
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

ERIM RE

ERIM Rep
Publication
Number o
Email add

Address 

 
Biblio
Statistical Inference on Stochastic Dominance Efficiency. 
Do Omitted Risk Factors Explain the Size and Book-to-

Market Effects? 
 

Thierry Post 

 

PORT SERIES RESEARCH IN MANAGEMENT 
ort Series reference number ERS-2003-017-F&A 
 status / version March 2003 

f pages 21 
ress corresponding author gtpost@few.eur.nl 

Erasmus Research Institute of Management (ERIM) 
Rotterdam School of Management / Faculteit Bedrijfskunde 
Rotterdam School of Economics / Faculteit Economische 
Wetenschappen 
Erasmus Universiteit Rotterdam 
PoBox 1738  
3000 DR Rotterdam, The Netherlands 
Phone:  # 31-(0) 10-408 1182  
Fax: # 31-(0) 10-408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl 

graphic data and classifications of all the ERIM reports are also available on the ERIM website:  
www.erim.eur.nl 

http://www.erim.eur.nl/


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 
 

REPORT SERIES 
RESEARCH IN MANAGEMENT 

 
 
 
 

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS 
Abstract This paper discusses statistical inference on the second-order stochastic dominance (SSD) 

efficiency of a given portfolio relative to all portfolios formed from a set of assets. We derive the 
asymptotic sampling distribution of the Post test statistic for SSD efficiency. Unfortunately, a test 
procedure based on this distribution involves low power in small samples. Bootstrapping is a 
more powerful approach to sampling error. We use the bootstrap to test if the Fama and French 
value-weighted market portfolio is SSD efficient relative to benchmark portfolios formed on 
market capitalization and book-tomarket equity ratio. During the late 1970s and during the 
1980s, the market portfolio is significantly SSD inefficient, even if we use samples of only 60 
monthly observations. This suggests that the size and book-to-market effects cannot be 
explained by omitted risk factors like higher-order central moments or lower partial moments.  
5001-6182 Business 
5601-5689 
4001-4280.7 

Accountancy, Bookkeeping 
Finance Management, Business Finance, Corporation Finance 

Library of Congress 
Classification  
(LCC) 

HG 4027 Financial management: Statitstics 
M Business Administration and Business Economics  
M 41 
G 3 

Accounting 
Corporate Finance and Governance 

Journal of Economic 
Literature  
(JEL) 

C 19 
G 12 

Statistical methods: other 
Asset pricing 

85 A Business General 
225 A 
220 A 

Accounting General 
Financial Management 

European Business Schools 
Library Group  
(EBSLG) 

220 T Quantitative methods for financial management 
Gemeenschappelijke Onderwerpsontsluiting (GOO) 

85.00 Bedrijfskunde, Organisatiekunde: algemeen 
85.25 
85.30 

Accounting 
Financieel management, financiering 

Classification GOO 

85.30 
31.73 

Financieel management, financiering 
Wiskundige statistiek 

Bedrijfskunde / Bedrijfseconomie 
Accountancy, financieel management, bedrijfsfinanciering, besliskunde 

Keywords GOO 

Effectenhandel, portfolio-analyse, stochastsiche methoden, bootstrap (statistiek) 
Free keywords stochastic dominance, market efficiency, asset pricing, statistical inference, size and book-to-

market effects 
 



 
 

Statistical Inference on Stochastic Dominance 
Efficiency 

 

Do Omitted Risk Factors Explain the Size and Book-to-
Market Effects? 

 
 

THIERRY POST* 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Post is corresponding author: Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, 
The Netherlands, email: gtpost@few.eur.nl, tel: +31-104081428. This study forms part of a research 
program on stochastic dominance. Details on the program are available at the program homepage: 
http://www.few.eur.nl/few/people/gtpost/stochastic_dominance.htm. We appreciate the comments by 
Roger Bowden, Winfried Hallerbach, Haim Levy, Jan van der Meulen, Nico van der Sar and Jaap 
Spronk, as well as participants at the 30th EURO Working Group on Financial Modeling, the 29th 
annual meeting of the European Finance Association, and seminars of Center for Economic Studies 
(Catholic University of Leuven), Erasmus Center of Financial Research (Erasmus University 
Rotterdam) and Ghent Finance Center (Ghent University). Martijn van den Assem, Peter van der Spek 
and Pim van Vliet provided invaluable research assistance. Financial support by Tinbergen Institute, 
Erasmus Research Institute of Management and Erasmus Center of Financial Research is gratefully 
acknowledged. Any remaining errors are our own. 



 1

Statistical Inference on Stochastic Dominance 
Efficiency 

 

Do Omitted Risk Factors Explain the Size and Book-to-
Market Effects? 

 
 
This paper discusses statistical inference on the second-order stochastic dominance 
(SSD) efficiency of a given portfolio relative to all portfolios formed from a set of assets. 
We derive the asymptotic sampling distribution of the Post test statistic for SSD 
efficiency. Unfortunately, a test procedure based on this distribution involves low power 
in small samples. Bootstrapping is a more powerful approach to sampling error. We use 
the bootstrap to test if the Fama and French value-weighted market portfolio is SSD 
efficient relative to benchmark portfolios formed on market capitalization and book-to-
market equity ratio. During the late 1970s and during the 1980s, the market portfolio is 
significantly SSD inefficient, even if we use samples of only 60 monthly observations. 
This suggests that the size and book-to-market effects cannot be explained by omitted 
risk factors like higher-order central moments or lower partial moments. 

 
STOCHASTIC DOMINANCE (SD) rules can analyze economic behavior under uncertainty 
without a parametric specification of the preferences of the decision-makers and the 
statistical distribution of the choice alternatives. The popular criterion of second-order 
SD (SSD) assumes only non-satiation and risk aversion for the preferences and it 
imposes minimal distribution assumptions. In financial economics, the problem of 
portfolio selection and portfolio evaluation is a potential application area for SD, 
because economic theory does not forward strong predictions to select a functional 
form for investor preferences and the asset distribution. In addition, large, high-
quality data sets of asset returns are available (e.g., CRSP and Datastream data sets), 
so that SD rules can let the data 'speak for them selves'. Still, SD has seen minimal 
application for this problem. Rather, the focus has predominantly been on mean-
variance analysis. Computational and statistical considerations may help to explain 
this situation. 

For applying SD to empirical data, simple crossing algorithms have been 
developed that check in a pairwise fashion the difference of the empirical distribution 
functions (EDFs) of the choice alternatives (e.g. Levy (1992), App. A). Unfortunately, 
these algorithms are unable to deal with cases that involve infinitely many choice 
alternatives, such as the case where investors can fully diversify between assets. To 
circumvent this problem, Post (2003) derived a tractable linear programming test for 
SSD efficiency of a given portfolio relative to all portfolios formed from a set of 
assets.  

Another practical complication is sampling error. SD is based on the full EDF 
rather than a finite set of sample statistics. In many cases, the EDF is a statistically 
consistent estimator for the true cumulative distribution function (CDF). However, in 
small samples, the EDF generally is very sensitive to sampling variation, which 
causes serious doubt about the reliability of SD applications that rely in a naïve way 
on the EDF without accounting for sampling error (see, e.g., Kroll and Levy (1980) 
and Post (2003), section III). Several steps have been made towards analyzing the 
sampling properties of SD tests. Still, some important questions remain unanswered. 
Beach and Davidson (1983), Dardanoni and Forcina (1999) and Davidson and Duclos 
(2000), among others, derive an analytical characterization of the asymptotic 
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sampling distribution. Unfortunately, this literature deals with the pairwise 
comparison of a finite number of choice alternatives, and it is not immediately clear 
how to generalize the existing results to the case with full diversification possibilities. 
Post derived the asymptotic sampling distribution of his SSD test statistic for the 
special case where all assets have the same mean. Unfortunately, this special case is 
very unrealistic and the resulting distribution may lead to erroneous conclusions. 
Bootstrapping is another approach to sampling error. The powerful computer 
hardware and software currently available substantially reduces the computational 
burden associated with this approach. Still, the statistical goodness of the bootstrap for 
SSD efficiency has not been analyzed thus far. 

The purpose of this paper is to fill the above gaps for statistical inference on 
SD efficiency. Section I introduces the notation, definitions and assumptions that will 
be used throughout the text. Section II derives the asymptotic sampling distribution 
for the Post test statistic under the true null of efficiency rather than the null of equal 
means. Subsequently, Section III analyzes the statistical size and power properties of 
a test procedure that uses this sampling distribution, as well as those of a bootstrap 
procedure. Next, Section IV presents an empirical application that tests if the Fama 
and French value-weighted market portfolio is SSD efficient relative to benchmark 
portfolios formed on market capitalization (size) and book-to-market equity ratio 
(BE/ME). Since SSD effectively considers the entire return distribution, the test 
results can help to determine if the size and BE/ME effects can be explained by the 
omission of risk factors. Finally, Section V summarizes our conclusions and presents 
directions for further research.  
 
 

I. Preliminaries 
We consider a single-period, portfolio-based model of investment that satisfies the 
following three assumptions: 

 
1. Investors are nonsatiable and risk averse and they select investment portfolios to 

maximize the expected utility associated with the return of their investment 
portfolio. Throughout the text, we will denote utility functions by Pu →ℜ: , 

2Uu ∈ , with 2U  for the class of strictly increasing and concave, continuously 
differentiable, von Neumann-Morgenstern utility functions, and P  for a 
nonempty, closed, and convex subset of ℜ .1,2 

 
2. The investment universe consists of N assets, associated with returns Nℜ∈x . 

Throughout the text, we will use the index set { }1, , NΙ ≡ L  to denote the 
different assets. The returns are serially independent and identically distributed 
(IID) random variables with a continuous joint cumulative distribution function 
(CDF) : [0,1]NG ℜ → . 

 
3. Investors may diversify between the assets, and we will use Nℜ∈λ  for a vector 

of portfolio weights. We consider the case where short sales are not allowed, and 
the portfolio weights belong to the portfolio possibilities set 

{ }1: =ℜ∈≡Λ Τ
+ λλ eN , with e for a unity vector with dimensions conforming to 

the rules of matrix algebra.3 
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Under these assumptions, the investors’ optimization problem can be summarized as 

)()(max xx Gdu∫ Τ

Λ∈
λ

λ
. Post’s (2003) test statistic is based on the first-order condition 

for this problem. Specifically, a given portfolio Λ∈τ  is optimal for a given utility 
function 2Uu ∈  if and only if 
 
 I0)())(( ∈∀≤−′∫ ΤΤ iGdxu i xxx ττ .4 (1) 

 
This naturally leads to the following measure for SSD efficiency: 
 
 { }{ })())((maxmin),(

2

xxx GdxuG i
iUu ∫ −′≡ ΤΤ

Ι∈∈
τττξ . (2) 

 
Definition 1 Portfolio Λ∈τ  is SSD efficient if and only if it is optimal for at least 
some 2Uu ∈ , i.e., 0),( =Gτξ . 
 

In practical applications, )(xG  generally is not known and information is 
limited to a discrete set of T  time series observations. We assume that observations 
are independent random draws from the CDF. Throughout the text, we will represent 
the observations by the matrix )( 1 Txx L≡Χ , with Τ≡ )( 1 Nttt xx Lx . Since the 
timing of the draws is inconsequential, we are free to label the observations by their 
ranking with respect to the evaluated portfolio, i.e., τττ ΤΤΤ <<< Txxx L21 . Using the 
observations, we can construct the empirical distribution function (EDF): 
 
 { }{ } TTtF t /:,,1card)( xxx ≤∈≡ LΧ , (3) 
 
with {}⋅card  for the number of elements of a set. Since the observations are serially 
IID distributed, )(xΧF  is a consistent estimator for )(xG . 

Our objective is to test the null hypothesis that a given portfolio Λ∈τ  is SSD 
efficient, i.e., 0),(:0 =GH τξ . For simplicity, we assume that the optimal utility 

function { }{ })())((maxminarg
2

* xxx Gdxuu i
iUu

G ∫ −′≡ ΤΤ

Ι∈∈
ττ  is unique. To accomplish this, 

we standardize utility such that 0)0( =u  and 1)( =′ ΤτTu x .5 
  Post (2003) proposes ),( ΧFτξ  as an estimator for ),( Gτξ , and he derives the 
following linear programming formulation: 
 

 =),( ΧFτξ








Ι∈∀≥+−∑
=

Τ

Β∈
iTx it

T

t
tt 0/)(:min

1
,

θβθ
θ

τ
β

x , (4) 

 

with { }1: 21 =≥≥≥ℜ∈≡Β + T
T βββ Lβ . The optimal solution Β∈β , say *β , 

represents the gradient vector T
TFFF uuu ))()(()( 1

* τττ ΤΤ ′′≡∇ xx
ΧΧΧ

L  for the optimal 

utility function *
Fu . Β  represents the restrictions on the gradient vector that follow 

from the assumptions of nonsatiation and risk aversion and the standardization 
1)( =′ ΤτTu x . 
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II. Asymptotic sampling distribution 

Since ),( ΧFτξ  is a consistent estimator for )(xG  (see Section I), ),( ΧFτξ  is a 
consistent estimator for ),( Gτξ . However, )(xΧF  generally is very sensitive to 
sampling variation and the test results are likely to be affected by sampling error in a 
nontrivial way. The applied researcher must therefore have knowledge of the 
sampling distribution in order to make inferences about the true efficiency 
classification. Post (2003) derived the asymptotic sampling distribution of ),( ΧFτξ  
under the simplifying assumptions that all assets have the same mean, i.e., 

ex µ=][:1 EH , ℜ∈µ . 1H  gives a sufficient condition for the true null of efficiency, 
i.e., 0H . In fact, under the null, all portfolios Λ∈λ  are efficient, because they 
maximize the expected value of the utility function xxu =)( , i.e., the risk neutral 
investor is indifferent between portfolios with equal means. However, 1H  does not 
give a necessary condition for 0H , and rejection of 1H  generally does not imply 
rejection of 0H  and there is no guarantee that 1H  is sufficiently close to 0H . Hence, 
the sampling distribution 1H  may lead to erroneous conclusions for 0H . 

Using )( Τ−≡ τeΙC  and variance-covariance matrix 

)())(( 2
0 xxxx dGu *

G
ΤΤ∫ ′≡ τΩ , the following theorem summarizes the asymptotic 

sampling distribution under the true null: 
 
THEOREM 1 The p-value ]),(Pr[ 0HyF >Χτξ , 0≥y , asymptotically equals the 

integral )),(1(),( 00 ∫
≤

Φ−≡Γ
ez

z
y

dy 0ΣΣ , with ),( 0 0ΣzΦ  for a N-dimensional 

multivariate normal distribution function with mean 0 and (singular) variance-
covariance matrix T/)( 00

Τ≡ CCΩΣ . 
 
We may use this theorem by comparing the p-value for the observed value of 

),( ΧFτξ  with a predefined level of significance ]1,0[∈a ; we may reject efficiency if 
aF ≤Γ )),,(( 0ΣΧτξ . Alternatively, we may reject efficiency if the observed value of 

),( ΧFτξ  is greater than or equal to the critical value ),( 0
1 Σa−Γ  

}),(:{inf 0
0

ayy
y

≤Γ≡
≥

Σ . 

Computing p-values and critical values requires the unknown variance-
covariance matrix 0Ω . We may estimate its elements ij,0ω , Ι∈ji, , in a distribution-
free and consistent manner using the sample equivalents  

 

 ∑ ∑∑
= ==

−−≡
T

t

T

t
jtjt

T

t
itittij TTxxTxx

1 11

2*
,0 /))/)(/((ˆ βω . (5) 

 
The theorem subtly differs from Post’s (2003) characterization of the sampling 

distribution under 1H . That characterization used the variance-covariance matrix 

1Ω )(xxx dGΤ∫≡  in place of 0Ω . These two matrices are identical if the optimal 

utility function exhibits risk neutrality, i.e., xxuG =)(*  and hence 1)( =′ xu *
G . This 
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reflects the replacement of the null of efficiency ( 0H ) by the null of equal means 
( 1H ); under 1H , all portfolios are optimal for the risk neutral investor. Obviously, it 
is relatively simple to reject this null and hence the p-values and critical values under 

1H  are likely to underestimate the true values under 0H .  
 
 

III. Simulation experiment 
This section analyzes the statistical size and power properties of various test 
procedures for SSD efficiency, including one that uses the asymptotic sampling 
distribution under the null of efficiency ( 0H ), as well as one that uses the bootstrap. 
For this purpose, we extend the simulation experiment of Post (2003, Section IIIC). 
The simulations involve 26 benchmark assets with a multivariate normal return 
distribution. The joint population moments are equal to the sample moments of the 
monthly excess returns of the one-month U.S. Treasury bill and the 25 Fama and 
French U.S. stock portfolios formed on market capitalization (size) and book-to-
market equity ratio (BE/ME) during the sample period from July 1963 to October 
2001. To provide some feeling for the data, Figure 1 shows a mean-variance diagram 
including the individual assets (the clear dots), as well as the mean-variance frontier 
for the case without the riskless asset (AB) and the case with the riskless asset 
(OP1B). The figure also includes the tangency portfolio (P1) and the equal weighted 
average of all 25 risky assets (P2). The tangency portfolio is efficient and we may 
analyze the size (=the relative frequency of Type I error) of a test procedure by the 
relative frequency of cases in which this portfolio is wrongly classified as inefficient. 
By contrast, the equal weighted portfolio is inefficient; it is possible to achieve a 
substantially higher mean given the standard deviation, and to achieve a substantially 
lower standard deviation given the mean. Hence, we may analyze the power (=one 
minus the relative frequency of Type II error) of a test procedure by its ability to 
correctly classify the equal weighted portfolio as inefficient; a Type II error occurs if 
the equal weighted portfolio is wrongly classified as efficient. 
 

[Insert Figure 1 about here] 
 
We assess the size and power of the following three alternative test procedures: 
 
1. Procedure A uses Post’s (2003) asymptotic sampling distribution under the null of 

equal means ( 1H ). Specifically, it rejects efficiency if and only if 

≥),( ΧFτξ )ˆ,( 1
1 Σa−Γ .6 

 
2. Procedure B uses the asymptotic sampling distribution under the null of efficiency, 

( 0H ), as given in Theorem 1. Specifically, it rejects efficiency if and only if 

≥),( ΧFτξ )ˆ,( 0
1 Σa−Γ . 

 
3. Procedure C is a bootstrap procedure. Key to the success of the bootstrap is the 

selection of an appropriate approximation for the CDF. If the approximation is 
statistically consistent, then the bootstrap distribution gives a statistically 
consistent estimator for the original sampling distribution. Under the assumption 
that the return distribution is serially IID (see Section I), the EDF )(xΧF  is a 
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consistent estimator for the CDF )(xG . This suggests that bootstrap 
pseudosamples would be simply obtained by randomly sampling with replacement 
from the EDF. We generate 1,000 pseudo-samples Χ̂  in this way and compute the 
test statistic ),( Χ̂Fτξ  for each pseudo-sample. Subsequently, we compute the 
bootstrap p-value as the relative frequency of pseudo-samples in which the 
evaluated portfolio is classified as efficient, i.e., 0),( ˆ =ΧFτξ . Finally, we reject 
efficiency if and only if the bootstrap p-value falls below the level of significance 
(a).7 

 
To assess the size and power of these procedures, we draw 1,000 random samples 
from the multivariate normal population distribution through Monte-Carlo simulation. 
For each random sample, we apply each of above three test procedures to the efficient 
tangency portfolio (P1) and the inefficient equal weighted portfolio (P2). For each 
procedure, we compute the size as the rejection rate for P1 and the power as the 
rejection rate for P2. This experiment is performed for a sample size (T) of 25 to 
4,000 observations and for a significance level (a) of 2.5, 5, and 10 percent. 

Figure 2 and Figure 3 show the size and power of the three test procedures. 
Again, ),( ΧFτξ converges to ),( Gτξ , and we expect minimal Type I and Type II 
error in large samples. Indeed, for all procedures the size goes to zero and the power 
goes to unity as we increase the sample size. However, in small samples, there are 
substantial differences in size and power. For both asymptotic test procedures 
(Procedure A and B), the size is much lower than the nominal significance level. 
Presumably, this reflects the conservative nature of tests that are based on the least 
favorable distribution, i.e., that minimize Type I error (see the proof to Theorem 1). 
By contrast, the size of the bootstrap procedure in small samples is more comparable 
with the nominal level of significance (a). For the asymptotic sampling distribution, 
minimizing Type I errors comes at the cost of Type II errors, and we need large 
samples to obtain reasonable power. For example, using a ten percent significance 
level, Procedure A involves reasonable power (a rejection rate of about 60 percent) 
only for samples of at least 500 observations. Since 0H  is more general than 1H , 
Procedure B results in fewer rejections and hence less power than Procedure A. For 
example, using the ten percent significance level, Procedure B achieves a rejection 
rate of 60 percent only for samples of about 1400 observations. By contrast, the 
bootstrap involves substantially more power. For example, using the ten percent 
significance level, Procedure C yields a 60 percent rejection rate already for samples 
of 25 observations. Of course, this benefit has to be balanced against the additional 
computational burden associated with bootstrapping. However, this is not a major 
issue given the powerful computer hardware and software currently available. 

 
[Insert Figure 2 about here] 

 
[Insert Figure  3 about here] 

 

IV. Size and BE/ME effects 
The traditional mean-variance capital asset pricing model (CAPM) fares poorly in 
explaining observed stock returns. For example, the value-weighted market portfolio 
of risky assets seems highly mean-variance inefficient relative to portfolios formed on 
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size and BE/ME. Related to this, market beta seems to explain only a small portion of 
the cross-sectional variation in average returns, while size and BE/ME appear to have 
substantial explanatory power (see, e.g., Fama and French (1992)).  

One way to extend the mean-variance CAPM is by changing the maintained 
assumptions on investor preferences. If we do not restrict the shape of the return 
distribution, then mean-variance CAPM is consistent with expected utility theory only 
if utility takes a quadratic form. 8 Extensions can be obtained by using alternative 
classes of utility. For example, the three-moment CAPM, used by, e.g., Kraus and 
Litzenberger (1976) and Harvey and Siddique (2000), assumes a cubic utility 
function, which implies that investors care about the first three central moments of the 
return distribution (mean, variance and skewness). While altering the shape of the 
utility function, these extended models still assume a representative investor who 
holds the market portfolio. The most common approach to test these models is by 
testing the first-order optimality condition (or Euler equation) for the market portfolio. 
These conditions imply an exact linear relationship between assets’ co-moments with 
the market portfolio. For example, the three-moment CAPM predicts an exact linear 
relationship between mean, co-variance and co-skewness. 

A difficulty in changing the preference assumptions is the need to give a 
parametric specification of the functional form of the utility function. Unfortunately, 
economic theory gives minimal guidance for this purpose, and there is a substantial 
risk of specification error. For example, the three-moment CAPM ignores the central 
moments of order higher than three (e.g., kurtosis), as well as the lower partial 
moments (see, e.g., Bawa and Lindenberg (1977)), which generally cannot be 
expressed in terms of the first three central moments. Another problem associated 
with low order polynomials is the difficulty to impose restrictions on the derivatives 
that apply globally. For example, we cannot impose nonsatiation by restricting a 
quadratic function to be monotone increasing and we cannot impose risk aversion by 
restricting an increasing cubic function to be globally concave (see, e.g., Levy 
(1969)). To circumvent these problems, we may use the SSD efficiency test. 
Specifically, the market must be SSD efficient for all asset-pricing models that use a 
nonsatiable and risk-averse representative investor, and SSD inefficiency would imply 
that all such models would fail to rationalize the market portfolio, regardless of the 
functional form of the utility function.  

To illustrate his test, Post (2003) tests if the Fama and French market portfolio 
is SSD efficient relative to the 25 Fama and French size and BE/ME portfolios. 
Interestingly, his results suggest that the market portfolio is significantly inefficient. 
In this section, we perform a more rigorous study of market efficiency. Post (2003) 
used a 460-month or 39-year sample period (July 1963 to October 2001) and he 
assumed that the asset return distribution remains unchanged for the entire period 
(apart from changes in the risk-free rate). However, there is substantial evidence that 
the return distribution (e.g., risk premiums, volatilities and correlation coefficients) 
varies through time. Hence, the observations generally are not serially IID random 
variables and the EDF is not a statistically consistent estimator for the CDF. Ideally, 
we would circumvent this problem by developing a test for conditional SSD 
efficiency that links the ex ante return distribution to the investors’ (time-varying) 
information set. Unfortunately, the search for a satisfactory specification of the return 
dynamics is still far from accomplished. In fact, Ghysels (1998) finds that ill-specified 
conditional asset pricing models in many cases yield greater pricing errors than 
unconditional models. For this reason, we take another approach to account for time-
variation. Specifically, we use a moving window analysis that applies the SSD test to 
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a series of consecutive, short subsamples. Specifically, we consider 35 subsamples of 
60 months, separated by 12-month intervals, beginning with July 1963 to June 1968 
and ending with July 1997 to June 2002). In addition, we analyze 33 subsamples of 90 
months, beginning with July 1963 to December 1970 and ending with July 1995 to 
December 2002, and 30 periods of 120 months, beginning with July 1963 to June 
1973 and ending with July 1992 to June 2002. This approach is far less sensitive to 
time-variation, since it assumes that the distribution of excess returns is fixed for 
subsamples of 60, 90 or 120 months rather than for the full sample. Of course, this 
benefit comes at the cost of additional sampling error for small subsamples. Given the 
low power of the asymptotic test procedures in small samples, we therefore use the 
bootstrap procedure discussed in Section III (Procedure C). The simulation 
experiment in that section suggests that this procedure involves acceptable statistical 
size and power properties for samples of 60 to 120 observations. 

For the purpose of comparison, we also apply a simple GMM-type test for 
mean-variance efficiency to each subsample. This test will help to determine the 
relative strength of the size and BE/ME effects in the different subsamples. If the 
market portfolio is mean-variance efficient, then the expected returns )(xx Gd∫  must 

equal the market risk premium )() xx Gd∫ Τ( τ  times the market betas )( N1 bb L≡b . 

Hence, the null of mean-variance efficiency can be stated as 0=ε:2H , with 

)()( xbxx Gd∫ Τ−≡ τε  for the pricing errors. To test this null, we compute the sample 

pricing errors T
T

t
tt /)ˆ(ˆ

1
∑

=

Τ−≡ τε xbx , with )ˆˆ(ˆ
N1 bb L≡b  for the sample betas. Next, 

we construct the goodness measure εε ˆˆˆ 1−Τ≡ ΠJ , with Π̂  for the sample variance-
covariance matrix of the pricing errors. Under the null 2H , JT asymptotically obeys a 
chi-squared distribution with N degrees of freedom. Hence, we may compute 
asymptotic p-values for 2H  as )(1 JN

−χ , with )(1 ⋅−
Nχ  for the inverse of the cumulative 

chi-squared distribution function with N degrees of freedom.9 Figure 4 shows the 
resulting p-values. In 23 60-month subsamples (66 percent), the p-value is smaller 
than ten percent and the market is classified as mean-variance inefficient with at least 
90 percent confidence. Similarly, for the 90-month subsamples, the market is 
classified as inefficient with at least 90 percent confidence in 21 cases (64 percent), 
and, for the 120-month subsamples, the market is inefficient 27 times (90 percent). 
Hence, for the large majority of subsamples, size and BE/ME effects occur. Clearly, 
the inefficiency classifications are not randomly distributed across the subsamples. 
The evidence against efficiency is especially strong during the late 1970s and during 
the 1980s. However, the evidence is weaker during the late 1960s and early 1970s and 
during the 1990s; all cases in which we cannot reject efficiency are concentrated in 
these periods. 

 
[Insert Figure 4 about here] 

 
Since SSD effectively considers the entire return distribution, the SSD efficiency test 
can help to determine if the size and BE/ME effects can be explained by the omission 
of higher order central moments and partial lower partial moments. Figure 5 shows 
the bootstrap p-values for the SSD efficiency test. The results are surprisingly similar 
to the results of the mean-variance efficiency test. In 22 60-month subsamples, 23 90-
month subsamples and 29 120-month subsamples, the market portfolio is classified as 
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SSD inefficient with at least 90 percent confidence. Again, the evidence against 
efficiency is especially strong during the late 1970s and during the 1980s, and it is 
weak during the late 1960s and early 1970s and during the 1990s. Brief, for the 
subsamples in which the market portfolio is mean-variance inefficient, the market 
portfolio generally is also SSD inefficient, and no rational, nonsatiable and risk averse 
investor would hold this portfolio. This suggests that the size and BE/ME effects 
cannot be explained by omitted risk variables.  
 Our results do not solve the size and BE/ME puzzle; the results merely suggest 
that one possible explanation, the omission of risk factors, is unlikely to solve the 
puzzle. Several alternative explanations remain to be explored. For example, contrary 
to the predictions of representative investor models, investors (both individual and 
institutional) actually hold highly undiversified portfolios (see, e.g., Levy (1978)). 
Perhaps we have to move to models with heterogeneous investors and incomplete 
markets in order to understand the size and BE/ME effects.  

 
[Insert Figure 5 about here] 

 
 

V. Conclusions 

1. We derive the asymptotic sampling distribution for the Post (2003) SSD test 
statistic. This distribution uses the least favorable distribution that minimizes 
Type I error at the cost of Type II errors. Hence, a test procedure based on this 
sampling distribution involves low size and power in small samples. 

 
2. Contrary to Post (2003), we considered the sampling distribution under the null 

of SSD efficiency rather than the null of equal means (or equivalently the null 
that investors are risk neutral). The latter null is an unrealistic special case of the 
former null and the associated sampling distribution may lead to erroneous 
conclusions. Specifically, the null of equal means will underestimate the p-values 
and the critical values associated with the true null of SSD efficiency, and hence 
it involves lower size and power in small samples. 

 
3. The bootstrap involves more power than a test procedure that is based on the 

asymptotic sampling distribution, while its size is closer to the nominal 
significance level. Hence, bootstrapping seems an interesting approach to 
sampling error, especially with the powerful computer hardware and software 
currently available. 

 
4. We use the bootstrap to test if the Fama and French value-weighted market 

portfolio is SSD efficient relative to benchmark portfolios formed on size and 
BE/ME. During the late 1970s and during the 1980s, the market portfolio seems 
significantly mean-variance inefficient and size and BE/ME effects occur. In the 
same period, the market portfolio is also significantly SSD inefficient, even if we 
use samples of only 60 monthly observations. Since SSD effectively considers 
the entire return distribution, this suggests that the size and BE/ME effects cannot 
be explained by the omission of higher order central moments and partial lower 
partial moments.  
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5. Perhaps we have to move from models with a representative investor to models 
with heterogeneous investors who hold different, possibly highly undiversified 
portfolios, in order to solve the size and BE/ME puzzle. Dybvig and Ross (1982) 
have demonstrated that the SSD efficient set generally is not convex, and hence, 
there is no guarantee that the market portfolio is SSD efficient if different 
investors hold different portfolios of risky assets. Hence, a test for SSD efficiency 
of the market portfolio generally is not relevant in the context of a model with 
heterogeneous investors. Rather, we would need a test for ‘SSD spanning’ that 
tests if all traded assets are included in some SSD efficient portfolio (not 
necessarily with a weight that equals the relative market capitalization). 
Compared with the existing tests for mean-variance spanning (see, e.g., 
Huberman and Kandel, 1987), such a test would account for the full return 
distribution rather than its first two central moments only. 
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Appendix  

Proof to Theorem 1 Since )(xΧF  is a consistent estimator for )(xG  (see 

Section I), *
ΧFu′  converges to *

Gu′ . Hence, ),( ΧFτξ  asymptotically behaves as the 

largest element of the vector TuG /)(* τ∇ΧC = 

Τ

=

ΤΤ

=

ΤΤ ∑∑ −′−′ )/))((/))(((
1

*

1
1

* TxuTxu
T

t
tNttG

T

t
tttG ττττ xxxx L . Since the observations are 

serially IID, the vectors )(* τΤ′ tGtu xxC , Tt ,,1 L= , are serially IID random vectors 

with mean ≡µ )())(( xxxx dGu *
G −′ ΤΤ∫ ττ  and variance-covariance matrix ΤCC 0Ω . 

Therefore, the Lindeberg-Levy central limit theorem implies that the vector 
TuG /)(* τ∇ΧC  obeys an asymptotically joint normal distribution with mean µ  and 

variance-covariance matrix T/)( 00
Τ≡ CCΩΣ . Consequently, ),( ΧFτξ  

asymptotically behaves as the largest order statistic of N random variables with a 
multivariate normal distribution, and ]),(Pr[ 0HyF >Χτξ  ]),(Pr[1 0HyF ≤−= Χτξ  

symptotically equals the multivariate normal integral )),(1( 0∫
≤

Φ−
ez

z
y

d µΣ . To 

characterize the p-values under the null 0),(:0 =GH τξ , we adhere to the statistical 
convention of using the least favorable distribution, i.e., the distribution )(xG  that 
maximizes the p-value under the null. The null can be stated equivalently as 

0:0 ≤µH .  In addition, ∫
≤

Φ
ez

z
y

d ),( 0 µΣ  is a decreasing function of µ . Hence, the p-

values are maximal if 0=µ . Therefore, ]),(Pr[ 0HyF >Χτξ  asymptotically equals 

the multivariate normal integral )),(1(),( 00 ∫
≤

Φ−≡Γ
ez

z
y

dy 0ΣΣ . 
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Figure 1. Mean-variance diagram 25 benchmark assets. Diagram for the mean excess 
returns and standard deviations of the 25 risky assets (the clear dots), as well as the 
efficient tangency portfolio (P1) and the inefficient equally weighted test portfolio (P2). 
The 25 assets obey a multivariate normal return distribution with joint population 
moments equal to the sample moments of the monthly excess returns of the 25 Fama and 
French benchmark portfolios. The curve AB represents the efficient frontier of risky 
assets without short selling. If we include the riskless asset, then OP1B represents the 
efficient frontier. 
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Figure 2. Size of competing test procedures. The figure shows the statistical size of the 
three competing test procedures. The dashed line shows the results for the procedure that 
uses the asymptotic sampling distribution under 

1H  (Procedure A). Further, the solid line 
shows the results for the procedure that uses the asymptotic sampling distribution under 

0H  (Procedure B). Finally, the dotted line shows the results for the bootstrap procedure 

(Procedure C). The figure displays the size for a sample size (T) of 25 to 4,000 and for a 
significance level (a) of 2.5, 5, and 10 percent. The results are based on 1,000 random 
samples from a multivariate normal distribution with joint moments equal to the sample 
moments of the monthly excess returns of the 25 Fama and French benchmark portfolios 
and the U.S. Treasury bill. Size is measured as the relative frequency of random samples 
in which the efficient tangency portfolio (P1) is wrongly classified as inefficient. 
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Figure 3. Power of competing test procedures. The figure shows the statistical power 
of the three competing test procedures. The dashed line shows the results for the 
procedure that uses the asymptotic sampling distribution under 

1H  (Procedure A). 
Further, the solid line shows the results for the procedure that uses the asymptotic 
sampling distribution under 

0H  (Procedure B). Finally, the dotted line shows the results 

for the bootstrap procedure (Procedure C). The figure displays the power for a sample 
size (T) of 25 to 4,000 and for a significance level (a) of 2.5, 5, and 10 percent. The 
results are based on 1,000 random samples from a multivariate normal distribution with 
joint moments equal to the sample moments of the monthly excess returns of the 25 
Fama and French benchmark portfolios and the U.S. Treasury bill. Power is measured as 
the relative frequency of random samples in which the inefficient equally weighted 
portfolio (P2) is correctly classified as inefficient. 
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Figure 4. Asymptotic p-values for the null of mean-variance efficiency. The figure 
shows the asymptotic p-values for the null hypothesis of mean-variance efficiency for the 
Fama and French market portfolio relative to the 25 Fama and French benchmark 
portfolios formed on size and BE/ME and the one-month T-bill. Results are shown for 35 
subsamples of 60 months, separated by 12 month intervals (beginning with Jul 1963-Jun 
1968 and ending with Jul 1997-Jun 2002), 33 subsamples of 90 months (beginning with 
Jul 1963-Dec 1970 and ending with Jul 1995-Dec 2002), and 30 subsamples of 120 
months (beginning with Jul 1963-Jun 1973 and ending with Jul 1992-Jun 2002). The p-
values are computed as )(1 JN

−χ , with εε ˆˆˆ 1−Τ≡ ΠJ  for the weighted average of the mean-

variance CAPM sample pricing errors ε̂ , weighted with the inverse sample variance-
covariance matrix 1ˆ −Π . We reject mean-variance efficiency of the market portfolio if and 
only if the asymptotic p-value falls below ten percent. 
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Figure 5. Bootstrap p -values for the null of SSD efficiency. The figure shows the 
bootstrap p-values for the null hypothesis of SSD efficiency for the Fama and French 
market portfolio relative to the 25 Fama and French benchmark portfolios formed on size 
and BE/ME and the one-month T-bill. Results are shown for 35 subsamples of 60 
months, separated by 12 month intervals (beginning with Jul 1963-Jun 1968 and ending 
with Jul 1997-Jun 2002), 33 subsamples of 90 months (beginning with Jul 1963-Dec 
1970 and ending with Jul 1995-Dec 2002), and 30 subsamples of 120 months (beginning 
with Jul 1963-Jun 1973 and ending with Jul 1992-Jun 2002). The p-values are computed 
using the BCa bootstrap method (see, e.g., Efron (1987)), which corrects for possible 
bias and skewness in the test statistic, and using 1,000 pseudosamples for each 
subsample. We reject SSD efficiency of the market portfolio if and only if the bootstrap 
p-value falls below ten percent. 
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Footnotes 
                                                                 
1 Throughout the text, we will use Nℜ  for an N-dimensional Euclidean space, and N

+ℜ denotes the positive 

orthant. Further, to distinguish between vectors and scalars, we use a bold font for vectors and a regular 
font for scalars. Finally, all vectors are column vectors and we use Τx  for the transpose of x . 
2 Post (2003) does not assume that the utility function is continuously differentiable, so as to allow for, 
e.g., piecewise linear utility functions. However, in practice, we typically cannot distinguish between a 
kinked utility function and a smooth utility function with rapidly changing marginal utility. 
3 The simplex Λ  excludes short sales and it assumes that no additional restrictions are imposed on the 
portfolio weights. The SSD test is based on the first-order optimality conditions for optimizing a 
concave objective function over a convex set. In principle, the analysis can be extended to a general 
polyhedral portfolio possibilities set, and hence it is possible to introduce short selling and to impose 
additional investment restrictions. We basically have to check whether there exists an increasing 
hyperplane that supports the extreme points of the portfolio possibilities set. One approach is to 
enumerate all extreme points and to include all extreme points as virtual assets. 
4 If an asset Ι∈i  is included in the evaluated portfolio, i.e., 0>iτ , then the inequality 

0)())(( ≤−′∫ ΤΤ xxx Gdxu iττ  reduces to the equality 0)())(( =−′∫ ΤΤ xxx Gdxu iττ . Hence, if all assets 

are included, i.e., 0>τ , then SSD efficiency reduces to 0=−′≡ ΤΤ∫ )())(( xxxx dGu *
G ττµ . 

Interestingly, this is the case where the probability of wrongly rejecting efficiency is maximal, i.e., the 
least favorable distribution used in the proof to Theorem 1. 
5 Since utility functions are unique up to a positive linear transformation, this standardization does not 
affect our results. 
6 We approximate )ˆ,(1

la Σ−Γ , 1,0=l , using Monte-Carlo simulation. Specifically, we generate 1,000 

independent standard normal random vectors 1−ℜ∈ N
sw , }000,10,,1{ L∈s , using the RNDN function in 

Aptech Systems’ GAUSS software. Next, each random vector 
sw  is transformed into a multivariate 

normal vector Nz ℜ∈sl ,
 with variance-covariance matrix 

lΣ̂ , using 
slsl wz DC ˆ

, = , with NN
l

×ℜ∈D̂  for 

a lower triangular Cholesky factor of 
lΩ̂ , so Τ= lll DD ˆˆΩ̂ . Finally, )ˆ,(1

la Σ−Γ  is approximated by the (1-

a)th percentile of the distribution of the largest elements of the transformed vectors 
sz , 

}000,10,,1{ L∈s . 
7 To correct for possible bias and skewness in the test statistic, we use the BCa method (see, e.g., Efron 
(1987)). The raw bootstrap distribution of the SSD test statistic generally involves positive bias and 
skewness, and not correcting for bias and skewness lowers the bootstrap p-values and hence increases 
size and power. 
8 Less restrictive assumptions are obtained if we do restrict the shape of the return distribution; see, 
e.g., Berk (1997). 
9 This procedure is equivalent to a GMM estimation of the Euler equation for a quadratic utility 
function, but with the parameters of the utility function fixed such that the market risk premium equals 
the average excess return of the market portfolio. 
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