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Abstract 

 

This paper analyses the constant elasticity of volatility (CEV) model suggested by Chan et 

al. (1992). The CEV model without mean reversion is shown to be the inverse Box-Cox 

transformation of integrated processes asymptotically. It is demonstrated that the 

maximum likelihood estimator of the power parameter has a nonstandard asymptotic 

distribution, which is expressed as an integral of Brownian motions, when the data 

generating process is not mean reverting. However, it is shown that the t-ratio follows a 

standard normal distribution asymptotically, so that the use of the conventional t-test in 

analyzing the power parameter of the CEV model is justified even if there is no mean 

reversion, as is often the case in empirical research. The model may applied to ultra high 

frequency data 

 

Keywords: Box-Cox transformation, Brownian Motion, Constant Elasticity of Volatility, 

Mean Reversion, Nonstandard distribution. 
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1. Introduction 

 

The constant elasticity of volatility (CEV) model has been an important tool in analyzing 

short-time interest rates.  The estimation and testing of the power parameter   of the CEV 

model in the discrete form, namely: 

 

 1 1 1 ,t t t t ty y y y e       1, , ,t T     2~ (0, )te NID  , (1) 

 

has been a focus of research over an extended period. It is well known that the differential 

equation in the continuous version of  (1) can be solved analytically only for specific 

values of  , namely 1/2 and 0, as proved by Cox, Ingersoll and Ross (1985)  and Vasicek 

(1977). However, the actual estimate of   is often larger than the theoretically permissible 

values. This puzzle, which was first suggested by Chan et al (1992), has attracted the 

attention of a number of researchers (see, for example, Brenner et al. (1996), Koedijk et 

al. (1997), and Bliss and Smith (1998)).  Yu and Phillips (2001) estimated the continuous 

version of the model directly in order to avoid the bias arising through discretization.  

Further discussion of discretization errors in models of ultra high frequency data are given 

in McAleer (2005) and McAleer and Mederios (2008). 

 

 In empirical research, it is standard to assume the asymptotic normality of both 

the estimator and the t-ratio of ̂  in the CEV model, which requires that 2 0    in (1), 

so that the process ty  is mean reverting. However, the mean reversion of the process is 

rarely supported empirically, since it is often reported that the estimate of the mean 

reversion parameter   in (1) is not significantly different from zero. Rodrigues and Rubia 

(2004) considered this problem in detail through simulation.  Even Chan et al. (1992) 

reported a t-statistic of 1.54 for ̂ , which is not statistically significant at any 

conventional level, assuming the asymptotic normality of the t-ratio for ̂ .  Adkins and 

Krehbiel (1999) found that neither the 3-month nor 6-month LIBOR (London Inter-Bank 

Offered Rate) was mean reverting.  Treepongkaruna and Gray (2003) reported that the 
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mean reversion of daily short-term interest rate data was not statistically significant at the 

5 percent level in any of the eight countries they examined. 

 

 The main implication of the apparent lack of mean reversion is that the 

asymptotic normality of the estimator of   may no longer be guaranteed.  In most 

empirical research, the hypothesized value of   is tested under the assumption that the t -

statistic for ̂  is distributed as asymptotic normal. However, statistical inference is no 

longer reliable if the process is not mean reverting, as most empirical research would seem 

to suggest. 

 

In this paper it is shown that, when the data generating process is not mean 

reverting, the CEV model (1) can be expressed as the inverse Box-Cox (1964) 

transformation of integrated series, and that the maximum likelihood estimator of   in (1) 

has a nonstandard asymptotic distribution. It is also demonstrated that the t -ratio for ̂  

follows an asymptotic standard normal distribution under the assumption that the variance 

of innovations is small in relation to the levels. Therefore, it follows that the use of the 

conventional t -test in analyzing the CEV model is justified even for processes that are not 

mean reverting. 

 

The results in this paper are a useful application of small  -asymptotics for 

purposes of deriving the asymptotic distribution of a nonlinear transformation of 

integrated series. This simple approach is particularly helpful in analyzing high-frequency 

financial time series data, where the variance of innovations is small in relation to the 

levels. A rigorous and general approach to nonlinear transformations of integrated series 

can be found in Park and Phillips (1999, 2001). 

 

 The plan of the remainder of the paper is as follows. Section 2 shows that the 

constant elasticity of volatility process without mean reversion can be approximated by 

the inverse Box-Cox transformation of a random walk. Maximum likelihood estimation 

and testing of the CEV model are discussed in Section 3. A Monte Carlo experiment is 
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presented in Section 4, and some concluding remarks are given in Section 5. The algebraic 

details are given in the Appendix. 

 

2. Approximation of the CEV Process Without Mean Reversion 

 

We first show that the CEV process (1) without mean reversion can be approximated by 

the inverse Box-Cox transformation of a random walk.  It is assumed that the variance of 

innovations of (1) converges to zero as the sample size increases, namely: 

 

 2 2 1 1( )d dT O T         (2) 

 

for some 0 1d  .  Statistical analysis using the assumption of small variance, which is 

referred to as small-  expansion, has been a powerful tool in statistics. The dependence 

of the parameter value on the sample size T  is not essential in this assumption as it simply 

means that the parameter value is small in relation to the levels. Similar ideas can be 

found in the Pitman drift, the near-unit root process, and weak instrumental variables by 

Staiger and Stock (1997), in that the unknown parameter converges to zero as the sample 

size increases in these models.  The small-   expansion was used, for example, in 

analyzing the Box-Cox model (1964) by Bickel and Doksum (1981), and in testing linear 

and logarithmic transformations of the random walk process by Kobayashi and McAleer 

(1999).  This assumption is justifiable in analyzing financial time series because the 

sampling frequency is often very high, so that the variance of the innovations is very small 

in comparison with the levels.    

 

It is also assumed that the actual data generating process has no mean reversion, 

namely 0 and 0    in (1), but the model is estimated without the restriction  

0 and 0    .  This procedure reflects the practice of estimating the CEV model (1) 

under the assumption of mean reversion even if the estimated   parameter is not 

statistically significant. 
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 We first show that the discretized CEV model (1) can be approximated by the 

inverse Box-Cox transformation of the random walk, as defined by: 

 

1

1(1 (1 ) )t ty z     � ,  (3)  

 

 2 2 1
1 , var( ) d

t t tz e e e n         for some 0 1d  .  

 

The model given above is a generalization of that used in Kobayashi and McAleer (1999), 

where the logarithmic and linear transformations of the random walk processes were 

tested against each other. It follows from (3) that: 

 

1 1

1
t

t

y
z





 





, 

 

which is the Box-Cox transformation. The assumption of small variance of te   ensures 

that, as n   increases, the random walk process, tz , is bounded stochastically, because it 

follows that: 

 

1
1( ) 0, var( ) var( ) var( ) d

t t tE z z e e c n n        ,  

 

/ 2( )d
t pz O n , 

 

so that ty  is bounded in the neighborhood of  1, namely: 

 

 2 / 21
1 ( )

2 1
d

t t t py z z O n



    


  . (4) 

 

Under this assumption, the series, ty , as defined by (3), expresses the CEV 
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model asymptotically when 0   and 0  . Therefore, the expression given by: 

 

 1 1/ 2 / 2
1 1 ( ) ( )d d

t t t t p py y y e O n O n    
       � @   

 

follows from the formal Taylor expansion, namely: 

 

2 1 21
1 1 12t t t t t ty y y e y e  
           

 

and the order condition given by: 

 

1/ 2 / 2( )d
t pe O n  . 

 

In the following, we use the notation 1,..., Ty y  and 1,..., Ty y   interchangeably when 

there is no fear of ambiguity. 

 

3. Estimation and Testing 

 

The model (1) can be rewritten as 

 

1 1 1( 1)t t t t ty y y y e        , 

 

where      . This transformation is necessary to avoid the degeneracy of the 

asymptotic distribution of the estimators, as will be shown below. The maximum 

likelihood estimators, say 2ˆ ˆ ˆ ˆ, , ,    , are defined as the solutions of the following 

equations: 

 

2
0, 0, 0, 0

L L L L

   
   

   
   

, (5) 
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where the log-likelihood function is defined by: 

 

 
1

2 2
1 1 12

12

log ( , , )

[ ( 1)]
log(2 ) log .

2 2

T

t t t t
t

L f y y

y y y yT
y

 
 




  





   
    



  

  

The distributions of the maximum likelihood estimator are obtained under the 

assumption that the data are generated by the model (2), which is an approximation of the 

CEV process without mean reversion.  Assuming the consistency of the estimators, we can 

invert the Taylor expansion of (5) as follows: 

 

 2 2 1ˆ ˆ ˆ ˆ, , , K                , (6) 

 

where andl K   are defined by: 

 

2

/

/

/

/

L

L

L

L






  
   
  
    

 ,  

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 2

2 2 2 2 2( )

L L L L

L L L L

K
L L L L

L L L L

      

      

      

      

    
        
    
 
             
       

             

, (7) 

 

which are evaluated at the true parameter values.  After some algebra given in the 

Appendix, it can be shown that: 
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1
1

1 1

1

1 2

2

22

(1)
/

( ) ( )
/

2 ( ) ( )/

1/ (1)
2

p

B
L

B r dB r
L

Q B r dB rL

L B














 
   
                   
 


   (8) 

 

and  

 

2 1
1

1 2
1 1

1 1
2 2 1

1 1

1
1 4

( ) 0 0

( ) ( ) 0 0

0 0 2 ( ) ( )

1
0 0 ( )

2

p

B r dr

B r dr B r dr
Q KQ

B r dr B r dr

B r dr

 



 




 



 




 
 
 
 

  
 
 
 
 


 

 



, (9) 

 

where the standardizing matrix is defined by 

 

1 / 2

1/ 2 / 2

1/ 2

0 0 0

0 0 0

0 0 0

0 0 0

d

d

T

T
Q

T

T





 
 
 
 
 
  

. 

 

Noting that 1 1Q KQ   converges to a block diagonal matrix asymptotically, the 

estimator of   is expressed as 

 

 
 

1 1 1

2

1 1

( ) ( ) ( )
ˆ( )

( ) ( )

p B r B r dr dB r
T

B r B r dr dr
  


 



 
 

. 

 

The asymptotic distribution of the statistic given above is nonstandard as its expression is 

identical to that of the Dickey-Fuller statistic with a constant term.  
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 We now show that ̂  has a nonstandard distribution but that its t-ratio is 

distributed as asymptotic normal. First, equations (8) and (9) yield the following 

asymptotic expressions: 

 

 
 

1 1 21/ 2 / 2
2

1 1

( ) ( ) ( )1
ˆ( )

2 ( ) ( )

p
d

B r B r dr dB r
T

B r B r dr dr
 





 



 
 

 (11) 

 

and  

 

 
 
1 1 2

33 2

1 1

( ) ( ) ( )ˆ

( ) ( )

p B r B r dr dB r
t

K B r B r dr dr


  
 

 

 

 
, (12) 

 

where 33K  denotes the (3,3)’th  element of the inverse of the second derivative matrix K . 

It can be shown that the t-ratio of ̂  is asymptotically normally distributed, with zero 

mean and unit variance, since the conditional distribution of  

 

1 1 2( ) ( ) ( )B r B r dr dB r    , 

 

given 1( )B r , is asymptotically normal with zero mean and variance given by: 

 

 
2

1 1( ) ( )B r B r dr dr    . 

 

Therefore, the conditional distribution of  
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1 1 2

2

1 1

( ) ( ) ( )

( ) ( )

B r B r dr dB r

B r B r dr dr

  

  

 

 
, 

 

given 1( )B r , is asymptotically normal with zero mean and unit variance, and hence is 

distributed  independently of  1 ( )B r . The asymptotic distribution of  1/ 2 / 2 ˆ( )dT     is 

nonnormal, since the distribution of  

 

2

1 1( ) ( )B r B r dr dr     

 

on the left-hand side of  

 

1/ 2 / 2 ˆ( )
p

dT      t
2

1 1( ) ( )B r B r dr dr     

 

is asymptotically nonstandard. 

 

4. Monte Carlo Experiment 

 

In a small Monte Carlo experiment, 500 series of artificial data  with 5000T   are 

generated using the data generating process (1), with 20, 0.5,1.0, 0.02       . 

The unknown parameters are estimated using the maximum likelihood method. Normality 

is tested using the Jarque-Bera (1990) Lagrange multiplier (LM) test statistic, namely  

 

2
2 ( 3)

6 4

N kurtosis
skewness
 

 
 

, 

 

which is distributed asymptotically as 2 (2)  under the null hypothesis of  normality. 
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 The numerical results show that the actual distribution of ̂  is nonnormal, but 

the actual distribution of the t-ratio of ̂  can be regarded as normal.  For the data 

generating process with 1.0  , the Jarque-Bera LM test statistic is 298.5 for ̂ , with p-

value of 0.0, so that the normality of ̂  is clearly rejected.  On the other hand, the 

skewness and kurtosis of the t-ratio for ̂  are both near zero. The normality of the t -ratio 

for ̂  cannot be rejected, with the value of the Jarque-Bera LM test statistic as 1.045 and a 

p-value of 0.593.  The results for the data generating process with 0.5   are essentially 

the same, in that the actual distribution of ̂  is nonnormal, but the actual distribution of 

the t-ratio of ̂  can be regarded as normal.   

 

5. Concluding Remarks 

 

This paper analyzed the constant elasticity of volatility (CEV) model that was first 

suggested by Chan et al. (1992). The CEV model without mean reversion was shown to be 

the inverse Box-Cox transformation of integrated processes asymptotically. It was 

demonstrated that the maximum likelihood estimator of the power parameter of the CEV 

model had a nonstandard asymptotic distribution, which was expressed as an integral of 

Brownian motions, when the data generating process was not mean reverting.  It was also 

shown that the t-ratio followed a standard normal distribution asymptotically. Therefore, 

the use of the conventional t-test in analyzing the power parameter of the CEV model can 

be justified even in the absence of mean reversion, as is often found in empirical research. 

The model may be applied to ultra high frequency data. 

 

 



 13

 

Table 1. Distribution of the Estimator and t-ratio of ̂  

 

 

1.0   

Estimators Mean SD Skewness Kurtosis-3 Jarque-Bera LM test 

for normality (p-value) 

̂  0.996 0.100 -0.522 3.618 298.5 (0.0) 

t -ratio -0.028 1.059 -0.111 -0.004 1.045 (0.593) 

 

0.5   

Estimators Mean SD Skewness Kurtosis-3 Jarque-Bera LM test 

for normality (p-value) 

̂  0.501 0.090 -0.191 1.568 54.58 (0.0) 

t -ratio 0.025 0.997 -0.088 -0.122 0.958 (0.619) 
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Appendix: Algebraic Details 

 

In this section we derive the first and second derivatives of the log-likelihood 

function: 

 

 
1

2 2
1 1 12

12

log ( , , )

[ ( 1)]
log(2 ) log .

2 2

T

t t t t
t

L f y y

y y y yT
y

 
 




  





   
    



  

 

given in (8) and (9) for the case where  0 1  . The algebraic derivations in the case 

where 1   are analogous. First, note that   

 

  1/ 2 1/ 2
1 1/ / ( ), [ ]

p

t tT z T e e B r t rT        (13) 

 

and  

 

  1/ 2 2 2 2 2
1 2( / 1) ( / 1) / 2 ( ), [ ]

p

tT e e B r t rT         (14) 

 

as T  , where [ ]rT  denotes the largest integer not greater than rT . It is 

straightforward to show that   

 

1( )B r  and 2 ( ), 0 1B r r  , 

 

are independent standard Brownian motions, because te  and 2 21
( / 1)

2
te    are mutually 

uncorrelated and serially independent, with mean zero and unit variance. 

 

 We will show that 
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 11 / 2 1/ 2
1

1 1
(1)

p
t td e yL

T T B


   


  

 


 . (15) 

 

From the expansion  

 

 /(1 )
1 1 1(1 (1 ) ) 1t t ty z z     
         (16) 

 

and the definition 1/ 2 / 2T     , it follows that 

 

     1 / 2 2 1/ 2 /(1 ) 2
1 1/ (1 (1 ) ) /d

t t t tT e y T e z           
      

 

 

1/ 2 2 1/ 2 2
1

1

/ /

(1) (1),

t t t

p

p

T e T e z

B o

    
  

 

  

 

 

as the second term  

 

1/ 2 2 / 2 / 2
1 1 1/ ( ) ( ) ( )

p
d

t t pT e z T B r dB r O T    
      

 

is of smaller order than the first term 1/ 2 2/ (1)t pT e O   , and hence is negligible. 

 

 Next, we show that 

 

 

1 11 1
2

1 2 2
1 1 1 1 1

( 1)

1
( )(1 ) / ( ) ( )

2 1

t t t

p

t t t t t

e y yL
T T

T e z e z z B r dB r



 

  



  


  






     




  

 (17)
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upon substituting (16) and  

 

 2
1 1 1

1
1

2 1t t ty z z

     


  (18) 

 

Then we show that 

 

 

 1/ 2 / 2 2 2 2
1

2 2
1

1 1 22

/ log /

2 log / 2 ( ) ( )
2

d
t t

p
t

t

L
T e y

e
T y B r dB r

   


  


 






 



 
  

 



 

 (19) 

 

upon substituting the expansion 

 

 2 2 2
1 1 1 1 1 1

1 1 1
log log(1 )

2 1 2 2 1t t t t t ty z z z z z
 
             

 
   (20) 

 

Noting that  

 

 1
2 2

dL L
T

 
  


 

, (21) 

 

it follows that  

  

 

 

2 2

1/ 2 1/ 2 1 1/ 2 1
2 2 4

1/ 2 2 2

22 2 2

1

2

1 1
(1).

2 2

td d

p
t

eL L
T T T T T

T e
B



  



  

      



 
 

 


 




 (22) 
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The limit of the first derivative vector (8) from (15), (17), (19) and (22) is then 

given as 

 

 

1
1

1 1

1

1 2

2

22

(1)
/

( ) ( )
/

2 ( ) ( )/

1/ (1)
2

p

B
L

B r dB r
L

Q B r dB rL

L B














 
   
              

      
 


 , 

 

where  

 

 

1 / 2

1/ 2 / 2

1/ 2

0 0 0

0 0 0

0 0 0

0 0 0

d

d

T

T
Q

T

T





 
 
 
 
 
  

. 

 

We can obtain the diagonal elements of the second derivative matrix as 

 

 
22
12 2 2

2 2

p
td d yL

T T



 


    

   


  

 

 
2 22

1 12 2 2
12 2

( 1)
( )

p
t ty yL

T T B r dr


 


   

   


  , 

 

 
2 22

11 2 2 2 2
12 4

(log )
2 2 ( )

p
t td e yL

T T B r dr 
 

  
   


  , 

 

 
2 22

1 3 2 3 2
2 2 4 6 2 2 4 2 4

1 1

( ) 2 2 2

p
t td d

d

e eL T T
T T T

T     
    

 

   
               

  , 
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upon substituting (16), (18), and (21). Analogously, the off-diagonal elements are given as 

 

 

2
1 / 2 1 / 2 2 2

1

1 1/ 2 / 2 3/ 2 2 1
1 1

/

/ ( ) ,

d d
t t

p
d

t t

L
T T z y

T T z y B r dr






 

  

    


    



 

 

   



 

 

 

 
2

1 1 11 / 2 1 / 2 2
1 12

log
2 2 ( ) ( )

p
t t t td d e z y yL

T T B r dB r



  


     

   
 

   , 

 

 
2

1 11 1
1 12

log
2 2 ( ) ( )

p
t t te y yL

T T B r dB r


  


  

   
 

  , 

 

 

2 1/ 2 1/ 2
1 11 / 2 1 / 2 1 1 / 2 1

2 4 3 3/ 2 3 / 2

3
1(1),

t t t td d d d d
d

p

e y e yL T T
T T T T T

T

B

 

    



 
          

 




   

 

 

 

 

 

 

2 1
1 1 1 11 1 1 1

2 4 2 1 2

2
1 1

( 1) ( 1)

( ) ( ),

d
t t t t t td

d

p

e y y e y yL T
T T T T

T

B r dB r

 

    



  
       

 



 
   

 

 

 



 

 

22
11 / 2 1 / 2 1

4

2
11 / 2 1 1/ 2 / 2 1

3

1
1

log

log

( ) ,

t td d d

t td d d

p

e yL
T T T

e y
T T T

B r dr
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2 1
1 1 1 11 1 1 1

2 4 2 1 2

2
1 1

( 1) ( 1)

( ) ( ).

d
t t t t t td

d

p

e y y e y yL T
T T T T

T

B r dB r

 

    



  
       

 



 
   

 

 

 



 

 

The second derivative matrix of the log-likelihood is asymptotically block-

diagonal, as 
2

3/ 2
2

L
T

 
 

 
, 

2
3/ 2 / 2

2
d L

T
 

  
 

, 
2

3/ 2 / 2d L
T

 
  

 
 and 

2
3/ 2 L

T
 

 
 

 converge to 

zero, and hence are negligible in 1 1Q KQ  . Then, we have the probability limit of the 

second derivative matrix of the log-likelihood as 

. 

 

2 1
1

1 2
1 1

1 1
2 2 1

1 1

1
1 4

( ) 0 0

( ) ( ) 0 0

0 0 2 ( ) ( )

1
0 0 ( )

2

p

B r dr

B r dr B r dr
Q KQ

B r dr B r dr

B r dr

 



 




 



 




 
 
 
 

  
 
 
 
 


 

 



. 
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