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Abstract 

This work aims at investigating the influence of picking batch size to 
average time in system of orders in a one-aisle warehouse under the 
assumption that order arrivals follow a Poisson process and items are 
uniformly distributed over the aisle's length. We model this problem as an 

 queue in which orders are served in batches of exactly  orders. 
The average time in system of the  queue is difficult to obtain for 
general service times. To circumvent this obstacle, we perform an extensive 
numerical experiment on the average time in system of the model when the 
service time is deterministic ( ) or exponentially distributed 
( ). These results are then compared with the corresponding times in 
system of the actual model taken from simulation runs. A variance analysis is 
carried out and its result elicits that the  queue is a very good 
approximation for the average time in system of orders. Correspondingly, the 
optimal picking batch size of the real system can be approximated by the 
optimal batch size when service time is deterministic.  
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1 Problem description, assumptions and notations 

1.1 Problem description 
Order picking, the process of retrieving items from their storage locations to fill 
customers' orders, is known as the most time-consuming and laborious component of the 
warehousing activities. Nowadays, with the introduction of e-commerce, customers can 
order things they need electronically with their computers or mobile phones via the 
Internet. Because the process of ordering is fast, the customer expects a comparable fast 
delivery (Roodbergen [11]). This fact makes order picking operations become a strong 
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candidate for productivity improvement studies. There are four essential factors that 
greatly influence the performance and efficiency of the order picking operations. They 
are: (a) layout of the warehouse, (b) the routing and sorting policy, (c) the storage 
strategy and (d) the batching method. While the first three topics have received much 
attention from researchers, the last one is largely unexplored.    
 
In this paper we consider the problem of determining the 'optimal' batch size for the order 
picking operation in a single-aisle warehouse (Figure 1). We use the following 
assumptions: every order has a quantity of one, arrivals of orders follow a Poisson 
process and items are uniformly distributed over the aisle's length. Single-line, single-
item orders that arrive in a random pattern can commonly be observed in mail order and 
online retailing companies that focus on specialized product types, such as books, 
computers or CD's. For small batches, the service time will mainly be determined by the 
set-up time, that is, the time needed to acquire an empty pick device (pallet, cart, bin), to 
retrieve a pick list and, at the end of the pick tour, to set down the pick device and 
confirm the picks. For large batches, the service time will be mainly determined by 
picking and traveling activities. In this respect, there is a similarity with the optimization 
of manufacturing batch sizes (see, for example, Tielemans [13]). The major difference is 
that the processing time is not linear in the batch size (as is the case in manufacturing 
models), since the travel time gives an additional non-linear service time component. 
 
 
 
 
 
 
 
 
 

Figure 1  
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picker waits to have a sufficient large number of orders, the average time in system of the 
orders may be longer than desired. The critical issue is, therefore, to determine how many 
orders an order picker should serve in a tour to minimize the average time in system of 
orders. 
 

1.2 Assumptions and notations 
In modeling, this system, we use the following assumptions: 

- Single item orders (meaning that every order consists of only one item), and  
- Inter-arrival times of orders are independent identically and exponentially 

distributed with mean 
�

1 .  

- Service times of batches (with the same size) are also independent identically 
distributed random variables. 

- Picking is performed per batch of exactly  orders. q
- There is infinite queue space. 
- Setup is performed per batch and setup time is independent of the batch size. 
- Products (items to be picked) are uniformly stored over the aisle.  

 
We use the following notations: 

�   the arrival rate of orders 
1s ��  the average service time of an order (note that this is also the service time 

of the batch)  
�   the set up time of a batch (supposed to be insensitive to the batch size) 
r    picking rate (items/ minute) 

0L    the length of the aisle (in minutes travel)  
q   the batch size (number of orders in a picking batch) 

jp   the probability that there are j  orders in the system at a random epoch 
�

jp   the probability that there are j  orders in the system at departure epochs  
� �zP   the probability generating function of � �jp  

( )P z�  the probability generating function of � ��jp  
W    the average time in system of orders (or average throughput time of 

orders) 
L    the average system size (number of orders in system at a random epoch)  

 

2 Literature review on M  1// qG

The problem described above can be modeled as an  queueing model where 1// qGM M  
indicates the exponentially distributed inter-arrival time,  indicates that the service qG
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time has a general distribution form and services are performed in batch of exactly  
orders. Obviously, this queueing model has many applications in both distribution 
logistics and production management but, surprisingly, not many results, which 
systematically deal with computational aspects of system measurements such as the 
average system size and the average queue time, are available. Although many 
approximation methods have been developed for many kinds of none-Markovian queues 
(see Tijms [14] and Van Hoorn [8]), no approximation scheme on  has been 
found.  

q

1// qGM

)1�

(P z�

 
Foster and Nyunt [4] derive the equilibrium distribution of the system-size at instants just 
after departures as follows: 
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Where  is the probability generating function of the system-size at 

departure epochs, 
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( )K z  is the Laplace-Stieltjes transform of the cumulative service time 

distribution function. �
�

�
� . And, �  with  are  roots inside the 

unit circle of the characteristic equation . It follows from Rouche's theorem 
that this equation has exactly  roots inside the unit circle. A detailed explanation 
can be found in Saaty [12] (p. 175). 
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Foster and Perera [5] show that the relation between the probability generating function 
of the system size at random epochs, ( )P z , and at departure epochs, ) , can be 
expressed by the following formula: 
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Substituting (1) into the right-hand size of (2), we obtain: 
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If we know the form of service time distribution then the steady state probability  
can be obtained theoretically by successive differentiation of . Nevertheless this 
work is cumbersome when  becomes large. 

� �np
)(zP

q
 

3 Time in system analysis 
Again, we can theoretically find the average time in system of orders of an  
queue by taking limitation of 

1// qGM
( )P z�  when z  reaches to 1. We have: 

� � 1
1

z
dW P z
dz�

�
�     

We note that, for 1z � , � �P z  in equation (3) is indeterminate of the  form. 

Therefore, we proceed as follows. Let 

0 / 0

� �N z  and � �D z  denote the numerator and 
denominator of the right-hand side of equation (3) respectively. Then we use following 
well-known result in queueing theory (see Madan [20]): 

� � � �
� � � � � � � �

� �� �
1 21

1 1 11 lim
2

z z

N z D z D z N zdW P z P   
dz N z� � �

�
�

� �� � ���
�� � �

�

         

     � � � � � � � �

� �� �
2

1 1 11
2 1

N D D N

N�

� �� � ���

�

1
=   (4) 

When the service time has a general form, it is cumbersome to get numerical results for 
. Chaudhry [1] mentions a closed-form expression in terms of the roots of certain 

character equations for computing the queueing time but he only considers the queueing 
time of the last customer in the service batch. This time is, of course, different from the 
waiting time of a random customer. When the service time has particular forms, we may 
come up with a more concrete formulation for computing values of W . Especially, when 
the service time is an exponentially distributed random variable, we can derive a closed-
form formula for W . In the remaining part of this paper, average times in system under 
deterministic and exponential service time are considered.                            

W

 

3.1 Average time in system of orders in an M  queue  1// qM

This is a very special case of the  queues because the  queue can be 
modeled as a non-birth-death Markovian queue. As shown in Gross and Harris (p. 125) 
[6]: 

1// qGM 1// qMM
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Where  is the unique root (real and less than 1) of the characteristic equation: 0r

� �1
0 0 0qr r� � � ��

� � � �   (6)  

By definition, . Replacing �
�

�

�

0n
nnpL np  with the corresponding formula given in (5) 

and after some algebraic operations (see appendix A) we have: 
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Applying Little's formula we obtain: 
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In order to get the value of W , we first solve the characteristic equation (6) and then 
substitute the root into (7). Numerical computation is easy in this case. 
 

3.2 Average time in system of orders in an M  queue 1// qD

If the service time is deterministic we have: 
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Substituting (8) into (3), we obtain: 
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1
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Where , , now become the �  roots inside unit circle of the equation: j� � 1,..,1 �� qj � �

z

1�q

(1 )q qz e �� �

�  (10) 

In the literature, several solution methods have been proposed for finding the roots of this 

equation. The common technique used is transforming (10) into 1
2

q �� �
� �� �

 independent 

equations each having only one root inside the unit circle. These roots and their conjugate 
roots form (  roots that we need (see Appendix D). The literature on this topic can 
be found in Chaudhry [1] or Chaudhry et al. [2].  

1q � )

�
 
When the  roots of the equation (10) are known, we can apply the formula given in 
(4) to find W . As mentioned early, successive differentiations are cumbersome when the 
batch size is large, but in this case we only need to take the first and second order 
derivation of the numerator and denominator function of the generating function. Added 
to this, the derivative operator is available in many common mathematical software 
packages, such as Maple or Matlab. This favorableness makes it possible to perform 
numerical analysis on values of W even for large values of the batch size. 

� 1�q

 

4 Experiment design 
We start from a problem called 'seed' problem. In the seed problem, the aisle length 
equals 40 seconds of walking, the picking time per item is 20 seconds, the setup time of a 
batch is 90 seconds and the mean inter-arrival time of orders is 60 seconds. This 
configuration is typical for a shelf-type warehouse. From this seed problem, we expand 
one parameter at a time and fix the others. The feasible range of the batch size is between 
its lower bound and infinity. For the ease of computation, we choose the maximum batch 
size equal to 30. In practice, this upper limit is determined by the order picker's capacity 
(or the capacity of a group of order pickers who work together on the same batch). Each 
time when we vary the value of one parameter, the mean service time of a batch will 
change (see the average service time formula given in Appendix B). These changes, of 
course, will lead to fluctuation in the value of the traffic density. Based on the general 
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condition for a queueing system to reach equilibrium, a lower bound for the batch size is 
determined as shown in Appendix C.   
 
To be able to make comparisons, we define 3 ranges for values of the batch lower bound: 
low, medium and high. The low range is between 1 and 5, the medium range is between 6 
and 10, and the high range covers the remaining possibilities. For each set of parameters, 
6 values are randomly chosen in such a way that their corresponding batch size lower 
bounds constitute 3 groups of two values and each group will fall into one of the different 
ranges defined above. Table 1 below shows 25 sets of parameters that we used for 
experimenting in which set 1 is the seed set. Corresponding lower bounds as well as 
traffic density ranges are listed in the table. It is noted that for a given set of parameters, 
the traffic density is highest when the batch size equals its lower bound and it decreases 
when the batch size increases.  
 

Table 1 Parameters of test problems 

Traffic density range Set up 
time 
(� ) 

Picking 
rate 
( ) r

Aisle's 
length 
( 0L ) 

Arrival 
rate 
( ) �

Lower
bound 
( ) LBq Minimum Maximum 

Set 
index 

1.5 3 0.667 1 4 0.426366 0.975133 1 
0 3 0.667 1 2 0.376366 0.778 2 

0.2 3 0.667 1 2 0.383032 0.878 3 
2 3 0.667 1 5 0.443032 0.955667 4 
4 3 0.667 1 8 0.509699 0.981556 5 
7 3 0.667 1 13 0.609699 0.967081 6 
8 3 0.667 1 14 0.643032 0.993695 7 

1.5 10 0.667 1 3 0.193032 0.9335 8 
1.5 8 0.667 1 3 0.218032 0.9585 9 
1.5 2 0.667 1 6 0.593032 0.940571 10 
1.5 1.5 0.667 1 9 0.759699 0.966733 11 
1.5 1.4 0.667 1 10 0.807318 0.985558 12 
1.5 1.35 0.667 1 11 0.833773 0.988271 13 
1.5 3 0 1 3 0.383333 0.833333 14 
1.5 3 0.4 1 4 0.40914 0.868333 15 
1.5 3 0.8 1 5 0.434946 0.9 16 
1.5 3 1.5 1 7 0.480108 0.922619 17 
1.5 3 3 1 11 0.576882 0.969697 18 
1.5 3 4 1 14 0.641398 0.97381 19 
1.5 3 0.667 0.5 2 0.213183 0.764 20 
1.5 3 0.667 1.1 5 0.469002 0.941233 21 
1.5 3 0.667 1.2 6 0.511639 0.928686 22 
1.5 3 0.667 1.5 9 0.639548 0.9501 23 
1.5 3 0.667 1.7 11 0.724822 0.987468 24 
1.5 3 0.667 1.9 15 0.810095 0.981746 25 
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From the table we can see that we have covered a very broad traffic density range, 
between 0.193 and 0.994. So we believe that our experiment will present most real life 
situations. 

As we will see later, the average system time of  is a convex function of batch 
size and in every case the optimal batch size (the value at which the average time in 
system reaches the minimum) is very close to the lower bound. Therefore, considering 
batch size values in a reasonably narrow range, not too far from the lower bound, is 
sufficient. This means that the upper batch size value is not really a restriction. 

1// qGM

 
To investigate influences of picking batch size on the average time in system of orders 
(or average throughput time of orders) we built the following models. 
 

4.1 Exponential service time model 
Numerical results for the system under the exponential service case were obtained from a 

 model built in Microsoft Excel using Visual Basic for Applications ([16]). 
The core of the model is the formula given in (7). Outputs of the model (average time in 
system of orders) under many cases were compared with corresponding results obtained 
from QTS software of Gross and Harris (see Gross and Harris [7]). In all cases, no 
difference was found. By building this model, we can compute values of average time in 
system over a range of batch sizes (Gross and Harris's package only allows to evaluate 
the system at a single batch size value). Running times of the model in all cases were 
negligible.       

1// qMM

 

4.2 Deterministic service model 

In order to find numerical results of  queue, we need to take the first and 
second order derivates of the numerator and denominators function of the steady state 
probability generating function (see the formula given in (9)). We used derivative 
operators built-in Maple 6.01 ([15]) to perform this task.  

1// qDM

 
As we mentioned earlier, finding robust roots for the characteristic equations (10) is not 
an easy task. Sensitive factors, which may influence the quality of roots and CPU running 
time, are starting values of variables (see e.g. Chaudhry et al. [2] and Powell [10]). In this 
model, we used the starting scheme given by Gross & Harris (see QTS software – 

 model, Gross and Harris [7]).  As a consequence of derivative operations, the 
model consumed considerable time especially when the maximum value of the batch size 
was large. It might take up to 30 seconds (on a Pentium III processor PC), when the 
upper limit of batch size equaled 30.   

cDM //
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4.3 Simulation model 
To get roughly numerical results for the system under actual service time distribution, we 
built a simulation model using AutoMod 9.1 ([18]). Then we used AutoStat 3.1, a 
companion module of AutoMod 9.1, as an efficient tool for making warming-up analysis 
and performing batch running. The model did need warming-up time specially when the 
batch size was close to its lower bound. This fact can be explained as follows. When the 
batch size is close to the lower bound, the corresponding traffic density of the system gets 
very close to 1 and as a consequence the system is not stable and thus takes some times to 
reach equilibrium. We experienced that different test sets required different warming-up 
time periods. We made several pilot runs and decided to take 4 hours as the common 
warming-up period for all test sets. 
 
Various works had been done for validating the model. The model was considered in 
both deterministic and exponential service case and its outcomes were compared with 
results obtained from the analytical models respectively. Even in the worst case only a 
small difference was found. The simulation run length was set to 8 hours. The number of 
replications for each test set was chosen in such a way that it was sufficient to provide a 
95% confidence interval with a half-width of less than 2.5% of the sample mean. Again, 
we experienced that different test sets required different numbers of replications. For 
example, set 2,4,8,10 needed about 20 replications while set 11,12,13 asked for more 
than 100 replications. 
 

5 Some results and discussions 
For each set of parameters listed in Table 1, we used the 3 models mentioned above to 
compute the average time in system of orders, for all batch size values between the 
corresponding lower bound and the upper limit. For the deterministic and exponential 
model we took the mean service time of a batch equal to the average service time defined 
by the formula given in Appendix C. We found the following results.      
 

5.1 Average time in system of orders is a convex function of batch size 
We first consider the behavior of the average time in system of orders when the service 
time has a general form. The average time in system of orders appears to be a convex 
function of the batch size between its lower and upper bounds and this result holds for all 
test sets. When we increase the batch size from its lower bound, the average time in 
system of orders decreases, rapidly reaches minimum and then from the minimum it 
monotonously increases. For large batch size values, the average time in system behaves 
as a linear function of batch size. The reason for this finding is as follows. When the 
batch size value is large the average time in system is mainly determined by the service 
time component (as there are many arrivals during a batch service period). Added to this, 
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for a large value of the batch size the order picker has to entirely traverse the aisle to pick 
all requested orders in a batch. As a consequence, the travel is insensitive to batch size for 
large batches. The set up time of a batch is also constant. Therefore, the picking time, 
which is a linear increasing function of the batch size, stipulates the linearly behavior of 
the average time in system. Figure 2 depicts the average time in system as a function of 
the batch size for some test sets.  
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As an illustration of the above result, we also sketched out shapes of average time in 
system when service time was deterministic and exponential. 
Figure 3 shows the convex property of average time in system for the deterministic case. 
The average time in system of order behaves as in the previous case; all curves are 
convex and smooth. Figure 4 shows the average time in system when service time is 
exponential. 
 
We tested the convex property of average time in system of order not only for the sets of 
parameters listed on Table 1 but also for many other sets and we found that in all cases 
the result remains unchanged. 
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5.2 Average time in system of orders is always highest when service time is 
exponential 

For every set of parameters, we compared the throughput times of ,  
and  at different values of batch size and found that the average time in system 
of orders was always the highest for exponential service time. Figure 5 gives an 
illustration for the case of test set 3. This result seems quite obvious but rather difficult to 
explain in an analytical way because in the deterministic and general service time case we 
do not have closed-forms for computing the average time in system of orders.  

1// qMM 1// qDM
/ /qM G

 
Another interesting point is that the optimal batch size for every test set is always highest 
when the service time distribution is exponential (see in the first half of Table 2). This 
result is very useful because it defines an upper limit for finding the optimal batch size of 
the actual system. This upper bound is rather easy to compute as in the case of 
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exponential service time we have a closed form for computing the average time in system 
of orders. 
 
Next to above findings, a remark should be made is that the optimal batch size in the case 
of deterministic or general distribution service time is very close to its lower bound. 
Therefore, if we trace the optimum (the batch size that gives the minimum average time 
in system) from the lower bound and each time we increase the batch size value by 1 
(order), it is likely that we will reach the optimum rapidly. 
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Figure 5 Average time in system of orders for test set 3 

 every set, we observed that the difference between the average time in system 
ained from the deterministic and general service time model is very small and this 
ds for all feasible batch size values (note that the average time in system in the case of 
eral service time is the mean value obtained from simulation runs with running time 
 number of replications mentioned above). Therefore, we hypothesize that, with 

pect to the average time in system, these two models are statistically indifferent. We 
d SPSS ([17]) to test this hypothesis. Table 3 shows results of this test. The results 
nt out that the null hypothesis was rejected for only 3 sets (of in total 25 sets). In other 
rds, for 22 sets no statistical difference between the results of the deterministic model 
 the outcomes of the simulation runs was detected. 

e optimal picking batch size for a system with general service time is extremely 
ficult to find, if not impossible. The above findings suggest that we can use the 

 queue as an approximation for determining the optimal picking batch size of 
 actual system. We propose the following heuristic procedure: 

1// qD
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- Calculate the batch size lower bound  (see Appendix C). LBq
- Find the optimal batch size for the exponential service time model . 

/ /q
opt
M M

q
1

- Determine the upper bound 
� �/ /1

min ,q
opt

UB M M
q q  capacity of an order picker (or a group of order pickers) � . 

- � �/ /1 / /1 / /1
,q q q

opt opt opt
LB UBM G M D M D

q q ,      q q q� � . 

 

Table 2 Differences analysis results1 

Optimal average time in system (W ) optTest 
set LBq  

/1q
opt
M/D

q  
/1q

opt
M/G

q  
/1q

opt
M/M

q
/ /qM D 1 1/ /qM G  % difference2 

1 4 6 6 8 7.99 8 0.12 
2 2 2 2 3 3.27 3.23 1.24 
3 2 3 3 4 3.98 4.02 1.00 
4 5 7 6 10 9.39 9.32 0.75 
5 8 10 10 16 14.72 14.74 0.14 
6 13 16 16 24 22.40 22.31 0.40 
7 14 17 17 28 24.85 24.65 0.81 
8 3 4 4 6 5.26 5.21 0.96 
9 3 4 4 6 5.50 5.48 0.36 
10 6 8 8 11 11.62 11.67 0.43 
11 9 11 12 16 18.88 18.96 0.42 
12 10 13 14 19 22.52 22.47 0.22 
13 11 15 15 21 25.17 24.56 2.48 
14 3 4 4 5 4.90 4.93 0.61 
15 4 5 5 7 6.68 6.83 2.20 
16 5 6 6 9 8.60 8.68 0.92 
17 7 8 8 13 12.11 12.1 0.08 
18 11 13 13 21 19.48 19.53 0.26 
19 14 17 16 27 24.33 24.34 0.04 
20 2 3 3 3 6.00 6.04 0.66 
21 5 7 6 9 8.54 8.61 0.81 
22 6 7 8 11 9.09 9.06 0.33 
23 9 11 10 16 11.07 11.16 0.81 
24 11 14 14 21 12.92 12.91 0.08 
25 15 18 19 29 15.46 15.34 0.78 

                                                 
1 Average time in system of orders of the general distribution service time system is taken from simulation 
runs  
2 Absolute value 
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Table 3 Significance test of differences between average times in system of  
orders obtained with deterministic and general service time model 

Paired-Samples T test with 95% confidence interval of the difference 

Test set Degree of 
freedom t-value Critical value Insignificant? 

1 26 0.756 2.056 yes 
2 28 2.372 2.048 no 
3 28 3.051 2.048 no 
4 25 0.964 2.06 yes 
5 22 0.907 2.074 yes 
6 17 0.974 2.11 yes 
7 16 0.993 2.12 yes 
8 27 2.47 2.052 yes 
9 27 1.021 2.052 yes 
10 24 0.732 2.064 yes 
11 21 0.882 2.08 yes 
12 20 0.993 2.179 yes 
13 19 1.211 2.093 yes 
14 27 0.073 2.052 yes 
15 26 0.087 2.056 yes 
16 25 0.592 2.06 yes 
17 23 0.23 2.069 yes 
18 19 0.627 2.101 yes 
19 16 1.205 2.12 yes 
20 28 3.503 2.048 no 
21 25 0.749 2.06 yes 
22 24 1.174 2.064 yes 
23 21 0.754 2.08 yes 
24 19 0.927 2.093 yes 
25 15 0.067 2.131 yes 

 

 

/ /1q
opt
M D

q  can be chased by the following procedure: 

/ /1
;

opt

qM D

qW � �  

for 1 to  do   LBq q� � LBq
/ /1q

opt
M D

q q�

if  W  then 
/ /1 / /1

opt

q qM D M D

qq W� � �
/ /1 / /1

; ;
opt

q qM D M D

q q optW W q� � q  
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6 Conclusions 
Following conclusions could be drawn from this study:  

��The average time in system is a convex function of the picking batch size. 
��M  is a good approximation for the system. 1// qD
��The optimal order picking batch size can be found by just considering the average 

time in system of orders of the deterministic service time system over a tight 
range of batch sizes. The upper bound of the range is the minimum of the optimal 
picking batch size given by the corresponding  model and the 
maximum number of orders that an order picker (or a group of order pickers) can 
serve in a picking tour. The lower bound is derived from the equilibrium 
condition.  

1// qMM

 
The problem we discussed above is the simplest case of the on-line order batching 
problem, the problem of determining the optimal picking batch size for order pickers 
when orders arrive online. We intend to relax some assumptions (mentioned in section 1) 
to cope with more complex and realistic situations. One straightforward direction is to 
consider multi-aisle warehouses. With this extension we have to take into account the 
effect of routing methods. Another possibility is to investigate the influence of class-
based storage strategies on the batching decision.      

 

Appendix A  Average queue size of  1// qMM
As shown in Gross and Harris [6] and in many other queueing theory materials: 
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Substitution into the definition formula of the average system size: 
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Appendix B  Expected batch service time  

The expected travel time to pick  items, where items are uniformly distributed over the 
aisle, can be computed as follow: 
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Where 0L  denotes the length of the aisle (in minutes). The service time consists of 3 
components: setup, picking and travel time. We suppose that the setup time is insensitive 
to the size of batch and the picking time per item is constant. Only the travel time has a 
stochastic nature, so the average service time of a batch size  can be computed as 
follows.   

q

� � � � � �

( )

S q   setuptime  E picking time   E travel time
q    E x
r

�

� � �

� � �

  

     
1

2 0
�

���

q
qL

r
q

�   �  

 

Appendix C  Compute lower bound of batch size  q

As a common condition for every queuing system to reach equilibrium the traffic density 
must be less than 1. Hence: 
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It is clear that equation 2 021 Lq q � �

� �
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� 	
0  has two real roots ( ): 21 qq �
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and,  

 18



2
0 0

2

2 21 1

2

L L

q

� � �

� �

� �� � � �
� � � � �� � � �
	 
 	 


�

4
�

 

It is easy to see that  is positive while q  is negative, therefore: 1q 2
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For a given set of � , r , �  and , we can determine a lower bound for the batch size by 
simply solving the equation above and taking the smallest integer that is greater than the 
positive root we have found. It is noted that, the picking rate must be greater than the 
arrival rate of orders otherwise the equilibrium condition will be broken.  � 

0L

 

Appendix D        Finding roots for characteristic equation (10) (Muller's method) 

Our characteristic equation (10) can be rewritten as follows (for more details see 
Chaudhry [1]). 
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(1 ) 2
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It is clear that for each value of , (*) has a unique root. Solving these equations for n
11, 2,...,

2
qn ��

� �� �

�
� ) and then taking conjugates of these roots we obtain  roots inside 

the unit circle. � 

( 1q �
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