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Chapter 1

Introduction and Summary

1.1 General introduction and motivation

Finite mixture distributions are a weighted average of a finite number of distributions.

The latter are usually called the mixture components. The weights are usually described

by a multinomial distribution and are sometimes called mixing proportions. The mixture

components may be the same type of distributions with different parameter values but

they may also be completely different distributions (Everitt and Hand, 1981; Titterington

et al., 1985). Therefore, finite mixture distributions are very flexible for modeling data.

They are frequently used as a building block within many modern econometric models.

The specification of the mixture distribution depends on the modeling problem at hand.

In this thesis, we introduce new applications of finite mixtures to deal with several

different modeling issues. Each chapter of the thesis focusses on a specific modeling

issue. The parameters of some of the resulting models can be estimated using standard

techniques but for some of the chapters we need to develop new estimation and inference

methods. To illustrate how the methods can be applied, we analyze at least one empirical

data set for each approach. These data sets cover a wide range of research fields, such as

macroeconomics, marketing, and political science. We show the usefulness of the methods

and, in some cases, the improvement over previous methods in the literature.

An often applied finite mixture distribution is the mixture of normals. It is well known

that this mixture is very useful to approximate many unbounded continuous distribution.

Therefore, it can, for example, be used to describe fat-tailed distributions (see Kon, 1984).

Moreover, this approximation property makes finite mixtures very useful for describing

distributions of an entirely unknown form. Hence, there are very useful to capture the
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often unknown distribution of individual-specific effects in a population (see, for example,

Wedel et al., 1999).

One of the best-known applications of finite mixtures within a model is the random

effects model (Heckman, 1982). The random effects approach is aimed at capturing un-

observed heterogeneity in panel data models due to missing explanatory variables. In the

traditional situation, only the intercept is allowed to vary over individuals. The inter-

cepts are assumed to follow from a (usually continuous) population distribution. Most

random effects models use a continuous mixture with a normal mixing distribution. As

the population distribution is not directly observed, one cannot be sure that the normal

distribution is indeed the correct distribution of the unobserved heterogeneity. Heckman

and Singer (1984) therefore argue that finite mixtures are to be preferred because of their

flexibility to approximate many distributions, see Van Dijk (2006) for a recent exposition

in duration models.

In some cases explanatory variables are missing at the individual level but are observed

at some aggregate level. In Chapter 2 we show that a finite mixture model can be used to

estimate the effect of the explanatory variables on the dependent variable although they

are missing at the individual level. The proposed model for the dependent variable is a

finite mixture model with a multivariate mixing distribution where the marginal mixing

proportions are known.

Another use of finite mixture models is in describing difference in effects of covariates

on the dependent variable. For example, individuals may differ with respect to the way

they respond to price changes (see Fok et al., 2008, for a survey of the relevant liter-

ature). The effect of the explanatory variables on the dependent variable varies across

observations, but the modeler does not know the exact specification of this variation. We

can describe this phenomenon by allowing for different parameter values across observa-

tions using a finite mixture approach. A more extreme case occurs when the differences

in the relation between the dependent variable and the explanatory variables across ob-

servations cannot be captured by parameter variation alone. In this case we may even

need two or more completely different statistical models to describe the differences in

the relation between dependent and explanatory variables. This is often referred to as

structural heterogeneity. This can be modeled by a finite mixture model, where each mix-

ture component contains a different statistical model, see, for example, Yang and Allenby

(2000). In Chapter 3 of this thesis we apply this approach to model differences in ranking

capabilities of individuals.
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One of the attractive features of finite mixtures is that we can also use them as a tool

to segment observations. These segments can usually be given a meaningful interpretation

(see, for example, Wedel and Kamakura, 2000). The mixing proportions are the estimates

of the sizes of the segments. This feature of mixture models is used in Chapters 4 and 5.

Chapter 4 deals with modeling regional house prices in the Netherlands. The mixture

model provides a segmentation of the regions in the Netherlands with common house price

dynamics. In general, segmentation using mixture models is done in only one dimension,

for example segmentation of individuals or segmentation of regions. In Chapter 5 we show

that mixture models can also be used for clustering in two dimensions.

In the next section we provide a more detailed outline of the chapters in the thesis.

1.2 Outline and summary

This thesis consists of four chapters. In each chapter we use a finite mixture distribution

to deal with a specific modeling problem at hand. Each chapter is self-contained and

can be read independently. Therefore, we finish each chapter with a separate conclusion.

Below, we give a brief outline of the four chapters with a discussion of their contributions.

Chapter 2 is based on Van Dijk and Paap (2008). In this chapter, we consider the

problem that empirical analysis of individual response behavior may be limited due to the

lack of explanatory variables at the individual level. We put forward a new approach to

estimate the effects of explanatory variables on individual response, where the explanatory

variables are unknown at the individual level but observed at some aggregated level. This

situation may, for example, occur when the response variable is available at the household

level but explanatory variables only at the zip-code level.

We describe the missing individual explanatory variables by a latent variable model

which matches the sample information at the aggregate level. The model for individual

response is a finite mixture model with a multivariate mixing distribution where the

marginal mixing proportions are known. Parameter estimates can be obtained using

maximum likelihood or a Bayesian analysis. We illustrate the approach estimating the

effects of household characteristics on donating behavior to a Dutch charity. Donating

behavior is observed at the household level, while the explanatory variables are only

observed at the zip-code level.

Chapter 3 is based on Van Dijk et al. (2007a). We consider the situation where one

wants to estimate preferences of individuals over a discrete choice set through a survey.
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In a traditional setup respondents are asked to select their most preferred option out of

a (selected) set of alternatives. It is well known that, in theory, more information can be

obtained if respondents are asked to rank the set of alternatives instead. In statistical

terms, the preferences can then be estimated more efficiently. However, when individuals

are unable to perform (part of) this ranking task, using the complete ranking may lead

to a substantial bias in the parameter estimates and hence in the estimated preferences.

Therefore, in practical situations one usually opts to use only a part of the reported

ranking. The question is then of course which part of the ranking one should use?

To solve this question, we introduce in this chapter a latent-class rank-ordered logit

model in which we use latent segments to endogenously identify the ranking capabilities

of individuals. Each segment corresponds to a different assumption on the ranking capa-

bility. In fact, we have here a finite mixture model, where each component corresponds

to a different model specification. Using a Monte Carlo experiment and an empirical

application, we show that the new latent-class rank-ordered logit model provides more

efficient estimates than a regular multinomial logit model in case at least some individuals

are capable to rank more than one item. At the same time it does not suffer from biases

due to ranking inabilities of some of the respondents.

Chapter 4 is based on Van Dijk et al. (2007b). We develop a panel model for regional

house prices, for which both the cross-section and the time series dimension is large. The

model allows for stochastic trends, cointegration, cross-equation correlations, and, most

importantly, latent-class clustering of regions. Class membership is fully data-driven and

based on the average growth rates of house prices, and the relationship of house prices

with economic growth.

We apply the model to quarterly data for the Netherlands. The results suggest that

there is convincing evidence for the existence of two distinct clusters of regions, with

pronounced differences in house price dynamics.

Chapter 5 is based on Van Dijk et al. (2009). In this chapter we consider two-mode

data. As in the previous chapters, we use finite mixtures to segment observations. The

novelty of this chapter is that we jointly cluster two modes. We develop a new Bayesian

approach to estimate the parameters of a latent-class model for the joint clustering of both

modes of two-mode data matrices. That is, we cluster each mode into its own set of latent

classes. Posterior results are obtained using a Gibbs sampler with data augmentation.

Our Bayesian approach has three advantages over existing methods. First, in contrast to

the frequentist estimation procedures we are able to do statistical inference on the model
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parameters. Second, we are able to provide statistical criteria for determining the optimal

numbers of clusters. Finally, our Gibbs sampler has fewer problems with local optima in

the likelihood function and empty classes than the EM algorithm used in a frequentist

approach.

We apply the Bayesian estimation method of the latent-class two-mode clustering

model to two empirical data sets. The first data set is the Supreme Court voting data set

of Doreian et al. (2004). The second data set comprises the roll call votes of the United

States House of Representatives in 2007. For both data sets, we show how the results can

provide useful insight into the data.





Chapter 2

Explaining Individual Response

using Aggregated Data

2.1 Introduction

Empirical analysis of individual behavior is sometimes limited due to the lack of explana-

tory variables at the individual level. There may be various reasons why individual-level

explanatory variables are not available. When using individual revealed preference data,

information about explanatory variables may simply not be available as databases cannot

be properly linked. For survey data, there may be a missing explanatory variable due to

a missing question in the survey or a question which is interpreted the wrong way by the

respondents.

In some cases it is possible to obtain information on explanatory variables at some

aggregated level. For example, if the zip code of households is known, it may be possible to

obtain aggregated information on household characteristics, like income and family size,

at the zip-code level. This zip-code level information is usually obtained through surveys.

The aggregated information of the variables is summarized in marginal probabilities which

reflect the probability that the explanatory variable lies in some interval (income, age) or

category (gender, religion) for a household in that zip-code region.

The goal of the current chapter is to estimate the effects of covariates on individual

response when the covariates are unobserved at the individual level but observed at some

aggregated level. There are several studies in economics which try to link individual and

aggregated data, see, for example, Imbens and Lancaster (1994) and Van den Berg and

Van der Klaauw (2001). In contrast to our situation, these studies assume that both
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individual-level data and aggregated data is available. The aggregated data is assumed to

be more reliable and is used to put restrictions on the individual-level data. The situation

of missing individual covariates is related to ecological inference, see Wakefield (2004)

for an overview. The main difference with regular ecological inference problems is that

we observe individual responses, whereas ecological inference also relies on aggregated

information on the response variable. The extra information on individual responses may

help us overcome certain identification issues in ecological inference.

As far as we know, the only paper that comes close to our situation is Steenburgh et al.

(2003). The motivation for the use of aggregated data in this paper is, however, different

from ours. The authors use zip-code information to describe unobserved heterogeneity

in the individual behavior of households instead of estimating the effects of covariates on

behavior. Our problem also bears similarities with symbolic data analysis, see Billard

and Diday (2003) for an overview. Symbolic data analysis also deals with aggregated

explanatory variables and dependent variables at an individual level. The motivation for

the use of aggregated data is however different. Aggregation is used to summarize large

data sets. Therefore the form of the aggregated information is different and represents,

for example, intervals instead of marginal probabilities.

In this chapter we develop a new approach to estimate the effects of covariates on

individual response when the covariates are unknown at the individual level but observed

at some aggregated level in the form of marginal probabilities. We extend the standard

individual response model with a latent variable model describing the missing explanatory

variables. This latent variable model describes the missing explanatory variables in such

a way that it matches the sample information at the aggregated level. In case of one

explanatory variable, the model simplifies to a standard mixture regression with known

mixing proportions. A simple simulation experiment shows that this new approach out-

performs in efficiency the standard method, where we replace the missing explanatory

variables by the observed marginal probabilities at the aggregated level.

Parameter estimates of the individual response model can be obtained using Simulated

Maximum Likelihood [SML] or a Bayesian approach. Given the computational burden

of SML, the latter approach may be more convenient. To obtain posterior results, we

use a Gibbs sampler with data augmentation. The unobserved explanatory variables

are sampled alongside the model parameters. Conditional on the sampled explanatory

variables, a standard Markov Chain Monte Carlo [MCMC] sampler can be used for the

model describing individual response.
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The outline of the chapter is as follows. In Section 2.2 we provide a simple introduction

into the problem and perform a small simulation experiment to illustrates the merits of our

approach. In Section 2.3 we generalize the discussion to a more general setting. Parameter

estimation is discussed in Section 2.4. In Section 2.5 we illustrate our approach estimating

the effects of household characteristics on donating behavior to a Dutch charity. We use

aggregated information on household characteristics at the zip-code level to explain the

individual response of households to a direct mailing by the charity. Finally, Section 2.6

concludes.

2.2 Preliminaries

To illustrate the benefits of our new approach, we start the discussion with a simple

example. We consider a linear regression model with only one explanatory variable. The

explanatory variable xi can only take the value 0 or 1, for example, a gender dummy. Let

the observed response of individual i, yi, be described by

yi = α + βxi + εi, (2.1)

where α is an intercept parameter and where β describes the effect of the 0/1 dummy

variables xi on yi for i = 1, . . . , N . The error term εi is assumed to be normally distributed

with mean 0 and variance σ2. We assume that xi is unobserved at the individual level

but that we have aggregated information on xi, for example, at the zip-code level. This

aggregated information is summarized by pi = Pr[xi = 1] for i = 1, . . . , N .

A simple approach to estimate β is to regress yi on pi instead of xi. The error term of

this regression equals

ηi = (xi − pi)β + εi. (2.2)

The OLS estimator is consistent if E[piηi|pi] = 0. As

E[piηi|pi] = E [pi × ((xi − pi)β + εi)|pi] = E [pi(xi − pi)β|pi] + E[piεi|pi]

= E [pixiβ|pi]− E
[
p2

i β|pi

]
+ E[piεi|pi] (2.3)

this condition is fulfilled if E[piεi|pi] = 0 and E[xi|pi] = pi. Although this OLS estimator

is in general consistent, it is clear from (2.2) that the error term is heteroskedastic, and

hence the OLS estimator is not efficient. Hence, a GLS estimator may improve upon OLS

estimates.
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An alternative approach to using the aggregated information to estimate β is to con-

sider a mixture regression, see Quandt and Ramsey (1978), Everitt and Hand (1981) and

Titterington et al. (1985). To describe the response variable yi we consider a mixture of

two linear regression models where in the first component the xi variable is 1 and in the

second component xi equals 0. The mixing proportion is pi which is known but may be

different across individuals. Hence, the distribution of yi is given by

yi ∼
{

N(α + β, σ2) with probability pi

N(α, σ2) with probability (1− pi).
(2.4)

The parameters α and β can be estimated using maximum likelihood [ML]. ML estimates

can easily be obtained using the EM algorithm of Dempster et al. (1977).

To illustrate the efficiency gain of the mixture approach we perform a simulation

study. For N = 1, 000 individuals we simulate 0/1 xi values according to Pr[xi = 1] =

pi. We use different simulation schemes for pi. We either allow the value of pi to be

different across individuals, or we impose that groups of individuals have the same value

for pi corresponding to the idea that these individuals live in the same zip-code region.

Furthermore, we allow the range of possible values for pi to be different. We sample pi from

U(0.2, 0.4) or U(0.01, 0.99). The values of yi are generated according to yi = 1 + 2xi + εi

with εi ∼ N(0, 1).

We estimate the β parameter using four approaches. In the first approach we estimate

β using a linear regression model where we include the true xi as explanatory variables.

In practice this solution is of course not feasible but it allows us to compute the efficiency

loss due to using explanatory variables at an aggregated level. In the second approach we

consider an OLS estimator in a linear regression model with pi as explanatory variable.

The third approach uses a GLS estimator in the same linear regression model. The GLS

weights are based on (2.3) and are computed using the true value of β and σ2. In practice

these parameters are of course unknown but the simulation results already show that

accounting for heteroskedasticity using the true values does not compensate the efficient

loss of the OLS estimator. In the last approach we consider the mixture solution as

in (2.4).

Table 2.1 displays the efficiency loss in the estimator for β for the last three esti-

mation approaches compared to using full information. Simulation results are based on

1,000 replications. The efficiency loss is computed using the root mean squared error

[RMSE] of the estimates as all estimators are consistent. Several conclusions can be
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Table 2.1: Efficiency loss of using aggregated data

with respect to using full information for the three

estimators

Distribution Number of Efficiency Loss

of pi pi
a OLS GLS Mixture

U(0.20, 0.40) 1,000 90.5% 90.5% 33.3%

U(0.01, 0.99) 1,000 50.4% 49.8% 24.1%

U(0.20, 0.40) 100 90.4% 90.4% 32.4%

U(0.01, 0.99) 100 52.5% 52.2% 23.0%

U(0.20, 0.40) 10 92.4% 92.3% 31.5%

U(0.01, 0.99) 10 62.4% 62.1% 23.0%

U(0.20, 0.40) 2 96.6% 96.6% 33.5%

U(0.01, 0.99) 2 73.9% 73.9% 31.3%

a Number of different pi values drawn from the uniform
distribution. Total number of individuals is 1,000.

drawn from the table. First of all, the mixture approach outperforms the other two esti-

mators. Secondly, the GLS estimator hardly improves upon the OLS estimator, indicating

that heteroskedasticity is not the main cause of the efficiency loss of the OLS estimator.

Thirdly, all estimators perform better when the range in possible values of pi is larger,

which is not a surprise as a large variation in pi provides more information about the slope

parameter. Finally, the estimators perform better when there are less individuals with

the same pi value. The mixture approach however seems hardly affected by the number

of individuals with the same value for pi.

To illustrate the effects of the efficiency loss, we display in Figure 2.1 the density of β̂

for the full information estimator, the OLS estimator and the mixture approach, where we

use the simulation settings as in the second row of Table 2.1. The graph clearly illustrates

the superiority of the mixture approach.

As already indicated by our simulation results, a GLS estimator does not compensate

the efficiency loss due to aggregation of the explanatory variables. A second reason why

the GLS estimator is not useful, is that constructing a feasible GLS estimator is often not

possible if we have more than one explanatory variable. Consider, for example, the case
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Figure 2.1: Density plots of the three estimators for β

with k explanatory variables which are unobserved at the individual level

yi = α +
k∑

j=1

βjxi,j + εi, (2.5)

where xi,j are unobserved 0/1 dummy variables. Assume that we have aggregated infor-

mation summarized in k marginal probabilities Pr[xi,j = 1] = pi,j. It is straightforward

to extend the proof above and show that the OLS estimator for βj is consistent when the

xi,j are replaced by pi,j. In this case, the error term becomes

ηi =
k∑

j=1

(xi,j − pi,j)βj + εi. (2.6)

Although the OLS estimator is consistent, it is impossible to estimate the variance of ηi,

because the covariance matrix of xi is unknown. As in practice we often only observe the

marginal probabilities Pr[xi,j = 1] = pi,j and not the joint probabilities it is not feasible

to estimate these covariances.

Before we turn to our solution to this problem, we first consider forecasting. Fore-

casting individual response when only aggregated explanatory variables are available is

hampered for two reasons. First, the effects of the explanatory variables can be estimated

less precisely compared to the case where individual data is available. The second reason
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Table 2.2: Average RMSE of forecasting yi us-

ing the parameter estimates of 4 methods and

using either individual, aggregated or a Bayesian

update of the individual data in the forecastsa

using xi using pi using x̂i|yi

Full information 1.00 1.35 1.18

OLS 1.06 1.35 1.22

GLS 1.06 1.35 1.22

Mixture 1.00 1.35 1.18

a 1,000 out-of-sample observations.

is that the lack of out-of-sample explanatory variables at the individual level introduces

more uncertainty in our forecast. To assess the out-of-sample forecasting performance of

the four estimation methods, we simulate another set of 1,000 yi values for each replica-

tion. We predict the value of yi using the estimates of α and β obtained in the first part

of the simulation for each of the four estimation procedures.

Table 2.2 displays the average RMSE for each of the four estimation procedures.

We only show the results where we simulate pi from U(0.2, 0.4) and where we draw a

distinct value for each individual. The other cases show similar results. We make a

distinction between three situations. The second column displays the results when we

assume that the out-of-sample xi are known. In this case the full information approach

and the mixture approach have similar average RMSE while the OLS and GLS approach

perform worse. In case we only use aggregated out-of-sample information, all approaches

perform the same, see third column of Table 2.2. Hence, the loss in forecast precision due

to having aggregated out-of-sample information outweighs the efficiency loss in parameter

estimation. The final column shows the results in case we only simulate new yi values

using the same xi values of the original sample. This allows us to estimate the value of xi

given the in-sample information via Bayesian updating. Note that this is only possible in

the case of a panel data set and time-invariant xi variables. Again, the full information

approach and the mixture approach have similar average RMSE while the OLS and GLS

approach perform worse.

We can conclude from the simulation experiments in this section that the mixture

approach is preferred when we want to estimate the effects of explanatory variables which
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are only observed at the aggregated level on individual response. In the next section we

extend the mixture approach to the situation where there are more than one explanatory

variable. The information in the individual responses helps to estimate the unobserved

correlations between the covariates.

2.3 Model specification

In this section, we generalize the discussion in the previous section in several ways. First,

we relax the assumption that the model for yi is a linear regression model. Secondly, we

allow for m explanatory variables summarized in the m-dimensional vector Xi. Finally, we

allow for other types of explanatory variables like ordered and unordered categorical vari-

ables. The vector of explanatory variables is written as Xi = (X
(1)
i

′, X(2)
i

′, X(3)
i

′)′, where

X
(1)
i contains the binary explanatory variables, X

(2)
i the ordered categorical explanatory

variables and X
(3)
i the unordered explanatory variables.

We will use the general model specification

yi = g(Xiβ, εi), (2.7)

where yi is the observed dependent variable, β is an m-dimensional vector with the param-

eters of interest, εi is a random term, and g is some (non)linear function. The distribution

of εi is known and depends on the unknown parameter vector θ. We assume that εi is

independent of Xi.

This general model can be a linear regression model, but also a limited dependent

variable model or any other nonlinear model. If the Xi variables are observed, parame-

ter estimation is usually standard. In our case, the Xi variables are unobserved at the

individual level but we know the marginal distribution of each Xi, which may or may

not vary across individuals. To estimate the model parameters β and θ we extend (2.7)

with a latent variable model describing the joint distribution of the Xi variables. Some

of the parameters of this latent variable model are fixed to match the available sample

information at the aggregated level. In the following subsections we describe the latent

variable model for the three different types of explanatory variables. Note that we only

discuss them separately to facilitate the exposition. The different types of variables can

easily be combined in one multivariate model.
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2.3.1 Binary explanatory variables

Assume that X
(1)
i consists of k binary variables. The joint distribution of X

(1)
i is discrete

with 2k mass points of which the associated probabilities sum up to 1. If we observe

these 2k mass points at some aggregated level, we can follow the mixture approach of

Section 2.2 to estimate the β parameters. In practice, however, we typically observe the

k marginal probabilities denoted by P
(1)
i = (p

(1)
i,1 , . . . , p

(1)
i,k )′. Romeo (2005) proposes a

method to estimate the joint discrete distribution from the marginal probabilities. He

assumes that the joint distribution is known at an aggregated level. As we do not have

this joint distribution at an aggregated level, his method is not suitable for our problem.

The k marginal probabilities plus the fact that probabilities sum up to 1 leave us

with 2k − (k + 1) degrees of freedom on the 2k mass points, unless we assume that the

explanatory variables are independent. To facilitate modeling the joint distribution of

X
(1)
i , we introduce a latent continuous random vector X

(1)∗
i = (x

(1)∗
i,1 , . . . , x

(1)∗
i,k )′ with

x
(1)
i,j = 1 if x

(1)∗
i,j > 0

x
(1)
i,j = 0 if x

(1)∗
i,j ≤ 0

(2.8)

for i = 1, . . . , N and j = 1, . . . , k, see also Joe (1997) for a similar approach. A convenient

distribution for X
(1)∗
i is a multivariate normal. The variance of x

(1)∗
i,j is set equal to 1

for identification. We impose that the mean of x
(1)∗
i,j equals Φ−1(p

(1)
i,j ) for j = 1, . . . , k

and i = 1, . . . , N , where Φ denotes the distribution function of the standard normal

distribution. It holds that Pr[x
(1)
i,j = 1] = Pr[x

(1)∗
i,j > 0] = Φ(Φ−1(p

(1)
i,j )) = p

(1)
i,j , and

hence these restrictions match the marginal distribution of the X
(1)
i variables. In sum, we

assume that

X
(1)∗
i ∼ N

(
Φ−1(P

(1)
i ), Ω1,1

)
, (2.9)

where Ω1,1 is a k × k positive definite symmetric matrix with ones on the diagonal.

This leaves us with 1
2
k(k − 1) free parameters, that is, the sub-diagonal elements of Ω1,1.

Although we lose some flexibility by assuming this structure, the correlation parameters do

get an intuitive interpretation as they are related to correlations between the explanatory

variables. The model for X
(1)
i is in fact a multivariate probit [MVP] model, see Ashford

and Sowden (1970), Amemiya (1974) and Chib and Greenberg (1998). The aggregated

data provides the values of the intercepts such that only the sub-diagonal elements of Ω1,1

have to be estimated.
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2.3.2 Ordered categorical explanatory variables

The setup for the binary variables can easily be extended to ordered categorical variables.

If we have one ordered categorical variable with r categories, the X
(2)
i vector in (2.7) con-

tains r − 1 0/1 dummies, leaving one category, say the last one, as a reference category.

Denote the r − 1 dummies by x
(2)
i,1 , . . . , x

(2)
i,r−1. We typically observe the marginal distri-

bution of the categories at some aggregated level which we denote by the r probabilities

P
(2)
i = (p

(2)
i,1 , . . . , p

(2)
i,r )′.

If we only have one ordered categorical explanatory variable in our model, we can use

the simple mixture approach in Section 2.2 to estimate the effects of the r categories.

In practice, we usually have a combination of several binary and ordered categorical

variables and hence we need to deal with correlation between these variables. To describe

correlations between several categorical variables, it is convenient to introduce a normal

distributed random variable x
(2)∗
i and describe the distribution of the categorical variable

in the following way

x
(2)
i,1 = 1 if x

(2)∗
i ≤ qi,1 and x

(2)
i,1 = 0 otherwise

x
(2)
i,2 = 1 if qi,1 < x

(2)∗
i ≤ qi,2 and x

(2)
i,2 = 0 otherwise

...

x
(2)
i,r−1 = 1 if qi,r−2 < x

(2)∗
i ≤ qi,r−1 and x

(2)
i,r−1 = 0 otherwise.

(2.10)

For identification we impose that the variance of x
(2)∗
i is 1 such that

x
(2)∗
i ∼ N (0, 1) . (2.11)

To match sample probabilities P
(2)
i , the limit points qi,1 . . . qi,r−1 are set equal to

qi,j = Φ−1

(
j∑

l=1

p
(2)
i,l

)
, i = 1, . . . , N, j = 1, . . . , r − 1. (2.12)

The proposed model for X
(2)
i is in fact the ordered probit model of Aitchison and Silvey

(1957), see also Cowles (1996) for a Bayesian estimation procedure.

The equations (2.10)–(2.12) provide the latent variable model for the case of one or-

dered categorical explanatory variable. In case we have more categorical variables it is

easy to extend the current solution with more latent x
(2)∗
i,j variables and allow them to

correlate using a covariance matrix Ω2,2 with ones on the diagonal. It is also possible to

correlate the resulting X
(2)∗
i variables with the latent random variables for the binary vari-

ables X
(1)∗
i to describe correlations between binary and ordered categorical explanatory

variables.



2.3 Model specification 17

2.3.3 Unordered categorical explanatory variables

We may also encounter an explanatory variable which is categorical with, say, r categories,

but without a natural ordering in the categories. We assume here that an individual can

only belong to one category. If (s)he can belong to several categories we can apply the

approach in Section 2.3.1. To model the effects of such a variable on yi we include r − 1

0/1 dummy variables x
(3)
i,1 , . . . , x

(3)
i,r−1 in X

(3)
i , leaving the rth category as reference. We

observe the marginal probabilities of the r categories at some aggregate level which we

denote by P
(3)
i = (p

(3)
i,1 , . . . , p

(3)
i,r )′.

To deal with the unordered categorical variable we build upon the multinomial probit

[MNP] literature, see, for example, Hausman and Wise (1978) and Keane (1992). We

introduce r − 1 normally distributed variables X
(3)∗
i = (x

(3)∗
i,1 , . . . , x

(3)∗
i,r−1)

′ with

x
(3)
i,1 = 1 if x

(3)∗
i,1 > max(x

(3)∗
i,2 , . . . , x

(3)∗
i,r−1, 0) and x

(3)
i,1 = 0 otherwise

...

x
(3)
i,r−1 = 1 if x

(3)∗
i,r−1 > max(x

(3)∗
i,1 , . . . , x

(3)∗
i,r−2, 0) and x

(3)
i,r−1 = 0 otherwise,

(2.13)

which means that x
(3)
i,1 = . . . = x

(3)
i,r−1 = 0 if max(x

(3)∗
i,1 , . . . , x

(3)∗
i,r−1) ≤ 0. Hence, the vector

X
(3)∗
i correspond exactly to the utility differences in MNP models. The distribution of

X
(3)∗
i is given by




x
(3)∗
i,1
...

x
(3)∗
i,r−1


 ∼ N







µ
(3)∗
i,1
...

µ
(3)∗
i,r−1


 ,




1 1
2

· · · 1
2

1
2

. . . . . .
...

...
. . . . . . 1

2
1
2
· · · 1

2
1







, (2.14)

where µ
(3)∗
i = (µ

(3)∗
i,1 , . . . , µ

(3)∗
i,r−1)

′ represents the mean of X
(3)∗
i . As individuals can only

belong to one of the categories, we cannot identify the covariance matrix of X
(3)∗
i and have

to fix its elements. For simplicity we take the implied covariance matrix of an MNP model

where the individual utilities have a covariance equal to 1/2 times the identity matrix.

If we take category r as the base category we end up with same covariance structure as

above. The positive correlations are caused by the fact that the value of x
(3)∗
i,j is influenced

by both p
(3)
i,j and the probability of belonging to the reference category p

(3)
i,r . If the reference

has a vary small probability, all x
(3)∗
i,j , j = 1, . . . , r − 1 should have a high value.
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The observed probabilities imply r − 1 restrictions on the distribution parameters of

X
(3)∗
i . To match the sample data with the model we have to solve µ

(3)∗
i from

Pr[x
(3)∗
i,1 > x

(3)∗
i,2 , . . . , x

(3)∗
i,1 > x

(3)∗
i,r−1, x

(3)∗
i,1 > 0] = p

(3)
i,1

... (2.15)

Pr[x
(3)∗
i,r−1 > x

(3)∗
i,1 , . . . , x

(3)∗
i,r−1 > x

(3)∗
i,r−2, x

(3)∗
i,r−1 > 0] = p

(3)
i,r−1

Pr[x
(3)∗
i,1 ≤ 0, . . . , x

(3)∗
i,r−1 ≤ 0] = p

(3)
i,r .

Note that the last restriction is automatically satisfied if the first r − 1 restrictions hold.

Unfortunately, there is no closed form expression for the probabilities from the LHS of

(2.15) and hence we have to use numerical methods. If r is small, numerical integration

techniques can be used to evaluate the probabilities. For larger values of r the probabilities

can be evaluated using the Stern (1992) simulator or the Geweke-Hajivassiliou-Keane

[GHK] simulator (Börsch-Supan and Hajivassiliou, 1993; Keane, 1994). The values of

µ
(3)∗
i can be found using a numerical solver. Notice that the values of µ

(3)∗
i have to be

determined only once before parameter estimation.

The equations (2.13) and (2.14) provide the latent variable model in case of one un-

ordered categorical explanatory variable. In case there are more categorical variables it is

easy to extend the current solution in a similar way as discussed before. It is also possible

to correlate the X
(3)∗
i variables with the X

(1)∗
i and X

(2)∗
i variables in a straightforward

manner.

2.3.4 Continuous explanatory variables

So far, we only used discrete explanatory variables. Dealing with the case where continu-

ous variables are not observed at the individual level but at some aggregated level is not

easy in practice. It is not enough to know the average value of the continuous variable at

some aggregate level (e.g. the average value in each zip-code region) unless we make very

strong assumptions. To deal with a continuous variable, we need to know the marginal

distribution of the variable at the aggregated level. In case of a discrete variable, this dis-

tribution is represented by a few probabilities. In case of a continuous variable we need to

know the type of distribution and the values of the parameters of the distribution. If the

continuous variable is however divided in several intervals and we know the probability

distribution over these intervals we can model it like an ordered categorical explanatory

variables, see Section 2.3.2 and Section 2.5 for an example.
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We summarize this section as follows. The explanatory variables Xi which are missing

at the individual level are described by the latent variable X∗
i = (X

(1)∗
i

′, X(2)∗
i

′, X(3)∗
i

′)′.

This latent variable has a multivariate normal distribution. The mean of this distribution

is determined by the marginal probabilities at the aggregate level. The covariance matrix

of X∗
i is denoted by

Ω =




Ω1,1 Ω′
1,2 Ω′

1,3

Ω1,2 Ω2,2 Ω′
2,3

Ω1,3 Ω2,3 Ω3,3


 , (2.16)

where the matrices Ω1,1 and Ω2,2 contain ones on the diagonal and Ω3,3 is equal to the

covariance matrix given in (2.14) in case of just one unordered variable. If there are more

unordered variables, Ω3,3 contains as many blocks of the covariance matrix from (2.14) on

the diagonal. The remaining elements of Ω are free and describe the correlations between

the latent variables X∗
i . We summarize the free elements of Ω in the vector ρ. The models

for the X∗
i variables together with (2.7) provide the complete model specification.

2.4 Parameter estimation

To estimate the model parameters of the model proposed in the previous section, we can

choose for maximum likelihood or a Bayesian approach. In this section we discuss both

approaches and their relative merits.

We first derive the likelihood function. Let the density function of the data yi for the

model in (2.7) conditional on the missing variables Xi be given by

f(yi|Xi; β, θ), (2.17)

where β and θ denote the model parameters. To derive the unconditional density of yi

we have to sum over all possible values of Xi, which we will denote by the set χ. Hence,

the density of yi given the observed marginal probabilities Pi is given by

f(yi|Pi; β, θ, ρ) =
∑
Xi∈χ

Pr[Xi|Pi; ρ]f(yi|Xi; β, θ), (2.18)

where Pr[Xi|Pi; ρ] denotes the probability of observing Xi given the data at the aggregated

level which we denote by Pi = (P
(1)
i

′, P (2)
i

′, P (3)
i

′)′. These probabilities depend on the

unknown parameter ρ which summarizes the free elements of the covariance matrix Ω as



20 Explaining Individual Response using Aggregated Data

discussed in the previous section. Hence, the log likelihood function is given by

L(y|P ; β, θ, ρ) =
N∑

i=1

log f(yi|Pi; β, θ, ρ), (2.19)

where y = (y1, . . . , yN)′ and P = (P1, . . . , PN)′. The parameters β, θ and ρ have to be

estimated from the data.

2.4.1 Maximum likelihood estimation

A maximum likelihood estimator can be obtained by maximizing the log likelihood func-

tion (2.19) with respect to (β, θ, ρ). To evaluate the log likelihood function we need to

evaluate the probabilities Pr[Xi|Pi; ρ] . Unfortunately, there is no closed form expression

to compute these probabilities. For small dimensions it is possible to use numerical in-

tegration techniques but in general we have to use simulation methods to evaluate the

probabilities. This implies that we end up with a Simulated Maximum Likelihood [SML]

estimator, see Lerman and Manski (1981). The probabilities Pr[Xi|Pi; ρ] can be evaluated

using the Stern (1992) simulator or the GHK simulator (Börsch-Supan and Hajivassiliou,

1993; Keane, 1994).

The SML estimator is only consistent if the number of observations and the number

of simulations approach infinity. Given the literature on SML in MNP models (see for

example, Geweke et al., 1994), we expect that obtaining accurate values of the probabilities

Pr[Xi|Pi; ρ] is computationally intensive, especially when the dimension of the latent X∗
i is

large and/or the number of observations N is large. Note that the number of probabilities

Pr[Xi|Pi; ρ] we need to evaluate grows exponentially with the number of variables in Xi.

2.4.2 Bayesian analysis

The model can also be analyzed in a Bayesian framework. To obtain posterior results

for the model parameters, we propose a Gibbs sampler (Geman and Geman, 1984) with

data augmentation, see Tanner and Wong (1987). The latent X∗
i variables are simulated

along side the model parameters (β, θ, ρ). The main advantage of this Bayesian approach

is that it does not require the evaluation of the complete likelihood function. If suffices

to evaluate the likelihood function conditional on the latent X∗
i which determine Xi.

We focus in this section on the sampling of the latent variable X∗
i . We assume that

if we know the X∗
i and hence the Xi variables, an MCMC sampling scheme to simulate
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from the posterior distribution of the model parameters β and θ is available. Hence, we

do not discuss simulating from the full conditional distribution of β and θ as this is model

specific. We do however discuss simulating from the full conditional distribution of ρ as

this is part of the model for the latent variable X∗
i .

Sampling of XXX∗∗∗
iii

Because Xi is a deterministic function of X∗
i we only need to sample X∗

i . The full condi-

tional density of X∗
i is given by

f(X∗
i |yi, Pi; β, θ, ρ) ∝ f(yi|Xi(X

∗
i ); β, θ)f(X∗

i |Pi; ρ), (2.20)

where f(yi|Xi(X
∗
i ); β, θ) is given in (2.17) with Xi(X

∗
i ) the deterministic mapping of X∗

i

to Xi given in (2.8), (2.10) and (2.13). The function f(X∗
i |Pi; ρ) denotes the density of

X∗
i implied by the latent variable model for X∗

i . Given the structure of the latent variable

model, X∗
i has a multivariate normal distribution with a mean µi which is determined by

Pi and a covariance matrix Ω of which the free elements are denoted by ρ, that is,

f(X∗
i |Pi; ρ) = φ(X∗

i ; µi(Pi), Ω(ρ)), (2.21)

where φ denotes the multivariate normal density function. Sampling the complete X∗
i

vector at once is very difficult. Therefore, we sample the individual elements of X∗
i

separately from their full conditional distribution. Let us consider the jth element of X∗
i

denoted by x∗i,j. The full conditional density of x∗i,j is given by

f(x∗i,j|yi, Pi, X
∗
i,−j, β, θ, ρ) ∝ f(yi|xi,j(x

∗
i,j), Xi,−j(X

∗
i,−j); β, θ)f(x∗i,j|X∗

i,−j, Pi; ρ), (2.22)

where X∗
i,−j and Xi,−j denote the vector X∗

i and Xi without x∗i,j and xi,j, respectively.

The full conditional density of x∗i,j consists of two parts. We start with the second part,

f(x∗i,j|X∗
i,−j, Pi; ρ), which is the conditional density of one of the elements of X∗

i which is

of course a normal density with known mean, say, µ̄i,j, and variance, say, s̄2
j , which are

functions of µi(Pi) and Ω(ρ). The first part f(yi|xi,j(x
∗
i,j), Xi,−j(X

∗
i,−j); β, θ) is a function

of Xi(X
∗
i ) and can take a discrete number of values depending on the value of x∗i,j.

In case x∗i,j corresponds to a binary explanatory variable, xi,j can take two values

depending on whether x∗i,j is larger or smaller than 0. We can sample x∗i,j from in one step

from its full conditional posterior distribution using the inverse CDF method but it is

computationally more efficient to sample x∗i,j in two steps. In the first step, we determine
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whether x∗i,j is larger or smaller than 0, that is whether xi,j is 1 or 0, respectively. From

(2.22) it follows that

Pr[xi,j = 1|yi, Pi, X
∗
i,−j, β, θ, ρ] =

ki,j,1

(
1− Φ

[
−µ̄i,j

s̄j

])

ci,j,0Φ
[
−µ̄i,j

s̄j

]
+ ci,j,1

(
1− Φ

[
−µ̄ij

s̄j

]) , (2.23)

where ci,j,0 = f(yi|xi,j = 0, Xi,−j(X
∗
i,−j); β, θ) and ci,j,1 = f(yi|xi,j = 1, Xi,−j(X

∗
i,−j); β, θ).

In the second step, we sample x∗i,j|xi,j from a truncated normal distribution with mean

µ̄i,j and variance s̄2
j . We sample x∗i,j either positive or negative, depending on the whether

xi,j is 1 or 0, respectively. For this truncated sampling we use the efficient accepting

algorithm in Geweke (2005, pp. 113), see also Geweke (1991).

The other types of variables can be sampled in a similar manner. Appendix 2.A also

provides the sampling schemes in case x∗i,j is associated with an ordered or an unordered

categorical variable.

Sampling of ρρρ

To complete the Gibbs sampler, we need to sample the parameters in ρ from their full con-

ditional posterior distribution. The vector ρ contains the free elements of the covariance

matrix of X∗
i which is denoted by Ω, see (2.16). As discussed in Section 2.3, identification

requires several restrictions on the covariance matrix Ω. In the first place, all diagonal

elements of Ω are equal to 1 and hence Ω is a correlation matrix. Furthermore, the corre-

lations between elements of the same unordered categorical variable are set equal to 1/2.

Hence, the full conditional distribution of Ω is not an inverted Wishart distribution.

There exists several algorithms to sample a correlation matrix, see, for example, Chib

and Greenberg (1998), Manchanda et al. (1999), and Liechty et al. (2004). In this chapter

we follow Barnard et al. (2000). They suggest sampling one correlation at a time from

their full conditional posterior distribution using a griddy-Gibbs sampler, see Ritter and

Tanner (1992).

Suppose we want to draw the jth correlation in ρ denoted by ρj. Denote the vector ρ

without ρj as ρ−j and let X∗ = (X∗
1 , . . . , X

∗
N)′ and µ(P ) = (µ1(P1), . . . , µN(PN))′, where

µi(Pi) denotes the mean of X∗
i determined by Pi for i = 1, . . . , N . The full conditional
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posterior density of ρj is given by

f(ρj|y, P, X∗, β, θ, ρ−j, ) ∝ f(X∗|P, ρj, ρ−j)f(ρj|ρ−j)

∝
N∏

i=1

φ(X∗
i ; µi(Pi), Ω(ρj, ρ−j))f(ρj|ρ−j)

∝ |Ω(ρj, ρ−j)|−N
2 exp

(
−1

2
(X∗ − µ(P ))′Ω(ρj, ρ−j)

−1(X∗ − µ(P ))

)
f(ρj|ρ−j),

(2.24)

where f(ρj|ρ−j) denotes the prior density of the jth element of ρ, conditional on all other

elements of ρ. Barnard et al. (2000) show how to determine the range of values for which

ρj leads to a positive definite matrix. Within this range we can define a set of grid points

to evaluate the kernel (2.24) for the griddy-Gibbs sampler.

As correlations in Ω which are related to the jth explanatory variable are not identified

if βj = 0, we suggest to impose an informative prior for the parameters in ρ. We use a

truncated normal prior with variance ω2 for the parameters in ρ, that is,

f(ρ) ∝ I[Ω(ρ) = PD]
∏

j

exp(−ρ2
j/(2ω

2)), (2.25)

where I[Ω(ρ) = PD] is an indicator function which is 1 if Ω(ρ) is positive definite and 0

otherwise. Hence, we concentrate the probability mass around zero.

2.5 Application

To illustrate our approach, we consider in this section an application where we analyze

the characteristics of households who donate to a large Dutch charity in the health sector.

Households receive a direct mailing from the charity with a request to donate money. The

household may not respond and donate nothing or respond and donate a positive amount.

We have no information about the characteristics of the households apart from their zip

code. At the zip-code level we know aggregated household characteristics.

Our sample contains 10,000 households which are randomly selected from the database.

The mailing we consider took place in February 1997. The response rate is 39.0%. The

average donation is 3.39 euros and the average donation conditional on response is 8.68

euros. We match these data with aggregated data at the zip-code level (4 digits) from

Statistics Netherlands (CBS). Table 2.3 shows the relevant aggregated data at the zip-

code level. As can be observed from the table we have aggregated data for different types
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Table 2.3: Available explanatory variables at the zip-code level

Variable Type Description

Church Binary Goes to church every week

Not-active Binary Not active in labor force

Reference: Family with kids

Single Unordered (3 cat.) Lives alone

Family no kids Unordered (3 cat.) Family without kids

Reference: Average income

Income low Ordered (3 cat.) Income in lowest 40% nationally

Income high Ordered (3 cat.) Income in highest 20% nationally

Reference: Age between 25 and 44

Age 0-24 Ordered (4 cat.) Age between 0 and 24

Age 45-64 Ordered (4 cat.) Age between 45 and 64

Age 65+ Ordered (4 cat.) Age over 65

Urbanization Observed Measure for the degree of

urbanization

of explanatory variables, that is, for binary, unordered, and ordered categorical variables.

Note that we only know urbanization at the zip-code level. As it is the same for each

individual in the zip-code region, this variable is treated as an observed variable.

To describe donating behavior we consider a censored regression (Tobin, 1958) because

the donated amount is censored at 0. We use the log of (1 + amount) as dependent variable

which leads to the following model specification

log(1 + yi) =

{
x′iβ + εi if x′iβ + εi > 0

0 if x′iβ + εi ≤ 0,
(2.26)

with εi ∼ N(0, σ2). As explanatory variables we take the variables displayed in Table 2.3.

To estimate the effects of the covariates on response, we use two approaches. First,

we follow the simple regression approach of Section 2.2, which means that we replace the

unknown household characteristics by their sample averages at the zip-code level. The

parameters of (2.26) are estimated using ML. Although we have only shown in Section 2.2

that OLS in a linear regression model provides consistent estimates, simulations suggest

that this result carries over to the ML estimator in a censored regression model. Secondly,
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Table 2.4: Posterior means, posterior standard deviations,

and HPD regions of the model parameters for the mixture

approach together with ML results for the simple approach

mixture approach simple approach

mean s.d. 95% HPD ML s.e.a

Intercept -1.77 0.05 (-1.87,-1.68) -2.89 0.81

Urbanization 0.05 0.03 (-0.01, 0.11) 0.63 0.35

Church 0.64 0.02 ( 0.59, 0.69) 0.24 0.25

Not-active -0.72 0.01 (-0.75,-0.69) -1.03 0.74

Single 3.63 0.04 ( 3.55, 3.71) 0.52 0.55

Family no kids 3.61 0.04 ( 3.53, 3.70) 3.51 1.20

Income low -0.01 0.03 (-0.07, 0.05) 0.41 1.17

Income high 0.71 0.02 ( 0.68, 0.75) 1.60 0.87

Age 0-24 -0.01 0.03 (-0.07, 0.06) 2.96 1.35

Age 45-65 -3.60 0.09 (-3.77,-3.42) -1.42 1.28

Age 65+ 0.72 0.02 ( 0.68, 0.75) 1.80 1.05

σ 0.17 0.00 ( 0.17, 0.18) 2.36 0.02

a Heteroskedastic-consistent standard errors, see White (1982).

we use the mixture approach to estimate the censored regression parameters, where we

opt for a Bayesian approach. For ρ we take the informative prior (2.25) with ω2 = 1/4.

For β we use a normal prior with mean 0 and standard deviation 0.5 and for σ2 we use

an Inverted Gamma-2 prior with parameters 12.5 and 50. These priors help to obtain

a smoother convergence of the MCMC sampler. Posterior results turn out not to be

sensitive to moderate changes of this prior specification.

We use a total of 120, 000 draws, which took about six hours on an Pentium 4, 2.8

Ghz processor. The first 20, 000 draws were used as burn-in period. Furthermore, we

only used every 20th draw to obtain a random sample of 5, 000 draws. Our code is tested

using the approach of Geweke (2004).

Table 2.4 displays the estimation results for both approaches. It is clear from the table

that the posterior standard deviations of the mixture approach are much smaller than

the standard errors of the ML estimator, where the unknown household characteristics

are replaced by their sample averages at the zip-code level. Although the number of

observations is very large, the estimated standard errors of the simple approach are still
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Table 2.5: Posterior means of the correlations between unobserved vari-

ables with posterior standard deviations in parentheses

Church Not-

active

Single Family

no kids

Income Age

Church 1
(-)

Not-active 0.19 1
(0.10) (-)

Single -0.34 -0.14 1
(0.10) (0.14) (-)

Family -0.72 0.19 0.50 1
no kids (0.09) (0.08) (-) (-)

Income 0.06 -0.54 0.33 -0.27 1
(0.09) (0.16) (0.10) (0.10) (-)

Age 0.33 0.27 0.29 -0.19 -0.17 1
(0.10) (0.06) (0.08) (0.06) (0.06) (-)

substantial. This illustrates the huge efficiency gain of using our method. This efficiency

gain enables us to identify more significant influences from household characteristics.

When using the simple approach, only Family no kids and Age 0-24 are identified as

having a significant impact on the donating behavior. But, using our mixture approach

it becomes clear that many other household characteristics also influence this decision.

Being Religious has a positive effect, while not being active in the labor force has a

negative effect. Both single households and families without children tend to donate

more. Household with higher income tend to donate more, while the effect of age is

nonlinear. The highest posterior density [HPD] interval shows that urbanization grade

has no influence on donating behavior.

There are two differences in the results of the two methods. First, both find that

families without children donate more than families with children, however, the ML results

suggest that single households donate about the same as families with children while the

mixture approach suggest that their donating behavior is more comparable to families

without children. The second difference concerns the effect of age. The main difference

is the level of the reference category, as all parameters have a higher value in the ML

estimates. Moreover, according to the ML results individuals younger than 25 are the
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most lucrative group, while the mixture approach suggests that this group consists of

individuals over 65.

Table 2.5 displays the estimated correlation matrix of X∗
i . The diagonal elements are

fixed for identification. The correlation between the variables Single and Family no kids

is fixed at 1/2, because they belong to the same unordered categorical variable. Many

of the posterior means of the correlations are more than two times larger than their

posterior standard deviation, illustrating the importance of our approach. In general, the

correlations have the expected sign. For example, there is a negative correlation between

being not active in the labor force and income, and a positive correlation between being

religious and age.

2.6 Conclusions

In this chapter we have developed a new approach to estimate the effects of explanatory

variables on individual response where the response variable is observed at the individual

level but the explanatory variables are only observed at some aggregated level. This

approach can, for example, be used if information about individual characteristics is

only available at the zip-code level. To solve the limited data availability, we extend

the model describing individual responses with a latent variable model to describe the

missing individual explanatory variables. The latent variable model is of the probit type

and matches the sample information of the explanatory variables at the aggregated level.

Parameter estimates for the effects of the explanatory variables in the individual response

model can be obtained using maximum likelihood or a Bayesian approach.

A simulation study shows that our new approach clearly outperforms a standard ap-

proach in efficiency. The efficiency loss which is due to aggregation is about 50% smaller

than for the standard method. We illustrated the merits of our approach by estimat-

ing the effects of the household characteristics on donating behavior to a Dutch charity.

For this application we used data of donating behavior at the household level, while the

covariates were only observed at the zip-code level.

There are several areas for future research. It may be interesting to investigate whether

the proposed method can be used to deal with nonresponse in survey data. Another topic

for future research is to consider the complement case where explanatory variables are

observed at the individual level but that the response variable is only observed at some

aggregated level.
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2.A Derivation of full conditional distributions

In this appendix we provide the simulation schemes for missing ordered categorical vari-

ables and unordered categorical variables. As starting point we take the general form of

the full conditional density of x∗i,j given in (2.22).

2.A.1 Ordered categorical variable

For an ordered categorical variable with r categories, we have to sample the variable x
(2)∗
i,j .

If we assume that r is the reference category, the x
(2)∗
i,j variable determines the r − 1 0/1

dummy variables x
(2)
i,1 , . . . , x

(2)
i,r−1. Let P

(2)
i = (p

(2)
i,1 , . . . , p

(2)
i,r )′ denote the observed marginal

probabilities that the individual belongs to the r categories. The threshold levels qi,t are

set equal to Φ−1(
∑t

l=1 p
(2)
i,l ) for i = 1, . . . , N and t = 1, . . . , r−1. Let µ̄i,j denote the mean

of x
(2)∗
i,j |X∗

i,−j, ρ in the latent model and let s̄2
j denote the variance of x

(2)∗
i,j |X∗

i,−j, ρ, where

X∗
i,−j denotes X∗

i without x
(2)∗
i,j .

Sampling of x
(2)∗
i,j proceeds in the same way as for the binary variables except for the

fact that there are now r possible values for f(yi|Xi; β, θ) instead of only 2, that is,

ci,j,1 = f(yi|Xi,−j(X
∗
i,−j), x

(2)
i,1 = 1, x

(2)
i,2 = 0, . . . , x

(2)
i,r−1 = 0; β, θ)

...

ci,j,r−1 = f(yi|Xi,−j(X
∗
i,−j), x

(2)
i,1 = 0, . . . , x

(2)
i,r−2 = 0, x

(2)
i,r−1 = 1; β, θ)

ci,j,r = f(yi|Xi,−j(X
∗
i,−j), x

(2)
i,1 = 0, . . . , x

(2)
i,r−1 = 0; β, θ),

where Xi,−j denotes Xi without x
(2)
i,1 , . . . , x

(2)
i,r−1.

First we draw x
(2)
i,1 , . . . , x

(2)
i,r−1 using the fact that they are mutually exclusive and

Pr[x
(2)
i,t = 1, x

(2)
i,−t = 0|yi, Pi, Xi,−j(X

∗
i,−j), β, θ, ρ] =

ci,j,t(p̄i,t − p̄i,t−1)∑r
l=1 ci,j,l(p̄i,l − p̄i,l−1)

(2.27)

for t = 1, . . . , r − 1, where p̄i,t = Φ
(

qi,t−µ̄i,j

s̄j

)
with p̄i,0 = 0 and p̄i,r = 1, and where x

(2)
i,−t

denotes x
(2)
i,1 , . . . , x

(2)
i,r−1 without x

(2)
i,t .

Next, we sample x
(2)∗
i,j |x(2)

i,1 , . . . , x
(2)
i,r−1 from a truncated normal distribution with mean

µ̄i,j and variance s̄2
j . If x

(2)
i,t = 1 we sample x

(2)∗
i,j between qi,t−1 and qi,t for t = 1, . . . , r− 1,

where qi,0 = −∞. If x
(2)
i,1 = . . . = x

(2)
i,r−1 = 0, we sample x

(2)∗
i,j larger than qi,r−1. We again

use the acceptance sampling algorithm of Geweke (2005, pp. 113).
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2.A.2 Unordered categorical variable

For an unordered categorical variable with r categories, we add r − 1 0/1 dummies in

X
(3)
i , say, x

(3)
i,1 , . . . , x

(3)
i,r−1. The r − 1 normally distributed random variables which belong

to this unordered categorical variable are denoted by (x
(3)∗
i,1 , . . . , x

(3)∗
i,r−1)

′.

Suppose that we want to sample x
(3)∗
i,j from its full conditional posterior distribu-

tion. The full conditional posterior density is given by (2.22). The second part is

given by f(x
(3)∗
i,j |X∗

i,−j, Pi; ρ), where X∗
i,−j denotes X∗

i without x
(3)∗
i,j . This is a normal

density with known mean, say µ̄i,j, and variance, say s̄2
j . The first part is given by

f(yi|xi,j, Xi,−j(X
∗
i,−j); β, θ). This can only take two values, conditional on X∗

i,−j. Define

x
(3)∗
i,l = max(x

(3)∗
i,1 , . . . , x

(3)∗
i,j−1, x

(3)∗
i,j+1, . . . , x

(3)∗
i,r−1). The two possible values are given by

ci,j,0 = f(yi|x(3)
i,1 = 0, . . . , x

(3)
i,l−1 = 0, x

(3)
i,l = 1, x

(3)
i,l+1 = 0, . . . x

(3)
i,r−1 = 0, Xi,−j(X

∗
i,−j); β, θ)×

I[x
(3)∗
i,l > 0] + f(yi|xi,1 = 0, . . . , xi,r−1 = 0, Xi,−j(X

∗
i,−j); β, θ)I[x

(3)∗
i,l ≤ 0]

ci,j,1 = f(yi|x(3)
i,1 = 0, . . . , x

(3)
i,j−1 = 0, x

(3)
i,j = 1, x

(3)
i,j+1 = 0, . . . x

(3)
i,r−1 = 0, Xi,−j(X

∗
i,−j); β, θ),

where Xi,−j denotes Xi without x
(3)
i,1 , . . . , x

(3)
i,r−1.

In the cases of a binary or ordered categorical variable the distribution of x∗i,j|Xi

is a univariate truncated normal. However, for an unordered variable this is not the

case anymore, as its distribution also depends on the value of x
(3)∗
i,l . The sampling of

x
(3)∗
i,1 , . . . , x

(3)∗
i,r−1 given x

(3)
i,1 , . . . , x

(3)
i,r−1 becomes non-standard. Therefore, it is more efficient

to use the inverse CDF method to draw from x
(3)∗
i,j and x

(3)
i,j simultaneously.

The full conditional posterior density of x
(3)∗
i,j is given by

di,j(ci,j,0φ(x
(3)∗
i,j ; µ̄i,j, s̄j)I[x

(3)∗
i,j ≤ max(x

(3)∗
i,l , 0)]+

ki,j,1φ(x
(3)∗
i,j ; µ̄i,j, s̄j)I[x

(3)∗
i,j > max(x

(3)∗
i,l , 0)]), (2.28)

where the integrating constant di,j equals

di,j =

(
(ci,j,0 − ci,j,1)Φ

(
max(x

(3)∗
i,l , 0)− µ̄i,j

s̄j

)
+ ci,j,1

)−1

. (2.29)

Straightforward derivation leads to the following inverse CDF

x
(3)∗
i,j (u) =





Φ−1
(

u
di,jci,j,0

)
s̄j + µ̄i,j if u ≤ ū

Φ−1

(
u

di,jci,j,1
+

ci,j,1−ci,j,0

ci,j,1
Φ

(
max(x

(3)∗
i,l ,0)−µ̄i,j

s̄j

))
s̄j + µ̄i,j if u > ū,

(2.30)

where ū = di,jci,j,0Φ

(
max(x

(3)∗
i,l ,0)−µ̄i,j

s̄j

)
.





Chapter 3

A Rank-Ordered Logit Model with

Unobserved Heterogeneity in

Ranking Capabilities

3.1 Introduction

To determine preferences of individuals, researchers often rely on surveys. In the tradi-

tional setup, a survey is created in which each respondent is only asked to select the most

preferred option out of a set of presented alternatives. To estimate the preferences based

on such a survey one can use a standard discrete choice model, like the multinomial logit

[MNL] model. It is well known that more information can be obtained from a respondent

if (s)he is asked to give a complete ranking of all presented alternatives. The rank-ordered

logit [ROL] model has become the standard tool to analyze the preferences in case rank

data is available.

The ROL model was introduced in the literature by Beggs et al. (1981). The model

can be used to analyze the preferences of individuals over a set of alternatives, where

the preferences are partially observed through surveys or conjoint studies. Empirical

applications describing preferences using the ROL model can be found in many fields

such as voter preferences (Koop and Poirier, 1994), aging studies (Hsieh, 2005), marketing

(Ahn et al., 2006; Dagsvik and Liu, 2006), empirical labor economics (Van Beek et al.,

1997), school choice (Mark et al., 2004; Drewes and Micheal, 2006), demand for classical

music (Van Ophem et al., 1999) and transportation studies (Kockelman et al., 2008; Calfee

et al., 2001).
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In theory, when individuals are asked to rank the alternatives instead of only choosing

the most preferred option, the parameters of the choice model and hence the preferences

can be estimated more efficiently. However, in practice respondents may be unable to

perform (part of) the ranking task. This may be due to several reasons. First of all,

respondents may actually not be able to perform the task itself. In some cases there may

be too many alternatives to rank. Secondly, the respondent may not be able to distinguish

between his/her less-preferred alternatives. In any case, straightforwardly using reported

rankings may lead to a substantial bias in the parameter estimates in the ROL model, as

Chapman and Staelin (1982) have argued, and Hausman and Ruud (1987) have shown in

practice. To solve this issue, Chapman and Staelin (1982) suggest to only use the first few

ranks in the estimation. They consider several rules to determine the appropriate number

of ranks to use, in their words “the explosion depth”. One of these rules is based on a

pooling test for the equality of parameter estimates based on different ranks. Hausman

and Ruud (1987) provide a detailed analysis of the ROL model and some specification

tests. Ultimately, they still only use the first few ranks in the estimation, and provide an

alternative method to test for the number of ranks to use in the estimation. Note that in

both approaches this number is assumed to be the same for all respondents. If ranking

capabilities differ across individuals, this may lead to an efficiency loss.

Hausman and Ruud (1987) also consider a model where each rank in the estimation

receives a weight. This makes it possible that the most preferred rank contain more infor-

mation than lower ranks. These weights are estimated alongside the model parameters.

But again, these weights are the same for each individual, and, moreover, if some respon-

dents enter the lower ranks in a random way, estimates using this method will still be

biased.

To solve the ranking inability issue one may considering extending the choice model

with a consideration set stage, see, for example, Chiang et al. (1999) and Bronnenberg

and Vanhonacker (1996). The idea behind this approach is that a choice decision involves

two steps. In the consideration stage the individual first limits the number of choice al-

ternatives by deleting alternatives he or she does not consider. In the second stage the

individual chooses from (or in our case ranks) the alternatives considered. This approach

however does not solve the ranking inability issue. Introduction of a consideration stage

implies that one assumes that individuals cannot rank alternatives outside the considera-

tion set which may not be true. Furthermore, in surveys individuals are usually forced to
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consider all alternatives presented to them. Hence, the consideration set approach does

not seem to be appropriate.

In this chapter we propose a model in which we use all observed rankings while taking

into account the fact that the rankings may not completely reflect the true preferences.

To this end we introduce a ROL model which uses latent segments to endogenously

identify the unobserved ranking capabilities of respondents. Each segment corresponds to

a particular assumption on the unobserved ranking capability. Hence, in contrast to the

existing literature, we allow for individual-specific ranking capabilities. We show that in

case at least some individuals are able to rank, our model results in a clear efficiency gain

relative to a standard MNL model. At the same time it does not suffer from biases due

to ranking inabilities of some of the individuals. We refer to our model as the latent-class

rank-ordered logit [LCROL] model.

Apart from the efficiency gain, the new model also allows us to learn about the un-

observed ranking capabilities of respondents. On itself, this information can also be very

valuable. For example, one can use this information to construct more efficient ranking

tasks in surveys and for deciding the number of respondents necessary to reach a preferred

precision. To investigate the presence of respondents with a particular type of ranking

capability, we propose to use a likelihood ratio test. We can, for example, test whether

some individuals are able to rank all alternatives. Furthermore, the statistical test can be

helpful to remove redundant segments from our model, which may lead to efficiency loss

if present.

This study is not the first attempt to make maximal use of the information content

on preferences from individual ranked ordered data. Van Ophem et al. (1999) designed

a multichoice logit [MCL] model to use more information, and hence to be more efficient

than the MNL model, while avoiding the bias that a ROL model can have due to ranking

inability of some respondents. In their setup, respondents need to sequentially divide the

items into three preference groups where an item in a higher group is always preferred to an

item in a lower group. Finally, the items in the top-ranked group were completely ranked

according to preferences. The final ranking can be seen as an extreme case of dividing the

items across groups, where each group just contains one item. The MCL model describes

the preference ordering of these groups. By not considering the preferences within all

groups, they hope to avoid biases. However, it is still assumed that ranking capabilities

are the same across individuals.
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Our solution to deal with differences in ranking capabilities also bears some similarities

with the misreporting literature. If an individual is not able to rank properly, his/her

answer may not be according to his/her preferences. In other words in this case there

may be misreporting, or a classification error. In a non-linear model, measurement errors

in the dependent variables in general result in biased estimates, see Hausman (2001) for

an overview. Many studies have considered specifications to account for different kinds of

misclassification, see, for example, Chua and Fuller (1987), Poterba and Summers (1995),

Hausman et al. (1998), and Abrevaya and Hausman (1999). In our model we account for

a more general form of misclassifications, some ranks are correct whereas other ranks are

“misclassified”.

The remainder of this chapter is set up as follows. In Section 3.2 we introduce the

LCROL model which incorporates the unobserved ranking capabilities of individuals.

To illustrate the merits of our model specification we perform a simulation study in

Section 3.3. For the case that not all respondents are able to provide a full ranking,

simulations show an estimation bias in the standard ROL model. For the general case

that some individuals are not able to give a complete ranking and some individuals are able

to give a partial ranking, estimates resulting from our LCROL model show no bias and

are more efficient than MNL estimates. Section 3.4 provides an application of the LCROL

model. We apply the model to data obtained from a small survey among 91 students,

who are asked to rank six different platforms for computer games. The estimation results

show that the LCROL is a useful tool for analyzing preference data. The parameter

estimates from the LCROL model have the smallest standard errors, even in this small

sample situation. Furthermore, the resulting segmentation of the students is plausible.

Finally, in Section 3.5 we conclude and give topics for further research.

3.2 Model specification

In this section we develop our approach to capture unobserved heterogeneity in the ranking

ability of respondents. In Section 3.2.1 we start the discussion with the standard rank-

ordered logit model and in the following sections we will extend this model. Throughout

this chapter, we consider the simple case that each respondent is confronted with a fixed

set of alternatives. The respondent either chooses the most preferred item from this set or

is asked to provide a complete preference ordering. Of course more complicated surveys
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are also possible, for example, in a conjoint setting, see Van Ophem et al. (1999). However,

in order to focus the discussion we keep the setup of the survey simple.

3.2.1 Rank-ordered logit model

Suppose that we want to learn the (determinants of) preferences of individuals over a

discrete set of items. Classic examples of this problem include preferences over different

modes of transportation or different brands in a product category. Preferences can be

recovered from historical data but if some items are not available yet, a survey is usually

the only option.

Denote the number of alternatives by J . The utilities for individual i are given by a set

of variables Ui,1, . . . , Ui,J , where i = 1, . . . , N indexes individuals and j = 1, . . . , J indexes

the items. In the traditional setup, respondents are asked to choose their most preferred

option out of the complete set of J alternatives. Let yi,j = 1 denote that respondent i

prefers alternative j most. The information yi,j = 1 implies that for this respondent the

utility of alternative j is larger than all other alternatives, that is,

Ui,j ≥ max{Ui,1, . . . , Ui,J}. (3.1)

It is generally assumed that the respondent actually knows all Ui,j, j = 1, . . . , J , so from

the respondents point of view a deterministic decision is made.1 The econometrician does

not observe Ui,j, we therefore have to make a (stochastic) model for the utilities. From the

point of view of the econometrician the respondent then makes a probabilistic decision.

We use the random utility framework, see Manski (1977), to represent the preferences of

individuals. The random utilities for individual i are defined as

Ui,j = Vi,j + εi,j, (3.2)

The utilities consist of two parts: Vi,j is the location component of the utility, determined

by observed individual characteristics and εi,j is the random component of the utility of

alternative j for individual i. In general the deterministic part of the utility is modeled

as

Vi,j = x′iβj, (3.3)

1One can relax this assumption by assuming that the individual only knows that the utility of the
chosen alternative is at least as large as the utility of the other alternatives. This relaxation is with-
out consequences for our econometric models. For simplicity of discussion we however maintain the
assumption that the respondents know the utility levels.
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where xi is an m-dimensional vector with characteristics of individual i and βj is an

m-dimensional parameter vector specific to alternative j.

The probability of observing individual i choosing for alternative j now depends on

the distribution of εi,j. If we assume that the population distribution of εi,j is an type-I

extreme value distribution and that the εi,j’s are independent of each other, we have the

setup of a multinomial logit [MNL] model, see McFadden (1973, 1974). This leads to the

well-known expression for the probability that item j is most preferred by individual i

Pr[yi,j = 1; β] = Pr[Ui,j ≥ max{Ui,1, . . . , Ui,J}]
=

exp(Vi,j)∑J
l=1 exp(Vi,l)

, (3.4)

where β = {β1, . . . , βJ} and βJ is put equal to zero for identification.

The information on the most preferred item is enough to be able to estimate the

model parameters. However, as discussed before, more information per respondent can be

obtained if we ask for a ranking of alternatives and this will in general result in an efficiency

gain. We will denote the response of respondent i by the vector yi = (yi,1, . . . , yi,J)′, where

yi,j now denotes the rank that individual i gives to item j. For example, if yi,j = 2 this

means that the respondent considers alternative j the second most preferred option. For

notational convenience we will also use the equivalent notation ri = (ri,1, . . . , ri,J)′, where

ri,j denotes the item number that received rank j by individual i. The relation between

ri and yi is given by

yi,k = j ⇐⇒ ri,j = k (3.5)

for j, k = 1, . . . , J .

An observed ranking for a respondent implies a complete ordering of the underlying

utilities. An individual will prefer an item with a higher utility over an item with a lower

utility. As it is assumed that the individual knows all utility values, the respondent can

easily provide a full ranking. From his/her point of view the ranking is deterministic. If

we observe a full ranking ri, we know that

Ui,ri,1
> Ui,ri,2

> . . . > Ui,ri,J
. (3.6)

It is obvious that (3.6) provides more information compared to (3.1). Under the utility

assumption in (3.2) and the assumption of the extreme value distribution, we obtain the

rank-ordered logit [ROL] model, see Beggs et al. (1981) and Chapman and Staelin (1982).
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To the econometrician the probability of observing a particular ranking ri equals

Pr[ri; β] = Pr[Ui,ri,1
> Ui,ri,2

> . . . > Ui,ri,J
]

=
J−1∏
j=1

exp(Vi,ri,j
)∑J

l=j exp(Vi,ri,l
)
. (3.7)

The ROL model can be seen as a series of MNL models: an MNL for the most preferred

item; another MNL for the second-ranked item to be preferred over all items except the

one with rank 1, and so on. Finally, the probability of a complete ranking is made up

of the product of these separate MNL probabilities. The product contains only J − 1

probabilities, because ranking the least preferred item is done with probability 1. Note

that this result holds due to the IIA property of the MNL model, see Beggs et al. (1981)

for a derivation. Furthermore, we do not have to assume that the respondent actually

makes the decisions in this order. As discussed above, the respondent knows all utility

values. Equation (3.7) only implies that we can look at the ranking as if consecutive

choices are made.

3.2.2 Ranking ability

In the standard ROL model we implicitly assume that respondents are able to rank each

item according to the random utility model. However, it has already been noted by

Chapman and Staelin (1982) that for the less preferred items, this assumption does not

always hold. One of the possible reasons for this is that the respondent perhaps has no

experience with some of the items, and hence is not able to indicate the proper ranking

order. It is also possible that respondents tend to find the least preferred items less

important and rank those randomly. In practice this means that the observed rank order

of the least preferred items may not be according to the model.

It is important to exactly identify the utility information that the respondent has in

this case. Before we assumed that the respondent knows all utility values. Obviously,

we can no longer maintain this assumption. Suppose that the respondent is only able to

rank the top-k items. In utility terms this can be seen as that the respondent knows the

utilities of these k items and (s)he knows that the utility of the other items is below the

minimum of the utilities of the top-k items. In other words the respondent now also has

only partial information on the utilities.

If the least preferred items are not ranked according to the underlying utility model,

the use of those ranks in the estimation will bias the parameter estimates towards zero,
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see Chapman and Staelin (1982, p. 292). Indeed, Hausman and Ruud (1987, p. 89) notice

in an application on mobile phones that including more ranks in the estimation procedure

leads to a decline in the absolute magnitude of the parameters.

The common solution to this problem is rather simple. If the ranks beyond k are

biased, then do not use these lower rankings in the estimation procedure. This can be

done very easily by letting the product in (3.7) only go up to k instead of J − 1. The

probability of observing a particular ranking by individual i if (s)he only ranks the k

most preferred items according to utility values and ranks the remaining items (J − k)

randomly is given by

Pr[yi|k; β] = Pr[Ui,ri,1
> Ui,ri,2

> . . . > Ui,ri,k
> max{Ui,ri,k+1

, . . . , Ui,ri,J
}]

=
k∏

j=1

exp(Vi,ri,j
)∑J

l=j exp(Vi,ri,l
)

1

(J − k)!
, (3.8)

where we condition on the ranking capabilities k, that is, being able to rank the k most

preferred items correctly. The second term in (3.8), 1/(J − k)!, is usually not present

in studies. The reason for this is that one usually considers the probability of observing

only the first k rankings, that is, Pr[ri,1, ri,2, . . . , ri,k|k; β] instead of considering the full

ranking yi. For reasons that will become clear below, we also have to take into account

the probability of observing a particular ranking of the least preferred items. We assume

that the least preferred J − k items are ordered randomly, therefore all (J − k)! possible

orderings are equally likely. Hence, the last term in (3.8) contains the probability of

observing one particular ordering of the last J − k items.

The assumption that the last J−k ranks are given randomly follows from the assump-

tion that individuals are unable to determine their preference over these items. More

formally, a respondent may not know the relative values of Ui,ri,k+1
, . . . , Ui,ri,J

. Therefore,

the individual does not have the information to make an ordering of the items. The

ordering provided by the individual may therefore not reflect the underlying ordering of

the utilities. Thus, if a respondent does not know if (s)he prefers one item over another,

the provided ranking must be random. If it is not random, the respondent does have a

preference for one of the items, and hence is capable to provide this ranking. Note that

we do not assume that an individual knows nothing about Ui,ri,k+1
, . . . , Ui,ri,J

. We assume

that (s)he does know that the maximum of these is smaller than Ui,ri,k
.

If one assumes k to be the same for the whole sample, the last term in (3.8) can be

ignored in the estimation as it becomes a constant in the log likelihood, see Chapman



3.2 Model specification 39

and Staelin (1982) and Hausman and Ruud (1987). These two papers propose estimating

different ROL models, each using a different number of ranks, that is, a different value for

k. The papers propose different methods of choosing a model from the resulting set. One

can, for example, use a Hausman (1978) test to test for differences in the β parameter

for different values of k. The tradeoff here is that using more ranks gives more efficient

parameter estimates, but may introduce a bias in the results.

In the present chapter we relax the assumption that k is equal for all individuals.

In the next subsection we will allow k to vary over the individuals using a latent-class

approach.

3.2.3 Latent-class rank-ordered logit model

In the applications of the ROL model in the literature one either assumes that k is known

a-priori, where k = J is also possible, or one determines k by comparing the results for

several values of k. The underlying assumption here is that there is no heterogeneity

in the population concerning the capability to order the alternatives. In this section we

will introduce such heterogeneity. Hence, determining the value of k becomes part of the

model.

The introduction of heterogeneity of ranking abilities solves many practical issues.

Firstly, one usually does not know beforehand how many ranks should be used for es-

timating a ROL model to balance the efficiency against a possible bias. Secondly, by

allowing for the heterogeneity we make efficient use of the available data. For example,

assume that 10% of the respondents can only give the most preferred item, and give a

random ordering for the other items, and the rest (90%) is able to provide a complete

ordering. In the standard model we would then be forced to only consider the first rank

in the estimation for all individuals to avoid a bias in the estimated parameters. The

additional information available in the responses of the 90% will not be used to make

the estimates more efficient. Using the additional information is only possible, when

heterogeneity in the ranking ability is incorporated in the model.

To allow for such heterogeneity, we divide our individuals into J latent classes, see,

for example, Wedel and Kamakura (2000). For class k = 0, 1, . . . , J − 1 we impose that

the individual can rank k most preferred items, more formally that they are based on the

underlying utilities. The individual ranks the remaining (J − k) items randomly. The
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probability of observing a particular ranking for individual i, now becomes

Pr[yi; β, π] =
J−1∑

k=0

πk Pr[yi|k; β], (3.9)

where πk is the probability that individual i belongs to segment k with 0 ≤ πk ≤ 1 and∑J−1
k=0 πk = 1, and where the probability of observing ranking yi when only the k most

preferred items are ranked according to the random utility model Pr[yi|k; β] is given in

(3.8). Equation (3.9) explains the reason for including the second term in (3.8). In order

to be able to compare the segments, they must all contain the probability of observing

the full ranking, not just the probability of observing the k most-preferred ranks.

The resulting model is a finite mixture model, see, for example, Titterington et al.

(1985) and Everitt and Hand (1981). To estimate the model parameters β and the mixing

proportions π = (π0, . . . , πJ−1) we rely on Maximum Likelihood. The likelihood function

is given by,

l(β, π) =
N∏

i=1

Pr[yi; β, π]

=
N∏

i=1

J−1∑

k=0

πk Pr[yi|k; β]

=
N∏

i=1

J−1∑

k=0

πk

(J − k)!

[
k∏

l=1

exp(x′iβri,l
)∑J

m=l exp(x′iβri,m
)

]
.

(3.10)

The log likelihood is given by

L(β, π) =
N∑

i=1

log

{
J−1∑

k=0

πk exp

[
− log ((J − k)!) +

k∑

l=1

(
x′iβri,l

− log

(
J∑

m=l

exp(x′iβri,m
)

))]}
, (3.11)

where we have rewritten the product of probabilities as the exponent of a sum for nu-

merical stability. The likelihood function can be maximized using numerical optimization

algorithms. In our simulations and in the empirical section, we use a constrained opti-

mization procedure to enforce the restrictions on the π parameters. Standard errors for

the parameters can straightforwardly be obtained using the second-order derivative of the

log likelihood.
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Testing for empty classes

The total number of potential latent classes is equal to the number of items. If some

of these classes are not present in the data, this may lead to an efficiency loss in the

estimation of the β parameters. Therefore it is useful to test whether some of the classes

can be removed from the model. It is especially interesting to test is whether π0 = 0, that

is whether each individual can at least provide his/her most preferred item. If this is not

the case, even the standard MNL model will provide parameter estimates that are biased

towards zero, see Section 3.4 for an illustration.

To test for the redundancy of a segment, we propose to use a standard likelihood ratio

[LR] test. Because the β parameters are the same in each latent class, we do not suffer

from the Davies (1977) problem, which is usually the case when testing for the number

of latent classes. To test for the restriction of the absence of class j we consider the

hypothesis πj = 0. As the alternative is πj > 0, we have a test for a parameter on the

boundary of the parameter space. The asymptotic distribution of the LR test statistic is

then a mixture of χ2 distributions, for the case of testing one parameter the appropriate

distribution is 1
2
χ2

0 + 1
2
χ2

1, see Wolak (1989a,b). Hence, if we want to test at a 5% level

of significance we have to use the 90% percentile of a χ2
1 distribution, which is equal to

2.705. In case we want to perform a joint test for the absence of two or more segments, the

asymptotic distribution will be a weighted average of χ2 distributions where the weights

follow from the covariance matrix of the estimated π parameters, see Wolak (1989a,b) for

details.

3.2.4 Extension

So far we have assumed that respondents are only able to rank the first few items correctly.

However, it may be possible that in some particular applications respondents are also able

to indicate which alternatives they least prefer2. For example, it could be that they have

tried something and were dissatisfied with it. This allows us to take advantage of the

information in the lowest ranks. The efficiency in the parameter estimates will then

increase even more relative to a standard MNL model.

In this case we denote the latent segments by two indices (k, l), where k denotes

the number of most preferred items and l the number of least preferred ranks that can

be ranked correctly. The case l = 0 corresponds to the previous discussion. We focus

2Note that this situation cannot be captured in a consideration set model.
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the discussion below on the situation l = 1, where the lowest ranked alternative is also

consistent with the utility model. We exclude the combinations (J − 2, 1) and (J − 1, 1).

These cases actually correspond to an individual who is able to rank all alternatives.

These individuals are classified in segment (J − 1, 0). Hence, we have to add J − 2

additional latent classes to the model, with l = 1 and k ranging from 0 to J − 3. The

rank probabilities in the new segments (k, 1) are given by

Pr[yi|(k, 1); β] = Pr[yi|k; β] Pr[Ui,ri,J
≤ Ui,ri,m

∀m > k; β](J − k) (3.12)

for k = 0, . . . , J − 3. The probability that alternative ri,J is preferred least in the set of

items (k +1, k +2, . . . , J), Pr[Ui,ri,J
≤ Ui,ri,m

∀m > k; β], is derived in Appendix 3.A. Due

to the IIA property of the logit specification this probability can be seen as independent

of the k top ranked alternatives. The factor (J−k) is added in (3.12) because the number

of possible random combinations of the (J − k) least preferred items is reduced by the

factor (J − k) as we now know the least preferred item.

A similar exercise can be performed for l > 1. The number of classes will increases

quickly, and one has to consider the tradeoff between the number of new latent classes

and the potential efficiency gain.

3.3 Monte Carlo simulation

To illustrate the merits of our latent-class rank-ordered logit [LCROL] model, we perform

a small simulation study. In this simulation we assume the presence of four alternatives

(J = 4). To facilitate matters, we assume that respondents are able to rank the most

preferred items in a correct way and have problems ranking the remaining items. However,

we do allow for all four potential latent segments, where in each segment the individuals

are able to rank 0, 1, 2 or all most-preferred items correctly.

In the data generating process we put the probability of the first segment (ranking 0

items correctly) to 0 for two reasons. First, this restriction implies that the parameters of

a multinomial logit [MNL] model can be estimated consistently, which allows us to make

a fair comparison with our latent-segment model. The second reason is that it allows us

to analyze the size of our proposed LR test for the redundancy of this segment. The size

of the other segments are π1 = π2 = 0.30 and π3 = 0.40.

The latent utilities are generated according to Ui,j = β0,j + xi,1β1,j + xi,2β2,j + εi,j,

for j = 1, . . . , 4 and i = 1, . . . , N . The variable xi,1 is generated from a standard normal
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distribution, xi,2 is a 0/1 dummy variable with probability 0.5 of being 1. The fourth

category is considered to be a base category and hence βm,4 = 0 for m = 0, 1, 2. The

disturbances εi,j are independently drawn from a type-I extreme value distribution. The

values of the β parameters are displayed in the second column of Table 3.1.

In each replication of the simulation experiment we simulate utilities for N = 1, 000

individuals who provide their ranking of the four alternatives. The 1,000 individuals are

divided in one of the three segments according to the mixing proportions. The ranking

of each individual is adjusted according to the imposed abilities in each segment, that

is, a random ranking is imposed if individuals are assumed not being able to rank. For

example, if an individual belongs to segment 2, we keep the preference order of the first

two most preferred items but replace the preference order of the final two items by a

random order.

We estimate four different models, that is, a standard MNL model, a rank-ordered

logit [ROL] model, a LCROL model with 4 segments (including segment 0) and a LCROL

model with 3 segments (without segment 0). Table 3.1 provides the means and the root

mean squared errors [RMSE] of the parameter estimates over 10,000 replications.

The third column of Table 3.1 displays the results for the MNL model. The mean of

the parameters is almost the same as the DGP parameters and hence one can estimate

the β parameters in the utilities without a bias as expected. The fourth column shows

the results for the usual ROL model. Note that this model is misspecified as about 60%

of the individuals are not able to rank all four alternatives properly. This results in a

clear bias towards zero in almost all of the β parameters, ranging from 4% to about 56%,

which is clearly substantial. This confirms the findings of Chapman and Staelin (1982)

and Hausman and Ruud (1987).

The fifth and sixth column of Table 3.1 display the results for our LCROL model. If we

consider the case where we do not restrict π0 to be zero, we see that the difference between

the mean of the estimated parameters and the true parameters is at most 0.04. The RMSE

of the estimator is however smaller than for the estimator of the same parameters in the

MNL model. If we impose that π0 = 0 the results even improve more. The mean of the

estimated parameters and the true parameters differs at most 0.01. The RMSE of the

estimator is even smaller.

The simulation results clearly show the advantage of our approach. With our LCROL

model we use as much information as possible, while still obtaining unbiased results. An

efficiency gain can be obtained if we remove redundant segments from our LCROL model.
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Table 3.1: Mean and RMSE of the distribution of

the parameters for N=1000 based on 10,000 Monte

Carlo replications

Parameter True MNLa ROLb LCROLc LCROLd

β0,1 1.00 1.00 0.80 1.03 1.00
(0.14) (0.22) (0.12) (0.11)

β1,1 0.75 0.76 0.54 0.78 0.76
(0.12) (0.22) (0.11) (0.09)

β2,1 -0.30 -0.30 -0.32 -0.30 -0.30
(0.21) (0.12) (0.17) (0.16)

β0,2 0.25 0.25 0.24 0.26 0.25
(0.16) (0.08) (0.12) (0.12)

β1,2 -0.50 -0.50 -0.42 -0.51 -0.50
(0.12) (0.11) (0.10) (0.09)

β2,2 0.45 0.45 0.31 0.47 0.45
(0.21) (0.18) (0.17) (0.17)

β0,3 -0.25 -0.25 -0.11 -0.26 -0.25
(0.18) (0.17) (0.14) (0.13)

β1,3 1.00 1.01 0.62 1.04 1.00
(0.14) (0.39) (0.13) (0.11)

β2,3 0.80 0.80 0.50 0.83 0.80
(0.23) (0.32) (0.19) (0.18)

π0 0.00 - - 0.02 -
(0.04)

π1 0.30 1 - 0.29 0.30
(0.06) (0.06)

π2 0.30 - - 0.29 0.30
(0.10) (0.10)

π3 0.40 - 1 0.40 0.40
(0.09) (0.08)

a Standard multinomial logit model
b Rank-ordered logit model
c Latent-class rank-ordered logit model.
d Latent-class rank-ordered logit model with π0 = 0
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Table 3.2: Theoretical and empirical size of the

LR test for π0 = 0 (sample size is 1000)

Theoretical size Empirical size Critical value

1% 1.1% 5.41

5% 5.2% 2.71

10% 9.5% 1.64

20% 19.2% 0.71

To illustrate the applicability of the LR test for redundant segments, we compute in each

replication of the simulation exercise the LR test for p0 = 0 in the LCROL model. In

Table 3.2 we report the empirical size, based on the asymptotic critical values (quantiles

of the 1
2
χ2

0 + 1
2
χ2

1 distribution). It can be seen that the empirical size of the LR test is

close to the theoretical size. Also the mean (0.49) and the standard deviation (1.15) of

the test statistic are very close to the theoretical mean and standard deviation (0.5 and

1.12 respectively, see 3.B) of the asymptotic distribution of the LR test.

In sum, we can conclude that the LCROL model provides consistent estimates in

situations where not all individuals can fulfil a rank task properly. Furthermore, the

RMSE of the estimator of the LCROL is smaller than for the MNL model where we only

use the most preferred rank. An LR test for the absence of a segment is correctly sized,

and hence it can be used to determine which latent segments are present in the data.

3.4 Application

To illustrate the practical usefulness of our latent-class rank-ordered logit model, we

consider the results of a survey among 91 Dutch students. The students were asked

to consider buying a computer to play games either for the first time or to replace their

current platform. They had to rank 6 different platforms suitable to play computer games.

The 6 platforms are the X-box (360), the PlayStation (2 or 3), the Gamecube (or Wii), the

PlayStation Portable, the Gameboy (color/advance/DS/. . .) or just a regular PC. Note

that the survey did not distinguish between different generations of the same platform.

At the time of the survey, the Nintendo Wii and the Playstation 3 were not yet available.

In addition we know which of the 6 platforms the student owns at the moment (if any)

and the average number of hours that each student spends on gaming each week.



46 A Rank-Ordered Logit Model with Unobserved Heterogeneity

Model specification

First we estimate a multinomial logit [MNL] model for the most preferred platform. As ex-

planatory variables we include platform intercepts, time (hours gaming) and a 0/1 dummy

to indicate whether the student owns the platform, where 1 corresponds to ownership.

The base alternative is a personal computer. The second column of Table 3.3 displays the

parameter estimates. We notice that current platform ownership has a positive effect on

preference for purchasing the same platform again and that individuals who spend more

time gaming seem to prefer a personal computer over a real game computer. However,

this effect is not significant for any platform.

The third column of Table 3.3 displays the parameter estimates for a standard rank-

ordered logit [ROL] model. Hence, we implicitly assume that each student is capable of

performing the complete ordering task. The parameter values differ substantially from the

MNL estimates which suggests that this assumption is not valid. The Hausman (1978)

test statistic for equal parameters equals 34.3, which is significant at the 5% level of

significance.

The estimation results suggests that it seems necessary to include latent ordering

abilities in the model. We include 6 classes indicating that the individuals cannot rank

at all (segment 0), rank only the most preferred item (segment 1), the first 2, 3, 4 most

preferred items (segment 2, 3, and 4) and all items (segment 5) with corresponding mixing

proportions πk for k = 0, . . . , 5. The fourth column in Table 3.3 displays the parameter

estimates of the latent-class rank-ordered logit [LCROL] model. The parameters seem to

be different from the MNL estimates. This difference can be explained by the fact that

about 23% (π0) of the students are not able to rank the platforms at all. Indeed, the

likelihood ratio test for π0 = 0 equals 14.42 and hence this segment cannot be neglected.

As additional check we compute the LR statistic for the restriction π1 = 1 which leads to

the MNL model. The value of the statistic is 110.20 and hence this restriction is clearly

rejected. The ROL model is obtained when we impose the restriction π0 = π1 = π2 =

π3 = π4 = 0. Again, this restriction is clearly rejected.

The estimates of π2, π3 and π4 are relatively small. The LR statistic for the restriction

π2 = π3 = π4 = 0 equals 1.85 and hence we cannot reject the redundancy of these 3

segments. After imposing this restriction we obtain the model presented in the final

column of Table 3.3. Using these results we find that the median individual prefers the
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Table 3.3: Parameters estimates results for the MNL and ROL

models with standard errors in parenthesis.

Variable MNL ROL LCROLa LCROLb LCROLc

intercept
XBox 0.92 1.41 1.53 1.47 1.51

(0.49) (0.29) (0.51) (0.42) (0.53)

Playstation 0.58 0.93 1.11 1.05 1.04
(0.45) (0.27) (0.47) (0.40) (0.47)

Playstation portable -0.03 0.80 0.44 0.79 0.53
(0.59) (0.28) (0.52) (0.51) (0.56)

GameCube 0.49 -0.00 -3.50 -0.65 -2.18
(0.59) (0.30) (1.61) (0.55) (1.16)

GameBoy -1.47 0.08 -2.71 -0.51 -1.59
(0.99) (0.29) (1.41) (0.70) (0.99)

hours spent on gaming
XBox -0.10 -0.17 -0.14 -0.14 -0.14

(0.06) (0.05) (0.06) (0.06) (0.06)

Playstation -0.11 -0.13 -0.11 -0.11 -0.11
(0.07) (0.04) (0.06) (0.05) (0.06)

Playstation portable -0.10 -0.23 -0.36 -0.35 -0.40
(0.11) (0.05) (0.12) (0.12) (0.13)

GameCube -0.39 -0.18 -0.01 -0.22 -0.15
(0.24) (0.05) (0.15) (0.11) (0.16)

GameBoy -0.05 -0.23 -0.23 -0.33 -0.33
(0.18) (0.05) (0.15) (0.11) (0.15)

Platform ownership 1.78 0.97 1.72 1.45 1.71
(0.38) (0.19) (0.37) (0.29) (0.35)

π0 - - 0.23 - 0.21
(0.07) (0.07)

π1 1 - 0.20 0.34 0.27
(0.09) (0.11) (0.08)

π2 - - 0.07 0.01 -
(0.08) (0.09)

π3 - - 0.07 0.08 -
(0.09) (0.12)

π4 - - 0.00 0.00 -
(0.16) (0.62)

π5 - 1 0.43 0.57 0.52
LR statisticd 110.20 32.73 - 14.42 1.85
a Latent-class rank ordered logit model
b Latent-class rank ordered logit model with π0 = 0
c Latent-class rank ordered logit model with π2 = π3 = π4 = 0
d LR statistic to test against the LCROL model in fourth column.
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PC for playing games.3 The PC has a probability of 0.45 of being the most preferred

platform. The Xbox and the Playstation come second and third with 0.28 and 0.19,

respectively.

Students who spend more time playing games, have more preference for the personal

computer. Owning a platform has a positive effect on the preference for that platform.

This can be due to two effects. The first is because of reverse causality, a students owns

the platform, because he/she likes it. But since we consider multiple generations of the

same platform this can also be interpreted as a backwards compatibility effect. Someone

who owns a lot of PS2 games would rather have a PS3 than a Nintendo Wii, because the

PS3 can, for example, still play the PS2 games.

Interpretation of the segments

In the final model, the mixing proportions divide the students in three segments. About

52% of the students know enough about the different platforms to give a complete ranking.

The remaining 48% of the students can either not provide a clear ranking at all (21%),

or only know which of the platforms they prefer most (27%).

We expect that the first segment of students consists of heavy gamers, who spend a

lot of time on gaming. The other 2 segments contain students who game less. To segment

the individual students given their responses we can compute the conditional segment

membership probabilities defined by

π̂i,k =
πk Pr[yi|k; β]∑
l∈K πl Pr[yi|l; β]

, (3.13)

where π̂i,k is the conditional probability that individual i belongs in latent class k given the

observed ranking, πk are the estimated mixing proportions of the segments and Pr[yi|k; β]

is given in (3.8). The set K contains the segments included in the model. In our final

model we had the segments 0, 1 and 5.

The segment membership probabilities (3.13) allow us to assign the students to the

three groups. The average value of the largest conditional segment membership probabil-

ity over the students is 0.80, which indicates that the model is capable to make a clear

distinction between the segments of students. In Table 3.4 we display the average value

of the explanatory variables in the 3 segments. If we consider the number of hours spent

on gaming, the results are as we expect. Students who spend more time on gaming are

3The median individual spends 2 hours per week on gaming, and only owns a PC.
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Table 3.4: Platform ownership and average time spend per

week on gaming in hours for each latent segment

Segment 0 Segment 1 Segment 5

Hours spent on gaming 2.54 3.47 4.64

Ownership XBox 11% 17% 12%

Ownership PlayStation 30% 27% 35%

Ownership PSP 7% 13% 10%

Ownership Gamecube 11% 14% 5%

Ownership Gameboy 21% 12% 11%

Ownership PC 83% 85% 91%

better able to rank the platforms than students who game less. The differences are less

clear with ownership, except for the PC where we find that respondents who are not able

to rank are less likely to own a PC, although differences are small.

3.5 Conclusions

The respondents inability to accurately provide a full ranking of all presented alternatives

in a survey leads to a bias in the application of the well-known rank-ordered logit model.

To remove this bias, while still taking maximum advantage of the information in the

ranked data, we propose to augment the rank-ordered logit model with latent segments.

Each latent segment is associated with a particular ranking ability. More specifically, given

J alternatives we define J segments. In the k-th segment we assume that the respondent

is only able to rank the k most preferred items correctly. We also allow k to be zero, in

this case the respondent does not even report the most preferred item correctly. Under

this situation even the multinomial logit model would provide biased estimates.

Using simulation and an empirical application, we show that our new model is indeed

robust against inabilities of individuals to give proper ranks. Moreover, it is more efficient

than a standard multinomial logit approach. All this taken together, our model makes

it very attractive to ask respondents in a survey to rank all options instead of asking

them to select their preferred option. The application also shows that it is not unlikely

that one may encounter respondents who cannot rank the alternatives at all. The direct

application of the multinomial logit model is therefore not always appropriate.
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Our analysis is based on the logit framework. Therefore we have to assume that

the IIA property holds. If one wants to relax this assumption, our proposed strategy

can be incorporated in rank-ordered probit models (Hajivassiliou and Ruud, 1994) or

mixed rank-ordered logit model of Calfee et al. (2001), which do not suffer from the IIA

assumption.
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3.A Derivation of probability of least preferred item

In this appendix we derive the probability that a particular item is preferred least in a

set of J items, see Van Ophem et al. (1999) for an alternative derivation. The probability

of interest is given by

Pr[Ui,ri,J
≤ Ui,ri,m

∀m > k]. (3.14)

The IIA property of the logit models implies that this probability does not depend on

the utilities of the k most preferred items. In fact, this probability is the same as the

probability that item ri,J has rank J − k in the set of items (ri,k+1, . . . , ri,J). To simplify

the discussion, we derive without loss of generality the probability that item 1 is ranked

last in a full set of alternatives, which can easily be generalized to the probability in

(3.14).

Pr[y1 = J ] = Pr[U1 ≤ U2, U1 ≤ U3, . . . , U1 ≤ UJ ]

= Pr[V1 + ε1 ≤ V2 + ε2, . . . , V1 + ε1 ≤ VJ + εJ ]

= Pr[ε2 > V1 − V2 + ε1, . . . , εJ > V1 − VJ + ε1]

=

∫ ∞

−∞
f(ε1)

∫ ∞

V1−V2+ε1

f(ε2) · · ·
∫ ∞

V1−VJ+ε1

f(εJ)dεJ . . . dε2dε1

=

∫ ∞

−∞
f(ε1)

∫ ∞

V1−V2+ε1

f(ε2) · · ·
∫ ∞

V1−VJ−1+ε1

f(εJ−1)×

[exp(−e−εJ )]∞V1−VJ+ε1
dεJ−1 . . . dε2dε1

=

∫ ∞

−∞
f(ε1)

∫ ∞

V1−V2+ε1

f(ε2) · · ·
∫ ∞

V1−VJ−1+ε1

f(εJ−1)×

[1− exp(−eVJ−V1−ε1)]dεJ−1 . . . dε2dε1

=

∫ ∞

−∞
f(ε1)[1− exp(−eV2−V1−ε1)] · · · [1− exp(−eVJ−V1−ε1)]dε1,

(3.15)
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where we suppress the subscript i for notational convenience. Expanding the terms in

brackets leads to

Pr[y1 = J ] =

∫ ∞

−∞
f(ε1)dε1 −

J∑
i=2

∫ ∞

−∞
f(ε1) exp(−eVi−V1−ε1)dε1

+
J−1∑
i=2

J∑
j=i+1

∫ ∞

−∞
f(ε1) exp(−eVi−V1−ε1) exp(−eVj−V1−ε1)dε1

+ . . . + (−1)J−1

∫ ∞

−∞
f(ε1) exp(−eV2−V1−ε1) · · · exp(−eVJ−V1−ε1)dε1

= 1−
J∑

i=2

exp(V1)

exp(V1) + exp(Vi)
+

J−1∑
i=2

J∑
j=i+1

exp(V1)

exp(V1) + exp(Vi) + exp(Vj)

+ . . . + (−1)J−1 exp(V1)

exp(V1) + exp(V2) + · · ·+ exp(VJ)
,

(3.16)

where we use the standard logit characteristic. To simplify notation, we define the set

Ti to contain the sums of all possible combinations of i distinct elements from the set

{exp(V2), . . . , exp(VJ)}, that is, Ti contains
(

J−1
i

)
elements. We will denote one specific

element from the set Ti as Ti,j, j = 1, . . . ,
(

J−1
i

)
. The probability (3.16) can now be

written as

Pr[y1 = J ] = 1 +
J−1∑
i=1

(−1)i

(J−1
i )∑

j=1

exp(V1)

exp(V1) + Ti,j

. (3.17)
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3.B Derivation of the mean and variance of the LR

test under the null hypothesis

In this appendix we give the mean and standard deviation of a mixture of a χ2
0 and a

χ2
1 distribution, where both distributions have an equal weight. The density function is

given by

f(L) =
1

2
I(L = 0) +

1

2

L−
1
2 exp(−L

2
)√

2Γ(1
2
)

. (3.18)

The expectation of L is given by

E(L) =
1

2
× 0 +

1

2

∫ ∞

0

L
L−

1
2 exp(−L

2
)√

2Γ(1
2
)

dL

=
1

2
√

2Γ(1
2
)

∫ ∞

0

L
1
2 exp(−L

2
)dL. (3.19)

Notice that the integral in (3.19) is a kernel of a χ2
3 distribution, therefore we also know

what the value of the integral is.

E(L) =
1

2
√

2Γ(1
2
)

∫ ∞

0

L
1
2 exp(−L

2
)dL

=
2
√

21
2
Γ(1

2
)

2
√

2Γ(1
2
)

=
1

2
. (3.20)

To compute the variance (or standard deviation), we only need to compute E(L2), as

V (L) = E(L2)− E(L)2.

E(L2) =
1

2
× 02 +

1

2

∫ ∞

0

L2L−
1
2 exp(−L

2
)√

2Γ(1
2
)

dL

=
1

2
√

2Γ(1
2
)

∫ ∞

0

L1 1
2 exp(−L

2
)dL

=
4
√

23
2

1
2
Γ(1

2
)

2
√

2Γ(1
2
)

=
3

2
, (3.21)
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where we again use the trick with the χ2 kernel. The variance is now equal to

V (L) =
3

2
− 1

2

2

= 1
1

4
. (3.22)

Thus, the standard deviation is equal to

σ(L) =

√
1
1

4
≈ 1.118. (3.23)



Chapter 4

Modeling Regional House Prices

4.1 Introduction

Real estate prices in many countries have experienced a dramatic boom in recent years

(IMF, 2004). At the same time, the extent of the price increase appears to vary substan-

tially across different regions within a given country. In the Netherlands, for example, it

is commonly believed that house prices in Amsterdam and the densely populated western

part of the country have increased far more than prices in the smaller cities and rural

areas in the east. As house prices are typically available per region or city, we may ana-

lyze these data at such a disaggregate level, to examine whether indeed regions or cities

behave differently, perhaps in terms of trends, but also in terms of response to outside

economic shocks. In this chapter we develop a time series model that suits this purpose.

Most regional house prices have the following properties. First, they tend to display a

trend, and historical price patterns suggest that this trend probably is not deterministic

but stochastic. In particular, house prices show ‘bubble’-type behavior, where prolonged

periods of steady increases of the price level suddenly end with a sharp drop followed by a

period of low price levels, suggesting that trends are unlikely to be deterministic. Second,

for different regions within a country these stochastic trends should somehow be linked.

It is not plausible that prices in different regions would diverge indefinitely or that certain

regions would not respond to common macroeconomic shocks. So, a model for regional

house prices should allow for some form of common trends. Third, it can be expected

that adjacent regions show similar price patterns, although this may also be the case for

regions far apart geographically but with similar economic or demographic characteristics.

Hence, a suitable model should allow for similarities in the dynamic behavior of house
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prices across regions. An intuitively appealing possibility is to consider a model that

allows for groups or clusters of regions, where house price dynamics in regions within a

given cluster are the same, while they are different across clusters. Preferably, such a

model should not require ex-ante or exogenous assignment of regions to specific clusters.

In fact it would be best if the data themselves were allowed to indicate if clusters exist

and if so, which regions belong to which cluster.

In this chapter we extend the latent-class panel time series model introduced by Paap

et al. (2005) to capture these different properties of regional house prices. The key feature

of this model is that the clustering of regions is purely data-driven, where cluster mem-

bership is based on characteristics corresponding to two specific research questions we

want to address. The first question is whether prices in all regions have the same average

growth rate. Note that a common trend specification across the regions entails that their

growth rates must be somehow compatible, but it still leaves open the possibility that

house prices in some regions grow faster than in others. The second question we consider

is the way the house prices in each region react to changes in the overall economic situ-

ation, which we measure by GDP. We examine both the size of the effect from GDP on

the house prices and the speed at which regions react to changes in GDP.

We apply our model to house price data for the Netherlands, comprising 76 regions

for which we have quarterly data for the period 1985Q1-2005Q4. We find that the 76

regions can be grouped into two clusters. The first cluster consists mainly of regions in

the east of the country. These are mainly rural areas that are close to the larger cities,

especially close to the Randstad (consisting of Utrecht, Amsterdam, Den Haag, Rotterdam

and other cities in the area). This cluster reacts both stronger and faster to changes in

GDP. The average growth rate does not vary over the regions.

There are not many studies that describe regional house prices. Cameron et al. (2006)

build a model from inverse demand equations. They have, however, only a limited number

(9) of regions, and their model would not work in our situation where we have many more

(76) regions, as we will describe below. Malpezzi (1999) constructs an error correction

model for regional house prices. The parameters of this model are however not allowed

to vary across regions. Holly et al. (2008) model US house prices at the state level. Their

model is ‘fully heterogenous’ in the sense that it has different parameters for each region.

In this chapter we cover the middle ground, that is, the model parameters are allowed to

vary across groups of regions but not across each region individually.
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Before we propose our latent-class model, we first provide some details on the house

price data in Section 4.2. We consider two decades of quarterly house prices on 76 regions

in the Netherlands. We discuss their trending behavior by performing panel unit root tests

and we also show that the growth rates in different regions show strong cross-correlations.

Using multidimensional scaling techniques we get a first impression if and how these 76

regions could get clustered. Then, in Section 4.3, we put forward our model specification,

highlighting the underlying data-driven clustering mechanism. In addition, we describe

the method used for parameter estimation. In Section 4.4 we first present our estimation

results, and give interpretation to the various outcomes. Next, we take a look at impulse

response functions of the house prices with respect to a shock in GDP and in the interest

rate. In Section 4.5 we conclude with some limitations and we outline topics for further

research.

4.2 Data

The Dutch real estate agent association [NVM] publishes quarterly data on house prices

for N = 76 regions in the Netherlands. Our dataset covers the sample period 1985Q1-

2005Q4 (T = 84 quarters). Hence, we have a panel database where both the cross-section

dimension N and the time dimension T are fairly large.

The way the country is divided into 76 regions is determined by the NVM. Macroeco-

nomic data, such as output and inflation, are not available for this particular specification

of regions. Other (macro) variables that we use in our model are therefore measured at

the country level. In particular, this concerns the interest rate (obtained from the Dutch

Central Bank) and quarterly real GDP (from Statistics Netherlands). The GDP series

is available until 2005Q2. We obtain real house prices by deflating with the consumer

price index [CPI] (from Statistics Netherlands). In addition, we seasonally adjust the real

GDP series using the Census X-12 algorithm (available in EViews 5.1). We denote the

real house price in region i at time t as pi,t, and real GDP as yt.

Figure 4.1 shows time series of log(pi,t) for three specific regions: Noordwest-Friesland,

which usually is the least expensive region, Bunnik/Zeist, which usually is the most ex-

pensive region, and Amsterdam, which is in between. On top we also plot log(yt) (scaled

to limit the size of the vertical axis in the graph). Comparing the graphs in Figure 4.1

suggests that real house prices increase slightly faster than real GDP. Prices in Bun-

nik/Zeist and Amsterdam show substantial variations in the trend growth rate over time,
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Figure 4.1: Log house prices for 3 distinct regions, and log GDP.

with alternating periods of steep price increases and of stable or falling prices. Especially

the ‘hump’ in the prices around 2000 stands out clearly. This suggests that the trend

in the house prices is stochastic rather than deterministic. Furthermore, as the trending

behavior of the different price series seems quite similar regional house prices may well be

cointegrated.

4.2.1 Unit roots and cointegration

To test whether these visual impressions from Figure 4.1 can be given more formal sta-

tistical support, we perform panel unit root tests on the regional house prices. Two of

the most popular tests in the literature are those from Levin et al. (2002) [LLC] and Im

et al. (2003) [IPS], see Breitung and Pesaran (2008). These tests have as null hypothesis

the presence of a unit root in all the series in the panel. The alternative hypotheses are

different however. Levin et al. (2002) assume that the house price dynamics are the same

for each region, and therefore the alternative hypothesis is that all regional house prices

are stationary. Im et al. (2003), however, have as alternative hypothesis that at least

one regional house price is stationary. Both these tests assume that there is no cross-

correlation between different series in the panel. In fact, they are not consistent if such a

dependency is present, which is quite likely in our case. Alternative tests that do allow
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for cross-section dependence are available, like the one in Moon and Perron (2004), but

these usually rely on asymptotics that require T to be much larger then N , while in our

case they are about equal.

To meet our data characteristics, we therefore employ the cross-sectionally augmented

IPS [CIPS] test, recently developed in Pesaran (2007). This allows for cross-sectional

dependence, and is also valid when N is larger than T . The idea of the CIPS test is

to add the cross-section averages of the lagged levels and first differences to the familiar

augmented Dickey-Fuller [ADF] regression equation. If it can be assumed that the cross-

correlations are caused by a common factor, then this common factor must also be present

in the cross-section averages. Adding these to the ADF equations should then get rid of

the common factor in the residuals and thus correct for the presence of cross-correlations.

As the CIPS test is known to have reduced power relative to the IPS and LLC tests

in case cross-correlation is not present, we test whether we really should use the CIPS

test instead of these simpler tests. For this purpose we use the cross-section dependence

[CD] test of Pesaran (2004) and the adjusted LM [LMadj] test of Pesaran et al. (2008).

These tests both use the cross-correlations between the residuals of the individual ADF

regressions for the different regions. The CD test takes a simple sum which is scaled such

that it has a standard normal distribution under the null hypothesis of no cross-sectional

dependence. Therefore, the CD test has little power in case there are both positive and

negative correlations such that the average is close to zero. The LMadj test, however, is also

valid in this case as it employs the squares of the cross correlations in the construction of

the test statistic. However, the LMadj test is less robust against non-normally distributed

error terms and exhibits size distortions, especially when N is much larger than T .

Table 4.1 gives the result of these tests for the panel of quarterly growth rates in house

prices ∆ log(pi,t), where ∆ denotes the first-difference filter, and of log(pi,t) − log(p34,t),

which is the difference of each series with the log house prices in Amsterdam (region 34,

see Appendix 4.A). The number of lagged (first) differences is allowed to vary across each

(C)ADF equation and is determined by minimizing BIC. Adding a lagged variable means

losing one observation, therefore we actually minimize BIC/T , see Cameron and Trivedi

(2005, pp. 279) or the definition of BIC given in Franses and Paap (2001). Each (C)ADF

regression equation contains an intercept and a trend.

From the second column of Table 4.1 we see that for the first difference of the log

house prices there is substantial cross-sectional dependence, according to both the CD

and LMadj tests. Next, we see that all three unit root tests reject the presence of a
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Table 4.1: Results of the CD test, the LMadj

test and three different tests for a unit root

for two series (boldface numbers indicate re-

jection of the null hypothesis).

Test Series ∆[log(pi,t)] log(pi,t)− log(p34,t)

CDa 92.0 144.2

LMadj
a 60.4 175.1

LLCa -61.2 2.0

IPSa -55.9 1.9

CIPSb -8.9 -3.5

a Test statistic is asymptotically distributed as nor-
mal

b Tables with critical values for various values for N

and T are given by Pesaran (2007), in the presence
of an intercept and a trend in the CADF equations
and for N = T = 70 the critical value at the 95%-
level is −2.58, for N = T = 100 it is −2.56.

unit root in these growth rate series. Results for the difference between the log price

in a region and the log price in Amsterdam (region 34) appear in the third column of

Table 4.1. The reason for examining the log price differences with respect to Amsterdam

is that finding these to be stationary, we can conclude that the house prices in each region

are cointegrated. Again, the CD and LMadj tests indicate that there is substantial cross-

sectional dependence. Next, the LLC and IPS unit root tests do not reject the presence

of a unit root, but the CIPS test does. Since the LLC and IPS tests are not valid in case

of cross-sectional dependence, we rely on the CIPS test and conclude that the log house

prices in each region are cointegrated. Note that the (1, −1) cointegration relationships

suggested by the results in Table 4.1 are quite plausible. It means that the difference

between the log of house prices, or, equivalently the ratio of house prices, in each region is

a stationary process. This constrains the long-term growth of house prices in each region

to be about the same.
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Figure 4.2: Multidimensional scaling plot of the regions, based on the correlations of the

first differences of the log house prices over the period 1985Q1-2005Q4.

4.2.2 Clusters

Before we turn to our conditional clustering analysis using latent class techniques we

consider unconditional clustering based on the correlations of the house price growth

rates or of the residuals of the ADF regressions used above. For this purpose, we use

multi-dimensional scaling [MDS], which results in the graphs shown in Figure 4.2 and 4.3.

Although the graphs in these figures are rather different, they basically lead to the

same conclusion that there are no apparent clusters. Hence, dividing the regions into

different groups based only on the cross-correlations of the regional house prices is not
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Figure 4.3: Multidimensional scaling plot of the regions, based on the correlations of the

residuals of the ADF regressions for the log house prices over the period 1985Q1-2005Q4.

a meaningful possibility. Apparently, we need a more sophisticated clustering method,

perhaps based on latent classes, as we will propose in the next section.

4.3 The model

In this section we put forward the specification of the latent-class panel time series model

for describing the regional house prices. We first discuss the characteristics of the model,

and then we outline the parameter estimation procedure.
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4.3.1 Representation

Our starting point is the latent-class panel time series model developed by Paap et al.

(2005). The crucial idea behind this model is that the individual time series may be

grouped into a limited number of clusters. Within each cluster, a linear model is assumed

to describe the dynamic behavior of the time series. The clusters are defined such that the

model parameters are the same for all time series within a cluster, but they are different

across clusters. Hence, this model covers the middle ground between a pooled regression

model, where the model parameters are constrained to be the same for all regions, and

a ‘fully heterogenous’ model, where the parameters are allowed to be different for each

individual region. Whereas a pooled regression model may be too restrictive, a fully

heterogenous model may be too flexible and ignores the possible similarities between

regions. Finally, the key feature of the model of Paap et al. (2005) is that the number

of clusters in the model as well as the allocation of the individual time series to different

clusters is purely data-based. This avoids ex ante, and necessarily subjective, grouping

of regions according to geographical location or economic or demographic characteristics,

for example.

In our model for quarterly growth rates of house prices we allow for more flexibility

than was done in Paap et al. (2005). As mentioned, there are two research questions we

want to answer with our model and each question corresponds to different parameters that

can vary across the latent classes. The first is whether the mean growth rates of house

prices are the same across all regions. We therefore allow the clusters to have a different

average growth rate by allowing for a class-specific intercept. To facilitate interpretation,

we demean all other variables in the model such that the intercept is equal to the average

growth rate of the house prices in the regions in a cluster.

The second question we wish to answer with our model is whether the house prices in

regions follow the trend in real GDP. We add an error correction variable linking regional

real house prices and real GDP, where the long-run parameter should be estimated. This

long-run parameter determines the size of the effect of GDP on the house prices. The

adjustment parameter indicates how fast the house prices in a region react to changes in

GDP.

Based on the above discussion, we propose the following latent-class panel time series

model for regional house prices in the Netherlands

∆ log(pi,t) = β0,ki
+ β1,ki

[log(pi,t−1) + γki
log(yt−1)] + ηi,t. (4.1)
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The β and γ parameters are class-specific parameters, where the subscript ki = 1, . . . , K

denotes the latent class which region i belongs to with K being the number of latent

classes. We denote the probability that a region belongs to latent class k, or the mixing

proportions, as πk. Naturally it must hold that, 0 < πk < 1 and that
∑K

k=1 πk = 1.

As the house prices of each regions are cointegrated with GDP, they are also cointe-

grated amongst themselves. This can easily be seen in the following way. Both pi,t−γki
yt

and pj,t − γkj
yt are stationary series. Now, consider the following expression,

(pi,t − γki
yt)− δ(pj,t − γkj

yt) = (pi,t − δpj,t)− (γki
− δγkj

)yt. (4.2)

The LHS of (4.2) is stationary, therefore the RHS is also a stationary series. For δ =

γki
/γkj

the second term on the RHS of (4.2) will disappear, therefore regions i and j must

have a (1,−δ) cointegration relationship. Two regions in the same cluster will therefore

have a (1,−1) cointegration relationship, because they share the same γ parameter. As

we have seen in Section 4.2.1, there is support for exactly this relationship.

Even though model (4.1) includes log(yt−1), which is the same for all regions, there

may still be some cross-section correlation among the house prices that is not captured.

Therefore, following Holly et al. (2008), we allow the error term ηi,t in (4.1) to be correlated

across regions, but assume that this correlation is due to dependence on certain common

factors. To be precise, we consider the specification

ηi,t = α1,i∆ log(yt−1) + α2,iIt−1 + α3,i∆ log(pt−1) + εi,t, (4.3)

where It−1 denotes the interest rate at time t− 1, pt−1 denotes the average house price in

the Netherlands at time t− 1 and where αl,i for l = 1, 2, 3 are region-specific parameters.

The residuals εi,t are now assumed to be independently normally distributed with a region-

specific variance σ2
i .

In the application below, we demean all variables in (4.1) and (4.3) and hence the

intercepts β0,ki
in (4.1) are equal to the average growth rates of the house prices in the

latent classes ki for ki = 1, . . . , K.

4.3.2 Estimation

The parameters in our model (4.1) with (4.3) can be estimated as outlined in Paap et al.

(2005), using the EM algorithm of Dempster et al. (1977). This makes use of the full data

log-likelihood function, that is, the joint density of the house prices and the latent classes
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ki, which we specify in detail below. The EM algorithm is an iterative maximization

algorithm, which alternates between two steps until convergence occurs. In the first

step (E-step) we compute the expected value of the full data log-likelihood function with

respect to the latent classes ki, i = 1, . . . , N , given the house prices and the current values

of the model parameters. In the second step (M-step) we maximize the expected value

of the full data log-likelihood function with respect to the model parameters. As the

model given the class memberships can be written as a standard linear regression, the

M-step amounts to a series of (weighted) regressions. As the EM algorithm maximizes

the log-likelihood function, the resulting estimates of the model parameters are equal to

the maximum likelihood [ML] estimates. We can therefore compute standard errors of

the estimates using the second derivative of the log-likelihood function.

Note that due to the presence of the term β1,ki
[log(pi,t−1) + γki

log(yt−1)] the model in

(4.1) is actually nonlinear in the parameters. To deal with this issue, we follow Boswijk

(1994) and rewrite the model as

∆ log(pi,t) = β0,ki
+ β1,ki

log(pi,t−1) + β2,ki
log(yt−1) + ηi,t, (4.4)

where β2,ki
= β1,ki

γki
. Note that (4.4) is linear in the parameters, which facilitates esti-

mation. The ML estimate γ̂ki
can be obtained from the ML estimates of β1,ki

and β2,ki
as

β̂2,ki
/β̂1,ki

.

The full data likelihood function, that is, the joint density of P = {{∆ log pi,t}T
t=1}N

i=1

and K = {ki}N
i=1 is given by

l(P ,K; θ) =
N∏

i=1

(
K∏

k=1

(
πk

T∏
t=1

1

σi

φ(εk
i,t/σi)

)I[ki=k])
, (4.5)

where φ(·) denotes the probability density function of a standard normal random variable

and θ is a vector containing all model parameters. The error term at time t for region i

belonging to cluster k is defined as

εk
i,t = ∆ log pi,t − x′i,tβk − w′

tαi, (4.6)

where xi,t is the (3 × 1) vector with the regressors appearing in (4.4) and βk contains

the corresponding parameters for cluster k. Similarly, wt is the (3 × 1) vector with

common factors in the specification for ηi,t in (4.3), and αi = (α1,i, α2,i, α3,i)
′ containing

the parameters for region i.
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The expectation of the full data log-likelihood function with respect to K|P , θ [E-step]

is given by

L(P ; θ) =
N∑

i=1

(
K∑

k=1

π̂i,k

(
ln πk +

T∑
t=1

−1

2
ln σ2

i −
1

2
ln 2π − (εk

i,t)
2

2σ2
i

))
, (4.7)

where π̂i,k denotes the conditional probability that region i belongs to class k. This is

equal to

π̂i,k =
πk

∏T
t=1

1
σi

φ
(
εk

i,t/σi

)
∑K

l=1 πl

∏T
t=1

1
σi

φ
(
εl

i,t/σi

) . (4.8)

In the M-step, we need to maximize (4.7) with respect to the parameters βk, πk,

k = 1, . . . , K and αi, σ2
i for i = 1, . . . , N . We perform this maximization step sequentially.

First, we optimize over βk keeping the other parameters fixed. This can be done by a

simple weighted regression of ∆ log(pi,t) − w′
tαi on xi,t with weights given by

√
π̂i,k/σi.

Clearly, we want regions with a larger probability of belonging to class k to have a larger

weight in estimating βk. At the same time, regions with a larger standard deviation of

the error term σi should get a smaller weight, as their house prices contain relatively more

noise and less information about βk. Each βk, k = 1, . . . , K is estimated in a separate

weighted regression.

Second, we optimize the log-likelihood function over αi for i = 1, . . . , N . We do

this by regressing
∑K

k=1 π̂i,k [∆ log(pi,t)− xi,tβk] on wt. The dependent variable in this

regression is the conditional expectation of ηi,t. We perform these regressions for each

region separately.

Next, the new estimate of σ2
i is given by

σ2
i =

1

T

T∑
t=1

K∑

k=1

π̂i,k

(
εk

i,t

)2
(4.9)

for i = 1, . . . , N . Finally, the mixing proportions are updated by averaging the conditional

class membership probabilities, that is,

πk =
1

N

N∑
i=1

π̂i,k (4.10)

for k = 1, . . . , K.

As we maximize over the parameters sequentially in the M-step, we do not reach the

optimum of the expected full data log-likelihood function (4.7) in each iteration of the
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EM-algorithm. We can repeat the individual update steps until convergence, but this is

not necessary. Indeed, Meng and Rubin (1993) have shown that an increase in the full-

data log-likelihood function in the M-step is sufficient for the EM algorithm to converge

to the maximum of the log-likelihood function.

Determining the appropriate number of latent classes is not straightforward. We

cannot use a standard statistical test, due to the Davies (1977) problem of unidentified

nuisance parameters under the null hypothesis. The usual approach is using a criterion

function balancing the fit and the complexity of the model, where the model fit is mea-

sured by the value of the log-likelihood function while the number of model parameters

provides a measure of complexity. The most well-known criteria are the Akaike infor-

mation criterion [AIC] and the Bayesian information criterion [BIC]. Bozdogan (1994)

suggests that the AIC should have a penalty factor of 3 instead of 2 in the case of mixture

models. Indeed, Andrews and Currim (2003) show that this AIC-3 criterion outperforms

other criteria. Bozdogan (1987) modifies the AIC into the so-called consistent Akaike in-

formation criterion [CAIC], which is almost equal to BIC. He shows that when the sample

size is large the CAIC and BIC criteria perform better than AIC. We will consider all

four criteria below.

4.4 Empirical results

In this section we discuss the results of applying our model to the regional house price

data for the Netherlands described in Section 4.2. The effective sample period ranges from

1985Q3 (because we have ∆ log(pt−1) = log(pt−1) − log(pt−2) in our model) to 2005Q2

(because we only have real GDP data until 2005Q2), giving T = 80 data points in the time

series dimension. To obtain a first impression of the extent of similarities across regions,

we start by estimating a fully heterogenous model allowing for different parameters for

each region. Next, we provide estimation results for the model with a limited number

of latent classes. Finally, we consider impulse-response functions for three interesting

scenarios to provide further interpretation of the model.

4.4.1 A fully heterogenous model

We first estimate the parameters in a fully heterogenous model, that is, we estimate the

model in (4.1) with (4.3) allowing for different parameters for each individual region. This
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Figure 4.4: Histograms of the estimated values of the parameters βj, j = 0, 1, and γ in

(4.1) in the fully heterogenous model with 76 classes.

essentially is a model with K=76 latent classes, in which case each region forms a separate

class.

The mean, minimum and maximum of each parameter of the 76 regions can be found

in Table 4.2. Figure 4.4 displays the histograms for the 76 estimated values for each of

the parameters βj, j = 0, 1, and γ in (4.1). The top panel shows the intercepts, β0, which

equal the quarterly growth rates. These are all positive, reflecting the upward trend in

the house prices, and range between 0.6% and 1.3% per quarter. The middle panel of

Table 4.2: Results for the fully heteroge-

nous model.

Parameter Mean Minimum Maximum

β0 0.011 0.006 0.013

β1 -0.363 -0.692 0.125

γ -0.591 -7.601 2.127

α1 -0.271 -1.851 0.703

α2 -0.004 -0.013 0.004

α3 0.277 -0.340 0.739
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Figure 4.4 shows the results for the adjustment parameter for the cointegration term with

GDP. We find some positive values, which is not as expected, as these imply divergence

between GDP and the house prices in that region. Finally, the histogram in the bottom

panel shows the parameter γ in the cointegration relationship with GDP, which we expect

to be negative as we expect the house prices and GDP to move in the same direction.

Table 4.2 also shows the results for the α parameters from (4.3). Again we find that they

show some counterintuitive signs and a relatively large spread.

We can see from these results that some form of aggregation may be useful, as we now

get a wide variety of parameter estimates, with sometimes quite implausible results. At

the same time, this variety also suggests that we should perhaps better not restrict the

parameters to be the same across all regions. Hence, it may be optimal to allow for a

limited number of different clusters.

4.4.2 A model with latent classes

A major issue for successful application of the latent-class panel time series model is of

course determining the appropriate number of latent classes. As discussed in Section 4.3.2,

we consider four different information criteria for this purpose. Table 4.3 shows the values

of these criteria for models with one to four and 76 classes. For all criteria, we see that

going from a homogenous model (with a single class) to two classes amounts to a relatively

large improvement in the balance of model fit and complexity. After this, adding more

classes does not improve any of the criteria. We therefore focus on the model with two

latent classes.

The estimation results for the model with two latent classes are given in Table 4.4.

Additionally, Table 4.5 gives the results for a series of Wald tests which we use to examine

whether the parameters for the different classes are significantly different from each other.

Table 4.3: Criteria values for different numbers of la-

tent classes (boldface numbers indicate the optimum).

Criterion \ K 1 2 3 4 76

AIC -3.937 -4.059 -4.058 -4.057 -3.962

AIC-3 -3.887 -4.008 -4.006 -4.004 -3.862

BIC -3.598 -3.716 -3.710 -3.704 -3.292

CAIC -3.584 -3.665 -3.658 -3.652 -3.192
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Table 4.4: Estimation results for

K = 2 latent classes.

Class Estimate Standard error

intercept β0,k

1 0.012 0.001

2 0.011 0.000

adjustment parameter GDP β1,k

1 -0.178 0.019

2 -0.131 0.007

cointegration relationship GDP γk

1 -1.888 0.083

2 -1.684 0.035

mixing proportions πk

1 0.202 0.159

2 0.798 .

The estimation results show that the regions in the two latent classes do indeed differ from

each other in several important respects. First, the estimated intercepts show that the

average growth rate in class 1 is slightly higher than in class 21. This difference is not

significant though, as can be seen from the second row of Table 4.5. The average growth

rate in class 1 is equal to 1.2% per quarter, or 4.8% annually, while the house prices in

class 2 grow with 1.1% per quarter, or 4.4% annually.

Second, examining the cointegration relationship with GDP, we find that class 1 has

a significantly larger adjustment parameter. Thus, the house prices in regions belonging

to cluster 1 react faster to changes in GDP than the house prices in class 2.

Finally, The cointegration relationship between house prices and GDP itself, is also

significantly different across the classes. For class 1, it is (1, −1.89), meaning that in the

long run the house prices in the regions in this cluster grow almost twice as fast as GDP.

In class 2 the cointegration relationship is (1, −1.68). These long term relationships may

not be very plausible, however, as we could already see from Figure 4.1, they are a good

description of the development of house prices and GDP in the sample period.

1Recall that we demeaned all other variables the model, so the intercepts represent the average growth
rates.
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Table 4.5: Wald tests for equality

of the parameters across the two

classes in (4.1).

Restriction Wald statistic p-value

β0,1 = β0,2 0.61 0.41

β1,1 = β1,2 7.10 0.01

γ1 = γ2 6.90 0.01

As we showed in Section 4.3, the cointegration relationship of each region with GDP

entails that the regions are also cointegrated among themselves. The long term parameter

is only influenced by the γ parameters of the two regions involved, and thus only depends

on the class membership of the two regions. Table 4.6 shows these cointegration rela-

tionships between the house prices of regions from any of the two clusters. First, we see

that two regions that belong to the same cluster are (1,−1) cointegrated. This is actually

very intuitive, as they have follow the same trend relative to the trend of GDP, they must

follow the exact same trend themselves. Next we find that a region from cluster 1 is

(1,−1.12) cointegrated with a region from cluster 2. This corresponds with the slightly

higher growth rate in class 1.

The parameters in (4.3) are region-specific, and full estimation results are not reported

to save space. Only 11% of the α1,i parameters is significant, suggesting that the impact

of GDP on the house prices is mostly captured by the cointegration term. Moreover, only

22% has the expected positive sign. The α2,i parameters are mostly negative, and only one

region has an (insignificant) positive value. Furthermore, for 63% of the regions the α2,i

parameter is significant at the 5% level, indicating that the interest rate indeed influences

the house prices in the expected direction. The α3,i parameters, relating the growth of

Table 4.6: Cointegration rela-

tionships between the regions

from clusters i and j.

i \ j 1 2

1 (1, -1) (1, -1.12)

2 (1, -0.89) (1, -1))
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the house price in a region to growth of the average house price in the Netherlands in the

previous quarter, is positive for 88% of the regions, but only significant for 42% of these

regions.

The latent classes

The parameter estimation results obviously become more interesting if we know which

regions belong to each of the two classes. Therefore, we compute the conditional class

membership probabilities using (4.8). The resulting classification of the regions is shown

in Figure 4.5. Regions are colored based on π̂i,1, the probability of belonging to class 1.

Regions are colored in four shades of grey. For the regions that are colored in the lightest

shade it holds that π̂i,1 ≤ 0.2. For regions colored in subsequently darker shades of grey

it holds that 0.2 < π̂i,1 ≤ 0.4, 0.4 < π̂i,1 ≤ 0.6, or 0.6 < π̂i,1 ≤ 0.8. There were no

regions with π̂i,1 > 0.8. It can be seen that most regions are either very dark or very light,

suggesting that the classification is very clear for most regions. In fact, the average value

of max(π̂i,1, π̂i,2) is equal to 0.83.

We find that class 1 contains mainly rural regions surrounding the big cities in the

Netherlands. The regions in this class mainly cover parts of Noord-Brabant and the

Veluwe. Even though the East belongs almost completely to class 1, the larger cities of

the East, like Zwolle, Almelo, Hengelo, Enschede, and Arnhem are part of class 2.

Class 2 contains different types of regions. First, it contains many large cities in

different parts of the country, like Breda and Groningen, as well as almost all of the

regions in the Randstad, the densely populated western part of the country. At the same

time some rural regions, like Zeeland, Zuid-Limburg and regions in the North belong to

this class with high probability. Note that these rural regions are not as close to the

Randstad as most of those in class 1.

A possible explanation for our results is the increased number of commuters that live

in the regions belonging to class 1 and who work in the large western cities. If the number

of commuters increases, it is likely that they move to regions in cluster 1, as these are still

at traveling distance from the Randstad. This development has two consequences for the

regions in class 1. First, the average income in these regions is likely to increase, as the

individuals who move away from the cities are relatively wealthy. The second consequence

is an increase of housing quality in these regions, as wealthier people leaving the cities

will increase the demand for more luxurious houses.
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Figure 4.5: Clustering of regions. Regions with a high probability of belonging to class 1

are colored dark, regions with a low probability of belonging to class 1 are colored lighter.

The numbers inside the regions correspond to the ones in Appendix 4.A.
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These potential structural changes within the regions of cluster 1 are consistent with

all of our findings. First, the increase in housing quality will result in a larger increase

in the average house prices in class 1 as compared to class 2. Our second finding is that

house prices in these regions react faster to changes in GDP. This may be caused by tha

fact that the increase of their income may influence the decision of these individuals to

move and start commuting. Our last and most striking finding is that the house prices

in class 1 increase almost twice as fast as GDP. Note however that the increase is not

corrected for higher housing quality.

4.4.3 Impulse-response functions

To give further interpretation to our estimation results we compute impulse-response

functions for two interesting scenarios, each occurring in the second quarter of 2005. In

the first scenario real GDP receives a shock of 1%. In the second scenario real GDP

stays the same, but the interest rate receives a shock of 1%-point. We forecast the house

prices for each of the scenarios and compare with a no-change scenario, for the subsequent

three-year period from 2005Q3 until 2008Q2.

In order to compute the impulse responses up to 12 quarters ahead, we also need

forecasts for GDP and the interest rate, as these variables also affect house prices, see

(4.1). Here we assume that the interest rate stays the same during the forecast period.

In scenario 3, the interest rate is higher, but still assumed to be constant over the whole

forecast period. To obtain forecasts for GDP we construct a simple AR(q) model with

intercept for ∆ log yt. We choose q based on out-of-sample forecasting performance, where

we use the last 3 years as a hold-out sample. It turns out that q = 8 gives the best

performance.

Figure 4.6 shows the impulse-response functions of the log house prices with respect

to the log of GDP. The y-axis gives the relative change in house prices between the two

scenarios, that is, a value of 0.01 means that the house price is 1% higher than the

reference forecast. We calculate the impulse response functions for each of the 76 regions.

We then aggregate these to average responses in the two clusters.

We find that the effect of an increase in GDP is initially negative in both clusters,

which is caused by the many negative α1,i parameter in both clusters. However, this

negative effect lasts only one quarter, and after that the house prices are higher compared

to the reference forecasts. As expected, we find that the house prices in cluster 1 react

both faster and more on the change in GDP.
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Figure 4.6: Impulse-response function of log(pi,t) with respect to log(yt) for 3 regions.

In the second scenario, the interest rate receives a shock, and increases from 2.06% to

3.06%. We find that the house prices are falling. After three years the house prices are

about 2% lower in lower in cluster 2 and almost 3% lower in cluster 1, as compared to

the reference forecasts.
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Figure 4.7: Impulse-response function of log(pi,t) with respect to log(It) for 3 regions.
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4.5 Conclusions

In this chapter we developed a latent-class panel time series model for describing several

key characteristics of regional house prices in the Netherlands between 1985 and 2005. An

important feature of the model is that we cluster the regions in separate classes, where

the price dynamics of house prices in regions within the same class are similar, while they

are different across the classes. For the 76 regions in the Netherlands we find that two

classes are sufficient. The first class contains mainly rural regions close to large cities.

The second class contains both the larger cities and some more remote rural regions.

The house prices in regions in the first class are characterized by slightly higher average

growth rates, and stronger and faster reactions to changes in GDP. These findings may

be caused by the increased number of commuters. Indeed, the number of people working

in the larger cities, but living in the regions of class 1, has increased substantially during

our sample period.

Our model allows for the analysis of rather detailed data. To fully exploit its properties

one would want to analyze even further disaggregated data. The collection of such more

detailed series is left to further research. Another issue for further research is to make the

class probabilities dependent on certain explanatory variables.



4.A Regions by number 77

4.A Regions by number

1 Noordoost-Groningen 27 Kop v. Noord-Holland 52 Dordrecht

2 Slochteren +s 28 Noord-Kennemerland 53 Gorinchem

3 Grootegast +s 29 West-Friesland 54 Culemborg/Dodewaard

4 Stad Groningen +s 30 Midden-Kennemerland 55 Ede +s

5 Zuidoost-Groningen 31 Waterland 56 Arnhem

6 Noord-Drenthe 32 Zaanstreek 57 Duiven/Westervoort

7 Opsterland 33 Zuid-Kennemerland 58 Elst +s

8 Oost-Friesland 34 Amsterdam 59 Nijmegen

9 Noordwest-Friesland 35 De Bollenstreek 60 Noordoost-Brabant

10 Zuidwest-Friesland 36 Haarlemmermeer 61 Uden +s

11 Zuid-Friesland 37 Almere 62 Oss +s

12 Zuidwest-Drenthe 38 Het Gooi 63 Den Bosch

13 Zuidoost-Drenthe 39 Amersfoort 64 Waalwijk/Drunen

14 Hardenberg +s 40 Barneveld 65 Zeeuwse Eilanden

15 Kop van Overijssel 41 Bunnik/Zeist 66 Zeeuws-Vlaanderen

16 Zwolle +s 42 Utrecht 67 Bergen op Zoom +s

17 Raalte +s 43 Woerden 68 West-Brabant

18 Almelo Tubbergen 44 Alphen 69 Breda

19 Hengelo Enschede 45 Leiden 70 Tilburg/Oirschot

20 Ruurlo Eibergen 46 Den Haag 71 Eindhoven +s

21 Doetinchem +s 47 Gouda 72 Zuidoost-Brabant

22 Zutphen +s 48 Delft +s 73 Noord-Limburg

23 Apeldoorn +s 49 Rotterdam 74 Weert +s

24 Nunspeet +s 50 Westland 75 Roermond +s

25 Lelystad 51 Brielle/Goeree 76 Zuid-Limburg

26 Den Helder/Texel

Note: +s means including surrounding area.





Chapter 5

A Bayesian Approach to Two-Mode

Clustering

5.1 Introduction

Clustering algorithms divide a single set of objects into segments based on their similarities

and properties or the dissimilarities between them (see, for example, Hartigan, 1975). Such

methods typically operate on one mode (dimension) of a data matrix; we refer to these

methods as one-mode clustering. Two-mode clustering techniques (Van Mechelen et al.,

2004) cluster two sets of objects into segments based on their interactions. In two-mode

clustering, both rows and columns of data matrix are clustered simultaneously.

Many clustering methods, such as k-means clustering and Ward’s method, lack a

method to ascertain the significance of the results and rely on arbitrary methods to

determine the number of clusters. To solve these problems, one may consider using model-

based techniques for clustering data. For one-mode data, model-based clustering methods

have been developed (see, for example, Fraley and Raftery, 1998; Frühwirth-Schnatter,

2006). These model-based clustering methods use statistical tools for inference.

In this chapter, we extend the model-based one-mode clustering approach to two-

mode clustering. In two-mode clustering, we cluster both the rows and the columns of a

data matrix into groups in such a way that the resulting block structure is homogenous

within blocks but differs between blocks. This requires matrix-conditional data, which

basically means that each element should be measured on the same scale. Methods for

two-mode clustering are in general not model-based, see among others, Candel and Maris

(1997), Doreian et al. (2004), Brusco and Steinley (2006), and Van Rosmalen et al. (2008).
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Model-based methods usually rely on latent-class techniques. It is not straightforward to

extend these techniques to two-mode data, because, unlike one-mode data, two-mode data

cannot be assumed to be independent. Despite this problem, Govaert and Nadif (2003,

2008) have been able to use a latent-class approach to cluster two-mode data. They use

a frequentist approach to estimate the parameters, but they are only able to optimize

an approximation of their likelihood function using the EM algorithm (Dempster et al.,

1977). In this chapter we use the same model as Govaert and Nadif (2003, 2008). We,

however, propose a Bayesian estimation procedure. This enables us to estimate the model

parameters properly and to do statistical inference on the results.

The contribution of our Bayesian approach is threefold. First, our approach allows for

statistical inference on the parameter estimates. Govaert and Nadif (2003, 2008) estimate

the model parameters in a frequentist setting, but they are unable to compute standard

errors of the estimated parameters. Our method provides posterior standard deviations

and posterior distributions of the parameters. Therefore, our approach enables hypothesis

testing, which is not feasible in the frequentist setting.

Second, our Bayesian method has fewer computational problems than the maximum

likelihood approach. By using proper priors, we avoid the computational issues with

empty classes which is a known problem with the EM algorithm. Furthermore, because

of the more flexible way Markov Chain Monte Carlo methods search the parameter space,

our Bayesian algorithm is less likely to get stuck in a local optimum of the likelihood

function. This flexibility may, however, cause label switching, see Celeux et al. (2000).

Geweke (2007) has however shown that this problem can be solved.

Finally, our method can help indicate the optimal number of segments. The Bayesian

approach can be used to derive selection criteria such as Bayes factors. Methods previously

proposed in the literature for selecting the optimal number of clusters (see, for example,

Schepers et al., 2008) seem somewhat arbitrary and lack theoretical underpinnings.

We illustrate our Bayesian approach on two data sets. The first is a data set of Supreme

Court voting and was also used by Doreian et al. (2004) and Brusco and Steinley (2006).

Our approach results in a similar solution; however, the optimal numbers of segments

are lower than in either of their solutions. Our second application is a large data set

concerning roll call voting in the United States House of Representatives. The individual

votes data are available at http://www.GovTrack.us. We use our model to cluster both

the representatives and the bills simultaneously.
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The remainder of this chapter is organized as follows. In Section 5.2 we introduce our

new Bayesian approach for clustering two-mode data. We compare it with the existing

frequentist approaches of Govaert and Nadif (2003, 2008). In Section 5.3 we discuss the

posterior simulator for our Bayesian approach together with the selection of the number

of segments. The Bayesian approach is illustrated on the Supreme Court voting data in

Section 5.4. Section 5.5 deals with our second application, which concerns roll call votes

of the United States House of Representatives in 2007. Finally, Section 5.6 concludes.

5.2 The latent-class two-mode clustering model

In this section, we present our Bayesian approach to clustering both modes of two-mode

data simultaneously. We first give a derivation of the likelihood function and then discuss

Bayesian parameter estimation for the latent-class two-mode clustering model.

5.2.1 The likelihood function

For illustrative purposes, we start this discussion with one-mode data, that is, we have N

observations denoted by y = (y1, . . . , yN)′. These observations can be discrete or contin-

uous, and one-dimensional or multidimensional. We assume that each observation comes

from one of K segments, and that the elements within each segment are independently

and identically distributed. As a result, all observations must be independent. Further-

more, we assume that the observations come from a known distribution that is the same

for all segments; only the parameters of the distribution vary over the segments. This can

be described by a mixture model. Let ki ∈ {1, . . . , K} be an indicator for the segment to

which observation yi belongs, and let k = (k1, . . . , kN)′. Then, the likelihood of observing

yi belonging to segment q is

f(yi|ki = q) = g(yi|θq), (5.1)

where g(yi|θq) is the density function of yi in segment q with parameter vector θq. The

segment membership is unknown. We assume that the probability that observation yi

belongs to segment q is given by κq for q = 1, . . . , K, with κq > 0 and
∑K

q=1 κq = 1. We

collect the so-called mixing proportions κq in the vector κ = (κ1, . . . , κK)′. The likelihood

function of this model is given by

l(y|θ, κ) =
N∏

i=1

{
K∑

q=1

κqg(yi|θq)

}
, (5.2)
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where θ = (θ1, . . . , θK)′.

To cluster two-mode data, we would like to extend (5.2) to two-mode data matrices,

with a simultaneous clustering of both rows and columns. We aim to construct a model in

which the observations that belong to the same row cluster and the same column cluster

are independently and identically distributed. In two-mode clustering, unlike in one-mode

clustering, this assumption does not ensure that all observations are independent. As a

result, a straightforward extension of the one-mode likelihood function to two modes will

not adequately model the dependence structure in the data.

Assume that Y is an (N ×M) matrix, and that we want to cluster the rows into K

latent classes and the columns into L latent classes. The obvious natural extension of

(5.2) to two-mode data yields

l(Y |θ, κ, λ) =
N∏

i=1

M∏
j=1

K∑
q=1

L∑
r=1

κqλrg(Yi,j|θq,r), (5.3)

where κ = (κ1, . . . , κK)′ gives the size of each row segment, λ = (λ1, . . . , λL)′ gives the size

of each column segment, and θq,r contains the parameters of observations in row segment

q and column segment r. Model (5.3) fails to impose that all elements in a row belong to

the same row cluster and also does not impose that all elements in a column belong to the

same column cluster; using this model, the data matrix Y would effectively be modeled

as a vector of one-mode data.

To solve this problem, we first rewrite the one-mode likelihood function (5.2) as

l(y|θ, κ) =
N∏
i

{
K∑

q=1

κqg(yi|θq)

}

=

{
K∑

q=1

κqg(y1|θq)

}{
K∑

q=1

κqg(y2|θq)

}
. . .

{
K∑

q=1

κqg(yN |θq)

}

=
K∑

k1=1

K∑

k2=1

· · ·
K∑

kN=1

N∏
i=1

κki
g(yi|θki

)

=
∑

k∈K

K∏
q=1

κ
Nq

k
q

N∏
i=1

g(yi|θki
), (5.4)

where we introduce some new notation in the last line. First, the set K contains all

possible divisions of items into the segments, and thus has KN elements if there are N

items and K possible segments. Second, N q
k equals the number of items belonging to
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segment q according to segmentation k. Thus,
∑K

q=1 N q
k = N for a fixed classification k.

The fact that these two representations of the likelihood function of a mixture model are

equivalent was already noticed by Symons (1981).

Using this representation, we can extend the mixture model to clustering two modes

simultaneously. The resulting likelihood function equals

l(Y |θ, κ, λ) =
∑

k∈K

∑

l∈L

K∏
q=1

κ
Nq

k
q

L∏
r=1

λ
Mr

l
r

N∏
i=1

M∏
j=1

g(Yi,j|θki,lj), (5.5)

where L denotes all possible division of the columns into L segments, M r
l equals the num-

ber of items belonging to segment r according to column segmentation l = (l1, . . . , lM)′.

Note that it is impossible to rewrite (5.5) as a product of likelihood contributions as in

the one-dimensional case (5.2).

5.2.2 Parameter estimation

The likelihood function (5.5) was already proposed by Govaert and Nadif (2003), who

estimate the parameters of this model in a frequentist setting. However, this approach

has several limitations. First, unlike in the one-mode case, the likelihood function (5.5)

cannot be written as a product over marginal/conditional likelihood contributions. As

Govaert and Nadif (2003) already notice, we only have a sample of size 1 from the joint

distribution of Y , k, and l. Hence, given the sample size of 1, the standard results for the

asymptotic properties of the maximum likelihood estimator do not apply here.

Second, standard approaches to maximize the likelihood function (5.5) and estimate

the model parameters are almost always computationally infeasible. Enumerating the

KNLM possible ways to assign the rows and columns to clusters in every iteration of an

optimization routine is only possible for extremely small data sets. To solve this problem,

Govaert and Nadif (2003) instead consider the so-classed classification likelihood approach,

in which k and l are parameters that need to be optimized. Hence one maximizes

l(Y |θ, κ, λ, k, l) =
K∏

q=1

κ
Nq

k
q

L∏
r=1

λ
Mr

l
r

N∏
i=1

M∏
j=1

g(Yi,j|θki,lj) (5.6)

with respect to θ, κ, λ, k ∈ K, and l ∈ L. As the parameter space contains discrete

parameters k and l, standard asymptotic theory for maximum likelihood does not hold.

Govaert and Nadif (2008) also consider the optimization of an approximation to the

likelihood function (5.5). This approximation is based on the assumption that the two
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classifications (that is, the classification of the rows and the classification of the columns)

are independent.

We solve the aforementioned problems by considering a Bayesian approach. This has

several advantages. The first advantage is that we do not have to rely on asymptotic

theory for inference. We can use the posterior distribution to do inference on the model

parameters. Furthermore, it turns out that we do not need to evaluate the the likelihood

specification (5.5) to obtain posterior results. Posterior results can easily be obtained

using a Markov Chain Monte Carlo [MCMC] sampler with data augmentation (Tanner

and Wong, 1987). Data augmentation means that the latent variables (in our case k and l)

are simulated alongside the model parameters θ, κ, and λ. This amounts to applying the

Gibbs sampler to the complete data likelihood in (5.6). As Tanner and Wong (1987) show,

posterior results from the complete data likelihood function are the same as posterior

results from the likelihood function. As we can rely on the complete data likelihood (5.6)

and do not have to consider (5.5), obtaining posterior results is computationally feasible.

Furthermore, unlike previous authors (see, for example, Govaert and Nadif, 2003, 2008),

we can provide statistical rules for choosing the numbers of segments, which we will do in

Section 5.3.2. Finally, our method does not suffer as much from computational difficulties

when searching the global optimum of the likelihood function. The EM algorithm is known

to get stuck in local optima of the likelihood function, which often occurs in local optima

with one or more empty segments. Because we rely on MCMC methods, our approach

has fewer problems with local optima. Furthermore, using proper priors, we can avoid

solutions with empty segments, see also Dias and Wedel (2004) for similar arguments.

5.3 Posterior simulator

As discussed previously, we rely on MCMC methods to estimate the posterior distributions

of the parameters of the two-mode mixture model. We propose a Gibbs sampler (Geman

and Geman, 1984) with data augmentation (Tanner and Wong, 1987), in which we sample

the vectors k and l alongside the model parameters. This approach allows us to sample

from the posterior distributions of the parameters without evaluating the full likelihood

function and therefore requires limited computation time. We assume independent priors

for the model parameters with density functions f(κ), f(λ), and f(θ). In Section 5.3.1,

we derive the Gibbs sampler. The choice of the number of segments is discussed in

Section 5.3.2.



5.3 Posterior simulator 85

5.3.1 The Gibbs sampler

In each iteration of the Gibbs sampler, we need to draw the parameters θ, κ, and λ

together with the latent variables k and l from their full conditional distributions. The

MCMC simulation scheme is as follows

• Draw κ, λ|θ, k, l, Y

• Draw k|κ, λ, θ, l, Y

• Draw l|κ, λ, θ, k, Y

• Draw θ|κ, λ, k, l, Y

Below we derive the full conditional posteriors, which are needed for the Gibbs sampler.

The Gibbs sampler results in a series of draws from the posterior distributions of the

parameters θ, κ, and λ. These draws can be used to compute posterior means, posterior

standard deviations, and highest posterior density regions. Because we use data augmen-

tation, we also obtain draws from the posterior distributions of k and l. This enables

us to compute the posterior distributions for each row and column of data over the seg-

ments. We can store the posterior distributions in matrices Q and R, where Q is of size

(N ×K), and R is of size (M ×L). Each row of Q contains the posterior distribution of a

row of data over the K possible row segments, and each row of R contains the posterior

distribution of a column of data over the L possible column segments.

Sampling of κκκ and λλλ

The full conditional density of κ is given by

f(κ|θ, λ, k, l, Y ) ∝ l(Y |θ, κ, λ, k, l)f(κ)

∝
K∏

q=1

κ
∑N

i=1 I(ki=q)
q f(κ), (5.7)

where f(κ) is the prior density of κ, and I(.) is an indicator function that equals 1 if the ar-

gument is true and 0 otherwise. The first part of (5.7) is the kernel of a Dirichlet distribu-

tion (see, for example, Frühwirth-Schnatter, 2006). If we specify a Dirichlet(d1, d2, . . . , dK)

prior distribution for κ, the full conditional posterior is also a Dirichlet distribution with

parameters
∑N

i=1 I(ki = 1) + d1,
∑N

i=1 I(ki = 2) + d2, . . .,
∑N

i=1 I(ki = K) + dK .
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If we take a Dirichlet(d1, d2, . . . , dL) prior for λ, the λ parameters can be sampled in

exactly the same way. The full conditional posterior density is now given by

f(λ|θ, κ, k, l, Y ) ∝
L∏

r=1

λ
∑M

j=1 I(lj=r)
r f(λ), (5.8)

where f(λ) denotes the prior density. Hence, we can sample λ from a Dirichlet distribution

with parameters
∑M

j=1 I(lj = 1) + d1,
∑M

j=1 I(lj = 2) + d2, . . . ,
∑M

j=1 I(lj = L) + dL.

Sampling of kkk and lll

We sample each element of k and l separately. The full conditional density of ki is given

by

p(ki|θ, κ, λ, k−i, l, Y ) ∝ p(Yi|ki, θ, κ, λ, l)

∝ κki

M∏
j=1

g(Yi,j|θki,lj), (5.9)

for ki = 1, . . . , K, where k−i denotes k without ki, and Yi denotes the ith row of data

from Y . Hence, ki can be sampled from a multinomial distribution for i = 1, . . . , N . In a

similar way we can derive the full conditional density of lj which equals

p(lj|θ, κ, λ, k, l−j, Y ) ∝ λlj

N∏
i=1

g(Yi,j|θki,lj), (5.10)

for lj = 1, . . . , L, where l−j denotes l without lj. We can sample lj from a multinomial

distribution.

Sampling of θθθ if YYY has a Bernoulli distribution

The sampling of the θ parameters depends on the specification of g(Yi,j|θq,r). With our

application in mind we now assume that Yi,j is a binary random variable with a Bernoulli

distribution with probability pq,r for an element in row segment q and column segment r,

that is,

g(Yi,j|θq,r) = Y
pq,r

i,j (1− Yi,j)
1−pq,r . (5.11)

Let P denote the (K × L) matrix containing these probabilities for each combination of

a row segment and a column segment, so that θ = P .



5.3 Posterior simulator 87

To sample pq,r, we need to derive its full conditional density, which is given by

f(pq,r|P−q,r, κ, λ, k, l, Y )

∝ f(Y |pq,r, P−q,r, κ, λ, k, l)f(pq,r)

∝
∏
i∈Q

∏
j∈R

pYi,j
q,r (1− pq,r)

1−Yi,jf(pq,r)

∝ p
∑N

i=1

∑M
j=1 I(ki=q)I(lj=r)Yi,j

q,r (1− pq,r)
∑N

i=1

∑M
j=1 I(ki=q)I(lj=r)(1−Yi,j)f(pq,r), (5.12)

where Q is the set containing all rows that belong to segment q, R contains all columns

that belong to segment r, P−q,r denotes P without pq,r and f(pq,r) denotes the prior

density of pq,r. The first part of (5.12) is the kernel of a beta distribution. If we specify

a Beta(b1, b2) prior distribution, the full conditional posterior distribution is also a beta

distribution with parameters
∑N

i=1

∑M
j=1 I(ki = q)I(lj = r)Yi,j + b1 and

∑N
i=1

∑M
j=1 I(ki =

q)I(lj = r)(1− Yi,j) + b2.

Sampling of θθθ if YYY has a Normal distribution

If Yi,j is a normally distributed variable, with mean µq,r and variance σ2
q,r in row segment

q and column segment r, then

g(Yi,j|θq,r) =
1√

2πσ2
q,r

exp

{
−1

2

(Yi,j − µq,r)
2

σ2
q,r

}
. (5.13)

Let µ and Σ denote the (K×L) matrices containing the means and variances, respectively,

for each combination of a row segment and a column segment; hence θ = {µ, Σ}.
To sample µq,r, we need to derive its full conditional distribution, which is given by

f(µq,r|µ−q,r, Σ, κ, λ, k, l, Y )

∝ f(Y |µq,r, µ−q,r, Σ, κ, λ, k, l)f(µq,r)

∝ exp

[
−

∑
i∈Q

∑
j∈R(Yi,j − µq,r)

2

2σ2
q,r

]
f(µq,r)

∝ exp

[
−(µq,r − 1/N q,r

k,l

∑
i∈Q

∑
j∈R Yi,j)

2

2σ2
q,r/N

q,r
k,l

]
f(µq,r), (5.14)

where µ−q,r denotes µ without µq,r, f(µq,r) denotes the prior of µq,r, and N q,r
k,l denotes the

number of elements that are both in row segment q and column segment r according to

k and l and is equal to
∑N

i=1

∑M
j=1 I(ki = q)I(lj = r). As some segments may become
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empty in one of the iterations, we propose to use a proper prior. In this case, the first

part of (5.14) is the kernel of a normal distribution; therefore, using a normal prior is an

obvious choice. Let the prior distribution have mean µ0 and variance σ2
0. Then, the full

conditional posterior distribution is also normal with

f(µq,r|µ−q,r, Σ, κ, λ, k, l, Y ) ∼ N
(

σ−2
0

σ−2
0 + s−2

µ0 +
s−2

σ−2
0 + s−2

µ̄, (σ−2
0 + s−2)−1

)
, (5.15)

where µ̄ = 1/N q,r
k,l

∑
i∈Q

∑
j∈R Yi,j, the sample average within the cluster, and s2 =

σ2
q,r/N

q,r
k,l .

The full conditional distribution of σ2
q,r is given by

f(σ2
q,r|µ, Σ−q,r, κ, λ, k, l, Y )

∝ f(Y |µ, σ2
q,r, Σ−q,r, κ, λ, k, l)f(σ2

q,r)

∝ (σ2
q,r)

Nq,r
k,l /2 exp

[
−

∑
i∈Q

∑
j∈R(Yi,j − µq,r)

2

2σ2
q,r

]
f(σ2

q,r),

(5.16)

where Σ−q,r denotes Σ without σ2
q,r, and f(σ2

q,r) denotes the prior of σ2
q,r. The first part of

(5.16) is the kernel of an inverted gamma-2 distribution. Again, using a proper prior may

be advisable. If we specify an inverted gamma-2 prior with parameters g1 and g2, the full

conditional posterior has an inverted gamma-2 distribution with parameters N q,r
k,l +g1 and∑

i∈Q
∑

j∈R(Yi,j − µq,r)
2 + g2. The prior essentially adds g1 observations with an average

variance of g2/g1 to each combination of a row segment and a column segment.

Note that if Yi,j has neither a Bernoulli nor a Normal distribution, we only have to

adjust the term g(Yi,j|θki,lj) for sampling k and l and the sampling θ in the appropriate

manner.

5.3.2 Selecting the numbers of segments

The usual way to determine the numbers of clusters in a finite mixture model in a fre-

quentist framework is to use information criteria such as AIC, AIC-3, BIC, and CAIC

(see, for example, Fraley and Raftery, 1998; Andrews and Currim, 2003). The reason for

this is that standard tests for determining the optimal number of classes in latent-class

models are not valid due to the Davies (1977) problem. Within a Bayesian framework,

we can avoid this problem by computing Bayes factors (see, for example, Berger, 1985;
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Kass and Raftery, 1995; Han and Carlin, 2001). Unlike hypothesis tests, Bayes factors

can be used to compare several possibly nonnested models simultaneously; Bayes factors

naturally penalize complex models. The Bayes factor for comparing Model 1 with Model

2 is defined as

B21 =
f(Y |M2)

f(Y |M1)
, (5.17)

where f(Y |Mi) denotes the marginal likelihood of model Mi, i = 1, 2.

Computing the value of the marginal likelihood is not an easy task. Theoretically, its

value can be estimated by averaging the likelihood function over draws from the prior

distribution. If the support of the prior distribution does not completely match with

the support of the likelihood function, the resulting estimate will be very poor. Another

strategy is to use the harmonic mean estimator of Newton and Raftery (1994). However,

this estimator is often quite unstable. In this chapter, we estimate the marginal likelihood

using the fourth estimator proposed by Newton and Raftery (1994, p. 22), which is also

used by DeSarbo et al. (2004) in a similar model. This estimator uses importance sampling

to compute the marginal likelihood value. The importance sampling function is a mixture

of the prior and the posterior distribution with mixing proportion δ. Using the fact that

the marginal likelihood is the expected value of the likelihood function with respect to

the prior, one can show that the marginal likelihood f(Y ) can be estimated using the

iterative formula

f̂(Y ) =
δm/(1− δ) +

∑m
i=1(f(Y |ϑ(i))/(δf̂(Y ) + (1− δ)f(Y |ϑ(i))))

δm/(1− δ)f̂(Y ) +
∑m

i=1(δf̂(Y ) + (1− δ)f(Y |ϑ(i)))−1
, (5.18)

where m denotes the number of draws ϑ(i) from the posterior distribution and where we

drop the model M for notational convenience. To apply the formula, we need to choose

the value δ; Newton and Raftery (1994) recommend using a low value of δ, which we set

to 0.001 in our application below.

Obtaining an accurate value of the marginal likelihood for any moderately sophisti-

cated model tends to be hard, as was noted by Han and Carlin (2001). Therefore, we

also propose a simpler alternative method to choose the numbers of segments, based on

information criteria. Simulations in Andrews and Currim (2003) suggest that the AIC-3

of Bozdogan (1994) performs well as a criterion for selecting numbers of segments. To

evaluate the AIC-3, we need the maximum likelihood value and the number of parameters.

To compute the maximum likelihood value, we take the highest value of the likelihood

function (5.6) across the sampled parameters.
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Determining the number of parameters is not as straightforward as usual. The pa-

rameters θ, κ, and λ contain wKL, K − 1, and L − 1 parameters, respectively, where w

denotes the number of parameters in θ per cluster. However, even though k and l contain

the same numbers of parameters for all numbers of latent classes, the number of possible

values for each parameter increases. We can think of k as an (N ×K) indicator matrix,

where each row indicates to which segment an object belongs. This means that k and l

contain N(K − 1) and M(L− 1) free parameters, respectively. Hence, the effective total

number of parameters is wKL + NK + ML + K + L−M −N − 2.

5.4 Application 1: Supreme Court voting data

We apply the latent-class two-mode clustering model to two empirical data sets. The first

data set, which is discussed in this section, is the Supreme Court voting data of Doreian

et al. (2004). We use this data set to compare the results of our approach with the results

of previous authors, and we discuss this data set relatively briefly. The second data set

will be analyzed in greater detail in the next section. The Supreme Court voting data set

comprises the decisions of the nine Justices of the United States Supreme Court on 26

important issues. The data are displayed in Table 5.1. In this table, a 1 reflects that the

Justice voted with the majority, and a 0 means that the Justice voted with the minority.

To describe the votes, we use a Bernoulli distribution with a Beta(1, 1) prior for the

probability, which is equivalent to a uniform prior on (0,1). Furthermore, we use an

uninformative Dirichlet(1, 1, . . . , 1) prior for both κ and λ. To determine the optimal

numbers of segments, we compute the marginal likelihoods for several values of K and

L. Table 5.2 display the values of ln f(Y ) for each combination of K = 1, . . . , 6 rows

segments and L = 1, . . . , 6 column segments. The highest marginal likelihood is achieved

with K = 2 segments for the issues and L = 3 segments for the Justices.

To analyze the results, it is possible to weight the results with different numbers of

segments according to the posterior model probabilities that follow from the marginal

likelihoods. However, we find it more convenient to consider the results for only one value

of K and L. Therefore, we focus on the solution with the highest marginal likelihood

value, that is, K = 2 segments of issues and L = 3 segments of Justices. Note that we

find fewer segments than Doreian et al. (2004), who applied blockmodeling to this data

set and found 7 clusters for the issues and 4 clusters for the Justices. Brusco and Steinley

(2006) ended up with 5 clusters for the issues and 3 clusters for the Justices.
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Table 5.2: Log marginal likelihoods for the Supreme Court Voting

Data

Segments of Justices

Segments of issues 1 2 3 4 5 6

1 -155.56 -160.96 -164.17 -166.28 -168.13 -169.96

2 -172.98 -117.69 -109.98 -111.00 -112.27 -114.02

3 -183.29 -124.17 -112.17 -113.83 -114.63 -116.56

4 -189.60 -129.92 -115.57 -117.72 -119.27 -118.61

5 -194.88 -133.45 -118.78 -120.00 -121.50 -121.51

6 -199.67 -137.27 -122.29 -122.66 -125.84 -126.28

We experience label switching in our MCMC sampler. Two of the segments of Justices

switched places twice in our chain of 100,000 draws. However, we could easily identify

where the switching took place. As suggested by Geweke (2007), we solved the label

switching problem by sorting the draws in an appropriate way.

The posterior means and standard deviations of P , κ, and λ are shown in Table 5.3.

Tables 5.4 and 5.5 show the marginal posterior distributions of the issues and the Justices

over the segments. We find that Justices Ginsburg, Stevens, Breyer, and Souter constitute

the liberal wing (that is, the left wing) of the Supreme Court. The Court’s moderate wing

comprises Justices O’Connor and Kennedy, and the conservative wing (that is, the right

wing) consists of Justices Rehnquist, Scalia, and Thomas. The segments of the issues

consist of issues that resulted in liberal decisions (segment 1) and issues that resulted in

conservative decisions (segment 2). We find strong partisan tendencies in the Supreme

Court: liberal Justices support liberal decisions in 97% of the cases, and conservative

Table 5.3: Mean posterior results, with posterior standard deviations in parentheses,

for K = 2 and L = 3 in the Supreme Court Data.

Segment of Justices

Segment of issues 1 2 3 Posterior segment size

Interpretation liberal moderate conservative

1 (liberal majority) 0.97 (0.03) 0.68 (0.10) 0.10 (0.07) 0.46 (0.10)

2 (conservative majority) 0.26 (0.07) 0.84 (0.07) 0.97 (0.03) 0.54 (0.10)

Posterior segment size 0.42 (0.14) 0.25 (0.12) 0.33 (0.13)
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Table 5.4: Marginal posterior distribution of

the Justices over the segments.

Justice 1 2 3

Breyer 1.00 0.00 0.00

Ginsburg 1.00 0.00 0.00

Stevens 1.00 0.00 0.00

Souter 1.00 0.00 0.00

O’Connor 0.00 1.00 0.00

Kennedy 0.00 0.98 0.02

Rehnquist 0.00 0.00 1.00

Thomas 0.00 0.00 1.00

Scalia 0.00 0.00 1.00

Interpretation liberal moderate conservative

Justices also support conservative decisions with a 97% probability. The liberal Justices

sometimes (in 26% of the cases) vote for a conservative decision, whereas conservative

Justices seldom support a liberal decision. Because of their centrist position in the court,

the moderate Justices usually are in the majority. However, the moderate Justices are

slightly more likely to support conservative decisions than liberal decisions. In general,

the uncertainty in these classifications is low, especially given the relatively small size of

the data set. The Justices and almost all issues can be assigned to one segment with a

posterior probability close to 1.

The clustering of the Justices, as displayed in Table 5.4, is equal to the one found in

Brusco and Steinley (2006). However, Doreian et al. (2004) divide the Justices into four

segments. The two moderate Justices, O’Connor and Kennedy, are both an entire cluster

on their own.

The segmentation of the issues deviates more from the solutions of Doreian et al. (2004)

and Brusco and Steinley (2006), who find 7 and 5 segments, respectively. First, they

both divide our liberal majority cluster into 3 clusters, depending on whether O’Connor,

Kennedy or both of them voted with the liberal Justices. Second, they divide our con-

servative majority cluster into 2 or 4 clusters. They both find a cluster where all liberal

justices vote with the minority, except that Doreian et al. (2004) add Free Speech to this

cluster. With the remaining issues, both some or all of the liberal Justices, and some or

all of the conservative Justices voted with the majority. The allocation of these issues is
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Table 5.5: Marginal posterior distribution of the issues over the segments.

Issue \ Segment 1 2 Issue \ Segment 1 2

2000 Presidential Election 0.00 1.00 Clean Air Act 0.20 0.80

Federalism 0.00 1.00 Illegal Search 3 0.57 0.43

Clean Water 0.00 1.00 PGA vs. Handicapped 1.00 0.00

Title VI Disabilities 0.00 1.00 Illegal Search 1 1.00 0.00

Tobacco Ads 0.00 1.00 Illegal Search 2 1.00 0.00

Labor Rights 0.00 1.00 Stay of Execution 1.00 0.00

Property Rights 0.00 1.00 Privacy 1.00 0.00

Citizenship 0.00 1.00 Immigration Jurisdiction 1.00 0.00

Free Speech 0.00 1.00 Detaining Criminal Aliens 1.00 0.00

Seat Belts 0.00 1.00 Legal Aid for the Poor 1.00 0.00

United Foods 0.00 1.00 Voting Rights 1.00 0.00

New York Times Copyright 0.00 1.00 Deporting Criminal Aliens 1.00 0.00

Cannabis for Health 0.01 0.99 Campaign Finance 1.00 0.00

Majority liberal conservative Majority liberal conservative

less marked, especially Illegal Search 3, which has an almost equal posterior probability

of belonging to either cluster. This is the only issue where both moderate Justices voted

with the minority and, according to Doreian et al. (2004), it is a cluster of its own. The

Clean Air Act is the only issue that was decided unanimously and is therefore also a bit

harder to classify. Doreian et al. (2004) cluster it together with New York Times Copy-

right and Cannabis for Health into a segment for which there was a (nearly) unanimous

decision.

5.5 Application 2: Roll call voting data

5.5.1 Data

To apply our method to a larger data set, we consider the voting behavior of the entire

United States House of Representatives. The details of each roll call vote of the United

States congress are published on the website http://www.GovTrack.us. We gathered

data on all roll call votes from the House of Representatives in 2007. We only use data

on votes that are related to a bill. We thus obtain data on 766 roll call votes from 427
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Table 5.6: Sample means of the individual character-

istics for the whole House, Democrats, and Republi-

cans.

House Democrats Republicans

Size 1.00 0.54 0.46

Democrat 0.54 1.00 0.00

Female 0.16 0.20 0.10

Age 55.73 56.54 54.78

Region

Pacific 0.16 0.19 0.12

Mountain 0.07 0.05 0.09

West North Central 0.07 0.07 0.08

East North Central 0.15 0.14 0.17

Middle Atlantic 0.14 0.18 0.10

New England 0.05 0.09 0.01

West South Central 0.11 0.08 0.15

East south Central 0.06 0.05 0.08

South Atlantic 0.18 0.15 0.22

members of the House of Representatives in 2007. There are four possible types of votes:

yea, nay, no vote, and present. A no vote means that the representative was absent at

the moment of voting; this is the case for 3.5% of the observations. A present vote means

that the representative is present, but votes neither yea nor nay, which happens only 143

times (0.00%).

We did not recode our data, such that the majority vote always gets a 1, or that the

side which the (majority of) Democrats prefer always gets a 1. These recodings have been

done in the past, for example with the Supreme Court voting data from Section 5.4. The

argument for doing so is that for each bill it is possible to provide an opposite bill for

which every representative will vote the opposite. However, this argument does not take

into account that there is a status quo, from which a bill deviates. This means that the

hypothetical opposite bill is one that goes from the new position towards the status quo.

We think that it is interesting to see in which direction a bill deviates from the status

quo; this information would be lost if we recoded the votes.
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Table 5.7: The numbers of bills prepared by each House Committee

Administration 14 Intelligence (Permanent Select) 15

Agriculture 18 Judiciary 51

Appropriations 291 Natural Resources 50

Armed Services 43 Oversight and Government Reform 57

Budget 14 Rules 9

Education and Labor 51 Science and Technology 43

Energy and Commerce 44 Small Business 26

Financial Services 98 Transportation and Infrastructure 69

Foreign Affairs 44 Veterans’ Affairs 15

Homeland Security 55 Ways and Means 42

We collected some additional information on the representatives from GovTrack.us.

We have data on their party membership, gender, age on January 1st 2007, and state

from which they were elected. Table 5.6 shows the means for these variables for the

entire House of Representatives and for the Democrats and Republicans separately. In

2007, the Democrats had a majority in the House of 53.9%, and there were no third-party

or independent representatives. There is a fairly large difference in the share of female

representatives between the Democrats (20.4%) and the Republicans (10.1%). The age is

about the same for representatives from both parties. We aggregated the representatives’

home state into nine regions.

We also collected more information on the bills. Before a bill comes to a vote in the

House of Representatives, it is prepared by one or more committees. There are twenty

such committees in the House. Table 5.7 shows the committees and how many bills they

prepared. The committee that handles the largest number of bills is Appropriations, which

controls the disbursement of funds. The Rules committee influences what is discussed and

voted upon; this committee is not primarily concerned with bills and only prepared nine of

them. Most other committees deal with specific topics. The committee(s) that prepared

a bill is an indication for the subject of the bill. Having this information should help us

interpret the clusters of bills. Identifying the segments of bills helps us to understand the

segments of representatives in a better way, as we know what types of bills they support

and oppose.

Other papers have analyzed roll call voting as well. Poole and Rosenthal (1991),

Heckman and Snyder Jr. (1997), and Nelson (2002) try to estimate latent preferences
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of representatives, based on their voting behavior. De Leeuw (2006) plots the relative

positions of representatives into a two-dimensional space. The paper that most closely

resembles ours is Hartigan (2000), who clusters the members of the United States Senate,

as well as the bills that they vote on. However, he does not cluster the two dimen-

sions simultaneously, but alternates between clustering one dimension conditional on the

segmentation of the other dimension, until convergence.

5.5.2 Results

We apply the latent-class two-mode clustering model to the roll call voting data. We

assign a 1 to yea votes and a 0 to nay votes; we treat the response options no vote

and present as missing observations. Again, we describe the individual votes using a

Bernoulli distribution with a Beta(1, 1) prior for the probability. Furthermore, we use an

uninformative Dirichlet(1, 1, . . . , 1) prior for both κ and λ.

To determine the numbers of segments, we now opt for the AIC-3 criterion as described

in Section 5.3.2. To prevent the Gibbs sampler from getting stuck in a local optimum

of the likelihood function, we sample 10 sets of 10 MCMC chains, and each of the 100

MCMC chains has length 200. For each set, the MCMC chain that attains the highest

Table 5.8: AIC-3 values for K = 2, . . . , 12 segments of bills and L = 2, . . . , 10 seg-

ments of representatives.

Segments Segments of representatives

of bills 2 3 4 5 6 7 8 9 10

2 251,889 245,490 242,752 242,630 243,333 244,062 245,130 246,267 247,433

3 206,373 197,752 193,995 193,132 193,360 193,966 194,899 195,951 197,020

4 191,907 181,359 177,459 176,081 176,193 176,556 177,376 178,328 179,349

5 186,493 175,547 170,848 169,409 169,370 169,698 170,476 171,396 172,353

6 181,998 170,774 165,959 164,315 164,261 164,480 165,229 166,115 167,061

7 179,889 168,300 163,112 161,363 161,263 161,449 162,178 163,044 163,920

8 179,620 167,790 162,484 160,722 160,516 160,698 161,421 162,244 163,136

9 179,565 167,459 162,080 160,182 160,015 160,056 160,745 161,567 162,449

10 179,531 167,209 161,744 159,715 159,530 159,553 160,194 161,011 161,837

11 180,904 168,414 162,822 160,696 160,443 160,346 160,986 161,810 162,621

12 182,500 169,944 164,292 162,167 161,802 161,671 162,248 163,065 163,854
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Table 5.9: Posterior means and posterior standard deviations in

parentheses of P , κ, and λ.

Segment of representatives

Segment of bills 1 2 3 4 5 6 κ

1 0.00 0.01 0.20 0.87 0.98 0.99 0.19

(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

2 1.00 1.00 1.00 1.00 1.00 0.98 0.18

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

3 0.01 0.03 0.17 0.45 0.83 0.93 0.13

(0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01)

4 0.01 0.01 0.07 0.13 0.30 0.79 0.12

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

5 0.99 0.97 0.84 0.14 0.02 0.02 0.09

(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01)

6 1.00 0.99 0.95 0.65 0.25 0.10 0.08

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

7 1.00 1.00 0.99 0.95 0.83 0.48 0.08

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01)

8 0.11 0.41 0.78 0.93 0.97 0.98 0.05

(0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01)

9 0.71 0.91 0.95 0.97 0.98 0.97 0.05

(0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.01)

10 0.74 0.49 0.34 0.25 0.09 0.15 0.04

(0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

λ 0.29 0.17 0.08 0.12 0.17 0.17

(0.02) (0.02) (0.01) (0.02) (0.02) (0.02)

likelihood value is chosen, and this MCMC chain is allowed to run for an additional 3,000

iterations. The highest likelihood value that is attained during these 3,000 iterations

over all sets of MCMC chains is then used as the final maximum likelihood value. This

likelihood value serves as input for the AIC-3 information criterion.

Table 5.8 displays the AIC-3 values. The lowest AIC-3 value is attained with K = 10

segments of bills and L = 6 segments of representatives; the corresponding log-likelihood

value is −66, 108.70. For these numbers of segments, we sample an additional 100,000
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Figure 5.1: Graphical Representation of Voting Data Set Before and After Reordering of

Rows and Columns.
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iterations from the chain that had the highest likelihood value. Due to the large size

of the data set, we have no problems with label switching (Celeux et al., 2000; Geweke,

2007). In the remainder of this section, we present and interpret the results for this model

specification.

Table 5.9 shows the posterior means and standard deviations for P , κ, and λ. The first

thing to notice is that except for segments (of bills) 9 and 10, the posterior means of the

yea voting probabilities in all rows are monotonously increasing or decreasing. There are

only deviations from monotonicity in segments 9 and 10 in representative class 6. These

results imply that the political preferences in the House are one-dimensional. Bills from

segment 2 are approved more or less unanimously, and bills from segments 7 and 9 are

also widely supported. Bills from other segments seem to be backed by representatives

from either segments 1-3 or segments 4-6. In the next subsection, we show that these

segments mainly contain Democrats and Republicans, respectively.

To show the effectiveness of our two-mode clustering method, we show graphical repre-

sentations of the roll call voting data set before and after reordering the rows and columns

according to their segment in Figure 5.1. For this reordering, we used the segmentation k

and l that yielded the highest likelihood value. Before reordering the rows and columns,

it is already apparent that some structure exists in the data; after reordering, the nature

of the block structure becomes clear.
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Interpretation of segments

For each row (bill) and for each column (representative), we compute the marginal poste-

rior distribution over the segments. This allow us to compute the means of our explanatory

variables within each of the latent classes. Table 5.10 shows the posterior means of the

individual characteristics of the representatives over the latent classes. The main result is

that the first three segments consist of Democrats, and the last three contain Republicans.

We know from Table 5.9 that voting behavior is monotonous; therefore, we can interpret

segments 1 and 6 as very partisan Democrats and Republicans, respectively. Segments

2 and 5 seem to be typical Democrats and Republicans, respectively, and the ones in

segments 3 and 4 are relatively moderate. Note that segments 3 and 4 are not completely

Table 5.10: Posterior means of personal variables for each segment of

representatives.

Segment of representatives 1 2 3 4 5 6 Total

Democrat 1.00 1.00 0.97 0.02 0.00 0.00 0.54

Female 0.29 0.08 0.16 0.16 0.08 0.08 0.16

Age 59.30 57.44 50.79 57.68 55.19 55.06 55.73

Region 9

Pacific 0.27 0.12 0.03 0.10 0.14 0.12 0.16

Mountain 0.03 0.06 0.09 0.08 0.03 0.15 0.07

West North Central 0.03 0.12 0.09 0.08 0.07 0.08 0.07

East North Central 0.13 0.14 0.16 0.26 0.14 0.15 0.15

Middle Atlantic 0.22 0.12 0.13 0.27 0.06 0.03 0.14

New England 0.12 0.07 0.00 0.02 0.00 0.00 0.05

West South Central 0.04 0.12 0.15 0.00 0.21 0.19 0.11

East South Central 0.01 0.06 0.16 0.02 0.15 0.04 0.06

South Atlantic 0.14 0.18 0.19 0.18 0.20 0.25 0.18

Region 4

West 0.30 0.18 0.13 0.18 0.17 0.27 0.22

Mid West 0.17 0.26 0.25 0.34 0.21 0.23 0.23

North East 0.34 0.20 0.13 0.29 0.06 0.03 0.19

South 0.19 0.36 0.50 0.20 0.57 0.48 0.36

Segment size 0.29 0.17 0.08 0.12 0.17 0.17 1.00
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homogenous, which means that there is a little overlap between these moderate Democrats

and Republicans.

Further, we can see that there are relatively more females in the left wing. Not only

are females more often Democrats than Republicans, also within their parties they seem

to be on the left side. The effect of age seems to be non-existent within the Republican

party, but within the Democratic party, the younger representatives seem more moderate

than the older ones.

There are also some clear regional patterns. Representatives from states in the West

are more extreme in their voting behavior, as there are few representatives from these

states that are in the moderate clusters 3 and 4. Interestingly, it seems that representatives

from the Pacific are responsible for the left wing, while the right wing representatives seem

to come mainly from the Mountain states. Representatives from the Mid West on the

other hand seem to be more moderate than the national average, though the effect is

not as strong. In the North East, we find that the Democrats are hard liners, and the

Republicans are moderate. Lastly, in the South, we find that the Democrats are moderate,

whereas the Republicans belong more to the hard line segments.

Table 5.11 contains the posterior means of the committees for the segments of bills.

The results are less pronounced than for the representatives. For example, the posterior

means for segment 1 closely resemble the entire sample (that is, the final column in the

table), except that segment 1 contains relatively many bills from the Financial Services

committee.

Nevertheless, there are some striking results. Bills from the Veterans affairs committee

all belong to segment 2, which contains bills that receive nearly unanimous support.

Transportation and Infrastructure is relatively common in segments 5, 6, 7, and 10, which

are all primarily favored by Democrats. Bills from the Judiciary committee can primarily

be found in segments 2, 7, and 9. These segments are the ones for which the voting is

almost unanimously yea. Segment 4 almost solely contains bills from the Appropriations

committee. Only the hard-line Republicans from class 6 vote in majority (79%) yea for

these bills. To a lesser extent, this is also true for bills from segment 3, though there

is a little more support for these bills, even from some of the moderate Democrats in

segment 3.



102 A Bayesian Approach to Two-Mode Clustering

Table 5.11: Posterior means of committees for each segment of bills.

Segment of bills 1 2 3 4 5 6 7 8 9 10 Total

Administration 0.01 0.03 0.00 0.00 0.04 0.02 0.00 0.00 0.09 0.03 0.02
Agriculture 0.01 0.01 0.03 0.00 0.03 0.00 0.02 0.02 0.00 0.28 0.02
Appropriations 0.36 0.05 0.66 0.92 0.27 0.24 0.07 0.58 0.37 0.38 0.38
Armed Services 0.06 0.05 0.02 0.00 0.12 0.00 0.05 0.02 0.14 0.27 0.06
Budget 0.03 0.00 0.00 0.00 0.07 0.05 0.02 0.02 0.00 0.00 0.02
Education and Labor 0.07 0.05 0.08 0.00 0.11 0.15 0.09 0.00 0.06 0.10 0.07
Energy and Commerce 0.07 0.11 0.01 0.00 0.07 0.08 0.05 0.00 0.03 0.10 0.06
Financial Services 0.24 0.09 0.15 0.03 0.03 0.24 0.14 0.12 0.03 0.07 0.13
Foreign Affairs 0.05 0.08 0.03 0.00 0.06 0.02 0.09 0.00 0.09 0.35 0.06
Homeland Security 0.08 0.05 0.02 0.02 0.19 0.05 0.05 0.12 0.14 0.13 0.07
Intelligence (Permanent Select) 0.04 0.00 0.00 0.00 0.07 0.02 0.02 0.05 0.03 0.00 0.02
Judiciary 0.04 0.14 0.00 0.00 0.07 0.03 0.16 0.02 0.23 0.07 0.07
Natural Resources 0.08 0.09 0.03 0.00 0.10 0.14 0.05 0.02 0.03 0.10 0.07
Oversight and Government Reform 0.03 0.17 0.02 0.00 0.10 0.07 0.14 0.05 0.09 0.10 0.07
Rules 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.06 0.03 0.01
Science and Technology 0.04 0.10 0.04 0.01 0.05 0.02 0.09 0.07 0.09 0.10 0.06
Small Business 0.05 0.05 0.01 0.00 0.01 0.02 0.11 0.00 0.00 0.10 0.03
Transportation and Infrastructure 0.06 0.09 0.05 0.03 0.17 0.18 0.15 0.07 0.06 0.10 0.09
Veterans’ Affairs 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Ways and Means 0.06 0.04 0.00 0.01 0.18 0.11 0.05 0.02 0.11 0.00 0.05

Segment size 0.19 0.18 0.13 0.12 0.09 0.08 0.08 0.05 0.05 0.04 1.00

5.6 Conclusions

We have developed a Bayesian approach to do inference in a latent-class two-mode clus-

tering model. The advantage of the Bayesian approach is that it allows for statistical

inference on the model parameters, which is not possible using the maximum likelihood

approach. The Bayesian approach also allows us to do statistical inference on the num-

ber of segments using marginal likelihoods. An alternative way to select the numbers

of segments is to consider information criteria. The third advantage of using Bayesian

estimation techniques is that we run into fewer computational problems during estimation.

We have applied our model to the Supreme Court voting data set of Doreian et al.

(2004) and Brusco and Steinley (2006). The marginal likelihoods used to determine the

optimal numbers of segments indicate fewer segments than were found in these previous

studies. In the second example, we consider roll call votes from the United States House
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of Representatives in 2007. We detect six segments of representatives and ten segments of

bills. Three of the individual segments contain Democrats and the other three segments

contain Republicans, though there is a little overlap. There are also clear regional effects.

Another advantage of our approach is that it can easily be extended in several direc-

tions. First, it can be adapted for use with data matrices with arbitrary distributions,

though we have only derived posterior samplers for Bernoulli and normally distributed

data. Second, it can be adapted for three-mode data (Schepers et al., 2006). Third,

explanatory variables can be added, either with segment-dependent effects or as concomi-

tant variables, that is, variables explaining why a row (or column) belongs to a certain

segment, see Dayton and MacReady (1988).





Nederlandse samenvatting

(Summary in Dutch)

In dit proefschrift introduceren we nieuwe toepassingen van finite mixture verdelingen in

econometrische modellen. Een finite mixture verdeling is een type statistische verdeling.

Een statistische verdeling beschrijft de kans op elke mogelijke uitkomst van een varia-

bele, bijvoorbeeld de prijs van een willekeurig huis in Rotterdam of het aantal ogen bij

het gooien van een dobbelsteen. Verschillende typen verdelingen kunnen verschillende

patronen in de data beschrijven. Als een variabele niet een standaardpatroon heeft of als

het patroon van een variabele vooraf onbekend is wordt vaak een finite mixture verdeling

toegepast, omdat die heel flexibel is en veel verschillende datapatronen kan beschrijven.

Een finite mixture verdeling is namelijk een gewogen gemiddelde van een bepaald aan-

tal andere verdelingen. Deze andere verdelingen worden vaak de mixture componenten

genoemd en de gewichten de mixture proporties.

Een econometrisch model dat gebruik maakt van een finite mixture verdeling noemen

we een finite mixture model. De mixture componenten worden dan vaak latente klassen

genoemd. Elk van de observaties die gebruikt worden om de parameters van het model

te schatten behoort nu tot één van de latente klassen. Dit maakt finite mixture modellen

heel geschikt als clustermethode. De latente klassen worden nu gëınterpreteerd als clusters

of segmenten en de mixture proporties geven de grootte van ieder cluster.

Dit proefschrift bevat vier hoofdstukken. Elk hoofdstuk behandelt een specifiek pro-

bleem en kan onafhankelijk van de andere hoofdstukken worden gelezen. In elk hoofdstuk

gebruiken we minimaal één dataset om te laten zien hoe de modeluitkomsten inzicht ge-

ven in de onderliggende data. Deze datasets komen uit verschillende onderzoeksgebieden,

zoals macro-economie, marketing en politicologie. We laten steeds het nut van het model

zien en soms ook de verbetering ten opzichte van bestaande methodes in de literatuur.

Nu volgt er een kort overzicht van ieder hoofdstuk.



106 Summary in Dutch

Hoofdstuk 2 behandelt de situatie dat er geen data beschikbaar is voor de verklarende

variabelen. Econometrische modellen worden vaak gebruikt om de invloed van deze ver-

klarende variabelen op een responsvariabele te berekenen. Om deze invloed te berekenen

hebben we data nodig van zowel de responsvariabele als de verklarende variabelen. Ook

als er geen individuele data beschikbaar is voor (een aantal van) de verklarende varia-

belen, kunnen we in sommige gevallen toch informatie verkrijgen over deze variabelen

op een geaggregeerd niveau. Het kan bijvoorbeeld zo zijn dat we de responsvariabele op

huishoudniveau hebben, maar de verklarende variabelen alleen maar op postcodeniveau.

We nemen aan dat deze geaggregeerde informatie over de verklarende variabelen de vorm

heeft van een discrete verdeling over intervallen (inkomen of leeftijd) of categorieën (ge-

slacht of religie) voor een huishouden in een bepaald postcodegebied. We ontwikkelen een

model om in deze situatie toch de effecten te meten van de verklarende variabelen op de

responsvariabele.

Om de effecten van deze geaggregeerde variabelen te meten breiden we het standaard

responsmodel uit met een latentevariabelenmodel dat de ontbrekende verklarende variabe-

len beschrijft op individueel niveau. Hierbij wordt er rekening gehouden met de informatie

die we op het geaggregeerde niveau hebben. Als er maar één verklarende variabele is, is

dit een standaard finite mixture model waarbij de mixing proporties bekend zijn. In een

simpel simulatie-experiment laten we zien dat deze aanpak leidt tot efficiëntere parame-

terschattingen dan de standaardmethode, waar we de ontbrekende verklarende variabele

vervangen door zijn geobserveerde marginale kans op het geaggregeerde niveau.

De parameters van het individuele responsmodel kunnen zowel klassiek als Bayesiaans

worden geschat. Computationeel gezien is de Bayesiaanse methode te prefereren. De

posteriorresultaten kunnen worden verkregen door het gebruik van een Gibbs simulator

met data-augmentatie. Hierbij simuleren we de ontbrekende verklarende variabelen naast

de modelparameters. Conditioneel op deze gesimuleerde verklarende variabelen kunnen

we de parameters van het individuele responsmodel schatten met standaard Makov Chain

Monte Carlo methoden.

We illustreren deze methode met een dataset over donaties aan een goed doel. In deze

dataset weten we de respons van huishoudens op een direct mailing van het goede doel.

Verder is alleen de postcode van deze huishoudens bekend. Op postcodeniveau hebben we

informatie over sommige huishoudkarakteristieken zoals leeftijd en inkomen. We tonen

aan dat ouderen met een hoog inkomen het meeste doneren.
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In Hoofdstuk 3 willen we de voorkeuren van individuen bepalen over een aantal op-

ties, bijvoorbeeld verschillende spelcomputers, vakantielanden of merken van een bepaald

product. Hierbij maken we gebruik van enquêteresultaten. Traditioneel worden respon-

denten alleen gevraagd om aan te geven welke optie zij het beste vinden. Het is bekend

dat we meer informatie kunnen krijgen van een respondent als we hem vragen om alle

opties te rangschikken. Hierdoor kunnen de parameters van het keuzemodel efficiënter

geschat worden. In de praktijk kan het echter zo zijn dat sommige respondenten niet

in staat zijn om hun voorkeuren weer te geven voor sommige opties in de keuzeset, bij-

voorbeeld omdat ze geen ervaring hebben met die opties. Het is bekend in de literatuur

dat de parameterschattingen hierdoor een onzuiverheid kunnen krijgen richting nul. De

standaardoplossing is om niet de complete rangschikking te gebruiken, maar bijvoorbeeld

alleen de top drie. De vraag is nu welk gedeelte van de rankschikkingen we veilig kunnen

gebruiken.

Om dit op te lossen introduceren we een nieuw rank-ordered logit model met latente

klassen. Dit model houdt expliciet rekening met het feit dat de gegeven rangschikking niet

altijd overeenkomt met de voorkeuren van de respondent. De latente klassen identificeren

endogeen hoeveel opties de respondenten goed kunnen rangschikken. Hierdoor hoeft dit

aantal niet meer vooraf te worden gekozen. Bovendien kan dit aantal nu per respondent

verschillen, wat met eerdere methodes ook niet mogelijk was. Dit resulteert in een finite

mixture model waarbij elk mixture component correspondeert met een specifieke aanname

over hoe goed een respondent de opties kan rangschikken.

Naast de toename in efficiëntie kunnen we door het toepassen van dit model ook leren

hoe goed respondenten in staat zijn om de opties te rangschikken. Deze informatie kan

ook heel waardevol zijn. Bijvoorbeeld om vast te stellen hoeveel respondenten er nodig

zijn om een gewenste precisie te bereiken. We stellen een likelihood ratio toets voor om

te bepalen of een bepaald segment aanwezig is. Deze toets kan bijvoorbeeld gebruikt

worden om overbodige segmenten uit het model te verwijderen. We illustreren het model

met een simulatie-experiment en een empirische toepassing. Hieruit blijkt dat ons model

inderdaad leidt tot efficiëntere parameterschattingen dan standaardmethodes. Bovendien

blijven de parameterschattingen ook zuiver als sommige respondenten niet in staat zijn

om de complete rangschikking uit te voeren.

In Hoofdstuk 4 beschrijven we de ontwikkeling van regionale huizenprijzen in Neder-

land tussen 1985 en 2005 met behulp van een panelmodel. In dit model zijn de volgende

eigenschappen van de reeksen mogelijk: stochastische trends, co-integratie, correlaties
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tussen de regio’s en een clustering van de regio’s op basis van latente klassen. De clus-

tering is volledig door de data bepaald en gebaseerd op de gemiddelde groeivoet van de

huizenprijzen en de relatie van de huizenprijzen met het BBP. Hierbij wordt er onder-

scheid gemaakt tussen hoe sterk en hoe snel de huizenprijzen van een regio reageren op

veranderingen in het BBP.

We passen het model toe op kwartaaldata van Nederlandse huizenprijzen binnen 76

regio’s. De resultaten laten zien dat er twee verschillende clusters zijn. De kleinste omvat

zo’n 20% van de regio’s, voornamelijk in het oosten van het land. Opvallend is dat de

grotere steden in het oosten zoals Zwolle en Arnhem juist weer in het grote cluster vallen.

Er is geen significant verschil in de groeivoet van de huizenprijzen tussen de twee clusters.

Wel reageren de huizenprijzen in het kleine cluster sterker en sneller op veranderingen in

het BBP. Deze verschillen kunnen zijn veroorzaakt door het toegenomen aantal forenzen

die in regio’s van het kleine cluster wonen.

Met dit model kunnen we ook scenarioanalyses uitvoeren. We bekijken twee scenario’s,

in de eerste stijgt het BBP met één procent extra. We zien dat de huizenprijzen in

het kleine cluster iets sneller en sterker reageren op deze verandering, maar uiteindelijk

zijn de verschillen klein en stijgen de huizenprijzen tussen de 1,5 en 1,7% extra. In het

tweede scenario stijgt de rente met een procentpunt. Hier zijn de verschillen groter. De

huizenprijzen in het kleine cluster zakken ruim 21
2
% terwijl die in het grote cluster maar

2% zakken.

Ook in Hoofdstuk 5 houden we ons bezig met clusteren met behulp van finite mixtures.

Klassieke clustermethodes verdelen een enkele reeks objecten over segmenten. In dit

hoofdstuk clusteren we zowel de rijen als de kolommen van een datamatrix simultaan in

segmenten. De rijen en kolommen hebben beiden hun eigen verzameling van segmenten.

We clusteren de rijen en kolommen zodanig dat de blokstructuur die dan ontstaat zo veel

mogelijk hetzelfde gedrag laat zien binnen de blokken, maar verschillend gedrag tussen de

blokken. We ontwikkelen een nieuwe Bayesiaanse methode om de parameters te schatten

van een latenteklassenmodel voor dit simultaan clusteren. De posteriorresultaten kunnen

we verkrijgen met behulp van een Gibbs simulator met data-augmentatie.

Onze Bayesiaanse methode heeft drie voordelen over bestaande methodes in de lite-

ratuur. Ten eerste kunnen we statistische inferentie toepassen op de modelparameters.

Als we bestaande frequentistische schattingsprocedures gebruiken, is het niet mogelijk

om standaardfouten te berekenen en is ook toetsen en bepalen of effecten significant zijn

niet meer mogelijk. Verder kunnen we statistische criteria geven voor het bepalen van de
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optimale aantallen segmenten. Ten slotte heeft onze Gibbs simulator minder problemen

met lokale optima in de likelihoodfunctie en lege klassen dan het EM algoritme dat wordt

gebruikt in een frequentistische benadering.

We passen ons model toe op twee datasets. De eerste dataset is heel klein en be-

staat uit het stemgedrag van de 9 rechters van het Amerikaanse hooggerechtshof over

26 onderwerpen. Deze dataset is vaker gebruikt in de literatuur om clusteralgoritmes te

illustreren. Wij laten zien dat eerdere oplossingen uit de literatuur te veel segmenten

hebben. De tweede dataset is juist groot en bevat alle stemmen van het Amerikaanse

huis van afgevaardigden over wetsvoorstellen in 2007. We laten zien dat de afgevaardig-

den met 6 klassen kunnen worden beschreven en de wetsvoorstellen met 10 klassen. Het

stemgedrag voor een klasse wetsvoorstellen is over de 6 klassen van afgevaardigden altijd

monotoon dalend of stijgend. Hieruit kunnen we concluderen dat er maar één dimensie

is te ontwaren in de politieke voorkeuren van de afgevaardigden.

De vier hoofdstukken in dit proefschrift ontwikkelen nieuwe modellen of breiden be-

staande modellen uit en ontwikkelen nieuwe schattingsmethoden voor de parameters van

deze modellen. Ook komen we tot een aantal opvallende empirische resultaten. We hopen

hiermee een waardevolle bijdrage te leveren aan de econometrische literatuur.
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