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Voorwoord

Voor u ligt het resultaat van vier jaar onderzoek naar logistieke processen in maga-
zijnen. In 1996 ben ik begonnen als Assistent In Opleiding (ATIO) aan de Faculteit
Bedrijfskunde van de Erasmus Universiteit Rotterdam. Tk bedank Edo van der Poort,
die samen met Gerard Sierksma mij uitstekend begeleidde bij het schrijven van mijn
scriptie aan de Rijksuniversiteit Groningen, nog hartelijk voor het feit dat hij mij
attendeerde op de beschikbare promotieplaatsen in Rotterdam.

In Rotterdam leerde ik al snel de AIO’s kennen die tegelijk met mij waren be-
gonnen. Enkelen van hen zijn tot mijn vriendenkring gaan behoren. Met name Robert
van der Meer wil ik hier noemen. Robert en ik deelden het eerste jaar op de univer-
siteit een werkkamer. Dit leverde veel gezelligheid en relevante en irrelevante dis-
cussies op. Ook het feit, dat je je buik moest inhouden om je bureaustoel zover tegen
je eigen bureau te kunnen aanschuiven, dat de ander zijn bureaulade volledig kon ope-
nen, vergeet je nooit meer. In deze eerste weken in Rotterdam had ik nog geen eigen
woonruimte kunnen vinden en woonde ik bij de familie Rodenburg. Hun gastvrijheid
was enorm, waardoor ik mij meteen thuisvoelde in het westen van Nederland. In de
loop der tijd leerde ik mijn collega’s van de vakgroep Management van Technologie
en Innovatie kennen. Ik bedank hen voor de goede en rustige sfeer en voor het inzicht
dat zij mij hebben geboden in allerlei vakgebieden, waar ik nog geen kennis van had.
Verder mag AnneMarie Stolkwijk niet ongenoemd blijven. Zeker in de begintijd, maar
ook daarna, biedt zij aan AIO’s veel hulp bij allerlei aangelegenheden. Eigenlijk hoort
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haar naam in haast elk voorwoord van een Rotterdams bedrijfskundeproefschrift voor
te komen.

Een belangrijke factor in mijn bestaan als AIO was René de Koster. René nam
zijn taak als promotor zeer serieus en ruimde, zeker de eerste jaren, veel tijd in voor
gesprekken. Zijn praktische kennis van zaken was zeer nuttig voor het opzetten van
mijn experimenten. Ook voor de ruimte die hij mij gaf om zaken te onderzoeken,
die niet direct in mijn onderzoeksvoorstel stonden, ben ik hem dankbaar. Ook mijn
tweede promotor Jo van Nunen mag niet onvermeld blijven. Jo zit boordevol ideeén,
die te pas en te onpas naar boven komen borrelen. Dit leverde nuttige aanvullingen
op mijn proefschrift op en ook nog stof tot nadenken voor in de toekomst.

Wetenschap bedrijven wordt wel gezien als een tamelijk solistische arbeid. Vaak
wanneer je alleen in je kamer op de universiteit zit, lijkt dat ook waar te zijn. Toch
leent de wetenschap zich ook goed tot samenwerking. Met een aantal mensen heb ik
samen aan artikelen gewerkt. Among others, I would like to thank Charles Petersen
for working with me on a paper and presentation for the educational forum of Promat
’99. It was great to meet him for the first time, some time after we had written the
paper together. My visit at the Georgia Institute of Technology in Atlanta has greatly
benefitted my research. For about three months, I had the opportunity to work with
Gunter Sharp on layout issues in order picking. Chapter 5 contains the results of
this period. I thank Gunter Sharp for his hospitality, his help in my research and the
discussions we had on cultural differences between FEurope and the United States.

In de afgelopen jaren ben ik geregeld in het buitenland geweest om presentaties
te geven over de methoden, de resultaten en de praktische bruikbaarheid van mijn
onderzoek. Vele instanties ben ik dankbaar voor hun financiéle bijdragen en het
vertrouwen dat zij daarmee in mijn onderzoek stelden. In dit kader wil ik de Facul-
teit Bedrijfskunde van de Erasmus Universiteit en de Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO) noemen. Furthermore, I am grateful for the op-
portunities offered to me by the Material Handling Industry of America (MHIA). The
Material Handling Institute of MHIA, by means of its president Dick Ward, gave me
the possibility to present my research at two Material Handling Research Colloquia
and to present the practical aspects of my work at the educational forum of Promat in
1999 and 2001. I probably learned at least as much from the questions as the audience
learned from my answers.

Naast het doen van onderzoek heb ik vele cursussen gevolgd, lesgegeven en stu-
denten begeleid bij het schrijven van hun scriptie. Ronald van Voorden was de eerste
student die bij mij kwam voor begeleiding bij het schrijven van zijn scriptie. Zijn

onderzoek betrof onder meer het routeren van orderverzamelaars. Ter ondersteuning
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van zijn onderzoek ontwierp ik een aantal routeringsmethoden. Hiermee was mijn
interesse gewekt voor problemen in orderverzamelgebieden bestaande uit meerdere
blokken. Een aanzienlijk deel van dit proefschrift gaat over soortgelijke situaties.

Mijn eerste grote ervaring met lesgeven was in 1999 toen ik Bert De Reyck assis-
teerde bij het geven van het vak Simulatie van Logistieke Systemen. De studenten
bedrijfskunde die dit vak volgen, zijn vierdejaars en volgen de specialisatiefase. Van
Bert leerde ik hoe je een goede voorbereiding, een inzichtelijke presentatie, enthou-
siasme en inzet kunt combineren tot een vak dat veel kennis bijbrengt en hoog wordt
gewaardeerd door studenten.

Om mijn onderzoek naar de buitenwereld te promoten heb ik een website gemaakt.
Op deze website kan de bezoeker een groot aantal routeringsmethoden toepassen in
een grafische weergave van een magazijn. Ook kan de bezoeker zelf de muis ter hand
nemen om het eigen inzicht in routeringsproblemen te testen. De website is te vinden
op het adres http://www.mediaport.org/kjr/warehouse/. Verder heb ik een bijdrage
geleverd aan de Erasmus Logistica Warehouse Website. Deze website is te vinden op
http://www.fbk.eur.nl/OZ /LOGISTICA/. Hier kan het door mij geprogrammeerde
simulatieprogramma voor routering van orderverzamelaars gebruikt worden. De web-
sites leverden ook publicaties op onder meer in vaktijdschriften, zie de referenties [1],
[61], [62], [68] en [266].

Bij het schrijven van een boek is het altijd prettig als iemand het manuscript goed
voor je naleest. Voor het nalezen en corrigeren van de Nederlandstalige gedeelten
bedank ik Eri Vis-Theunessen hartelijk. Iris Vis bedank ik voor het lezen, corrigeren
en bediscussiéren van de Engelstalige en wiskundige gedeeltes. Ook bedank ik Iris
voor het feit dat zij altijd voor mij klaar staat en voor al het begrip dat zij de
afgelopen tijd heeft getoond. Ik zal proberen komend jaar hetzelfde voor haar te
doen.

Rotterdam, 2001

Kees Jan Roodbergen
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1

Introduction

Nowadays, customers can order products electronically with their computers or mo-
bile phones via the Internet. Because the process of ordering is fast, the customers
expect comparable speed in delivery. Existing organizations that supply products to
customers are trying to adapt to this new situation and new organizations emerge.
Traditionally, the aim of logistics was to assure that the right product is at the right
place at the right time in the right quantity. The two main activities carried out in
logistics were considered to be transportation and keeping inventories. Transporta-
tion is used to get products at the right place by moving them from one location
to another location. Inventories can be useful to supply products at the right time
by storing them for a certain period of time until they are needed. Such a storage
location is generally called a warehouse. However, the situation and the opinions have
changed. According to the Council of Logistics Management logistics can now be de-
fined as ”that part of the supply chain process that plans, implements, and controls
the efficient, effective flow and storage of goods, services, and related information
from the point of origin to the point of consumption in order to meet customers’ re-
quirements.” This means that logistics is more than just moving and storing goods.
We sketch some of these developments in logistics below.

The Council of Logistics Management sees logistics as a part of the supply chain
process. The supply chain encompasses all activities associated with the flow and
transformation of goods from the raw material stage, through to the end user, as
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well as the associated information flows, see Handfield and Nichols [119]. The supply
chain concept has gained in importance, since individual companies are realizing that
they can no longer manage to satisfy customer demand on their own. It is necessary
to work together with several companies within the supply chain to be able to meet
delivery schedules, product specifications, service requirements and so on. The efforts
to harmonize the processes in the supply chain are called supply chain management.
Many trends impact the supply chain; we will discuss a few important ones below.
We will discuss increasing customer power, shorter product life cycles, value added
logistics, reduction of response times, return flows and shortening of throughput
times.

As we just briefly noted, a very important trend affecting supply chains is increasing
customer power. In earlier times, producers made their products and the customers
bought what was available. Nowadays, customers shift easily from one brand to an-
other. Producers try to keep up with changes in customer demand. And if necessary,
they try to produce to order. Efficient consumer response is one of the goals. One
effect is that the variety of products is ever-increasing while at the same time, life
cycles of the products are shortening. There is an enormous impact of all this on the
part of warehousing, such as a need to make the storage time of products shorter.
This is necessary to reduce costs, increase flexibility and to prevent companies from
having large amounts of stock left when there is no more demand for the products.
Additionally, the production process can be altered to reduce risk of storage. For
example, producers can try to give their products a modular structure. This enables
them to decide on the final appearance of the product at a later stage in production.
This may result in situations where the final composition of products is performed
in the warehouse, instead of at the production plant. For example, in the computer
industry a number of components is delivered to a warehouse. Only when a customer
orders a computer, is the requested composition of computer, keyboard, power cable
and manual created. The fact that activities like this are performed in warehouses is
part of what is often called value added logistics. Other value added activities are for
example quality control, custom packaging and labeling.

Having some form of assembly in the warehouse makes it possible to customize
products based on the requests of the customers. And because the warehouse is gen-
erally closer to the customer than the factory, the response time of the company to
a customer order is lower. Furthermore, technological developments, such as auto-
mated warehouses and transportation systems, computer integrated manufacturing
and advances in telecommunications, such as Electronic Data Interchange (EDI) and

multimedia communication, enable faster and more reliable delivery of orders to the
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warehouse and goods to the customer. From a study by Rogers et al. [230] it appeared
that firms using more warehousing information technologies had a significantly bet-
ter performance in the areas of quality improvements, cycle time reductions and
productivity improvements. The speed and accuracy of logistics can actually serve
as a competitive weapon for companies. Fast and accurate deliveries can be charged
for. Or if that is not possible, fast deliveries against the lowest possible costs can be
attempted.

Finally, we note a trend that is concerned with the increase in return flows. Return
flows consist, for example, of products that customers ordered via the Internet but
decided not to buy, products that are defective and need to be repaired or products
that have reached the end of their life-cycle and need to be dismantled, remanufac-
tured or recycled. New products that are returned need to be checked before they
can be sold again. The volume of returned products may be such that a separate
space in the warehouse is required. If it is decided that a returned product can be
sold again, it needs to be decided whether it is stored together with the regular stock
or separately. Re-use of products, components and materials — initiated by the de-
sire for environmental improvements — is enforced by legislation. It may induce cost
savings, but can also constitute a competitive advantage, due to the 'green image’ of
the company. Return flows are thus becoming increasingly important in logistics.

Several adaptations in the logistics branch are needed to respond to these trends.
Shapiro et al. [258] discussed how to improve the order management cycle from
planning to post-sales service, which can result in improved customer satisfaction,
reduced interdepartmental problems and improved financial performance. One spe-
cific response is to try and shorten the throughput time. This increases the flexibility
for reactions to changes in customer demand and it decreases the risk of unsalable
stock and reduces inventories. A way to shorten the throughput time is to design a
supply network without warehouses. Products are then shipped either directly or via
cross-docking centers from the production facility to the customer. Throughput time
is mainly decreased because products are no longer stored in the warehouse. However,
the feasibility of this option may depend on several factors, such as flexibility in the
production, communication facilities between companies and reliability of production
and distribution. Of importance in this respect is also the Just-In-Time concept; it
does not matter how long it takes for a product to arrive as long as it arrives exactly
at the time it is needed.

At first sight it may seem that due to all the developments in logistics, warehouses
are gradually becoming superfluous. In some cases this may actually be so, but in

many other situations warehouses will continue to play an important role. For exam-
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ple, as is the case for a company which makes products in the United States and sells
them in Europe. Products can be transported either by airplane or by ship. Often
air transport is too expensive, but transport by ship too slow. Customers may not be
prepared to wait for weeks for the products they ordered. A warehouse can solve the
problem. The producer temporarily stores products in a European warehouse and
ships products to the customers from the warehouse on demand.

We distinguish four main reasons why warehouses may be useful: to facilitate
the coordination between production and customer demand by buffering products
for a certain period of time, to accumulate and consolidate products from various
producers for combined shipment to common customers, to provide same-day delivery
to important customers, and to support product customization activities, such as
packaging, labeling, marking, pricing or even final assembly, see [92] and [113]. Thus,
warehouses will continue to play an important role in logistics.

Section 1.1 gives an overview of logistic functions in warehouses. In Section 1.2 an
overview is given of systems used in warehouses to store and handle the products.
Warehouse design issues are taken up in Section 1.3. Methods to control warehouse
processes are given in Section 1.4. An outline of this thesis is given in Section 1.5.
Special attention is given to one aspect of warehousing: the order picking process.
Order picking is the process by which products are retrieved from storage on the
basis of customer orders. The order picking process will be the main object of study
in this thesis.

1.1 Warehousing

As we noted in the previous section, warehouses are of considerable importance in
logistics networks. Basically, we can distinguish two types of warehouses: distrib-
ution centers and production warehouses. A distribution center is a warehouse in
which products from one or more suppliers are collected for delivery to a number of
customers. A production warehouse is used for the storage and distribution of raw
materials, semi-finished products and finished products in a production environment.

There are many activities that occur as part of the process of getting materials
into and out of the warehouse. Numerous product transformations take place. For
example, incoming products on pallets are stored in a pallet rack. Individual cases,
i.e. boxes filled with products, are removed from a pallet and stored in another area
of the warehouse. Individual products (items) are removed from the cases in response

to customer orders.



1.1 Warehousing 5

A warehouse generally consists of several areas. We describe some of the most
common areas and some product flows from area to area. This description is given
to relate an impression of warehousing activities and by no means exhaustive of
all situations possible. At the receiving area incoming shipments are unloaded from
a truck and inspected to see whether quantity and quality of the products are as
ordered. After receiving, products are either transported directly to the shipping
area (this is called cross docking or transshipment) or transported to and placed in
a storage area. Roughly, we can distinguish three types of picking areas: pallet area,
case pick area and item pick area. A warehouse may have more than one area of the
same type, or may not have a certain type of area at all. Retrieved quantities are
transported either to another area, to the accumulation and sorting area or to the
shipping dock. Movement of items from one storage area to another storage area is
most often carried out for replenishment. For example, a pallet is moved from the
pallet area to the case pick area. Individual cases can now be removed from the pallet
for the case picking operation. Products which are retrieved based on customer orders
are moved from the storage area to the accumulation and sorting area or directly to
the shipping area. The accumulation and sorting area (if present) is used to regroup
products such that they match with the customer orders. For example, a customer
orders a list of products. Some products have to be retrieved from a case pick area
and other products from an item pick area. These products have to be merged before
shipment to the customer. It may occur that products for several customers are
retrieved simultaneously from a storage area. These products have to be split before
they can be sent to the right customer. After accumulation and sorting, products can
be grouped. Small products are put in cases; cases can be stacked on pallets. Finally,
the outgoing orders are loaded onto vehicles in the shipping area. Storage systems
and material handling equipment will be discussed in more detail in Section 1.2.

Management decisions concerning warehousing can be subdivided into strategic
decisions, tactical decisions and operational decisions. Strategic management deci-
sions are long-term decisions and concern the determination of broad policies and
plans for using the resources of a company to best support its long-term competitive
strategy. For example: how many distribution centers do we need? To which markets
do we supply our products? In which locations do we place warehouses? Which per-
formance criteria does the warehouse have to meet? Decisions made at the strategic
level define a framework or constraints set under which the company must operate
in both the intermediate and short term.

Tactical management decisions primarily address how to schedule material and

labor efficiently within the constraints of previously made strategic decisions. For
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example: what is the layout of the warehouse? Which storage systems do we use?
Which products do we keep in storage? Do we use order picking per customer or-
der or batch picking? These tactical decisions become the constraints under which
operational decisions are made.

Decisions with respect to the operational control are narrow and short-term by
comparison. For example: how do we divide the order picking area into zones? What
type of batching do we use? Which routing algorithm is preferred?

Furthermore, we have on-line decisions, which are made in modern warehouses by
the computer system using the control systems chosen at the tactical and operational
level. These on-line decisions include: when do we pick a certain order? Where do we
store incoming loads? In which sequence do we pick the products?

The on-line decisions in a warehouse are often made by applying operating policies.
Operating policies are decision rules that determine how various warehouse opera-
tions are performed. For example, a storage policy determines where to store each
product and a routing policy determines how an order picker has to travel through
the warehouse to retrieve a specific order from storage.

1.2 Warehousing systems

A wide variety of warehousing systems is used to store, retrieve and sort products.
Pallet systems are used for large products or for handling large quantities of products.
For handling smaller quantities of products we may use cases or we may even handle
individual pieces. Often a warehouse will contain some combination of pallet, case
and individual product handling. For example, incoming products may be stored
initially on pallets. After a while a pallet is moved to the case picking area. Orders
containing large quantities of the product can be satisfied by retrieving a full case
from this area. Orders with one or a few products are satisfied from the item picking
area, which is replenished with cases from the case picking area. See also Yoon [299)
and Yoon and Sharp [301].

We discuss storage systems and material handling equipment for pallets, cases
and individual items. Furthermore, we describe part-to-picker systems and systems
for sorting. For more information on warehousing systems see e.g. Frazelle [91, 92],
Kulwiec [158] and Tompkins et al. [269)].
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1.2.1 Storage systems

The simplest form of storage is block stacking. In this situation, the warehouse is one
open space in which pallets, filled with products, are stored on the floor or on top
of each other. Multiple pallets with the same product are grouped. Only the pallets
on the edges of the group can be reached. A more advanced way to store pallets
is with the use of pallet racks. A pallet rack is a metal construction that makes it
possible to stack pallets higher than with block stacking while keeping the possibility
to manually access the pallets on the lower levels directly. Generally, several racks are
placed in rows with aisles in between where vehicles or people can move for handling
the pallets. Pallet racks can be single-deep, but also multi-deep. That is, each pallet
is accessible directly from the pick face or the pallet positions are two or more pallets
deep, which means that one pallet is positioned in front of the other pallet. Another
way to store several pallets behind each other are so-called drive-in or drive-through
racks. In this case, the vehicle can drive into the rack to retrieve or store pallets.

In situations where the throughput is very high, it may be a good choice to use
pallet flow racks. In a pallet flow rack each position can contain multiple pallets,
which are positioned behind each other. Products are retrieved from one side of the
rack and refills are done from the other side. Pallets roll on a conveyor from one side
of the rack to the other. A variation on this is the push-back rack, where refills and
retrievals are done from the same side. If a pallet is stored in a slot, the other pallets
in the slot are pushed backwards and the new pallet takes the position at the front.

There are also systems in which products are not stored on pallets, often in quan-
tities that are (much) less than a full pallet. These systems include shelves, storage
drawers and gravity case flow racks. A system with shelves is inexpensive, easy to
use and easy to reconfigure. A system with drawers offers higher storage density as
compared to shelves, because there is for example no extra space needed above each
pick location to enable the order picker to put his hand in. Furthermore, drawers offer
more protection against theft and influences from the environment, since the drawers
are not open to the environment and can be locked. Gravity flow racks may be used
for products that experience high demand rates. Cases with products are replenished
from the back of the rack and roll towards the front if an (empty) case is removed at
the front. Order pickers take products from the cases in response to customer orders
and remove empty cases from the rack to allow the next box to come forward.
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1.2.2  Handling equipment

Various types of equipment exist for putting pallets in storage or retrieving pallets
from storage. Basic equipment are pedestrian stackers and counterbalance lift trucks.
A pedestrian stacker is a simple piece of equipment that can lift and stack a pallet.
When traveling, the operator walks behind this vehicle. A counterbalance lift truck
generally has a fork that can go up and down a mast to lift pallets. The operator
sits or stands on the vehicle when traveling. This vehicle is fairly cheap and very
flexible. A disadvantage of this vehicle is its wide turning radius which requires wide
aisles, i.e. the racks have to be far apart. Several variations on the counterbalance
lift truck exist to enable operations in narrow aisles. For example, wide-wheelbase
trucks, that have support arms at the front for stability instead of a counterbalance.
Or reach trucks, which have a fork or mast that can 'reach’ to the load while the
vehicle stays at a fixed position. There is a version of this truck where forks can
reach into the racks to store pallets multi-deep. Furthermore, we have swing-mast or
swing-fork trucks, which are able to retrieve pallets from the side without having to
turn the entire vehicle, thus saving valuable floor space. The most advanced pallet
handling system is the automated storage / retrieval system. This system consists of
racks served by cranes running on rails. It is capable of handling pallets without the
interference of an operator; the system is fully automated. Horizontal and vertical
movement of the cranes can occur at the same time. Aisles can be very narrow, thus
saving floor space. The investment costs for such a system are, however, very high.

For case picking other equipment can be used. The base-line in case picking is
the usage of pallet trucks. A pallet truck is a vehicle that is either hand or motor
operated and can carry one or two pallets. It has no lifting capability, except to raise
the load a few centimeters off the floor to allow movement. All cases that have to be
picked by the operator are positioned at floor level. Replenishment is generally done
from locations above the pick location with a vehicle of the type mentioned for pallet
handling. These kinds of systems are very common in the grocery industry. To avoid
being restricted to picking from the floor level, one may use an order picking truck.
This truck is able to both drive and lift. The operator goes up and down with the
pick pallet, which enables the operator to pick a case from a storage location and to
put it on the pick pallet.

Several other systems for case picking exist. For example, a pick-to-belt system. In
this system the order pickers take cases from the rack and put them directly onto a
conveyor (belt) that runs along the aisle. Storage of products is often in pallet flow
racks, see Section 1.2.1. Advanced systems use lights on the rack to indicate which
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case has to be picked. Operators can attach a label to each box as identification for
the process of sorting cases into customer orders in a later stage.

Item picking requires yet another type of vehicle, although some of the previously
mentioned vehicles can be used for item picking as well. A wide variety of picking
carts exists. A picking cart may just be used to transport the picked items, but may
also have a printer, a barcode scanner or indicator lights. The cart may have multiple
levels to facilitate picking of several orders at the same time. Another possibility is
to use a conveyor with totes. Picked products are put in a tote, which is thereafter
transported to other pickers or another part of the warehouse. In all storage systems
for item picking it has to be possible for the order picker to reach the highest shelf
or drawer. Therefore, these systems are limited to a height of at most 1.8 meters. To
increase space utilization the systems can be placed on mezzanines. In this way, the
warehouse can have several floors of shelves, drawers or racks. This is advantageous
since most warehouse buildings are much higher than one picker-to-stock system
anyway, due to the height of other (pallet) systems. It is also possible to use a man-up
system for item picking. This system overcomes the limitation of maximum height.
The order picker can use, for example, an order picking truck. Or a man-aboard
automated storage / retrieval system may be used. This is an automated storage
/ retrieval system on which the order picker rides aboard the machine to pick the

products.

1.2.3 Part-to-picker systems

The classical picking systems described above are called picker-to-part systems. In
these systems, the order picker walks or drives through the warehouse to one or more
locations to retrieve products. An alternative to these systems are the part-to-picker
systems. In part-to-picker systems the order picker stays at a fixed location and the
products move towards him. Several systems exist. A carousel consists of a number of
bins or shelves that rotate either horizontally or vertically. Control of the carousel can
be either manual by the order picker or automatically. The speed of picking depends
partly on the rotation speed. It can be useful to install carousels such that one order
picker can handle more than one carousel.

Another advanced picking system uses an automated storage / retrieval system.
Pallets with cases are brought automatically to fixed pick positions where an operator
takes the requested cases from the pallet. After that, the pallet is automatically
returned to the rack. The same method is used by a miniload system; the main
difference is that storage containers for small items are used instead of pallets.
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One step further in automation is fully automated systems that collect items with-
out the need of an order picker. For example, automated item dispensing systems drop
items on a conveyor. This high-speed system is especially suitable for small items of
uniform size.

1.2.4  Transport, accumulation and sorting systems

In warehouses products frequently have to be transported from one area to another.
This can be done with some of the handling equipment mentioned in Section 1.2.2.
For example, counterbalance lift trucks are often used for this transport. Another
method is to use conveyors. Conveyors can be used to move products between specific
locations over a fixed path. A large variety of conveyors exist, where products move on
a belt, on rollers, on chains and so on. There are conveyors which move, for example,
pallets, bins or cases. Besides for transport, conveyors can also be very useful in
applications such as accumulation and sorting.

Accumulating and sorting of products can be performed to regroup products such
that they match the customer orders, see Section 1.1. For example, product flows
on conveyors from different areas are first merged to one flow. After merging, the
resulting flow has to be split into customer orders. Products arrive on a recirculating
conveyor that has a number of lanes. Each lane corresponds to a customer or a truck
with a group of destinations. If a product on the recirculating conveyor passes the
right lane a mechanism diverts the product to this lane. All products with the same
destination accumulate in a single lane. There is a huge variety of systems to divert

products from a conveyor to for example a lane, another conveyor or into totes.

1.3 Warehouse design

Facility design planning concerns the decision making needed to establish a facility
for efficient handling of incoming and outgoing products. The first decision to take is
whether a warehouse is needed at all. In some cases, it may be possible to ship prod-
ucts directly from the producer to the customer. However, as noted in the beginning
of this chapter, many reasons exist why a warehouse may be useful in the logistics
network. If a warehouse is needed, then a choice has to be made between contract
warehousing (i.e. a third party takes care of the warehousing) or warehousing by
the company itself. Next, the number and location(s) of the warehouses have to be
determined. The decisions noted here could be made sequentially, but can also be
treated as joint decisions.
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After deciding that a warehouse is to be built at a certain location, its size, shape
and contents need to be established. A methodology for comparing alternatives is
given in Brynzer et al. [35]; benchmarking of warehousing practice is considered in
Hollingworth [127]. Practical methods for comparing alternatives with respect to
equipment and layout is described in Moerkerken [198] and Perlmann and Bailey
[213]. Other literature on design of warehouses includes [69], [56], [105], [194], [211],
[219], [248], [300] and [301].

Regarding practical implementations it is often the case that various aspects of
the design are executed in a fixed sequence. Typically, one may first decide on the
storage requirements and layout, then determine the storage systems and handling
equipment and finally give thought to the operating policies and information flows,
see De Koster [59]. However, for a good design it is necessary to consider all as-
pects of the design in relation to each other. In Yoon and Sharp [301] a procedure
is given for the design of order picking systems and it is noted that the selection
of equipment, operating policies, physical transformation of products and the in-
formation transformation must be performed together. This reasoning is important
because, for example, the equipment choice influences the floor space needed. When
determining a layout without considering the operating policies, one may at some
point find out that it is impossible to achieve the proposed performance with any
existing operating policy, because the layout is inadequate. It may not be necessary
to specify operating policies in full detail at an early point in time, but they have
to be accounted for. We will study the interaction between an operating policy and
warehouse layout in Chapters 4 and 5.

Without passing over the interaction between the various components of design,
we discuss the aspects of sizing, system selection and layout separately in the next
few sections. The aspect of the operating policies is discussed in Section 1.4.

1.8.1 Sizing of warehouses

One important part of designing a warehouse is the determination of its size. The size
can usually not be chosen freely. Height and total floor space may be restricted due to
government regulations or nearby constructions. When determining warehouse size it
is not only important to consider current needs, but also to take into account seasonal
influences and estimates of future trends. Additionally, the type of operation that will
be performed inside the building is very important. A picking operation where order
pickers walk through the facility needs more floor space than an automated storage
/ retrieval system that can store pallets at heights of 20 meters.
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The calculation of the required number of storage locations to hold a given number
of products, when demand is known, is discussed in Hall [114]. The amount of storage
space needed may also depend on production lot sizes, see e.g. [126], [187], [189] and
[295] . Cormier and Gunn [50] concentrate on the establishment of a warehouse size
and underlying inventory policy that are jointly optimal. A warehouse sizing model
for a company that produces one product and plans on having one warehouse is
considered in Rao and Rao [226]. Furthermore, the product demand is seasonal and
the company is assumed to be able to rent space from a public warehouse. Warehouse
sizing is also discussed in [129], [244] and [294]. Leasing of warehouse space is taken
into account in [51], [144] and [181]. The problem of capacity expansion of an existing

facility is considered in Cormier and Gunn [52].

1.8.2  System selection

The warehousing systems have to be selected as well. According to Ashayeri and
Gelders [7] the main issues for the warehouse designer are to select the best storage
system, choose the appropriate handling equipment and to determine the warehouse
layout. The first two issues will be discussed in this section; the layout will be dis-
cussed in the next section.

Several factors play a role in the system selection. For example, the physical prop-
erties of the products (e.g. size, weight, required temperature and flammability), are
important to know before deciding on storage and handling equipment. Also transac-
tion data such as order data are important since a warehouse that receives only a few
orders per day may need a different structure from a warehouse that gets thousands
of orders a day. Economic constraints, such as budget and project life, and envi-
ronmental constraints, such as safety requirements, each have their effect on design.
Furthermore, an analysis of system requirements (throughput, inventory) and system
alternatives (hardware, operators) gives insight into capabilities and requirements for
the system. Finally, the performance of the systems as influenced by the operating
policies must be analyzed, see [299] and [301]. Selection of warehousing systems is
discussed in [47], [86], [153], [193] and [204].

1.3.8 Layout of warehouses

We can distinguish two types of layout decisions. Firstly, the decision on where to
place the various departments (receiving, order picking, sorting, etc.) and secondly
to determine the layout within the various departments. The Systematic Layout
Procedure described in Muther [203] is a layout procedure that starts with an activity
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relationship diagram, determines the amount of space needed for each activity and
finally results in a block layout. Each department is given a certain part (block) of the
total floor space available. The objective of layout optimizations is generally to find
a layout that results in the lowest material handling costs. These material handling
costs are often interpreted as transportation costs, which in turn are often treated as
a function of travel distance. These costs are often approximations. For example, it
is common to assume that all flows go from the center of one block along a straight
line to the center of another block. This is in contrast to real flows of products with
inbound and outbound locations per block and routes that have to go around other
blocks that are in between the two locations. See Meller and Gau [196] for a literature
review on this topic.

The second layout decision is concerned with the contents of the blocks. For ex-
ample, we have to determine the number of aisles in the order picking area. If we
wanted to design an order picking area with a certain fixed storage capacity, then we
could choose to have a few long aisles or to have many short aisles. The goal is to
determine a layout that is good, for example with respect to travel times. Chapters
4 and 5 of this thesis extensively deal with the problem of determining a layout for
the order picking area extensively. Literature is discussed and new results are given.

1.4  Operating policies

Operating policies are decision rules that can be used to control various processes
in a warehouse. For example, the assignment of orders to order pickers needs to be
determined frequently. Another decision that has to be made is the determination of
storage locations for incoming loads. The effectiveness of operating policies depends,
apart from the efficiency of the policy itself, also on factors such as layout, truck
schedules that have to be met and order data. For example, if the warehouse receives
many small orders, then it may be advantageous to let the order pickers pick several
orders at the same time. However, if orders are large they may have to be split to
make the order fit in the picking vehicle. An overview of operating policies is given
in Van den Berg [279].

For any existing warehouse, it may be advantageous to re-evaluate the operating
policies occasionally. For example, an important trend in warehousing is that the
number of orders increases, with a simultaneous decrease in the size of each individual
order. If this is the case, the company may need to shift to a different means of

retrieving orders from storage.
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We divide the operating policies into four types: storage policies, order picking
policies, sorting policies and other policies. These policies and their functions will be
discussed in the remainder of this section.

1.4.1 Storage policies

Before products can be retrieved from storage, they first have to be stored. There are
numerous ways to assign products to storage locations. We describe five frequently
used types of storage assignment: random storage, closest open location storage,
dedicated storage, full turnover storage and class based storage. For random storage
every incoming pallet (or an amount of similar products) is assigned a location in
the warehouse that is selected randomly from all eligible empty locations with equal
probability. This storage policy will only work in a computer-controlled environment.
If the order pickers can choose the location for storage themselves we would probably
get a system known as closest open location storage. The first empty location that is
encountered will be used to store the products. This typically leads to a warehouse
where racks are full around the depot and gradually more empty towards the back
(if there is excess capacity). The depot is the location where order pickers start and
finish their picking routes. An empty pick cart and a pick list can be picked up at
the depot. A pick list is a printed sheet of paper, on which the requested products
are sorted indicating the order picking sequence.

Another possibility is to store each product at a fixed location, which is called
dedicated storage. A disadvantage of dedicated storage is that a location is reserved
even for products that are out of stock. Moreover, for every product sufficient space
has to be reserved such that the maximum inventory level can be stored. Thus the
space utilization is low. An advantage is that order pickers become familiar with
product locations. It is also possible to match the layout of the warehouse with the
layout of the stores. This can save work in the stores because the products are logically
grouped. Finally, dedicated storage can be helpful if products have different weights.
Heavy products have to be on the bottom of the pallet and light products on top. By
storing products in order of weight and routing the order pickers accordingly, a good
stacking sequence is obtained without additional effort. However, order picking routes
will be longer compared to routing without weight restrictions, see Boerrigter [24].
Dedicated storage can be applied in pick areas, with a bulk area for replenishment
that may have, for example, random storage. In this way, the advantages of dedicated
storage still hold, but the disadvantages are only minor because dedicated storage is
applied only to a small area.
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A fourth storage policy is full-turnover storage. This policy distributes products
over the storage area according to their turnover. The products with the highest
sales rates are located at the easiest accessible locations, usually near the depot.
Slow moving products are located somewhere towards the back of the warehouse. An
early storage policy of this type is the cube-per-order index (COI) rule, see Heskett
[122] and [123]. The COI of an item is defined as the ratio of the item’s total required
space to the number of trips required to satisfy its demand per period. The algorithm
consists of locating the items with the lowest COI closest to the depot. A practical
implementation of full turnover policies would be easiest if combined with dedicated
storage. The problem is that demand rates vary constantly and the product assort-
ment changes frequently. Each change would require a new ordering of products in
the warehouse resulting in a large amount of reshuffling of stock. A solution might be
to carry out the restocking once per period. The loss of flexibility and consequently
the loss of efficiency might be substantial when using full-turnover storage. The con-
cept of class-based storage combines some of the methods mentioned so far. This
method divides the products into a number of classes. Fach class is then assigned to
a dedicated area of the warehouse. Storage within an area is random. Classes are de-
termined by some measure of demand frequency of the products. Fast moving items
are generally called A-items. The next fastest moving category of products are called
B-items, and so on. Often the number of classes is restricted to three, although in
some cases more classes can give additional gains with respect to travel times. The
advantage of this way of storing is that fast moving products can be stored close to
the depot and simultaneously the flexibility and low storage space requirements of
random storage are applicable.

All five storage assignment policies discussed so far have not entailed possible
relations between products. For example, customers may tend to order a certain
product together with another product. In this case, it may be interesting to located
these two products close to each other. An example of this is called family-grouping,
where similar products are located in the same region of the storage area. Clearly,
grouping of products can be combined with some of the previously mentioned storage
policies. For example, it is possible to use class-based storage and simultaneously
group related items. However, the decision in which class to locate the products has
to depend on a combination of the properties of all products in the group.

Literature on storage assignment includes [2], [34], [38], [39], [43], [85], [99], [103],
[104], [109], [110], [120], [121], [132], [140], [145], [148], [149], [151], [152], [157], [161],
[162], [167], [168], [180], [184], [186], [189], [191], [190], [192], [199], [200], [210], [217],
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[218], [231], [232], [239], [241], [242], [243], [246], [250], [251], [252], [256], [265], [268],
[276], [277], [283], [286], [298].

1.4.2  Order picking policies

Order picking concerns the retrieval of products from storage to meet the demand
of customers. This order picking process is often the most laborious activity in a
warehouse. On average the costs of order picking may amount to about 55% of the
operational costs in a warehouse, see Tompkins et al. [269]. The efficiency of the order
picking process depends on factors such as the methods for storage and transport
(flow racks, shelves, order picking trucks, picking carts, etcetera), on the layout of
the area and on the control mechanisms. In this section we will mainly focus on order
picking policies for picker-to-part systems, since these systems are the subject of this
thesis. Some attention to policies for part-to-picker systems is given in Section 1.2.3.

In a typical conventional picker-to-part warehouse, the order picking process may

consist of the following steps:

1. A customer places an order at the warehouse, for example by phone, e-mail or

EDI message.

2. The order is processed by the Warehouse Management System (a computer

system),
3. A pick list (a list with products ordered by customers) is printed,

4. An order picker (person that is responsible for retrieving products from storage)
gets the pick list and a pick device and walks or drives through the warehouse

to get the products, that were ordered.

5. After retrieving all products, the order picker drops off the products at a des-
ignated location (depot).

The time needed to pick an order consists of several components. We distinguish:
walking or driving between items, picking of items and remaining activities. Driving
to the pick location may include lifting, since often order picking trucks are used that
are capable of simultaneously driving and lifting. A model for measuring efficiency
of order picking tasks is given in Riaz Khan [229]. The time needed for driving to
pick locations obviously depends on the layout of the picking area, see also Chapters
4 and 5.

Picking the items consists of a series of actions. For example, an order picker driving

a truck or crane has to perform the following pick activities:
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position the truck or crane at the pick location,

pick the proper quantity from the location,

put the picked items on a product carrier,

confirm the pick on a pick list or mobile terminal,
e read information about the next pick.

The remaining activities of the order picking process include picking up an empty
pick carrier, the acquisition of information on which items have to be picked at which
locations, and dropping off the full pick carrier at some point after the pick.

A typical order picking situation is depicted in Figure 1.1. The warehouse is rec-
tangular with no unused space and consists of a number of parallel pick aisles. The
warehouse is divided into a number of blocks, each of which contains a number of
subaisles. A subaisle is that part of a pick aisle that is within one block. At the front
and back of the warehouse and between each pair of blocks, there is a cross aisle.
Cross aisles do not contain storage locations, but can be used to change aisles. Every
block has a front cross aisle and a back cross aisle; the front cross aisle of one block
is the back cross aisle of another block, except for the first block. Usually, there are
no storage locations accessible from the cross aisles. The order pickers can walk or
drive in any of the pick aisles or cross aisles. In the figure each square corresponds to
a storage location. Each solid black square indicates a location that has to be visited
by the order picker on his route to pick products. Figure 1.1 also depicts the depot,
where order pickers start and end their routes.

In this thesis, we will focus on methods to achieve a decrease in the time needed
to pick an order. First of all, there is the choice of equipment. This includes stor-
age and transport systems, but also control equipment such as bar code scanners.
Most equipment choices are influenced by factors such as the type (shape, size) of
the products and by storage and demand quantities and frequencies. For example,
products that are ordered frequently may be placed in flow racks or small items may
be placed in storage drawers, see also Section 1.2.1.

Secondly, we can decide where to store products. Often a warehouse has several
areas, such as a pallet area, case pick area and item pick area, see Section 1.1.
Products can be stored in one or in several of these areas. For order picking it is
attractive to have an area that is as small as possible. However, a smaller picking
area has to be replenished more often. Therefore, sizes of areas have to be balanced
and given the area sizes it has to be decided where to store which product. See also
the forward-reserve problem described in Section 1.4.4.
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FIGURE 1.1. A typical order picking situation.

As a third method to achieve a decrease in the time needed to pick an order,
we consider the operating policies. An interesting aspect of a change in operating
policies is that such a change is often possible in an existing warehouse without
additional capital investments. Sometimes policies can be introduced or changed
solely by making changes in the control system (for example in the software of the
warehouse management system). For example, for a given order, we could try to
minimize the distance that has to be traveled by the order picker to retrieve all
products from storage. This would change the routes taken by the order pickers, but
equipment like the racks and order picking vehicles can remain unchanged.

A fourth option to achieve a decrease in the time needed to pick an order is to
determine a good layout for the order picking storage area. Clearly, physical changes
to the warehouse can be very involving. Therefore, this option is especially suitable
for warehouses, that still need to be built. When determining a layout we have to take

into account factors such as aisle length and the number of aisles and cross aisles.
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This issue was discussed in Section 1.3.3 and we will give new results on layout issues
in Chapters 4 and 5.

We can distinguish a number of operating policies for order picking. Three order
picking policies are concerned with zoning, batching and routing, see also Cormier
and Gunn [49]. Zoning occurs if each order picker only picks products from an order
if those products are located in his assigned zone, i.e. part of the warehouse. Routing
policies determine the sequence in which products have to be retrieved. That is, for
a given list of products we try to reduce the distance that order pickers have to walk.
For batching, suppose we have a number of orders that have to be retrieved from
storage. Then we could have the order picker retrieving the orders one at a time or
we could try to combine several orders and retrieve them simultaneously. Retrieving
several orders in one route generally reduces the distance that has to be traveled
by the order picker. However, more effort is needed to keep track of which product
belongs to which order or to sort products later on. We will first discuss routing
policies and thereafter zoning and batching policies will be explained.

Routing policies offer an important possibility to achieve savings on order pickers
and equipment by optimizing order picking routes. Depending on the situation, the
problem of finding a good sequence for retrieving products is more or less complicated.
Broadly, the problem is in which sequence the order picker or automated vehicle
needs to visit a number of locations to minimize total travel time. The simplest case
occurs in a situation where single command cycles are performed, for example by
an automated storage / retrieval system. Single command cycles means that either
a load (e.g. a pallet or bin) is moved from the input point into a rack (storage)
or a load is moved from a rack to the output point (retrieval). More complicated
situations arise when dual command cycles are performed, i.e. a load is picked up at
the input point and put in the rack, then another load is retrieved from the rack and
deposited at the output point. This saves some travel distance, since the system does
not have to go forth and back to the input—output point twice. The objective is to
combine storage and retrieval commands such that the travel is minimized. Routes
for automated storage / retrieval cranes are generally restricted to one storage and
one retrieval command within one aisle. In case picking and item picking operations
it often occurs that the order pickers have to pick several products in one route.
Literature on routing with several picks in one aisle includes [14], [27], [138], [255]
and [285]. Furthermore, a route can go through several aisles in the warehouse. In
the remainder of this section we will focus on order picking situations where order

pickers can visit multiple aisles to pick one or more products for an order.
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The objective of operating policies for routing is to sequence the items on the pick
list to ensure a good route through the warehouse. The problem of routing order
pickers in a warehouse is actually a special case of the Traveling Salesman Problem,
see also Lawler et al. [164]. The traveling salesman problem owes its name to the
problem described by the following situation. A salesman, starting in his home city,
has to visit a number of cities exactly once and return home. He knows the distance
between each pair of cities and wants to determine the order in which he has to visit
the cities such that the total traveled distance is as small as possible. Clearly, the
situation of the traveling salesman has many similarities with that of an order picker
in a warehouse. The order picker starts at the depot (home city), where he receives a
pick list, has to visit all pick locations (cities) and finally has to return to the depot.
An example layout of a warehouse with pick locations is given in Figure 1.1. A graph
representation of the situation of this figure is given in Figure 1.2. A graph is a pair
(V, E) where V is a finite, non-empty set of elements called vertices or nodes and E

is a finite set of unordered pairs of elements of V called edges.

FIGURE 1.2. Graph representation of the situation depicted in Figure 1.1.
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Some differences exist between the classical Traveling Salesman Problem and the
situation of order picking in warehouses. First of all, if we look at the graph in Figure
1.2, there are a number of nodes that do not have to be visited (indicated with white
circles). These nodes are the cross points between aisles and cross aisles. The order
picker is allowed to visit them, but does not have to. The black circles represent
the pick locations and the depot; these nodes must be visited. It is permissible to
visit the pick locations and depot more than once. The problem of order picking
classifies as a Steiner Traveling Salesman Problem because of the two facts that
some of the nodes do not have to be visited and that the other nodes can be visited
more than once, see e.g. Cornugjols et al. [53]. The difficulty with the (Steiner)
Traveling Salesman Problem is that it is in general hard’ to solve. That is, there is
no algorithm, i.e. solution method, known that can solve instances of the Traveling
Salesman in polynomial time. We define a polynomial-time algorithm as an algorithm
for which the maximum number of elementary operations used on a problem instance
of size n is bounded from above by a polynomial in the input size.

However, for one type of warehouses it was shown by Ratliff and Rosenthal [227]
that there does exist an algorithm that can solve the problem in running time linear
in the number of aisles and the number of pick locations. The situation considered
in this paper is a warehouse consisting of one block. In Cornuéjols et al. [53] it is
shown that the algorithm of Ratliff and Rosenthal [227] can be extended to solve
the Steiner Traveling Salesman Problem in all series-parallel graphs. A graph G is a
series-parallel graph if starting from a graph consisting of two vertices u, v joined by
an edge (u,v), G can be constructed by a number of ’series’ or 'parallel’ operations.
A ’series’ operation is defined as replacing an edge (u,v) by two edges (u,w) and
(w,v) with w a new vertex and a ’parallel’ operation as duplicating an edge between
two vertices.

In Van Dal [275], De Koster and Van der Poort [64] and in Chapter 3 the algorithm
by Ratliff and Rosenthal [227] is extended to different warehouse situations that
cannot be represented as series-parallel graphs. The algorithm from De Koster and
Van der Poort [64] can determine shortest order picking routes in a warehouse of
one block with decentralized depositing. Decentralized depositing means that order
picker can deposit picked items at the head of every aisle, for example on a conveyor.
Instructions for the next route are given via a computer terminal. In Chapter 3 we
develop an algorithm for a warehouse with three cross aisles, one in the front, one in
the back, and one in the middle. The graph for this layout is not series-parallel. The
problem of routing is solved in Gelders and Heeremans [95] by applying a branch-
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and-bound algorithm (see Little et al. [179]) to a warehouse layout with multiple
blocks.

In practice, the problem of routing order pickers in a warehouse is mainly solved by
using heuristics. A heuristic is an algorithm that generates a feasible solution, which
cannot be guaranteed to be optimal. In Hall [115] a number of common routing
heuristics are given for warehouses consisting of one block and also approximate esti-
mates for average travel time for these heuristics and the optimal algorithm are given.
Performance comparisons between optimal routing and heuristics for warehouses of
one block are given in e.g. De Koster and Van der Poort [64], De Koster et al. [65] and
Petersen [216]. The effect of routing in combination with storage assignment rules
(see Section 1.4.1) is analyzed in Petersen [217] and Petersen and Schmenner [218]. A
preliminary study on heuristic routing in warehouses with multiple blocks was done
in Roodbergen and De Koster [236]. They compare three heuristics for a number of
situations, including a narrow-aisle high-bay warehouse where order picking trucks
are used. A routing heuristic, using dynamic programming, for warehouses with mul-
tiple blocks is presented in Vaughan and Petersen [288]. Heuristics from these articles
as well as a new heuristic are given in Chapter 2 of this thesis.

Other issues may arise when trying to find good routes for order pickers. All articles
discussed so far assume that the aisles of the warehouse are narrow enough to allow
the order picker to retrieve products from both sides of the aisle without changing
position. In Goetschalckx and Ratliff [102] an polynomial-time optimal algorithm is
developed that solves the problem of routing order pickers in wide aisles. Another
problem with routing may arise if products are stored at multiple locations in a
warehouse. In this case a choice has to be made from which location the products
have to be retrieved. A model for the problem of simultaneous assignment of products
to locations and routing of order pickers is given in Daniels et al. [57]. Furthermore,
heuristics are given to solve the problem. A further routing problem is that of allowing
the order picker to do multiple picks per stop. That is, the order picker travels through
a warehouse with a vehicle. He stops the vehicle and walks forth and back to a number
of pick locations to retrieve products. Then he continues to the next stop location.
And so on. The trade-off is between the time to start and stop the vehicle and the
distance walked by the order picker. This problem was analyzed and solved optimally
in Goetschalckx and Ratliff [101].

Part of the research on routing consists of travel time estimation. Using techniques
from statistics and operations research an attempt is made to give an estimate of
how much time (or distance) it takes to collect an order. Many results are known for

systems where the vehicle is confined to a single aisle, see for example [29], [44], [83]
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and [118]. For travel time estimates of single and dual command cycles in multiple
aisle systems see e.g. [21], [89], [162] and [207].

Few researchers have looked for travel time estimates for picking in systems with
multiple aisles and multiple picks per route. Kunder and Gudehus [159] give travel
time estimations for three routing heuristics in a warehouse consisting of one block.
This work is extended in Hall [115] with more advanced routing heuristics for one
block warehouses. Furthermore, a lower bound on travel time for the optimal algo-
rithm from Ratliff and Rosenthal [227] is given. Formulations for average travel time
in a situation with decentralized depositing are given in De Koster et al. [65]. Both
Hall [115] and Kunder and Gudehus [159] assume that pick locations are distrib-
uted randomly over the order picking area according to a uniform distribution. In
Jarvis and McDowell [140] travel time estimates are determined and used to deter-
mine which products (fast moving, slow moving) should be located in which aisles.
A travel time analysis for a general product to location assignment is given in Chew
and Tang [43] and Tang and Chew [265]. That is, demand rates for products can vary
throughout the warehouse. They use the travel time estimates to evaluate batching
strategies. Expected travel distances for two routing methods in a warehouse consist-
ing of two blocks is given in Caron et al. [38]. The depot is located between the two
blocks, which is different from what is depicted in Figure 1.1. Furthermore, items
are assumed to be distributed according to the cube-per-order index, see Section
1.4.1. Some travel time estimates which are used in an analysis of batching strategies
including time-window batching are given in Choe [46].

None of the articles mentioned here has an explicit modeling of the depot location.
Furthermore, some parts of the travel time estimates can be improved. We will discuss
the depot location and an improvement of the estimates in Chapter 4. Travel time
estimation in warehouses with multiple blocks and any number of picks has also not
been analyzed before. Chapter 5 deals with this issue.

Zoning and batching policies can be used to distribute orders over a number of
order pickers. Zoning is a method to divide the total order picking area into smaller
units. Order pickers only retrieve products that are located in their zone. Batching
is a method to determine which order picker retrieves which (partial) orders. The
simplest form of distributing orders over order pickers is single order picking, i.e.
each order picker retrieves one complete customer order within the picking area. For
this he may have to traverse the whole order picking area.

As an alternative to single order picking, the order picking area can be divided into
zones. Each order picker is assigned to pick the part of the order that is in his assigned

zone. One disadvantage of zoning is that orders are split and must be consolidated
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again before shipment to the customer. Two approaches can be used to cope with this.
The first approach is that of progressive assembly of an order. Using this approach
one order picker starts on the order. When he finishes his part, the tote and pick list
(or any other means that are used) are handed to the next picker, who continues the
assembly of the order. This system is also called pick-and-pass. The second approach
for zoning is parallel picking, where a number of order pickers start on the same order,
each order picker in his own zone. The partial orders are merged after picking. In
practice, zoning is partially based on product properties, like size, weight, required
temperature and safety requirements. Developing a method to determine zone sizes
within a specified warehouse area would however be an interesting research topic.
Important for zone sizing is that the workload is equally distributed over the order
pickers. Little literature on zoning is available. A generic discussion on zoning is
given in Speaker [262]. In Choe [46] the problem of simultaneous zoning, batching
and sorting is considered. In Malmborg [183] the problem of assigning products to
locations is studied with zoning constraints. A case study with zoning and batching
is given in Brynzer and Johansson [33]. Zoning also occurs in pick-to-bin systems.
In these systems, order pickers generally work on one rack; each order picker picks
products from only a part of the rack. Picked products are put in a bin and if a picker
is done with his part then the bin is handed to the next picker, see De Koster [58]
and [60].

An alternative for the type of zoning described above would be a more dynamic
way of assigning order pickers to zones. An example of this is the use of bucket-
brigades, see Bartholdi [15], Bartholdi and Eisenstein [17] and Bartholdi et al. [16].
Bucket brigades can be especially suitable in situations such as pick-to-bin, where
all order pickers are working on a single straight line. The idea is roughly as follows.
There is one rack from which the products are to be retrieved. One order picker starts
an order at the far left of the rack. He picks a number of products and at some point
gives the partially fulfilled order to the next order picker, who continues picking the
products along the line. The order is handed from picker to picker until it reaches
the far right of the line, where it is put on a conveyor for further transport. The
special feature of the bucket brigades is the way in which it is determined when an
order is handed from one order picker to the next. Suppose, at some point in time
all order pickers are working on separate orders, if the order picker closest to the
end of the line deposits his finished order, he walks back along the line towards the
starting point. If he meets another order picker, he then takes over the order from
the other person and continues picking this order. The order picker from which the

order was taken moves back along the line until he meets another order picker, and
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so on. One order picker starts all orders. The order pickers have to be in sequence
of their respective speed of working for the system to function adequately. The main
advantage of bucket brigades is that they are self-balancing with respect to workload.

As discussed, zoning is a way of distributing an order over a number of order
pickers. Thus several order pickers are working on the same order. However, we could
also let one order picker retrieve several (small) orders at the same time. This is
called batching. Each order picker then collects a batch of orders, while sorting the
items per order (called sort-while-pick). Most heuristic batching methods basically
follow three steps: a method of initiating batches, a method of allocating orders to
batches and a stopping rule to determine when a batch has been completed.

Another way of batching is to add up all available orders per item, retrieve all items
individually and sort them afterwards into customer orders. Various intermediate
forms exist. Combinations of zoning and batching are possible as well. An advantage
of batching is that the length of the route necessary to fill a batch of orders is
shorter than the sum of the route lengths if the orders are retrieved individually.
Batching may require a different type of vehicle, the travel speed may be different,
and the order picker or someone else may have to perform extra functions such as
separating the batch into the individual orders. A limit on the size of a batch is most
often determined by the capacity of the vehicle or an upper limit on response time.
Batching becomes more difficult when orders arrive on-line. In many warehouses there
is a batch-arrival component (for example, orders left from the previous day that did
not make the departure time) and an on-line component. For on-line arrivals, there is
a trade-off between waiting until more orders arrive so that more efficient pick routes
can be formed (shorter pick times per item) and, on the other hand, minimizing the
workload and realizing due times, see also Bhaskaran and Malmborg [23].

Batching is discussed in for example [4], [46], [78], [79], [80], [81], [82], [83], [90],
[98], [130], [135] and [173]. An overview and comparison of existing order batching
heuristics is given in Pan and Liu [205] for the case of order picking in one aisle.
In De Koster et al. [66] and Rosenwein [247] batching overviews are given for the
case of order pickers that can visit multiple aisles. A branch-and-bound algorithm
to solve the problem of minimizing the maximum pick time of any of the batches to
optimality is given in Gademann et al. [94].

Part-to-picker policies are used to control part-to-picker systems. For example,
an important issue in the control of carousels is the sequencing of picks, such that
the system has to make as few movements as possible. An operator can extract
items from one or from multiple carousels. Many aspects discussed for the picker-to-

part systems also play a role in part-to-picker systems, such as storage assignment.
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Carousel literature includes [19], [97], [110], [117], [131], [132], [133], [249], [270], [27§]
and [293]. Furthermore, automated storage / retrieval systems and miniload systems
can be used for picking systems where products move to the picker. These systems

are frequently studied under the name end-of-aisle order picking systems, see e.g.
[30], [31], [88], [182] and [209].

1.4.8  Accumulation and sorting policies

If batching or zoning is applied, then some extra effort is needed to ensure that in the
end all products of each order can be shipped to the customers together. One way
to do this is to incorporate the order consolidation into the order picking process.
For example, by using a sort-while-pick or a pick-and-pass system. Alternatively,
accumulation and sorting is performed after all products are picked. For this process
a sorting system can be used.

In general, a sorting system can perform the following actions:

e loading — products are fed to the sorter with sufficient space between them:;

e accumulation — it may be necessary to temporarily buffer products before merg-

ing to compensate for imbalance between flows;

e merging flows — when two or more flows come together (for example from

different areas), they have to be merged into one flow;

e transport and induct — before sorting, usually the distances between the prod-

ucts have to be optimized;

e sorting — each product is diverted to the sorting lane corresponding to the order
to which the product belongs.

Equipment properties that are of influence on the throughput capacity of the sorter
include the speed of the sorter conveyor and the space needed between products.
Operating strategies like the assignment of orders to lanes also influence throughput.

Before sorting, different product flows often have to be merged. Possible merging
policies are those of alternating, priority and train merge. With train merge policy,
boxes are accumulated before the merge. After accumulation, the boxes continue their
route as a group (a train) of equidistantly spaced boxes that can be sorted easily.
After merging, the products have to be sorted. An important factor in sorting is to
determine the assignment of orders to lanes.

Merging of flows is analyzed in Arantes and Deng [3] and De Koster en Wijnen
[67]. Simulation is used in Bozer and Sharp [28] to examine the advantages of using
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a recirculation loop to avoid lane blocking when a shipping lane is full. In Bozer et
al. [26] simulation is used to examine the system when there are more orders than
lanes, and orders that are not assigned to a lane are forced to recirculate around the
loop. A case study on the implementation of a sorting system is given in Johnson and
Lofgren [143] and in Meller [195] the optimal order-to-lane assignment is determined.
Downstream sorting is analyzed in Choe [46]. Other literature on merging and sorting
includes [141], [201], [291] [296] and [302]. More on conveyors can be found in [76],
[77], [106], [202], [220], [221], [254], [261] and [297].

1.4.4 Other operating policies

Many other processes have to be managed in a warehouse. Each process can be
optimized individually, even though an optimization of the parts will not guarantee
a good overall solution. To sketch the wide range of optimization problems that arise
in warehouses, we give in this section some further areas of interest and some of the

literature involved.

Policies for automated storage / retrieval systems

Generally, automated storage / retrieval systems and miniload systems operate with
single or dual command cycles, see Section 1.4.2. For dual command cycles it is
interesting to schedule loads such that combinations of the load to store and the load
to retrieve is such that travel times are minimized. More picks can also occur. If there
are more picks in one aisle, then the routing problem is in a two-dimensional plane.
However, the plane is far from euclidean because horizontal travel speed may depend
on the height at which the vehicle is traveling and accelerating and deceleration
play an important role. For the situation of multiple picks in multiple aisles, see
Section 1.4.2. For travel time minimization it is also important to position frequently
requested loads close to the input-output point, where pallets have to be deposited
after retrieval. For class-based storage the shapes of the classes have to be determined
and the assignment of products to locations has to be determined. Batching has also
been evaluated within the context of automated systems. Another point to consider
is where to park the vehicle if it is idle; dwell-point policies have been developed for
this positioning.

See [51, [6], [8], [9], [10], [11], [12], [13], [27], [29], [41], [42], (4], [45], [71], [72], [73]
(74], [75), [80], [81]. [4], [85], [38], [100], [104], [112], [118], [121], [128], [130], [131]
[132], [133], [134], [135], [136], [137], [139], [142], [146], [147], [149], [150], [151], [152],
[154], [155], [156], [157], [160], [165], [166], [167], [169], [170], [172], [174], [175], [176]

)

)

)
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[177], [178], [182], [192], [197], [200], [206], [208], [214], [223], [224], [233], [242], [245],
[253], [256], [257], [259], [264], [268], [277], [280], [281], [289] and [292].

Policies for forward-reserve allocation

Many warehouses have a system for order picking with a forward area and a reserve
area. The forward area is used for order picking and the reserve area is used to
replenish the forward area. The size of the forward area is restricted; the smaller the
area the lower the average travel times of the order pickers will be. It is important to
decide how much of each product is placed in the forward area and where in the area
it has to be located. It may even be the case that it is advantageous to store some of
the products only in the reserve area. This may occur if demand quantities are very
high or if demand frequencies are very low. Furthermore, replenishments are often
restricted to times at which there is no order picking activity, which gives additional
constraints. The decisions concerning the problems noted here are summarized under
the name forward-reserve problem. Literature includes Frazelle et al. [93], Hackman
and Platzman [111] and Van den Berg et al. [282].

Policies for internal transport

One of the problems in a warehouse is the transportation of goods from one area of
the warehouse to another area. For example, pallets with products that arrive at the
warehouse have to be transported to the labeling area to be labeled with barcode for
identification purposes. After that the pallet has to be transported to the storage area.
This transport can be done using, for example, counterbalance lift trucks. Lift trucks
are in wide use since they are inexpensive and very flexible. The assignment of jobs to
lift trucks is a complex problem that is closely related to the Vehicle Routing Problem,
see e.g. Fisher [87]. Instead of lift trucks, conveyors or automated guided vehicles
can be used to transport goods from one location to another location. Automated
guided vehicles are capable of driving from location to location without the need
of an operator. Conveyors are especially fit for transportation of large amounts of
cases, but can also be used for full pallets. Policies for accumulating and sorting with
conveyors are dealt with in Section 1.4.3. A study on control policies for lift trucks and
automated guided vehicles is given in Van der Meer [284]. Another issue that appears
when designing the system is the number of vehicles that are needed to transport all
products in time. Although the context of the article is within container terminals,
the algorithm given in Vis et al. [290] could be used to determine the minimum

number of vehicles needed in a warehouse for internal transport.
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Policies for palletizing

In the process of putting products on pallets it might be worthwhile trying to fit all
products on as few pallets as possible. Restriction may include weight limitations,
having to keep customer orders together, environmental restrictions or different tem-
perature requirements. The problem of palletizing is closely related to the bin packing
problem, see e.g. Coffman et al. [48]. Pallet loading schemes are treated in [36], [37],
[40], [70], [124], [125], [212], [222], [228], [260], [263], [267], [271] and [272)].

Related to this is the problem of packing a number of unit loads, e.g. pallets, as
efficiently as possible into a vehicle or container. Literature on this subject includes
[96] and [116].

Policies for cross docking

In a typical cross-docking operation, a number of trucks arrive and loads are unloaded
from these trucks. Other trucks arrive and take the loads that correspond to their
destination. Thus, incoming loads may be grouped by supplier; outgoing loads by
customer. The problems to solve are finding a good layout and a good assignment of
trucks to dock doors in order to minimize workload (travel time of workers) and to
avoid congestion. The literature on this subject includes [18], [107], [108], [273] and
[274].

1.5 Outline of the thesis

In the remainder of this thesis we focus on the order picking area. We identified
order picking as one of the major cost components in warehousing. Therefore, any
improvement in this area can have a significant impact on profitability of the ware-
house. In Chapter 2 we focus on routing of order pickers in a picker-to-part environ-
ment. Routing of order pickers has been extensively researched in layouts consisting
of one block. So far only one publication has dealt with routing in layouts with any
number of blocks. We start Chapter 2 with a short overview of literature on routing
in one block warehouses. Thereafter, we describe a number of routing heuristics for
multiple block warehouses. A comparison of routing methods is given as well. The
chapter ends with a case study of a company that actually implemented a heuristic
we developed. This chapter is based in part on the publications [63], [65], [236], [238]
and [239].

Since heuristics only give a feasible solution which cannot be guaranteed to be
optimal, it would also be interesting to have an algorithm that is capable of generating
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shortest order picking routes in warehouses with multiple blocks. In Chapter 3, we
give such an algorithm which finds shortest routes in layouts of two blocks. Clearly
this algorithm is useful only in practice if a layout with two blocks has on average
lower travel times than a layout with one block. Therefore, we analyze the difference
in average travel time between a layout with one block and a layout with two blocks
in Chapter 3 as well. This chapter is based on our research in [237].

Routing methods, like those in Chapters 2 and 3, try to find good routes for a given
layout. But in one layout average travel time may very well be much higher than in
another layout. We investigate the influence of layout on average travel distance of
order pickers in Chapter 4 and 5. In Chapter 4 we restrict the analysis to layouts of
one block. Chapter 5 analyzes layouts of multiple blocks. For the analysis in these
chapters we develop statistical estimates for average travel distance based on routes
as generated by a routing heuristic. Layout factors that are taken into account are,
for example, the number of aisles and the number of blocks. Moreover, we prove in
Chapter 4 that in a one block layout the best location for the depot is the middle of
the front cross aisle. The proof holds for all routing heuristics that have so far been
discussed in literature. Chapters 4 and 5 are in part based on our research in [234]
and [240].



2

Heuristic routing of order pickers

In Chapter 1 we have identified routing of order pickers as one of the important
aspects to consider when improving the efficiency of order picking. Routing of order
pickers concerns the determination of a sequence in which a certain number of prod-
ucts have to be retrieved from storage. The common objective in routing problems is
to develop a method that is capable of generating routes that are as short as possible.
Travel time reduction can lead to a significant decrease in warehousing costs, since
typically 55% of warehouse operating costs comes from order picking and 50% of the
order pickers’ time is spent on traveling, see Tompkins et al. [269]. The potential for
gains in practice is illustrated in Section 2.5 by means of a case study.

Besides the objective of short routes, there are other considerations. For example,
it may be advisable to keep in mind that an order picker has to actually execute the
route. One important reason in favor of heuristics — when compared to an algorithm
that calculates shortest routes — is that they can create routes with an easy-to-
understand structure. Order pickers have to follow the instructions on their pick list
to form the route calculated by the computer system. If the route is not logically
formed according to the order pickers then they may accidentally walk the wrong
way or they may decide to override the system and walk the way they think is best.
Clearly, this will not give the highest performance. Therefore, a route that is easy
to understand can enhance picker productivity. Furthermore, determining shortest
routes for order pickers is far from trivial. Although an algorithm exists for one-block
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warehouses, there is no algorithm available that can calculate shortest routes for any
number of blocks efficiently. We do give an algorithm for two-block warehouses in
Chapter 3. And even if an algorithm exists for a certain situation, it will be difficult
to change it if the shape of the picking zones is changed. For example, the algorithm
may work well in a zone consisting of one block, but if three zones are combined to
form one new zone consisting of three blocks, the algorithm can no longer be used. If
one of the heuristics from Section 2.2 is used, then no adaptation would be necessary.

Section 2.1 contains an overview of routing issues for warehouses consisting of
one block. Several routing policies are described. Furthermore, differences between
routing heuristics are discussed based on a literature study. Interactions with other
operating policies such as storage assignment and batching are also taken into ac-
count. In Section 2.2 routing policies for warehouses consisting of multiple blocks
are given. One method comes from existing literature; two other heuristics are ex-
tensions of heuristics for the one-block layout. An entirely new heuristic for a layout
with multiple blocks, the combined™ heuristic, is given in Section 2.3. To analyze the
performance of the heuristics, an non-polynomial-time optimal algorithm is used that
generates shortest order picking routes. Performance comparisons between heuristics
and the optimal algorithm are given in Section 2.4 for various warehouse layouts and
order sizes. For the majority of the instances with two or more blocks, the combined™
heuristic appears to perform better than the other heuristics. In Section 2.4 some con-
sequences for layout are also discussed. From the results it appears that the addition
of cross aisles, i.e. replacing one block by multiple smaller blocks, can decrease han-
dling time of the orders by lowering average travel times. However, adding a large
number of cross aisles may increase average travel times because the space occupied

by the cross aisles has to be traversed as well.

2.1 Routing in one block

One-block layouts are those which are analyzed most frequently in literature. Nu-
merous operating policies have been tested in a one-block environment. Therefore,
we will start with a discussion of this layout before going to the more general layout
with any number of blocks. Routing policies can be split into two categories. Firstly,
there are those methods that determine shortest routes, which we will call optimal
algorithms. Secondly, we have routing heuristics, methods that determine a feasible
route, that is not necessarily the shortest route. For the one-block layout there exists
an efficient optimal algorithm, see Ratliff and Rosenthal [227]. Therefore it does not
seem to be necessary to look into heuristics for this layout. However in Hall [115] and
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Petersen [216] it was noted that in practical situations there may be reasons to prefer
heuristic routing. Important reasons in favor of heuristics are their adaptability and
the fact that they can create routes with an easy-to-understand structure.

We will first describe some routing policies for one-block layouts and then we will
give an overview of results from literature. Note that these routing policies may be
used for any pick list size. However, there is not much use for these policies with
single or dual command cycles. Single command cycles simply go from the depot via
the shortest path to the location and back to the depot. Dual command cycles require
the visit of two locations. Route length will be the same regardless of the sequence of
the two visits. Besides, dual command cycles often occur in full pallet load situations,
where the vehicle first has to store a pallet (to empty the vehicle) before retrieving
another pallet. Thus, differences in route length between policies will only occur for

pick lists of three or more items.

2.1.1 §S-shape heuristic

A simple way to route order pickers is by using the S-shape (also called transversal)
policy. Any aisle containing at least one item is traversed through the entire length.
Aisles with no picks are not entered. After picking the last item, the order picker
returns to the front aisle. This heuristic is likely to be the most frequently used
routing policy in practice. For an example route see Figure 2.1.

Numerous papers use the S-shape heuristic in their analyses in one or another way,
see [64], [65], [66], [115], [159], [216], [217], [218], [250].

2.1.2 Return heuristic

With the return heuristic the aisles are always entered from the front and left on the
same side after picking the items in this aisle. For an example route see Figure 2.1.
The return heuristic is as easy to implement and use as the S-shape heuristic. The
choice between these two heuristics is basically the same as the choice between single-
sided and double-sided picking. Single-sided picking means that the order picker picks
items from just one side of the aisle at a time. Therefore if both sides of an aisle have
picks, the aisle has to be traversed twice. Double-sided picking means that the order
picker retrieves items from both sides of the aisle at the same time. This means that
the order picker constantly has to move from one side of the aisle to the other side.
The S-shape heuristic is suitable for double-sided picking since every aisle is visited
just once. The return heuristic is especially suitable for single-sided picking. As a
consequence, one of the important criteria to choose between return and S-shape is
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the width of the aisles. From Goetschalckx and Ratliff [102] it appeared that the aisles
have to be very wide or pick density has to be very high for double-sided picking to
be useful. This leaves us with one main application for the return heuristic, which is
in situations where there is only the possibility for changing aisles in the front cross

aisle.

2.1.83 Midpoint heuristic

For this heuristic the warehouse is essentially divided into two halves. Picks in the
front half are accessed from the front cross aisle and picks in the back half are accessed
from the back cross aisle. Only the first and the last aisle with items are traversed
entirely, see also Figure 2.1. This routing policy could be a good alternative to S-
shape as long as there is on average only one pick per aisle. However, the largest gap
heuristic, described below, always has a performance that is better than or at least
equal to that of midpoint, see Hall [115]. The midpoint does offer a simple approach
that is easy to implement.

2.1.4 Largest Gap heuristic

The picker enters the first aisle and traverses this aisle to the back of the warehouse.
Fach subsequent aisle is entered up to the ’largest gap’ and left from the same side
as it was entered. A gap represents the distance between any two adjacent items, or
between a cross aisle and the nearest item. The last aisle is traversed entirely and the
picker returns to the depot along the front entering again each aisle up to the largest
gap. Thus, the largest gap is the part of the aisle that is not traversed. An example

route is given in Figure 2.1.

2.1.5 Composite heuristic

This routing policy combines features of the S-shape and return heuristics. This
heuristic decides for each aisle individually whether it is shorter to traverse it entirely
or to make a return route. See Petersen [215]. An example route is given in Figure
2.1.

2.1.6 Combined heuristic

A routing policy that gives routes that look somewhat similar to the composite
heuristic is the combined heuristic. This routing policy will be explained in detail in
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Section 2.3. It has a dynamic programming component, which — in a way — makes it
possible to look one aisle ahead. For example, consider an aisle for which it would be
shortest to make a return. The combined heuristic could choose to traverse this aisle
anyway, because this gives a better starting point for the next aisle. This will in turn
lead to a better overall result. The combined heuristic has appeared to perform well
in warehouses with multiple cross aisles, see Section 2.4. An example route is given
in Figure 2.1.

2.1.7 Optimal algorithm

All routing policies mentioned before in this section restrict the possibilities of creat-
ing a route. For example, the S-shape heuristic forces order pickers to traverse each
aisle entirely. To obtain the shortest route possible, we need a routing policy that is
capable of considering all possibilities for travelling in and between aisles. In Ratliff
and Rosenthal [227] such an optimal procedure is presented for routing workers in
a rectangular warehouse. An example route is given in Figure 2.1. This algorithm
can be run on a personal computer and finds the optimal route within seconds. See
Section 1.4.2 for more information on determining shortest order picking routes.

2.1.8 Comparison of routing policies for one block

First of all we have to note that the shortest routes will be given by the algorithm
described in Ratliff and Rosenthal [227]. For decentralized depositing the method
described in De Koster and Van der Poort [64] can be used. If one prefers to use a
routing heuristic, several decision problems arise. A specific heuristic may be very
good in one situation but perform poorly in another situation. For example, pick
density plays an important role. If the order picker has to visit very many locations
in each aisle then it is highly likely that routes generated by the S-shape heuristic
are close to optimal. But if there are only few picks per aisle then another heuristic
might be better, see e.g. Hall [115].

The equipment is also an important aspect to consider when choosing between
routing heuristics. For example, a vehicle that has a lower speed in the cross aisles
than in the pick aisles will favor a heuristic that minimizes cross aisle travel. A
vehicle that requires a considerable amount of time to enter aisles will favor a routing
policy that enters aisles only once, which is essentially the same as minimizing cross
aisle travel. See e.g. De Koster and Van der Poort [64] and De Koster et al. [65]
for an analysis of the differences between optimal and heuristic routing in such an

environment.
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FIGURE 2.1. Example of a number of routing policies for a layout of one block.
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Product properties play a role, too. If there are weight restrictions, i.e. heavy
products cannot be stacked on light products, then this restricts the possibilities
for routing. Heavy products have to be retrieved first, otherwise pallets have to
be restacked while picking. In practice, this problem is often solved by positioning
products in the racks in increasing product weight. A routing policy should then
adhere to this ordering.

Thirdly, there is a strong interaction between routing and storage assignment poli-
cies. For example, S-shape always entirely traverses aisles. Therefore, it would make
sense to assign storage locations such that the most frequently demanded items are
in one aisle, the somewhat less frequently demanded items in the next aisle and so on,
see Jarvis and McDowell [140]. A comparison between routing policies can therefore
only be performed with a predefined storage assignment rule or with simultaneous
consideration of storage assignment. Under random storage assignment, Hall [115]
gives, for example, a rule of thumb for choosing between S-shape and largest gap.
S-shape is preferred if the number of picks is on average less than 3.8 per aisle;
otherwise largest gap is preferred. Again we note that the choice between routing
policies also depends on the number of items per route. In Petersen [216] several
routing policies are compared under random storage. The interaction between class-
based storage and routing is studied in Petersen [217] and Petersen and Schmenner
[218]. An open problem is to determine the optimal allocation of items when using
an optimal algorithm for routing.

Furthermore, there is the issue of choosing a batching policy. The effectiveness of
a batching policy depends on the underlying routing policy. For example, we can
consider the following rule for adding an order to a batch: add the order that gives
the least number of extra aisles to visit. Then, if the routing policy is S-shape this
batching method is likely to perform fairly well. However, if the routing policy was
largest gap then there may have been a much better batching candidate, see e.g. De
Koster et al. [66]. We note that batching also has an additional effect on the decision
concerning the routing policy because batching influences the number of picks per
route.

Finally, there is a relation between the layout of the order picking area and the
choice of a routing heuristic. If aisles are very wide a return policy may be preferred
to a S-shape policy, see Goetschalckx and Ratliff [102]. And if the layout is such
that there is only one cross aisle, then the return policy is the only one feasible of
the heuristics mentioned here. The number of cross aisles is an important factor as
well. In a layout with two cross aisles the largest gap heuristic might be better than

S-shape, but by adding one cross aisle, the balance may turn. See Section 2.4 for the
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evaluation of various routing heuristics in a number of different layouts. In short, the
routing heuristic can only be decided upon when keeping the situation in mind.

2.2 Routing in multiple blocks

A graphical sketch of the warehouse layout considered in this section is given in
Figure 1.1. The warehouse is rectangular with no unused space and consists of a
number of parallel pick aisles. The warehouse is divided into a number of blocks, each
of which contains a number of subaisles. A subaisle is that part of a pick aisle that
is within one block. The term aisle is used when a statement holds for both pick
aisles and subaisles. At the front and back of the warehouse and between each pair
of blocks, there is a cross aisle. Cross aisles do not contain storage locations, but can
be used to change aisles. Every block has a front cross aisle and a back cross aisle;
the front cross aisle of one block is the back cross aisle of another block, except for
the first block. The number of cross aisles equals the number of blocks plus one. This
holds because there is one cross aisle in the front, one in the back and one between
each two adjacent blocks.

Order pickers are assumed to be able to traverse the aisles in both directions and
to be able to change direction within the aisles. The aisles are narrow enough to allow
picking from both sides of the aisle without changing position. Each order consists of
a number of items that are usually spread out over a number of subaisles. We assume
that the items of an order can and will be picked in a single route. Aisle changes are
possible in any of the cross aisles. Picked orders have to be deposited at the depot,
where the picker also receives the instructions for the next route. The depot is located
at the head of the first pick aisle in the front cross aisle. Note that the location of the
depot can potentially influence the average travel time. The effect of depot location
for one-block layouts is evaluated in Chapter 4.

In the remainder of this section we describe four different types of routing. Two
heuristics are based on well known heuristics for a layout with two cross aisles: S-
shape and largest gap. Furthermore, the routing policy of Vaughan and Petersen
[288] is described briefly. The fourth routing method, consists of finding a shortest
route.

2.2.1 §S-shape heuristic

Basically, any subaisle containing at least one pick location is traversed through the
entire length. Subaisles where nothing has to be picked are not entered. In the follow-
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ing more elaborate description of the heuristic, letters between brackets correspond
to the letters in the example route depicted in Figure 2.2a.

1. Determine the left-most pick aisle that contains at least one pick location (called
left pick aisle) and determine the block farthest from the depot that contains
at least one pick location (called farthest block).

2. The route starts by going from the depot to the front of the left pick aisle (a).
3. Traverse the left pick aisle up to the front cross aisle of the farthest block (b).

4. Go to the right through the front cross aisle of the farthest block until a subaisle
with a pick is reached (c). If this is the only subaisle in this block with pick
locations then pick all items and return to the front cross aisle of this block. If

there are two or more subaisles with picks in this block, then entirely traverse

the subaisle (d).

5. At this point, the order picker is in the back cross aisle of a block, call this
block the current block. There are two possibilities.

(1) There are picks remaining in the current block (not picked in any previous
step). Determine the distance from the current position to the left-most subaisle
and the right-most subaisle of this block with picks. Go to the closer of these
two (e). Entirely traverse this subaisle (f) and continue with step 6.

(2) There are no items left in the current block that have to be picked. In this
case, continue in the same pick aisle (i.e. the last pick aisle that was visited in
either step 7 or in this step) to get to the next cross aisle and continue with
step 8.

6. If there are items left in the current block that have to be picked, then traverse
the cross aisle towards the next subaisle with a pick location (g) and entirely
traverse that subaisle (h). Repeat this step until there is exactly one subaisle

left with pick locations in the current block.

7. Go to the last subaisle with pick locations of the current block (i). Retrieve the
items from the last subaisle and go to the front cross aisle of the current block
(j)- This step can actually result in two different ways of traveling through the
subaisle (1) entirely traversing the subaisle or (2) enter and leave the subaisle
from the same side.
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8. If the block closest to the depot has not yet been examined, then return to step
5.

9. Finally, return to the depot (k).

2.2.2  Largest gap heuristic

The largest gap heuristic basically follows the perimeter of each block entering sub-
aisles when needed. The heuristic first goes to the farthest block and then proceeds
block by block to the front of the warehouse. A route resulting from this heuristic is
depicted in Figure 2.2b. Letters between brackets correspond to the letters in Figure
2.2b. In this description we say that each subaisle is entered as far as the ’'largest
gap’. By a gap we mean the distance between any two adjacent pick locations within
a subaisle, or between a cross aisle and the nearest pick location. The largest gap is
the largest of all gaps in a subaisle. The largest gap divides the pick locations in a
subaisle into two sets. One set of pick locations is accessed from the back cross aisle;
the other set from the front cross aisle. We note that one or both of the sets may be
empty, making it unnecessary to enter the subaisle from that side.

1. Determine the left-most pick aisle that contains at least one pick location (called
left pick aisle) and determine the block farthest from the depot that contains
at least one pick location (called farthest block).

2. The route starts by going from the depot to the front of the left pick aisle (a).
3. Traverse the left pick aisle up to the front cross aisle of the farthest block (b).

4. Go to the right through the front cross aisle of the farthest block until a subaisle
with a pick is reached (c). If this is the only subaisle in this block with pick
locations then pick all items and return to the front cross aisle of this block. If

there are two or more subaisles with picks in this block, then entirely traverse
the subaisle (d).

5. At this point, the order picker is in the back cross aisle of a block, call this
block the current block. There are two possibilities.

(1) There are picks remaining in the current block (not picked in any previous
step). Determine the subaisle of the current block with pick locations that is
farthest from the current position. Call this subaisle the last subaisle of the
current block. Continue with step 6.
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(2) There are no items left in the current block that have to be picked. Continue
in the same pick aisle (i.e. the last pick aisle that was visited in either step 7,

step 8 or in this step) to get to the next cross aisle and continue with step 9.

6. Follow the shortest path through the back cross aisle starting at the current
position, visiting all subaisles that have to be entered from the back (e) and
ending at the last subaisle of the current block (f). Each subaisle that is passed
has to be entered up to the largest gap. Note that this step may require the
order picker to walk part of the cross aisle both from left to right and from
right to left (see the example of Figure 2.2b)

7. Entirely traverse the last subaisle of the current block to get to the front cross
aisle (g).

8. Start at the last subaisle of the current block and move past all subaisles of the
current block that have picks left. Enter these subaisles up to the largest gap
to pick the items (h).

9. If the block closest to the depot has not yet been examined, then return to step
5.

10. Finally, return to the depot (k).

2.2.3 Aisle-by-aisle heuristic

This heuristic for warehouses with multiple cross aisles was presented in Vaughan
and Petersen [288]. Order picking routes resulting from this heuristic visit every pick
aisle exactly once. That is, first all items in pick aisle 1 are picked, then all items in
pick aisle 2, and so on. Dynamic programming is used to determine the best cross
aisles to go from pick aisle to pick aisle.

The order picking route starts at the depot. For every cross aisle i the distance
is calculated that is needed to start at the depot, pick all items in pick aisle 1 and
exit the pick aisle via cross aisle i. If there are m cross aisles, then this results in m
distances each with a corresponding partial order picking route. Now for each cross
aisle j, we determine cross aisle ¢ such that the distance to start at the depot, pick
all items in pick aisle 1, pick all items in pick aisle 2 and exit pick aisle 2 at cross aisle
j, is shortest if we go from pick aisle 1 to pick aisle 2 via cross aisle i. This gives us
again m distances and partial order picking routes. Continuing in a similar fashion,
we determine for each cross aisle j exiting pick aisle 3 the best cross aisle to go from
pick aisle 2 to pick aisle 3. This process is repeated until all pick aisles have been
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considered. Then the order picker returns to the depot. An example route is given in
Figure 2.2c.

Note that the algorithm originally assumed that the order picker starts at the head
of the left-most pick aisle of the warehouse and ends at the right-most pick aisle of
the warehouse. For reasons of compatibility with the other routing methods, a minor
change in the heuristic was made such that routes start and end at the depot.

2.2.4  Optimal algorithm

The routing of order pickers in a warehouse is a special case of the Traveling Salesman
Problem. A number of locations have to be visited with the objective of traveling as
little as possible. For the Traveling Salesman Problem there is no polynomial-time
algorithm known that can find shortest routes. For warehouses with two cross aisles
however, an efficient routing algorithm is given in Ratliff and Rosenthal [227]. Their
method uses dynamic programming to solve the problem. Extensions of the algorithm
to more cross aisles are non-trivial and the number of equivalence classes and possible
transitions increase rapidly (see Chapter 3 for an algorithm for a layout with three
cross aisles). The shortest order picking routes calculated for this chapter can be
obtained with any enumeration method, such as a branch-and-bound procedure for
the Traveling Salesman Problem (see e.g. Little et al. [179]). In Figure 2.2d an example
route is depicted. The results from optimal routing will be used as a benchmark in

the performance analysis of the heuristics described in this chapter.

2.3 Combined heuristic

For practice, it is generally preferred to have a routing method that generates routes
that have a clear and easy to understand structure. Routes having a clear pattern
reduce the time spent by order pickers on searching for locations and reduce the risk
of pick errors. The combined routing method generates such routes. Every subaisle
that contains items, is visited exactly once. The route starts and ends at the depot.
The order picker goes through the left-most pick aisle that contains items towards
the block farthest from the depot that contains items. The subaisles of the farthest
block are visited sequentially from left to right. Then the order picker goes to the
next block, which is one block closer to the depot. The items in this block are picked.
This process is repeated until all blocks with items have been visited. See Figure
2.6a for an example route. The subaisles are either entirely traversed or the order
picker enters and leaves the subaisle from the same side. These choices are made
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FIGURE 2.2. Example routes for four routing methods in a multiple block layout.
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with a dynamic programming method which will be explained in Section 2.3.2. The
construction of a complete route is discussed in Section 2.3.4.

2.3.1 Definitions of variables and parameters

We define the following variables:

k the number of blocks

n the number of pick aisles
We denote some physical locations in the warehouse as follows:

a;; the back end of subaisle j in block i, for each block 7,7 = 1, ...,k and for each
subaisle 7,5 =1,...,n

b;; the front end of subaisle j in block 4, for each block 4,7 = 1, ...,k and for each
subaisle 7,5 =1,...,n

d the depot

Note that for ¢ = 1,2,...,k — 1 it holds that b;; = a;41,;. This holds because
we assume that the order pickers walk through the middle of the cross aisles. The
distance from the end of a subaisle to the center of a cross aisle is administrated as
if it belongs to the subaisle.

For each block we will use a dynamic programming method. We will first describe
this dynamic programming method for a single block in Section 2.3.2. In Section
2.3.4 we describe how the heuristic creates routes, using the dynamic programming
method for each single block.

2.3.2  Dynamic programming method for one block

This section describes a dynamic programming method to route an order picker
through a single block i (i = 1,..., k). The route starts at the left-most subaisle that
contains items (¢) and ends at the right-most subaisle that contains items (r). We
define L; to be a partial route visiting all pick locations in subaisles £ through j and

we distinguish two equivalence classes of partial routes:

L} which is a partial route that ends at the back of subaisle j
L;’- which is a partial route that ends at the front of subaisle j
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We distinguish two ways to go from subaisle j — 1 to subaisle j, see Figure 2.3:

t, which goes along the back of the block
tpy  which goes along the front of the block

Furthermore, we distinguish four ways to pick all items in subaisle j. These four
transitions are (see Figure 2.3):

t1
to
i3
ta

entirely traverse the subaisle
do not enter this subaisle at all
enter and leave the subaisle from the front of the block

enter and leave the subaisle from the back of the block

Clearly, transition ¢y is only allowed if the subaisle does not contain any items.

With L; +t,, we denote that partial route L; is extended with transition ¢,, (w =
1,2,3,4,a,b). The function ¢(.) gives the travel time associated with its argument,
e.g. c(Lé’- +t1) gives the time needed to walk the partial route Lg’. plus the time needed
to walk transition ¢;. Note that the transitions only contain information on how to
enter and leave the subaisles. The exact path within the subaisle — and therefore the
travel time associated with a transition — is dependent on the item locations within
the subaisle under consideration.

@ @®

i
®

a y LnooL L

FIGURE 2.3. Transitions used by the combined routing heuristic.

Using the potential states, the possible transitions between the states and the costs

(travel time) involved in such transition, we now give the dynamic programming
method. This method will determine a partial route, going through one block. The
construction of the full order picking path, connecting the partial routes for the
individual blocks, will be described in Section 2.3.4.
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Step 1

The block under consideration is block 1.
If block i is the block farthest from the depot, that contains items, then start with
the two partial routes:

Ly which starts at node b;¢, ends at node a;, and consists of transition #;

LZ which starts and ends at node b;; and consists of transition 3
Otherwise, start with two partial routes:

Lj which starts and ends at node a;¢ and consists of transition t4
LZ which starts at node a;¢, ends at node b;; and consists of transition ¢

Step 2

For each consecutive subaisle j (£ < j <) we determine L} and LZJ? as follows.

If subaisle j contains items then:

re _ Loy +ta+ty if e(L9_) +to+ts) < c(L5_) +ty+1t1)
J L?_l +t,+1t; otherwise

[

o Lb 4ty +ts ife(Lh | +ty+ts) < (L | +ta+ 1)
L‘JLI +t, +t1 otherwise

If subaisle j does not contain items then:

LY = L%+,
Lb = b+

Step 3

For the last subaisle of the block (subaisle ), we determine

L=

Lo +ty+ts if e(Lb | +tp+1t3) < (L8 +t,+t1)
{ L¢ , +t,+1; otherwise

The resulting partial route L will be used to form the complete order picking route.
In this step we do not need L? anymore. This is because once all items have been
picked in a block, we need to go to the front of the block to be able to continue to
the next block, see Section 2.3.4.
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2.3.3  FExample of the dynamic programming method

We consider one block with 3 subaisles for which we will apply the dynamic program-
ming algorithm. Figure 2.4a gives the block with pick locations for this example. This
block is assumed to be the block farthest from the depot that contains items. In total
7 items have to be picked from this block. The length of a subaisle is 8 meters (1
meter for each section plus 0.5 meter on both sides to go to the center of the cross
aisle). The distance between two neighboring subaisles is 4 meters. Travel speed is 1
meter per second. Figure 2.4b depicts the situation of Figure 2.4a with nodes for the
pick locations and the heads of the subaisles and with edges for the possible travel
paths. Figure 2.5 visualizes the steps of the dynamic programming algorithm. Note
that in this example £ = 1 and r = 3. All travel times in this example are expressed

in seconds.

(a) (b)

FIGURE 2.4. Example situation for the dynamic programming method.

Step 1 Since the block under consideration (block 7) is assumed to be the block farthest
from the depot, we start with two partial routes L and LY. L¢ starts at node
b;1, ends at node a;; and consists of transition ¢;, with associated travel time
c(t;) = 8. Lt starts and ends at node b;; and consists of transition ¢z, with
associated travel time c(t3) = 14.

Step 2 We have two possibilities for creating L%, namely as L{ + ¢, + t4 (travel time
8+4+4=16) or as L +t, +t; (travel time 14 + 4 + 8 = 26). We choose the
shortest of the two. Thus L§ = L{ + 1, + 4.
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FIGURE 2.5. Visualization of the steps taken by the dynamic programming method.

Similarly, we have two possibilities for creating L}, namely as L%+, +t3 (travel
time 14+4+12 = 30) or as L{ +t, +11 (travel time 8 +4 +8 = 20). We choose
the shortest of the two. Thus Ly = L§ +t, +t;.

Step 3 We have two possibilities to create Lg. Clearly, L + t, + t1 (travel time 16 4+
4+ 8 = 28) is faster than L} +t; +t3 (travel time 20+ 4 + 10 = 34). Therefore,
Ly =L§ +t, + L.

This completes the partial route created by the dynamic programming algorithm.
The creation of a full order picking route, going through multiple blocks, will be
discussed in the next section.

2.3.4 Route construction for multiple blocks

So far, we have described a dynamic programming method for routing in a single
block. In this section we give a description of the combined routing heuristic, which



2.3 Combined heuristic 49

uses this dynamic programming method for the individual blocks. The route starts
and ends at the depot. First, the order picker goes to the block farthest from the
depot that contains items via the left-most pick aisle that contains items. The items
in the left-most pick aisle are picked and next the items in the farthest block are
picked. Then the order picker moves one block towards the depot and picks all items
from that block. This process is repeated until all blocks with items have been visited.

An example route is depicted in Figure 2.6a. Each number in this figure corresponds
to one of the numbers of the steps in the description below. Note that step 6 requires
applying the dynamic programming algorithm from Section 2.3.2. It can easily be seen
that we can use the results from the example in Section 2.3.3 for the farthest block
in the example of Figure 2.6a. The stepwise procedure for the combined heuristic is

given below.

1. Determine the left-most pick aisle that contains at least one pick location (called
left pick aisle) and determine the block farthest from the depot that contains
at least one pick location (called farthest block).

2. The route starts by going from the depot to the front of the left pick aisle.

3. Traverse the left pick aisle up to the front cross aisle of the farthest block (block
iIIliIl)'
4. Set i = imin-

5. Determine whether or not block ¢ contains items that have not been picked in
step 3.

If no items have to be picked in block : traverse the nearest subaisle of block
1 to reach the next block. Continue with step 7.

If items have to be picked in block i: determine the left-most subaisle and the
right-most subaisle that contains items (respectively subaisle ¢ and subaisle ),
excluding any subaisle that was already visited in step 3. Go from the current

position to the nearest of these two (jmin)-

6. Apply the dynamic programming method of Section 2.3.2 to block . If in step
5 jmin = ¢, then add the partial route resulting from the dynamic programming
algorithm to the order picking path. If j,,;, = 7, then reverse the partial route
resulting from the dynamic programming algorithm (the route then starts in
subaisle  and ends in subaisle £). Add this reversed partial route to the order
picking path. Reversing the path means that the order picker will visit the
subaisles from right to left. The calculations were performed from left to right.
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7. When block & (the block closest to the depot) has been evaluated, the order
picker returns to the depot. Otherwise increase i by 1 and return to step 5.
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FIGURE 2.6. Routes resulting from applying the combined and combined ™ routing methods.

2.3.5 Improvements of the combined heuristic

First of all, we consider the routing in the block closest to the depot. The starting
point for routing in this block is determined by the position where the order picker
ends his route through the previous block. This could lead to a route in which aisles
are visited from the left to the right. This implies that the order picker ends his route
somewhere at the right of the front cross aisle. After this, a considerable part of the
front cross aisle has to be traversed before reaching the depot. This can be prevented
by forcing the route to visit aisles from the right to the left in the block closest to
the depot. It can easily be seen that this change in the heuristic will either decrease
travel time or leave the travel time unaltered.

Secondly, we consider the path of the order picker from the depot to the farthest
block. This path goes through the left-most pick aisle with pick locations. However,

one can think of situations where it can be advantageous to deviate from this path.
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In the example of Figure 2.6a, travel time can be decreased by going through the
second pick aisle towards the back of the warehouse instead of through the first pick
aisle. In general terms, we could create routes such that the order picker picks items
from the left = pick aisles on his way to the farthest block and picks items from
the right n — = pick aisles when returning to the front. The dynamic programming
method is applied to the left x subaisles of each block on the way to the back and to
the right n — x subaisles of each block on the way to the front. By optimizing over
x we obtain a route that is guaranteed to be shorter or at most as long as the route
generated by the original combined heuristic.

We adapt the combined heuristic to incorporate both improvements suggested in
this section and call the result the combined™ heuristic. An example route is given
in Figure 2.6b. Note that the two improvements could also be added to the largest
gap and S-shape heuristic. However, the main advantage of these two heuristics is
meant to be their ease of use, which would diminish by such substantial alterations.

Therefore, we do not alter the other heuristics.

2.4 A comparison of heuristics for multiple blocks

This section compares the optimal and heuristic solutions in a practical order picking
system, namely a shelf area. We consider a shelf area where order pickers walk through
the warehouse to pick small items, using a small pick cart. The following assumptions
are made. The average walking speed in both cross aisles and pick aisles is 0.6 meters
per second. The center-to-center distance between two neighboring pick aisles is 2.5
meters and no additional time is needed for aisle changing. Cross aisle width is 2.5
meters. Picking of items can be performed simultaneously from both sides of a pick
aisle since the aisles are fairly narrow. Order pickers are assumed to walk through
the middle of the pick aisles and cross aisles.

For this type of warehouse we assume the following measures to be representative.
Pick aisle length varies between 10 and 30 meters. Each order picker works in a zone
consisting of 7 to 15 pick aisles. Each picking route has to visit between 10 and 30
locations. These values are based on observations of numerous actual manual shelf
warehouse operations. We use the extremes of these values for our simulation experi-
ments, which gives eight different configurations. For each configuration, we generate
a number of random orders. The locations of the items in an order are uniformly and
independently distributed over the order picking area. That is we assume that prod-
ucts are stored randomly in the storage area. No positioning according to demand
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frequencies is used. See for example Caron et al. [38] for issues involving non-random
storage.

For each random order, the route length in a warehouse with two cross aisles
is calculated for the S-shape, largest gap, aisle-by-aisle, combined and combined™
heuristics and for the optimal algorithm. Then, an additional cross aisle is added
and route length for each of the routing methods is calculated. Another cross aisle is
added, route length is calculated, and so on. Averages are taken over the instances
with the same number of cross aisles.

We can distinguish two ways to increase the number of cross aisles. Firstly, we can
fix the number of storage locations. In this approach the length of the warehouse will
increase if cross aisles are added. Secondly, we could fix the size of the warehouse and
add cross aisles by losing storage locations. Since in design the amount of storage
space is usually decided in advance, we choose the first approach. This is consistent
with Vaughan and Petersen [288]. The minimum number of cross aisles is two. Such
a warehouse with two cross aisles has one cross aisle in the front and one cross aisle
in the back. This restriction is needed since all routing methods assume that the
order picker is able to enter and leave the subaisles both from the front and from
the back. Additional cross aisles are inserted such that the center distance between
any two adjacent cross aisles is equal. Other ways of cross aisle distribution may
be interesting especially in situations where a storage method other than random
storage is used. The maximum number of cross aisles is 11 for the experiments. Since
the shortest pick aisles in the experiments are 10 meters, having 11 cross aisles means
that the shortest subaisle encountered in the experiments is 1 meter. One meter can
be considered to be the minimum rack length that is practically feasible in a shelf
warehouse.

For each simulation experiment, the necessary number of replications needs to
be determined such that the estimate for the mean travel time has a relative error
smaller than some 7, for 0 < v < 1. An approximation for the necessary number
of replications, such that the relative error is smaller than v with a probability of
1 — q, is given in Law and Kelton [163]. For all situations considered in this section,
a replication size of 2000 orders has appeared to be sufficient to guarantee a relative
error of at most 1% with a probability of 95%.

Table 2.1 gives the average travel time for each combination of the 8 instances, 10
cross aisle configurations and 6 routing methods. From the table we can see that the
S-shape heuristic never had the best performance of the five heuristics. Largest gap
had the best performance in 5 situations each of which has a layout with two cross

aisles. Aisle-by-aisle had the best performance in 4 situations, of which 3 equal the
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travel time of the combined and combined™ heuristics. The combined™ heuristic gave
the best results in 74 of the 80 instances, of which 3 equal the travel time of the aisle-
by-aisle and combined heuristics. For each of the heuristics the average calculation

time for a single route was less than 0.1 seconds on a 350Mhz computer.

Optimal number of cross aisles
aisles length items| 2 3 4 5 6 7 8 9 10 11
7 10 10 138.7 129.7 131.5 135.7 141.7 148.0 155.5 162.0 169.6 177.4
7 10 30 186.6 191.4 198.6 207.1 216.3 224.9 235.0 243.2 252.8 261.6

15 10 10 219.6 202.0 201.4 205.2 211.4 218.2 226.7 233.8 242.2 251.0
15 10 30 337.5 314.3 311.6 315.7 324.5 333.4 346.1 355.6 368.7 381.4
7 30 10 269.6 222.9 211.1 209.0 211.4 215.8 221.3 227.4 233.9 240.2
7 30 30 398.3 361.1 3429 336.5 333.8 334.2 337.0 340.8 345.0 349.7
15 30 10 377.3 308.0 290.9 287.7 289.3 293.5 299.2 305.4 312.0 318.5
15 30 30 665.5 540.6 495.9 479.8 473.3 472.8 4759 480.7 486.0 491.7

Largest gap number of cross aisles
aisles length items| 2 3 4 5 6 7 8 9 10 11
7 10 10 146.6 156.9 164.6 169.3 176.3 181.9 187.4 194.7 201.9 209.3
7 10 30 208.6 240.9 273.9 303.5 330.3 348.6 363.4 379.6 394.4 408.4

15 10 10 227.3 265.2 287.2 296.2 305.7 312.2 317.1 324.6 331.4 338.4
15 10 30 357.5 413.5 484.5 552.1 614.6 660.1 692.3 724.7 750.1 776.3
30 10 295.1 259.9 250.7 246.3 247.4 250.3 254.5 259.7 264.9 270.6
30 30 451.7 424.7 425.7 435.9 446.9 456.1 464.1 472.2 478.4 488.7
15 30 10 401.0 377.6 379.1 377.2 379.5 382.4 386.6 390.6 395.2 400.6
15 30 30 715.6 646.0 665.4 705.2 746.3 779.9 805.0 826.5 842.8 863.7

SRS

S-shape number of cross aisles
aisles length items| 2 3 4 5 [ 7 8 9 10 11
7 10 10 165.1 145.7 152.6 155.7 161.4 167.7 174.6 181.8 188.6 196.4
7 10 30 203.5 210.3 250.1 253.4 278.3 287.8 301.0 311.9 322.3 3324

15 10 10 266.2 224.6 245.0 252.6 261.2 270.2 278.9 288.3 295.5 304.6
15 10 30 391.3 359.5 431.1 422.8 478.3 491.1 518.4 539.0 557.8 576.0
7 30 10 353.1 276.2 256.5 245.0 242.5 243.4 247.1 251.7 257.1 262.5
7 30 30 452.0 426.8 438.2 420.1 427.7 423.4 427.0 429.7 4329 437.1
15 30 10 517.6 376.9 361.0 349.4 347.6 350.1 354.7 360.4 366.4 372.7
15 30 30 833.3 686.0 688.2 636.4 663.4 653.6 666.5 675.2 684.4 695.1
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Aisle-by-aisle number of cross aisles
aisles length items| 2 3 4 5 6 7 8 9 10 11
7 10 10 148.5 144.3 153.7 164.6 177.5 189.9 205.4 216.4 230.3 245.6
7 10 30 192.1 207.2 227.0 246.7 268.5 289.5 315.7 333.6 357.6 383.8

15 10 10 235.2 220.7 229.4 241.0 255.1 268.9 286.3 298.4 313.6 330.9
15 10 30 356.7 349.3 369.1 392.5 421.3 449.8 486.3 509.8 542.1 578.6
7 30 10 304.7 268.0 268.4 276.5 287.5 299.6 313.0 325.7 339.0 351.8
7 30 30 418.8 413.9 422.8 438.5 457.2 477.7 500.4 522.5 544.1 565.8
15 30 10 427.2 362.0 358.6 366.8 378.3 391.7 406.6 420.6 435.3 449.7
15 30 30 732.7 648.8 642.8 658.6 682.0 709.1 739.7 769.4 798.9 828.9

Combined number of cross aisles
aisles length items| 2 3 4 5 6 7 8 9 10 11
7 10 10 148.5 134.6 1454 151.2 158.2 165.5 172.9 180.4 187.5 195.6
7 10 30 192.1 196.5 236.1 240.4 267.0 277.7 292.2 304.2 3154 326.3

15 10 10 235.2 208.6 235.3 246.7 257.1 267.2 276.6 286.6 294.1 303.6
15 10 30 356.7 324.6 402.5 399.5 459.0 474.8 504.2 526.8 547.1 566.7
7 30 10 304.7 243.4 235.1 231.2 232.5 236.1 241.5 247.4 253.5 259.7
7 30 30 418.8 386.2 397.4 382.2 394.9 394.7 401.7 407.5 413.8 420.7
15 30 10 427.2 330.1 332.5 331.8 334.8 340.8 347.6 355.0 362.0 369.2
15 30 30 732.7 584.6 605.6 569.7 609.2 608.6 628.2 642.5 656.5 671.3

Combined ™ number of cross aisles
aisles length items| 2 3 4 5 6 7 8 9 10 11
7 10 10 148.5 133.2 136.2 140.2 146.0 152.1 159.4 165.9 173.3 180.8
7 10 30 192.1 196.0 224.7 232.0 244.2 253.2 260.7 268.9 276.6 283.9

15 10 10 235.2 207.0 214.5 220.8 227.6 234.3 242.0 249.3 257.0 264.7
15 10 30 356.7 323.6 373.3 379.6 401.4 415.3 425.5 437.2 447.6 457.2
30 10 304.7 2354 219.3 214.9 216.2 219.8 225.2 230.8 237.2 243.4
30 30 418.8 381.7 379.3 365.8 362.7 360.6 361.6 363.6 366.6 370.6
15 30 10 427.2 323.1 305.3 300.5 301.0 304.3 310.1 315.7 322.0 328.5
15 30 30 732.7 577.6 567.6 539.8 538.5 536.7 537.8 541.6 545.2 550.7

TABLE 2.1. Average travel time for six routing methods.

If we compare the combined and the S-shape heuristic on theoretical grounds,
we can state that for each individual order combined gives a route that is equal to
or shorter than the S-shape route. This is because S-shape entirely traverses every
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subaisle containing items, whereas the combined heuristic chooses between entirely
traversing the subaisle or returning to the same side of the subaisle, depending on
which gives the shortest travel time. Thus, the combined heuristic is capable of gen-
erating routes that are exactly the same as those of S-shape, however — if possible — it
will give shorter order picking routes by returning within subaisles. The difference in
performance between S-shape and combined depends on the situation under consid-
eration. For the situations analyzed in this section it holds that average travel time
for S-shape is at least 7% higher than for combined in warehouses with three cross
aisles. The difference between S-shape and combined tends to zero when increasing
the number of cross aisles. The percentage difference between combined and S-shape
is smaller if the pick density is high, i.e. 30 items instead of 10 items. This is due
to the fact that optimal routes generally tend to entirely traverse more aisles if pick
density is higher. Therefore, S-shape routes are closer to optimal and the room for
improvement is smaller for the combined heuristic.

A second interesting property of the heuristics is the fact that routes of the aisle-by-
aisle, combined and combined ™ heuristics are identical for warehouses with two cross
aisles. This is due to the fact that the heuristics use the same system of dynamic pro-
gramming. Aisle-by-aisle creates routes through all blocks and uses one equivalence
class for each cross aisle. Combined and combinedt apply dynamic programming to
each block individually and use two equivalence classes, for each cross aisle one. If
the warehouse has two cross aisles, i.e. consists of one block, then both heuristics use
the same two equivalence classes and consequently give the same routes.

Now let us look at the effect of the improvements for the combined heuristic sug-
gested in Section 2.3.5. Combined and combined™ are the same for warehouses with
two cross aisles, because the changes only apply to blocks between the depot and the
farthest block. For situations with three cross aisles, the difference between combined
and combined™ is minor. The improvements are however substantial for situations
with more than three cross aisles. Average travel time of combined was in these cases
up to 24.6% over that of combined™.

In the situations with three or more cross aisles, combined™ had the best perfor-
mance of the heuristics for all situations except one. For pick lists of 10 items and
with three or more cross aisles, the difference between combined™ and optimal is less
than 7.5%. For the situations considered in this section, the size of the gap between
combined™ and the optimal algorithm varies between 1% and 25%, see Table 2.2. The
largest differences occurred for pick lists of 30 items. The situations with 7 pick aisles

gave a smaller difference between optimal and combined™ than the situations with



56 2. Heuristic routing of order pickers

15 pick aisles. Generally, we can say that the gap between optimal and combined™
tends to be larger if the situation is more complex, i.e. more aisles and /or more items.

Combined™ number of cross aisles

aisles length items| 2 3 4 5 6 7 8 9 10 11

7 10 10 7.1 2.7 3.6 3.3 3.0 2.8 2.5 2.4 2.2 2.0
7 10 30 2.9 2.4 13.2 120 129 126 109 106 9.4 8.5
15 10 10 7.1 2.5 6.5 7.6 7.7 7.4 6.8 6.6 6.1 5.5
15 10 30 5.7 2.9 19.8 20.2 23.7 246 229 229 214 199
7 30 10 13.0 5.6 3.9 2.8 2.2 1.9 1.8 1.5 14 1.4
7 30 30 5.2 5.7 10.6 8.7 8.6 7.9 7.3 6.7 6.3 6.0
15 30 10 132 49 4.9 4.5 4.1 3.7 3.6 3.4 3.2 3.2
15 30 30 10.1 6.8 145 12,5 13.8 13.5 13.0 127 122 12.0

TABLE 2.2. Percentage difference in average travel time between the combinedt and the

optimal routing method.

The observed gap between the best heuristic and the optimal algorithm gives rise
to two different approaches for further research: develop better heuristics or use an
optimal algorithm for routing order pickers. Both approaches have their advantages
and disadvantages. The heuristics are fairly simple in structure and therefore easy to
implement in a practical situation. For situations with a large number of cross aisles,
it may be worthwhile analyzing the performance of standard routing heuristics for the
traveling salesman problem. On the other hand, optimal routing gives significantly
shorter routes. However, the logic may be unclear to the order picker which may
cause him to accidentally walk the wrong way or to override the system and walk
the way he thinks is best. Furthermore, in this chapter we used a non-polynomial-
time algorithm to calculate the shortest routes. Such a method has unpredictable
computation times, which is an undesirable property for practical implementations.

From Table 2.1, we can also see the effect of adding cross aisles to the layout. In
general we can say that travel time decreases if we change the layout from two to three
cross aisles. Two exceptions occur: firstly, with largest gap for warehouses with short
pick aisles; and, secondly, for a small warehouse with many picks. Both exceptions
seem intuitively clear. For the first exception we consider that if a warehouse has
short pick aisles then the distance travelled in the cross aisles accounts for a relatively
large amount of the travel time. This is even more the case when using largest gap in
warehouses with three or more cross aisles, since routes resulting from this heuristic
often traverse cross aisles (except those at the back and front) twice. Consequently, a
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large increase in travel time occurs if a third cross aisle is added to the layout. For the
second exception we consider a warehouse with a few short pick aisles and many pick
locations. The main advantage of adding cross aisles is that more possibilities arise to
route the order picker. However, if the order picker has to visit many locations, then
entirely traversing pick aisles is close to optimal. Any extra cross aisle only increases
the warehouse size and therefore travel times.

More cross aisles may or may not improve the average time needed to pick an
order. For most situations it holds that adding cross aisles decreases average travel
time up to a certain point after which average travel time starts increasing again.
The optimal number of cross aisles with respect to travel time seems to depend on
the number of pick aisles, the aisle length and the number of items. Aisle length
especially seems to be important in the sense that longer aisles most often require
more cross aisles. It is important to be aware of the fact that for warehouse design
more cross aisles implies higher space requirements. Therefore, the cost reductions

from adding cross aisles have to be weighed against increased costs for the building.

2.5 Case study: De Bijenkorf

In many distribution centers there is a constant pressure to reduce the order through-
put times. One such distribution center is the DC of De Bijenkorf, a retail organization
in The Netherlands with 7 subsidiaries and a product assortment of about 300,000
SKUs (stock keeping units). The orders for the subsidiaries are picked manually in
this warehouse, which is very labor intensive. Furthermore, many shipments have to
be finished at about the same time, which leads to peak loads in the picking process.
The picking process is therefore a costly operation.

In a study we have investigated the possibilities of picking the orders more ef-
ficiently, without altering the storage or material handling equipment used or the
storage policies, see De Koster et al. [63]. It appeared to be possible to obtain a
reduction between 17 and 34% in walking time, by simply routing the pickers more
efficiently. The amount of walking time reduction depends on the routing algorithm
used. The largest saving is obtained by using the optimal routing algorithm described
in Chapter 3. The main reason for this substantial reduction in walking time is the
change from one-sided picking to two-sided picking in the narrow aisles.
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2.5.1 Situation description

The area of the warehouse we have studied is the bin storage area. In this area,
the products are stored in plastic bins. They are also picked in the same type of
bins. In this area the picking is the most labor intensive. The bins are stored on two
different floors in shelf racks. Both floors consist of 12 blocks each having 11 aisles
of 18.57 meters long with a center-to-center distance between aisles of 2.115 meters.
The aisle width available to the order pickers is 0.9 meter. Cross aisles are 2.6 meters
wide. Every rack has 42 sections, each offering space for 8 plastic bins. Two adjacent
blocks form a so-called preferred zone. Every article stored in the bin storage area is
assigned to one preferred zone, depending on the cash register from which it is sold in
the department stores. Therefore, products sold at a single cash register are grouped
together in one preferred storage zone, a form of family grouping.

Within the area, storage is arranged as follows. If a bin has to be stored, the
information system indicates the preferred storage zone where this should occur.
Within this zone, the warehouse employee may store the bin at any free location.
This results in a closest open location storage rule, see Section 1.4.1.

A pick order is picked by one order picker in one preferred zone, although exceptions
occur. Each order picker usually picks one order at a time. The picked items are put
in plastic bins on a small pick cart. The sequence in which the order lines (SKUs)
have to be picked is indicated on the pick list. This sequence is created by simply
sorting the pick locations in increasing order.

An important change at the De Bijenkorf was that the sales area in the stores was
enlarged. In this way a larger number of SKUs could be displayed in the stores, rather
than stored in a stock room in the store. This was done in order to increase sales and
resulted in a decrease of the stock per SKU at the stores. This has put more pressure
on the warehouse. All stores are now supplied daily, instead of once every two weeks.
In the bin storage area, this has lead to many small orders instead of few and very
large orders. The total walking distance needed to collect all orders has increased
significantly. The study in Van Voorden [287] found that an order picker in the bin
storage area walks on average 7 km on a daily basis to collect the items.

The research project at De Bijenkorf focused on a reduction of these walking dis-
tances. We have focused on routing and batching policies within a preferred zone.
The approach that was chosen consists of an order analysis of orders in two repre-
sentative preferred zones, a simulation of the current situation and of alternatives, a
comparison of results, recommendations and implementation.

Over two consecutive weeks all orders in the two preferred zones were recorded.
Some data of these orders is listed in Table 2.3. Full frequency distributions were
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obtained for the order sizes. From the collected data it was also possible to find a pick
frequency distribution for each storage location. This was used later in a simulation
program to generate random pick locations. The storage location distribution is quite
skewed, due to closest open location storage rule. More information on the data
analysis can be found in De Koster et al. [63].

Preferred zone 1  Preferred zone 2

Average orders per day 47 29

Average lines per order 16.9 31.2

TABLE 2.3. Some data collected for two preferred storage zones.

2.5.2  Clrrent routing method

From the analysis of the pick routes it appeared that the large distances that are
traveled in the picking process can be attributed mainly to the single-sided order
picking. It is a known fact that double-sided order picking greatly outperforms single-
sided order picking unless the number of pick locations per aisle is very large or the
aisles are very wide, see Goetschalckx and Ratliff [102]. The single-sided picking is
a result from the fact that pick lists are generated by printing location numbers in
increasing order. The location numbering is indicated in an aisle in Figure 2.7. The
figure is a simplification of the real situation since less aisles and only 56 (instead of
the actual 168) locations per aisle have been drawn.

The pickers, in fact, use two different traveling strategies. Some pickers work from
the middle cross aisle: they leave their pick cart in the middle aisle when entering
an aisle. Other pickers always take their pick cart with them and then consequently
travel the full aisle when they have to switch to a neighboring aisle. However, all
pickers pick strictly in the sequence indicated on the pick list. After simulation, it
appeared that the second routing method is slightly better on average than the first
one. For the comparison, only this best one was used.

In Figure 2.7 an example is given of this last type of pick routes, in which 16
locations have to be visited. In the upper storage block, the picker enters the aisle
from the middle aisle and returns to the middle aisle after the furthest pick in the
aisle. In the lower storage block, the picker traverses the full aisle, starting from
the middle aisle, if the next pick location is also in the lower storage block and the

traveling direction matches with the location numbering sequence.
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FIGURE 2.7. Orderpicking route in the current method with full aisle traversal (lower block)
and return (upper block).

2.5.3  Simulation results

In our search to decrease the travel times, we could try to improve the location
numbering, see e.g. Bartholdi and Platzman [20]. We will, however, look into the
possibilities of improving the routing method. For each of the two preferred storage
zones, 10,000 orders have been randomly generated. The travel times needed to pick
these orders were calculated with different routing policies, including the current one.
The number of order lines of an order and the pick location of each of the articles are
drawn from the corresponding probability distributions based on the order analysis.
In total, 3 different heuristic routing methods and an optimal algorithm have been
compared with the current routing method. The heuristic routing methods are S-
shape, largest gap (see Section 2.2) and the combined heuristic (see Section 2.3). The
optimal algorithm (see Chapter 3) is based on dynamic programming. The results
can be found in Table 2.4.
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. Total

Average daily .

. average daily
travel distance . .

(in meters) pick time

(in hours)
current 151,352 153.5
S-shape 125,738 145.6
largest gap 116,979 142.9
combined 106,193 139.6
optimal 99,349 137.5

TABLE 2.4. Comparison of three heuristics and the optimal routing method with the current

routing method.

The results in Table 2.4 have been obtained by extrapolation of the simulation
results of 2 preferred storage zones to all 12 preferred storage zones in the bin storage
area. It appears that even a simple heuristic such as S-shape or largest gap yields a
significant reduction in travel distance, namely 16.9% and 22.7%, respectively. This
magnitude of the reduction is mainly due to the change to double-sided picking. If
the smarter combined heuristic or an optimal algorithm is used, improvements of
29.8% or 34.4% are obtainable.

Even though the reduction in walking distance is significant, the improvement of
the total pick time (which also includes picking of items and remaining activities, see
Section 1.4.2) is far less. This is due to the fact that a large part of the non-travel
time is spent on removing bins from the racks, waiting for a non-occupied computer
terminal to confirm the picks and other administrative tasks. It is clear that further
improvements are possible here. The result is that the savings in total pick time
vary from 5.2% for S-shape upto 10.5% for the optimal algorithm. Assuming that a
productive man-day is on average 7 hours, there would be a reduction of 1.1 to 2.3
pickers.

From the simulation results it appeared that the combined heuristic has a very
good performance, but that the routing is much less complicated than that of the
optimal algorithm. Therefore, the management of De Bijenkorf decided to implement
the combined heuristic for routing the order pickers. Besides the routing policies some
batching policies have also been evaluated for De Bijenkorf. If orders are batched,
with a time-savings method and the combined routing heuristic, savings of about
68% in travel distance can be reached. This is equivalent to a saving of 3 to 4 pickers.
The interested reader is referred to Van Voorden [287] or De Koster et al. [63].
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2.6 Concluding remarks

Performances of heuristics in warehouses with two cross aisles have been studied
extensively in literature. In this chapter, we have introduced several methods for
routing order pickers in a warehouse with multiple cross aisles. Two methods, the S-
shape and largest gap heuristics, are straightforward extensions of existing methods
for warehouses with two cross aisles. The aisle-by-aisle heuristic was introduced in
Vaughan and Petersen [288]. The combined and combined™ heuristics are introduced
in this chapter.

In a comparison of the heuristics, the combined® heuristic had the best perfor-
mance of the heuristics for the majority of the situations, 74 of 80, we evaluated in
Section 2.4. Largest gap was found to be useful in situations with two cross aisles
and low pick densities, which is consistent with Hall [115].

The performance of the heuristics was also compared to the results of a non-
polynomial-time algorithm that generates shortest order picking routes. It has to
be noted that the gap between this optimal routing method and the best heuristic
varies substantially. Implementation of the optimal procedure in practical situations
may however give rise to problems such as unpredictable computation times. It could
therefore be desirable to improve heuristic performance or find more efficient methods
to calculate shortest routes.

From the case study in Section 2.5 we found that the heuristics can be very useful
in practical situations. Estimated travel distance could be reduced by 30.6% when
changing from their current routing method to the combined heuristic. The man-
agement of the distribution center has therefore decided to implement the combined
heuristic.

In Section 2.4 we considered only situations where products are stored randomly.
Other storage assignment rules may cause a different ranking among the heuristics.
Furthermore, the positioning of the cross aisles may be an interesting aspect to con-
sider when using non-random storage, since there will be much activity in the area
with the frequently requested products. Batching policies have not yet been studied
in a layout with multiple cross aisles.

Generally, average travel times decrease when changing the layout from two to
three cross aisles. Two exceptions are in the situation of a small warehouse with
many picks for all routing methods and in the situations with short pick aisles for
largest gap. More cross aisles may or may not decrease travel times, depending on
the routing method and the situation under consideration. Further layout issues will
be discussed in Chapters 4 and 5.
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Optimal routing of order pickers: Two
blocks

In Chapter 2 we have calculated shortest order picking routes using enumeration.
However, calculation times for such a procedure are unpredictable. We also evaluated
a number of routing heuristics in Chapter 2. The combined™ heuristic was found to
give fairly good routes in situations with two or more blocks. However, we have also
seen that the difference in average travel time between the combined ™ heuristic and
optimal routing can be as large as 25%. It might therefore be desirable to have either
better heuristics or an algorithm that can efficiently calculate shortest order picking
routes.

Ratliff and Rosenthal [227] created an algorithm based on dynamic programming
that is capable of determining shortest routes in warehouses consisting of one block
and with a central depot. The algorithm has a running time linear in the number of
aisles and the number of pick locations. De Koster and Van der Poort [64] created an
algorithm for routing in a warehouse of one block with decentralized depositing. Both
algorithms are not capable of determining routes in warehouses with more than one
block. In this chapter we give an algorithm that is capable of determining shortest
order picking routes in warehouses consisting of two blocks with a central depot. If
desired, the algorithm can also be used for warehouses of one block. Future extensions
to more blocks would be interesting, since we have shown in Chapter 2 that travel

time savings are sometimes possible by increasing the number of blocks up to six.
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The question that rises when developing an algorithm for a layout with two instead
of one block, is whether such an algorithm can be useful in practice. From Chapter 2
we can already derive some information. It was found that if the layout was changed
from one to two blocks then average travel time decreased for nearly all routing
heuristics and situations evaluated. In this chapter we give a more comprehensive
testing of the implications for average travel time when changing the number of
blocks from one to two. We optimize the layout of a warehouse under the condition
that it consists of one block and we optimize the layout of this warehouse under
the condition that it consists of two blocks. Then we compare the average travel
times of these two situations. We do this for pick lists varying in size from 1 to
50 items. It appears that average travel time is often lower in warehouses with two
blocks. However, this is dependent on the size of the pick list. Large pick lists in
small warehouses are best picked in a one-block layout. Large warehouses profit from
a second block, regardless of pick list size.

In Section 3.1 we model the warehouse and order picking locations using graph
theory. A dynamic programming formulation is given in Section 3.2 in order to solve
the problem of finding a shortest order picking route in warehouses of two blocks. In
Section 3.3 we compare average route length in one-block warehouses to the average
route length in two-block warehouses. Section 3.4 contains concluding remarks.

3.1 The warehouse

A warehouse consists of a number of parallel aisles. The items are stored on both
sides of the aisles. Order pickers are assumed to be able to traverse the aisles in both
directions and to change direction within the aisles. Each order consists of a number
of items that are usually spread out over a number of aisles. We assume that the
items of an order can be picked in a single tour. Aisle changes are possible at the
front end, the rear end and in the middle of the aisles. That is, the warehouse consists
of two blocks. Picked orders have to be deposited at the depot, where the picker also
receives the instructions for the next tour (i.e. route).

In order to determine an order picking tour of minimum length, the travel time
between each pair of adjacent item locations in the warehouse needs to be specified.
In the specification of the travel time we can take into account the time for entering
an aisle and the time for accelerating and decelerating while driving from one location
to another. We will focus only on minimizing the travel time. Other order picking
activities, like positioning the truck or crane at the pick location, picking items from
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the pick location and putting them onto a product carrier, have to be performed
anyway. Therefore, they do not impact the choice of an order picking tour.

We consider a warehouse with n aisles where we can change aisles at the front, the
rear and the middle of each aisle. Stated differently, we have a parallel aisle warehouse
consisting of two blocks of each n aisles. See Figure 3.1(a) for an example layout. In
this warehouse we have to pick an order of m items. Of these m items there are m,
items located in block X and m, items in block Y (m, + my, = m).

Block X

Middle

Block Y

CATTTT T TTTTT] (T T T T T T T TTT]

[N BN EEEEE NN ]

[Depot] Front
Aisle]l Aisle2 Aisle3 Aisle4 AisleS Aisle 6

(@)

FIGURE 3.1. Part (a) gives an example layout of a warehouse consisting of two blocks.
Each solid square corresponds to a location, where items have to be picked. Part (b) gives
a graph representation of this warehouse with the pick locations.

The warehouse with order picking locations can be modeled as a graph G with

vertices:
Vg, (1 =1,...,my) corresponding to the pick locations in block X,
vy (i =1,...,m,) corresponding to the pick locations in block Y,

a; (i =1,...,N) corresponding to the rear end of aisle i,
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b; (i=1,...,N) corresponding to the middle of aisle i,
¢i (i=1,...,N) corresponding to the front end of aisle 1,

vy,0 corresponding to the depot.

Any two vertices that correspond to adjacent locations in the warehouse are con-
nected by two parallel edges. No more than two parallel edges are needed, since a
shortest tour contains no more than two edges between any pair of vertices (see Ap-
pendix A, Corollary 1.1). The length of the edges indicates the travel times in the
warehouse. See Figure 3.1(b) for a graph representation of Figure 3.1(a).

Any order picking tour will be considered as being a special kind of subgraph of
the warehouse graph, and is called a tour subgraph. That is, any subgraph T of the
warehouse graph G is called a tour subgraph if its edges form a cycle that includes
the depot and each of the pick locations at least once (see Appendix A, Theorem 1
for a more exact description). The length of a subgraph is defined as the sum of the
length of the edges in this subgraph. In Ratliff and Rosenthal [227] an algorithm is
given that constructs an order picking tour from a given tour subgraph. The problem
of finding a shortest order picking tour can therefore be solved by finding a tour
subgraph of minimum length.

3.2 Finding a shortest tour subgraph

Let L} be the subgraph of the warehouse graph, consisting of vertices a;, b; and
c; together with all edges and vertices to the left of aj;, b; and ¢;. Let Y; be the
subgraph of the warehouse graph consisting of vertices b; and c¢; together with all
edges and vertices between b; and c¢; and define Ljy = L; UYj. Similarly, let X; be
the subgraph of the warehouse graph consisting of vertices a; and b; together with
all edges and vertices between a; and b; and define Lj": = L;‘y UX;. We use L; to
indicate that a result holds if we let L; = L7, L; = Ljy or L; = Lj’”

For any subgraph L; C G, asubgraph T; C Lj; is called a L; partial tour subgraph. if
another subgraph of G (called completion) exists consisting of edges and vertices not
contained in L;, such that the union of these two subgraphs forms a tour subgraph
(see also Appendix A, Theorem 2). Two L, partial tour subgraphs are equivalent if
any completion of one partial tour subgraph is a completion for the other (see also
Appendix A, Theorem 3).

The algorithm uses the concept of dynamic programming to construct a minimum
tour subgraph. We start with all Lfy partial tour subgraphs consisting only of vertices
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and edges between b; and c;. In the next step, we extend the Lfy partial tour
subgraphs by adding vertices and edges between a; and b; to obtain L]” partial
tour subgraphs. Next, L, partial tour subgraphs are determined by extending L™
partial tour subgraphs with edges between aisle 1 and aisle 2. From L, partial tour
subgraphs we can obtain L;ry partial tour subgraphs. Continuing in this way, we
finally get the L}* partial tour subgraphs, which are precisely the tour subgraphs.

To describe the algorithm within the concept of dynamic programming, we define
the potential states, the possible transitions between states, and the costs (tour
lengths) involved in such a transition.

3.2.1 States for the dynamic programming model

The classes of equivalent L; partial tour subgraphs can be characterized by the
five features (see Appendix A, Theorem 2): degree parity of a;, degree parity of b;,
degree parity of c;, connectivity, and distribution of a;, b; and c¢; over the various
components.

Degree parity describes whether the number of edges incident with the vertex is
odd, even or zero. The term connectivity gives the number of connected components
of the partial tour subgraph. The distribution of aj, b; and c; over the various
components indicates which of a;, b; and ¢; are contained in the same component.

We denote the five features in a quintuplet. The degree parity is given by u (odd, u
for 'uneven’), e (even) or 0 (zero). The connectivity, giving the number of components,
is an integer between 0 and 3. For ease of notation we suppress the distribution of
a;, b; and c; over the various components if there is only one possibility, given the
other four features. In fact, we only need to give the distribution of a;, b; and ¢; over
the various components for the case of 2 components each having even degree parity
(see Appendix A, Theorem 3). Therefore, the fifth feature only needs the following
possibilities: a-bc, b-ac, c-ab. For example, with a-bc we denote that a; is in one
component and b; and c¢; are in the other.

As an example we consider the equivalence class (u,e,u,2). This class has odd
degree parity in a; and c;, even degree parity in b; and consists of two components
(the fifth feature is not given, since the only valid possibility is a; and ¢; in one
component and b; in the other. Any other possibility would violate condition (b) of
Theorem 2 in Appendix A, because if a; has odd degree parity, then at least one
other vertex in the same component must have odd degree parity as well. Theorem
2(b) in Appendix A implies that this other vertex must be either b; or ¢;. Only ¢;
has odd degree parity and must therefore be in the same component as a;).
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Using theorems and corollaries from Appendix A, it can be proven that the only
25 equivalence classes are:

(0,0,0,0), (0,0,0,1), (e,e,e, 1), (e,e,e,3),

(e,0,0,1), (0,e,0,1), (0,0,e,1), (e,e,0,1), (e,0,e,1), (0,e,e,1),
(u,u,0,1), (u,0,u,1), (0,u,u,1), (e,u,u,l), (u,e,u,1), (u,u,e, 1),
(e,e,0,2), (e,0,¢e,2), (0,e,¢,2), (e,u,u,2), (u,e,u,2), (u,u,e,2),
(

e e,e,2,a-be), (e, e e 2, b-ac), (e, e, e, 2, c-ab).

We note that (0,0, 0, 0) is only possible if none of the aisles in L, contains an item
to be picked and (0,0,0,1) is only possible if none of the aisles in G — L; contain
an item to be picked (G — L; denotes the subgraph that remains after all edges and
vertices in L; have been deleted from G).

Using Theorem 1 from Appendix A, it can be derived that after calculating the
L} partial tour subgraphs, the minimum length tour subgraph is the shortest of the

following partial tour subgraphs:

(0,0,0,1), (€,0,0,1), (0,¢,0,1), (0,0,e,1),
(e,e,0,1), (e,0,e,1), (0,e,e,1), (e,e,e,1).

3.2.2  Transitions for the dynamic programming model

The transitions between states consist of adding vertices and edges. We distinguish
three different transitions. In the first type of transition, from L} to Lj“’, vertices
and edges between b; and c; are added. In the second type, from L;y to Lj'-”” vertices
and edges between a; and b; are added. In the last type, from Lj'm to L7, the
connection between aisle j and aisle 7 + 1 is made.

Transition from L} to L;‘y

We consider any aisle 7. We know that we never need more than two edges between
any pair of vertices (see Appendix A, Corollary 1.1). Therefore, the edges between
b; and c¢; can be configured as one of the possibilities in Figure 3.2. The equivalence

classes that we obtain by this transition are given in Table 1 of Appendix B.

Transition from L;Ly to Ljf“”

This transition is very similar to the transition from L; to Ljry Again we can
distinguish six ways to traverse the edges in aisle j between a; and b;. The equivalence
classes that we obtain by this transition are given in Table 2 of Appendix B.
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4) ) (6)

FIGURE 3.2. Six ways to traverse the edges in aisle j between b; and ¢;. In transition (5)
only the longest double edge is not traversed. Transitions (3) and (4) are only possible if
there is at least one item in this part of the aisle. Transition (5) is only possible if there are
two or more items in this part of the aisle and transition (6) is only allowed if this part of

the aisle is empty.

. +-T —
Transition from L;* to L,

This transition makes the connection between aisle j and aisle j + 1 by adding
configurations given in Figure 3.3. The equivalence classes that we obtain by this
transition are given in Table 3 of Appendix B.

3.2.3 Costs for the dynamic programming model

The third and last piece of information we need to be able to apply dynamic program-
ming to the problem of routing order pickers in a warehouse, is the cost involved in
each transition. The cost of each transition is simply equal to the sum of the lengths
of the edges added in the transition.

3.2.4  Applicability of the algorithm

The algorithm is applicable to a wide variety of warehouses. Clearly, the middle aisle
does not have to be exactly in the middle, but can be placed anywhere between
the front and the rear of the warehouse. Furthermore, the algorithm can be used
in warehouses with only one or two possibilities for aisle changing, by setting the
appropriate distances between the aisles to infinity. In this way, the algorithm can
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FIGURE 3.3. 14 possible arc configurations to change from aisle j to aisle j + 1.

also be used to find order picking tours in warehouses with a one-block layout. In
spite of its apparent complexity, the algorithm solves any practical sized problem
within fractions of a second.

The algorithm considers all aisles and items, and for each aisle and item a constant
number of operations has to be done. Hence, the time-complexity function of the
algorithm is linear in the number of aisles and the number of items.

3.3 Performance comparison

In this section a performance comparison is made between warehouses with a middle
aisle and warehouses without a middle aisle. In order to compare the two types of
warehouse layouts, we use simulation to determine the average travel time needed to
pick an order, when using the optimal routing algorithm we developed in Section 3.2.
However, average travel time is not only influenced by the presence or absence of a
middle aisle, but also by factors like warehouse type, warehouse size, number of aisles,
location of the depot, order picking equipment, pick list size, storage assignment rules,
and the location of the middle aisle (if present).
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For our comparisons, we consider a very common type of warehouse, namely a shelf
area. Order pickers walk through this warehouse to pick items, using a small pick cart.
Before starting a tour, order pickers collect a pick list at the depot, which we assume
to be located at the head of the left-most aisle. Other positions of the depot are
possible, see Chapter 4 for an analysis of the depot location when using the S-shape
heuristic. The average walking speed in this type of warehouses is usually around
0.6 meters per second. The distance between two neighboring aisles is 2.5 meters.
Products are assumed to be assigned randomly to storage locations according to a
uniform distribution. Average travel time is determined by taking the average of the
travel times of 10,000 simulated orders.

If we consider this warehouse type, then three important factors influencing travel
time remain, namely (1) warehouse size, (2) warehouse layout and (3) pick list size.
Warehouse layout covers (a) the presence or absence of a middle aisle, (b) the number
of aisles and (c) the location of the middle aisle. Aisle length is determined as the
ratio of warehouse size and the number of aisles. For this analysis we assume that a
middle aisle will always be located in the exact middle of the picking aisles. One may
consider a middle aisle that is closer to the rear of the warehouse than to the front.
This might actually be better than a location in the exact middle for example in a
situation with two aisles and many items to pick. In this case a 'good’ route visits all
pick locations in the first aisle, goes to the second aisle through the nearest cross aisle
and then visits all pick locations in the second aisle. A good location for the middle
aisle would then be around the expected location of the pick that is closest to the
rear of the warehouse. However, in most situations with a moderate number of items
and aisles, the exact middle will be close to optimal due to the uniform distribution
of the items. Besides, for practical reasons of flexibility it may be undesirable to
locate the middle aisle anywhere else than in the exact middle. If at some point the
depot location is changed from front to back then the initial advantage of an eccentric
middle aisle may turn into a disadvantage.

In this section, we will evaluate two warehouse sizes, namely a warehouse with a
total aisle length of 70 meters and one with a total aisle length of 450 meters. The
size of a shelf area served by one order picker is in practice generally between these
two extremes. Now, we can determine the optimal layout (i.e. the number of aisles)
for the warehouse with a middle aisle and for the warehouse without a middle aisle
for each pick list size. Then we compare average travel time in a warehouse of optimal
layout with a middle aisle to average travel time in a warehouse of optimal layout

without a middle aisle.
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Firstly, we determine average travel time for pick lists of 30 items. The number of
aisles is varied from 1 to 50. Total aisle length is kept constant at 450 meters. Thus,
we consider warehouses with the following layouts: 1 aisle of 450 meters, 2 aisles of
225 meters, ..., 50 aisles of 9 meters. In each of the 10,000 replications per warehouse
layout, a random order is generated for the warehouse without middle aisle and the
travel time is calculated. Thereafter, a middle aisle is inserted in the layout and the

travel time is again calculated for the same order.
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FIGURE 3.4. Average travel time for an order of 30 items as a function of the number
of aisles for a warehouse with 450 meters of aisles, with a middle aisle (dashed line) and

without a middle aisle (solid line).

Figure 3.4 depicts the average travel time as a function of the number of aisles.
One curve gives the results for a warehouse without a middle aisle, the other curve
for a warehouse with a middle aisle. The curve for the warehouse without middle
aisle is above the other curve for all configurations, except for warehouses with one
or two aisles. It follows that average travel time is lower for the warehouse with a
middle aisle for any number of aisles, with the exception of warehouses with 1 or 2
aisles. Also, the best possible layout without a middle aisle (27 aisles of 16.7 meters
with an average travel time of 630 seconds) results in a considerably higher travel
time than the best possible layout with a middle aisle (22 aisles of 20.5 meters with
an average travel time of 527 seconds). The small peak for 3 aisles in the curve for
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the warehouse without cross aisles, is due to the fact that at least one of the aisles
has to be entered and left from the same side to ensure that the order picker ends
his tour at the front of the warehouse.

We have analyzed average travel time for warehouses with and without a middle
aisle for a fixed pick list size of 30 items. Also, we determined the optimal number of
aisles in each of the two types of warehouses by locating the minimum of the curves in
Figure 3.4. In a similar fashion, we determine the optimal number of aisles for all pick
list sizes ranging from 1 to 50 items. Total aisle length is kept constant at 450 meters.
Thus, for each pick list size we determine the optimal number of aisles separately.
The corresponding average travel time is depicted in Figure 3.5 as a function of the
pick list size. There are two curves in Figure 3.5, one curve for a warehouse layout
with a middle aisle and one for a layout without a middle aisle. It appears from this
figure that for all pick list sizes (except size 1), the layout with a middle aisle gives

lower average travel times. Savings on travel time of more than 15% are possible.
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FIGURE 3.5. Average travel time as a function of the pick list size for a warehouse with 450

meters of aisles, with a middle aisle (dashed line) and without a middle aisle (solid line).

Repeating the previous experiment for warehouses with a total aisle length of 70
meters gives the results as depicted in Figure 3.6. As before we determine for each
pick list size separately the optimal number of aisles for a warehouse without a middle

aisle and for a warehouse with a middle aisle. Average travel time for the optimal
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number of aisles is depicted as a function of the pick list size. In this warehouse, a
middle aisle is beneficial only for pick list sizes from 3 to 22 items. For pick lists
containing 1, 2 or more than 22 items, a layout without a middle aisle would give
lower average travel times. In fact, if we continued to increase the pick list size beyond
50 items, then at some point the two curves for the warehouse with 450 meters of
aisles (Figure 3.5) would also intersect. This can be explained as follows. For small
pick lists, the introduction of a middle aisle offers more possibilities for creating tours.
This will result in shorter tours. If the number of picks increases, then at some point
the optimal tour will traverse nearly every aisle entirely. In this situation the middle
aisle is not in use anymore to reduce the number of aisles visited, but order pickers
still have to cross the middle aisle. This results in higher travel times compared to
a situation without middle aisle. However, for most practically sized orders a middle

aisle will give savings on travel time in such a large warehouse.
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FIGURE 3.6. Average travel time as a function of the pick list size for a warehouse with 70

meters of aisles, with a middle aisle (dashed line) and without a middle aisle (solid line).

3.4 Concluding remarks

Average travel time in warehouses depends on many factors such as warehouse type,
warehouse size, number of aisles, location of the depot, order picking equipment, pick
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list size and storage assignment rules. Each of these factors may have a significant
influence on travel time. In this chapter we have evaluated the impact on average
travel time of warehouse layout. Specifically, we evaluated whether or not a middle
aisle could improve efficiency. To this end, we have constructed a dynamic program-
ming algorithm for calculating order picking tours of minimal length in warehouses
with up to three cross aisles. The algorithm is more complex than the algorithm for
the one-block layout of Ratliff and Rosenthal [227]. For the one-block layout only 7
equivalence classes are needed, whereas the dynamic programming algorithm of this
chapter needs 25 equivalence classes. This is caused by the increased number of valid
combinations that arise due to an extra cross aisle. Calculations for any practically
sized problem only take fractions of a second. Further extensions to more blocks are
clearly possible, but may not be interesting for practice.

In a simulation experiment, we used the algorithm to determine average travel
time for two warehouse sizes and varying pick list sizes. We determined the number
of aisles that minimize average travel time for each combination of warehouse size
and pick list size. The number of aisles was determined separately for the situation
where there is a middle aisle and for the situation where there is no middle aisle. In
the majority of the situations evaluated it appeared that the layout of two blocks, i.e.
with a middle aisle, resulted in lower average travel time than the one-block layout.
Possible efficiency gains by introducing a middle aisle are especially present for large
warehouses.






4

A layout for the order picking area: One
block

In Chapters 2 and 3 we developed a number of routing methods and discussed some
results for the layout of the order picking area. In this chapter and in Chapter 5 we
will focus entirely on the layout of the order picking area. This chapter describes an
approach to determine a layout for the order picking area with the restriction that
the layout consists of one block, i.e. there are exactly two cross aisles, one in the
front and one in the back. In Chapter 5 a similar methodology is used to find layouts
that are not restricted to one block. The objective is to minimize the average travel
distance needed to pick an order or batch of orders.

We start by developing an analytical formula with which the average length of
an order picking route in a picking area can be calculated. The calculated values
are compared with results from simulations. Using the analytical formula for average
travel distance as an objective function in a non-linear programming model, we can
determine the optimal layout for a given situation. The model assumes that the
required storage space, the number of picks per route and the properties of the
equipment are known. Equipment properties include, for example, center-to-center
distance between aisles and the speed of the picking vehicle. Using these inputs we
can determine the number of aisles, the aisle length and the depot location that
minimize average travel distance.

Furthermore, we will prove in this chapter that a depot located in the middle of
the front cross aisle gives better results with respect to average travel distances than
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any other location in the front cross aisle. From the experiments it appears that the
optimal number of aisles in an order picking area depends strongly on both required
storage space and pick list size.

In Section 4.1 we describe a model to find the best layout in a picking area consist-
ing of one block, if a specific routing method is employed. In Section 4.2 an estimate
for the average travel distance is developed. In Section 4.3 the location of the depot
is discussed and Section 4.4 describes some other layout experiments. Conclusions
are given in Section 4.5.

4.1 Layout optimization

In this section we will describe a non-linear programming model to optimize the
layout of the order picking area with respect to average travel distance. We will model
the objective function with an estimate of average travel distance that is based on
statistical properties of a routing method. Clearly, average travel distance is only one
of many possible objectives, see for example Larson et al. [162]. Another objective
would be to minimize total cost, which includes both material handling and building
costs. Building costs can, for example, be modeled by a cost per unit distance of the
warehouse perimeter, see Francis [89]. However, response time is nowadays one of the
major concerns of warehouses, therefore we will seek for a layout that minimizes the
travel distance needed for picking an order. The time needed to pick an order consists
of several components. We distinguish walking or driving between items, picking of
items and remaining activities; see Section 1.4.2 for an explanation. Since picking of
items and remaining activities are to a large extent independent of the layout, we
can focus on walking and driving time. In a manual environment this travel time is
just a linear function of travel distance, therefore we will focus on minimizing travel
distance in this chapter. Some considerations concerning travel time instead of travel
distance are given in Section 4.2.3. This approach is similar to that of Hall [115],
Kunder and Gudehus [159] and Pandit and Palekar [207]. We will give the model and
explain the assumptions in this section. In Section 4.2 the travel distance estimate is
developed.

We consider a manual order picking operation, where order pickers walk through a
picking area to retrieve products from storage. Picked items are placed on a vehicle,
such as a cart or pallet jack, which the order picker takes with him on his route.
With some minor changes, we can also optimize other picking environments with
this model, see Section 4.2.3. The picking area is rectangular with no unused space
and consists of a number of parallel aisles. At the front and rear of the picking area
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there is a cross aisle. Cross aisles do not contain storage locations, but can be used
to change aisles. An example of a layout of such a picking area is given in Figure 4.1.
Solid black squares in the figure indicate sections in the rack where items have to be
picked. The dotted lines indicate where the order picker may walk or drive.

Rear cross aisle
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FIGURE 4.1. Example layout of an order picking area.

We will develop a model specifically for warehouses where the order pickers retrieve
items from multiple aisles. For travel distance estimation in systems where order
picking is restricted to a single aisle (such as an automated storage / retrieval system)
see e.g. Bozer and White [29], Chiang et al. [44], Elsayed and Unal [83] and Han et
al. [118]. For a block stacking environment see Berry [22].

Order pickers are assumed to be able to traverse an aisle in either direction and
to change direction within an aisle. Items are stored on both sides of the aisles.
Item locations are determined randomly according to a uniform distribution. Clearly,
activity-based item location could possibly require a different layout. Here, we will
consider only random storage assignment since this strategy can be considered as a
base-line against which layouts with activity-based storage assignment can be com-
pared. Previous work on travel distance estimation for random storage is described
in Hall [115]. Estimations in an activity based storage environment are described in
for example Caron et al. [38, 39], Chew and Tang [43], and Tang and Chew [265].

The aisles are narrow enough to allow picking from both sides of the aisle without
changing position. See Goetschalckx and Ratliff [102] for routing in warehouses with
wide aisles. Every item can be picked from the rack by the order picker without
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climbing or using a lifting device. Each order consists of a number of items that
are usually spread out over a number of aisles. In this chapter, we assume that the
items of an order can and will be picked in a single route. Since we assume that
the order consists of any number of items, single and dual command operations
(for a definition see Section 1.4.2) can also be described accurately with this model.
Literature on layout and travel distance estimation in single and dual command
environments includes Bassan et al. [21], Francis [89], Larson et al. [162] and Pandit
and Palekar [207]. Picked orders have to be deposited at the depot, where the picker
also receives the instructions for the next route. The depot is located in the front
cross aisle.

We use a routing strategy called the traversal or S-shape strategy. This strategy is
widely used in practice. Evaluations of the S-shape routing method can for example
be found in Hall [115] and Petersen [216] for picking areas consisting of one block
and in Chapter 2 for picking areas with multiple blocks. With the S-shape strategy,
any aisle containing at least one item is traversed through the entire length. Aisles
where nothing has to be picked are not entered. After picking the last item, the order
picker returns to the front end of the aisle. In Figure 4.2 a route is given, that is
found by applying the S-shape heuristic to the layout of Figure 4.1. Travel distance
approximations of other routing methods can be found in Caron et al. [38], Hall [115]
and Kunder and Gudehus [159].

\ EEEEEERTD,

FIGURE 4.2. Route found by the S-shape heuristic in the example situation of Figure 4.1.
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To find the layout that results in minimal average travel distance, we first have to
find an analytical expression that expresses the average travel distance as a function
of a number of layout arguments. We distinguish the following major factors that
influence average travel distance:

n the number of aisles (integer)
y the length of the aisles (real)
m the number of picks per route (integer)

d the depot location, 1 < d < n (real)

The depot can be located anywhere in the front cross aisle between the left-most aisle
(aisle 1) and the right-most aisle (aisle n). The position is indicated with a number.
For example, d = 1 indicates that the depot is located at the head of aisle 1; d = 3.5

indicates that the depot is located between aisles 3 and 4.

Furthermore, we define the following parameters:

w, center-to-center distance between two adjacent aisles (i.e. width of an aisle
including the storage racks),

w, width of a cross aisle,

S total aisle length, measured along the pick face.

Once we have an expression for the average travel distance, then we can try to
minimize this expression. If T,,(n, y, d) gives the average travel distance for a picking
area with n aisles of length y and the depot located at d, given that m products have
to be picked per route, then our problem can be formulated as:

min T, (n,y, d)
n-y=>,5

n>1 (integer)
y>1.0
1<d<n

Thus, we try to find the minimum value of T, (n,y,d) under the conditions that
total aisle length equals S, the number of aisles is 1 or more, the depot is located in
the front cross aisle between aisle 1 and n, and the minimum length of an aisle is
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1.0 meter (which is the minimum that would be physically possible to build). In the
next section we will derive an expression for T,,(n,y,d). In Sections 4.3 and 4.4 we
will investigate properties of good layouts for the order picking area.

4.2  Average travel distance estimation

In this section we will derive a formulation for the average travel distance in a picking
area consisting of one block. For the rectilinear or euclidean space, travel distance
estimates are given in Daganzo [54, 55]. Travel distance estimation in warehouses
is however different because the order pickers are confined to the aisles and cross
aisles. Previous work on travel distance estimation in similar situations as we evalu-
ate, includes Hall [115] and Kunder and Gudehus [159]. This research differs in two
aspects. First, we give a better estimate for the distance traveled if the order picker
has to make a turn. For a graphical example, see the right-most aisle in Figure 4.2.
Secondly, we develop an entirely new estimate for the distance traveled in the cross
aisles.

The travel distance consists of two components: (1) distance traveled within the
aisles and (2) distance traveled in the cross aisles. We will derive estimates for both

components separately.

4.2.1 Estimate for travel within the aisles

Under the assumption that products are distributed uniformly over the aisles and
locations, we can easily derive that the number of aisles containing at least one pick
location, has an expected value of:

v (- ()

which is n times the probability that an aisle contains at least one pick. This is
similar to the formulations in Caron et al. [38, 39], Chew and Tang [43], Hall [115]
and Tang and Chew [265]. Actually this is an approximation of the expected number
of aisles, see Kunder and Gudehus [159].

The expected value of the distance traveled inside the aisles, D,, can then be stated

E[D,) =y -E[Al+C

where y' = y + w,. That is, ¢’ is the length of an aisle plus two times the distance
to go from the end of an aisle to the center of the cross aisle (two times $w.). This
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distance is added since we assume that the order pickers walk through the middle of
the cross aisles. C' is a correction term that accounts for extra travel in the last aisle
that is visited. This extra travel distance occurs if the number of aisles that has to be
visited is an odd number. In this case the last aisle is both entered and exited from
the front (see Figure 4.2 for an example). In Hall [115] and Kunder and Gudehus
[159] it is assumed that if the order picker has to turn in the last aisle, then the
distance traveled in this aisle is 2 - 3/. That is, the last aisle first has to be traversed
entirely to the back of the warehouse before the order picker can return to the front.
Hall [115] gives as an estimate for the resulting extra travel of 0.5 - ¢/. That is, an
extra aisle traversal with probability 0.5. However, it can easily be seen that if the
number of items to pick is high, then this approximation is either about 0.5 -y’ too
high (if there is an even number of aisles) or 0.5 -y’ too low (odd number of aisles).
See also De Koster et al. [65]. In Kunder and Gudehus [159] a better approximation
is given, but this formulation still suffers from the problem that in practice the order
picker will usually return to the front directly after picking the last item, instead of
first going to the back of the warehouse as is assumed in the article. Caron et al.
[38, 39] use a slightly different routing method. They assume that the order picker
makes the turn in the aisle where the turn will be the shortest, instead of always
turning in the last aisle. Furthermore, they assume that the warehouse always has
an even number of aisles.

To determine the correction term C' consider the following. Suppose that a turn
has to be made and the number of picks in this last aisle is by, then the distance
traveled in this aisle would equal:

. bl . l
b1 Y

which is based on the well know property that the maximum of b; continuous
uniformly distributed [0,1] variables equals b1 /(b; + 1). Since we already accounted
for a distance of ¢y in the estimate y' - E[A], we find that the additional travel for

turns is given by:
by

9. ol
b1+1y Y

Let us now determine the probability that such a turn occurs. First, we need to
determine the probability that all picks fall into exactly ¢ aisles, where ¢ is an odd
number. This probability is given by:

( Z ) (%)m-x (4.1)
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where X is 1 minus the probability that all m picks fall into less than g aisles,
conditional on the fact that all m items fall in at most g specific aisles. We will not
write out X explicitly, because this term will cancel out in the final formulation. See
De Koster et al. [65] or Kunder and Gudehus [159] for the full formulation of X.

Given that at most g aisles contain a pick location, we find that the probability
that there are b; picks in aisle i (1 <4 < n), is given by a multinomial probability

distribution function:

m! NN 71\ 1\% m! n"
) G) 6 e )

i=1

However, we also have the restriction that b; > 1, because all g aisles are assumed

for

to contain at least one pick. Therefore, we have to divide the previous probabilities
by X, which is 1 minus the probability that at least one of the aisles does not contain
picks. By taking the sum over all possible values of b = (b1, bo, ..., b,) and multiplying
each probability with the corresponding extra travel distance, we obtain:

1 /1\™ m! , b ,
X<g> D1 bi!'<2'y'b1+1_ (4.2)

beB =1

where

)
B:{b \ bi21,2bi:m}
i=1

The right-most term between brackets gives the expected extra travel distance if
there are exactly ¢ aisles and there are exactly b; picks in the aisle. By multiplying
equations 4.1 and 4.2 and taking the sum over all possible values of g, we obtain the

desired estimate for extra travel distance due to turns:
n g\ (1\" m! , b ,
CZZ< ) (2) (_> Sy
]
gea \ 9 n 9/ eplli=n bi! bi +

where
G={g | 1<g<n,g<mandgisodd}

An easier to use approximation (i.e. an approximation that uses less computer time

for calculations) results if we use “ as an estimate for the number of items in the



4.2 Average travel distance estimation 85

last aisle. Then the correction term for the extra travel distance in the last aisle can
be formulated as (see also De Koster et al. [65]):

woz ()@ (o)

e g (2) (5

4.2.2  Estimate for travel within the cross aisles

where

The estimate for travel in the cross aisles consists of three components (1) travel
from the depot to the left-most aisle with picks, (2) travel from aisle to aisle while
picking items, and (3) travel from the right-most aisle with picks to the depot. See
also Figure 4.3 for a graphical illustration of the components.

PG S — ) —

3

FIGURE 4.3. Illustration of the three components for travel in the cross aisles.

Both Hall [115] and Kunder and Gudehus [159] assume that the depot is located
in the middle of the front cross aisle. Kunder and Gudehus [159] determined the
probability that all items are distributed over a certain number, say f, aisles and
estimates the distance traveled in the cross aisles by wg, - (n — 1) - % That is, the
distance in the cross aisles is estimated using a property of f points distributed over a
line according to a continuous uniform distribution. Hall [115] uses the same property
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in a different way, estimating the distance in the cross aisle by w, - (n—1)- Tm”—__& Both
approximations suffer from the same two problems. First of all, a discrete process is
approximated using expected values for the continuous case. Secondly, it is assumed
that for each route the depot is located between the left-most and right-most aisle
with picks. Situations in which all aisles that have picks are on one side of the depot
are neglected. This holds because the estimates are equal to two times the distance
from the left-most aisle to the right-most aisle. Any distance to reach the left (right)
most aisle from a depot located on the left (right) side of the warehouse is not
accounted for. Since a good evaluation of the depot location is not possible with the
existing estimates, we will give a new formulation.

We start with the estimate of the distance traveled in the cross aisle while picking
items. We have n aisles numbered 1, ...,n from left to right. The estimated distance
between the left-most aisle containing picks and the right-most aisle containing picks

is given by (for a proof see Appendix C):

wa~<<n—l>‘2'§<%>m>

Next, we estimate the average distance from the depot to the right-most aisle. The

probability that ¢ is the right-most aisle to be visited is:

&) (&)

which is the probability that all picks fall in aisles 1,...,4 minus the probability

that all picks fall in aisles 1,...,4 — 1. The distance to be traveled is then the distance
from depot location to the right-most aisle. If aisle ¢ would be the right-most aisle
with items, then the distance to travel would be:

W+ i — d|

Taking the sum over all values of ¢ and multiplying by their probability of occur-
rence gives the expected distance to be traveled from the depot to the right-most

ROl

Similarly, we can find the distance from the depot to the left-most aisle to be:

wE e [ e

aisle:
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The expected value of the distance traveled in the cross aisles, D,, can now be
obtained by adding all three components for cross aisle travel:

ED)] = we- (n—l—Q-jle(%)m>

et (7 (52))

4.2.8 Estimate for total average travel distance

Adding the two components (distance traveled in aisles and in cross aisles) gives the
total expected travel distance in the picking area:

This formulation has been developed for a manual picking operation. Therefore,
we were able to use the average travel distance as a performance criterium. If we
analyzed, for example, an automated storage / retrieval system, then a better perfor-
mance criterium would be average travel time. This is the case because travel speed
in aisles and cross aisles is unequal in such an environment. If we define ¢, as the
travel speed in the aisles and t, as the travel speed in the cross aisles then the esti-
mate for average travel time would be 1}, (n,y,d) = t, - E[Dy]| +t, - E[D,]. If orders
are retrieved by an order picker walking through the warehouse with a small picking
cart, there will be no additional time for changing aisles. However, if a relatively large
vehicle is used in narrow aisles, then additional time is required for each change of
aisles to position the vehicle correctly. Since this extra time has to be added each
time the vehicle enters an aisle, we can just add t. - E[A] to the travel time estimate,
where t. is the time needed to enter an aisle.

In practical situations it will often be the case that the pick list size is variable.
The formula we developed is valid only for a fixed pick list size. However, it can easily
be adapted for a variable pick list size. For example, assume that we know for every
pick list size m that it will occur with probability p,,, then the estimate for average
travel distance is given by Y ", py, - Trn(n, y, d).

Clearly, due to the nature of the approach we used (e.g. we assume that expected
travel distance in aisles and expected travel distance in cross aisles are independent),
this formulation gives an approximation of actual average travel distance. We will
test the performance of the formula in Section 4.4.
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4.3 Optimization of the depot location

Order pickers are assumed to start and end their routes at the depot. There may be
several reasons why such a central location is in use. For example, if pick lists are
generated by a printer, then order pickers have to go to the printer before starting a
route. The printer would then function as depot. Or the depot may be the location
where order pickers pick up an empty pick cart before starting a new route.

The depot can be located anywhere around the picking area. A depot can also serve
more than one picking zone. Since aisles are accessed from the cross aisles, the depot
is most often located in one of the cross aisles. If the depot is located elsewhere, it can
still be modeled as if it is located at the left or right of one of the cross aisles. This
is possible since order pickers always have to go through a cross aisle before entering
the aisles. A virtual depot can be located at the corner of the picking area that is
closest to the actual depot. In this way, order pickers will always pass the virtual
depot before starting their picking route. The difference in travel distance between a
route starting at the actual depot and a route starting at the virtual depot is just a
constant, i.e. twice the distance between the actual and the virtual depot.

Intuitively, a depot in the middle of the front cross aisle seems to be the best with
respect to average travel time. In this way, the probability seems to be highest that
the depot is located between the left-most and right-most aisle of a picking route,
thus preventing extra travel time to go forth and back to this region from a depot
that is out of the middle. However, in the literature depot locations vary. A depot
located in the middle is used in Goetschalckx and Ratliff [102], Hall [115], Kunder and
Gudehus [159] and Petersen [217]. A depot located in a corner is used in Chew and
Tang [43], De Koster et al. [66], Gibson and Sharp [98], Rosenwein [247] and Tang and
Chew [265]. Both middle and corner options are considered in Jarvis and McDowell
[140], Petersen [216] and Petersen and Schmenner [218]. In Ruben and Jacobs [250]
travel to and from the depot is not taken into account, they only use travel between
picks for their calculations. De Koster and Van der Poort [64] evaluated decentralized
depositing (no depot at all). And finally Caron et al. [38, 39] assume the depot to be
located between two blocks.

In this section, we will show that under the condition of random storage, the depot
should be located in the middle of the front cross aisle, if it is possible to choose the
depot location freely. Actually, a depot located in the middle of the back cross aisle
would be equally good. This holds because 'front’ and 'back’ depend on the direction
from which you look at the picking aisles. It is shown that the position in the middle
of the front cross aisle minimizes the average travel distance for any choice of the
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number of aisles. A proof for this was given in Bassan et al. [21] in the context of a
single command environment. We will show that it holds for any pick list size.

Theorem
The depot location that minimizes average travel distance is the exact middle of the
front cross aisle.

Proof
Clearly, the depot location only influences average travel distance through the term
(see equations 4.3 and 4.4):

wa.g <(|z’d|+in+d1|)' [(%) <2n1>D

We distinguish 4 cases.

Case l:i>dandi+d>n+1

li—d|+]i—n+d—1] i—d+i-n+d—1

= 21—n—1

Since 2i —n — 1 is independent of d there is no influence of the depot location on
average travel distance.

Case 2:i<dandi+d>n+1

i—d|+|i—-—n+d—1 = d—i+i—n+d-1
= 2d—n-—1

Travel distance is minimized by choosing d as small as possible under the condition
that i < d and i +d > n + 1. Substituting i by d gives 2d > n+1 or d > "—‘2"—1 This
implies that travel distance is minimized if d = %"—1, i.e. the depot is located in the
middle of the front cross aisle.

Case3:i>dandi+d<n-+1

i—d+i—-n+d-1 = i—d—i+n—-d+1
= —2d+n+1

Travel distance is minimized by choosing d as large as possible under the condition

that i > d and i +d < n + 1. Substituting 7 by d gives 2d <n+1or d < "—‘2"—1 This

implies that travel distance is minimized if d = ”T'H, i.e. the depot is located in the

middle of the front cross aisle.
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Case4:i1<dandi+d<n-+1

i—d+li-(n-d+1) = d—i—i+n—d+1
—2i+n+1

This is independent of the depot location.

Average travel distance is either not influenced by the depot location or it is mini-
mized by taking d = "TH Therefore, it holds that average travel distance is minimized
with respect to the depot location by taking d = ”T'H,

the middle of the front cross aisle. [ |

i.e. by locating the depot in

We note that we have proven that the depot is to be located in the middle of
the front cross aisle under the conditions that (1) S-shape is used for routing, (2)
random storage is used and (3) the depot location is restricted to the front cross
aisle. Furthermore,we note that the depot has to be located in the exact middle of
the front cross aisle. Therefore, if the number of aisles is even, the depot will not be
located exactly at the head of an aisle but between two aisles.

Looking at other routing heuristics (see Chapter 2 or Petersen [216]), it is straight-
forward to check that the S-shape, largest gap, combined, composite, midpoint and
return heuristics all have the same amount of cross aisle travel per route in one-block
layouts. This holds because each of the heuristics travels the distance between the
left-most and right-most aisle with items twice, plus the distance from the depot to
the left-most (right-most) aisle is traveled twice if the depot is positioned on the far
left (right). The above proof is therefore valid for any of the other routing heuristics
as well.

An evaluation of the percentage difference in average travel distance between a
picking area with a depot located at the left and a picking area with a depot located
in middle is given in the next section. The next section also contains experiments

concerning the number of aisles required to minimize average travel distance.

4.4 Layout experiments

First of all, we will compare the values calculated with the formula from Section 4.2
with the results from simulation. To this end, we consider a manual picking operation
in a shelf area, where several order pickers may be assigned to the same zone. The
center-to-center distance between two neighboring aisles is 2.5 meters. Order pickers
are assumed to travel through the exact middle of the aisles and cross aisles. Cross
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aisles are 2.5 meters wide. For this type of picking areas we assume the following
measures to be representative. Aisle length varies between 10 and 30 meters. Each
order picker works in a zone consisting of 7 to 15 aisles. Each picking route has to visit
between 10 and 30 locations. We use the extremes of these values for our comparison,
which gives eight different situations. Furthermore, for each situation we consider two
depot locations: at the left (at the head of aisle 1) and in the middle of the front cross
aisle. For the simulation we generated 2000 orders for each situation. The number
of replications is sufficient to obtain a 95% confidence interval with a half-width of
less than 2% of the sample mean. Pick locations are distributed over the aisles and
locations according to a uniform distribution. No picks occur in the cross aisles. Table
4.1 gives the results from the simulation and from the formula described in Section
4.2.

The percentage difference in Table 4.1 between simulated and calculated values has
been calculated before rounding of the route length. As is apparent, the results from
the formula follow the behavior of the simulation closely. Therefore, we can determine
average route length by straightforward calculations with the formula instead of

developing a simulation model for the order picking area.

aisle # aisles # items depot | Sim. Formula Difference
length
10 7 10 left 99.0 99.0 0.03%
10 7 10 middle | 97.5 97.7 —0.21%
10 7 30 left 121.8 123.2 —1.11%
10 7 30 middle | 121.7 123.1 —1.21%
10 15 10 left 159.7 159.5 0.10%
10 15 10 middle | 154.9 155.0 —0.03%
10 15 30 left 234.7 235.1 —0.17%
10 15 30 middle | 234.0 234.4 —0.18%
30 7 10 left 211.8 211.4 0.21%
30 7 10 middle | 210.0 210.1 —0.07%
30 7 30 left 271.0 272.3 —0.51%
30 7 30 middle | 270.7 272.3 —0.58%
30 15 10 left 310.5 310.2 0.11%
30 15 10 middle | 305.3 305.6 —0.08%
30 15 30 left 499.9 500.4 —0.09%
30 15 30 middle | 499.2 499.7 —0.09%

TABLE 4.1. Average route length in meters for picking an order.



92 4. A layout for the order picking area: One block

We have already proven that the depot is best located in the middle of the front
cross aisle. However, it would be interesting to know the magnitude of the difference
between various depot locations. From Table 4.1 we can see that the difference be-
tween a depot on the left and a depot in the middle for situations with a large pick
list (30 items) is very small, less than 0.5%. For small pick lists (10 items) however,
the difference is larger. Figure 4.4 depicts average travel distance (calculated with
the formula of Section 4.2) as a function of the depot location for the situation with
15 aisles of 10 meters and a pick list of 10 items. From this figure we can see that
the best location for the depot is at the head of aisle 8. Obviously, this is the middle
of the front cross aisle. We can also see that the route length is fairly insensitive to

small changes in the depot location around the optimum.
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FIGURE 4.4. Average route length in meters as a function of the depot location for a

warehouse with 15 aisles of 10 meters and a picklist size of 10.

We can use the model of Section 4.1 to determine the best layout for various values
of the total aisle length. Consider the 16 situations from Table 4.1. These situations
consist of 4 different values of total aisle length (70, 150, 210 and 450 meters) and two
values for pick list size (10 and 30 picks). Using the formula we determine average
route length for 1, 2, 3, ... aisles with decreasing aisle length such that total aisle



4.4 Layout experiments 93

length is constant at either 70, 150, 210 or 450 meters. The depot is located in the
middle of the front cross aisle, because we already proved in the previous section
that the middle is the best location. Aisle length is determined by dividing total aisle
length by the number of aisles and adding twice the distance needed to go from the
end of the aisle to the middle of the cross aisle. By taking the number of aisles that
results in minimum average route length, we obtain the best layout with respect to
travel distance.

Figure 4.5 depicts average route length as a function of the number of aisles.
The minimum average route length for each curve is indicated with an asterisk. For
example, in a picking area with 450 meters of aisle and a pick list size of 10 we
find that the optimal layout is one with 28 aisles. From this figure we can see that
larger picking areas require more aisles. A layout with exactly two aisles seems to
give relatively good results. Only minor improvements can be obtained by having
more aisles (for total aisle length 150 or 210 meters). A layout with three aisles is
always worse than one with two aisles. It can also be seen that average route length
changes only slightly if the layout deviates from the optimal layout (i.e. the upper
three curves are fairly flat around the optimum).

If we increase the pick list size to 30, we obtain a totally different picture. First of
all, the erratic behavior of the curves in Figure 4.6 is striking. This can be explained
as follows. If the picking area has an odd number of aisles and if all aisles have to be
visited, then the order picker has to make a turn in the last aisle. Thus, part of the
last aisle is traveled twice. If the number of picks is high then the probability that
all aisles have to be visited is high and the distance traveled twice in the last aisle
is large. Therefore, the distance in picking areas with an odd number of aisles tends
to be higher than similar picking areas with an even number of aisles. Another point
that follows from Figure 4.6 is that if large orders have to be picked, then it is very
likely that it is best to have a picking area consisting of exactly two picking aisles.
This does not necessarily imply that there should be only one picking area consisting
of two aisles, but is does suggest that the best situation would be one where every
order picker is responsible for picking in just two aisles.

It is interesting to note from a practical point of view that most of the curves are
quite flat. That is, around the optimum there are a large number of other layouts that
have average travel distances which are only a few percent higher. A designer can
use this flexibility to meet other requirements. Such requirements may be prevention
of congestion, flexibilty for redesign or stability with respect to changes in pick list

size.
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FIGURE 4.5. Average route length in meters as a function of the number of aisles for four
values of the total aisle length (indicated next to the curves in meters). Pick list size is 10.

An asterisk indicates the optimal layout.

4.5 Concluding remarks

In this chapter we have evaluated the relation between the layout of the order picking
area and the average length of a picking route for areas comnsisting of one block.
First an analytical formula is presented with which the average route length can be
calculated based on the number of aisles, aisle length, depot location and number of
picks per route. The results from this formula are compared with simulation results.
It appeared that the difference between simulated and calculated values was between
0% and 1.2% in our experiments. Therefore, we consider the analytical formula to
be accurate enough to be used instead of simulation when determining average route
length.

We proved that the best depot location is in the middle of the front cross aisle.
The proof is valid for a wide variety of routing heuristics under the conditions that
random storage is used and that the depot has to be located at some point in the front
cross aisle. Furthermore, we investigated the behavior of the average route length if
we moved the depot to various positions along the front cross aisle. It appeared that
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values of the total aisle length (indicated next to the curves in meters). Pick list size is 30.

An asterisk indicates the optimal layout.

positions somewhat out of the middle give an average route length that differs only
slightly from the optimum.

Finally, we have used the analytical formula to determine the optimal layout for
eight different situations. From these analyses we found the following behavior. Larger
picking areas require more aisles. From the viewpoint of strict travel distance min-
imization, a very high pick density is best dealt with in a picking area where each
picking zone consists of exactly two aisles. For practical implementations, other con-
siderations than travel distance can be taken into account easily too, since there are
generally many layouts that have an average travel distance that is very close to the
optimum. Picking areas with an even number of aisles give a lower average route
length than picking areas with an odd number of aisles, when there are many picks
and the S-shape heuristic is used for routing.
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A layout for the order picking area:
Multiple blocks

In the previous chapter we developed statistical estimates for the average travel
distance required to pick an order in one-block warehouses. Based on these estimates
we were able to determine certain characteristics of good layouts. The limitation of
the formulas described so far is that they are valid only in warehouses consisting of
one block. It would, however, be interesting to have statistical estimates for multiple-
block warehouses as well. After all, in Chapters 2 and 3 we have shown that in
many cases warehouses consisting of more than one block have lower average travel
times than warehouses consisting of only one block, given a certain storage capacity.
Therefore, we will extend the work of Chapter 4 to situations with multiple blocks.

In this chapter, we describe a method to determine a layout for the order picking
area without any restriction on the number of aisles or blocks. An estimate is derived
for the average travel distance. This estimate is based on statistical properties of the
S-shape routing heuristic; see Section 2.2.1 for a description of this heuristic. It is
assumed that the random storage policy, see Section 1.4.1, is applied to determine
storage location for products. The resulting estimate for average travel distance is a
function of the order size, the number of aisles, the number of blocks, aisle width and
aisle length. By minimizing this function for a given order size and a given storage
capacity, we can obtain the desired layout for the order picking area.

In Section 5.1 we describe the situation for which the average travel distance es-

timate will be developed. Section 5.2 describes the objective of layout optimization
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for the order picking area in more detail. The optimization model is presented in
Section 5.2 as well. The objective function of this model is derived in Section 5.3.
The accuracy of the travel distance estimate is checked by comparing the results with
simulation in Section 5.4. An example of a layout optimization is given in Section
5.5. Section 5.6 gives some concluding remarks.

5.1 Layout and routing

Although most of the assumptions and definitions in this chapter are the same as
those in previous chapters we will summarize the important ones for the sake of
completeness. We consider a manual order picking operation, where order pickers
walk through a warehouse to retrieve products from storage. Picked items are placed
on a pick device, which the order picker takes with him on his route. An example of
such a warehouse layout is given in Figure 5.1. The warehouse is rectangular with
no unused space and consists of a number of parallel pick aisles. The warehouse is
divided into a number of blocks, each of which contains a number of subaisles. A
subaisle is that part of a pick aisle that is within one block. The term aisle is used
when a statement holds for both pick aisles and subaisles. At the front and back of
the warehouse and between each pair of blocks, there is a cross aisle. Cross aisles do
not contain storage locations, but can be used to change aisles. Every block has a
front cross aisle and a back cross aisle; the front cross aisle of one block is the back
cross aisle of another block, except for the first block.

The main advantage of having extra cross aisles in a warehouse consists of the
increased routing options, which may result in lower travel distances. On the other
hand, warehouse size must increase if more cross aisles are added, because total
storage space must be kept constant to meet predefined requirements. Research on
the subject of travel time estimation and/or layout determination has mainly been
restricted to warehouses consisting of a single block, see e.g. Chew and Tang [43],
Choe [46], De Koster [59], Hall [115], Jarvis and McDowell [140], Kunder and Gudehus
[159], Tang and Chew [265] and Chapter 4 of this thesis. Caron et al. [38] study a
warehouse consisting of two blocks, with the depot located between the two blocks.

Order pickers are assumed to be able to traverse an aisle in either direction and
to change direction within an aisle. Items are stored at both sides of the aisles.
Item locations are determined randomly according to a uniform distribution. Clearly,
activity-based item location could possibly ask for a different layout. In this chapter
we will consider only random storage assignment since this strategy can be considered
as a base-line against which layouts with activity-based storage assignment can be
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FIGURE 5.1. Example layout of an order picking area.

compared. The aisles are narrow enough to allow picking from both sides of the aisle
without changing position. Every item can be picked from the rack by the order
picker without climbing or using a lifting device. Each order consists of a number of
items that are usually spread out over a number of aisles. We assume that the items
of an order can and will be picked in a single route. Aisle changes are possible in any
of the cross aisles. Picked orders have to be deposited at the depot, where the picker
also receives the instructions for the next route. The depot is located in the front
most cross aisle.

In this chapter we will use a routing strategy called the traversal or S-shape strategy.
This strategy is an extension for situations with multiple cross aisles of a routing
strategy that is widely used in practice. The version for multiple blocks is described
in Section 2.2.1. Evaluations of the performance of the S-shape routing method for
warehouses consisting of multiple blocks can be found in Section 2.4. With the S-
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shape strategy, any subaisle containing at least one pick is generally traversed through
the entire length, with few exceptions. Subaisles where nothing has to be picked are

not entered. An example route for the S-shape heuristic is given in Figure 2.2.

5.2 Layout optimization

In this chapter we describe a method to determine a layout for an order picking area
without a restriction on the number of blocks. The objective is to find a layout that
results in minimal average travel distance.

For order picking with a cart or pallet jack, average travel distance is influenced

by five major factors:

1. Length of the pick aisles
2. Number of pick aisles

3. Number of blocks

4. Location of the depot.

5. Number of picks per route

Only the first four factors can be considered as layout factors. However, the number
of picks per route also has a large influence on average travel distance. Therefore, we
will optimize the layout for a fixed number of picks. This constraint can easily be
relaxed if a probability distribution is known for the number of picks per route. The
approach for this is identical to that described in Section 4.2.3.

Generally, when designing a warehouse, the storage space that is required to store
all products is determined in advance. Only after this decision is made, does a layout
have to be determined. Therefore, we take the total storage space as an input for our
model.

We define the following variables:

n number of pick aisles (integer)
k number of blocks (integer)

y length of a pick aisle along the pick face (i.e. length of a pick aisle minus the

width of the cross aisles)

d the location of the depot, 1 < d < n (real).
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The depot can be located anywhere in the front most cross aisle between the left-
most pick aisle (pick aisle 1) and the right-most pick aisle (pick aisle n). The position
is indicated with a number. For example, d = 1 indicates that the depot is located
at the head of pick aisle 1; d = 3.5 indicates that the depot is located between pick
aisles 3 and 4.

We define the following parameters:

m the number of picks (integer)

Y. width of a cross aisle

x. center-to-center distance between two adjacent pick aisles
S total aisle length, measured along the pick face

See Figure 5.1 for a graphical illustration of y, y. and x..
Furthermore, we will use the following conventions:

1,9 are used to index the pick aisles
J,h are used to index the blocks
u,t are used to index the picks

We can model the problem as follows:

min T, (n, k,y,d)
s.t.

n-y=>,5

n>1

k>1

1<d<n

n, k integer

The objective is to minimize average travel distance, T;,, which is a function of
the number of pick aisles n, the number of blocks & and the depot location. Travel
distance T,, also depends on the number of picks m, which is a fixed value for this
model. The minimization is to be performed under the condition that total storage
space is kept constant. This is modeled as n -y = 5, i.e. total aisle length along the
pick face is constant. This is possible since the storage space per meter aisle length
is constant.

The major difficulty in this model is to determine T, (n, k, y, d). In the next sec-

tion we will derive an expression for average travel distance T,,(n,k,y,d) for the
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case where the order pickers travel through the warehouse according to the S-shape

heuristic.

5.3 Average travel distance estimation

In this section we will give a statistically based estimate for the average travel in
a warehouse with multiple cross aisles when using the S-shape strategy for routing.
Before giving the complete estimate, we will first decompose the order picking routes

into seven parts that will be estimated separately. We distinguish:

1. Traveling through subaisles to retrieve products

2. Traveling through subaisles without picks, from front to back
3. Traveling through subaisles without picks, from back to front
4. Correction of travel distance for turns within subaisles

5. Traveling in cross aisles

6. Traveling to and from the depot in the front cross aisle.

7. Extra time needed to change aisles by the picking vehicle, such as slowing down

for turns or intersections.

Each of these parts (except part 7) is indicated in Figure 5.2 with a number corre-
sponding to the above list. The estimates and explanations of these parts is given in
Sections 5.3.1 - 5.3.7. We denote the first estimate, for traveling through subaisles to
retrieve products, by F1; the second estimate will be denoted by F» and so on. The to-
tal estimate for average travel distance will then be given by T,,,(n, k, y, d) = Z?:1 E;.

To facilitate reading, we will first give the probability that items are distributed
over the order picking area in a certain way. This formulation will be used several
times in subsequent sections. We divide the warehouse into seven mutually exclusive
areas, which are shown in Figure 5.3. Borders between areas are partially defined by
the left-most pick aisle that contains pick locations (’left pick aisle’) and the block
farthest from the depot that contains pick locations (’farthest block’). The first area,
labeled with the letter A, consists of the subaisle that is in the left pick aisle and in
the farthest block. The second area, labeled B, consists of all subaisles in the farthest
block to the right of area A. Areas C' and D together (denoted as C'U D) consist of
all subaisles that are in the left pick aisle and below area A. Area D consists of one
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(random) subaisle in C'U D and area C' consists of the remaining subaisles in C'U D.
Areas E and F together (denoted as E U F) include all subaisles that are both to
the right and below area A (not including any subaisle from either area A, B, C, or
D). Area F consists of a group of subaisles that are in the intersection of EU F' and
a single block. The block used for this intersection is randomly chosen, such that
the intersection is non-empty (provided that F'U F' is non-empty). The seventh area
consists of all remaining subaisles and is not given a name, since it is not used in
any of the calculations. Note that since A, ..., F' are sets, we will say that an area is
empty if it does not exist. If an area is said to be non-empty, i.e. it exists, it may still
be empty with regards to the number of pick locations, i.e. there may be no picks in
the area.

Suppose we know that all pick locations fall into or to the right of pick aisle
i (1 < i < n), where the right-most pick aisle of the warehouse is indexed as 1 and
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the left-most pick aisle of the warehouse as n. Furthermore, suppose that we know
that all pick locations fall into or below block j (1 < j < k), where the block closest
to the depot is indexed as 1 and the block farthest from the depot (regardless of pick
locations) as k.

Suppose we also know that there is at least one pick location in pick aisle 7 and
at least one pick location in the block j. This means that one of the following two
conditions holds (1) area A contains at least one pick location, (2) both area B and
area C'U D contain each at least one pick location.

Define U,, Uy, U, Uq,Ue, Us to be random variables that denote the number of
pick locations that fall in areas A, B,C, D, E, F respectively. Define the vector U =
(U4, Up,U,,Uq, U, Uy) with observations denoted as u = (ugq, Up, Ue, Ug, Ue, U s). Then
the probability that U = u given that all items are in pick aisles 1...7 and blocks 1...5
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and given that either area A is non-empty or both areas B and C'UD are non-empty,
is given by:
b d f
m! BRI IR IR
g luplueughueu ! Pj(ueR)

where

Ug s Up, Ue, Udy Ue, Uf > 0
ug > 0 or (up > 0 and ue + ug > 0)
R=< u | ‘wug+up+uc+ug+u+ur=m
if j =1 then u, =0,uq =0,u, =0 and uyr =0
if j =2 then u. =0 and u, =0

1

P = —

Y <ZJ>

b i—1
3 (5]

c J—
Pz‘j - < > Ajsoy + <o)
pi o~ (L) I

iy >1y + =1}

e .7 B 21 .7 + 2
by = < > Aijsoy + I<ay
pf = I +1

ij {i>1} {j=1}

1 if condition is true

I{condition} = { 0 otherwise

The conditions as imposed on (ug, Up, e, Ud, ue,uf) in the definition of the set R
state that (1) the number of pick locations in each area is non-negative, (2) area A
contains at least one pick location or area B and C'U D each contain at one least pick
location, (3) the total number of pick locations equals the sum of the pick locations
in each of the individual areas, (4) if all pick locations fall into just two blocks then
there are no picks in areas C' and E. (5) if all picks fall into one block, then there
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are no picks in areas C, D, F and F. Conditions (4) and (5) hold because from the
definition of the areas it is clear that the areas do not exist under the conditions
stated. Consequently, no picks are then possible in these areas.

To explain P;; (u € R) observe that the set R defines all feasible values of u. All
values are feasible except if there are no picks in areas A and B and/or if there are
no picks in areas A and C'U D. The probability that there are no picks in areas A
and B is (#)m and the probability that there are no picks in areas A and C'UD

is (%)m However, if we subtract these two probabilities from 1, then we would
subtract the probability that all items fall in area EU F' twice. Therefore, we again
add the probability that all items fall in area E U F', which is (w

The index function I is necessary because in the cases where I = 0 it holds that
the corresponding area is empty. That is, if 7 = 1 then the probability that a pick
falls in either area C, D, E or F is zero, because these areas are empty by definition.
If 7 = 2, then areas C and E are empty, but areas D and F' are non-empty.

For simplicity we will use the following notation:

P;(Ur=0)= E U=u|u€R)
u€ER
’U.f:()

Similar statements will be used for conditions other than Uy = 0.

5.3.1  Traveling through subaisles to retrieve products

In this section we give the expected travel distance if every subaisle that contains a
pick location is traversed its entire length. This estimate is formed as the product of
two terms: (1) the expected number of subaisles that contain a pick location and (2)

the length of a subaisle. The expected number of subaisles that have to be visited is:

i (2]

where nk is the total number of subaisles in the warehouse. The term between square

brackets is 1 minus the probability that a certain subaisle does not contain pick
locations. A more precise estimate for the number of subaisles to be visited is possible,
however, in Kunder and Gudehus [159] it is shown that an estimate like this is, in
general, adequate.

The length of a subaisle is given by:

Y+ kye
k
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This is the length of a subaisle along the pick face (y/k) plus two times half the
width of a cross aisle. This is because we assume that the order picker travels exactly
through the middle of the aisles and cross aisles. Thus, if the order picker exits a
subaisle, he has to travel %yc before he is at the middle of the cross aisle and can
continue his travel there. This also holds for entering the subaisle from the cross aisle,
thus adding another %yc to the length of a subaisle.

This gives the estimate E4 for traveling through subaisles to retrieve products:

—1\™ .
Elznk{1—<nk > }.y—l—ky

nk k

5.8.2  Traveling through subaisles without picks, from front to back

We recall from the description of the S-shape heuristic that the left-most pick aisle
containing picks is traversed from the front of the warehouse to the front cross aisle of
the farthest block. The estimate E7, described in the previous section, only accounts
for subaisles with pick locations. However, in the left-most pick aisle there is a chance
that one or more subaisles are to be traversed that have no pick locations.

In this section, we give an estimate for the number of subaisles in the left-most pick
aisle that will be traversed but do not contain pick locations. By multiplying that
estimate with the length of a subaisle, we obtain the travel distance that is the result
of traveling through empty subaisles from the front to the back of the warehouse.

We first need to determine the position of the farthest block. If we index the blocks
from front to back (i.e. the block closest to the depot is block 1, the next block 2
etc.), then the probability that the farthest block to visit is block j, is given by:

P(j is farthest block) = [(%) - <%> }

This is the probability that all pick locations fall into blocks 1 through j minus the
probability that all pick locations fall into blocks 1 through j — 1. This equals the
probability that all picks fall into blocks 1 through j and that there is at least one
pick location in block j.

We index the pick aisles from right to left. We determine the probability that the
left-most pick aisle with picks is pick aisle i. Analogous to the previous formulation
for the number of blocks, we find that:

.\ m 1 m
P(i is left-most pick aisle) = [<l> — <Z > }
n n
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By multiplying P(j is farthest block) with P(i is left-most pick aisle), we obtain
the probability that all pick locations fall in pick aisles 1...7 and blocks 1...j and there
is at least one pick location in pick aisle ¢ and at least one pick location in block j.

[ G (5

Now we can formulate the estimate Fo for traveling through subaisles without

picks, from front to back, as:

B Utk § "
p = ) D 1) Ay Py(Ua = 0)]

i=1 j=1

The first part is the length of a subaisle. The second part consists of a summation
over all 7 and j. The probability that an empty subaisle has to be traversed from
front to back can be determined by taking the sum of P;;(U = u | u € R) over all
u for which ug = 0. This is multiplied by A;; and by j — 1, which is the number of
blocks where the situation of traversing an empty subaisle from front to back can

occur. Note that by definition:

Pj(Us=0)= > P;(U=u|u€R)

ueER
ud=0

5.8.83  Traveling through subaisles without picks, from back to front

The estimate E3 for traveling through subaisles without picks, from back to front
can be obtained in a similar fashion as the estimate in the previous section and is

given by:

y+kye < o
E3=T'ZZ[(J—l)'Aij'Pij(UfZO)]

i=1 j=1

5.8.4  Correction of travel distance for turns within subaisles

After the order picker picks the last item in a block, he has to return to the front of
the block to be able to continue with the next block or to return to the depot. If the
last subaisle of a block was entered from the back, then this subaisle can be traversed
through its entire length. However, if the subaisle was entered from the front, then
the order picker has to turn and go back to the front of the block after picking the
last item. Since we already accounted for traveling the subaisle in its entire length
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in estimate F;, we have to make a correction for the situations in which a turn may
occur.

Suppose we know that there are ¢ picks in a subaisle and that the order picker
has to make a turn in this subaisle. Then the extra distance needed for the turn as
compared to a full subaisle traversal is given by:

o Ythkye _t y+hy
k t+1 k

is the expected value of the maximum of ¢ continuous

(5.1)

In this formulation H_Ll
uniformly distributed [0,1] variables. The average distance from the middle of the
cross aisle to the farthest pick in the subaisle is Z/%“&H_Ll Since the order picker also
has to return the same way, the travel distance is twice this amount. In estimate E;
we already accounted for %{ﬂy“, so we have to subtract this amount, which results
in equation 5.1.

There are three areas in which a turn can occur, namely areas A, B and F U F.

We first consider the extra travel distance for turns in area A.

Area A

A turn in area A can only occur if area B is empty (U, = 0). Given that the left-most
pick aisle is pick aisle ¢ and that the farthest block is block j, the probability that a
turn in area A occurs with ¢ pick locations in the only subaisle of area A is given by:

Pij(Us=tAU,=0)=> P;(U=u|ucR)
uER
Uqg=1
ub:0
By multiplying the probability that a turn occurs by the corresponding expected
extra travel distance and taking the sum over all possible values of ¢, we obtain the
expected extra travel distance in area A (given that the left-most pick aisle is pick

aisle 7 and that the farthest block is block 7):

o @ — _ y+ky t  y+ky
;[P”(Uat/\UbO) <2 A - ﬂ (5.2)

Area B

For area B we distinguish two situations. The first situation occurs when there are
no picks in area A and the second situation when there are picks in area A. We have
to distinguish between these two situations because if area A contains no picks, then
a turn will occur in area B if the number of subaisles to be visited in area B is odd.
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On the other hand, if area A contains picks then an even number of subaisles with
picks in area B will result in a turn.

Suppose we know that the left-most pick aisle is ¢ (area B consists of i —1 subaisles)
and that ¢ picks fall into area B, then the probability that these picks fall into exactly
g of the i — 1 subaisles is given by:

()

where X is 1 minus the probability that all ¢ picks fall into g — 1 or less subaisles

out of a given set of g subaisles, see also De Koster et al. [65]. To obtain this, use is

made of the inclusion-exclusion rule. Thus,

e g () (5

=1

Since all subaisles have equal probabilities of containing picks, the subaisle where
the order picker has to make a turn will on average contain ¢/g picks. The additional
travel for a turn in the last subaisle can be approximated by:

t
YRy 5 ytkye

2 t
| k

(5.4)

using the property that the expected value of the maximum of # continuous uni-
formly distributed [0,1] variables is 5/(5 + 1).
By multiplying equations 5.3 and 5.4 we obtain

i1\ g\ y+kye 5 y+kye
OZ(Q’”‘( g ><21> X (2 FoI4l 2

which is the average extra travel distance for a subaisle where a turn has to occur,

under the conditions that the left-most pick aisle is pick aisle i, there are exactly g
subaisles that have at least one pick and there are in total exactly ¢ picks in these g
subaisles.

The expected extra travel distance in area B (given that there is at least one pick
in area A, the left-most pick aisle is pick aisle ¢ and the farthest block is block j) can
now be stated as:

i Pij(Ua>0/\Ub:t)‘ Z Cl(g)t)

t=1 9EGeven
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where
Geven =99 |1<g<i—1,g<tandgiseven}

This result follows by aggregating C;(g,t) for all situations in which a turn may
occur (i.e. the number of subaisles with a pick in area B is even) for a given value of
t and multiplying it by the probability that there are actually ¢ picks in area B and
at least one pick in area A.

The estimate for the situation in which there is a turn in area B when there are no
picks in area A, as well as the situation in which a turn occurs in area EU F' can be
derived in a similar fashion. For this, we also need to define a set G,4q which use and
derivation is basically similar to that of G.yen. By taking the sum over all possible
values of 7 and j and multiplying by the probability that 7 is the left-most pick aisle
and j is the farthest block, we obtain the estimate F4 for the extra travel distance

resulting from turns in subaisles:

n k m
_ _ _ y+ky. t Y+ kye
Bo= 33 a3 (P = enti =0y (2 R L v
=1 j=1 t=1
+P;(Ua >0AU, =1)- Y Ci(g,1)
9E€EGeven
+P;(Ua =0AUy=t)- > Ci(g,t)
9€Godd
+(—1)- P (U =t)- Y Ci(g.t)
9E€Geven
where
i—1 g\ y+kye 5 y+kue
. ,t — - X 2. —
e = (1) () (2t
9! g g-7\'
X = 1-— —N“( ><—>
;( ) g— g
Geven = {g|1§g§iflag§tandgiseven}

Goda = {9]1<g<i—-1,9<tandgisodd}
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5.3.5 Travel distance within cross aisles

The distance traveled by the order picker in the cross aisles can be divided into the
following components:

a. The distance traveled in cross aisles of the block farthest from the depot that

contains picks

b. The distance traveled in cross aisles of blocks other than the farthest block
while picking items. That is, all of the distances traveled between two subaisles
in the same block, with at least one pick in each of the two subaisles.

c. The distance traveled in the cross aisles while connecting one block with the
next. This travel results from step 5 of procedure for S-shape as described in
Section 2.2.1.

The remaining distances traveled in cross aisles concerns the distance from the
depot to the left-most pick aisle and the distance traveled in the front most cross
aisle from the last pick back to the depot. These will be given in Section 5.3.6.

Estimates for the first three components will be given in this section. For a graphical
illustration see Figure 5.2, where the three components are marked 5a, 5b and 5c.

First we will give an estimate for the distance traveled in the cross aisles of the
block farthest from the depot that contains picks. Suppose that i is the left-most
pick aisle with picks and that j is the block farthest from the depot with picks. We
introduce g, where g indexes the subaisles from right to left. Note that ¢ indexes the
pick aisles, right to left as well. If g is the right-most subaisle in block j with picks,
then the distance traveled in the cross aisles of block j is (i — g)z.. If L;;(g) gives the
probability that g is the right-most subaisle in block j with picks, then the estimate
for cross aisle travel in the farthest block is given by:

i—1
Ey=x.- Z [(i — 9) - Li;(g)]
g=1
In this formulation L;;(g) is given by:
Lij(9) = P(exit block j at subaisle g) (5.5)
m—1 Z*g up ’L*gfl up
- S [ (525

up=1

This can be explained as follows. The area under consideration is area B. This
area consists of ¢ — 1 subaisles. Suppose there are u; items to be picked in this area.
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Then the probability that all u; items fall in the subaisles g, ...,7 — 1 and subaisle g
contains at least one pick, is given by:

i—g\"™ i—g—1\"
1 —1 1 —1

Taking the sum over all possible values of u; and multiplying by the corresponding

probabilities yields equation 5.5.

Next we consider the estimate for the distance traveled in cross aisles of blocks other
than block j while picking items. Consider area F' where we have i — 1 subaisles. The
probability that all picks fall in £ + 1 consecutive subaisles is given by:

Q(@z(ff—i)w—2<ifl>w+<fj>w (56)

Q(¢) gives the probability that the left-most and right-most subaisles with picks in

area F' are exactly a distance of £-z. apart. That is, equation 5.6 gives the probability
that all items of this area fall in subaisles (1, ..., {5, at least one pick falls in /1, at
least one pick falls in ¢5 and ¢5 — ¢; = £. For an explanation refer to Appendix C
where the probability Q(¢,r) is introduced, which is largely similar to equation 5.6.

There are (i — 1 — ¢) different combinations of £+ 1 consecutive subaisles possible
from a set of 4 — 1 subaisles. The distance traveled is x. - £. Furthermore, we have to
sum over all possible values of the number of picks in this area and multiply by the
corresponding probability. Finally, since there are j — 1 areas where cross aisle travel
can occur during picking we have to multiply by j — 1. Summarizing, we get as an
estimate:

m—1 i—2
B =we (j—=1)- > Y [t (i—1—=0)- Q) Py(Uy = uy)]
up=1 =1
The third component consists of cross aisle travel while connecting the blocks
between picking. We need a factor to account for the expected travel from the end
subaisle of the previous block to the start subaisle of the next block. We have Ef
as an estimate for the distance between the left and right-most subaisle in a block
containing items. The distance between the subaisles 1 and ¢ — 1 is equal to ¢ — 2.
Therefore, the end point of the previous block can vary over a distance of x.(i —
2) — El'. The start point of the next block and end point of the previous block
are uniformly distributed over this distance. Treating aisle locations as continuous
random variables, an approximation for the expected distance between the location
of the two points is:

(- 2) v~ B)

W =
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This holds for j — 1 blocks. Furthermore, the distance only needs to be traveled if
there is at least one pick in the next block. Otherwise, the order picker just traverses
the closest subaisle to go straight to the next block. Therefore, we can estimate the
distance traveled in the cross aisles while connecting one block with the next, by:

B = (=) 5 (=2 we— ) - (1 = Py(Uy =0)

The total estimate E5 for cross aisle travel thus becomes:

n k

B =Y > Ay (E{+E{ + EY)

i=1 j=1

5.3.6  Travel distance to and from the depot

In this section we will give an estimate for the distance that has to be traveled through
the front-most cross aisle from the depot to the left-most pick aisle with items and
for the distance traveled through the front most cross aisle after all items have been
picked.

First of all the order picker goes from the depot to the left-most pick aisle that
contains items to be picked. The estimate for this can be obtained analogous to that
given in equation 4.4 of Chapter 4, this gives:

n

Eg_xc-z<|g(nd+1)|-[(%)m(9;1>mD (5.7)

g=1

After picking all items the order picker returns to the depot through the front
cross aisle. It is important to know whether the path through the last block with
picks went from left to right or from right to left through the block. If the subaisles
in the last block were visited left to right then the distance to a depot located at the
head of the left-most pick aisle is much larger, then if the subaisles were visited right
to left. We will first determine the probability that the number of blocks that have
to be visited is odd. If the number of blocks to be visited is odd then we will assume
that the order picker visits subaisles in the last block from right to left. We assume
this because subaisles in the first block, the ’farthest block’, will always be visited
from left to right. Subaisles in the block, that is visited next, are likely to be visited
from right to left and so on. Likewise, if the number of blocks to be visited is even,

we assume that the subaisles in the last block are visited from right to left.
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The probability that there are exactly h blocks to be visited out of a total of k can
be derived analogous to equation 5.3:

() (2) -~ 63

S IC )

v=1

where

Then the probability that the number of blocks to be visited is even, is given by:

Peven = Y <:> <%>m-x’

heHC'UCn
Hepen ={h |1 <h <k, h <mand h is even}
The probability that the number of blocks to be visited is odd, is given by:

Poddzlfpeven

Given that the path through the last block goes from right to left, i.e. the number
of blocks visited is even, we can determine the expected travel distance in the front
cross aisle. Suppose that the left-most pick aisle with items is pick aisle i, the farthest
block with picks is block j and the number of picks in this last block is uyf, then,

similar to equation 5.7, the expected distance to the depot is:

S o= - arn- [(25) - (22)))

g=1

Taking the sum over all possible values of u¢ and multiplying by the corresponding
probability gives:

B —a, zz( 50 =un-lo-m-a+ v [(25)7 - (&3)])

Similarly, we can determine the expected distance from the right-most subaisle of

the last block to the depot, in case of an odd number of blocks to visit, to be:

i—1 m—1 . uy . uy
o i1—g 1—g—1
Egt =) <Pij(Uf:“f)'|9—(n—d+1)|'[(i_1> —<ﬁ> }

g=luy=1
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These formulations, however, do not include the distance that has to be traveled
through the front cross aisle if Uy = 0. That is if the block closest to the depot has
no picks. We will assume that the order picker in this case has to travel half the
distance. That is, we assume that the order picker — on average — ends in the middle
of the last area between subaisles 1 and 7. The middle of this is x. - /2 from pick
aisle ¢ and z. - (n —i+1) + . - i/2 from the left side of the warehouse. The distance
from this location to the depot is therefore given by:

7
e (n—s+1-d
x <n 2+ >

with probability P;;(Us = 0). Thus,
Eg:xyI%@Q:0y<n—%+l—d)

Finally, we need to determine the distance the order picker travels if all picks are
in the block closest to the depot. That is , if j = 1. Similar to the previous estimates,
this estimate can be derived to be:

B =33 (-0 () (52)))

i=1 g=1

In total, we find as estimate Fg for the distance traveled to and from the depot:

n k
Eg = Eé + ZZ [Aij (Pwan B 4 Pogq - Egdd + Eg)] + Eé”
i=1 j=2

5.3.7 Ezxtra time needed to change aisles by the picking vehicle

The extra time needed for changing aisles depends on the situation and type of
vehicle used. Where orders are retrieved by an order picker walking through the
warehouse with a small picking cart, there will be no additional time for changing
aisles. However, if a relatively large vehicle is used in narrow aisles, then additional
time is required for each change of pick aisles to position the vehicle correctly.

The number of subaisles to visit can easily be identified to equal:

k
Y+ kye

If it takes t. seconds to maneuver the vehicle per subaisle, then an estimate for

E[A] = (Ey + Ey + E) -

travel time needs to be adjusted by t. - E[A]. We note that this adjustment is only
possible if the entire estimate is given in seconds, instead of meters. For methods to
do this, as well as to incorporate different travel speeds within and outside the pick
aisles, see Section 4.2.3.
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5.8.8 FEstimate for total average travel distance

The total estimate for average travel distance in a warehouse with n pick aisles, k
blocks, d the location of the depot and m items to retrieve, can now be formulated

as:

Tm(n, k,y,d) = ZEi (5.9)

5.4 Comparison between simulation and the estimate

In this section, we will compare the values of the estimate developed in this chapter
with the results from simulation. We consider the same manual picking operation in
a shelf area as in Chapter 2. The center-to-center distance between two neighboring
pick aisles is 2.5 meters. Order pickers are assumed to travel through the middle of
the aisles and cross aisles. Cross aisles are 2.5 meters wide. For this type of picking
areas we assume the following measures to be representative. Pick aisle length varies
between 10 and 30 meters. Each order picker works in a zone consisting of 7 to 15
pick aisles. Each picking route has to visit between 10 and 30 locations. We use the
extremes of these values for our comparison, which gives eight different situations.
Furthermore, for each situation we consider five different values for the number of
blocks. That is, we make a comparison for one block situations. Then we insert cross
aisles to increase the number of blocks to 2, 3, 4 and 5. The cross aisles are equally
spaced over the distance from the front of the warehouse to the back. For the sim-
ulation we generated 10,000 orders for each situation. Pick locations are distributed
over the aisles and locations according to a uniform distribution. No picks occur in
the cross aisles. Table 5.1 gives the results from the simulation. Table 5.2 gives the
results from equation 5.9. The percentage difference between the simulation and the
formula is given in Table 5.3.

The percentage differences in Table 5.3 between simulated and calculated values
have been calculated before rounding off the route length. The results from the for-
mula follow the behavior of the simulation fairly closely. The absolute difference varies
from 0.01% upto 3.39%.
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simulation number of blocks
aisles length items 1 2 3 4 5
7 10 10 98.7 87.1 91.3 93.5 96.6
7 10 30 121.8 126.2 150.5 152.6 168.2
15 10 10 159.5 1346 1476 1522 157.3
15 10 30 234.8 215.8 259.7 254.9 288.9
7 30 10 211.1 164.9 153.4 147.1 145.3
7 30 30 270.9 255.9 263.4 252.3 257.6
15 30 10 310.3 225.7 216.7 210.1 209.0
15 30 30 500.2 411.8 413.8 382.8 398.9

Table 5.1 Average travel distance as determined by simulation.

formula number of blocks
aisles length items 1 2 3 4 )
7 10 10 99.3 858 924 909 953
7 10 30 123.8 1274 150.8 150.2 168.2
15 10 10 159.8 130.9 150.6 147.0 155.9
15 10 30 235.6 2154 257.7 247.6 287.0
7 30 10 212.3 163.8 154.5 144.6 144.0
7 30 30 274.0 257.8 264.3 250.3 257.9
15 30 10 310.8 222.1 219.6 205.1 207.7
15 30 30 501.6 411.8 412.1 375.7 397.2

Table 5.2 Average travel distance as determined by equation 5.9.

percentage difference number of blocks

aisles length items 1 2 3 4 5
7 10 10 -0.66 1.53 -1.21 2.72 1.38
7 10 30 |-1.67 -092 -0.19 1.61 -0.01
15 10 10 -0.18 2.71  -2.02 3.39 0.87
15 10 30 |-035 0.19 080 2.84 0.67
7 30 10 [-0.55 0.69 -0.72 1.68 0.85
7 30 30 |-1.17 -0.75 -0.34 0.81 -0.14
15 30 10 |-0.15 1.60 -1.38 2.41 0.62
15 30 30 |-029 001 041 1.85 0.43

Table 5.3 Percentage difference between the average travel distance determined by simula-

tion and the average distance determined with equation 5.9.
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5.5 An example of layout optimization

In Section 5.2 we have given a model to determine the layout for the order picking
area. The objective function for this model is derived in Section 5.3. Here we will
illustrate the model with an example. We return to the case study of Section 2.5. A
picking zone in this warehouse consists of 11 pick aisles and two blocks. Each side
of a subaisle offers space for 42 sections with 8 bins each. Thus a picking zone offers
space to 1848 sections of 8 bins, ignoring any space required for roof support and
staircases. A subaisle is 18.57 meters long, implying that a bin section requires 0.442
meters. That is, 0.40 meters for the bins and 4.2 centimeters for the racks and some
clearance. The center-to-center distance between aisles is 2.115 meters and the cross
aisle width is 2.6 meters. We will search a layout for 'preferred zone 1’ and assume
that products are uniformly distributed over the area and that the pick lists contain
17 items.

Since we intend to design a picking area for bins, aisle length must be a multiple
of 0.442 meters. Otherwise, we would have some dead space at the end of the aisle,
where no bins fit in. Furthermore, we require that the design must be such that
the total number of bin sections in the area is at least 1848. The actual number of
sections depends on the number of pick aisles.

This gives us the following model:

min T, (n, k, y)

s.t.
y=0.442 - [224]
n>1
k>1
n, k integer
with parameters:
m = 17
d =1
. = 2115
Ye = 2.6

In this model we have replaced the equation y - n = S of the original model by
y =0.442- {%1. This is done because there must be at least 1848 bin sections. Bins
can be on both sides of the aisles, so if we created a warehouse of one aisle, then
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this aisle would be 0.442 - 924 meters long. The bin sections are divided equally over
the n pick aisles. Dividing 924 by n may result in a fractional number, therefore the
result is rounded upto the nearest integer larger than 924/n. To obtain the length
of an aisle we multiply the number of sections per pick aisle by 0.442 meters, which
gives (0.442 - {%1. The number of picks per route is 17, the depot is assumed to
be located at the head of the left-most pick aisle, center-to-center distance between
aisles is 2.115 meters and cross aisle width is 2.6 meters.

For the optimization, we have evaluated average travel distance for all situations
with 1,2, 3, ..., 10 blocks and 1, 2, 3, ..., 30 pick aisles. From these 300 different layouts,
the situation with 8 blocks and 10 pick aisles had the lowest average travel distance
at 247.4 meters. The original situation of 11 pick aisles and 2 blocks gave an average
travel distance of 307.6. Thus, another layout may reduce average travel distance by
almost 20%.

Furthermore, there is a huge variety of layouts that give average travel distances
that are within 5% of the optimal value. In total, we found that 58 layouts of the 300
layouts we evaluated were within 5% of the optimal value. All of these alternative
layouts are listed in Appendix D. As we already noted in Chapter 4, such a situation
can be very useful for designing a picking area in practice. In this way, other objectives
can be included without having to sacrifice too much in average travel distance. For
instance, in this example a layout with fewer blocks may be desirable. In Figure 5.4,
we have depicted all layouts that give an average travel distance that is within 5%
of the optimal value. As can be seen, the area has a clear structure. In many cases
adding or deleting one or two pick aisles or cross aisles will not alter average travel
distance too much. Note that there are no layouts present in the figure with one or
three blocks. This is due to the fact that these layouts are inefficient with respect to
the amount of cross aisles travel.

5.6 Concluding remarks

In this chapter we have presented a model that can be used to determine a layout for
the order picking area such that the average travel distance is minimized. In Chapter
4 a similar model was given, but that model restricted the number of blocks to one.
The model of this chapter has no restrictions on the layout variables. The objective
function of the model is based on statistical properties of the routes generated by the
S-shape heuristic. The accuracy of the statistical estimates was shown by comparing
calculated average travel distances with travel distances determined by simulation.
For this the simulation programs described in Chapter 2 were used. It appeared that
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FIGURE 5.4. All layouts with an average travel distance within 5% of the optimal value.

the estimate for average travel distance was at most 3.4% off the simulated values.
In more than half the instances the difference was less than 1%. To illustrate the
application of the model we applied it to a case study. The original situation was
a warehouse with 2 blocks and 11 pick aisles, giving an estimated average travel
distance of 307.6 meters. The best layout we found had 8 blocks and 10 pick aisles
resulting in an average travel distance almost 20% lower than in the original situation.






6

Conclusions and further research

Warehouses form an important part of the supply chain. Warehouses are needed for
a number of reasons such as to facilitate the coordination between production and
customer demand, by buffering products for a certain period of time, to accumulate
and consolidate products from various producers for combined shipment to common
customers, to provide same-day delivery to important customers, and to perform
product customization activities, such as packaging, labeling, marking and pricing.
A more elaborate description of the functions of warehouses and several trends in
warehousing and logistics are discussed in Chapter 1.

This thesis describes several new concepts to improve the efficiency of order picking
in warehouses. Order picking concerns the retrieval of products from storage to meet
the demand of customers. This order picking process is often one of the most laborious
and time-consuming activities in a warehouse. The efficiency of the order picking
process depends on factors such as the methods for storage and transport, on the
layout of the storage area and on the control mechanisms. In Chapter 1 of this thesis
we give an overview of various types of warehouse equipment, storage systems and
methods for warehouse sizing, system selection and warehouse layout. Furthermore,
numerous control policies, i.e. rules that determine many warehouse operations, are
described in detail in Chapter 1.

In picker-to-part systems, the order picker walks or drives through the warehouse

to one or more locations to retrieve products. Picker-to-part systems are the most
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frequently used systems for retrieving items from storage in warehouses. Usually the
most time-consuming task for the order pickers in these systems is traveling from
location to location. This thesis gives new methods to reduce the travel time of
order pickers in picker-to-part systems. These methods include routing methods and
methods to determine a layout for the order picking area.

6.1 Routing methods for order pickers

The changes required in logistics due to the emergence of e-commerce force ware-
houses, among other things, to improve the speed of their processes. Routing meth-
ods can play a role in the efforts to improve warehousing speed. Routing of order
pickers, as treated in Chapters 2 and 3, concerns the determination of a sequence in
which a certain number of products have to be retrieved from storage. The common
objective in routing problems is to develop a method that is capable of generating
routes that are as short as possible. Routes of order pickers are restricted to the aisles
and cross aisles of the picking area. Products are stored on both sides of the aisles.
The order pickers can change aisles in one of the cross aisles, which are perpendicular
to the aisles. A block is that part of the picking area that is between two cross aisles.
A graphical representation is given in Figure 1.1.

In Chapter 2 we discuss some existing routing policies for warehouses consisting
of one block, i.e. a layout with two cross aisles, one in the front and one in the back.
Differences between routing heuristics for one-block layouts are discussed based on a
literature study. Furthermore, we present several heuristics for layouts with multiple
blocks. One method comes from existing literature; two other heuristics are newly
developed extensions of heuristics for the one-block layout. New heuristics for a lay-
out with multiple blocks, the combined and combined™ heuristics, are presented as
well. Performance comparisons between heuristics and an algorithm, that can gener-
ate shortest order picking routes, are given for various warehouse layouts and order
sizes. For the majority of the instances with two or more blocks, the our combined™
heuristic appeared to perform better than any of the other heuristics.

It might also be desirable to have an algorithm that can efficiently calculate shortest
order picking routes. Such an algorithm exists for warehouses consisting of one block
and with a central depot. This algorithm is, however, not capable of determining
routes in warehouses with more than one block. In Chapter 3 we give a new algorithm
that is capable of determining shortest order picking routes in warehouses consisting
of two blocks with a central depot. If desired, the algorithm can also be used for
warehouses of one block. To show the relevance of such an algorithm for practice,
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we have given a comprehensive test of the implications for average travel time when
changing the number of blocks from one to two. The average travel times for situations
with one and two blocks were compared for pick lists varying in size from 1 to 50
items. It appeared that average travel time is often lower in warehouses with two
blocks. However, this is dependent on the size of the pick list. Large pick lists in
small warehouses are best picked in a one-block layout. Large warehouses profit of a
second block regardless of pick list size.

All experiments in Chapters 2 and 3 and the case study in Section 2.5 show the
importance of good methods for routing order pickers. Decreases in average travel
time of up to 35% appeared to be possible by introducing another routing method.
The combined™ heuristic we developed in Chapter 2 of this thesis appeared to have
superior performance for warehouses consisting of multiple blocks. The new optimal
routing method for warehouses with two blocks we developed in Chapter 3, appeared
to have good potential, since order picking routes are often shorter in two-block
warehouses than in one-block situations. These improvements in travel time are es-
pecially important since order picking is one of the most time-consuming aspects of
warehousing.

6.2 Layout of the order picking area

The time needed for driving to pick locations obviously depends on the layout of the
picking area. In Chapters 2 and 3 we have discussed some consequences of layout of
the order picking area for average travel time. From the results it appeared, among
other things, that the addition of cross aisles (i.e. replacing one block by multiple
smaller blocks) can decrease handling time of the orders by lowering average travel
time. However, adding a large number of cross aisles may increase average travel
times because the space occupied by the cross aisles has to be traversed as well.

In Chapters 4 and 5 we have developed a model to determine the layout that min-
imizes average travel distances. The model in Chapter 4 has the restriction that the
layout consists of one block. This means that the variables that are to be determined,
are the number of aisles, the length of the aisles and the depot location. The inputs
for the model are properties of the system and equipment, the distribution of the
number of picks per route and the total storage capacity. In Chapter 5 a similar
methodology is used to find layouts where the number of blocks is not restricted.

The models of Chapters 4 and 5 are very simple, except for the objective function.
The objective function is a statistical estimate of average travel distance based on
the properties of a commonly used routing method, the S-shape heuristic. The ob-
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jective functions for the models are derived in detail. To check the accuracy of the
estimates for average travel distance, we compared the calculated values with results
from simulation. The difference between calculated and simulated values was for all
instances at most a few percent.

Existing literature does include travel distance estimates for one-block situations.
However, none of the existing estimates included the depot location explicitly. There-
fore, optimization of the depot location was not possible. Furthermore, the estimates
of travel distance within the pick aisles, was not entirely accurate in existing liter-
ature. If the layout is restricted to one block, we have proven in Chapter 4 that a
depot located in the middle of the front cross aisle gives better results with respect to
average travel distances than any other location in the front cross aisle, regardless of
any of the other layout variables. From the experiments it appeared that the optimal
number of aisles in an order picking area depends strongly on both required storage
space and pick list size.

To overcome the limitations of the model of Chapter 4 we have developed the
model of Chapter 5, which has no limitations with regards to the number of blocks.
This is useful since we have shown in Chapters 2 and 3 that in many cases warehouses
consisting of more than one block have lower average travel distances than warehouses
consisting of only one block, given a certain storage capacity. Existing literature
only gives a travel distance estimate for a two-block layout with rather restrictive
assumptions.

The applicability of the model of Chapter 5 was shown by means of a case study.
It turned out that 58 of 300 layouts evaluated had average travel distances less than
5% over the optimum. This implies that the designer of a warehouse has ample
opportunity to include other objectives, like prevention of congestion or flexibility
for future redesign, without having to sacrifice too much in travel distance.

6.3 Further research

Answering one question often raises several new questions. This has been the case
with the research presented in this thesis as well. Unsolved questions with regards
to routing of order pickers include: can we find an even better heuristic to route
order pickers in warehouses with multiple blocks? Can we develop a heuristic that
can be guaranteed to give solutions that are at most x% over the optimal solution?
Can we develop an optimal algorithm for more than two blocks? Other interesting
questions with regards to routing are those that involve the interaction with other

operating polices such as storage assignment and batching. Some research has been
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performed with regards to good combinations of routing and storage assignment.
The performance of batching heuristics also depends strongly on the routing method
that is used. Therefore, some interesting questions to answer are: what are good
combinations of routing heuristics and storage assignment rules? For a given multi-
block layout and routing method, how do we have to store products according to
their demand rate to minimize average travel distance? How do batching methods
perform in a multi-block environment?

In the area of warehouse layout a number of questions also remain unanswered.
We have shown that adding cross aisles can be very beneficial. However, we have
only analyzed layouts with the restriction that products are assigned randomly to
storage locations. What is a good layout if class-based storage is used? What are
the interactions between layout and storage assignment? In our analysis we have
also limited the positions of the cross aisles such that the distance between any two
neighboring cross aisles is the same. However, in some cases it might be better to
place the cross aisles at other positions. This was argued in Chapter 3 for the position
of the middle aisle. It is likely that the positioning of cross aisles becomes an even
bigger issue if a class-based storage assignment rule is used. For example, it might
be a good idea to have a cross aisle directly behind the A-items, the most frequently
requested products. Another question that arises: is it optimal with regards to travel
distance to have a rectangular layout? Or is there a better shape? For example, with
class-based storage it might be an idea to store all A-items in two long aisles and to
store the other items in many short aisles.
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Appendix A
Theorems of Chapter 3

Theorem 1 Ratliff and Rosenthal [227]
A subgraph T' C G is a tour subgraph if and only if

(a) all vertices v; for i =0, 1,2, ..., m have positive degree in T,
(b) excluding vertices with zero degree, T' is connected,

(c) every vertex in T has even or zero degree.

Corollary 1.1 Ratliff and Rosenthal [227]

A minimum length tour subgraph contains no more than two edges between any pair

of vertices.

Corollary 1.2 Ratliff and Rosenthal [227]

If (P, P2) is any node partition of a tour subgraph, there is an even number of edges

with one end in P; and the other end in Ps.

Theorem 2

Necessary and sufficient conditions for 7 C L; to be an L; partial tour subgraph are

(a) for all v; € Lj, the degree of v; is positive in T},
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every vertex, except possibly a;, b; and c;, has even degree or zero degree,
excluding vertices with zero degree, T; has either

no connected component,

a single connected component containing at least one of a;, b; and c¢;,

two connected components with in each component at least one of a;, b; and

¢j, and each of a;, b; and c¢; contained in at most one component,

three connected components with a;, b; and c; each in a different component.

Proof
The proof is similar to that of Theorem 2 of Ratliff and Rosenthal [227].

Theorem 3

Two L; partial tour subgraphs are equivalent if

()

a;, b; and ¢; each have the same degree parity (i.e. even, odd or zero) in both

partial tour subgraphs.

excluding vertices with zero degree, both partial tour subgraphs have either
no connected component,

a single connected component containing at least one of a;, b; and c;,

two connected components with in each component at least one of a;, b; and
¢;, and each of a;, b; and ¢; contained in at most one component,

three connected components with a;, b; and c¢; each in a different component.

the distribution of aj, b; and ¢; over the various components is the same for

both partial tour subgraphs.

Proof

The theorem and therefore the proof is largely similar to Theorem 2 of Ratliff and
Rosenthal [227], only condition (c) is added.

Note: For the layout considered in Ratliff and Rosenthal [227], condition (c) is always

satisfied. However, with a middle aisle this is not the case for 2 components with each

of a;, b; and c; having even degree parity. In all other cases, it can be proven that
(c) is satisfied if (a) and (b) are satisfied.
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Tables of Chapter 3

Table 1 gives the possible transitions from L; equivalence classes to L;y equivalence
classes. Table 2 for L;ry to L;”" and Table 3 for L;rz to L. Denote an entry in row
i, column j by (i,7). An entry (i,5) gives the equivalence class resulting from adding
the edge configuration of column j (as depicted in either Figure 3.2 or 3.3) to the
equivalence class of row 7. Edge configurations from Figure 3.2 are used for Tables 1
and 2; edge configurations from Figure 3.3 are used for Table 3.

Some of the transitions are not possible or will never lead to the optimal solution.
We can distinguish 2 reasons why a transition between two equivalence classes is
not possible. (1) The transition would give a configuration violating condition (b) of
Theorem 2 in Appendix A. (2) The transition would give a configuration violating
condition (c) of Theorem 2 in Appendix A.

For example, consider Table 3. Adding edge configuration (2) from Figure 3.3 to
equivalence class (u,u,0,1) may seem to result in equivalence class (u,0,u, 1). How-
ever, this would violate condition (b) of Theorem 2 in Appendix A. The theorem
implies that after the transition a;, b; and ¢; should have even degree or zero de-
gree and that aj41, bj41 and ¢j41 may have odd degree. Adding configuration (2) to
class (u,u,0,1) would leave b; and c¢; with odd degree and is therefore not permit-
ted. Now in Table 3, consider adding arc configuration (1) from Figure 3.3 to class
(u,u,e,2). Theorem 2(c¢) in Appendix A requires that after the transition each of
the two components contains at least one of ajy1, bj41 and cjy1. Since a; and b;
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are in the same component, a;11 and b;y; will be in the same component as well.
So the connection with the second component (containing c;) will be lost with this
transition. Therefore, it is not allowed.

Table 1

L; to L;ry 1 (2) 3 (1) (3) ©®
(o.o.o.o)b) (0,u,u,1) (0,e.¢,1) (0,,0,1) (0,0,e,1) (0,e,e,2) (0,0,0,0)
(0001)0) e) e) e) ¢) e) (0,0,0,1)
(e,0,0,1) (e,u,u,2) (e,e.e,2,a-bc) (e,e.0,2) (e,0,¢,2) (e e.e,3) (e,0,0,1)
(0,e.0,1) (0,u,u,1) (0,e.¢,1) (0,¢.0,1) (0,e,¢,2) (0,e,¢,2) (0,¢,0,1)
(0,0,e,1) (0,u,u,1) (0,e.e,1) (0,e.¢,2) (0,0.e,1) (0,e,e,2) (0,0.e,1)
(e.c.0,1) (e.uu,1) (e,e.e,1) (e,e.0,1) (e,e,e,2,c-ab) (e,e.e,2,c-ab) (e,e,0,1)
(e,0,e,1) (esu,u,1) (e,e.e,1) (e,e,e,2,b-ac) (e,0,e,1) (e.e.e,2,b-ac) (e,0,e,1)
(0,e.e,1) (0,u,u,1) d) (0,e.¢,1) (0,e.e,1) (0,e.e,1) (0,e.e,1)
(e,e,e,1) (eou,u,1) ) (e e,e,1) (e,e,e,1) (e,e,e,1) (e,e,e,1)
(u,u,0,1) (u,e,u,1) (u,u,e,1) (w,1,0,1) (u,u,e,2) (u,u,e,2) (u,1,0,1)
(u,0,u,1) (unu,e,1) (u,e.u,1) (u,e.u,2) (u,0.u,1) (u,e.u,2) (u,0.u,1)
(0,u,u,l) (0,e,e,1) d) (0,u,u,l) (0,u,u,l) (0,u,u,1) (0,u,u,1)
(e,u,u,1) (e,e,e,1) ) (em,m,1) (eou,u,1) (eou,u,1) (e u,1)
(u,e,u,1) (u,u,e,1) ) (u,e.u,1) (u,e,u,1) (u,e,u,1) (u,e,u,1)
(w,u,e.1) (u.e.u.1) ) (w.u.e.1) (w,u,e.1) (uu,e.1) (u.u.e.1)
(e.0.0.2) (e.u.u.2) (e.e.e.2,a-be)  (e.,e.0.2) (e.c.e.3) (e.c.e.3) (.e.0.2)
(.0.0.2) (e.u.u.2) (e.e.e.2,a-be)  (e.e.e.3) (.0.0.2) (e.c.e.3) (€.0,e.2)
(0,e,¢,2) (0,u,u,1) (0,e,¢,1) (0,e,¢,2) (0,e,¢,2) (0,e,e,2) (0,e,e,2)
(e,e,e,2,a-bc) (eu,u,2) d) (e,e,e,2,a-be)  (e,e,e,2,a-be)  (e,e,e,2,a-bc)  (e,e,e,2,a-be)
(e,e.e,2,b-ac) (e.u,u,1) (e,e.e,1) (e,e.e,2,boac)  (e,e.e,2,boac)  (e,e,e,2,b-ac)  (e,e,e.2,b-ac)
(e,e.e,2,c-ab) (e.u,u,1) (e,e.e,1) (e,e.e,2,c-ab)  (e,e.e,2,c-ab)  (e,e,e,2,ccab)  (e,e,e,2,c-ab)
(eou,u,2) (e,e,e.2,a-be)  d) (e.u,u,2) (e.u,u,2) (eyu,u,2) (eyu,u,2)
(u,e,u,2) (u,u,e,1) (u,e,u,1) (u,e,u,2) (u,e,u,2) (u,e,u,2) (u,e,u,2)
(u,u,e,2) (u,e,u,1) (u,u,e,1) (u,u,e.2) (u,u,e,2) (u,u,e,2) (u,u,e.2)
(c.e.0.3) (e.u,u.2) (e.e.e,2,a-be)  (e,e.e.3) (c.0.0.3) (e.e.0.3) (e.e.e.3)

a) This transition is only allowed if there are no items in this part of the aisle
b) This class can occur only if there are no items to be picked in L;

¢) This class can only occur if there are no items to be picked in G — L
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d) This transition will never lead to an optimal solution

159

e) This transition would violate condition (c) of Theorem 2 in Appendix A

Table 2

L;ry to L;FI ) (2) ) ) (5) 0
(0‘0,0.0)1)) (u,u,0,1) (e,e,0,1) (e,0,0,1) (0,0,0,1) (e,e,0,2) (0,0,0,0)
(O‘U,O.I)C) e) e) e) e) e) (0,0,0,1)
(e,0,0,1) (u,u,0,1) (e,e,0.1) (e.0,0,1) (e,e,0,2) (e,e,0,2) (e,0,0,1)
(0,e,0,1) (u,1,0,1) (e.e,0.1) (e,0.0,2) (0,e,0,1) (e,e.0,2) (0,e,0,1)
(0.0,e,1) (u,u,e,2) (e,e,e,2,c-ab) (e,0,e,2) (0,e,e,2) (e,e,e,3) (0.0,e,1)
(e.c.0,1) (1n,1.0,1) d) (e,e,0,1) (e,e,0,1) (e,e.0,1) (e,e.0,1)
(e.0.e.1) (u.u.e,1) (e.ere,1) (e.0e.1) (c.eie.2.b-nc)  (e.e.e,2.b-ac)  (e.0.e.1)
(0.c.e.1) (u.u.e.1) (e.ere,1) (e.eve2.a-be)  (0.ee.l) (c.ee,2,a-be)  (0.ene.l)
(e,ere,1) (u,u,e,1) 4 (eseve,1) (e,e.e,1) (e.ee,1) (e,ere,1)
(u,u,0,1) (e.e,0.1) a) (u,u.0,1) (u,u,0,1) (u,u,0,1) (u,u,0,1)
(0,0,u,1) (e,u,u,1) (u,e,u,1) (u,0,u,1) (u,e,u,2) (u,e,u,2) (u,0,u,1)
(0,u,u,1) (u,e,u,1) (e.u,u,1) (e.u,u,2) (0,u,u,1) (e.u,u,2) (0,u,u,1)
(e.uu,1) (u,e,u,1) 4 (esusu,1) (e u,u,1) (e.u,u,1) (e,uu,1)
(u,e,u,1) (e,u,u,1) a) (ue,u,1) (u,e,u,1) (u,e,u,1) (u,e,u,1)
(u,u,e,1) (e eve,1) 4 (u,u,e,1) (u,u,e,1) (u,use,1) (u,u,e,1)
(e,0,0,2) (u,u,0,1) (e,e,0,1) (e,e,0,2) (e,e,0,2) (e,e,0,2) (,0,0,2)
(e,0.¢.2) (u,u.e,2) (eere.2,c-ab)  (e,0,e,2) (c.e.0.3) (c.ce.3) (e,0.¢.2)
(0,e,¢,2) (u,u,e,2) (e,e,e,2,c-ab)  (e,e,e,3) (0,c.¢,2) (e,ee,3) (0,e,e,2)
(e,e,e,2,a-be) (u,u,e,1) (e,ee,1) (ee,e,2,a-be)  (e,e,e,2,a-be)  (e,e,e,2,a-be)  (e,e,e,2,a-bc)
(e,e,e,2,b-ac) (u,u,e,1) (e,e,e,1) (e,e,e,2,b-ac)  (e,e,e,2,b-ac)  (e,e,e,2,b-ac)  (e,e,e,2,b-ac)
(e,e,e,2,c-ab) (u,u,e,2) d) (e,e,e,2,c-ab)  (e,e,e,2,c-ab)  (e,e,e,2,c-ab)  (e,e,e,2,c-ab)
(e,u,u,2) (u,e,u,1) (e,u,u,1) (e,u,u,2) (e,u,u,2) (e,u,u,2) (e,u,u,2)
(u,e,u,2) (e,uu,1) (u,e,u,1) (u,e,u,2) (u,e,u,2) (u,e,u,2) (u,e,u,2)
(u,u,e,2) (e,e,e,2,c-ab)  d) (u,u,e,2) (u,u,e,2) (u,u,e,2) (u,u,e,2)
(e,e,e.3) (u,u,e,2) (e,e,e,2,c-ab) (e,e,e,3) (e,e.e,3) (e.e.e,3) (e,e,e,3)

a) This transition is only allowed if there are no items in this part of the aisle

b) This class can occur only if there are no items to be picked in L;‘y

¢) This class can occur only if there are no items to be picked in G —

+y
L;
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d) This transition will never lead to an optimal solution

e) This transition would violate condition (c) of Theorem 2 in Appendix A

Table 3

L7 to Ly, | o (2) ®) &) ) )
(u,u,0,1) (0,u,0,1) =) a) a) a) )
(u,0,u,1) a) (0,0,u,1)  a) a) ¢) a)
(0,u,u,1) a) a) (0,u,u,1) c) a) a)
(cuu.1) a) a) (Omaw1)  (emaul)  a) a)
(weu,1) a) (W0uw1)  a) a) (new1)  a)
(nue.1) (Luw0.1)  a) a) a) a) (wue.1)
(c.um.2) a) a) b) (ewu,2)  a) a)
(n.cm.2) a) b) a) a) (neu?) a)
(nu.e.2) b) a) a) a) a) (u,1,0,2)
L;rz to L;Jrl (10) (11) (12) (13) (14)
©.0,0,0)9 ¢) ¢) o) ¢) (0,0,0,0)
(0‘0.0.1)8) b) b) b) b) (O‘U.U.I)f)
(€,0,0,1) ¢) ¢) b) o) ©0,0,01)F)
(0,¢,0.1) ) b) ¢) o) ©0,0,01)F)
(0.0.c,1) b) o) o) o) ©0,0,01)F)
(e.0,0,1) (e.0,0,1) ¢ ¢) o) ©0,0,01)F)
(e.0,e,1) ¢) (e.0,01) ) o) ©0,0,01)F)
(0,e.e,1) ) ¢) (0.ee1) o) ©0,0,01)F)
(e,ee,1) (e,e,0,1)  (e,0,e,1)  (0,e.e,1)  (e,ee,l) ((L[).O.l)f)
(e,e.0,2) (e,e,0,2)  b) b) ¢) b)

(¢.0.¢.2) b) (e.0.0.2)  b) ) b)

(0,e,¢,2) b) b) (0.c.e,2) ¢ b)
(e,e,e,2,a-be) (e,e,0,2)  (e,0,e,2)  b) (e,e,e,2,a-be)  b)
(e,e,e,2,b-ac) (e,e,0,2)  b) (0,c.e,2)  (e,e,e,2,b-ac)  b)
(e,e,e,2,c-ab) b) (e.0.e,2)  (0.e.e.2)  (ee.e.2.coab) D)

(e,e,e,3) b) b) b) (e,e.e,3) b)
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L;ﬂ to Lj_-i-l (1) (5) (6)
©0,0,0,0)9 ¢) ) ¢)
(0.0.0.1)6) b) b) b)
(,0,0,1) (e,0,0,1)  b) b)
(0,e,0,1) b) (0,,0,1) b)
(0,0,e,1) b) b) (0,0,e,1)
(e,e,0,1) (e.0,0,1) (0,,0,1) b)
(e,0,e,1) (e,0,0,1)  b) (0,0,e,1)
(0,e.e,1) b) (0,e,0,1) (0,0,e,1)
(e,e,e 1) (e.0,0,1) (0.e,0,1) (0,0,e,1)

a) This transition would violate condition (b) of Theorem 2 in Appendix A
b) This transition would violate condition (c¢) of Theorem 2 in Appendix A
c¢) This transition will never lead to an optimal solution

d) This class can occur only if there are no items to be picked in ij

e) This class can occur only if there are no items to be picked in G — L;rz

f) This transition is allowed only if there are no items to be picked in G — Lj“:

This table has been split into three parts for layout reasons. All combinations that

are not in any part would violate condition (b) of Theorem 2 in Appendix A.






Appendix C
Proof of Chapter 4

In this appendix we will prove that the estimated distance between the left most aisle

containing picks and the right most aisle containing picks is given by:
n—1 i m
E[D!] = w, - <(n—1)—2~2 <E> )
i=

The probability that all m items fall in subaisles £, ..., 7, at least one pick falls in ¢
and at least one pick falls in 7, is given by:

()" - 2(59) " + (=) <

n n

Q)=
(l)m L=

n

This can be explained as follows. Clearly the probability that all items fall within
the range of aisles ¢ and r is given by (’";f;'*i)m . However, this includes the probabil-
ity that aisle £ and/or aisle 7 is empty. Therefore, we have to substract the probability
that all items are in aisles £ 4+ 1 through r and the probability that all items are in
aisles £ through r — 1. That is we have to substract 2 times (%ﬂ)m. However, now
we have substracted the probability that all items are in aisles £ + 1 through r — 1
twice; we should only have substracted it once. Therefore, we have to add (%)m.

This gives the desired probability.
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Now, we can write the expected travel distance as:

n

ED})jwe= Y (r=10-Q(tr)
=1,r=1
<r

Because (r — ¢) - Q(¢,r) =0 for £ = r we can rewrite as:

n

E[D})/w, = Z Y (r=0-Qr)
:41%7;:2

By definition of Q(¢,r):

o= 3 o [(E) 2 () ()

<r

Substitute » — ¢ by ¢ and note that there are n — (r — ) possibilities to have all
items in ¢ — r aisles. This gives:

- zeeo[(57) () ()

We split the summation and delete ¢ = 1 from the last sum. The latter operation

is possible since the term equals zero for ¢ = 1. This gives:

n

E[D))/w, = 7‘111'(11—1') (i—;1>m—2:§i(n—i) <l>m
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Rewriting summations gives:

n

ElD;]/wa = 3 (i=1)n-i+1) (n> ‘22 < )m

—I—ij(H—l)(n—i—l) <%>

Taking out one term of the first summation and expanding the first summation
with ¢ = 1 and the last summation with ¢ =n — 1 (that is we add zero twice) gives:

E[D!)/w. = <n—1>+nf<i—1><n—l+1 ( ) ‘22 " (‘)m

i=1

+7§(i+1)(n—i—l) <%>m

i=1

Which equals:

ED;]/wa = (n—1)+

i[(i—l)(n—i‘f‘l)—2i(n—i)+(i+1)(n—i—1)} <%>

= (n—1)+ :ill(—2) <%>m






Appendix D
Table of Chapter 5

This table gives all layouts with an average travel distance that is within 5% of the
optimal value. The best layout is one with 8 blocks and 10 aisles.



168 Appendix D. Table of Chapter 5

blocks aisles distance (m.) blocks aisles distance (m.)
8 10 247.3868 6 15 252.6510
6 12 247.8374 8 13 253.2190
6 11 2479171 4 18 253.3962
8 9 248.1740 4 12 254.4820
9 10 248.2411 7 8 254.6183
9 9 248.3366 4 19 254.8636
8 11 248.4643 10 12 255.2884
7 10 248.6737 7 14 255.6708
6 13 248.7688 6 16 255.7390
6 10 248.8478 9 13 255.9767
7 11 249.0420 5 12 256.6335
10 9 249.5166 5 13 256.8715
4 15 249.7890 2 25 256.9965
4 16 249.9526 8 14 257.0850
9 11 249.9665 10 7 257.2897
10 10 249.9774 9 7 257.3441
7 9 250.2260 ) 11 257.4548
7 12 250.2497 6 8 257.6392
8 12 250.3718 4 11 257.9129
6 14 250.8278 4 20 258.1298
9 8 251.1386 5 14 258.3178
4 14 251.1826 2 26 258.5068
10 8 251.7167 2 24 258.6780
8 8 251.7262 7 15 258.7202
4 17 251.7686 8 7 258.7217
6 9 251.7737 2 29 259.0924
4 13 252.1719 5 10 259.1316
10 11 252.2252 10 13 259.2484
7 13 252.4277 5 15 259.4628

9 12 252.5139



Samenvatting

Tegenwoordig kunnen klanten vele producten bestellen met behulp van een com-
puter of mobiele telefoon via het internet. Een snel verloop van het bestelproces
schept echter ook verwachtingen ten aanzien van de aflevering. Bestaande orga-
nisaties proberen zich aan deze nieuwe situatie aan te passen en nieuwe organisaties
ontstaan. De distributieketen omvat alle activiteiten die te maken hebben met de
stroom en transformatie van goederen van het stadium van grondstoffen tot aan de
klant, evenals de bijkomende informatiestromen. Magazijnen vormen een belangrijke
schakel in de distributieketens. Door producten enige tijd in magazijnen op te slaan,
kan de coordinatie tussen productie en vraag worden vereenvoudigd. Daarnaast kun-
nen in magazijnen producten van verschillende producenten worden gecombineerd
voor verzending naar gezamenlijke klanten, kan worden gezorgd voor levering aan
belangrijke klanten op dezelfde dag als waarop wordt besteld en kunnen producten
klantspecifiek worden gemaakt door ze bijvoorbeeld te voorzien van verpakkingen,
etiketten en prijzen.

In veel magazijnen vervult het orderverzamelen een centrale rol. Orderverzamelen
is het proces waarbij producten uit de opslag worden gehaald op basis van orders van
klanten. Meestal is deze taak niet geautomatiseerd wegens het feit, dat producten
van allerlei afmetingen uit het rek moeten worden gepakt en op een ladingdrager,
zoals een krat of pallet, moeten worden gestapeld. Het orderverzamelen is door de
vele handelingen een zeer arbeidsintensief en tijdrovend proces.
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In dit proefschrift is een aantal methoden beschreven om de efficiéntie van het or-
derverzamelen te verhogen, teneinde tegemoet te komen aan de toenemende druk om
alle schakels van de distributieketen te versnellen. De efficiéntie van het orderverza-
melen hangt onder meer af van factoren zoals de gebruikte opslagsystemen en trans-
portmiddelen, de lay-out en de besturingsregels. Hoofdstuk 1 beschrijft verschillende
systemen voor het opslaan van goederen en verschillende soorten transportmaterieel
om de goederen te verplaatsen. Verder wordt beschreven welke methoden bestaan
om de grootte van het magazijn te bepalen, om de juiste systemen te selecteren en
om de lay-out te bepalen. Ook wordt in detail ingegaan op verschillende besturings-
regels. Deze besturingsregels bepalen voor een aanzienlijk deel de gang van zaken,
bijvoorbeeld door beslissingen te nemen over het volgende: wanneer wordt welke order
verzameld, welke orderverzamelaar voert welke order uit, wat is een goede looproute
voor de orderverzamelaar en wanneer moet een voorraadlocatie worden bijgevuld.

Voor het orderverzamelen zijn twee systemen te onderscheiden, namelijk syste-
men waarbij de orderverzamelaar naar de goederen toe gaat en systemen waarbij
de goederen naar de orderzamelaar komen. Dit proefschrift gaat over de systemen
waarbij de orderverzamelaar naar de goederen toe gaat. Veelal liggen de producten
dan in rekken. De rekken zijn opgesteld in rijen, waartussen de orderverzamelaars
zich kunnen voortbewegen. Het centrale doel van de hier beschreven methoden is het
reduceren van de tijd die de orderverzamelaars besteden aan het zich verplaatsen van
locatie naar locatie, dus van de gemiddelde reistijd per order. We bewandelen hiertoe
twee wegen, namelijk het bepalen van goede routeringsmethoden en het bepalen van
goede lay-outs.

Routeringsmethoden bepalen de route, die een orderverzamelaar door het maga-
zijn moet volgen, zodat elke locatie waar een product uit de order opgeslagen ligt,
wordt bezocht. Van alle handelingen die een orderverzamelaar uitvoert, is dit in
het algemeen de tijdrovendste. Het ligt daarom voor de hand om te proberen hier
tijdsbesparingen te realiseren. Bovendien zijn veel van de andere handelingen niet
eenvoudig te veranderen of te versnellen. Bepaalde handelingen, zoals het pakken en
neerzetten van producten, moeten altijd worden uitgevoerd en de snelheid hiervan
hangt vooral af van de handigheid van de orderverzamelaar. Doelstelling voor de
routeringsmethoden is primair om zo kort mogelijke routes te vinden. Verder kan het
verstandig zijn om rekening te houden met andere aspecten, zoals begrijpelijkheid
van de route voor de orderverzamelaar of congestie indien veel orderverzamelaars
zich in hetzelfde gebied bevinden.

Het bepalen van een lay-out voor een orderverzamelgebied betreft onder andere

het bepalen van het aantal gangen, het aantal blokken en de lengte van de gangen.
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De gangen worden gevormd door de ruimte tussen twee rekken. Dwarsgangen staan
loodrecht op de gangen en dienen alleen voor het wisselen van gang. Orderverzame-
laars bewegen zich door de gangen en dwarsgangen naar de locaties, waar de gezochte
producten liggen opgeslagen. Dat deel van het verzamelgebied dat tussen twee dwars-
gangen in ligt, wordt aangeduid met de term blok. Een voorbeeld van een lay-out van
een orderverzamelgebied is weergegeven in Figuur 1.1.

Het vinden van routes voor orderverzamelaars is feitelijk een speciaal geval van
het bekende handelsreizigersprobleem. Het bijzondere is echter dat het — in tegen-
stelling tot het algemene handelsreizigersprobleem — voor magazijnen bestaande uit
een blok mogelijk is om op efficiénte wijze kortste routes te bepalen. Voor maga-
zijnen bestaande uit twee blokken is in Hoofdstuk 3 van dit proefschrift een nieuw
efficiént algoritme beschreven. Voor situaties met meer dan twee blokken worden in
Hoofdstuk 2 enkele nieuwe heuristieken gegeven.

Allereerst geeft Hoofdstuk 2 een overzicht van een aantal routeringsmethoden
voor magazijnen bestaande uit een blok. Verder wordt kort ingegaan op de ver-
schillen tussen deze methoden. Vervolgens wordt een aantal heuristieken beschreven
om routes te bepalen in magazijnen bestaande uit meerdere blokken. Een van deze
heuristieken komt uit de bestaande literatuur en twee heuristieken zijn aanpassingen
van heuristieken, die zijn ontwikkeld voor situaties met een blok. Verder wordt een
nieuwe heuristiek gegeven die voor de overgrote meerderheid van de testinstanties
beter presteert dan de andere heuristieken. Het praktische nut van een lay-out met
meerdere blokken — in tegenstelling tot een lay-out met maar een blok — wordt zowel
in Hoofdstuk 2 als Hoofdstuk 3 besproken. In zeer veel gevallen leidt het toevoegen
van een extra dwarsgang tot lagere gemiddelde reistijden.

De andere manier, die in dit proefschrift aan bod komt, om de gemiddelde reistijd
per order te reduceren, is het bepalen van een goede lay-out. Zoals gezegd bestaat
het orderverzamelgebied uit een aantal gangen en dwarsgangen. De orderverzamelaars
beginnen en eindigen hun routes vaak bij een depot. Bij het depot kan bijvoorbeeld
een lege ladingdrager of een lijst met te verzamelen producten worden opgehaald.
Volle ladingdragers kunnen hier weer worden afgezet. Het doel van Hoofdstukken
4 en 5 is om het aantal gangen, het aantal blokken, de lengte van de gangen en
de positie van het depot zodanig te bepalen, dat de gemiddeld afgelegde afstand
om een order te verzamelen wordt geminimaliseerd. Hoofdstuk 4 geeft een model
dat kan worden gebruikt om de lay-out te bepalen onder de voorwaarde dat het
aantal blokken beperkt is tot een. Het model van Hoofdstuk 5 kent deze beperking
niet en kan dus worden gebruikt om lay-outs met meerdere blokken te vinden. Als

parameters voor de modellen gelden de eigenschappen van de opslagsystemen en
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voertuigen, de kansverdeling voor het aantal verschillende producten per route en de
totale opslagcapaciteit van het magazijn.

De modellen van Hoofdstukken 4 en 5 zijn simpel, met uitzondering van de doel-
stellingsfuncties. De doelstelingsfuncties zijn statistische schattingen van de gemid-
deld afgelegde afstand, gebaseerd op een veel gebruikte routeringsmethode, de S-
shape heuristiek, en op de aanname dat opslaglocaties voor producten willekeurig
worden bepaald. Een groot gedeelte van de beide hoofdstukken is gewijd aan de
afleidingen van deze schattingen. De precisie van de schattingen wordt aangetoond
door een vergelijking met de resultaten van simulatie. Het verschil is ten hoogste een
paar procent, maar veelal minder dan een procent.

In het geval dat het aantal blokken is gerestricteerd tot een, is in Hoofdstuk 4
bewezen dat het midden van de voorste dwarsgang een betere locatie is voor het
depot dan enige andere locatie in de voorste dwarsgang, wanneer het minimaliseren
van de gemiddeld afgelegde afstand de doelstelling is. Deze optimale locatie van het
depot geldt voor alle in Hoofdstuk 2 genoemde heuristieken en is onafhankelijk van de
andere lay-out variabelen. Het optimale aantal gangen blijkt sterk af te hangen van
zowel de vereiste totale opslagruimte als van het aantal te verzamelen producten. De
toepasbaarheid van het model uit Hoofdstuk 5 is gedemonstreerd aan de hand van een
voorbeeld. Hierbij bleek dat de gemiddeld afgelegde afstand in 58 van de 300 geteste
lay-outs minder dan 5% afweek van de kortste gemiddeld afgelegde afstand. Dit
betekent dat een ontwerper nog ruim de mogelijkheid heeft om aan andere eisen, zoals
voorkoming van congestie of behoud van flexibiliteit voor toekomstige veranderingen,
te voldoen zonder dat de gemiddeld afgelegde afstand sterk stijgt.
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In this thesis, we have consistently used the words "he” and ”his” when referring to a person
working in a warehouse. The reader can freely substitute these words with ”she” and ”her”.
Statistically, this would probably be more correct anyway, since in many warehouses most

employees are female.
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