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Abstract

We analyze a newsboy problem with resalable returns. A single order is placed

before the selling season starts. Purchased products may be returned by the cus-

tomer for a full refund within a certain time interval. Returned products are resal-

able, provided they arrive back before the end of the season and are undamaged.

Products remaining at the end of the season are salvaged. All demands not met di-

rectly are lost. We derive a simple closed-form equation that determines the optimal

order quantity given the demand distribution, the probability that a sold product

is returned, and all relevant revenues and costs. We illustrate its use with real data

from a large catalogue/internet mail order retailer.

Keywords: inventory, newsboy problem, product returns, reverse logistics, mail or-

der retailer

1 Introduction

In many businesses, customers have the legal right to return a purchased product within

a certain time frame. The money is then partially or fully reimbursed and the product

can be resold if the quality is good enough and there still exists demand for it.
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For several reasons, such returns are especially apparent in catalogue/internet mail

order companies. First of all, customers buy via a catalogue or a portal such as the

internet and thus do not get to see the physical product before making their purchase

decision. Consequently, the product often turns out to be the wrong size or shape or the

color differs slightly from that shown in the catalogue or on the internet. Second, the main

attractiveness of this ‘distant shopping’, being the ease with which one can order products

from home without going anywhere, simultaneously constitutes its main downside. It is

easy to return products. After filling out a return form, the product is collected or can

be returned via mail. The purchase price and often also the shipping costs are refunded.

Moreover, the fact that you do not have to bring a product back personally makes the

return process anonymous. For the catalogue/internet mail order retailer that motivated

this study (see also the next section), return rates can be as high as 75%.

Since returned products can be resold (if they are undamaged and returned before

the end of the selling season), returns should be taken into account when taking ordering

decisions. In this paper, we will show how this can be done for the case that a single

order is placed for each product. Of course, this order should arrive before the start of

the season. We note that this single order case is not unrealistic. Large ordering lead

times (e.g. due to production in south-east Asia) and short selling seasons (one summer

or one winter) often force mail order retailers to order the entire collection long before

the start of the season.

So, we analyze the problem of determining the optimal order quantity for a single

order, single period problem. This problem is well-known as the newsboy problem or the

news vendor problem, and has been studied extensively in the literature. See Silver et al.

Khouja [1] and [2] for overviews. However, to the best of our knowledge, Vlachos and

Dekker [3] are the only ones who include a return option.

The analysis of Vlachos and Dekker [3] is based on two very restrictive assumptions.

The first is that a fixed percentage of sold products will be returned. As a result, part of

the variability in the net demand is ignored. Since demand variability is a key factor in the

analysis, this leads to sub-optimal ordering quantities. The second restrictive assumption

is that products can be resold at most once. But if return rates are high, it is likely that

products are resold more than once. Indeed, that often occurs at the mail order retailer
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that will be discussed in the next section.

In this paper we analyze the newsboy problem with resalable returns, but without

these restrictive assumptions. Each sold product is returned with a certain probability.

Products can be resold any number of times. We derive a simple formula that determines

the optimal ordering quantity. Using real data of the mail order retailer, we illustrate

the use of this formula for a large selection of products from a certain selling season.

Furthermore, we compare the resulting order quantities to those that were proposed by

Vlachos and Dekker [3] and to the orders the company would have placed using its ordering

rule.

The remainder of this paper is organized as follows. In Section 2, we describe the

case study that motivated this research. In Section 3, we present the mathematical model

and discuss the assumptions. Section 4 reviews the approximate analysis of Vlachos and

Dekker [3]. The exact analysis is presented in Section 5. Section 6 discusses the available

data from the case study, which we use to illustrate the results. Our procedure for

estimating the mean and variance of gross demand for every product is shown in Section

6.1. For our computations, we assume Normality of gross demand. In Section 6.2, we

show that, given this assumption, the distribution of net demand is approximately Normal

for all products in our data sets. Section 7 describes the computational experiments and

in Section 7.1 we show and analyze the cumulated results over all products as well as the

detailed results for a selected group of nine products. Finally, we summarize our findings

and indicate directions for further research in Section 8.

2 Case study

This research is motivated by a case study at a large mail order retailer. This company

sells a broad range of hardware and fashion products via a catalogue and to a lesser extent

via the internet. By law, customers have the right to return products within 10 days after

delivery. In practice, however, the company allows returns after this period and the bulk

of returns arrives in the second and third week after delivery.

This research concentrates on the fashion products, since these all have a single selling

season and involve high return rates. The return rates are generally around 35% to 40%
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but can be as high as 75%. Products can be returned for free and are collected at the

customers’ homes, which is the main explanation for the high return rates.

There are two selling seasons, summer and winter, which both last 26 weeks. The

manufacturers are situated in south-east Asia, and the order lead time is large (up to 14

weeks, including product development time). Two ‘regular’ orders are placed before the

start of the season, and sometimes a third ‘emergency’ order is placed during the season.

Due to the large lead time, the first regular order is placed long before the season

starts, so that it arrives in time. At the time of placing the first regular order, only a

rough prognosis of season demand is available. Therefore, the first order is small (not

more than 60% of the prognosis) so that the risk of ordering too much is minimal.

Between placing the first and the second regular order, demand information is gathered

by sending a selection of loyal customers a preview catalogue and allowing them to place

orders immediately. That leads to a better estimate, the so-called preview, of season

demand. The second regular order, based on the preview, arrives in the start of the

season, approximately three weeks after the start.

If demand during the first weeks of the season is much higher than expected, then

an additional emergency order is sometimes placed. The lead time associated with that

order is minimized by transporting from the regular (south-east Asian) manufacturer via

air instead of road/sea, or by using a regional (eastern European) manufacturer. Of

course, emergency ordering does lead to higher purchase and ordering costs.

It is clear from this description, that many of the characteristics of this case study fit

the general situation outlined in Section 1. There is one short selling season, order lead

times are large, and return rates are high. But an important difference is that, instead

of a single order, two and sometimes even three orders are placed. Hence, the problem of

determining optimal orders is more complex than the newsboy problem.

However, the key problem is that of determining the optimal second regular order (up-

to level). The first regular order is small, and only needed to cover the period until the

second order arrives. Emergency ordering is expensive, and should therefore be avoided

as much as possible. By focussing only on the second regular order, the ordering problem

reduces to the newsboy problem. So we can apply the newsboy framework of this paper

to get insights into the optimal second regular order. We will do so in Sections 7 and 7.1
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using real data.

3 Model and assumptions

There is a single replenishment opportunity at which Q products are ordered. Those

products arrive before the start of the selling season. The total number of products de-

manded during the season, i.e. gross demand, is denoted by G. Its mean and standard

deviation are denoted by µG and σG, respectively. Customers are allowed to return pur-

chased products within a certain time limit (usually 7-30 days in practice). If a product is

returned, the customer gets a full refund. We assume that each sold product is returned

with the same probability r.

An undamaged returned product is resalable, but only if it is returned/collected, in-

spected/tested, and put back on the shelf before the selling season ends. Moreover, there

must be sufficient demand to sell the returned product (assuming priority of resales over

first sales). We remark that this priority assumption is only needed to classify a returned

product as resalable or not, i.e. for defining a resalable return. The priority rule does not

effect the profit, since returned products are as-good-as-new and sold at the same price

as new products. So, the model is valid for any priority rule used.

It is clear from the above, that in order to determine the probability that a product

is resalable if it is returned, we need to know the selling date, the distribution of the

time between a sale and a return, the collection and test times, and the demand curve

(information on the total season demand is insufficient). To avoid the need for all this

information and keep the analysis tractable (and practical), however, we assume that the

probability that a product is resalable if it is returned is fixed and known, and denote it

by k.

We remark that for the practical case of the mail order retailer, the average time

between a sale and a return plus the collection and test times is about 2-3 weeks and

hence small relative to the length of the selling season (26 weeks). The (expected) number

of demands is larger than the number of returns during almost all of the season (except

the last 4 weeks) for all products. So, almost all returns that are back on the shelf before

the season ends are indeed resalable. These characteristics justify the assumption of a
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fixed (high) probability that a return is resalable.

The objective is to find the order quantity Q that maximizes the expected profit. The

relevant revenue and cost parameters (all per unit) are the selling price p, the salvage

value s, the purchase cost c, the (gross demand) shortage/loss of goodwill cost g, and the

collection cost d.

We introduce some more notations that will appear to be useful in the analysis that

follows. Let ‘net demand’ N denote the total number of (gross) demanded products

that are not returned and resalable (either not returned or returned but not resalable),

assuming that all demands are met. Its mean and standard deviation are denoted by µN

and σN , respectively. Let pG = (1− r)p− rd + r(1− k)s, which can be interpreted as the

unit expected revenue of satisfying a gross demand, including salvage revenue if the sold

product is returned but not resalable. Let pN = (1 + rk + (rk)2 + . . .)pG = pG/(1 − rk),

which can be interpreted as the unit expected revenue of satisfying a net demand, i.e.

of (repeatedly) selling a product until it is not returned and resalable, including salvage

revenue if the sold product is returned but not resalable. Let gN = g/(1− rk) denote the

expected net shortage cost of not satisfying a net demand.

The notations that have been introduced and some additional notations that will be

used in the remainder are listed in Table 1.

INSERT TABLE 1 ABOUT HERE

4 An approximation of the optimal order quantity

Before we determine the exact optimal order quantity in the next section, we first present

and discuss an approximation that was proposed by Dekker and Vlachos [3]. They studied

the same model as we do. However, their analysis is based on two additional assumptions

that will be given below. So the resulting ordering quantity is only approximately optimal.

In a later section, we will study its performance for a number of real life examples.

The two simplifying assumptions are as follows.
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• Products can only be resold once. The authors defend this assumption by remarking

that products are generally resold at the end of the selling season and do not return

again before the end of the season.

• A fixed percentage r of sold products is returned (and resalable). So if n products

are sold, then exactly rn of those products are returned of which exactly krn prod-

ucts are resalable. With this assumption, part of the variability in the number of

(resalable) returns, given gross demand, is ignored.

It is not clear, in advance, what the joint effect of these two assumptions on the order

quantity is. Ignoring part of the variability in the net demand will lead to a smaller ‘safety

stock’ and hence to an underestimation of the optimal order quantity. But assuming that

products can only be resold once will lead to an overestimation of the optimal order

quantity, as is illustrated by the following simple deterministic example. Assume that 300

products are (gross) demanded, every second sold product is returned (r = 0.5), and all

returns are resalable (k = 1). Then, given our assumption that the demand rate is always

larger than the resalable return rate (see the previous section), an order for 150 products

is sufficient to meet all demands. But under the assumption that products can only be

resold once, an order for 200 products is needed.

Under the above two assumptions, it is easy to determine the optimal order quantity.

We will illustrate this for the case with continuous demand, but the approach can also

be used for cases with discrete demand. Recall that for continuous demand cases, the

density function and distribution function of gross demand are denoted by fG and FG,

respectively.

Note that the two above assumptions do not change the expected gross revenue pG =

(1−r)p−rd+r(1−k)s, which includes the collection cost if a product is returned and the

salvage revenue if a product is returned but not resalable. The remaining salvage revenues

are those for products that are never sold and for products that are returned and resalable

but not resold (if priority is always given to resales over first sales, then only products

that are never sold remain). So, the assumptions lead to the following approximation of
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the total expected profit

ÊP (Q) = pG(µG − ÊSG(Q))− cQ− gÊSG(Q) + s(Q− (1− rk)(µG − ÊSG(Q)))

= (pG − s(1− rk))µG − (c− s)Q− (pG − s(1− rk) + g)ÊSG(Q), (1)

where ÊSG denotes the expected gross shortage, i.e., the expected number of gross de-

mands not met. Under the two above mentioned additional assumptions, it is easy to

see that at most Q(1 + rk) (gross) demands can be met. So the expected shortage is

approximated by

ÊSG(Q) = E[G−Q(1 + rk)]+

=

∫ ∞

Q(1+rk)

(x−Q(1 + rk))fG(x)dx

=

∫ ∞

Q(1+rk)

xfG(x)dx−Q(1 + rk)(1− FG[Q(1 + rk)]),

which gives

dÊSG(Q)

dQ
= −(1 + rk)(1− FG[Q(1 + rk)]). (2)

Combining (1) and (2) gives

dÊP (Q)

dQ
= −(c− s) + (pG − s(1− rk) + g)(1 + rk)(1− FG[Q(1 + rk)]).

The order quantity resulting from this approach is therefore

Q̂ =
1

1 + rk
F−1

G

(
(pG − s(1− rk) + g)(1 + rk)− (c− s)

(pG − s(1− rk) + g)(1 + rk)

)
. (3)

Vlachos and Dekker [3] derive the same result using a slightly different analysis.

5 The exact optimal ordering quantity

Recall that the approximately optimal ordering quantity, derived in the previous section,

was based on two simplifying assumptions. Those assumptions were needed, because the

focus was on gross demand rather than net demand. In this section, we will not use any

simplifying assumptions, and use a ‘net demand approach’ to determine the exact optimal

ordering quantity.
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Recall that the expected net revenue pN includes the collection cost if a product is

returned and the salvage revenue if a product is returned but not resalable. The remaining

salvage revenues are those for products that are never sold and for products that are

returned and resalable but not resold (if priority is always given to resales over first sales,

then only products that are never sold remain). Hence, in ‘net terms’, the total expected

profit can be expressed as

EP (Q) = pN(µN − ESN(Q))− cQ− gNESN(Q) + s(Q− (µN − ESN(Q)))

= (pN − s)µN − (c− s)Q− (pN − s + gN)ESN(Q) , (4)

where ESN denotes the expected net shortage, i.e., the expected number of net demands

not met.

Since the maximum number of net demands that can be fulfilled is Q, the expected

net shortage is

ESN(Q) = E[N −Q]+

=
∞∑

l=Q+1

(l −Q) Pr[N = l]

and hence

ESN(Q)− ESN(Q− 1) = −Pr[N ≥ Q]

= −(1− Pr[N < Q]) (5)

Combining (4) and (5) gives

EP (Q)− EP (Q− 1) = −(c− s) + (pN − s + gN)(1− Pr[N < Q])

So the optimal order quantity Q∗ is the largest value of Q for which

Pr[N < Q] >
(pN − s + gN)− (c− s)

(pN − s + gN)
,

i.e. the largest value of Q for which

∞∑
n=0

n∑
m=n−Q+1

Pr[G = n]

(
n

m

)
(rk)m(1− rk)n−m >

(pN − s + gN)− (c− s)

(pN − s + gN)
.
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In practice it will be difficult, if not impossible, to estimate all probabilities Pr[G =

n], n = 0, 1, 2, . . .. An easier alternative is to estimate the mean and the variance of

gross demand, and then fit a continuous (e.g. Normal) distribution. Using the below

expressions for the mean and the variance of net demand, which are proven in appendix

A, the same can be done for net demand.

µN = (1− rk)µG and (σN)2 = (1− rk)2(σG)2 + rk(1− rk)µG (6)

Note that (σN)2 > (1 − rk)2(σG)2. This is in correspondence with our statement in

Section 4 that assuming fixed return and resalable rates leads to an underestimation of

the variability in the number of resalable returns, and hence to an underestimation of the

variability in the net demand.

Denoting the continuous distribution function of net demand by FN(.), we then get

Q∗ = F−1
N

(
(pN − s + gN)− (c− s)

(pN − s + gN)

)
. (7)

In our computational experiments using real data in Section 7, we will assume Nor-

mality of both gross demand and net demand. Assuming Normality of gross demand is

common practise. As will be shown in Section 6.2, the distribution of net demand is

approximately Normal, if the distribution of gross demand is Normal.

6 Data

For our computations, we use data provided by a large mail order company. See Section

2 for a short description of the company. Recall from that section that we focus (for

each product) on the order that is placed after the previews of season demand and of

the return probability become available, and consider this to be the only (newsboy) order

that is placed. So, we will restrict the discussion to data that is relevant for placing this

order.

There are two data sets. Set 1 consists of 4761 products, for which the preview of

gross demand and the realized gross demand are given. Set 2 consists of 427 products,

and additionally gives the preview of the return rate/probability, the realized return rate,
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the salvage value, the purchase cost, the return collection cost, and the sales price. Table

2 gives a quick impression of the ranges of the parameters.

INSERT TABLE 2 ABOUT HERE

Most information is available for the products in Set 2. In Section 7, we shall determine

the order quantities Q̂ and Q∗ for those products. However, some relevant information

for doing so is missing: the probability k that a return is resalable, the shortage (loss

of goodwill) cost g, and the distributions of gross and net demand. After discussions

with the retailer, we decided to set k = 0.95 for each product. These discussions also

convinced us to use the same shortage cost for each product (since every shortage results

in a dissatisfied customer), though no indication was given about the right value. In

our computations, we will try and compare different values of the shortage cost. In the

remainder of this section, we describe how demand distributions are estimated.

First, in Section 6.1, we derive estimators for the mean and variance of gross demand

using the data in Set 1. Note that via (6), these estimators can also be used to obtain

estimates for the mean and variance of net demand. Then, in Section 6.2, we argue that

it is reasonable to assume that both gross and net demand are Normally distributed.

6.1 Estimating the mean and variance of gross demand

In this section, we propose estimators for the mean and the variance of gross demand

for a product, given only the preview estimate of mean gross demand. These estimators

are based on the data (demand preview and demand realization) in Set 1. Since this

data concerns a single selling season, it is not possible to do a time series analysis for

each product separately. Instead, we obtain estimators for the mean and the variance of

gross demand by combining the data for all products. To avoid additional notation, those

estimators are simply denoted by µG and (σG)2, respectively. The preview of mean gross

demand is denoted by µP .
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We restrict our attention to estimators with the following simple structure:

µG = aµP , (8)

(σG)2 = b(µG)c, (9)

where a, b, and c are constants. These constants will be based on the data in Set 1.

Recall that Set 1 contains 4761 products, for which the preview and the realization

of gross demand are given. However, we remove all 824 products with a preview of less

than 150. For those products, the preview is very unreliable (often more than a factor

10 wrong, e.g. preview 4 and realization 112). So, the reduced data-set contains 3937

products with a preview of at least 150. The average of a certain expression E over these

3937 products from Set 1 is denoted by AVERAGE1(E).

In order to get an unbiased estimator µG, we compute the ratio of realized gross

demand over the preview, G/µP , for all products. This leads to the following parameter

value for a.

a = AVERAGE1

(
G

µP

)
= 0.856.

Note that this implies that, on average, the realization of gross demand, G, is 14.4% lower

than the preview. Even after discussions with the retailer, the reason for this considerable

bias remains unclear.

We continue with the variance estimator (σG)2. This estimator is determined by the

two parameters b and c. For a fixed value of c, it is logical to set

b = AVERAGE1

(
(G− µG)2

(µG)c

)
. (10)

So we will restrict our attention to c, and calculate the corresponding value of b using the

above equation. The value of c (and the corresponding value of b) should be such that (9)

approximately holds for the entire range of values for µG in our data. We therefore divide

the 3937 products into 10 groups according to increasing ranges of µG, and look for that

value of c for which (G − µG)2/(µG)c is ‘most constant’. It appears from Table 3 that

(G− µG)2/(µG)c increases with the average value of µG for c ≤ 1.5, decreases for c ≥ 1.9,

and is reasonably constant in between. We therefore set c = 1.7. The corresponding value

for b, determined by (10), is 1.84.
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INSERT TABLE 3 ABOUT HERE

Since Table 3 only shows summarized data, we also present a scatter-plot of (G −
µG)2/(µG)1.7 against µG for all 3937 products in Figure 1. It is important to remark that

the seemingly decreasing pattern in this figure is misleading. It is caused by the fact that

the bulk of products has a relatively low µG, and hence most high-valued extremes occur

for low values of µG.

INSERT FIGURE 1 ABOUT HERE

To summarize, we propose the following estimators for the mean and the variance of

gross demand:

µG = 0.856µP , (11)

(σG)2 = 1.84(µG)1.7. (12)

In Section 7, we will apply these for the products in Set 2.

6.2 Normality of net demand

Since the data on gross demand is limited, it is impossible to compare different distribu-

tions with respect to their ‘fit’. In our numerical experiments in the next section, we will

therefore assume that gross demand is Normal. In this section, we show that under that

assumption, net demand is also approximately Normally distributed. We do so for three

products (numbered I, II, and III in this section) from Set 2, but the other products in

this set produce similar results.

Table 4 gives the relevant characteristics of the three considered products. The esti-

mated mean and standard deviation of gross and net demand follow from (6), (11), (12),

and setting r = rP (the return rate preview is not significantly biased) and k = 0.95 (see

Section 6). Products I, II, and III in Table 4 are selected from Set 2 such that the ratio

µN/σN is small, medium, and large, respectively.
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INSERT TABLE 4 ABOUT HERE

The procedure for finding the distribution of net demand, under the assumption that

gross demand distribution is Normal with mean µG and standard deviation σG, is as

follows. We draw from the Normal gross demand distribution until per product 1000

positive random drawings gi, i = 1, 2, . . . , 1000 are obtained (negative drawings are left

out). For each gi, the corresponding number of resalable returns ri is drawn (once) from a

binomial distribution with gi repetitions and probability of success 0.95rP (recall that k is

set to 0.95 for all products). Computing ni = gi− ri then gives 1000 random values of net

demand per product. The net demand distribution is obtained by assigning probability

1/1000 to each ni.

Figures 2a-2c compare the distribution function of net demand to that of a Normal

distribution with mean µN and standard deviation σN (determined by (6)) for products 1-

3. It appears that for all three products, the net demand distribution is close to Normal. In

fact, the difference between the distribution functions is not caused by the non-Normality

of net demand if gross demand is Normal. Instead, it results from the non-Normality

of gross demand, since demands cannot be negative. This explains why the difference

decreases with µN/σN . Fortunately, that ratio is higher than 1.5 for all products that will

be considered in the next section, justifying the assumption of Normal gross demand.

INSERT FIGURES 2a-2c ABOUT HERE

7 Computational Experiments

Using the data in Set 2, we perform computational experiments to compare the exact

optimal order quantity Q∗ to the approximate order quantity Q̂ and to the order quantity

Q̃ (resulting from the order rule) currently used by the retailer. The current order quantity

is equal to the expected net demand, i.e.,

Q̃ = µP (1− rk). (13)
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Recall from Section 2 that Q̃ is actually an order-up-to level instead of an order quantity,

since the preview order on which we focus is the second order. However, as we argued in

that section, the preview order is the key order and we consider it to be the only order in

this study.

Besides a comparison of Q∗, Q̂, and Q̃ for all products together, we illustrate their

differences for a selection of 9 products. The relevant cost and demand data are given in

Table 5.

INSERT TABLE 5 ABOUT HERE

These 9 products were selected to display the effect of an product’s profit margin, its

expected gross demand and its expected return probability on the order quantities and

on the associated expected profits. Products 1-3 in the table are chosen according to

decreasing relative profit margin (p− c)/c, products 4-6 according to decreasing expected

gross demand µG, and products 7-9 according to decreasing expected return probability

r. Moreover, to isolate the effect of the decreasing parameter, the products are chosen

such that all other parameters are approximately constant over every three products for

which one of the aforementioned parameters is decreasing.

To display the effect of the shortage cost g (equal for all products), we use three

different values: g = 0, g = 10, and g = 50.

7.1 Results

We first compare the order quantities and expected profits for the nine selected products,

and will then discuss cumulated results for all products in Set 2. Table 6 displays the

results for the selected nine products. Table 7 in Appendix B gives a detailed view of the

separate revenues and costs.

INSERT TABLE 6 ABOUT HERE
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The first main conclusion is that the current order quantity Q̃ is too small, often more

than 10% smaller than the optimal order quantity Q∗. This holds even if if the shortage

cost g is set to 0, though the differences are larger, of course, for g = 10, 50. The effect

on the expected profit is small (up to 4% decrease) if g = 0, considerable (up to 13%

decrease) if g = 10, and can be very large (up to 78% decrease) if g = 50.

The result that Q̃ < Q∗ even for g = 0 shows that, by ordering more, the retailer can

increase profit (excluding loss of goodwill costs) and reduce the number of lost sales at

the same time. The poor performance of Q̃ determined by (13) can be attributed to its

simplicity, and especially to the inability to take into account relevant cost parameters.

Besides not considering the shortage cost g, Q̃ does not differentiate between highly and

less profitable products. Clearly, it is better to order relatively more products with a high

profit margin. Products 1-3 in Table 6 illustrate this.

Next, we compare Q̂ to Q∗ for the selection of 9 products. It turns out that Q̂ is

always larger than the optimal order quantity, 13% on average. Recall that Q̂ is based on

the assumptions that items can be resold only once and that a fixed percentage of returns

is resalable. Recall further that the first assumption leads to an upward bias of the order

quantity whereas the second one leads to a downward bias. Apparently, the effect of the

‘single resale’ assumption is dominant. This also explains why the difference between Q̂

and Q∗ is especially large if the return rate is high, since a higher return rate increases

the probability that products are resold more than once.

Table 6 further shows that the difference between Q̂ and Q∗ is almost constant in g.

The difference between the associated expected profits, however, increases considerably

in g. The explanation for this result is that, as for the traditional news vendor problem

without returns, the expected profit curve EP (Q) is steeper on the right hand side for

larger values of g.

We end with a comparison of Q∗, Q̂, and Q̃ for all products in Set 2 together. Table

8 gives the cumulative numbers for the expected profits and the expected lost sales per-

centages. We remark that a comparison of the realized profits and the realized lost sales

percentages, calculated using the realized demand data in Set 2, produced similar results.
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INSERT TABLE 8 ABOUT HERE

Table 8 shows that the percentage of lost sales associated with Q̂ is relatively much

smaller than the percentage of lost sales associated with the optimal order quantity Q∗.

This is because Q̂ is often much larger than Q∗ (see the previous discussion of the results

for the selection of 9 products). The overall effect on the profit is small, however, since the

profit curve is rather flat around the optimum, especially for small values of g. Ordering

Q̂ instead of Q∗ leads to a profit reduction of 1% for g = 0, 2% for g = 10, and 4% for

g = 50.

The overall performance of the current order quantity is very poor. The associated

lost sales percentage is 13%, whereas the optimal lost sales percentage is at most 5% (less

if g > 0). Using Q̃ instead of Q∗ leads to a profit reduction of 2% for g = 0, 5% for g = 10,

and 38% for g = 50.

8 Conclusion

We derived a simple closed-form formula that determines the optimal order quantity Q∗

for a single period inventory (newsboy) problem with returns. Using real data from a

large catalogue/internet mail order company, Q∗ was compared to an approximation Q̂

proposed in a previous study and to the order quantity Q̃ currently used by the company.

It turned out that Q̂ differs more than 10% from Q∗ in most cases. The associated profit

reduction is generally smaller than 5%, but more than 10% in cases with a high return

rate and a high shortage cost. The company’s order quantity Q̃ is far from optimal. It is

much smaller (often more than than 20%) than Q∗. Even if the shortage cost is ignored,

the company could increase profit by ordering more (while reducing the number of lost

sales at the same time).

Due to a lack of data (only forecasts and realizations for multiple items for a single

period are available), we had to develop a procedure for estimating the variance of demand.

The simple procedure that we developed suffices for the purposes of this paper. It would

be interesting, though, to do further statistical research into this forecasting problem and

compare different procedures.
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In this paper, we focussed on the second of the mail order company’s three order

moments, the preview. It would be interesting to extend our model with especially an

additional in-season emergency replenishment option. Such a model can provide useful

insights into the simultaneous determination of the two optimal order quantities and into

the profitability of the additional replenishment option.
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A Mean and variance of net demand

Using

E[K] =
∞∑

n=0

Pr[G = n]E[K|G = n]

=
∞∑

n=0

Pr[G = n]rkn

= rkE[G],

E[K2] =
∞∑

n=0

Pr[G = n]E[K2|G = n]

=
∞∑

n=0

Pr[G = n](V [K|G = n] + (E[K|G = n])2)

=
∞∑

n=0

Pr[G = n](nrk(1− rk) + (rkn)2)

= rk(1− rk)E[G] + (rk)2E[G2]

= rk(1− rk)E[G] + (rk)2(V [G] + (E[G])2)

= rk(1− rk)E[G] + (rk)2V [G] + (rk)2(E[G])2,

and

E[GK] =
∞∑

n=0

Pr[G = n]E[GK|G = n]

=
∞∑

n=0

Pr[G = n]nE[K|G = n]

=
∞∑

n=0

Pr[G = n]n(rkn)

= rkE[G2]

= rk(V [G] + (E[G])2)

= rkV [G] + rk(E[G])2,
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we get

µN = E[N ]

= E[G−K]

= E[G]− E[K]

= E[G]− rkE[G]

= (1− rk)E[G]

= (1− rk)µG

and

(σN)2 = V [N ]

= V [G−K]

= V [G] + V [K]− 2Cov[G, K]

= V [G] + E[K2]− (E[K])2 − 2(E[GK]− E[G]E[K])

= V [G] + rk(1− rk)E[G] + (rk)2V [G] + (rk)2(E[G])2 − (rk)2(E[G])2

−2
(
rkV [G] + rk(E[G])2 − E[G]rkE[G]

)
= (1 + (rk)2 − 2rk)V [G] + rk(1− rk)E[G]

= (1− rk)2V [G] + rk(1− rk)E[G]

= (1− rk)2(σG)2 + rk(1− rk)µG.

B Figures

INSERT TABLE 7 ABOUT HERE
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G gross demand

fG
∗ density function of gross demand

FG
∗ distribution function of gross demand

µG mean of gross demand

σG standard deviation of gross demand

r expected probability that a sold product is returned

k expected probability that a returned product is resalable

K number of resalable returns if all demands are met

N net demand (N = G−K)

fN
∗ density function of net demand

FN
∗ distribution function of net demand

µN mean of net demand

σN standard deviation of net demand

p selling price

s salvage value

c purchase cost

g (gross) shortage/loss of goodwill cost

gN net shortage cost g/(1− rk)

d return collection cost

pG expected gross revenue (1− r)p− rd + r(1− k)s

pN expected net revenue pG/(1− rk)

Q order quantity

Q̃ order(-up-to) quantity currently used by the retailer

Q̂ order quantity resulting from the approximate analysis

Q∗ order quantity resulting from the exact analysis

EP (Q) expected profit for order quantity Q

ÊP (Q) approximation of the expected profit for order quantity Q

ÊSG(Q) approximation of the expected gross shortage for order quantity Q,

i.e. approximation of the expected number of gross demands not met

ESN (Q) expected net shortage for order quantity Q,

i.e. the expected number of net demands not met
∗: if demand is approximated by a continuously distributed variable

Table 1: Notations.
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Set 1 (4761 products) Set 2 (427 products)

demand preview µP 4-12203 103-4174

demand realization 1-13195 15-7102

return rate preview rP n.a. 36.7%-53.3%

return rate realization n.a. 18.3%-74.1%

purchase cost c n.a. 5.25-30.64

return collection cost d n.a. 4.25

selling price p n.a. 19.95-99

salvage value s n.a. 1.58-9.19

Table 2: Data ranges.

c (corresponding b follows from (10))

products µG 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1-779 128-199 66.63 40.07 24.10 14.49 8.72 5.25 3.16 1.90 1.14 0.69 0.41

780-1708 200-299 86.62 49.99 28.85 16.66 9.62 5.55 3.21 1.85 1.07 0.62 0.36

1709-2337 300-399 130.56 72.79 40.58 22.63 12.62 7.04 3.92 2.19 1.22 0.68 0.38

2338-2994 400-599 123.98 66.80 36.00 19.40 10.46 5.64 3.04 1.64 0.88 0.48 0.26

2995-3370 600-799 150.34 78.19 40.67 21.16 11.01 5.73 2.98 1.55 0.81 0.42 0.22

3371-3559 801-999 181.99 92.31 46.82 23.75 12.05 6.11 3.10 1.57 0.80 0.40 0.21

3560-3763 1006-1493 264.93 130.20 63.99 31.45 15.46 7.60 3.74 1.84 0.90 0.44 0.22

3764-3853 1500-1997 291.73 138.30 65.57 31.09 14.74 6.99 3.32 1.57 0.75 0.35 0.17

3854-1913 2017-2986 562.73 258.60 118.86 54.63 25.12 11.55 5.31 2.44 1.12 0.52 0.24

3914-3937 3200-10445 593.08 258.43 112.70 49.18 21.48 9.39 4.10 1.80 0.79 0.34 0.15

Table 3: Average value of (G − µG)2/(µG)c for different values of c and different ranges

of µG.
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Previews Gross demand Net demand

Product µP rP µG σG µN σN

I 150 38 129 84 82 54

II 808 39 692 352 434 221

III 4174 39 3573 1420 2249 895

Table 4: Three products from Set 1 for which Normality of net demand is tested.

product c p (p − c)/c s r = rP µP µG σG µN σN

1 7.56 35.00 3.63 2.27 0.37 545 466 251 301 163

2 14.02 49.95 2.56 4.21 0.37 545 466 251 301 163

3 16.35 38.85 1.38 4.91 0.37 545 466 251 301 163

4 30.64 89.95 1.94 9.19 0.39 3451 2954 1208 1860 761

5 13.66 39.95 1.92 4.10 0.40 1253 1072 511 662 315

6 13.66 39.95 1.92 4.10 0.41 478 409 225 250 138

7 14.85 49.95 2.36 4.46 0.53 572 490 262 242 130

8 17.28 59.95 2.47 5.18 0.44 566 484 260 280 151

9 8.75 29.90 2.42 2.63 0.37 599 513 273 331 177

Table 5: Data for the selected group of 9 products from Set 2. Note that k = 0.95 and

d = 4.25 for all products.
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order quantity expected profit

product Q∗ Q̂ Q̃ EP (Q∗) EP (Q̂) EP (Q̃)

g = 0

1 450 496 (+10%) 352 (-22%) 5979 5932 (-1%) 5715 (-4%)

2 419 459 (+10%) 352 (-16%) 7582 7522 (-1%) 7388 (-3%)

3 353 378 (+7%) 352 (-0%) 3864 3842 (-1%) 3864 (-0%)

4 2295 2546 (+11%) 2172 (-5%) 81245 80254 (-1%) 80985 (-0%)

5 828 917 (+11%) 773 (-7%) 11296 11164 (-1%) 11242 (-0%)

6 323 356 (+10%) 293 (-9%) 4047 4005 (-1%) 4009 (-1%)

7 321 386 (+20%) 282 (-12%) 5133 4951 (-4%) 5054 (-2%)

8 385 438 (+14%) 327 (-15%) 8119 7984 (-2%) 7937 (-2%)

9 448 490 (+9%) 387 (-14%) 4570 4534 (-1%) 4483 (-2%)

g = 10

1 494 549 (+11%) 352 (-29%) 5791 5719 (-1%) 5055 (-13%)

2 456 503 (+10%) 352 (-23%) 7302 7209 (-1%) 6729 (-8%)

3 412 450 (+9%) 352 (-15%) 3374 3312 (-2%) 3204 (-5%)

4 2411 2691 (+12%) 2172 (-10%) 79368 78053 (-2%) 78244 (-1%)

5 929 1045 (+12%) 773 (-17%) 10561 10304 (-2%) 9976 (-6%)

6 367 413 (+13%) 293 (-20%) 3722 3632 (-2%) 3412 (-8%)

7 362 449 (+24%) 282 (-22%) 4805 4451 (-7%) 4363 (-9%)

8 418 482 (+15%) 327 (-22%) 7809 7599 (-3%) 7251 (-7%)

9 511 565 (+11%) 387 (-24%) 4270 4198 (-2%) 3769 (-12%)

g = 10

1 569 638 (+12%) 352 (-38%) 5454 5328 (-2%) 2419 (-56%)

2 527 589 (+12%) 352 (-33%) 6728 6552 (-3%) 4092 (-39%)

3 505 562 (+11%) 352 (-30%) 2530 2361 (-7%) 568 (-78%)

4 2687 3031 (+13%) 2172 (-19%) 74687 72453 (-3%) 67283 (-10%)

5 1096 1251 (+14%) 773 (-29%) 9265 8735 (-6%) 4912 (-47%)

6 441 503 (+14%) 293 (-34%) 3153 2951 (-6%) 1025 (-67%)

7 430 549 (+28%) 282 (-34%) 4231 3544 (-16%) 1598 (-62%)

8 484 567 (+17%) 327 (-32%) 7159 6766 (-5%) 4510 (-37%)

9 605 678 (+12%) 387 (-36%) 3789 3643 (-4%) 913 (-76%)

Table 6: Results for a selection of 9 products from Set 2. The percentual deviations are

relative to the optimal order quantity Q∗ and to the associated optimal profit EP (Q∗).

24



pro- Q̃ Q̂ Q?

duct p s c d g p s c d g p s c d g

g = 0

1 8780 229 -2660 -634 -0 9917 483 -3751 -716 -0 9685 392 -3399 -700 -0

2 12530 425 -4933 -634 -0 13904 762 -6440 -704 -0 13517 625 -5875 -684 -0

3 9761 497 -5762 -633 -0 10095 579 -6178 -654 -0 9774 499 -5776 -633 -0

4 147048 4941 -66563 -4442 -0 155450 7518 -78018 - 4696 -0 150378 5727 -70317 -4543 -0

5 22572 854 -10563 -1621 -0 24144 1283 -12529 -1734 - 0 23272 1007 -11312 -1671 -0

6 8261 352 -3999 -606 -0 8987 536 -4859 -659 -0 8655 435 -4409 -635 -0

7 9818 383 -4193 -953 -0 11016 739 -5734 -1070 -0 10414 504 -4774 -1011 -0

8 13882 496 -5655 -786 -0 15503 930 -7571 -878 -0 14904 704 -6645 -844 -0

9 8279 289 -3384 -700 -0 9100 487 -4283 -769 -0 8834 400 -3917 -747 -0

g = 10

1 8780 229 -2660 -634 -659 10073 593 -4150 -728 -70 9906 478 -3732 -716 -146

2 12530 425 -4933 -634 -659 14192 924 -7059 -718 - 129 13874 749 -6388 -702 -230

3 9761 497 -5762 -633 -659 10768 850 -7362 -698 -247 10458 700 -6733 -678 -373

4 147048 4941 -66563 -4442 -2740 157466 8644 -82459 - 4757 -842 152992 6525 -73871 -4622 -1657

5 22572 854 -10563 -1621 -1266 24926 1728 -14281 - 1790 -279 24240 1323 -12695 -1741 -566

6 8261 352 -3999 -606 -597 9357 732 -5637 -686 -134 9083 575 -5020 -666 -250

7 9818 383 -4193 -953 -691 11286 997 -6674 -1096 -62 10843 648 -5382 -1053 -252

8 13882 496 -5655 -786 -685 15800 1132 -8329 -894 - 110 15309 841 -7217 -867 -257

9 8279 289 -3384 -700 -714 9397 661 -4947 -795 -118 9203 533 -4467 -778 -221

g = 50

1 8780 229 -2660 -634 -3296 10188 788 -4824 -736 -88 10112 636 -4303 -730 -260

2 12530 425 -4933 -634 -3296 14473 1258 -8252 -733 - 195 14299 1014 -7390 -724 -471

3 9761 497 -5762 -633 -3296 11226 1338 -9181 -727 - 295 11057 1080 -8250 -716 -640

4 147048 4941 -66563 -4442 -13702 160307 11476 -92868 -4843 -1620 157421 8615 -82345 -4755 -4249

5 22572 854 -10563 -1621 -6330 25444 2518 -17090 - 1827 -309 25118 1916 -14973 -1804 -992

6 8261 352 -3999 -606 -2985 9602 1078 -6877 -704 - 149 9467 835 -6021 -694 -435

7 9818 383 -4193 -953 -3456 11411 1428 -8146 -1108 - 41 11226 914 -6380 -1090 -438

8 13882 496 -5655 -786 -3427 16070 1549 -9801 -910 - 144 15808 1139 -8355 -895 -537

9 8279 289 -3384 -700 -3571 9569 941 -5929 -809 -128 9484 757 -5295 -802 -355

Table 7: Detailed revenue/cost results for a selection of 9 products from Set 2. Separate

returns and costs are shown for all three order quantities, Q̃, Q̂ and Q?.
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expected profit lost sales percentage

g EP (Q∗) EP (Q̂) EP (Q̃) LS(Q∗) LS(Q̂) LS(Q̃)

0 3190340 3156470 (-1%) 3127520 (-2%) 8% 5% 13%

10 3058070 3004680 (-2%) 2850970 (-5%) 5% 3% 13%

50 2797180 2696130 (-4%) 1744770 (-38%) 2% 1% 13%

Table 8: Cumulated results for all products in Set 2. The percentual deviations for the

expected profits are relative to EP (Q∗). The lost sales percentage LS(Q) is the fraction

of gross demands that are lost (one minus the ‘fill rate’).

Figure 1: Scatterplot of (G − µG)2/(µG)1.7 against µG. To get a clearer picture, we left

out 3 clear outliers and one product with an extremely high value of µG.
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Figure 2a: Scatter-plot for product 1 (see table 4) of the cumulative distribution function

of net demand computed from 1000 random drawings against the Normal cdf with mean

µN and standard deviation σN .
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Figure 2b: Scatter-plot for product 2 (see table 4) of the cumulative distribution function

of net demand computed from 1000 random drawings against the Normal cdf with mean

µN and standard deviation σN .
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Figure 2c: Scatter-plot for product 3 (see table 4) of the cumulative distribution function

of net demand computed from 1000 random drawings against the Normal cdf with mean

µN and standard deviation σN .
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