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Abstract
This work aims at investigating the influence of picking batch size to
average time in system of orders in a one-aisle warehouse under the
assumption that order arrivals follow a Poisson process and items are
uniformly distributed over the aisle's length. We model this problem as an

M /G* /1 queue in which orders are served in batches of exactly k orders.

The average time in system of the M /G* /1 queue is difficult to obtain for
general service times. To circumvent this obstacle, we perform an extensive
numerical experiment on the average time in system of the model when the

service time is deterministic (M /D"/1) or exponentially distributed

(M /M"/1). These results are then compared with the corresponding times in
system of the actual model taken from simulation runs. A variance analysis is
carried out and its result elicits that the M /D"/1 queue is a very good
approximation for the average time in system of orders. Correspondingly, the
optimal picking batch size of the real system can be approximated by the
optimal batch size when service time is deterministic.

Keywords: order picking, warehousing, batch picking, batch size, batch
service queue

1 Problem description, assumptions and notations

1.1 Problem description

Order picking, the process of retrieving items from their storage locations to fill
customers' orders, is known as the most time-consuming and laborious component of the
warehousing activities. Nowadays, with the introduction of e-commerce, customers can
order things they need electronically with their computers or mobile phones via the
Internet. Because the process of ordering is fast, the customer expects a comparable fast
delivery (Roodbergen [11]). This fact makes order picking operations become a strong



candidate for productivity improvement studies. There are four essential factors that
greatly influence the performance and efficiency of the order picking operations. They
are: (a) layout of the warehouse, (b) the routing and sorting policy, (c) the storage
strategy and (d) the batching method. While the first three topics have received much
attention from researchers, the last one is largely unexplored.

In this paper we consider the problem of determining the 'optimal' batch size for the order
picking operation in a single-aisle warehouse (Figure 1). We use the following
assumptions: every order has a quantity of one, arrivals of orders follow a Poisson
process and items are uniformly distributed over the aisle's length. Single-line, single-
item orders that arrive in a random pattern can commonly be observed in mail order and
online retailing companies that focus on specialized product types, such as books,
computers or CD's. For small batches, the service time will mainly be determined by the
set-up time, that is, the time needed to acquire an empty pick device (pallet, cart, bin), to
retrieve a pick list and, at the end of the pick tour, to set down the pick device and
confirm the picks. For large batches, the service time will be mainly determined by
picking and traveling activities. In this respect, there is a similarity with the optimization
of manufacturing batch sizes (see, for example, Tielemans [13]). The major difference is
that the processing time is not linear in the batch size (as is the case in manufacturing
models), since the travel time gives an additional non-linear service time component.

e

Figure 1 A single-aisle rectangular warehouse

Clearly, we can increase the efficiency of the order picking process in such environments
by serving a group of orders instead of individual orders. If the order picker starts a tour
for every order, the capacity may even be insufficient to serve all orders. If the order



picker waits to have a sufficient large number of orders, the average time in system of the
orders may be longer than desired. The critical issue is, therefore, to determine how many
orders an order picker should serve in a tour to minimize the average time in system of

orders.

1.2

Assumptions and notations

In modeling, this system, we use the following assumptions:

Single item orders (meaning that every order consists of only one item), and
Inter-arrival times of orders are independent identically and exponentially

.. ) 1
distributed with mean —.

Service times of batches (with the same size) are also independent identically
distributed random variables.

Picking is performed per batch of exactly g orders.

There is infinite queue space.

Setup is performed per batch and setup time is independent of the batch size.
Products (items to be picked) are uniformly stored over the aisle.

We use the following notations:

the arrival rate of orders

s=1/u  the average service time of an order (note that this is also the service time

of the batch)

the set up time of a batch (supposed to be insensitive to the batch size)
picking rate (items/ minute)

the length of the aisle (in minutes travel)

the batch size (number of orders in a picking batch)

the probability that there are j orders in the system at a random epoch

the probability that there are j orders in the system at departure epochs

P(z) the probability generating function of {p j}

P (2) the probability generating function of {pj }

the average time in system of orders (or average throughput time of
orders)
the average system size (number of orders in system at a random epoch)

2 Literature review on M /G7/1

The problem described above can be modeled as an M /G? /1 queueing model where M
indicates the exponentially distributed inter-arrival time, G indicates that the service



time has a general distribution form and services are performed in batch of exactly ¢
orders. Obviously, this queueing model has many applications in both distribution
logistics and production management but, surprisingly, not many results, which
systematically deal with computational aspects of system measurements such as the
average system size and the average queue time, are available. Although many
approximation methods have been developed for many kinds of none-Markovian queues
(see Tijms [14] and Van Hoorn [8]), no approximation scheme on M /G?/1 has been
found.

Foster and Nyunt [4] derive the equilibrium distribution of the system-size at instants just
after departures as follows:

z—=0
(q-p)(z —)1_[((1 5))

g (1)
Z —
K(z2)

P (2)=

Where P (z)= Zj;o p;zj is the probability generating function of the system-size at

departure epochs, K(z) is the Laplace-Stieltjes transform of the cumulative service time

distribution function. pzi. And, 6, with j=1,.,(¢-1) are (¢—1) roots inside the
U

unit circle of the characteristic equation z? = K(z). It follows from Rouche's theorem
that this equation has exactly (¢—1) roots inside the unit circle. A detailed explanation
can be found in Saaty [12] (p. 175).

Foster and Perera [5] show that the relation between the probability generating function
of the system size at random epochs, P(z), and at departure epochs, P*(z), can be
expressed by the following formula:

P(z) =

P+ 2
(_Z) (2) @)

Substituting (1) into the right-hand size of (2), we obtain:

. pig(z-0))
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- K(z)




If we know the form of service time distribution then the steady state probability {pn}
can be obtained theoretically by successive differentiation of P(z). Nevertheless this
work is cumbersome when ¢ becomes large.

3 Time in system analysis

Again, we can theoretically find the average time in system of orders of an M /G?/1
queue by taking limitation of P'(z) when z reaches to 1. We have:

1 d
w=s2p
ppaaC)

z=1

We note that, for z=1, P(z) in equation (3) is indeterminate of the 0/0 form.

Therefore, we proceed as follows. Let N(z) and D(z) denote the numerator and

denominator of the right-hand side of equation (3) respectively. Then we use following
well-known result in queueing theory (see Madan [20]):

w=L9pe), =Lr)="Liim N(z) (=)= D' () N'(2)
A dz ) A =i 2(N'(2))
(V'(2))
:lN'(l)D"(l)_D'(I)N”(l) 4)
Ao aN()

When the service time has a general form, it is cumbersome to get numerical results for
W . Chaudhry [1] mentions a closed-form expression in terms of the roots of certain
character equations for computing the queueing time but he only considers the queueing
time of the last customer in the service batch. This time is, of course, different from the
waiting time of a random customer. When the service time has particular forms, we may
come up with a more concrete formulation for computing values of W . Especially, when
the service time is an exponentially distributed random variable, we can derive a closed-
form formula for . In the remaining part of this paper, average times in system under
deterministic and exponential service time are considered.

3.1 Average time in system of orders in an M /M ? /1 queue

This is a very special case of the M /G? /1 queues because the M /M? /1 queue can be
modeled as a non-birth-death Markovian queue. As shown in Gross and Harris (p. 125)

[6]:
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Where r, is the unique root (real and less than 1) of the characteristic equation:

urd = (A+ ) +A=0 (6)

By definition, L = ann . Replacing p, with the corresponding formula given in (5)
n=0
and after some algebraic operations (see appendix A) we have:

L——q_1+i n +r (ﬂ(ro_q —1y 1)~ j -1l —gqr}” (l_ro)
- 0
2 uql-r, 1y (1-r)

Applying Little's formula we obtain:

W:l[_‘]—l+i o +r0(/1(ro“f—r&“f)—ﬂro j[l—roq—qro‘”(l—fo)ﬂ (7)

2 pgl-r, Hq (1-)

In order to get the value of W, we first solve the characteristic equation (6) and then
substitute the root into (7). Numerical computation is easy in this case.

3.2 Average time in system of orders in an M /D?/1 queue

If the service time is deterministic we have:

" e—ﬂqs ﬂ, 5 J '
K(z)= ZFO%ZJ

J

oo (9pz
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Substituting (8) into (3), we obtain:

q-1 -5,
(1-zg- 12
LLa=s)
P(z)=

Z‘I
9 (1 T ganln) j

Where 6 =1, (q - 1), now become the (q - 1) roots inside unit circle of the equation:

)

79 = e—qp(l—Z) (1())

In the literature, several solution methods have been proposed for finding the roots of this

equation. The common technique used is transforming (10) into [qT—l_‘ independent

equations each having only one root inside the unit circle. These roots and their conjugate
roots form (g—1) roots that we need (see Appendix D). The literature on this topic can

be found in Chaudhry [1] or Chaudhry et al. [2].

When the (q - 1) roots of the equation (10) are known, we can apply the formula given in

(4) to find W . As mentioned early, successive differentiations are cumbersome when the
batch size is large, but in this case we only need to take the first and second order
derivation of the numerator and denominator function of the generating function. Added
to this, the derivative operator is available in many common mathematical software
packages, such as Maple or Matlab. This favorableness makes it possible to perform
numerical analysis on values of W even for large values of the batch size.

4 Experiment design

We start from a problem called 'seed' problem. In the seed problem, the aisle length
equals 40 seconds of walking, the picking time per item is 20 seconds, the setup time of a
batch is 90 seconds and the mean inter-arrival time of orders is 60 seconds. This
configuration is typical for a shelf-type warehouse. From this seed problem, we expand
one parameter at a time and fix the others. The feasible range of the batch size is between
its lower bound and infinity. For the ease of computation, we choose the maximum batch
size equal to 30. In practice, this upper limit is determined by the order picker's capacity
(or the capacity of a group of order pickers who work together on the same batch). Each
time when we vary the value of one parameter, the mean service time of a batch will
change (see the average service time formula given in Appendix B). These changes, of
course, will lead to fluctuation in the value of the traffic density. Based on the general



condition for a queueing system to reach equilibrium, a lower bound for the batch size is
determined as shown in Appendix C.

To be able to make comparisons, we define 3 ranges for values of the batch lower bound:
low, medium and high. The low range is between 1 and 5, the medium range is between 6
and 10, and the high range covers the remaining possibilities. For each set of parameters,
6 values are randomly chosen in such a way that their corresponding batch size lower
bounds constitute 3 groups of two values and each group will fall into one of the different
ranges defined above. Table 1 below shows 25 sets of parameters that we used for
experimenting in which set 1 is the seed set. Corresponding lower bounds as well as
traffic density ranges are listed in the table. It is noted that for a given set of parameters,
the traffic density is highest when the batch size equals its lower bound and it decreases
when the batch size increases.

Table 1 Parameters of test problems
Setup | Picking | Aisle's | Arrival | Lower | Traffic density range
time rate length rate | bound ; Ils;é[x
(7) (r) (L,) (1) | (q,5) | Minimum | Maximum
1.5 3 0.667 1 4 0.426366 | 0.975133 1
0 3 0.667 1 2 0.376366 0.778 2
0.2 3 0.667 1 2 0.383032 0.878 3
2 3 0.667 1 5 0.443032 | 0.955667 4
4 3 0.667 1 8 0.509699 | 0.981556 5
7 3 0.667 1 13 0.609699 | 0.967081 6
8 3 0.667 1 14 0.643032 | 0.993695 7
1.5 10 0.667 1 3 0.193032 0.9335 8
1.5 8 0.667 1 3 0.218032 0.9585 9
1.5 2 0.667 1 6 0.593032 | 0.940571 10
1.5 1.5 0.667 1 9 0.759699 | 0.966733 11
1.5 1.4 0.667 1 10 0.807318 | 0.985558 12
1.5 1.35 0.667 1 11 0.833773 | 0.988271 13
1.5 3 0 1 3 0.383333 | 0.833333 14
1.5 3 0.4 1 4 0.40914 | 0.868333 15
1.5 3 0.8 1 5 0.434946 0.9 16
1.5 3 1.5 1 7 0.480108 | 0.922619 17
1.5 3 3 1 11 0.576882 | 0.969697 18
1.5 3 4 1 14 0.641398 0.97381 19
1.5 3 0.667 0.5 2 0.213183 0.764 20
1.5 3 0.667 1.1 5 0.469002 | 0.941233 21
1.5 3 0.667 1.2 6 0.511639 | 0.928686 22
1.5 3 0.667 1.5 9 0.639548 0.9501 23
1.5 3 0.667 1.7 11 0.724822 | 0.987468 24
1.5 3 0.667 1.9 15 0.810095 | 0.981746 25




From the table we can see that we have covered a very broad traffic density range,
between 0.193 and 0.994. So we believe that our experiment will present most real life
situations.

As we will see later, the average system time of M /G? /1 is a convex function of batch
size and in every case the optimal batch size (the value at which the average time in
system reaches the minimum) is very close to the lower bound. Therefore, considering
batch size values in a reasonably narrow range, not too far from the lower bound, is
sufficient. This means that the upper batch size value is not really a restriction.

To investigate influences of picking batch size on the average time in system of orders
(or average throughput time of orders) we built the following models.

4.1 Exponential service time model

Numerical results for the system under the exponential service case were obtained from a

M /M?/1 model built in Microsoft Excel using Visual Basic for Applications ([16]).
The core of the model is the formula given in (7). Outputs of the model (average time in
system of orders) under many cases were compared with corresponding results obtained
from QTS software of Gross and Harris (see Gross and Harris [7]). In all cases, no
difference was found. By building this model, we can compute values of average time in
system over a range of batch sizes (Gross and Harris's package only allows to evaluate
the system at a single batch size value). Running times of the model in all cases were
negligible.

4.2 Deterministic service model

In order to find numerical results of M /D?/1 queue, we need to take the first and
second order derivates of the numerator and denominators function of the steady state
probability generating function (see the formula given in (9)). We used derivative
operators built-in Maple 6.01 ([15]) to perform this task.

As we mentioned earlier, finding robust roots for the characteristic equations (10) is not
an easy task. Sensitive factors, which may influence the quality of roots and CPU running
time, are starting values of variables (see e.g. Chaudhry et al. [2] and Powell [10]). In this
model, we used the starting scheme given by Gross & Harris (see QTS software —
M/ D/c model, Gross and Harris [7]). As a consequence of derivative operations, the
model consumed considerable time especially when the maximum value of the batch size
was large. It might take up to 30 seconds (on a Pentium III processor PC), when the
upper limit of batch size equaled 30.



4.3 Simulation model

To get roughly numerical results for the system under actual service time distribution, we
built a simulation model using AutoMod 9.1 ([18]). Then we used AutoStat 3.1, a
companion module of AutoMod 9.1, as an efficient tool for making warming-up analysis
and performing batch running. The model did need warming-up time specially when the
batch size was close to its lower bound. This fact can be explained as follows. When the
batch size is close to the lower bound, the corresponding traffic density of the system gets
very close to 1 and as a consequence the system is not stable and thus takes some times to
reach equilibrium. We experienced that different test sets required different warming-up
time periods. We made several pilot runs and decided to take 4 hours as the common
warming-up period for all test sets.

Various works had been done for validating the model. The model was considered in
both deterministic and exponential service case and its outcomes were compared with
results obtained from the analytical models respectively. Even in the worst case only a
small difference was found. The simulation run length was set to 8 hours. The number of
replications for each test set was chosen in such a way that it was sufficient to provide a
95% confidence interval with a half-width of less than 2.5% of the sample mean. Again,
we experienced that different test sets required different numbers of replications. For
example, set 2,4,8,10 needed about 20 replications while set 11,12,13 asked for more
than 100 replications.

5 Some results and discussions

For each set of parameters listed in Table 1, we used the 3 models mentioned above to
compute the average time in system of orders, for all batch size values between the
corresponding lower bound and the upper limit. For the deterministic and exponential
model we took the mean service time of a batch equal to the average service time defined
by the formula given in Appendix C. We found the following results.

5.1 Average time in system of orders is a convex function of batch size

We first consider the behavior of the average time in system of orders when the service
time has a general form. The average time in system of orders appears to be a convex
function of the batch size between its lower and upper bounds and this result holds for all
test sets. When we increase the batch size from its lower bound, the average time in
system of orders decreases, rapidly reaches minimum and then from the minimum it
monotonously increases. For large batch size values, the average time in system behaves
as a linear function of batch size. The reason for this finding is as follows. When the
batch size value is large the average time in system is mainly determined by the service
time component (as there are many arrivals during a batch service period). Added to this,

10



for a large value of the batch size the order picker has to entirely traverse the aisle to pick
all requested orders in a batch. As a consequence, the travel is insensitive to batch size for
large batches. The set up time of a batch is also constant. Therefore, the picking time,
which is a linear increasing function of the batch size, stipulates the linearly behavior of
the average time in system. Figure 2 depicts the average time in system as a function of
the batch size for some test sets.
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As an illustration of the above result, we also sketched out shapes of average time in
system when service time was deterministic and exponential.

Figure 3 shows the convex property of average time in system for the deterministic case.
The average time in system of order behaves as in the previous case; all curves are
convex and smooth. Figure 4 shows the average time in system when service time is
exponential.

We tested the convex property of average time in system of order not only for the sets of
parameters listed on Table 1 but also for many other sets and we found that in all cases

the result remains unchanged.
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5.2  Average time in system of orders is always highest when service time is
exponential

For every set of parameters, we compared the throughput times of M /M ? /1, M /D /1
and M /G?/1 at different values of batch size and found that the average time in system
of orders was always the highest for exponential service time. Figure 5 gives an
illustration for the case of test set 3. This result seems quite obvious but rather difficult to
explain in an analytical way because in the deterministic and general service time case we
do not have closed-forms for computing the average time in system of orders.

Another interesting point is that the optimal batch size for every test set is always highest
when the service time distribution is exponential (see in the first half of Table 2). This
result is very useful because it defines an upper limit for finding the optimal batch size of
the actual system. This upper bound is rather easy to compute as in the case of

12



exponential service time we have a closed form for computing the average time in system
of orders.

Next to above findings, a remark should be made is that the optimal batch size in the case
of deterministic or general distribution service time is very close to its lower bound.
Therefore, if we trace the optimum (the batch size that gives the minimum average time
in system) from the lower bound and each time we increase the batch size value by 1
(order), it is likely that we will reach the optimum rapidly.
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Figure 5 Average time in system of orders for test set 3

For every set, we observed that the difference between the average time in system
obtained from the deterministic and general service time model is very small and this
holds for all feasible batch size values (note that the average time in system in the case of
general service time is the mean value obtained from simulation runs with running time
and number of replications mentioned above). Therefore, we hypothesize that, with
respect to the average time in system, these two models are statistically indifferent. We
used SPSS ([17]) to test this hypothesis. Table 3 shows results of this test. The results
point out that the null hypothesis was rejected for only 3 sets (of in total 25 sets). In other
words, for 22 sets no statistical difference between the results of the deterministic model
and the outcomes of the simulation runs was detected.

The optimal picking batch size for a system with general service time is extremely
difficult to find, if not impossible. The above findings suggest that we can use the

M /D?/1 queue as an approximation for determining the optimal picking batch size of
the actual system. We propose the following heuristic procedure:

13



- Calculate the batch size lower bound ¢,, (see Appendix C).

- Find the optimal batch size for the exponential service time model q;’;’j v
- Determine the upper bound

Gy = Min {quj e > Capacity of an order picker (or a group of order pickers) } .

B q;};;Gq/l = ql(l)jfij"/l’ q;\);jmu € [qLB’QUB] :
Table 2 Differences analysis results’
Test opt opt opt Optimal average time in system (W ")
set dp Daipe 1 Do n Drimee n M/D1 | M/IGT/1 o, differencez
1 4 6 6 8 7.99 8 0.12
2 2 2 2 3 3.27 3.23 1.24
3 2 3 3 4 3.98 4.02 1.00
4 5 7 6 10 9.39 9.32 0.75
5 8 10 10 16 14.72 14.74 0.14
6 13 16 16 24 22.40 22.31 0.40
7 14 17 17 28 24.85 24.65 0.81
8 3 4 4 6 5.26 5.21 0.96
9 3 4 4 6 5.50 5.48 0.36
10 6 8 8 11 11.62 11.67 0.43
11 9 11 12 16 18.88 18.96 0.42
12 10 13 14 19 22.52 22.47 0.22
13 11 15 15 21 25.17 24.56 2.48
14 3 4 4 5 4.90 4.93 0.61
15 4 5 5 7 6.68 6.83 2.20
16 5 6 6 9 8.60 8.68 0.92
17 7 8 8 13 12.11 12.1 0.08
18 11 13 13 21 19.48 19.53 0.26
19 14 17 16 27 24.33 24.34 0.04
20 2 3 3 3 6.00 6.04 0.66
21 5 7 6 9 8.54 8.61 0.81
22 6 7 8 11 9.09 9.06 0.33
23 9 11 10 16 11.07 11.16 0.81
24 11 14 14 21 12.92 12.91 0.08
25 15 18 19 29 15.46 15.34 0.78

! Average time in system of orders of the general distribution service time system is taken from simulation
runs
? Absolute value

14



Table 3 Significance test of differences between average times in system of
orders obtained with deterministic and general service time model

Paired-Samples T test with 95% confidence interval of the difference
Test set Degree of t-value Critical value | Insignificant?
freedom
1 26 0.756 2.056 yes
2 28 2.372 2.048 no
3 28 3.051 2.048 no
4 25 0.964 2.06 yes
5 22 0.907 2.074 yes
6 17 0.974 2.11 yes
7 16 0.993 2.12 yes
8 27 247 2.052 yes
9 27 1.021 2.052 yes
10 24 0.732 2.064 yes
11 21 0.882 2.08 yes
12 20 0.993 2.179 yes
13 19 1.211 2.093 yes
14 27 0.073 2.052 yes
15 26 0.087 2.056 yes
16 25 0.592 2.06 yes
17 23 0.23 2.069 yes
18 19 0.627 2.101 yes
19 16 1.205 2.12 yes
20 28 3.503 2.048 no
21 25 0.749 2.06 yes
22 24 1.174 2.064 yes
23 21 0.754 2.08 yes
24 19 0.927 2.093 yes
25 15 0.067 2.131 yes
q;fj e, can be chased by the following procedure:
qup, = o0;

M /D91
opt

for qZQLB+1 to QLB do qM/D"/l =q

if W' <W"  then (W"w =W 'q””’=q);

b
M /D971 M /D91 M /D91 M /D971
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6 Conclusions

Following conclusions could be drawn from this study:

% The average time in system is a convex function of the picking batch size.

% M /D?/1 is a good approximation for the system.

% The optimal order picking batch size can be found by just considering the average
time in system of orders of the deterministic service time system over a tight
range of batch sizes. The upper bound of the range is the minimum of the optimal
picking batch size given by the corresponding M /M?/1 model and the
maximum number of orders that an order picker (or a group of order pickers) can
serve in a picking tour. The lower bound is derived from the equilibrium
condition.

The problem we discussed above is the simplest case of the on-line order batching
problem, the problem of determining the optimal picking batch size for order pickers
when orders arrive online. We intend to relax some assumptions (mentioned in section 1)
to cope with more complex and realistic situations. One straightforward direction is to
consider multi-aisle warehouses. With this extension we have to take into account the
effect of routing methods. Another possibility is to investigate the influence of class-
based storage strategies on the batching decision.

Appendix A Average queue size of M /M7 /1
As shown in Gross and Harris [6] and in many other queueing theory materials:

po(l_ronH)

(1<n<gq)
1-r,

Py =
poAry !

U
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g-1 161-1 1 =
:(l n—— nronHJ 7"0 76_2 ron
q n=1 q n=1 q H n=q
L(g-Dg r & A ( J
=) gy +—r =) nrl' =Y nr)
q 2 q; " opg " Zl ’ 21 ’
q_l A -q I-q N n A -q I-q i S n
==+ —(r -7 nr, +| —(r.-? —r, - nr,
2 ﬂq(o 0 ); 0 ﬂq(o 0 ) q ; 0
) S, 1
Since ano =1y ——— (where ry <1)

n=1 (1—1"0)2

-7 - qrro’r1 (l - rO)J

q-1
and nr' =r
ZI: 0 0 [ (1 _ ]/'O )2

We finally obtain:
_ ¢ A1 =y = 1=77 —gr? (1=
L:q 1+i dd +VO( (' —r") :L””o] Iy —4q% 2( rO) .
2 ugl-r Hq (1-7)
Appendix B Expected batch service time

The expected travel time to pick ¢ items, where items are uniformly distributed over the

aisle, can be computed as follow:

E(x)=2L, lj xf(x).dx

x=0
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Where L, denotes the length of the aisle (in minutes). The service time consists of 3

components: setup, picking and travel time. We suppose that the setup time is insensitive
to the size of batch and the picking time per item is constant. Only the travel time has a
stochastic nature, so the average service time of a batch size ¢ can be computed as
follows.

S(q) = setuptime + E(picking time) + E(travel time)

=r+d4E (x)
r
—r+d4 2L, 4 *
r q+1
Appendix C Compute lower bound of batch size q

As a common condition for every queuing system to reach equilibrium the traffic density
must be less than 1. Hence:

ﬂ,s
q

(r+ + 2—Lj q

£+2L0q<l 1

<1

q q+1 A1 r
2L
q2+q(1_r+ 0)—1>0 where a:l—l
o o A r (11)
a>0
It is clear that equation q2+q(1_r+2L) 20 has two real roots (g, > q,):
a a

q, =

_(1_r+2Loj+\/(l_r+2L0j e
[04 [04 [04
2

and,
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2
_(I_Hnaj_ J@ﬁﬂoj W
(04 (04 (04

It is easy to see that g, is positive while g, is negative, therefore:

q >4,
1)<
(ah {r>/1

=int(q,)+1
C:>{QLB int(g,)
r>A7

For a given setof A, r, 7 and L, we can determine a lower bound for the batch size by

simply solving the equation above and taking the smallest integer that is greater than the
positive root we have found. It is noted that, the picking rate must be greater than the
arrival rate of orders otherwise the equilibrium condition will be broken. &

Appendix D Finding roots for characteristic equation (10) (Muller's method)

Our characteristic equation (10) can be rewritten as follows (for more details see
Chaudhry [1]).

(10) & 27 =g Pimarm forn=1,2,...q and i=-1

oz = e—p(l—z)+2/rni/q (*)

It is clear that for each value of n, (*) has a unique root. Solving these equations for

n=1, 2,...,[%_1—‘ and then taking conjugates of these roots we obtain (¢ —1) roots inside

the unit circle. ¢
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