To document determinants of O-demethylation in critically ill (pre)term neonates and infants, tramadol (M) and O-demethyl tramadol (M1) concentrations were quantified in eighty-six 24 h urine collections and 168 plasma samples. A significant correlation of urine log M/M1 (0.98, SD 0.66) and plasma log M/M1 (0.78, SD 0.45) with postmenstrual age (PMA) (r = -0.69 and -0.65) was observed. One-way analysis of variance documented a significant decrease in urine log and plasma log M/M1 with increasing CYP2D6 activity score (F value 11.6 and 22.55). PMA and CYP2D6 activity score determined the urine and plasma log M/M1 (R 0.59 and 0.64) in a forward multiple regression model. We therefore conclude that PMA and CYP2D6 polymorphisms determined O-demethylation activity in (pre)term neonates and young infants, illustrating the impact of pharmacogenetics on drug metabolism in neonates although a relevant part of the interindividual varaibility remained unexplained. Besides compound-specific relevance, CYP2D6 iso-enzyme specific data on in vivo ontogeny of O-demethylation can contribute to safer and more effective administration of drugs metabolized by the same route in this population. Copyright

Additional Metadata
Persistent URL,
Allegaert, K., van Schaik, R.H.N., Vermeersch, S., Verbesselt, R., Cossey, V., Vanhole, C., … van den Anker, J.N.. (2008). Postmenstrual age and CYP2D6 polymorphisms determine tramadol O-demethylation in critically ill neonates and infants. Pediatric Research: international journal of human developmental biology, 63(6), 674–679. doi:10.1203/PDR.0b013e31816ff712