot reject the presence of seasonal unit roots and we end up with an autoregressive

model for the fourth di�erences of the series� The last column of the table displays the

�nally selected models�

�	



The second type of nonperiodic time series models we consider in our forecasting

comparison� is the so�called airline model� where one imposes the di�erencing �lter ����

for the series� Using the standard model selection strategy� we �nd that the following

airline model

����yt � ��� �L���� �L���t ����

is adequate for alcohol� energy and the total consumption� For the clothing series we

replace ���� by a moving average model of order �� where we impose the MA��� and

MA��� parameters to equal zero�

��� Forecast Comparison

In this subsection we report on the performance of the three models in out�of�sample

forecasting� We consider ��� ��� and 
�step ahead forecasting for yt in Table �� We

consider similar forecasts fore each of the quarters separately in Table �� In Table � we

consider forecasting ��yt and ��yt as this may be relevant in practice even though this

transformation does not match with most models�

The results in Table � for the RMSPE criterion show that in � of the �� cases the PAR

model yields the smallest value� while this occurs for the HEGY�AR and airline model in

� and � cases� respectively� For the energy series the PAR model outperforms the other

models on all three horizons� In case the PAR model does not produce the best forecasts�

the average di�erence in RMSPE between the PAR model and the best performing model

is 
���� For the AR�HEGY and the airline model this average di�erence equals ���
 and


��
� respectively� This shows that the PAR model still performs reasonably well if it is

not the best forecasting model� This is however not the case for the AR�HEGY model�

The forecasting encompassing test results in the second panel of Table � indicate that

in � cases the forecasts generated by the PAR and the HEGY�AR models encompass

each other ��� and 
�step ahead clothing�� In most other cases forecasts generated by

the PAR model do not encompass forecasts generated by the AR�HEGY model and vice

versa� The PAR model gets only encompassed by the AR�HEGY model in three cases

���� ��� and 
�step ahead total nondurable consumption� and the HEGY�AR model gets

only encompassed twice by the PAR model� In contracts� the PAR model encompasses

�




the airline model � times� while it gets encompassed by that model only three times�

Hence� it seems that PAR models generally outperform airline models� while they do not

frequently improve on the HEGY�AR models�

In Table � we present the ranks �based on RMSPE� of the three models for each

quarter� We observe mixed results� although the PAR model seems most useful for the

alcohol and energy series� The last row of the table gives the average rank across the twelve

di�erent forecasting runs �� variables� � horizons�� Clearly� the PAR model obtains the

lowest rank for quarters �� � and �� while the HEGY�AR models give the most accurate

forecast for quarter �� The airline model appears not to give useful forecasts�

Finally in Table � we give the RMSPEs for forecasts of ��yt and ��yt� which may

sometimes be of interest in practice� In the �rst panel� concerning ��yt� we observe that

even though the �� transformation appears relevant for the alcohol� energy and clothing

series� the corresponding forecast are outperformed by PAR models �� times� and airline

models �once�� For total consumption we notice that the HEGY�AR model is best for ��

and 
�step ahead forecasts� From the second panel of Table �� dealing with forecasts for

the annual growth rates� we observe that the PAR model beats alternative models in � of

the 
 cases�

In sum� it seems that a carefully constructed PAR model� when proper account is

taken of unit roots and deterministic terms� oftentimes yields better forecasts compared

to those generated from HEGY�AR and airline models�

� Concluding Remarks

In the last few years it could be noticed that periodic time series models became increas�

ingly popular for describing and forecasting univariate seasonal time series� In this chapter

we have discussed some important aspects of these models� and we have evaluated their

forecasting performance� We showed that when the PAR models are properly speci�ed�

that is� when proper care is taken of unit roots and deterministic trends� they tend to

outperform often considered alternative models�

A next important step on the research agenda concerns the forecasting properties of

multivariate PAR models� These models are considerably more complicated to specify and

��



analyze with respect to unit roots and deterministic terms� It is therefore of signi�cant

importance to examine if these e�orts results in accurate forecasts�

�




Tables

Table �� Speci�cation tests in PAR models for the seven nondurable consumption series�

series order Fper LRPI LRNQT LR��� LRCLT LR��
�nal model

alcohol � ���	��� ��	
 
�
� �������� �
����� ���� ��PAR���� NQT
energy � ������� 
�
� 
�
� ���
��� ���� �
������ PIAR���� CLT
food � ���	 nonperiodic
clothing � ������ ��
	 ���� ����
��� ��
� 
������� PIAR���� CLT
other � ���� nonperiodic
services � ���� nonperiodic
total � 	������ ���� 
��
 �
������ 	
�

��� �������� PIAR���� NQT

Note	 The cells contain the values of various F � and LR test statistics
 ���� ��� � denote signi�cant
at �� �� ���� respectively


Table �� HEGY tests in nonperiodic AR models�

series lags t���� F ���� ��� ��� �nal model

alcohol � ���
� ��

�� ��� AR���� SD
energy 
 ���
� ���	���� ��� AR���� SD
clothing � ���

 	����� ��� AR���� SD
total ����� ����
 ���� ��� AR���� const

Note	 In the �nal column we give the selected AR order for the
appropriately di�erenced series and whether this model contains
seasonal dummies �SD�
 ���� ��� � denote signi�cant at �� �� ����
respectively


��



Table �� RMSPEs and encompassing tests for forecasts of yt generated by the three
models� Forecasting sample is ��
��I������IV�

RMSPE ��

 encompassing tests�

series horizon PAR AR Airline FPAR	AR FAR	PAR FPAR	Air FAir	PAR

� ���
 ���� ���� �������� ������ �������� �
�
����

alcohol � ��
� ��
� ���� 
��� �������� ��
��� ��
�

 ���� 
��� ���	 ���
� �
��	��� 
�
	 �
������

� ��
� ��	
 ��

 
��� ������� ��
�� 
�
����

energy � ���� ��
� ��		 ������ �������� 
��� ���	���


 ��
� ���� ���� ���	���� ���

�� 
��� �������

� ���� ���
 ���� ���
���� 
������ �������� ����
clothing � ���� ���
 ���	 
��� ���� ��	� 	�����


 ��
� ��

 ���� 
��� 
�
� ���� �����

� ���� ���� ���� �������� ��
� �
�	
��� ���

total � ���� ��	� ���� ���
�� 
�
� �������� ���	�


 ��
� ���
 ���� ����� 
��� ��	
�� ���	��

� FA�B denotes a F �type statistic for the null hypothesis that forecasts generated by model A
encompass forecasts generated by model B� where we allow for seasonal heteroscedasticity in the
test equation
 ���� ��� � denote signi�cant at �� �� ���� respectively


��



Table �� Forecasting rank per quarter� for yt based on the RMSPE� Forecasting sample
is ��
��I������IV�

PAR AR airline
quarter quarter quarter

series horizon I II III IV I II III IV I II III IV

� � � � � � � � � � � � �
alcohol � � � � � � � � � � � � �


 � � � � � � � � � � � �

� � � � � � � � � � � � �
energy � � � � � � � � � � � � �


 � � � � � � � � � � � �

� � � � � � � � � � � � �
clothing � � � � � � � � � � � � �


 � � � � � � � � � � � �

� � � � � � � � � � � � �
total � � � � � � � � � � � � �


 � � � � � � � � � � � �

average rank ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��� ���

�Rank � corresponds to the smallest RMSPE for the corresponding quarter� while rank 
 corre�
sponds to the largest RMSPE


��



Table �� RMSPE for forecasting quarterly and annual growth rates
���yt and ��yt� for ��
��I����
�IV�

quart� growth rates annual growth rates
series horizon PAR AR Air� PAR AR Air�

alcohol
� ���� ���� ���� ��
� ��
� ����

 ��
� ���	 ���� ��	� ��	� ����

energy � ��	� ���� ��
� ���� ��
� ��		

 ���
 ���� ���� ��
� ���	 ��
�

clothing
� ���� ���� ���� ���� ���
 ���	

 ���� ��	
 ���	 ���� ���� ��	�

total
� ��

 
��
 ��
� ���� ��	� ����

 ��	
 ���
 ���� ��
� ���	 ����

��
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