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t. In this arti
le a single item inventory model with ba
klogging isanalyzed, whi
h is a generalization of the most well-known simple models. Thisformulation enables us to separate the analysis of the system to the analysisof the 
ontrol rule (redu
ed to the analysis of a Markov 
hain) and of the timestationary distribution for the arrival pro
ess of 
ustomers. This fa
ilitates amu
h better understanding of su
h systems. A simple sample path argumentenables a straightforward derivation of average holding 
osts, ordering 
osts,servi
es measures. A re
ently developed algorithm of Lapla
e transform inver-sion te
hnique provides us with an eÆ
ient tool for the 
omputation of these
ost expressions. 1. Introdu
tionUntil a few years ago, single item inventory models with ba
klogging were amongthe most frequently dis
ussed models in the literature. The most well-known mod-els are the (s; S) model (
f. [8, 11, 3℄), the (s;Q) model (
f. [2, 1℄), the simple(S � 1; S) model (
f. [4℄) and the periodi
 review version of these models, that is,the (R; s; S), the (R; s;Q) and respe
tively the (R;S) models. These papers ana-lyzed the stru
ture of the models, their behaviour and tried to develop heuristi
alalgorithms for 
al
ulating optimal 
osts. As we already know the most important
hara
teristi
s of the models above, the general opinion seems to support that thisarea is exhausted, su
h that major breakthroughs are not to be expe
ted. In ouropinion, however, the state of the art in single item inventory models with ba
klog-ging su�ers from a serious drawba
k: there is an undoubted la
k of insight whi
his the dis
overy that the analysis of all these models redu
es to the analysis of theembedded Markov 
hain of the inventory position pro
ess.In order to demonstrate this new result in a general way, without restri
tingourselves to the 
onditions of one of the spe
i�
 
ontrol rules mentioned above, ageneral inventory model with ba
klogging is de�ned in su
h a way that the 
ontrolrule of the system depends solely on the inventory position pro
ess. Hen
e, theanalysis of the general model yields the most prominent 
hara
teristi
s of these
ases, without restri
ting to separate heuristi
al treatments.Sahin's formula (
f. [8℄) gives us a relation among the three most signi�
ant sto-
hasti
 pro
esses des
ribing a single item inventory 
ontrol system with ba
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2 EM}OKE B�AZSA� AND PETER DEN ISEGERythat is, the inventory position pro
ess, the net inventory or netsto
k pro
ess andthe demand pro
ess. Considering a general sto
hasti
 
ompound demand pro
ess,we �nd that this pro
ess is asymptoti
ally independent of the inventory positionpro
ess and this is one of the key issues in further analysis, sin
e we are only in-terested in long run behaviour of su
h a system. Sahin's relation enables us toseparate our analysis to that of the analysis of the 
ontrol rule, thus the asymptoti
behaviour of the embedded Markov 
hain of the inventory position pro
ess and tothat of the analysis of the time stationary distribution (
f. [9℄) for the arrival pro-
ess. This brings us to a mu
h better understanding of the problem. Obviously thismethod is mu
h easier than the often 
umbersome task of dealing with the jointpro
ess of the inventory position and the 
ompound demand pro
esses. Further-more, the stru
ture of the problem is mu
h 
learer and it also enables us to analyzeand 
ompare di�erent demand pro
esses and/or 
ontrol rules simultaneously. Itshould be emphasized that with this framework we 
an analyze general 
ompoundrenewal demand pro
esses and also non-homogeneous 
ompound pro
esses. Theother innovative feature of the paper is that we exploit the fa
t that the samplepaths of the netsto
k and inventory position pro
esses yield a step fun
tion, im-posing a 
ost stru
ture to it, and thus we obtain long run average 
osts and servi
emeasures in a straightforward manner, with very simple algebrai
 fun
tions. Sin
eit is easy to derive 
losed form expressions of the Lapla
e transforms of these 
ostsand measures, we 
an make use of a re
ently developed Lapla
e transform inversionte
hnique (
f. [6℄). This fa
ilitates us to 
ompute these 
osts and measures in anypoint. The obtained results are exa
t almost up to ma
hine pre
ision.The dis
ussion of the periodi
 review "version" of this arti
le is the topi
 a futurepaper. 2. Preliminaries and notationsThroughout this paper we deal with single item inventory systems with ba
k-logging. The demand pro
ess D, is a general, truly sto
hasti
 
ompound pro
ess,where D(t) represents the aggregate demand up to time tD(t) := N(t)Xn=0Yn:(2.1)The individual demands Yn; n 2 IN (Y0 := 0) are independent and identi
allydistributed random variables, and independent of the arrival pro
ess of 
ustomers,N. Customers' interarrival times are des
ribed by the pro
ess Xn; n 2 IN . Notethat the arrival times of the 
ustomers are given by tn := X1 + : : : +Xn; n 2 IN(t0 := 0) and the related sto
hasti
 
ounting pro
ess fN(t) : t � 0g is given byN(t) := 1Xn=1 1ftn�tg:Further, there are two important sto
hasti
 pro
esses whi
h des
ribe su
h an inven-tory 
ontrol model. The netsto
k or net inventory pro
ess IN := fIN(t) : t � 0g,where IN(t) is the netsto
k level, i.e. the sto
k on hand minus the ba
korderedamount at time t. The other sto
hasti
 pro
ess is the inventory position pro-
ess IP := fIP(t) : t � 0g, where IP(t) is the inventory position, i.e. the netsto
k plus outstanding orders at time t. The 
ontrol rule asso
iated with the sys-tem is su
h that it only depends on the inventory position. That is, there is a



3predetermined threshold s, whi
h is 
alled the reorder level, su
h that if the in-ventory position rea
hes or goes below s at the arrival moment tn (n 2 IN) of a
ustomer, then the inventory manager pla
es a replenishment order. The size ofthe replenishment order only depends on the inventory position and it is given byZn := IP(tn+)� IP(tn�) +Yn (obviously, IP(tn+) is determined by the pre
iseordering poli
y). It is also natural to assume that the inventory position has amaximum value 0 < S < 1, otherwise our problem is degenerate. After pla
ing areplenishment order it takes L > 0 time units for the outstanding order to rea
h thefa
ility. In our analysis L is �xed and we refer to it as the lead time. In 1990 Sahinderived the following expression, whi
h is a relation among the netsto
k, inventoryposition and demand pro
esses (
f. [8℄). This relation is a key tool for this paper. Ifthe sto
hasti
 demand pro
essD is 
�adl�ag (that is right 
ontinuous with left limits)then �LIN(t) = IP(t)� �tD(0; L℄; IP - almost surely(2.2)for every t � 0 where �s; s � 0 is a shift operator su
h that �s(X)(t) := X(t+ s)for every t � 0 and X a sto
hasti
 pro
ess. Also for a general sto
hasti
 pro
ess Xthe notation X(a; b℄ means X(b)�X(a).Another important tool in our analysis is the Lapla
e Stieltjes transform.1 Forh : [0;1)! IR, a fun
tion of bounded variation, this transform is de�ned byLSh(�) = Z 10� exp(��x)h(dx);while the Lapla
e transform of h is given byLh(�) = Z 10� exp(��x)h(x)dx:Clearly the parameter � is 
hosen in su
h a way that the above integrals are wellde�ned. Also, for any fun
tion q : IR! IR, vanishing on (�1; 0℄, and a 
umulativedistribution fun
tion F on [0;1) we introdu
e the 
onvolution q ? F : [0;1)! IRgiven by (q ? F )(x) := Z x0� q(x� y)F (dy);(2.3)and indu
tively we 
an de�ne F k� := F ?F (k�1)�. It follows now from the previousde�nitions that Lq ? F (�) = Lq(�)LSF (�);(2.4)and this important relation will be used throughout the rest of this paper. Withthe Lapla
e inversion algorithm as des
ribed in Den Iseger (
f. [6℄), we obtain apie
e-wise polynomial approximation in fra
tions of time. The 
al
ulations are nu-meri
ally stable, while the approximation is pre
ise almost up to ma
hine pre
ision.With the help of this algorithm we 
an 
al
ulate numeri
ally all the important 
ostand servi
e measures of the inventory system.1All the arguments and results remain valid in 
ase of Fourier transforms.



4 EM}OKE B�AZSA� AND PETER DEN ISEGERy3. The netsto
k and inventory position pro
essesIt is of great importan
e to realize that the sample paths of the net inventorypro
ess yield a step fun
tion, that is, there are jumps o

urring in the sample pathsbut it is 
onstant between two jumps. At 
ustomers' arrival moments tn, downwardsjumps o

ur in the sample paths of the netsto
k pro
ess due to 
ustomers' individualdemand. Hen
e the size of su
h a jump equals Yn; n 2 IN . It is important toobserve that the same downwards jumps of size Yn, at time point tn, o

ur inthe sample paths of the inventory position pro
ess. These type of jumps will bereferred to as type I jumps. If a 
ertain individual demand (say, o

urring at timepoint tm) 
auses the inventory position to drop (jump!) below the reorder level s,then, a

ording to the poli
y, there will be a replenishment order of size Zm pla
edat time point tm, whi
h arrives at time point tm +L to the fa
ility. The arrival ofthe replenishment order 
auses at time point tm + L an upwards jump of size Zmin the sample paths of the netsto
k pro
ess, whi
h we de�ne as a type II jump. Byde�nition, the type II jump o

urs in the sample paths of the inventory positionpro
ess at time point tm and its size equals Zm �Ym. The moments of type IIjumps in the sample path of the inventory position form a subset of 
ustomers'arrival moments. In what follows we will show that the inventory position pro
essat 
ustomers' arrival moments, fIP(tn) : n 2 IN [ f0gg, forms a Markov 
hain.That is what it makes more 
onvenient to relate the type II jumps to the inventoryposition pro
ess.The de�nitions of this general 
ontrol system imply for the inventory positionpro
ess that IP(tn) only depends on the previous state IP(tn�1), the individualdemand of the nth 
ustomer Yn, and the magnitude of the replenishment orderZn, if there was any order pla
ed at tn. Sin
e the individual demands Yn areindependent of the arrival pro
ess of 
ustomers (the same holds for the size of thereplenishment order!) it follows that fIP(tn) : n 2 IN [f0gg is a Markov 
hain. Bythe de�nition of the general inventory 
ontrol system we know that the inventoryposition has a maximum S, and a minimum s; it also 
learly rea
hes every statebetween s and S with a positive probability. This implies straightforwardly that thisMarkov 
hain is irredu
ible and aperiodi
 with all states being positive re
urrent,that is, the Markov 
hain has a unique limiting distribution (
f. [7℄) given bylimn"1 IPfIPn � xg = IPfIP1 � xg(3.1)where IP1 is a random variable distributed with the limiting distribution of theMarkov 
hain fIPn; n 2 IN [f0gg. The step fun
tion stru
ture of the sample pathsof the inventory position also implies thatIP(t) = IPN(t); for all t � 0:(3.2)Sin
e N(t) ! 1 a.s. as t ! 1 we obtain by relation (3.2) that IP(t) is asymp-toti
ally independent of N(t), thus also independent of D(t), and its limiting dis-tribution is given by limt"1 IPfIP(t) � xg = IPfIP1 � xg;(3.3)where IP1 is de�ned by relation (3.1). We will now give two examples whi
h arerelated to two of the most well-known poli
ies in the literature.



53.1. The (s; S) poli
y. Under this rule an order is triggered at the moment thelevel of the inventory position drops below the reorder level s (0 < s < S). The sizeof the order is su
h that the level of the inventory position pro
ess is raised to order-up-to level S. That is, this 
ontrol poli
y only depends on the inventory positionpro
ess; hen
e, as derived at the beginning of se
tion 3 the inventory position inthe moments of 
ustomer arrivals fIPn; n 2 INg is a Markov 
hain whi
h possessesa unique limiting distribution. For notational 
onvenien
e, de�ne the sequen
e ofrandom variables fVn : n 2 IN [ f0gg as the di�eren
e between the order-up-tolevel S and the inventory position at moment tn; n 2 IN [ f0g:Vn := S � IP(tn); n 2 IN [ f0g:(3.4)Sin
e fIP(tn) : n 2 IN [ f0gg is a Markov 
hain, obviously fVn : n 2 IN [ f0gg isalso a Markov 
hain equipped with unique limiting distribution. By the de�nitionof the poli
y it immediately follows thatVn+1 = (Vn +Yn+1)1fVn+Yn+1�S�sg; n 2 IN [ f0g:(3.5)We aim to show now that the unique limiting distribution of the Markov 
hainfVn : n 2 INg is of the formlimn"1 IPfVn � xg = IPfV1 � xg = U0(x)U0(S � s) ;(3.6)where U0 denotes the renewal fun
tion related to the renewal sequen
e fY0;Y0 +Y1; : : : g given by U0(x) := 1Xk=0F k?Y (x):In a future paper we will exploit relation (3.6) to prove optimality. Relation (3.5)implies straightforwardly that for every 0 � x � S � sFV (x) = C + (FV ? FY )(x);(3.7)where C := 1� (FV ? FY )(S � s) is a normalization 
onstant. Sin
e relation (3.7)is a renewal type equation, it follows (
f. [7℄) that its uniquely determined solutionis given by FV (x) = CU0(x):(3.8)The 
onstant C 
an be easily determined by the 
ondition FV (S�s) = 1, thereforewe obtain that the unique invariant distribution of the Markov 
hain Vn is givenby relation (3.6). As a standard result from renewal theory (
f. [7℄), if x is bigenough, that is, S � s is large, than the renewal fun
tion U(x)=x �! 1=IEX1.This implies that (3.6) 
onverges to x=(S � s), that is, the limiting distribution
onverges to a uniform distribution. In the next subse
tion it is proved that thelimiting distribution of the Markovian inventory position pro
ess related to an (s;Q)model is given by the uniform distribution. This result suggests that for large Qand S � s these models are very similar.3.2. The (s; nQ) poli
y. A

ording to this inventory rule an order is triggered atthe moment the inventory position drops below or equals the reorder level s. Theorder size is 
hosen to be an integer multiple of Q, su
h that after ordering theinventory position pro
ess will be between s and s+Q. Hadley and Whitin (
f. [5℄)proved that the transition matrix of the Markov 
hain fIP(tn) : n 2 IN [ f0gg is



6 EM}OKE B�AZSA� AND PETER DEN ISEGERydouble sto
hasti
, hen
e it follows straightforwardly that its limiting distributionis given by the uniform distribution on (s; s+Q℄, that islimt"1 IP(tn) = s+QU; n 2 IN [ f0g;withU a uniformly distributed random variable on (0; 1℄. Together with the averageholding and ordering 
ost expressions this result was also found by Chen and Zheng(
f. [1℄), for a 
ompound Poisson demand pro
ess. Having this result it is nowpossible to derive the important 
osts and measures. In the following se
tion the
osts imposed to the general system will be introdu
ed. Having the results of thepresent se
tion, it turns out that these expressions are not diÆ
ult to derive.4. CostsAs it will be explained in detail later the general 
ost (thus also in
luding servi
emeasures) 
onsists of two parts: the 
ost of the inventory system and the 
ost of the
ontrol rule. The 
ost of the 
ontrol rule is asso
iated with the inventory positionpro
ess while the 
ost of the system is asso
iated with the net inventory pro
ess.There are three types of events with respe
t to this pro
ess, namely type I jumps,type II jumps and the sample paths of the netsto
k pro
ess being 
onstant betweentwo jumps. It is natural to de�ne three types of 
osts related to the three types ofevents. Therefore, when IN(t) = IN(tn) = x a.s. for Jn � t < Jn+1, where x 2 IRis a 
onstant and Jn; n 2 IN are the points of time when a jump o

urs, then itis natural and trivial to introdu
e a 
ost rate fun
tion f(x) related to this event.This 
ost will give us a very important 
hara
teristi
, the average holding 
ost (andpenalty 
ost), therefore we refer to this type of 
ost in the remainder of the paperas the average holding 
ost. Similarly, we introdu
e a 
ost fun
tion g1 related tothe type I jumps of the sample paths of the netsto
k pro
ess, that is, the 
ost ofthe jump in time point tn is given by g1(IN(tn);Yn). This type of "
ost" usuallyprovides us with servi
e measures, sin
e it is related to the arrival of 
ustomers.Therefore we refer to the 
ost of the type I jumps as servi
e measures. Introdu
ealso a fun
tion G2, related to the type II jumps, that is, the 
ost of the 
ontrolpoli
y: for a replenishment order pla
ed at time point tn it is given by G2(Zn).By the de�nition of Zn, Zn = h(IPn �Yn), where h is a fun
tion dependent onthe 
ontrol rule, the 
ost of the 
ontrol rule is given by g2(IP(tn) � Yn), withg2 = G2 Æ h. Before starting with the a
tual 
omputation of these 
osts we dis
usssome properties related to the expe
ted long run average 
ost asso
iated with asto
hasti
 pro
ess. The average 
ost asso
iated with a fun
tion l and a sto
hasti
pro
ess X is given by limt"1 IE �1t Z t0 l(X(s))ds� :Using Fubini's theorem the previous relation equals tolimt"1 1t Z t0 IE (l(X(s))) ds = limt"1 1t Z t0 Z 1�1 l(x)dFX(s)(x)ds:Using again Fubini's theorem for the previous relation, we obtain that the average
ost equals IE (l(X
1)) ;



7where X
1 is a random variable distributed with the distribution given byF 
1(x) = limt"1 1t Z t0 FX(s)(x)ds:(4.1)Observe that if the limiting distribution of the sto
hasti
 pro
ess X exists then it
oin
ides with the distribution de�ned by relation (4.1). Throughout this paper wewill 
all the distribution de�ned by relation (4.1) the time stationary distributionfor X (
f. [9℄, p.24-25). Obviously, the requirement that for a sto
hasti
 pro
ess itstime stationary distribution would exist is mu
h weaker than that of a "normal"limiting distribution.4.1. Average holding 
ost. Sin
e we are interested in long run average 
osts weaim to 
ompute the expressionlimt"1 1t Z t0 IEf(�LIN(s))ds:(4.2)Relation (2.2) of Sahin gives us a powerful tool to 
ompute the average 
ost. Bythe de�nition of the demand pro
ess (2.1) the average 
ost equalslimt"1 1t Z t0 IEf 0�IP(s)� �tN(0;L℄Xk=0 Yk1A dt:(4.3)We assume that the time stationary distribution for the sto
hasti
 
ounting pro
essN exists, whi
h most of the time is not a strong 
ondition. As dedu
ed in se
tion 3the limiting distribution of the inventory position pro
ess IP(t) exists and is givenby relation (3.3). Further, it also follows that IP(t) and N(t) are asymptoti
allyindependent. Sin
e IP(t) has a pointwise limit distributionally, in relation (4.3) it ispossible to 
onsider the pointwise limit of IP(t) and the time stationary distributionfor �tN(0; L℄ simultaneously, obtainingIEf 0�IP1 � N
1(0;L℄Xk=0 Yk1A ;(4.4)where N
1(0; L℄ is a random variable distributed with the time stationary distribu-tion for �tN(0; L℄. Sin
e IP1;N
1(0; L℄ and Yk are pair by pair independent, thisimplies that equation 4.4 equalsIEIP1 �(f � FD1(0;L℄) (IP1)� ;(4.5)where D1(0; L℄ :=PN
1(0;L℄k=1 Yk. Observe thatIPfN
1(0;L℄Xk=0 Yk � xg = 1Xk=0 IPfN
1(0; L℄ = kgF k�Y (x);and taking the Lapla
e Stieltjes transform of this we obtainLSFD1 (�) = 1Xk=0 IPfN
1(0; L℄ = kgLSkFY (�) = PN
1(0; L℄(LSFY (�));where PN
1(0; L℄(�) denotes the z-transform of N
1(0; L℄. In 
on
lusion, if we 
andetermine PN
1(0; L℄ then with the previously mentioned Lapla
e transform inversion
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Costfunction of the (s,S) model

s, the reorder levelFigure 1. Average holding 
ost in 
ase of an (s; S) poli
y withnon-homogeneous 
ompound Poisson demand; parameters areK =20; L = 1; �1 = 25=2; �2 = 45=2; q = 50; p = 3; h1 = 1; h2 = 3 )algorithm we obtain a pie
e-wise polynomial approximation for f � FD1(0;L℄, sayPf�FD1(0;L℄ . We are now able to approximate equation (4.5) byIEIP1 �Pf�FD1(0;L℄ (IP1)�(4.6)Furthermore, in 
ase of 
ompound renewal demand, we obtain for the sto
hasti

ounting pro
ess thatlimt"1�tN(0; L℄ = limt"1 (N(t+ L)�N(t)) d=N0(L�A);(4.7)where A is a random variable distributed with the limiting distribution of theresidual life pro
ess (
f. [10℄) and N0 denotes the arrival pro
ess with a renewal intime point 0. Let us use the notation	k(t) := IPfN0(t) = kg;then the probability distribution of (4.7) equals (	k ? FA)(L). Sin
e	k = F k�X � F (k+1)�X ;and the Lapla
e-Stieltjes transform of FA is given byLSFA(�) = 1� LSFX (�)�IEX1 ;



9it follows that the two dimensional Lapla
e transform of D(0; L℄ is given by(1� LSFX (�))2��2IEX(1� LSFX (�)LSFY (�)) :Hen
e we are able to 
al
ulate the long run average 
ost with the help of the twodimensional inversion algorithm (
f. [6℄).In 
ase of non-homogeneous 
ompound Poisson demand with arrival rategiven by �(t); t � 0, we obtain that the z-transform of the time stationary distri-bution for the sto
hasti
 
ounting pro
ess is given byPN
1(0; L℄(z) = limt"1 1t Z t0 exp��(1� z) Z ss�L �(z)dz� ds:(4.8)Therefore the average 
ost 
an again easily be 
omputed as it was des
ribed earlier.It should be mentioned that for a non-homogeneous demand pro
ess a stati
 poli
yis not optimal. The analysis of a dynami
 poli
y related to non stationary demandis the subje
t of a future paper.Example: In Figure 1. we plotted the values of the average 
ost of an (s; S)poli
y with variable s and S � s values in 
ase when demand is given by a non-homogeneous 
ompound Poisson pro
ess. The demand rate fun
tion varies every(unit) interval, su
h that if t 2 [2k; 2k+1) then �(t) = �1 and if t 2 [2k+1; 2k+2)then �(t) = �2. The individual demands follow a Gamma distribution with shapeparameter 2.5 and s
ale parameter 2.5 (
f. [10℄). Furthermore we 
onsidered apie
ewise linear 
ost rate fun
tion given byf(x) =8<: �px if x < 0h1x if 0 � x � qh1q + h2(x � q) if x � q(4.9)where q denotes a 
riti
al level of inventory, from whi
h the inventory holding 
ostin
reases to h2 per unit (h2 > h1 > 0). Observe that we also in
luded a �xedordering 
ost K > 0 (see se
tion 4.3) for every pla
ement of a replenishment order.4.2. Servi
e measures. The long run average 
ost of the (type I) jumps asso
iatedwith the fun
tion g1 is given bylimt"1 IE0�1t N(t)Xk=1 g1(IN(tk�);Yk)1A :(4.10)De�ne the measure d�t(s) := 1t 1fs�tgd�(s)where �(s) := 1Xk=1 1ftk�sg:Observe that by denoting �X(s) a sto
hasti
 pro
ess having a distribution de�nedby IPf�X(s) � xg := IPfX(s�) � xj there is a type I jump at sg;(4.11)



10 EM}OKE B�AZSA� AND PETER DEN ISEGERyone obtains by the de�nition of d�t that the average 
ost up to time t equalsIE �Z 10 g1(IN(s�);YN(s))d�t(s)� = IE �Z 10 g1( �IN(s);YN(s))d�t(s)� :Furthermore, by the previous de�nitions it is obvious that �IN(s);YN(s) and d�t(s)are independent, and using Fubini's theorem in the previous relation it follows thatlimt"1 IE �1t Z t0 g1(IN(s�);YN(s))d�(s)� = IEg1( �IN
1;Y1);where �IN
1 is a random variable distributed with the time stationary distributionfor �IN, given by limt"1 Z 10 IP f �IN(s) � xgdIE�t(s)and IE�t(s) = 1t 1fs�tg 1Xk=1 IPftk � sg;and obviously Y1 d= Y1. By relation (2.2) of Sahin and by the same argument as
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11in se
tion 4.1 before relation (4.4), the average 
ost of the jumps (4.10) equalsIEg1(IP1 � �N
1(0;L℄Xk=1 Yk;Y1);where �N
1(0; L℄ is a random variable distributed with the time stationary distribu-tion for �N, given bylimt"1 Z 10 IPf�s�LN(0; L℄ � xj there is a type I jump at sgdIE�t(s):(4.12)Intuitively, this limiting distribution is the probability that the number of jumps inthe interval (s�L; s℄, given there is a jump at s, is less or equal x, times the probabil-ity that there is a jump at s (that is, dIE�t(s) = IPfthere is a jump in [s; s+ds℄g 1t ).In 
ase of 
ompound renewal demand, dIE�t(s) equals 1t 1fs�tgdM(s), whereM represents the renewal fun
tion asso
iated with the renewal sequen
e de�ned bythe arrival moments of 
ustomers. By a reversed time argument we obtain thatlimt"1 IPfN(t�)�N((t�)� L) = kj there is a type I jump at tg = IPfN(L) = kg;(4.13)that is �N
1 d=N(L), where �N
1 is de�ned by relation (4.12). It is well known thatlimt"1 dM(t) = dtIEt1 ;therefore relation (4.10) equals1IEt1 IEg1(IP1 � N(L)Xk=1 Yk;Y1):(4.14)In 
ase of non-homogeneous 
ompound Poisson demand with rate �(t) weobtain by the PASTA property that �s �N(0; L℄ d= �sN(0; L℄ (�N de�ned by (4.11))and dIE�t(s) = �(s)ds, hen
e the z-transform of �N
1(0; L℄ is given by the relationP�N
1(0; L℄(z) = limt"1 1t Z t0 exp��(1� z) Z ss�L�(z)dz��(s)ds:(4.15)For the average 
ost of the jumps we obtainIEg1(IP1 � �N
1(0;L℄Xk=1 Yk;Y1):Both of the 
ases 
an be solved with the algorithm des
ribed in se
tion 4.1.Example One of the examples for the 
ost of the type I jumps would be theexpe
ted number of items short up to time t, whi
h is one of the most frequentlyused servi
e measures in the literature. In this 
ase the fun
tion g1 related to thejumps is given by g1(X;Y ) := (Y �X)+ � (�X)+;(4.16)where X is the level from where the jump o

urs and Y is the size if the jump.Obviously, X := IN(tk�) and Y := Yk. Figure 2. provides some intuition for thede�nition of the fun
tion g1 in this 
ase. A spe
ial 
ase of a general 
ompound re-newal demand pro
ess with Gamma distributed arrival pro
ess (shape=5/2,s
ale=1/14) and i.i.d. Gamma distributed individual demands with shape resp. s
ale
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Figure 3. Average number �2 of items short in 
ase of an (s;Q)poli
y (L = 0:5)parameters � = � = 2:5 are 
onsidered in 
ase of an (s;Q) 
ontrol rule. The �llrate, given by relation (4.14) with g1 given by (4.16), is plotted in Figure 3., withrespe
t to the de
ision variables s and Q.4.3. The 
ost of the 
ontrol rule. As we dis
ussed at the beginning of se
tion4, the type II jumps are related to the inventory position pro
ess. These jumpsin the sample paths of the inventory position pro
ess o

ur due to pla
ement ofreplenishment orders. This implies a suggestive name for this type of 
ost: the 
ostof the 
ontrol rule. Thus, with the same de�nitions of measures and 
osts as inse
tion 4.2 we obtain for the 
ost of the 
ontrol rule thatlimt"1 Z 10 IEg2(IP(s�)�YN(s))d�t(s):(4.17)Using the results of se
tion 3 and se
tion 4.2 we obtain that this equalsIEg2(IP1 �Y1) = limt"1 Z 10 dIE�t(s) = IEg2(IP1 �Y1) limt"1 IEN(t)t :The most obvious example of 
ost of type II jumps is the setup 
ost. In this 
asethe 
ost rate fun
tion is given byg2(A) = K1fA�sg;where K and s are given parameters. A more general 
ase would be setup 
ostaggregated with a variable 
ost, dependent on the amount of ordered items. In
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ase of an (s; S) poli
y g2(A) = (K + 
(S �A))1fA�sg:In 
ase of an (s;Q) poli
y we have to take into a

ount that we order a multiple ofQ, that is if (k � 1)Q � IE(s� (IP1 �Y1)) < kQ then order kQ;for every k = 1; 2; : : : Sin
e IP1 = s+QU as derived earlier one obtains that thevariable 
ost equals to
Q 1Xk=1 kIPfkQ � QU+Y1 < (k + 1)Qg = 
Q 1Xk=1(1� �(kQ));where �(x) := (FU ? FY )(x). With the help of the Lapla
e transform inversionalgorithms we 
an 
al
ulate easily the ordering and variable 
osts.5. Con
lusionsHaving proved that the inventory position related to our general model is aMarkov 
hain in the points of 
ustomers' arrival equipped with a unique limitingdistribution, together with Sahin's formula it enables us to separate our analysisto that of the 
ontrol poli
y and of the demand pro
ess. In this way the analysisof our model and the stru
ture of the single item inventory models is 
lear andeasily perspi
uous. Making use of the fa
t that the sample paths of the netsto
kand inventory position pro
esses yield a step fun
tion, we impose a 
ost stru
tureto it. Due to the perspi
uous stru
ture of the model, it is now easy to derive the
ost expressions for general 
ost fun
tions, moreover, one 
an obtain all the spe
i�

ost and servi
e measures by merely substituting the appropriate 
ost fun
tioninto these expressions. All the 
osts 
an be 
omputed numeri
ally almost up toma
hine pre
ision with the help of a re
ently developed Lapla
e transform inversionalgorithm. Referen
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