Skip to main content

Advertisement

Log in

Experimental Autoimmune Encephalomyelitis in the Common Marmoset, a Bridge Between Rodent EAE and Multiple Sclerosis for Immunotherapy Development

Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The attrition rate of new drugs for central nervous system diseases including multiple sclerosis (MS) is very high. A widely recognized bottleneck in the selection of promising central nervous system drug candidates from the development pipeline is the lack of sufficiently predictive animal models. Here, we review how the experimental autoimmune encephalomyelitis (EAE) model in the Neotropical primate “common marmoset” can help to bridge the gap between rodent EAE models and MS. The EAE model in the marmoset closely resembles MS in the clinical as well as pathological presentation and can be used for fundamental research into immunopathogenic mechanisms and for therapy development. We discuss recent insights arising from this model, both on novel therapeutics and immunopathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barnett MH, Parratt JD, Cho ES, Prineas JW (2009) Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann Neurol 65:32–46

    Article  PubMed  Google Scholar 

  • Bielekova B, Richert N, Howard T, Blevins G, Markovic-Plese S, McCartin J, Frank JA, Wurfel J, Ohayon J, Waldmann TA, McFarland HF, Martin R (2004) Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci USA 101:8705–8708

    Article  CAS  PubMed  Google Scholar 

  • Blezer EL, Bauer J, Brok HP, Nicolay K, ‘t Hart BA (2007) Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed 20:90–103

    Article  PubMed  Google Scholar 

  • Bo L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50

    Article  CAS  PubMed  Google Scholar 

  • Boon L, Brok HP, Bauer J, Ortiz-Buijsse A, Schellekens MM, Ramdien-Murli S, Blezer E, van Meurs M, Ceuppens J, de Boer M, ‘t Hart BA, Laman JD (2001) Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J Immunol 167:2942–2949

    CAS  PubMed  Google Scholar 

  • Brok HP, Uccelli A, Kerlero De Rosbo N, Bontrop RE, Roccatagliata L, de Groot NG, Capello E, Laman JD, Nicolay K, Mancardi GL, Ben-Nun A, Hart BA (2000) Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope pMOG24–36 is presented by a monomorphic MHC class II molecule. J Immunol 165:1093–1101

    CAS  PubMed  Google Scholar 

  • Brok HP, van Meurs M, Blezer E, Schantz A, Peritt D, Treacy G, Laman JD, Bauer J, ‘t Hart BA (2002) Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J Immunol 169:6554–6563

    CAS  PubMed  Google Scholar 

  • Brok HP, Boven L, van Meurs M, Kerlero de Rosbo N, Celebi-Paul L, Kap YS, Jagessar A, Hintzen RQ, Keir G, Bajramovic J, Ben-Nun A, Bauer J, Laman JD, Amor S, ‘t Hart BA (2007) The human CMV-UL86 peptide 981–1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34–56, but lacks the capacity to induce EAE in rhesus monkeys. J Neuroimmunol 182:135–152

    Article  CAS  PubMed  Google Scholar 

  • Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359:1786–1801

    Article  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  • Cross AH, Lyons JA, San M, Keeling RM, Ku G, Racke MK (1999) T cells are the main cell type expressing B7–1 and B7–2 in the central nervous system during acute, relapsing and chronic experimental autoimmune encephalomyelitis. Eur J Immunol 29:3140–3147

    Article  CAS  PubMed  Google Scholar 

  • Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L (2006) The value of animal models for drug development in multiple sclerosis. Brain 129:1940–1952

    Article  PubMed  Google Scholar 

  • Gausas J, Paterson PY, Day ED, Dal Canto MC (1982) Intact B-cell activity is essential for complete expression of experimental allergic encephalomyelitis in Lewis rats. Cell Immunol 72:360–366

    Article  CAS  PubMed  Google Scholar 

  • Genain CP, Hauser SL (2001) Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus. Immunol Rev 183:159–172

    Article  CAS  PubMed  Google Scholar 

  • Genain CP, Nguyen MH, Letvin NL, Pearl R, Davis RL, Adelman M, Lees MB, Linington C, Hauser SL (1995) Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 96:2966–2974

    Article  CAS  PubMed  Google Scholar 

  • Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E (1996) CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 93:2499–2504

    Article  CAS  PubMed  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  • Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125:161–169

    Article  CAS  PubMed  Google Scholar 

  • Hjelmstrom P, Juedes AE, Fjell J, Ruddle NH (1998) B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol 161:4480–4483

    CAS  PubMed  Google Scholar 

  • Jagessar SA, Smith PA, Blezer E, Delarasse C, Pham-Dinh D, Laman JD, Bauer J, Amor S, ‘t Hart B (2008) Autoimmunity against myelin oligodendrocyte glycoprotein is dispensable for the initiation although essential for the progression of chronic encephalomyelitis in common marmosets. J Neuropathol Exp Neurol 67:326–340

    Article  CAS  PubMed  Google Scholar 

  • Kap YS, Smith P, Jagessar SA, Remarque E, Blezer E, Strijkers GJ, Laman JD, Hintzen RQ, Bauer J, Brok HP, ‘t Hart BA (2008) Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34–56-specific cytotoxic T cells. J Immunol 180:1326–1337

    CAS  PubMed  Google Scholar 

  • Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, Haas T, Korn AA, Karlsson G, Radue EW (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140

    Article  CAS  PubMed  Google Scholar 

  • Kasran A, Boon L, Wortel CH, Hogezand RA, Schreiber S, Goldin E, Boer M, Geboes K, Rutgeerts P, Ceuppens JL (2005) Safety and tolerability of antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn’s disease. Aliment Pharmacol Ther 22:111–122

    Article  CAS  PubMed  Google Scholar 

  • Kleinschnitz C, Meuth SG, Wiendl H (2008) The trials and errors in MS therapy. Int MS J 15:79–90

    PubMed  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy G, Holz A, Wekerle H (2007) Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Kroenke MA, Segal BM (2007) Th17 and Th1 responses directed against the immunizing epitope, as opposed to secondary epitopes, dominate the autoimmune repertoire during relapses of experimental autoimmune encephalomyelitis. J Neurosci Res 85:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Laman JD, Claassen E, Noelle RJ (1996) Functions of CD40 and its ligand, gp39 (CD40L). Crit Rev Immunol 16:59–108

    CAS  PubMed  Google Scholar 

  • Laman JD, ‘t Hart BA, Brok H, Meurs M, Schellekens MM, Kasran A, Boon L, Bauer J, Boer M, Ceuppens J (2002) Protection of marmoset monkeys against EAE by treatment with a murine antibody blocking CD40 (mu5D12). Eur J Immunol 32:2218–2228

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Ransohoff RM (2004) The CD4-Th1 model for multiple sclerosis: a critical [correction of crucial] re-appraisal. Trends Immunol 25:132–137

    Article  CAS  PubMed  Google Scholar 

  • Longbrake EE, Racke MK (2009) Why did IL-12/IL-23 antibody therapy fail in multiple sclerosis? Expert Rev Neurother 9:319–321

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis—a multifaceted adversary. Nat Rev Drug Discov 7:909–925

    Article  CAS  PubMed  Google Scholar 

  • Lunemann JD, Munz C (2009) EBV in MS: guilty by association? Trends Immunol 30:243–248

    Article  PubMed  Google Scholar 

  • Mancardi G, ‘t Hart B, Roccatagliata L, Brok H, Giunti D, Bontrop R, Massacesi L, Capello E, Uccelli A (2001) Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J Neurol Sci 184:41–49

    Article  CAS  PubMed  Google Scholar 

  • Massacesi L, Genain CP, Lee-Parritz D, Letvin NL, Canfield D, Hauser SL (1995) Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis. Ann Neurol 37:519–530

    Article  CAS  PubMed  Google Scholar 

  • McFarland HI, Lobito AA, Johnson MM, Nyswaner JT, Frank JA, Palardy GR, Tresser N, Genain CP, Mueller JP, Matis LA, Lenardo MJ (1999) Determinant spreading associated with demyelination in a nonhuman primate model of multiple sclerosis. J Immunol 162:2384–2390

    CAS  PubMed  Google Scholar 

  • Merkler D, Boscke R, Schmelting B, Czeh B, Fuchs E, Bruck W, Stadelmann C (2006a) Differential macrophage/microglia activation in neocortical EAE lesions in the marmoset monkey. Brain Pathol 16:117–123

    Article  PubMed  Google Scholar 

  • Merkler D, Schmelting B, Czeh B, Fuchs E, Stadelmann C, Bruck W (2006b) Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the common marmoset reflects the immunopathology of pattern II multiple sclerosis lesions. Mult Scler 12:369–374

    Article  CAS  PubMed  Google Scholar 

  • Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    CAS  PubMed  Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy IM, Matthews PM, Frank JA, Jordan EK, Esiri MM (2005) Demyelinated neocortical lesions in marmoset autoimmune encephalomyelitis mimic those in multiple sclerosis. Brain 128:2713–2721

    Article  PubMed  Google Scholar 

  • Pomeroy IM, Jordan EK, Frank JA, Matthews PM, Esiri MM (2008) Diffuse cortical atrophy in a marmoset model of multiple sclerosis. Neurosci Lett 437:121–124

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2006) EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis. Trends Immunol 27:167–168

    Article  CAS  PubMed  Google Scholar 

  • Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523

    Article  CAS  PubMed  Google Scholar 

  • Robinson WH, Fontoura P, Lee BJ, de Vegvar HE, Tom J, Pedotti R, DiGennaro CD, Mitchell DJ, Fong D, Ho PP, Ruiz PJ, Maverakis E, Stevens DB, Bernard CC, Martin R, Kuchroo VK, van Noort JM, Genain CP, Amor S, Olsson T, Utz PJ, Garren H, Steinman L (2003) Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol 21:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Schafer S, Kolkhof P (2008) Failure is an option: learning from unsuccessful proof-of-concept trials. Drug Discov Today 13:913–916

    Article  PubMed  Google Scholar 

  • Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH (2008) Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 7:796–804

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi Y, Ichikawa M, Takamoto M, Ota H, Koh CS, Muramatsu M, Honjo T, Agematsu K (2009) Antibodies to myelin oligodendrocyte glycoprotein are not involved in the severity of chronic non-remitting experimental autoimmune encephalomyelitis. Immunol Lett 122:145–149

    Article  CAS  PubMed  Google Scholar 

  • Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, Andreoni L, Trivedi P, Salvetti M, Faggioni A, Aloisi F (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204:2899–2912

    Article  CAS  PubMed  Google Scholar 

  • Sriram S, Steiner I (2005) Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol 58:939–945

    Article  CAS  PubMed  Google Scholar 

  • Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21

    Article  CAS  PubMed  Google Scholar 

  • ‘t Hart BA, Amor S (2003) The use of animal models to investigate the pathogenesis of neuroinflammatory disorders of the central nervous system. Curr Opin Neurol 16:375–383

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Massacesi L (2009) Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J Neuropathol Exp Neurol 68:341–355

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Bauer J, Muller HJ, Melchers B, Nicolay K, Brok H, Bontrop RE, Lassmann H, Massacesi L (1998) Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 153:649–663

    Google Scholar 

  • ‘t Hart BA, Laman JD, Bauer J, Blezer E, van Kooyk Y, Hintzen RQ (2004) Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol 3:588–597

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Bauer J, Brok HP, Amor S (2005a) Non-human primate models of experimental autoimmune encephalomyelitis: variations on a theme. J Neuroimmunol 168:1–12

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Blezer EL, Brok HP, Boon L, de Boer M, Bauer J, Laman JD (2005b) Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE. J Neuroimmunol 163:31–39

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Smith P, Amor S, Strijkers GJ, Blezer EL (2006) MRI-guided immunotherapy development for multiple sclerosis in a primate. Drug Discov Today 11:58–66

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Jagessar A, Kap YS, Brok HPM (2007) Preclinical models of multiple sclerosis in nonhuman primates. Expert Rev Clin Immunol 3:749–761

    Article  PubMed  Google Scholar 

  • ‘t Hart BA, Hintzen RQ, Laman JD (2008) Preclinical assessment of therapeutic antibodies against human CD40 and human interleukin-12/23p40 in a nonhuman primate model of multiple sclerosis. Neurodegener Dis 5:38–52

    Article  PubMed  Google Scholar 

  • van Boxel-Dezaire AH, Hoff SC, van Oosten BW, Verweij CL, Drager AM, Ader HJ, van Houwelingen JC, Barkhof F, Polman CH, Nagelkerken L (1999) Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Ann Neurol 45:695–703

    Article  PubMed  Google Scholar 

  • Van der Aa A, Hellings N, Bernard CC, Raus J, Stinissen P (2003) Functional properties of myelin oligodendrocyte glycoprotein-reactive T cells in multiple sclerosis patients and controls. J Neuroimmunol 137:164–176

    Article  PubMed  Google Scholar 

  • van Kooten C, Banchereau J (1997) Functional role of CD40 and its ligand. Int Arch Allergy Immunol 113:393–399

    Article  PubMed  Google Scholar 

  • Vollmer T, Key L, Durkalski V, Tyor W, Corboy J, Markovic-Plese S, Preiningerova J, Rizzo M, Singh I (2004) Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363:1607–1608

    Article  CAS  PubMed  Google Scholar 

  • von Herrath MG, Nepom GT (2005) Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J Exp Med 202:1159–1162

    Article  Google Scholar 

  • Willis SN, Stadelmann C, Rodig SJ, Caron T, Gattenloehner S, Mallozzi SS, Roughan JE, Almendinger SE, Blewett MM, Bruck W, Hafler DA, O’Connor KC (2009) Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain (in press)

Download references

Conflicts of interest

The authors of this review do not report conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert A. ‘t Hart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kap, Y.S., Laman, J.D. & ‘t Hart, B.A. Experimental Autoimmune Encephalomyelitis in the Common Marmoset, a Bridge Between Rodent EAE and Multiple Sclerosis for Immunotherapy Development. J Neuroimmune Pharmacol 5, 220–230 (2010). https://doi.org/10.1007/s11481-009-9178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-009-9178-y

Keywords

Navigation