Skip to main content

Coronary Lumen Segmentation Using Graph Cuts and Robust Kernel Regression

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Abstract

This paper presents a novel method for segmenting the coronary lumen in CTA data. The method is based on graph cuts, with edge-weights depending on the intensity of the centerline, and robust kernel regression. A quantitative evaluation in 28 coronary arteries from 12 patients is performed by comparing the semi-automatic segmentations to manual annotations. This evaluation showed that the method was able to segment the coronary arteries with high accuracy, compared to manually annotated segmentations, which is reflected in a Dice coefficient of 0.85 and average symmetric surface distance of 0.22 mm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosamond, W., et al.: Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–e146 (2008)

    Google Scholar 

  2. Leber, A.W., et al.: Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. Journal of the American College of Cardiology 47, 672–677 (2006)

    Article  Google Scholar 

  3. Rollano-Hijarrubia, E., Stokking, R., van der Meer, F., Niessen, W.J.: Imaging of small high-density structures in CT; A phantom study. Academic Radiology 13, 893–908 (2006)

    Article  Google Scholar 

  4. Boskamp, T., Rinck, D., Link, F., Kümmerlen, B., Stamm, G., Mildenberger, P.: New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24(1), 287–297 (2004)

    Article  Google Scholar 

  5. Luengo-Oroz, M.A., Ledesma-Carbayo, M.J., Gómez-Diego, J.J., García-Fernández, M.A., Desco, M., Santos, A.: Extraction of the Coronary Artery Tree in Cardiac Computer Tomographic Images Using Morphological Operators. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 424–432. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: Fully automatic 3D segmentation of coronary arteries based on mathematical morphology. In: Proceedings of ISBI 2008, pp. 1059–1062 (2008)

    Google Scholar 

  7. Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: Medial-based Bayesian tracking for vascular segmentation: Application to coronary arteries in 3D CT angiography. In: Proceedings of ISBI 2008, pp. 268–271 (2008)

    Google Scholar 

  8. Li, H., Yezzi, A.: Vessels as 4-D Curves: Global Minimal 4-D Paths to Extract 3-D Tubular Surfaces and Centerlines. IEEE Transactions on Medical Imaging 26, 1213–1223 (2007)

    Article  Google Scholar 

  9. Wesarg, S., Firle, E.: Segmentation of Vessels: The Corkscrew Algorithm. In: SPIE: Medical Imaging: Image Processing, vol. 9, p. 10 (2004)

    Google Scholar 

  10. Yang, Y., Tannenbaum, A., Giddens, D., Stillman, A.: Automatic segmentation of coronary arteries using bayesian driven implicit surfaces. In: Proceedings of ISBI 2007, pp. 189–192 (2007)

    Google Scholar 

  11. Nain, D., Yezzi, A., Turk, G.: Vessel Segmentation Using a Shape Driven Flow. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 51–59. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Renard, F., Yang, Y.: Image analysis for detection of coronary artery soft plaques in MDCT images. In: Proceedings of ISBI 2008, pp. 25–28 (2008)

    Google Scholar 

  13. Lavi, G., Lessick, J., Johnson, P., Khullar, D.: Single-seeded coronary artery tracking in CT angiography. In: IEEE Nuclear Science Symposium Conference Record (2004)

    Google Scholar 

  14. Sonka, M., Winniford, M.D., Collins, S.M.: Robust simultaneous detection of coronary borders in complex images. IEEE Trans. Med. Imaging 14(1), 151–161 (1995)

    Article  Google Scholar 

  15. Marquering, H.A., Dijkstra, J., de Koning, P.J.H., Stoel, B.C., Reiber, J.H.C.: Towards quantitative analysis of coronary CTA. Int. J. Cardiovasc. Imaging 21, 73–84 (2005)

    Article  Google Scholar 

  16. Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Krestin, G., Niessen, W.: 3D segmentation in the clinic: A Grand Challenge II - Coronary Artery Tracking. In: IJ - 2008 MICCAI Workshop - Grand Challenge Coronary Artery Tracking (2008)

    Google Scholar 

  17. Wesarg, S., Khan, M.F., Firle, E.A.: Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J. Digit. Imaging 19, 249–257 (2006)

    Article  Google Scholar 

  18. Khan, M.F., Wesarg, S., Gurung, J., Dogan, S., Maataoui, A., Brehmer, B., Herzog, C., Ackermann, H., Assmus, B., Vogl, T.J.: Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool. European Radiology 16, 1789–1795 (2006)

    Article  Google Scholar 

  19. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision 70, 109–131 (2006)

    Article  Google Scholar 

  20. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–655 (1998)

    Google Scholar 

  21. Kohli, P., Torr, P.H.S.: Dynamic graph cuts for efficient inference in markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2079–2088 (2007)

    Article  Google Scholar 

  22. Nadaraya, E.A.: On estimating regression. Theory of Probability and its Applications 10, 186–190 (1964)

    Article  MATH  Google Scholar 

  23. Knutsson, H., Westin, C.-F.: Normalized and differential convolution: Methods for interpolation and filtering of incomplete and uncertain data. In: Proceedings of Computer Vision and Pattern Recognition 1993, pp. 515–523 (1993)

    Google Scholar 

  24. Debruyne, M., Hubert, M., Suykens, J.: Model selection in kernel based regression using the influence function. Journal of Machine Learning Research 9, 2377–2400 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV (2003)

    Google Scholar 

  26. Hong, M.-K., et al.: The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. J. Am. Coll. Cardiol. 46, 261–265 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schaap, M. et al. (2009). Coronary Lumen Segmentation Using Graph Cuts and Robust Kernel Regression. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics