Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The use of biochemical markers of bone remodeling in multiple myeloma: a report of the International Myeloma Working Group

Abstract

Lytic bone disease is a frequent complication of multiple myeloma (MM). Lytic lesions rarely heal and X-rays are of limited value in monitoring bone destruction during anti-myeloma or anti-resorptive treatment. Biochemical markers of bone resorption (amino- and carboxy-terminal cross-linking telopeptide of type I collagen (NTX and CTX, respectively) or CTX generated by matrix metalloproteinases (ICTP)) and bone formation provide information on bone dynamics and reflect disease activity in bone. These markers have been investigated as tools for evaluating the extent of bone disease, risk of skeletal morbidity and response to anti-resorptive treatment in MM. Urinary NTX, serum CTX and serum ICTP are elevated in myeloma patients with osteolytic lesions and correlate with advanced disease stage. Furthermore, urinary NTX and serum ICTP correlate with risk for skeletal complications, disease progression and overall survival. Bone markers have also been used for the early diagnosis of bone lesions. This International Myeloma Working Group report summarizes the existing data for the role of bone markers in assessing the extent of MM bone disease and in monitoring bone turnover during anti-myeloma therapies and provides information on novel markers that may be of particular interest in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Coleman RE . Bisphosphonates: clinical experience. Oncologist 2004; 9 (Suppl 4): 14–27.

    Article  CAS  PubMed  Google Scholar 

  2. Terpos E, Dimopoulos MA . Myeloma bone disease: pathophysiology and management. Ann Oncol 2005; 16: 1223–1231.

    Article  CAS  PubMed  Google Scholar 

  3. Roodman GD . Pathogenesis of myeloma bone disease. Leukemia 2009; 23: 435–441.

    Article  CAS  PubMed  Google Scholar 

  4. Sezer O . Myeloma bone disease: Recent advances in biology, diagnosis and treatment. Oncologist 2009; 14: 276–283.

    Article  CAS  PubMed  Google Scholar 

  5. Mileshkin L, Blum R, Seymour JF, Patrikeos A, Hicks RJ, Prince HM . A comparison of fluorine-18 fluoro-deoxyglucose PET and technetium-99 m sestamibi in assessing patients with multiple myeloma. Eur J Haematol 2004; 72: 32–37.

    Article  CAS  PubMed  Google Scholar 

  6. Dimopoulos M, Terpos E, Comenzo RL, Tosi P, Beksac M, Sezer O et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 2009; 23: 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  7. Abildgaard N, Brixen K, Eriksen EF, Kristensen JE, Nielsen JL, Heickendorff L . Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma. Haematologica 2004; 89: 567–577.

    CAS  PubMed  Google Scholar 

  8. Terpos E, Sezer O, Croucher PI, García-Sanz R, Boccadoro M, San Miguel J et al. The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann Oncol 2009; 20: 1303–1317.

    Article  CAS  PubMed  Google Scholar 

  9. Terpos E, Dimopoulos MA, Sezer O . The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma. Leukemia 2007; 21: 1875–1884.

    Article  CAS  PubMed  Google Scholar 

  10. von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007; 21: 2025–2034.

    Article  CAS  PubMed  Google Scholar 

  11. Calvo MS, Eyre DR, Gundberg CM . Molecular basis and clinical application of biological markers of bone turnover. Endocrine Rev 1996; 17: 333–368.

    CAS  Google Scholar 

  12. Hannon RA, Eastell R . Biochemical markers of bone turnover and fracture prediction. J Br Menopause Soc 2003; 9: 10–15.

    PubMed  Google Scholar 

  13. Hannon RA, Clowes JA, Eagleton AC, Al Hadari A, Eastell R, Blumsohn A . Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 2004; 34: 187–194.

    Article  CAS  PubMed  Google Scholar 

  14. Woitge HW, Pecherstorfer M, Horn E, Keck AV, Diel IJ, Bayer P et al. Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma. Br J Cancer 2001; 84: 344–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seibel MJ . Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005; 26: 97–122.

    PubMed  PubMed Central  Google Scholar 

  16. Delmas PD . Bone marker nomenclature. Bone 2001; 28: 575–576.

    Article  CAS  PubMed  Google Scholar 

  17. Prockop DJ, Keiser HR, Sjoerdsma A . Gastrointestinal absorption and renal excretion of hydroxyproline peptides. Lancet 1962; 2: 527–528.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Dehaimi AW, Blumsohn A, Eastell R . Serum galactosyl hydroxylysine as a biochemical marker of bone resorption. Clin Chem 1999; 45: 676–681.

    Article  CAS  PubMed  Google Scholar 

  19. Leigh SD, Ju HS, Lundgard R, Daniloff GY, Liu V . Development of an immunoassay for urinary galactosylhydroxylysine. J Immunol Methods 1998; 220: 169–178.

    Article  CAS  PubMed  Google Scholar 

  20. Eyre DR, Paz MA, Gallop PM . Cross-linking in collagen and elastin. Annu Rev Biochem 1984; 53: 717–748.

    Article  CAS  PubMed  Google Scholar 

  21. Knott L, Bailey AJ . Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 1998; 22: 181–187.

    Article  CAS  PubMed  Google Scholar 

  22. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 2003; 18: 859–867.

    Article  CAS  PubMed  Google Scholar 

  23. Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR . A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 1992; 7: 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  24. Apone S, Lee MY, Eyre DR . Osteoclasts generate cross-linked collagen N-telopeptides (NTx) but not free pyridinolines when cultured on human bone. Bone 1997; 21: 129–136.

    Article  CAS  PubMed  Google Scholar 

  25. Bonde M, Garnero P, Fledelius C, Qvist P, Delmas PD, Christiansen C . Measurement of bone degradation products in serum using antibodies reactive with an isomerized form of an 8 amino acid sequence of the C-telopeptide of type I collagen. J Bone Miner Res 1997; 12: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P et al. Serum crosslaps one step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem 1998; 44: 2281–2289.

    Article  CAS  PubMed  Google Scholar 

  27. Risteli J, Elomaa I, Niemi S, Novamo A, Risteli L . Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem 1993; 39: 635–640.

    Article  CAS  PubMed  Google Scholar 

  28. Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M et al. Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone 2000; 26: 367–373.

    Article  CAS  PubMed  Google Scholar 

  29. Janckila AJ, Takahashi K, Sun SZ, Yam LT . Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem 2001; 47: 74–80.

    Article  CAS  PubMed  Google Scholar 

  30. Janckila AJ, Neustadt DH, Nakasato YR, Halleen JM, Hentunen T, Yam LT . Serum tartrate-resistant acid phosphatase isoforms in rheumatoid arthritis. Clin Chim Acta 2002; 320: 49–58.

    Article  CAS  PubMed  Google Scholar 

  31. Lam WK, Eastlund DT, Li CY, Yam LT . Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem 1978; 24: 1105–1108.

    Article  CAS  PubMed  Google Scholar 

  32. Ylipahkala H, Halleen JM, Kaija H, Vihko P, Väänänen HK . Tartrate-resistant acid phosphatase 5B circulates in human serum in complex with alpha2-macroglobulin and calcium. Biochem Biophys Res Commun 2003; 308: 320–324.

    Article  CAS  PubMed  Google Scholar 

  33. Moss DW . Perspectives in alkaline phosphatase research. Clin Chem 1992; 38: 2486–2492.

    Article  CAS  PubMed  Google Scholar 

  34. Gallop PM, Lian JB, Hauschka PV . Carboxylated calcium-binding proteins and vitamin K. N Engl J Med 1980; 302: 1460–1466.

    Article  CAS  PubMed  Google Scholar 

  35. Nelsestuen GL, Shah AM, Harvey SB . Vitamin K-dependent proteins. Vitam Horm 2000; 58: 355–389.

    Article  CAS  PubMed  Google Scholar 

  36. Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG . Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res 1992; 281: 275–294.

    Article  Google Scholar 

  37. Sierra J, Villagra A, Paredes R, Cruzat F, Gutierrez S, Javed A et al. Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol 2003; 23: 3339–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koeneman KS, Kao C, Ko SC, Yang L, Wada Y, Kallmes DF et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol 2000; 18: 102–110.

    Article  CAS  PubMed  Google Scholar 

  39. Christenson RH . Biochemical markers of bone metabolism: an overview. Clin Biochem 1997; 30: 573–593.

    Article  CAS  PubMed  Google Scholar 

  40. Smedsrod B, Melkko J, Risteli L, Risteli J . Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 1990; 271: 345–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Risteli J, Risteli L . Assays of type I procollagen domains and collagen fragments: problems to be solved and future trends. Scand J Clin Lab Invest Suppl 1997; 227: 105–113.

    Article  CAS  PubMed  Google Scholar 

  42. Fohr B, Dunstan CR, Seibel MJ . Clinical review 165: Markers of bone remodeling in metastatic bone disease. J Clin Endocrinol Metab 2003; 88: 5059–5075.

    Article  CAS  PubMed  Google Scholar 

  43. Nawawi H, Samson D, Apperley J, Girgis S . Biochemical bone markers in patients with multiple myeloma. Clin Chim Acta 1996; 253: 61–77.

    Article  CAS  PubMed  Google Scholar 

  44. Abildgaard N, Bentzen SM, Nielsen JL, Heickendorff L . Serum markers of bone metabolism in multiple myeloma: prognostic value of the carboxy-terminal telopeptide of type I collagen (ICTP). Br J Haematol 1997; 96: 103–110.

    Article  CAS  PubMed  Google Scholar 

  45. Withold W, Arning M, Schwarz M, Wolf HH, Schneider W . Monitoring of multiple myeloma patients by simultaneously measuring marker substances of bone resorption and formation. Clin Chim Acta 1998; 269: 21–30.

    Article  CAS  PubMed  Google Scholar 

  46. Carlson K, Larsson A, Simonsson B, Turesson I, Westin J, Ljunghall S . Evaluation of bone disease in multiple myeloma: a comparison between the resorption markers urinary deoxypyridinoline/creatinine (DPD) and serum ICTP, and an evaluation of the DPD/osteocalcin and ICTP/osteocalcin ratios. Eur J Haematol 1999; 62: 300–306.

    Article  CAS  PubMed  Google Scholar 

  47. Woitge HW, Pecherstorfer M, Li Y, Keck AV, Horn E, Ziegler R et al. Novel serum markers of bone resorption: clinical assessment and comparison with established urinary indices. J Bone Miner Res 1999; 14: 792–801.

    Article  CAS  PubMed  Google Scholar 

  48. Fonseca R, Trendle MC, Leong T, Kyle RA, Oken MM, Kay NE et al. Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br J Haematol 2000; 109: 24–29.

    Article  CAS  PubMed  Google Scholar 

  49. Terpos E, Palermos J, Tsionos K, Anargyrou K, Viniou N, Papassavas P et al. Effect of pamidronate administration on markers of bone turnover and disease activity in multiple myeloma. Eur J Haematol 2000; 65: 331–336.

    Article  CAS  PubMed  Google Scholar 

  50. Woitge HW, Horn E, Keck AV, Auler B, Seibel MJ, Pecherstorfer M . Biochemical markers of bone formation in patients with plasma cell dyscrasias and benign osteoporosis. Clin Chem 2001; 47: 686–693.

    Article  CAS  PubMed  Google Scholar 

  51. Corso A, Arcaini L, Mangiacavalli S, Astori C, Orlandi E, Lorenzi A et al. Biochemical markers of bone disease in asymptomatic early stage multiple myeloma. A study on their role in identifying high risk patients. Haematologica 2001; 86: 394–398.

    CAS  PubMed  Google Scholar 

  52. Jakob C, Zavrski I, Heider U, Brux B, Eucker J, Langelotz C et al. Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP), amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma. Eur J Haematol 2002; 69: 37–42.

    Article  CAS  PubMed  Google Scholar 

  53. Alexandrakis MG, Passam FH, Malliaraki N, Katachanakis C, Kyriakou DS, Margioris AN . Evaluation of bone disease in multiple myeloma: a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients. Clin Chim Acta 2002; 325: 51–57.

    Article  CAS  PubMed  Google Scholar 

  54. Abildgaard N, Brixen K, Kristensen JE, Eriksen EF, Nielsen JL, Heickendorff L . Comparison of five biochemical markers of bone resorption in multiple myeloma: elevated pre-treatment levels of S-ICTP and U-Ntx are predictive for early progression of the bone disease during standard chemotherapy. Br J Haematol 2003; 120: 235–242.

    Article  CAS  PubMed  Google Scholar 

  55. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003; 102: 1064–1069.

    Article  CAS  PubMed  Google Scholar 

  56. Terpos E, de la Fuente J, Szydlo R, Hatjiharissi E, Viniou N, Meletis J et al. Tartrate-resistant acid phosphatase isoform 5b: a novel serum marker for monitoring bone disease in multiple myeloma. Int J Cancer 2003; 106: 455–457.

    Article  CAS  PubMed  Google Scholar 

  57. Coleman RE, Major P, Lipton A, Brown JE, Lee KA, Smith M et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 2005; 23: 4925–4935.

    Article  CAS  PubMed  Google Scholar 

  58. Kuliszkiewicz-Janus M, Małecki R, Zółtaszek A, Zastawny M . The significance of carboxy-terminal telopeptide of type I collagen (ICTP) and osteocalcin (OC) in assessment of bone disease in patients with multiple myeloma. Leuk Lymphoma 2005; 46: 1749–1753.

    Article  CAS  PubMed  Google Scholar 

  59. Dizdar O, Barista I, Kalyoncu U, Karadag O, Hascelik G, Cila A et al. Biochemical markers of bone turnover in diagnosis of myeloma bone disease. Am J Hematol 2007; 82: 185–191.

    Article  CAS  PubMed  Google Scholar 

  60. Jakob C, Sterz J, Liebisch P, Mieth M, Rademacher J, Goerke A et al. Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the International Staging System in newly diagnosed symptomatic multiple myeloma. Leukemia 2008; 22: 1767–1772.

    Article  CAS  PubMed  Google Scholar 

  61. Terpos E, Palermos J, Viniou N, Vaiopoulos G, Meletis J, Yataganas X . Pamidronate increases markers of bone formation in patients with multiple myeloma in plateau phase under interferon-alpha treatment. Calcif Tissue Int 2001; 68: 285–290.

    Article  CAS  PubMed  Google Scholar 

  62. Clark RE, Flory AJ, Ion EM, Woodcock BE, Durham BH, Fraser WD . Biochemical markers of bone turnover following high-dose chemotherapy and autografting in multiple myeloma. Blood 2000; 96: 2697–2702.

    Article  CAS  PubMed  Google Scholar 

  63. Terpos E, Politou M, Szydlo R, Nadal E, Avery S, Olavarria E et al. Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma. Leukemia 2004; 18: 1420–1426.

    Article  CAS  PubMed  Google Scholar 

  64. Abildgaard N, Glerup H, Rungby J, Bendix-Hansen K, Kassem M, Brixen K et al. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol 2000; 64: 121–129.

    Article  CAS  PubMed  Google Scholar 

  65. Jakob C, Zavrski I, Heider U, Bollow M, Schulz CO, Fleissner C et al. Serum levels of carboxy-terminal telopeptide of type-I collagen are elevated in patients with multiple myeloma showing skeletal manifestations in magnetic resonance imaging but lacking lytic bone lesions in conventional radiography. Clin Cancer Res 2003; 9: 3047–3051.

    CAS  PubMed  Google Scholar 

  66. Alexandrakis MG, Kyriakou DS, Passam FH, Malliaraki N, Vlachonikolis IG, Karkavitsas N et al. Urinary N-telopeptide levels in multiple myeloma patients, correlation with Tc-99m-sestaMIBI scintigraphy and other biochemical markers of disease activity. Hematol Oncol 2003; 21: 17–24.

    Article  CAS  PubMed  Google Scholar 

  67. Terpos E, Berenson J, Cook RJ, Lipton A, Coleman RE . Prognostic variables for survival and skeletal complications in patients with multiple myeloma osteolytic bone disease. Leukemia 2010; 24: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  68. Turesson I, Abildgaard N, Ahlgren T, Dahl I, Holmberg E, Hjorth M et al. Prognostic evaluation in multiple myeloma: an analysis of the impact of new prognostic factors. Br J Haematol 1999; 106: 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  69. Schütt P, Rebmann V, Brandhorst D, Wiefelspütz J, Ebeling P, Opalka B et al. The clinical significance of soluble human leukocyte antigen class-I, ICTP, and RANKL molecules in multiple myeloma patients. Hum Immunol 2008; 69: 79–87.

    Article  PubMed  CAS  Google Scholar 

  70. Terpos E, Berenson J, Lipton A, Coleman R, Cook R . High baseline NTX predicts for inferior survival and shorter time to first SRE in Multiple Myeloma. Clin Lymphoma Myeloma 2009; 9 (Suppl 1): 50–51.

    PubMed  Google Scholar 

  71. Elomaa I, Risteli L, Laakso M, Lahtinen R, Virkkunen P, Risteli J . Monitoring the action of clodronate with type I collagen metabolites in multiple myeloma. Eur J Cancer 1996; 32A: 1166–1170.

    Article  CAS  PubMed  Google Scholar 

  72. Berenson JR, Rosen LS, Howell A, Porter L, Coleman RE, Morley W et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 2001; 91: 1191–1200.

    Article  CAS  PubMed  Google Scholar 

  73. Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001; 7: 377–387.

    CAS  PubMed  Google Scholar 

  74. Menssen HD, Sakalov A, Fontana A, Herrmann Z, Boewer C, Facon T et al. Effects of long-term intravenous ibandronate therapy on skeletal-related events, survival, and bone resorption markers in patients with advanced multiple myeloma. J Clin Oncol 2002; 20: 2353–2359.

    Article  CAS  PubMed  Google Scholar 

  75. Terpos E, Viniou N, de la Fuente J, Meletis J, Voskaridou E, Karkantaris C et al. Pamidronate is superior to ibandronate in decreasing bone resorption, interleukin-6 and beta 2-microglobulin in multiple myeloma. Eur J Haematol 2003; 70: 34–42.

    Article  CAS  PubMed  Google Scholar 

  76. Terpos E, Mihou D, Szydlo R, Tsimirika K, Karkantaris C, Politou M et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia 2005; 19: 1969–1976.

    Article  CAS  PubMed  Google Scholar 

  77. Lipton A, Cook RJ, Coleman RE, Smith MR, Major P, Terpos E et al. Clinical utility of biochemical markers of bone metabolism for improving the management of patients with advanced multiple myeloma. Clin Lymphoma Myeloma 2007; 7: 346–353.

    Article  CAS  PubMed  Google Scholar 

  78. Henry D, von Moos R, Vadhan-Raj S, Hungria V, Spencer A, Hirsh V et al. A double-blind, randomized study of denosumab versus zoledronic acid for the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Eur J Cancer 2009: (Suppl 3): 12 (abstract 20LBA).

    Article  Google Scholar 

  79. Seidel C, Hjertner , Abildgaard N, Heickendorff L, Hjorth M, Westin J et al. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 2001; 98: 2269–2271.

    Article  CAS  PubMed  Google Scholar 

  80. Lipton A, Ali SM, Leitzel K, Chinchilli V, Witters L, Engle L et al. Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 2002; 8: 2306–2310.

    CAS  PubMed  Google Scholar 

  81. Goranova-Marinova V, Goranov S, Pavlov P, Tzvetkova T . Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical correlations. Haematologica 2007; 92: 1000–1001.

    Article  PubMed  Google Scholar 

  82. Martini G, Gozzetti A, Gennari L, Avanzati A, Nuti R, Lauria F . The effect of zoledronic acid on serum osteoprotegerin in early stage multiple myeloma. Haematologica 2006; 91: 1720–1721.

    CAS  PubMed  Google Scholar 

  83. Terpos E, Kastritis E, Roussou M, Heath D, Christoulas D, Anagnostopoulos N et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia 2008; 22: 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  84. Kraj M, Owczarska K, Sokołowska U, Centkowski P, Pogłód R, Kruk B . Correlation of osteoprotegerin and sRANKL concentrations in serum and bone marrow of multiple myeloma patients. Arch Immunol Ther Exp 2005; 53: 454–464.

    CAS  Google Scholar 

  85. Nanci A . Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 1999; 126: 256–269.

    Article  CAS  PubMed  Google Scholar 

  86. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  87. Politou MC, Heath DJ, Rahemtulla A, Szydlo R, Anagnostopoulos A, Dimopoulos MA et al. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer 2006; 119: 1728–1731.

    Article  CAS  PubMed  Google Scholar 

  88. Kaiser M, Mieth M, Liebisch P, Oberländer R, Rademacher J, Jakob C et al. Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Hematol 2008; 80: 490–494.

    Article  CAS  Google Scholar 

  89. Haaber J, Abildgaard N, Knudsen LM, Dahl IM, Lodahl M, Thomassen M et al. Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis. Br J Haematol 2008; 140: 25–35.

    CAS  PubMed  Google Scholar 

  90. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy Jr JD et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007; 109: 2106–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tosi P, Zamagni E, Cellini C, Parente R, Cangini D, Tacchetti T et al. First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol 2006; 76: 399–404.

    Article  CAS  PubMed  Google Scholar 

  92. Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Mitsiades C et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 2008; 22: 1925–1932.

    Article  CAS  PubMed  Google Scholar 

  93. Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 2005; 131: 71–73.

    Article  CAS  PubMed  Google Scholar 

  94. Zangari M, Yaccoby S, Cavallo F, Esseltine D, Tricot G . Response to bortezomib and activation of osteoblasts in multiple myeloma. Clin Lymphoma Myeloma 2006; 7: 109–114.

    Article  CAS  PubMed  Google Scholar 

  95. Heider U, Kaiser M, Müller C, Jakob C, Zavrski I, Schulz CO et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 2006; 77: 233–238.

    Article  CAS  PubMed  Google Scholar 

  96. Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 2007; 110: 334–338.

    Article  CAS  PubMed  Google Scholar 

  97. Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand co ncentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006; 135: 688–692.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E Terpos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Authors’ Contributions

ET collected data and wrote paper; MAD collected data and wrote paper; OS contributed comments and edited paper; DR contributed comments and edited paper; RV contributed comments and edited paper; NA contributed comments and edited paper; PT contributed comments and edited paper; RG-S contributed comments and edited paper; FD contributed comments and edited paper; AC-K contributed comments and edited paper; AP contributed comments and edited paper; PS contributed comments and edited paper; MTD contributed comments and edited paper; J-LH contributed comments and edited paper; KCA contributed comments and edited paper; BGMD contributed comments and edited paper

Appendix

Appendix

International myeloma working group

Rafat Abonour, Indiana University School of Medicine, Indianapolis, Indiana, USA

Ray Alexanian, MD Anderson, Houston, Texas, USA

Kenneth C. Anderson, DFCI, Boston, Massachusetts, USA

Michael Attal, Purpan Hospital, Toulouse, France

Herve Avet-Loiseau, Institute de Biologie, Nantes, France

Ashraf Badros, University of Maryland, Baltimore, Maryland, USA

Bart Barlogie, M.I.R.T. UAMS Little Rock, Arkanas, USA

Regis Batille, Institute de Biologie, Nantes, France

Meral Beksac, Ankara University, Ankara, Turkey

Andrew Belch, Cross Cancer Institute, Alberta, Canada

Bill Bensinger, Fred Hutchinson Cancer Center, Seattle, Washington, USA

P. Leif Bergsagel, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA

Jenny Bird, Bristol Haematology and Oncology Center, Bristol, UK

Joan Bladé, Hospital Clinica, Barcelona, Spain

Mario Boccadoro, University of Torino, Torino, Italy

Michele Cavo, Universita di Bologna, Bologna, Italy

Wen Ming Chen, MM Research Center of Beijing, Beijing, China

Tony Child, Leeds General Hospital, Leeds, United Kingdom

James Chim, Department of Medicine, Queen Mary Hospital, Hong Kong

Wee-Joo Chng, National University Health System, Singapore

Ray Comenzo, Tufts Medical School, Boston, Massachusetts, USA

John Crowley, Cancer Research and Biostatistics, Seattle, Washington, USA

William Dalton, H. Lee Moffitt, Tampa, Florida, USA

Faith Davies, Royal Marsden Hospital, London, England

Cármino de Souza, Univeridade de Campinas, Caminas, Brazil

Michel Delforge, University Hospital Gasthuisberg, Leuven, Belgium

Meletios Dimopoulos, University of Athens School of Medicine, Athens, Greece

Angela Dispenzieri, Mayo Clinic, Rochester, Minnesota, USA

Matthew Drake, Mayo Clinic, Rochester, Minnesota, USA

Brian G.M. Durie, Cedars-Sinai Outpatient Cancer Center, Los Angeles, California, USA

Johannes Drach, University of Vienna, First Dept. of Internal Medicine, Vienna, Austria

Hermann Einsele, Universitätsklinik Würzburg, Würzburg, Germany

Theirry Facon, Centre Hospitalier Regional Universitaire de Lille, Lille, France

Dorotea Fantl, Socieded Argentinade Hematolgia, Buenos Aires, Argentina

Jean-Paul Fermand, Hopitaux de Paris, Paris, France

Rafael Fonseca, Mayo Clinic Arizona, Scottsdale, Arizona, USA

Gosta Gahrton, Karolinska Institute for Medicine, Huddinge, Sweden

Christina Gasparetto, Duke University Medical Center, Durham, North Carolina, USA

Morie Gertz, Mayo Clinic, Rochester, Minnesota, USA

John Gibson, Royal Prince Alfred Hospital, Sydney, Australia

Sergio Giralt, MD Anderson Cancer Center, Houston, Texas, USA

Hartmut Goldschmidt, University Hospital Heidelberg, Heidelberg, Germany

Philip Greipp, Mayo Clinic, Rochester, Minnesota, USA

Roman Hajek, Brno University, Brno, Czech Republic

Izhar Hardan, Tel Aviv University, Tel Aviv, Israel

Jean-Luc Harousseau, Institute de Biologie, Nantes, France

Hiroyuki Hata, Kumamoto University Hospital, Kumamoto, Japan

Yutaka Hattori, Keio University School of Medicine, Tokyo, Japan

Tom Heffner, Emory University, Atlanta, Georgia, USA

Joy Ho, Royal Prince Alfred Hospital, Sydney, Australia

Vania Hungria, Clinica San Germano, Sao Paolo, Brazil

Shinsuke Ida, Nagoya City University Medical School, Nagoya, Japan

Peter Jacobs, Constantiaberg Medi-Clinic, Plumstead, South Africa

Sundar Jagannath, St. Vincent's Comprehensive Cancer Center, New York, New York, USA

Hou Jian, Shanghai Chang Zheng Hospital, Shanghai, China

Douglas Joshua, Royal Prince Alfred Hospital, Sydney, Australia

Artur Jurczyszyn, The Myeloma Treatment Foundation, Poland

Asher Chanan Kahn, Roswell Park Cancer Institute, Buffalo, New York, USA

Michio Kawano, Yamaguchi University, Ube, Japan

Nicolaus Kröger, University Hospital Hamburg, Hamburg, Germany

Shaji Kumar, Department of Hematology, Mayo Clinic, Minnesota, USA

Robert Kyle, Department of Laboratory Med. and Pathology, Mayo Clinic, Minnesota, USA

Juan Lahuerta, Grupo Espanol di Mieloma, Hospital Universitario, Madrid, Spain

Ola Landgren, National Cancer Institute, Bethesda, Maryland, USA

Jacob Laubach, Dana-Farber Cancer Institute, Boston, Massachusetts, USA

Jae Hoon Lee, Gachon University Gil Hospital, Incheon, Korea

Xavier LeLeu, Hospital Huriez, CHRU Lille, France

Suzanne Lentzsch, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Henk Lokhorst, University Medical CenterUtrecht, Utrecht, The Netherlands

Sagar Lonial, Emory University Medical School, Atlanta, Georgia, USA

Heinz Ludwig, Wilhelminenspital Der Stat Wien, Vienna, Austria

Angelo Maiolino, Rua fonte da Saudade, Rio de Janeiro, Brazil

Maria Mateos, University of Salamanca, Salamanca, Spain

Jayesh Mehta, Northwestern University, Chicago, Illinois, USA

GiamPaolo Merlini, University of Pavia, Pavia, Italy

Joseph Mikhael, Mayo Clinic Arizona, Scottsdale, Arizona, USA

Angelina Rodriquez Morales, Bonco Metro Politano de Sangre, Caracas, Venezuela

Philippe Moreau, University Hospital, Nantes, France

Gareth Morgan, Royal Marsden Hospital, London, England

Nikhil Munshi, Diane Farber Cancer Institute, Boston, Massachusetts, USA

Ruben Niesvizky, Weill Medical College of Cornell University, New York, New York, USA

Amara Nouel, Hospital Rutz y Paez, Bolivar, Venezuela

Yana Novis, Hospital SírioLibanês, Bela Vista, Brazil

Robert Orlowski, MD Anderson Cancer Center, Houston, Texas, USA

Antonio Palumbo, Cathedra Ematologia, Torino, Italy

Santiago Pavlovsky, Fundaleu, Buenos Aires, Argentina

Linda Pilarski, University of Alberta, Alberta, Canada

Raymond Powles, Leukemia & Myeloma, Wimbledon, England

S. Vincent Rajkumar, Mayo Clinic, Rochester, Minnesota, USA

Donna Reece, Princess Margaret Hospital, Toronto, Canada

Tony Reiman, Cross Cancer Institute, Alberta, Canada

Paul G. Richardson, Dana Farber Cancer Institute, Boston, Massachusetts, USA

David Roodman, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Laura Rosinol, Hospital Clinic, Barcelona, Spain

Jesus San Miguel, University of Salamanca, Salamanca, Spain

Orhan Sezer, Universität Hamburg, Hamburg, Germany

Jatin Shah, MD Anderson Cancer Institute, Houston, Texas, USA

John Shaughnessy, M.I.R.T. UAMS, Little Rock, Arkansas, USA

Kazuyuki Shimizu, Nagoya City Midori General Hospital, Nagoya, Japan

Chaim Shustik, McGill University, Montreal, Canada

David Siegel, Hackensack, Cancer Center, Hackensack, New Jersey, USA

Seema Singhal, Northwestern University, Chicago, Illinois, USA

Pieter Sonneveld, Erasmus MC, Rotterdam, The Netherlands

Andrew Spencer, The Alfred Hospital, Melbourne, Australia

Edward Stadtmauer, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Keith Stewart, Mayo Clinic Arizona, Scottsdale, Arizona, USA

Evangelos Terpos, University of Athens School of Medicine, Athens, Greece

Patrizia Tosi, Italian Cooperative Group, Istituto di Ematologia Seragnoli, Bologna, Italy

Guido Tricot, Huntsman Cancer Institute, Salt Lake City, Utah, USA

Ingemar Turesson, Department of Hematology, Malmo University, Malmo, Sweden

Karin Vanderkerken, Vrije University Brussels VUB, Brussels, Belgium

Brian Van Ness, University of Minnesota, Minneapolis, Minnesota, USA

Ivan Van Riet, Brussels Vrija University, Brussels, Belgium

Robert Vescio, Cedars-Sinai Cancer Center, Los Angeles, California, USA

David Vesole, Hackensack Cancer Center, Hackensack, New Jersey, USA

Anders Waage, University Hospital, Trondheim, Norway NSMG

Michael Wang, M.D. Anderson, Houston, Texas, USA

Donna Weber, MD Anderson, Houston, Texas, USA

Jan Westin, Sahlgrenska University Hospital, Gothenburg, Sweden

Keith Wheatley, University of Birmingham, Birmingham, United Kingdom

Dina B. Yehuda, Department of Hematology, Hadassah University Hospital, Hadassah, Israel

Jeffrey Zonder, Karmanos Cancer Institute, Detroit, Michigan, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terpos, E., Dimopoulos, M., Sezer, O. et al. The use of biochemical markers of bone remodeling in multiple myeloma: a report of the International Myeloma Working Group. Leukemia 24, 1700–1712 (2010). https://doi.org/10.1038/leu.2010.173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.173

Keywords

This article is cited by

Search

Quick links