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The survival of species is guaranteed by maintenance of genome stability,
specifically the protection of DNA integrity. DNA is a chemically reactive molecule,
which is continuously threatened by DNA-damaging agents, both exogenous
(environmental, including ionizing radiation and mutagenic chemicals) and endogenous
(byproducts of cellular metabolism, such as oxygen radicals). The continuous onslaught
by such physical and chemical agents result in about 100,000 modifications per cell per
day [1], and this calls for the existence of diverse DNA repair systems within the cell. The
many different types of lesions that can occur in DNA have necessitated the evolution of
multiple pathways to repair specific subsets of lesions. Therefore, an intricate web of
repair pathways counteracts damage to free DNA from modifications that would lead to
mutations, thus ensuring its error-free transcription and replication.

The lethal effects of ionizing radiation have been attributed to the formation of
DNA double-strand breaks (DSBs), which, if misrepaired, can lead to chromosomal
aberrations including rearrangements, deletions and translocations, cell death and, in
higher organisms, cancer (see Chapter 6). Because unrepaired DSBs result in genomic
fragmentation, it is of critical importance that the DSBs are repaired precisely and in a
timely fashion. Homologous recombination is a high fidelity pathway that ensures the
accurate repair of the broken DNA by using the information present on the undamaged
template DNA, usually the sister chromatid. The process is carried out by the conserved
RADS52 epistasis group proteins, identified by the genetic analyses of ionizing radiation
sensitive Saccharomyces cerevisiae mutants [1, 2]. In mammals, this group includes the MRN
(RAD50/MRE11/NBS1) complex, RAD51, the RAD51 paralogs (RAD51B, RAD51C,
RAD51D, XRCC2, XRCC3), RAD54 and RAD54B [3]. In addition, mammalian
homologous recombination is also modulated by the products of the breast cancer
susceptibility genes, BRCA1 and BRCA2 [4], and perhaps also genes involved in Fanconi
anemia.

According to a model based on current knowledge, when a DSB occurs in the
genome, it is initially detected by the MRN complex, which has been implicated in the
recognition of DSBs in the context of chromatin (see Figure 3, Chapter 2). The MRN
complex binds and tethers the broken DNA ends. The next step involves the
endonucleolytic processing of the DSB to produce 3’ tailed single-stranded DNA.
Currently, the molecular details of this step are not well defined and therefore, the
mechanism by which the DNA intermediate bound by MRN is handed over to the next

step of recombination is still ambiguous. RAD51, the core protein of recombination,
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Chapter 1

oligomerizes on the 3’ single-stranded tails giving rise to a nucleoprotein filament. This
filament then recognizes homologous duplex DNA in the genome, mediates joint
molecule (D-loop) formation between the broken and intact template DNA and
promotes strand exchange between the recombining partner DNA molecules. However,
RADO51 is unable to carry this processs out by itself. RAD51 requires the presence and
function of accessory proteins to carry out its function properly, namely RPA, RAD52
(n S. cerevisiae), RAD51 paralogs, BRCA2 (in vertebrates) and RAD54. After DNA strand
exchange, the subsequent disassembly of the nucleoprotein filament by Rad54 might be
important in the promotion of the next step, where the information that was lost by the
processing of the DSB is restored by DNA polymerases. The remaining single-strand
nicks are sealed by DNA ligase. At this stage the two DNA strands can be physically
joined in a structure referred to as a Holliday junction, which needs resolution in order
for recombination to be complete. In mammals, the proteins involved in the resolution
activity are not known, but several possible candidates exist, including RAD54 and a
multi-protein complex containing at least some RADS51 paralogs. Once resolution is
complete, partner DNA molecules are separated, and the ligation of the resolvase-
induced single-strand nicks result in two intact DNA molecules.

RAD54 is an important accessory protein of RAD51. Iz vitro studies have shown
that RAD54 greatly stimulates the production of D-loops by RADS51. The biochemical
properties of RAD54, including ATPase activity, as well as the ability to remodel DNA-
protein complexes, are thought to be important in its role in recombination. RAD54 can
be involved in almost every stage of recombination. Under different circumstances,
RAD54 can both stabilize nucleoprotein filaments, as well as disassemble them. RAD54
can also perturb nucleosomes on the target template DNA and promotes branch
migration, thereby affecting Holliday junction processing. Most of the data that has led
to the definition of RAD54 function mentioned above has been collected using
biochemical assays involving purified proteins and various structures of single-stranded
and double-stranded DNA. The next step is to relate the biochemical functions as
elucidated by such studies to the 7z vivo function of this protein and its activity in living
cells.

In this thesis, the /# vivo role of Rad54 has been examined in mouse embryonic
stem (ES) cells, a model system to study homologous recombination. Chapter 2
describes in detail the various tools and techniques that are used in visualization and

analysis of protein behavior within cells. These are used throughout the thesis in order to
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investigate the cellular behavior of Rad54. Chapter 2 also defines the process of
homologous recombination, and discusses the cell biology of various proteins that are
known to be involved to date, including the ability of some recombination proteins to
form subnuclear structures (foci). The possible structure and function of damage-
induced foci are discussed, since studies and quantification of foci forms an important
part of this thesis.

Chapter 3 describes in detail the making of targeted ES cells that have been used
to study Rad54 at the cellular level. The endogenous Rad54 gene in ES cells is targeted
and replaced with a (wild type) cDNA, fused with a DNA sequence encoding green
fluorescent protein (GEFP). The result is the production of GFP-tagged Rad54 protein
under the control of its own promoter. The fusion protein is expressed at endogenous
levels, which eliminates the disadvantages posed by over-expression systems. The knock-
in cell line shows similar sensitivity to DNA damaging agents in survival assays as wild
type, untargeted cells. Using these cells, a mouse strain expressing GFP-tagged Rad54
was made, and the pattern of Rad54 expression was documented using GFP fluorescence
during the various stages of embryonic development. To investigate the expression of
Rad54-GFP in blood cells, 12.5 dpc mouse embryo livers were cultured in medium that
allowed the enrichment of proerythroblasts, which are actively cycling progenitor cells
from which red blood cells are derived. These cells expressed Rad54-GFP, and in
addition, showed DNA damage-induced foci formation similar to ES cells. Using cells
derived from the bone marrow, it was found that pro- and pre-B cells show Rad54-GFP
expression only when they are cycling. Furthermore, immature B cells, which do not
cycle but are carrying out V(D)] recombination via nonhomologous end joining, do not
show Rad54-GFP expression. This preliminary evidence underscores the idea that Rad54
is expressed only in cycling cells, where recombination is thought to be the primary
method of faithfully repairing DSBs. To distinguish whether Rad54 is restricted to
cycling progenitor cells, or is expressed in all cycling cells regardless of differentiation
status, Rad54 expression was investigated in mouse dermal fibroblasts (MDFs) and
chondrocytes subjected to culture conditions where they regained cycling ability. Rad54
mRNA is present in MDFs and chondrocytes, albeit at a lower level than in progenitor
cells. In addition, only a subpopulation of cells shows nuclear localization of Rad54-GFP,
which correlates with low mRINA levels. While the reason for the lower expression level
in a population of cycling MEFs, MDFs and chondrocytes is not understood, we

conclude that rapidly dividing progenitor cells express Rad54-GFP, reinforcing the idea
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Chapter 1

that these progenitor cells use homologous recombination to repair their genome, where
fidelity is vital.

The in vivo function of Rad54 has been studied upto this point by investigating
the phenotype presented by cells that are deficient in the protein, but what happens when
the protein is physically present in the cell but is functionally defective? To answer this
question, further characterization of Rad54 cellular function, this time in terms of its
ATPase activity, was carried out in ES cells as documented in Chapter 4. It is known
from 7 vitro studies that Rad54 has ATPase activity that is triggered by double-stranded
DNA, and is essential for most of its biochemical functions. To investigate the
phenotype of cells devoid of Rad54 ATPase activity, two different cell lines were made
where the endogenous gene was replaced by one of two different cDNA constructs
bearing a point mutation in the ATPase domain (Rad54“"**“"™" and Rad54""*"* ™). The
behavior of the ATPase defective cell lines was similar to knockout Rad54 ES cells
(Rad54”) in survival and recombination efficiency assays, showing that the mutant cells
also exhibit hypersensitivity to DNA-damaging agents and a reduced efficiency of
recombination. In contrast, the ATPase mutant cells display a significantly higher
number of both Rad54 and Rad51 spontaneous, uninduced nuclear foci than Rad54“™"
cells, which was used as the control cell line in these experiments. Interestingly, the
number of spontaneous Rad51 foci in ATPase mutants is also significantly higher than in
Rad54" cells. The experiments described here provide the first evidence that the ATPase
activity of Rad54 influences the cell biological behavior of Rad51. Protein mobility
studies established that while Rad54 moves at the same rate through the cell nucleus
regardless of whether it is wild type or ATPase-defective, the turnover of Rad54 protein
in spontaneous foci is significantly delayed for the ATPase-compromised protein
compared to wild type protein. In addition, using time-lapse movies, the rate of foci
disappearance in Rad54""*"* ™" cells was slower than in wild type after induction by
irradiation. These data establish the contribution and influence of Rad54 ATPase activity
on the proper functioning of both Rad54 and Rad51 in living cells.

In S. cerevisiae, RAD54 paralogs, RAD54 and RDH54, contribute to DNA
damage repair activity in mitotic as well as meiotic cells respectively. In mammals a Rad54
paralog, Rad54B, has also been identified. Rad54B shares 30% amino acid sequence
identity to yeast RDH54, and on this basis it was proposed by others to be the functional
counterpart of RDH54 in mammals. Experiments described in Chapter 5 dispel this

idea, based on biochemical, genetic and cell biology assays which show that Rad54B is

18



General Introduction and Outline of Thesis

unlikely to be the true S. cerevisiae RDH54 homologue because the genes are not
functionally equivalent. Using purified proteins and DNA substrates, Rad54B was shown
to display physical and functional interactions with Rad51 that are similar to that of
Rad54. Survival assays using Rad54”" and Rad54B” ES cells showed that Rad54B
deficient cells are hypersensitive to ionizing radiation and mitomycin C (MMC), but
display no effect on recombination efficiency. Interestingly, while there is no additive or
synergistic hypersensitivity to MMC in ES cells lacking both Rad54 and Rad54B, animals
lacking both Rad54 paralogs are dramatically sensitized to MMC compared to either
single mutant. Finally, it was shown that Rad54, but not Rad54B, is necessary for a
normal distribution of Rad51 on meiotic chromosomes, further dismissing the notion
that Rad54B might be the meiotic counterpart of Rad54 in mammals. Hence, it was
shown that while the paralogs have overlapping biochemical properties, genetic analyses
in mouse uncovered their nonoverlapping roles. The paralogs could therefore have
redundant functions in DNA damage repair, or could provide similar functions but in a
tissue-specific manner.

Lastly, the importance of accurate and proper repair of DSBs is underscored by
their involvement in chromosome translocations, as described in Chapter 6. Several
types of leukemias, lymphomas and solid tumors have been documented where
translocations play an important role in the development, diagnosis as well as the
prognosis of the cancer. Translocations and other genomic rearrangements have been
hypothesized to result from incorrect functioning of, and inappropriate rejoining of
DNA ends by, DSB repair mechanisms, specifically homologous recombination and
nonhomologous end joining. Mistakes in homologous recombination can occur due to
the presence of highly repetitive sequences in the human genome. The process of V(D)]
recombination, a physiological and strictly timed process that is normally used to create
antibody diversity in lymphocytes, could accidentally join a proto-oncogene locus with
the elements of the antigen receptor locus, bringing the normally quiescent proto-
oncogene under an active promoter, thereby creating an oncogenic phenotype. Finally,
the propensity of certain aberrant DNA structures within the genome to suffer an
increased frequency of breakage is also discussed, which suggests a role of DNA stability,

rather than exogenous damage, in the occurrence of translocations.
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The cell biology of homologous recombination
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Abstract

Discontinuities in double-stranded DNA, such as DNA double-strand breaks (DSBs),
pose a threat to genome stability. Homologous recombination is a process that not only
effectively repairs DSBs, but also promotes preservation of genome integrity by repairing
DNA discontinuities arising during DNA replication. Genetic analyses identified many
genes involved in DSB repair and placed them in different pathways. Biochemical
analyses have aided in placing the protein products in a mechanistic framework for the
pathways, while molecular biological approaches, such as chromatin immuno-
precipitation, have allowed the monitoring of protein composition near DSBs in
populations of fixed cells. Progress in cell biological techniques has now made it possible
to analyze proteins in their physiological environment of the living cell. Here, we describe
how homologous recombination proteins have been characterized using the methods of
cell biology. The current challenge is to integrate insights gained on the spatio-temporal
behavior of DSB repair proteins using chromatin immuno-precipitation and live cell
imaging in the established genetic and biochemical frameworks for mechanisms of DSB
repair.

1 Introduction
Double-strand breaks (DSBs) are detrimental lesions that disrupt the integrity of

DNA in the cell. Pathological DSBs can be induced by exogenous factors, for example,
ionizing radiation and a wide range of chemical compounds. Certain byproducts of
cellular metabolism, such as oxygen free radicals, can also create DSBs in DNA. In
contrast, DSBs can also be physiologically relevant intermediates. For example, nuclease-
induced DSBs in germ cells trigger meiotic recombination that results in creation of
genetic diversity. Another example is the programmed DSB formation during the
assembly of active immunoglobulin and T cell receptor genes, as well as in class switch
recombination to produce antibodies of different isotypes (Friedberg et al. 2004).
Whether pathological or physiological, the timely and accurate repair of DSBs is
critical to the well-being of the cell. Inaccuracies in repair can result in mutations and

gross chromosomal rearrangements, which can disrupt the normal functioning of the cell
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Chapter 2

and might ultimately lead to cancer. If breaks are left unrepaired, the cell can undergo
genomic fragmentation, loss of chromosomes and cell death. To counteract this,
mechanistically diverse methods that differ in their dependence on sequence homology
have evolved to rejoin DNA ends: homology-directed repair, including homologous
recombination, and non-homologous DNA end joining (Kanaar et al. 1998).

The dissection of the molecular mechanisms of DSB repair has its foundation in
genetic experiments, which has revealed several pathways through which DSBs can be
processed and repaired. The initial studies focused on bacteriophages, bacteria and fungi,
including Saccharomyces cerevisiae (Shu et al. 1999; Symington 2002; Krogh and Symington
2004). Since then, it has become apparent that DSB repair pathways are conserved
throughout evolution, which together with the advent of reverse genetics, has facilitated
their analyses in a variety of other organisms, including mammals such as mice. The
genetic approaches have been complemented and extended by biochemical analyses
leading to placement of DSB repair proteins at specific steps in the pathways. More
recently, molecular biological approaches, such as chromatin immuno-precipitation, have
allowed the monitoring of protein composition near DSBs in populations of fixed cells.
Advances in cell biology have now made it possible to analyze the behavior of DSB
repair proteins and their response to DNA damage at the level of the single living cell. In
this review, we describe how homologous recombination proteins have been
characterized using cell biological techniques. The ultimate goal of these studies is to
extend the knowledge of the individual activities of the proteins to their coordinated
action within the entire homologous recombination pathway in the context of the living

cell.

2 Tools and techniques of the trade

In order for a molecule to be visualized, first of all, it has to be labeled in some
way. Second, a method of visualization is necessary. A labeled molecule within a cell can
be detected with microscopes that are specifically designed for this purpose. These
microscopes are optimized for the best possible image capture using high performance
optical components and digital image acquisition, all of which is computerized. With
rapid advances in techniques of microscopy, it is now possible to acquire information
even at low levels of illumination or at wavelengths that cannot be detected by the
human eye. In addition, it is critical that only the specific molecule that has been labeled

be observed, and with minimal interference.
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The cell biology of homologons recombination

2.1 Fluorescence microscope

Fluorescence microscopy is based on the basic principle of fluorescence, which is
observed as an emission of light in the visible spectrum after the fluorophores are excited
by light of another, specific wavelength. The microscope utilizes filters which explicitly
allow only certain wavelengths to activate the specimen. The activated fluorophore then
emits a signal at a much lower intensity which is separated from the excitation light by
using a second filter, ensuring that only emitted light reaches the eye piece or camera port
of the microscope. The system ensures a high contrast between fluorescing and non-
fluorescing areas. The widespread growth in the utilization of fluorescence microscopy is
closely linked to the development of new synthetic and naturally occurring fluorophores

with known profiles of excitation and emission wavelengths (see below).

2.2 Confocal / laser scanning microscope

Laser scanning confocal microscopy is a unique and versatile technique which
enables visualization deep within living and fixed cells, as well as tissues. The method by
which images are taken using a confocal microscope is fundamentally different from
traditional microscopes. Instead of being bathed in light, the specimen is illuminated by
one or more focused beams of light, usually from a laser. The point of illumination is
brought to focus within the specimen by the objective lens, and laterally scanned using
some form of scanning device under computer control. An image is assembled from the
pixel information obtained by scanning the sample sequentially point by point and line by
line. In this way, a series of optical sections can be collected from within the specimen,
with the elimination of out-of-focus information, which results in sharper and more
detailed images. Using the same principle, a sharp image can be taken not only in x and y,
but also in the z plane. By moving the focus plane and scanning through serial optical
slices, the single images can be put together to build up a three dimensional picture of the
sample. The best horizontal resolution of the microscope is 0.2 microns, and the best

vertical resolution is 0.5 microns.

2.3 Fluorescent tags
The power of fluorescence microscopy is in the plethora of different molecular
fluorescent probes that are catalogued according to their absorption and fluorescent

properties. The key requirement for a fluorescent molecule is that it must be sufficiently
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bright and persistent for the instrument to obtain images. Classical fluorescent probes
include fluorescein isothiocyanate, Lossamine, rhodamine and Texas red. Many
flourophores are designed to bind to certain proteins or structures within the cell; for
example, the nucleus of fixed cells is visualized by treatment with 4’,6-diamidino-2-
penylindole (DAPI), which stains DNA. Other DNA binding dyes include propidium
iodide and Hoechst. The Alexa Fluor dyes (introduced by Molecular Probes) introduce a
number of advantages and improvements over the traditional fluorophores. These
include enhanced photostability, absorption spectra matched to common laser
frequencies, pH insensitivity and a high degree of water solubility. In particular, these
dyes can be conjugated to a series of molecules, including a broad variety of secondary
antibodies which are used widely in immunostaining experiments. Alexa Fluor dyes are
available in a wide range of fluorescence excitation and emission wavelength maxima,
ranging from ultraviolet and deep blue to near infrared regions. Other colored probes
used for the same purpose are the popular Cyanine dyes (Cy2, Cy3, Cy5, Cy7 and their

derivatives).

2.4 Immunofluorescence

Immunostaining is a simple and effective way to detect a specific protein and
document its behavior and localization in the cell, in snapshots over time. The technique
requires chemical fixation of cells, which are then treated with an antibody that has been
raised specifically against the protein in question. The signal is amplified using a
secondary antibody that has been tagged with a fluorophore (such as Alexa fluors), which
can be visualized when activated with a laser of its excitation wavelength. This is a
relatively straightforward method and can be carried out on many cell types. In the
context of repair, studies have shown that several repair proteins accumulate into
punctuate nuclear foci, visible at 40x magnification, assumed to be the sites of DNA
damage.

In order to investigate the temporal and spatial relationship of two or more
proteins, cells may be treated with two or more primary antibodies. It is important that
these antibodies have been generated in different animals. In order to distinguish the two
proteins, they are visualized using secondary antibodies with fluorophores with different
excitation and emission spectra. In this way, the foci forming capabilities of 2 repair

proteins can be investigated for example, and also if these foci colocalize. Colocalization
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of foci can strengthen the argument that two proteins work together on the repair of a
DSB and therefore may complement biochemical data.

The disadvantage of using primary or tagged secondary antibodies is the possible
danger of cross reaction with other proteins in the cell. In addition, the signal is never
quantitative as this is dependent on extent of blocking and washing of the sample. There
are also several other methodology related problems such as the masking of epitopes by

fixing procedure, washing out of proteins and suboptimal penetration of the antibody.

2.5 Tagged proteins

Tracking of proteins in live cells has become a reality due to the discovery of
naturally occurring fluorescent molecules, specifically, the Green Fluorescent Protein
(GFP) in the North Atlantic jellyfish, Aeqguorea victoria. (Lippincott-Schwartz and
Patterson 2003; Giepmans et al. 2006). Because GFP forms its chromophore within the
protein core, it can be expressed in other organisms without interference or adverse
biological effects. Mutagenesis of the gene sequence has resulted in variations of the
GFP gene, including an improved version of GFP (enhanced GFP, eGFP), as well as
proteins with a variety of absorption and emission characteristics across the entire visible
spectrum, including yellow fluorescent protein, blue fluorescent protein and cyan
fluorescent protein. Another commonly used fluorophore is the red fluorescent protein,

isolated from the sea anemone Discosoma striata.

Standard recombinant DNA technology can be used to label the protein of
interest in living cells. Specifically the GFP gene sequence is added in frame just before
the stop codon or just after the start codon of the gene encoding the protein. The fusion
protein produced as a result must be checked for functionality in order to make sure that
protein carries out its cellular function properly in spite of the presence of the tag. In the
context of repair proteins, these experiments include the ability of transfected cells to
demonstrate wild type levels of survival against induced damage. Once physiological
functionality has been established, the establishment of real time behavior can begin.
Two types of experiments can be done with such cell lines. The behavior of the tagged
protein can be studied by chemically fixing the cells with or without stimulus. The
function and localization of the tagged protein with respect to another can be
investigated by immunostaining against the other protein; this is a variation on the co-

immunostaining protocol as outlined above.
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The real power of using cells that have stable expressing fluorescent proteins is
the direct observation of the dynamic behavior of the protein in real time. For example,
we can document the behavior of a repair protein before and after DSB induction, as
well as the localization of protein before and after cell division. In 4D microscopy,
images are taken in x, y and z planes of the specimen, over time, creating movies which
can be assembled and interpreted. The lifetimes and paths of nuclear structures, for
example foci, can be tracked. Mobility studies and kinetics of proteins can be carried out
by photobleaching studies.

Several caveats still exist. Some proteins cannot be tagged in this way, especially
when it has been established that both N and C termini have specific roles which are
necessary for the proper functioning of the protein. In addition, the ramifications of an
overexpressed, tagged protein in a cell cannot be absolutely determined. For example,
while the tagged repair protein is competent in its repair function, the presence of the tag
might interfere in or disrupt other pathways, and this cannot be easily quantified. A
technical advancement and improvement on the overexpression problem involves the
targeted replacement of the gene of interest with a construct that recreates the protein,
with the addition of an in-frame fluorescent tag as a reporter (Ze. the knock-in system).
This way, the protein is tagged and produced under endogenous levels, and this is as

close to the physiological situation as possible.

2.6 Fluorescence recovery after photobleaching (FRAP)

Besides the simple monitoring of the GFP-fusion protein, the photobleaching
property of GFP can be exploited to obtain additional information on the protein of
interest. Photobleaching is a phenomenon where a fluorophore loses its fluorescence due
to photon-induced chemical damage. While this is a serious drawback of using
fluorescent probes for direct observation, the local loss of fluorescence after exposure to
excessive excitation light can be used to obtain information on protein mobility by
fluorescence recovery after photobleaching (FRAP) experiments (Houtsmuller and
Vermeulen 2001, Figure 1). These studies are done in live cells where the protein has
been tagged with a fluorophore, preferably eGFP, and is expressed either stably or

transiently.

During a FRAP experiment, a localized and very short high-intensity laser pulse

is given to quench the fluorescence in a small area within a larger volume containing
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fluorescent molecules, for example the nucleus. Bleaching of the fluorescence does not
cause significant changes in protein functionality and cells retain their viability after long
periods of FRAP experiments (Nakata et al. 1998; White and Stelzer 1999). Immediately
after the high-intensity laser pulse, the recovery of fluorescence in the bleached region of
interest is monitored as the molecules redistribute throughout the cell. Quantification of
the rate of fluorescence recovery can yield information on protein diffusion rates and
mobile versus immobile fractions, either spontaneously or in response to stimuli such as
DNA damage. If the protein is highly mobile, it will be replenished quickly. However if it
is completely immobile, then there will be no recovery. A FRAP curve consists of three
phases: the prebleach period, the bleach pulse, and postbleach (recovery) period. The
percentage recovery within the region of interest is a measure of the fraction of
molecules that is mobile as well as the amount of permanently bleached molecules.

A variation of FRAP is fluorescence loss in photobleaching (FLIP). Molecules in
one compartment are bleached, and the fluorescence in the unbleached area is
monitored. The velocity of redistribution of molecules is a measure of exchange of
molecules between bleached and unbleached sections. FLIP can also be coupled with
FRAP, for example, to determine how long a protein stays in subnuclear bodies, like foci.
In these experiments, the cell is visually divided into half, each half containing an equal
number of foci. One half is bleached, and the recovery of fluorescence in the foci is
monitored, while in the other half, the loss of fluorescence in the foci is monitored. In
this way, protein turnover in foci can be determined. Another method to determine the
protein turnover in foci is by bleaching the focus itself and monitoring the recovery of
fluorescence within the area; in this case it is critical to track the movement of the focus
by eye and to make sure that it remains within the region of interest while monitoring.
Several parameters can be determined by photobleaching experiments, namely, diffusion
coefficient (D), percentage immobile fraction and the duration of transient
immobilization. The mobile fraction can be estimated by quantifying the fluorescence in
the bleached fraction after a long recovery time and comparing it with the pre-bleach
fluorescence intensity, correcting for total fluorescence removed by the bleach. An
accurate effective diffusion coefficient (Um”s™) can be calculated from redistribution of
fluorescence as a function of time. This can be calculated in several ways. One is to fit
the recovery curves to a mathematically derived function. However, these mathematical

models often do not reflect a true value of D as it does not take into consideration
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Before

200 seconds 400 seconds

Figure 1. Example of a photobleaching procedure to determine the mobility of
GFP-tagged proteins in living cells.

A region, indicated by the rectangle, of a cell containing PCNA-GFP replication foci was
photobleached and fluorescence loss and recovery were monitored over time. The cell
was imaged at the indicated times after bleaching. Fluorescence loss in photobleaching
(FLIP) was measured in foci in the unbleached half of the cell, while fluorescence
recovery after photobleaching (FRAP) was measured in foci in the bleached half of the
same cell.

some parameters like the topology of the cell nucleus. Therefore the use of computer
simulation might be a solution to avoid creating new mathematical models for each type
of experiment and cell type.

A number of reviews are available that present in-depth discussions of a large
variety of FRAP-based protocols that have been developed for specific purposes
(Houtsmuller and Vermeulen 2001; Haraguchi 2002; Carrero et al. 2003; Houtsmuller
2005; Sprague and McNally 2005; Essers et al. 2000).

3 Controlled induction of DNA damage

The study of the cell biology of DSB repair mechanisms involves the
investigation of difference in the behavior of repair proteins in the absence and presence
of induced DNA damages. Thus, it is crucial to be able to do so conveniently and
quantitatively. A number of methods have been developed, which can be classified into
various categories, namely global versus local deposition of DNA damage, as well as in
the induction of a specific lesion versus a spectrum of different lesions. Each method has
its advantages and disadvantages.

In the context of DSB repair, DNA breaks can be introduced in a global manner

by irradiating cells with ionizing radiation, for example, by using an X-ray machine or a
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Cs source. These irradiation methods induce DNA damage that is dispersed over the
whole nucleus. In response to global DSB induction, a number of DSB repair proteins
accumulate into nuclear foci, which are high concentrations of the proteins located at the
sites of DNA damage (Figure 2). However, this method also introduces other, although
less genotoxic, types of DNA lesions in addition to DSBs. For example, for every DSB
made, hundreds of single-strand breaks are introduced. In addition to damage to the

phospho-diester backbone of the DNA, base damage also occurs (Friedberg et al. 20006).

Figure 2. DNA damage induced local
accumulations of DNA damage response
proteins into foci.

Top panel: Nucleus of a cell before treatment with
ionizing radiation. A cell, expressing the DNA repair
protein Rad54 as a GFP fusion (in green), was fixed
with paraformaldehyde and stained with antibodies
against the DNA damage response protein 53BP1
(in red) and DAPI to detect DNA (in blue). Bottom
panel: Nucleus of a cell 2 hours after treatment with
4 Gy of ionizing radiation and processed as
described above.

The accumulation of repair proteins in response to global damage into nuclear
structures visible by light microscopy is a remarkable phenomenon and can be exploited
to characterize the dynamics of the repair response. However, such experiments require
the creation of breaks in a more controlled fashion, both spatially and temporally. While
global DNA damage induction methods introduce damage that is randomly distributed in
the nucleus, it is possible to locally induce DNA damage by partially shielding the nucleus
from the radiation source. In this way, it can be verified that the accumulation of repair
proteins are indeed at sites of DNA damage and the accumulation can be analyzed in
time. Also, foci at sites of induced DNA damage can be distinguished from foci that arise
‘spontaneously’, for example, during S phase (Tashiro et al. 1996). One method of local
DSB induction involves the use of synchrotron-generated ultra-soft X-rays that are
filtered through a metal grid containing micrometer spaced slits (Nelms et al. 1998).
However, the method is not routinely used because first, facilities to generate ultra soft

X-rays are not widely available, second, the time between irradiation and analysis of the
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cells is relatively long, and third, the amount of DSBs introduced is large and difficult to
control. An alternative method uses O-particle irradiation. This method has been

developed recently and has number of advantages (Aten et al. 2004). Exposing cells to O
particles that travel almost horizontally relative to the cells leaves a straight track of DSBs
in the nucleus. Proteins accumulating at the breaks can be visualized immediately after
irradiation and deviation from the originally linear pattern can yield information on

movement of chromosomal domains containing DNA breaks. Similar methods have

been developed that use heavy ions instead of O-particles (Jakob et al. 2003; Lukas et al.
2005).

Alternative methods that introduce DNA damage in a spatially controlled manner
have been developed with the use of lasers (Cremer et al. 1980). These methods make
use of compounds that bind to or are incorporated into DNA. When these compounds
are excited by the laser, they transmit energy to induce DNA lesions. For example,
halogenated thymidine analogs, when incorporated in DNA, can induce single-strand
breaks and DSBs in living cells when excited by a UV-A laser (Tashiro et al. 2000; Lukas
et al. 2003; Lukas et al. 2005). Variations of this method use DNA intercalating Hoechst
dyes either in the absence or presence of thymidine analogs (Rogakou et al. 1999; Walter
et al. 2003; Bradshaw et al. 2005). In addition, there are laser-based micro-irradiation
methods available that do not require exogenously added compounds. One such method
makes use of the second harmonic of a pulsed neodymium-doped yttrium aluminium
garnet laser that will result in DSBs (Kim et al. 2002; Kim et al. 2005). In addition, pulsed
multiphoton laser technology can be used to introduce local DNA damage (Meldrum et
al. 2003).

A drawback of the techniques described above is that first, the damage induced is
not specific, that is, each method does not produce a single type of DNA lesion but a
variety of them. Second, the spectrum of the actual induced DNA lesions is not known;
an analysis of the types of damage induced by three of the above mentioned methods has
revealed a wide variety of induced DNA damage (Dinant et al. 2007). Furthermore, for
most laser-based methods, the local DNA damage load is unknown and will most likely
be higher than at sites of DNA damage resulting from global DNA damage induction.
Thus, when analyzing DSB repair proteins at the sites of locally induced DNA damage, it
should be noted that repair proteins from pathways other than DSB repair might

influence the results, as might the artificially high local DNA damage load.
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In order to avoid the problem of introducing a large spectrum of lesions, a site-
specific DSB can be created using a rare-cutting endonuclease (Haber 1995; Jasin 1996;
Porteus and Carroll 2005). An example of a widely used enzyme is I-Sce I, which
recognizes an 18-bp nonpalindronic sequence. Cleavage of the site is induced by
transfecting cells with an I-Sce I expressing plasmid (Richardson et al. 1999). Expression
of the enzyme in mammalian cells appears not to be toxic, presumably because its large
recognition site provides sufficient specificity (Rouet et al. 1994a; Rouet et al. 1994b). A
similar approach has been developed in the yeast S. cerevisiae, where the DSB-inducing
enzyme of choice is most often the HO endonuclease, which normally initiates mating
switch recombination. Because highly regulated promoters are available in §. cerevisiae,
events at the induced break can be followed in time (Haber 2000). A disadvantage using
these enzymes is that their recognition sequence has to be engineered in the genome.
Also, they generate DSBs with complementary single-strand overhangs that can be easily
ligated and might therefore not always be processed similarly to ionizing radiation-
induced DSBs. To overcome some of these limitations, chimeric nucleases are being
developed that couple the nuclease domain of the type II restriction enzyme Fok I to
Zn-finger DNA binding domains. By combining different Zn-finger DNA binding
domains, DSBs at predetermined sites in the genome can be introduced (Durai et al.

2005).

4 Homologous recombination pathways

Homologous recombination is generally an error-free pathway by which DSBs
are repaired using the information on an undamaged homologous DNA molecule,
usually the sister chromatid. The process is carried out by the proteins of the RADS52
epistasis group that were originally identified by the genetic analysis of ionizing radiation
hypersensitive . cerevisiae mutants (Game and Mortimer 1974; Symington 2002). Many of
the RAD52 group proteins are conserved in mammals. They include the MRN
(Rad50/Mre11/NBS1) complex, Rad51, the Rad51 paralogs (Rad51B, Rad51C, Rad51D
XRCC2, XRCC3), Rad54 and Rad54B (Dudas and Chovanec 2004). In mammals,
homologous recombination is also modulated by the products of the breast cancer
susceptibility genes, BRCA1 and BRCA2 (Shivji and Venkitaraman 2004).

The process of DSB repair by homologous recombination can be divided in a
number of steps, including DSB detection and processing, joint molecule formation

between the broken DNA and the repair template through homologous pairing and
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strand invasion, and resolution of the recombination partners (Figure 3). After DSB
detection, the DNA ends go through nucleolytic processing resulting in 3’ single-
stranded DNA tails, which are used for the nucleation of recombination proteins on the
DNA. This nucleoprotein complex is capable of pairing with intact homologous duplex
DNA resulting in a joint molecule between the two recombining DNA molecules. The
joint molecule is used as a template for DNA polymerases such that the information that
was lost by processing is restored. The reaction is concluded by ligation of ends and the
resolution of the joint molecule to yield two intact DNA copies. For simplicity, only one
possibly outcome of the resolution process is shown. Nonetheless, it should be noted

that multiple other outcomes exist, including one that results in crossover.

4.1 Detection and processing of DSBs

Once a DSB has occurred in the genome, the global response to its formation
starts with the actual detection of the break in the context of the chromosome. A
combination of biochemical and cell biological experiments has implicated the highly
conserved MRN complex as an initial recognition factor of DSBs (Symington 2002). At
the DSB MRN activates the ATM kinase resulting in a signaling cascade leading to cell
cycle arrest (Shiloh 2003). The MRN complex is also involved in other cellular functions
such as telomere maintenance, cell cycle checkpoint response and nonhomologous DNA
end-joining (D'Amours and Jackson 2002). This wide range of MRN complex functions
is carried out by a kaleidoscope of activities that exist within the complex, including
hydrolysis of ATP, exo- and endo-nuclease, single-strand annealing, DNA end binding,
tethering of broken DNA, protein interaction with, among others, the damage
checkpoint kinase ATM and the signaling mediator protein MDC1 (Maser et al. 1997;
Carney et al. 1998; Paull and Gellert 1998; Paull and Gellert 1999; Stewart et al. 1999;
Yamaguchi-Iwai et al. 1999; de Jager et al. 2001a; de Jager et al. 2001b; de Jager et al.
2002; Hopfner et al. 2002; Kim et al. 2002; Goldberg et al. 2003; Mirzoeva and Petrini
2003; Costanzo et al. 2004; Lukas et al. 2004; Moreno-Herrero et al. 2005; Wiltzius et al.
2005).

The importance of the MRN complex for mammalian cells is underscored by the
finding that all three genes that make up the MRN complex are essential for viability
(Xiao and Weaver 1997; Luo et al. 1999; Yamaguchi-Iwai et al. 1999; Zhu et al. 2001).

The loss of Mrell in a conditional knockout DT40 cell line results in radiosensitivity,
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Figure 3. A model for DSB repair through homologous recombination.

The double-stranded DNA, depicted as a black ladder, suffers a DNA damage-induced
DSB. Oligomers of the MRN complex tether the broken ends and initiate their
processing, resulting in RPA-bound single-stranded DNA overhangs with a 3’ polarity.
The Rad51 recombinase is loaded on the single-stranded DNA with the assistance of
mediators including Rad52 (§. cerevisiae), Rad51 paralogs, and BRCA2 (mammalian cells).
The gray ladder represents a homologous duplex DNA (sister chromatid). The Rad51
nucleoprotein filament mediates homology recognition, joint molecule formation and
strand exchange with the intact homologous duplex repair template. Steps that can be
stimulated by the Rad54 protein are indicated. In this model the second DNA end of the
DSB is captured by the displaced strand from the D-loop intermediate. DNA
polymerization will restore missing nucleotides (indicated in white) and ligation will
covalently lock the recombining partner DNA molecules into a structure joined through
Holliday junctions. Resolution of the junctions by a resolvase activity that requires the
Rad51 paralogs Rad51C and XRCC3 will separate the repaired DNA duplexes.
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increased levels of chromosome breaks, arrest in G2 and eventual cell death (Yamaguchi-
Iwai et al. 1999). In humans, hypomorphic mutations in NBS1 are associated with
Nijmegen breakage syndrome (NBS) (Varon et al. 1998) and mutations in Rad50 and
Mrell cause Ataxia telangiectasia-like disease (ATLD) (Stewart et al. 1999; Taylor et al.
2004). NBS and ATLD patients are cancer-prone and their cells are radiosensitive.

The MRN complex relocalizes in response to DNA damage. In primary human
fibroblasts, Mrell and Rad50 are distributed homogeneously throughout the nuclei, but
they accumulate in a high local concentration to form colocalizing foci after the global
treatment of the cells with ionizing radiation (Maser et al. 1997). The physical association
of these proteins is important for their accumulation into foci, since its components do
not form DNA damage-induced foci in cells from NBS and ATLD patients (Carney et al.
1998; Stewart et al. 1999). In addition, the subnuclear localization of the complex also
changes in response to DNA replication; it associates with chromatin in S phase and
colocalizes with proliferating cell nuclear antigen (PCNA) throughout S phase (Mirzoeva
and Petrini 2003).

A number of local DNA damage induction methods have demonstrated that the
DNA damage-induced foci of the MRN complex colocalize with DSBs. These methods
include exposure of cells to ultra-soft X-rays through an irradiation mask combined with
the labeling of the generated DNA ends (Nelms et al. 1998), dye-dependent laser micro-
irradiation (Paull et al. 2000; Lukas et al. 2003), and irradiation with O-particles (Aten et
al. 2004). At DSBs, including those created by the local irradiation methods, the histone
variant H2AX is modified by phosphorylation (Sedelnikova et al. 2003). This modified
version of H2AX, YH2AX, colocalizes with the MRN complex (Paull et al. 2000).
Interestingly, chromatin immunoprecipitation studies using S. cerevisiae showed that the
phosphorylation of H2A in response to a nuclease-induced DSB can be detected up to
50 kb away from the break, but very little of it is found within 1 — 2 kb of the break. On
the other hand, almost all Mrell is concentrated within this region, in close vicinity to
the break (Shroff et al. 2004). Results such as these emphasize the necessity of different
techniques to address one problem, as each provides information at various levels of
specificity. For example, while live cell imaging provides the advantage of real time
observation of proteins in single cells, it lacks the spatial resolution provided by
chromatin immunoprecipitation.

Once the DSB is detected, it is processed as the next step to its repair through

homologous recombination (Figure 3). In S. cerevisiae, the MRX (Mrell/Rad50/Xrs2)
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complex has been implicated in nucleolytic processing of the DSBs to produce the 3’
tailed single-stranded DNA, which is the substrate for Rad51 binding (Lee et al. 1998).
The mechanistic details of how the mammalian MRN complex participates in this
reaction are not clear, since its intrinsic exonuclease activity is 3’ to 5’ (Paull and Gellert
1998). Thus, how the DNA intermediate is handed over from the MRN bound and

processed DNA end to Rad51 is still an open question.

4.2 Nucleoprotein filament formation

Rad51 is a critical and central protein in the process of homologous
recombination. S. cerevisiae cells deleted for RAD57 display reduced recombination and as
a result are sensitive to a range of DNA-damaging agents, including ionizing radiation,
but they are still viable. In vertebrate cells, Rad51 deficiency has dire consequences;
Rad51 depletion in chicken DT40 cells leads to G2/M cell cycle arrest, genomic
fragmentation and cell death (Sonoda et al. 1998), while targeted disruption of Rad57 in
mouse cells results in embryonic lethality (Lim and Hasty 1996; Tsuzuki et al. 1990).
Thus, Rad51 is a critical protein for high fidelity DNA damage repair during proliferation
of vertebrate cells.

The function and involvement of Rad51 has been characterized extensively by
biochemical studies (Figure 3). After a DSB has been detected and the DNA ends
resected to produce 3’ single-strand tails, it becomes the substrate for the Rad51
recombinase. Rad51 oligomerizes on the single-stranded DNA giving rise to a
nucleoprotein filament, which then recognizes homologous duplex DNA in the genome,
mediates joint molecule formation between the broken and intact template DNA, and
promotes strand exchange between the recombining partner DNA molecules. Rad51 is
aided in its function by accessory proteins, including the single-strand DNA binding
protein RPA, Rad52 (in S. cerevisiae), the Rad51 paralogs, BRCA2 (in vertebrates) and
Rad54.

At the cellular level, immunofluorescence experiments revealed that Rad51
occasionally forms nuclear accumulations referred to as foci (Haaf et al. 1995). Such
spontaneous Rad51 foci are restricted to S phase (Tashiro et al. 1996), suggesting a role
for Rad51 in supporting DNA replication, presumably through its involvement in
recombination. In response to various global DNA-damaging agents, most cells
demonstrate an accumulation of Rad51 into foci, marking presumably the sites of

damage. Similar patterns of Rad51 accumulation are also observed when cells are hit by a
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number of local DNA damage induction techniques, such as UV-A light micro-
irradiation on nuclear DNA sensitized by incorporation of halogenated thymidine
analogues, or irradiation of cells with O-particles or heavy ions (Tashiro et al. 2000; Aten
et al. 2004; Hauptner et al. 2004). Although it is attractive to equate Rad51 foci formation
with Rad51 nucleoprotein filament formation, there is no evidence that support this
assumption. Indeed, other proteins involved in homologous recombination which show
no biochemical evidence of nucleoprotein filament formation, such as BRCA2, ATM and
the MRN complex, have also been shown to form foci. Instead, foci formation might be
related to the fact that DNA damage, even when present only locally, induces signals that
can spread out into the surrounding chromosomal domains (Shiloh 2003; Fernandez-
Capetillo et al. 2004; Lukas et al. 2005).

To form nucleoprotein filaments on single-stranded DNA, Rad51 has to
negotiate with RPA. In vitro, RPA stimulates Rad51 nucleoprotein filament formation,
most likely by removing inhibitory secondary structures in the single-stranded DNA
(Alani et al. 1992; Sugiyama et al. 1997; Sugiyama et al. 1998). However, order-of-
addition experiments using the S. cerevisiae proteins have shown that if RPA is added to
single-stranded DNA prior to Rad51, the displacement of RPA does not occur unless the
Rad52 mediator protein is also present (Sung 1997; New et al. 1998; Shinohara et al.
1998; Sugiyama et al. 1998; Song and Sung 2000; Sugiyama and Kowalczykowski 2002;
Symington 2002). In mammalian cells, colocalization of RPA, Rad51 and single-stranded
DNA has been observed in ionizing radiation-induced foci (Golub et al. 1998;
Raderschall et al. 1999).

RAD52 has been shown to be a very important gene for DSB repair in .
cerevisiae: Rad52 mutants display a more severe repair phenotype than 72457 mutants. This
contrasts sharply with the role of Rad52 in vertebrate cells, where Rad57 is an essential
gene, but Rad52 null mutants hardly display any phenotype. The absence of Rad52 does
not affect viability or ionizing radiation sensitivity, and efficiency of gene targeting is only
moderately reduced (two-fold) in mouse and chicken cells (Rijkers et al. 1998;
Yamaguchi-Iwai et al. 1998). Furthermore, a systematic cell biological study analyzing
foci formation by numerous homologous recombination and checkpoint proteins in
living S. cerevisiae cells showed that Rad52 is required for Rad51 and Rad54 foci formation
(Lisby et al. 2001; Lisby et al. 2004). By contrast, in mammalian cells, Rad52 is not
required for foci formation of Rad51 and Rad54 (van Veelen et al. 2005b). Thus, while

Rad52 in §. cerevisiae is placed early in the homologous recombination reaction, its role in
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vertebrate cells does not appear to be of central significance. A possible reason for the
difference in rad52 mutant phenotypes in yeast and vertebrates could be functional
redundancy of Rad52 in the latter. It has been shown that Rad52 deficient chicken cells
in which the Rad51 paralog XRCC3 has also been deleted through a conditional
knockout approach are unable to proliferate (Fujimori et al. 2001). In this respect, it is
interesting to note that biochemical experiments support a role for a complex between
the Rad51 paralogs Rad51B and Rad51C in Rad51 filament formation analogous to the
activity of S. cerevisiae Rad52 (Sigurdsson et al. 2001).

In vertebrate cells, a total of five Rad51 paralogs have been identified, namely
XRCC2, XRCC3, Rad51B, Rad51C and Rad51D (Thompson and Schild 2001; Thacker
2005). These proteins have 20 to 30% amino acid sequence identity to Rad51, and appear
to function in complexes with each other. Two-hybrid and biochemical assays reveal the
existence of a number of Rad51 paralog complexes, including complexes containing
XRCC3/Rad51C and XRCC2/Rad51B/Rad51C/Rad51D (Schild et al. 2000; Masson et
al. 2001a; Liu et al. 2002; Miller et al. 2002; Wiese et al. 2002). They display various
biochemical activities, including DNA binding (including synthetic Holliday junctions),
ATPase activity, DNA strand exchange activity and Holliday junction processing
(Kurumizaka et al. 2002; Lio et al. 2003; Liu et al. 2004; Yamada et al. 2004; Yokoyama et
al. 2004). The Rad51 paralogs are required for cell viability because all Rad51 paralog
mouse knockouts that have been generated are lethal at the embryonic stage (Shu et al.
1999; Deans et al. 2000; Pittman and Schimenti 2000; Smiraldo et al. 2005; Thacker
2005). In contrast, chicken DT40 cells deleted for the Rad51 paralogs are viable, but this
might be due to their additional inactivation of p53 (Takata et al. 2000; Takata et al.
2001). Rad51 paralog deficiency results in reduced homologous recombination efficiency,
genome instability and DNA damage sensitivity, including ionizing radiation sensitivity
(Johnson et al. 1999; Pierce et al. 1999; Godthelp et al. 2002; Lio et al. 2004), which is
partially suppressed by the overexpression of Rad51 (Takata et al. 2001). DNA damage-
induced Rad51 foci formation depends on the paralogs (Bishop et al. 1998; Takata et al.
2000; Takata et al. 2001) and the purified Rad51 paralog complex Rad51B/Rad51C
stimulated Rad51 mediated strand exchange (Sigurdsson et al. 2001). Thus, the intimate
relationship between Rad51 and the Rad51 paralogs is manifested at the genetic, the cell
biological and biochemical levels.

Another important mediator protein in homologous recombination is the breast

cancer susceptibility gene product, BRCAZ2. Carriers of mutations in the BRCAZ2 gene are
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predisposed to breast, ovarian, prostate and pancreatic cancer (Venkitaraman 2002).
Rad51 and BRCA2 have many common features. For example, BRCAZ is also an
essential gene (Gowen et al. 1996; Hakem et al. 1996; Liu et al. 1996; Ludwig et al. 1997;
Sharan et al. 1997; Suzuki et al. 1997); both mouse and human hypomorphic mutant cell
lines display chromosomal instability and sensitivity to DNA-damaging agents (Tutt et al.
1999; Scully et al. 2000; Yu et al. 2000), as well as reduced recombination efficiency
(Moynahan et al. 2001). Like the Rad51 paralogs, BRCAZ2 is required for DNA damage-
induced Rad51 foci formation (Yuan et al. 1999; Yu et al. 2000). These similar features
suggest that the direct protein-protein interaction between BRCA2 and Rad51 is of
functional importance (Scully et al. 1997; Wong et al. 1997; Marmorstein et al. 1998;
Davies et al. 2001; Pellegrini et al. 2002; Venkitaraman 2002).

Recently, a mechanistic basis for the mediator function of BRCA2 with respect to
Rad51 nucleoprotein filaments formation was suggested. A BRCA2 family member,
Brh2, has been discovered in Ustilago maydis, which is required for repair and
recombination proficiency (Kojic et al. 2002). An ortholog of Dssl, a protein that
interacts with BRCA2, has also been found to interact with Brh2, and is important in
genome stability and recombination (Kojic et al. 2003; Kojic et al. 2005). Brh2 functions
to recruit Rad51 to DNA and aids in the nucleation of the Rad51 filament, establishing a
function for BRCA2 protein in Rad51 mediated repair of DSBs (Yang et al. 2005). A
similar activity has been established for a minimal version of human BRCA2, containing
some of its Rad51 interaction domains and the DNA binding domain (San Filippo et al.
20006).

At the cell biological level, BRCA2 also forms DNA damage-induced foci, which
colocalize with Rad51 foct (Chen et al. 1998; Chen et al. 1999). In living cells, the
interplay between BRCA2 and Rad51 has been investigated using GFP-tagged Rad51.
FRAP experiments revealed the existence of two different nuclear pools of Rad51 with
respect its mobility; a mobile fraction and a relatively immobile fraction (Essers et al.
2002). The relatively immobile fraction of Rad51 molecules is bound to BRCAZ2 and this
fraction is reduced upon replication arrest with hydroxyurea (Yu et al. 2003). This
behavior is lost for Rad51 mutants that no longer interact with BRCAZ2, suggesting a role
for BRCA2 in the Rad51 DNA damage response at the cellular level. Given the behavior
of BRCA2 at the biochemical and cellular level and the fact that . cerevisiae does not
contain a BRCA2 homolog, BRCA2 is, in addition to or in combination with the Rad51

paralogs, also a candidate for the mammalian equivalent of §. cerevisiase Rad52 activity.
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Once the nucleoprotein filament is formed and has found the target duplex, the
next step is the joint molecule formation. This is a critical step in homologous
recombination, in which Rad51 is aided by Rad54. Rad54 is a member of the
SWI2/SNF2 family of DNA-dependent ATPases, which have been implicated in
modulating protein-DNA interactions. Mouse and chicken Rad54 deficient cells show
sensitivity to DSB inducing agents, and a reduced level of homologous recombination
(Bezzubova et al. 1997; Essers et al. 1997; Dronkert et al. 2000). The absence of Rad54 is
compatible with mouse development, in spite of the fact that Rad54 knockout mice as
well as Rad54 knockout ES cells are sensitive to mitomycin C. By contrast, unlike ES
cells, adult Rad54 knockout mice are not sensitive to ionizing radiation (Essers et al.
2000). However, the phenotypes related to DNA damage sensitivity and genome
instability of the DNA end joining (DNA-Pk_, Ku70, or DNA Ligase IV) defective mice
are dramatically enhanced when Rad54 is absent (Essers et al. 2000; Couedel et al. 2004;
Mills et al. 2004). Therefore the contribution of Rad54 to repair of ionizing radiation
induced DNA damage in adult mice is clearly evident when the Rad54 knockout
mutation is combined with a defect in the DNA end-joining pathway.

Biochemical experiments have revealed that the important substrate of Rad54 in
recombination is double-stranded template DNA: only double-stranded DNA activates
its ATPase activity (Swagemakers et al. 1998; Petukhova et al. 1999). Rad54 has been
shown to be a motor protein on DNA, whose translocation can lead to supercoiling of
DNA domains thereby lowering the energy required to separate the strands of the double
helix (Petukhova et al. 1999; Tan et al. 1999; Mazin et al. 2000; Van Komen et al. 2000;
Ristic et al. 2001). This activity is important during the strand invasion step of the Rad51
coated single-stranded DNA into the template duplex. Indeed, the Rad54 protein
interacts with Rad51 (Clever et al. 1997; Golub et al. 1997; Tan et al. 1999; Van Komen
et al.; Raschle et al. 2004) and this interaction has functional consequences, for example
the stimulation of Rad51 mediated joint molecule formation by Rad54 (Petukhova et al.
1998; Mazin et al. 2000). In addition to this early role, biochemical experiments have also
suggested a late role for Rad54 in recombination. Rad54 can remove Rad51 filaments
from double-stranded DNA (Solinger and Heyer 2001; Solinger et al. 2002). Evidence
for the importance of this role of Rad54 at the cellular level is provided by experiments
showing that homologously paired molecules in §. cerevisiae cells could not be extended by

a DNA polymerase in the absence of Rad54 (Sugawara et al. 2003). In addition, during
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meiosis in Rad54 knockout mice, Rad51 protein appears to remain associated with
chromatin loops of synapsed chromosomes (Wesoly et al. 2000).

The finding that Rad51 and Rad54 interact closely in biochemical assays is further
confirmed by cell biology analysis. Like Rad51, Rad54 forms DNA damaged-induced
foci and these foci colocalize (Tan et al. 1999). Under conditions in which Rad51 DNA
damage-induced foci do not form, such as in the Rad51 paralog mutants, Rad54 also fails
to form foci (van Veelen et al. 2005b). In the absence of Rad54, Rad51 foci appear to be
destabilized (Tan et al. 1999; van Veelen et al. 2005a). The reduced stability of Rad51
aggregation in cells lacking Rad54 is consistent with the biochemical demonstration that
Rad54 can stabilize Rad51 nucleoprotein filaments (Mazin et al. 2003).

The Rad54 protein has also been analyzed in living cells. The first study to
analyze DNA damage-induced foci in live cells revealed similar aggregations of
recombination proteins at sites of DNA damage as seen in fixed cells (Essers et al. 2002).
FRAP experiments demonstrated that these foci are highly dynamic; Rad51 and Rad54
proteins actively sample these foci through an equilibrium of association and
dissociation, but they display different residence times. Furthermore, even though both
recombination proteins work together in recombination, they are not present in the cell
as a holo-complex in the absence of DNA damage because they diffuse through the cell
at different rates. Executing DNA transactions through dynamic multi-protein
complexes, rather than stable holo-complexes, allows flexibility. For example, it will
facilitate cross-talk between different DNA repair pathways and coupling to other DNA

transactions, such as replication.

4.3 Resolution

Once the joint molecule between the nucleoprotein filament and target duplex is
formed, the information lost during end processing can be restored by DNA
polymerases (Figure 3). Recently, the translesion DNA polymerase eta has been
implicated in this step (Rattray and Strathern 2005). DNA polymerase eta relocalizes into
foci upon UV irradiation and those foci colocalize with Rad51 (Kannouche et al. 2001).
A chicken B cell derived cell line deficient in DNA polymerase eta displays defects in
DSB-induced homologous recombination (Kawamoto et al. 2005). In addition, DNA
polymerase eta interacts with Rad51 and can extend DNA synthesis from joint molecule
recombination intermediates (McLlwraith et al. 2005). Chromatin immunoprecipitation

experiments indicate that the . cerevisiae Rad54 protein is important in promoting the
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transition from pairing of homologous DNA strands by Rad51 to extension of the
invading strand by DNA polymerases (Sugawara et al. 2003). Possibly, Rad54’s potential
to remove Rad51 nucleoprotein filaments from double-stranded DNA might be
important in promoting this step in homologous recombination (Solinger and Heyer
2001; Solinger et al. 2002).

After all sequences are restored, remaining single-strand nicks are sealed by DNA
ligase. At this stage the recombined DNA molecules can be physically joined in a
structure often referred to as a Holliday junction (Figure 3). To complete recombination
this junction needs to be resolved; for simplicity, one possible outcome of resolution is
shown in Figure 3. In E. o/, this reaction is carried out by the RuvABC complex. The
RuvA and RuvB proteins promote ATP-dependent branch migration of the Holliday
junction, while RuvC introduces nicks in two of the four DNA strands of the Holliday
junction allowing resolution of the junction into recombinant DNA molecules (West
1997). In mammalian cells, less is known about the proteins involved in resolution of
Holliday junctions; however, some initial studies have found clues in elucidating this
activity (Waldman and Liskay 1988; Hyde et al. 1994; Constantinou et al. 2001;
Constantinou et al. 2002).

As described above, several biochemical and cellular studies have resulted in the
suggestion that the Rad51 paralogs have an early function in loading Rad51 onto single-
stranded DNA during the assembly of the nucleoprotein filament (Masson et al. 2001b;
Sigurdsson et al. 2001; Yonetani et al. 2005). Interestingly, the identification of Rad51C
and XRCC3 as components of an activity that promotes Holliday junction resolution
suggest that at least some Rad51 paralogs can also have a late role in homologous
recombination (Liu et al. 2004). Further evidence for this notion comes from studies
showing that Rad51B can bind preferentially to synthetic Holliday junctions (Yokoyama
et al. 2003). Support at the cellular level for a late function of Rad51 paralogs associated
with resolution of recombination intermediates comes from studies on XRCC3 mutant
hamster cells showing that gene conversion tract lengths are increased in the absence of
XRCC3 (Brenneman et al. 2000). Once the Holliday junction has been cleaved by the
resolvase, the partner DNA molecules are separated and ligation of the resolvase-induced
single-strand nicks will produce two completely restored duplex DNA recombinants

(Figure 3).
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5 Recombination and replication

Above we focused on homologous recombination in the context of the repair of
a pre-existing DSB. Joint molecule formation between the broken DNA and the intact
repair duplex catalyzed by Rad51 and accessory factors sets up the substrate for DNA
polymerases such that DNA replication can restore information lost by processing of the
DSB. Conversely, homologous recombination also plays an important role in supporting
DNA replication when the replication fork encounters DNA damage in its template, for
example thymidine intra-strand dimers induced by UV-light (Michel et al. 2004).
Depending on the type of DNA damage, processing might or might not result in a DSB.
In either case, homologous recombination proteins are involved in helping the
replication machinery pass the damage (Cox et al. 2000). The presence of unrepaired
DNA damage serves as a block to the passage of the replication machinery. The bypass
or repair of these blocks and the subsequent fidelity of DNA replication requires several
coordinated processes, including chromatin remodeling, DNA repair and DNA
synthesis, which has to occur in an ordered manner to achieve proper cell division. The
synthesis of DNA past lesions requires the use of specialized DNA polymerases that
bypass them, such as DNA polymerase eta, since the highly stringent replicative DNA
polymerases cannot accommodate damaged bases in its active site (Prakash et al. 2005).
It is for this reason that DNA synthesis during S phase of cells is blocked in the presence
of unrepaired lesions and as a consequence, replication stalls, the replisome dissociates
and the fork collapses. The resulting structures that emerge are substrates for
homologous recombination.

The central protein in DNA replication and several forms of DNA repair,
including nucleotide excision repair (NER) is the DNA polymerase processivity factor
proliferating cell nuclear antigen (PCNA), which localizes proteins such as polymerases
to DNA (Ellison and Stillman 2003). Recently, the coordination between DNA repair
and replication has been studied by determining the behavior of GFP-tagged PCNA in
living cells using photobleaching. While PCNA molecules move rapidly through the
nucleus during the G1, S, and G2 phases of the cell cycle, they reside for 10-20 minutes
in replication foci during S phase (Sporbert et al. 2002; Solomon et al. 2004; Essers et al.
2005; Solovjeva et al. 2005). To simultaneously monitor PCNA action in DNA
replication and repair, local irradiation has shown an accumulation of PCNA at sites of
UV-light induced DNA damage in brightly fluorescent regions, on top of the typical

replication pattern. Photobleaching experiments have revealed that PCNA also binds
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transiently to these local UV-damaged areas although residence times are considerably
longer compared to replication foci (Solomon et al. 2004; Essers et al. 2006). This
difference is not found in a PCNA mutant that can no longer be ubiquitinated (PCNA
K164R), showing that one function of mono-ubiquitination of PCNA is to modulate the
residence time of PCNA at sites of DNA damage (Essers et al. 20006). Similar analysis
also revealed the residence time of other replication factors, such as Fenl, DNA ligase I,
and RPA, which showed significant faster turnover rates at replication foci compared to
PCNA, (Sporbert et al. 2002; Chapados et al. 2004; Solovjeva et al. 2005). This is
reminiscent of what has been found for the IR-induced foci of the homologous
recombination proteins Rad51 and Rad54 (Essers et al. 2002). Rad51, like PCNA, is a
more stable component of the DNA damage-induced foci, while Rad54 reversibly
interacts with these structures. The differential mobility of these proteins likely reflects
their functional status zz vzvo and can therefore be used as an analytical tool to explore

their function.

6 The function of DNA damage-induced foci

The formation of foci containing proteins involved in homologous
recombination and checkpoint activation at sites of DNA damage is a remarkable
phenomenon (Figure 2). Clearly, many molecules of each protein must accumulate at
those sites. In order for a focus to be detected by immunofluoresence or by GFP signal,
the number of molecules present must be in the order of 100. To gain insight into the
function of foci, important questions to be answered include: (1) What is the
composition of these foci? (2) Why do they contain such high numbers of molecules of
proteins? (3) How do they form and how are they disassembled?

To determine the identity of all proteins in a focus is not a straightforward
problem. Methods that have been successful in the analysis of the proteome of other
subnuclear organelles such as nucleoli are not easily adapted to analyze foci (Andersen et
al. 2002). Because biochemically isolated nucleoli can be tested for a particular activity, it
may be assumed that mass spectrometric analysis will reveal the proteome of the active
subnuclear organelle. Methods to isolate foci containing homologous recombination
proteins are yet to be developed. The most promising approach might be to perform 7z
vivo crosslinking experiments of complexes near site-specific DSBs and fishing for a
specific sequence near the DSB. However, in the absence of an 7z vitro activity assay for

foci activity, the interpretation of subsequent proteome analysis will be ambiguous.
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Besides its composition, it would be interesting to determine why so many
molecules of the homologous recombination proteins accumulate at the sites of DNA
damage. It is clear from biochemical experiments that the actual number of proteins
required to take the DNA strands through recombination are much lower than the sheer
numbers that appear to accumulate into foci. Therefore it is conceivable that in order to
do their job, a large number of homologous recombination proteins accumulate at the
site of damage, while only a small subset is actually involved in damage repair. In
addition, the requirement for high local concentrations of DNA repair proteins at
damage sites is not a general prerequisite for repair, as shown by the fact that global UV-
light irradiation of cells does not result in the formation of foci of NER proteins, for
example (Houtsmuller and Vermeulen 2001). Therefore the necessity for microscopically
visible foci in the repair of damage by recombination is still an open question. It is
possible that such an accumulation could synchronize the presence and function of the
various protein components of recombination both spatially and temporally, since it has
been shown that the enzymes of homologous recombination have to work together in a
timely and highly coordinated manner.

Foci of homologous recombination proteins near sites of DNA damage might
simply form because the proteins could have a higher affinity for damaged compared to
undamaged chromosomal domains. This would require a mechanism that distinguishes
between damaged and undamaged chromosomal domains. One possible marker for

chromosomal domains containing DNA damage is YH2AX. The increased local

concentration of YH2AX can be rationalized as a marker of the location of a DSB, since
this modification is present in the megabase chromosomal domain that contains the
damage (Rogakou et al. 1999). However, the mild phenotype of H2AX knockout cells
and mice argues that there must be alternative or additional distinctions.

Thus, once a DSB arises, modification of the chromosomal domain it is contained
in might create a site with a slightly increased affinity for the recombination proteins
compared to intact chromosomal domains. The difference in affinity ensures that the
proteins will be concentrated and partially immobilized for a longer time at the damage-
containing chromosomal domain, resulting in an accumulation of homologous
recombination proteins at the DSB site. Moreover, the homogeneous distribution of
freely mobile DNA repair proteins (Essers et al. 2002) ensures that all required factors are
always present in the vicinity of DNA lesions wherever they occur, allowing rapid and

efficient detection and subsequent repait.
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New insight into the mechanism of homologous recombination repair in living
cells will come from analyzing the behavior of proteins with biochemically characterized
mutations to see how these affect their 7z vzvo behavior. It is clear that the technology is
available to sort through the mechanistic possibilities suggested from genetic and

biochemical studies of homologous recombination.
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Abstract

Rad54 is an important participant in homologous recombination, a high fidelity pathway
of double-strand break (DSB) repair. The role of Rad54 in the precise repair of DSBs has
been elucidated via the characterization of Rad54 deficient cells and mice. To further
analyze the behavior of Rad54 in cells and animals, we generated a mouse model carrying
a Rad54-GFP knock-in allele. The expressed fusion protein is biologically active, and
thus the Rad54-GFP knock-in mouse provides a valid and useful tool to analyze spatial
and temporal expression of Rad54. We analyzed the cellular distribution of Rad54 during
mouse development as well as in a specific subset of cells in the adult. We have found
that Rad54-GFP is expressed in 3.5, 8.5 and 13.5 days post coitum embryos. At the
cellular level, Rad54-GFP is expressed in proerythroblasts until they stop proliferating.
Mouse embryonic fibroblasts, dermal fibroblasts and chondrocytes only show expression
in a small subpopulation of cells. In adult mice, we focused on the hematopoeitic system,
where we found that Rad54-GFP expression was restricted to the proliferating stages of
B and T cell development. These data show that Rad54-GFP is present in cycling cells.

Introduction

An important metabolic process that involves DNA is the repair of damage that
is constantly induced by exogenous or endogenous sources [1]. In order to ensure proper
DNA replication, transcription and cell survival, specialized repair pathways are used to
deal with specific types of damage and rid DNA of these injuries. The double-strand
break (DSB) is one of the most detrimental of DNA injuries as the continuity of both
strands of DNA is affected. If not repaired properly and in a timely fashion, DSBs can
lead to genomic rearrangements that can result in development of cancer [2-4].

Two major pathways are involved in the repair of DSBs: homologous

recombination and nonhomologous DNA end-joining. Homologous recombination is a
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high-fidelity DSB repair pathway that ensures the integrity of genetic information by
using an undamaged, homologous DNA molecule, usually the sister chromatid, to repair
the break [5]. The central proteins of homologous recombination and the corresponding
core mechanism is conserved from yeast to mammals [6]. A DSB in the genome is
detected and processed to single-stranded 3 DNA tails, the nucleation point for
recombination factors. Rad51, an essential player in recombination, assembles on 3’ tails
to produce a nucleoprotein filament, which then mediates the critical step of
homologous pairing between the broken DNA molecule and the intact template. Rad51
is assisted at various stages of recombination by mediator and accessory proteins [7], one
of which is Rad54. Nonhomologous end-joining involves the simple religation of DNA
ends without the need for a template. This process is not necessarily error-free [5]. DSB
ends are bound and hypothetically aligned by KU70/80, thus allowing for ligation by the
DNA ligase IV-XRCC4 complex [8]. The need for two mechanistically different
pathways (and their corresponding proteins) for the healing of DSBs has been under
investigation for a number of years [9-11]. Several theories that have been put forward to
distinguish the spatial and temporal involvement of recombination and end-joining in
mammalian development, and their possible overlapping roles [12].

Clues to answering this question have come from phenotypes of knockout mice.
Unchallenged Rad54” mice display no gross abnormalities and have a normal life
expectancy [13], thus making them an excellent model to study the relevance of DNA
damaged-induced recombination. While Rad54” adult mice do not seem to be affected
by ionizing radiation, Rad54 knockout embryos and embryonic stem (ES) cells show a
hypersensitivity [13], indicating a possible role of homologous recombination in early
development. The involvement of recombination in DSB repair lessens as the animal
matures. On the other hand, mice bearing mutations in DNA-PK or Ku80, two
components of end joining, display ionizing radiation sensitivity, designating end joining
as the dominant pathway of radiation-induced DSB repair in adults [10]. In addition,
mice defective in both homologous recombination and end joining display higher level of
irradiation sensitivity than single mutants [9, 10]. Therefore, not only is the choice of
DSB repair pathway temporally regulated during development, it also has overlapping
functions which enables the possibility of one repair pathway taking over the function of
the other when the latter is deficient.

As has been suggested by double knockout mouse studies, the dominance of end

joining in the adult mouse results in a global resistance to ionizing radiation in the
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Rad54”" mouse [12]. However, the analysis of Rad54 expression in different mouse
tissues, as investigated by Northern blot analysis, suggests that tissue-specific
homologous recombination may still exist in the adult mouse [14]. Specifically, while
hardly any transcript was detected in most tissues, Rad54 transcripts are present in the
thymus and spleen, which are organs of lymphoid development [14]. This implies one of
two possibilities. First, the presence of Rad54 in these organs suggests that it might have
a function in V(D)J recombination. Second, since both these organs have cells that
rapidly divide, it is conceivable that Rad54 is expressed in highly proliferating cells.
Indeed, cycling cells present the opportunity for recombination since the sister chromatid
is available as a template for repair to occur. Rad54 expression has also been documented
in the testis, specifically in spermatocytes in meiotic prophase, suggesting a role of Rad54
in meiotic recombination [15, 16]. Consequently, the expression of Rad54 in the adult
animal is spatially regulated, indicating an active but tissue-specific role of Rad54
dependent recombination in the adult animal.

The function of Rad54 i» vive has been primarily deduced from cells and animals
that lack the protein. Hence it is equally important to track the protein itself in cells and
animals, preferably under conditions compatible with life. Using a knock-in approach, we
have constructed mouse ES cells that express functional GFP-tagged Rad54 from the
endogenous genomic locus. Mice generated from these cells allowed visualization and
characterization of the Rad54 protein in different cell types and tissues, and through the

stages of mouse development.

Materials and Methods
Generation of Rad54-GEP knock-in cells and mice

A Rad54-GFP knock-in construct was made by fusing genomic Rad54 sequences
containing exons I — III in frame to the cDNA consisting of exon IV to XVIII of Rad54.
The coding sequence of eGFP (Clontech) was inserted at the C-terminus 3’ site of Rad54,
followed by a puromycin selectable marker (Figure 1A). The construct was made such
that the homologous integration of the construct in the genome results in the production
of GIP-tagged Rad54 from the endogenous promoter. After linearization, the Rad54-
GFP construct was purified using electro-elution, phenol extraction and ethanol

precipitation. The construct was electroporated into ES cells using a 2 mm cuvette
(BTX), at 117 V, 1200 uF and for 10 ms in an ECM 830 electroporator (BTX). After

puromycin selection (1 pg/ml), clones were isolated and homologous integration of the
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construct was verified. The genomic DNA was analyzed by DNA blot analysis using Stul
as a diagnostic site, and a probe that recognized exons VII and VIII. The production of
GFP tagged Rad54 was confirmed by immunoblot analysis using whole cell extracts from
correctly targeted clones which were analyzed with anti-GFP (mouse monoclonal, Roche
Applied Science) and anti-Rad54 [13]. DNA damage sensitivities of ES cells were
performed using clonogenic survival assay as described [13]. ES cells that contained the
correctly targeted event were injected into blastocysts. Male chimeric mice were crossed
JCFP/+

with females to obtain Rad

Rad54°"™ P mice.

mice, which were then intercrossed to obtain

Isolation of embryos, proerythroblasts and MEFs

GFP/+ :
* mice and

Timed pregnancies were obtained by crossing heterozygous Rad54
the plugged females were sacrificed at a specified time point. Embryos were isolated and
genotyped by PCR. 3.5, 8.5 and 13.5 days post coitum (dpc) embryos were collected,
placed on glass cover slips and observed using a 40X objective using a Zeiss LSM510
confocal microscope.

To 1solate proerythroblasts, timed pregnancies were sacrificed at 12.5 dpc.
Rad54"" and Rad54™“"" embryos were obtained and their livers were isolated and
washed in sterile PBS. After making a single cell suspension by pipetting the liver up and
down, the cells were seeded in 24 well dishes in proerythroblast expansion medium for
24 hours. This medium serves to halt differentiation of the proerythroblasts and maintain
them as rapidly cycling precursors [17].The presence of proerythroblasts was checked by
electronic cell counter (CASY-1, Counter and Analyser system, Scharfe-System,
Reutlingen, Germany). The cells were pelleted and fixed with 2% paraformaldehyde
before being subjected to fluorescence-activated cell sorting/flow cytometry (FACS). In
addition, to visualize individual cells, proerythroblasts were irradiated with 8 Gy ionizing
radiation (using a '’Cs source), attached to polylysine coated glass slides (Poly-prep
slides, Sigma), fixed with 2% paraformaldehyde for 15 minutes and then mounted with
DAPI/DAPCO/Vectashield (Vector Labs).

Rad54""" and Rad54“™ "™ mouse embryonic fibroblasts (MEFs) were isolated by
removing the liver, heart and head of the 12.5 dpc embryo. The rest of the embryo was
minced in PBS and plated in MEF medium (50% DMEM, 50% Ham’s F10, 10% FCS,
1% pen/strep). After a few days, explants were observed to grow out from the tissue

pieces, and the cells were passaged when the dish was full. In preparation for FACS, low
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passage MEFs were trypsinized, washed and then fixed with 2% paraformaldehyde.
MEFs were grown on glass slides for live cell imaging. Cells were also observed after

being fixed, mounted, and sealed as mentioned above.

Analysis of Rad54-GFP in B- and 'T- cells

Six week old mice were sacrificed and femurs were cleaned of muscle and
ligaments, and crushed. Thymus and bone marrow cell suspensions were prepared using
a 100 um cell strainer. In order to generate the cell populations of large cycling expanding
pre B-cells, bone marrow samples were cultured in the presence of IL-7 (100U/ml) for a
period of 5 days [18].

Total bone marrow and thymus cell suspensions were incubated with one of the
following: (a) monoclonal antibodies specific for the B-cell surface markers B220, CD43
and IgM (Becton Dickinson), (b) various hematopoietic lineage markers (Ter 119, ER-
MP20), or (c) markers that signify the individual stages of T cell development (CD4,
CD8, CD3, CD25, CD44). After treatment with the antibodies, the cells were subjected
to flow cytometry (Calibur, Becton Dickinson) and analyzed with CellQuest (Becton

Dickinson) software.

Isolation of mouse ear chondrocytes and dermal fibroblasts

Adult Rad54“™ ™ and Rad54""" mice were sacrificed and the auricular cartilage
was isolated from the inner ear of the mice. The tissues was sterilized with 70% ethanol
and cut into small pieces with a scalpel. The tissue pieces were then treated overnight
with 1.6 mg/ml of collagenase type II (Gibco/BRL, Catlsbad, CA) in chondrocyte
medium (50% DMEM, 50% Ham’s F10, 10% FCS, 1% pen/strep). Chondrocytes attach
and expand over the period of a week. During this time period, the medium was changed
every other day and cells were passaged when confluent. For analysis, cells were fixed
with 2% (v/v) paraformaldehyde before flow cytometry. In addition, chondrocytes were
grown on glass slides, fixed and mounted with DAPI/DAPCO/Vectashield.

For dermal fibroblasts, a small piece of tail of Rad54“™“"" and Rad54™* adult
mice was cut and the skin was isolated. The tissue was sterilized with 70% ethanol, cut
into small pieces and treated with collagenase type II described as above. Cells were

grown in fibroblast medium (50% DMEM, 50% Ham’s F10, 10% FCS, 100 U/ml

penicillin, 100 pg/ml streptomycin). Preparation of cells for analysis was carried out in

the same way as with chondrocytes.
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Visualization of Rad54-GEP in cells

Rad54“™ ™" cells were visualized with a Zeiss LSM 510 microscope consisting of
an Axiovert 100 inverted microscope, equipped with an Argon gas laser (visualizing
Alexa 488, green). Images were taken with 63x oil immersion lens. Live cells grown on
glass were observed by mounting the 24 mm circular glass coverslip on a microscope
equipped with a live cell chamber. Images were analyzed in the Zeiss LSM image

browser.

RT-PCR analysis

Total mRNA was purified from wild type cells using TRIzol Reagent (Invitrogen)
according to manufacturer’s protocol. cDNA was then made with SuperScriptll RNase
H-reverse transcriptase (Invitrogen) after DNase I amplification grade (Invitrogen)
treatment, also according to manufacturer’s protocol. Rad54 specific primers were
designed to amplify a 108-bp product between the first and second exon. The forward
and reverse primer sequences are 5 ACTGCTGGACTTGCGTTTICT 3’ and 5
AGCTTAGCTCCCAGCCAGTT 3, respectively. RT-PCR was run for 30 cycles using
55 °C as annealing temperature. Primers were used to amplify the HPRT ¢cDNA for a

quantitative control of total cDNA.

Results
Generation and analysis of ES cells and mice carrying a Rad54°"™" allele

To study the cellular behavior and expression pattern of Rad54, mouse ES cells
which express GFP-tagged wild type Rad54 from the endogenous locus were generated.
A targeting knock-in construct consisting of exons IV to XVIII Rad54 cDNA fused with
the GFP gene sequence (Figure 1A), was electroporated into specific pathogen-free wild
type ES cells. Puromycin-resistant clones, which were possible candidates for containing
the homologously integrated knock-in construct, were picked and expanded. Clones were
genotyped by DNA blot analysis, where a homologous targeting event by the Rad54-GFP
knock-in construct results in the appearance of a 6.5 kb doublet. Due to limitation in
resolution, an increase in intensity of the 6.5kb bands was observed compared to the
other bands resulting from the Rad54 locus (Figure 1B). Therefore, a clone that gave the

wild type, 9.0 kb band, as well as the 6.5 kb doublet was genotyped as Rad54°"™*. Proper
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expression of Rad54 was also confirmed by immunoblot analysis. The targeted allele
gives rise to a GFP fusion protein of 110 kDa, while the wild type allele gives an 85 kDa
Rad54 band, which was observed in Figure 1C.

The functionality of the Rad54-GFP fusion protein was tested by carrying out
clonal survival assays in response to DNA damage induction. While Rad54” cells are
hypersensitive to increasing Y-irradiation dosage [13], Rad54°"™" cells were found to be
similarly sensitive as Rad54"", showing wild type behavior of these cells in terms of DNA
repair (Figure 1D). In addition, Rad54-GFP showed nuclear localization, and formed
nuclear foci in response to ionizing radiation (Figure 1E). This behavior is characteristic
for a number of homologous recombination proteins including wild type Rad54 [19]. A

4GFP/ +

correctly targeted clone of genotype Rad5: was expanded and injected into wild type

blastocysts. Chimeric mice obtained were backcrossed to obtain Rad54“"™*

animals,
which were bred to obtain Rad54°™“'" animals. The mice were obtained at Mendelian

inheritance ratios, indicating normal transmission of the Rad54-GFP allele.

Visualization of Rad54-GEP in embryos shows expression in all cells

To determine the pattern of Rad54-GFP expression at various stages of
development, 3.5, 8.5 and 13.5 dpc embryos were isolated in which Rad54-GFP was
visualized. GFP positive 3.5 dpc embryos indicated the presence of Rad54-GFP protein
in the embryos (Figure 2A). In 8.5 dpc embryos, Rad54-GFP was noted in three
discernible areas; the head, heart and somites (Figure 2B). Other organs become distinct
in 13.5 dpc embryos, and Rad54-GFP was seen in most cells of the organs where rapid

cell division and tissue expansion is taking place (Figure 2C).

Rad54-GFP expression in fetal and adult hematopoeic system

The hematopoietic system was chosen to follow developmental changes in Rad54-GFP
expression because of its well-characterized stages of cell development and the possibility
to select for progenitor cells and differentiated cells. Rad54™" and Rad54°"™ ™ fetal
livers were isolated from embryos obtained as a result of a mating between Rad54™*
mice and cultured for 24 hours in order to enrich the culture for the rapidly proliferating
proerythroblasts. The proerythroblasts were maintained in culture as the earliest of the
immature forms recognizable as the precursor of the mature erythrocyte, as previously

described [17]. Flow cytometry showed that these cells from fetal livers express Rad54-

GFD, as seen by a clear peak shift in the profile (Figure 3A). It was noted that there was a
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Figure 1
Generation and analysis of mouse ES cells containing a Rad54°™" allele

(A) Schematic representation of the mouse Rad54 locus and the gene targeting construct.
The top line represents a 30 kb portion of endogenous Rad54 locus, where black boxes
indicate exons I through XVIIIL. The middle line shows the linearized targeting construct,
containing the human RAD54 cDNA sequence spanning exon IV-XVIII fused to the
GFP coding sequence. The construct contains a gene encoding for puromycin resistance
as a selectable marker. As shown by the final line, the targeting construct will replace the
regions between exon III and VIII when correctly integrated to generate the targeted
allele. Homologous integration results in the expression of full length, GFP-tagged
Rad54 from its endogenous promoter. (B) DNA blot analysis of ES cells carrying the
knock-in contruct. DNA blot analysis was carried out using genomic DNA purified from
puromycin positive clones and digested with Stul. Detection of bands was carried out
using a probe that recognized exon VII/VIII, as indicated in Figure 1A. The wild type
(wt) allele results in a 9.0 kb band (lane 1). The knockout allele yields a 6.0kb band (lane
3), while knock-in allele is characterized by a doublet (a band of higher intensity) around
6.5 kb (lanes 2 & 3). (C) Immunoblot blot analysis of proteins produced by the Rad54-
GFP knock-in allele. Whole cells extracts of ES cells with the indicated genotype were
probed with affinity purified anti-human Rad54 antibodies (top) and anti-GFP (bottom).
The position of Rad54 and Rad54-GFP are indicated and an asterix marks a non-specific
signal in the top blot. Wild type Rad54 is 85 kDa and was seen in both wt and Rad54“"™*

lanes (top), while Rad54-GFP is 110 kDa, as shown by both the a-Rad54 and o-GFP.
(D) Clonal survival analysis of Rad54“"™"". ES cells of the indicated genotypes for their
ability to survive treatment with increasing doses of irradiation. The assays were done in
triplicate and the error bars indicated the standard error of the mean. Rad54“™" cells are
not hypersensitive to irradiation, indicating that the GFP tag on Rad54 does not
compromise its function and is as functionally active as wild type Rad54 in cells. (E)
Cellular localization of Rad54°"™ " ES cells. Confocal images of fixed Rad54°""“"" ES
cells without (left panel) and with (right panel) irradiation are shown. Rad54-GFP
accumulated as foci 1 hour after treatment with 12 Gy.

small subpopulation that was not Rad54-GFP positive (arrowed “shoulder”). This is
likely to be due to the fact that there were other cells, like macrophages, which were still
present in a short-term culture of proerythroblasts. In addition, when these cells were
attached to poly-lysine coated slides and observed under the confocal microscope,
Rad54-GFP localized in the large nucleus characteristic of these cells (Figure 3B). When
the cells were treated with ionizing radiation, these cells displayed accumulation of
Rad54-GFP into nuclear foci (Figure 3B, right panel), a behavior that is similar to Rad54
in ES cells (Figure 1E). As noted for the FACS profile, there are other types of cells in
the population that were not Rad54-GFP positive (arrowed in Figure 3B).
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Figure 2
Rad54-GFP is expressed during embryonic development

(A) Comparison of wild type and Rad54“™* embryos at 3.5 dpc. Contrast and
fluorescent confocal pictures of both genotypes are shown, indicating the presence of
Rad54-GFP in Rad54™" embryo (right), but not in the wild type (left). (B) Analysis of
Rad54™“"" embryo at 8.5 dpc. At this stage, most organs have not formed and only
gross parts of the embryo are recognizable, all of which showed the presence of Rad54-
GFP. (C) Analysis of Rad54“™“"™ embryo at 13.5 dpc. Indicated organs were
distinguishable with the confocal microscope and showed the presence of Rad54-GFP.
An image of the wild type (WT) limb bud is shown for comparison.

The site of hematopoiesis switches to several different organs during embryonic
and fetal development. First, the yolk sac provides the site for mainly primitive
erythropoiesis in the early embryo. Then, the first hematopoeitic stem cells are found in
the aorta-gonad-mesonephros (AGM) region. One day later, hematopoeitic stem cells
can be found in the yolk sac, placenta and fetal liver. Finally, at birth, the bone marrow is
established as the primary source of mature blood cells, and is the location of highly
dividing hematopoietic stem cells [20, 21]. To study Rad54-GFP expression in adult
hematopoietic site, adult bone marrow was isolated and the cells were separated
according to cell surface markers, specifically B220 and Ter119. B220 is a marker specific
for B-lineage cells, namely B lymphocytes and their precursors. B-lineage cells were
separated from erythroid precursors by Ter119 staining. Ter119 is an antibody that reacts
with mouse erythroid cells from early proerythroblast stage at the point where these cells
are committed to differentiation to mature erythrocytes [22]. The larger, Ter119-positive
cells from Rad54°"™ " mice were actively dividing and show a shift into compartment 3,
indicating Rad54-GFP expression (33% of total population, right panel of Figure 3C). As
cells matured and started differentiation to become mature erythrocytes, they stopped
replicating and became smaller (52 — 55 % of total population, compartment 1, Figure
3C). These cells also showed loss of Rad54-GFP expression (compartment 1, right
panel). These data indicate the presence of Rad54-GFP in proerythroblasts extracted
from both the fetal liver as well as the adult bone marrow. In addition, as

proerythroblasts mature, the Rad54-GFP expression is lost.
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Figure 3
Rad54-GFP is present in dividing progenitor cells during erythrocyte

differentiation

(A) FACs analysis of proerythroblasts from embryonic fetal livers. Livers from 12.5 dpc
embryos were harvested and grown in proerythroblast expansion medium for 24 hours,
before undergoing cell sorting for GFP positive cells. Proerythroblasts extracted from
Rad54°™ " embryos show a marked shift in peaks as compared to wild type, indicating
the expression of Rad54-GFP in almost all cells. An arrow and asterisk indicate a small
“shoulder” in the profile indicating the presence of a small subpopulation of cells that are
Rad54-GFP negative. (B) Confocal images of proerythroblasts. Fixed proerythroblasts
were observed without (left) and with (right) irradiation. Rad54°"™ ' cells show Rad54-
GFP expression, which localizes into nuclear foci after 8 Gy irradiation. Image was taken
1 hour after irradiation. Morphologically distinct cells which show no Rad54-GFP are
arrowed. (C) FACs analysis of adult bone marrow. Adult bone marrow cells from both
wild type and Rad54“"™ ™" mice were extracted and according to cell surface markers
(top panel), namely B220 (B-cell specific marker) and Ter119 (proerythroblast specific
marker). The Ter119 positive cells were further analyzed for GFP positive cells (bottom
panel). The larger, actively cycling proerythroblasts showed the production of Rad54-
GFP (compartment 3, bottom right panel). Smaller, quiescent cells in compartment 1 are
undergoing differentiation and were Rad54-GFP negative. The numbers in the table in
the bottom panel represent the relative percentage of cells in each compartment.

Rad54-GFP in B- and T-cell development

It was previously reported by RNA blot analysis that Rad54 is highly expressed in
the thymus, an organ which hosts the development of T cells [14]. Two distinct
possibilities for Rad54 presence are suggested: one, that Rad54 has a role in V(D)]
recombination, and two, that Rad54 is ubiquitously present in replicating cells. In order
to distinguish between these possibilities for Rad54 in the development of T cells and B
cells, the thymus and bone marrow were isolated from an adult mouse and analyzed.

Total bone marrow cell suspensions from Rad54<"™"/ <"

mice were analyzed by
flow cytometry. Using surface markers B220, CD43 and Immunoglobulin M (IgM),
various stages of B cell differentiation were gated and analyzed for forward scatter (as a
measure for cell size) and Rad54-GFP expression (Figure 4A) [23]. Cells were defined as
large and associated with active cycling if they fell beyond approximately 500 in the
forward scatter compartment (FSC) (compartment 2, Figure 4A). Alternately, cells that
fell below approximately 500 (compartment 1, Figure 4A) were defined as small and
associated with non-cycling cells. In the pro-B cell stage, non-cycling cells are carrying
out Ig heavy chain recombination, panel I [24]. In the pre-B cell stage, non-cycling cells

are undergoing light chain rearrangement, panel II. GFP-positive cells were seen in

compartment 3 and 4.
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Figure 4
Rad54-GFP is present in proliferating B and T cells in adult mice

(A) FACs profiles of cells in various stages of B cell development. Bone marrow cells
were isolated from adult wild type and Rad54“"™“"" mice. Cells representing the different
stages of development (Pro B, Pre B and immature B cells) were electronically gated and
analysed. Large cycling cells were GFP positive (compartment 3), while smaller, non-
cycling cells which are also carrying out V(D)] recombination were not expressing
Rad54-GFP (compartment 1). Wild type cells did not show any GFP positive cells.  (B)
Confocal images of pre-B cells. Bone marrow was cultured in IL7-containing media
enriching for pre-B cells which have completed V(D)J recombination and are actively
cycling; these cells are positive for Rad54-GFP (right). When IL7 is removed from the
culture medium, pre-B cells become quiescent and Rad54-GFP expression disappears
(left). (C) Analysis of cells undergoing T cell differentiation by FACs. T cells were
isolated from adult thymus and sorted by their differentiation status by electronic gating
and analysis. Cycling cells show a shift into compartment 3, showing Rad54-GFP
expression, while smaller, non-cycling cells do not (compartment 1).

In the pro-B and pre-B cells that are undergoing V(D)] recombination, there was
no Rad54-GFP signal detected; on the other hand, cells that are actively expanding
showed a clear shift into compartment 3, indicating that Rad54-GFP appeared
exclusively in cycling cells during B cell maturation. Non-cycling immature B cells did not
express Rad54-GFP (panel III). Visualization of this result was carried out by culturing
total bone marrow cells in IL7 for 5 days, which specifically selects for and enriches the
culture for pre B-cells which have completed Ig heavy chain V(D)] recombination [25],
and are cycling (Figure 4B). The homogenous population of pre B-cells displayed nuclear
localization of Rad54-GFP (right panel). However, when these cells were cultured for 2
days in the absence of IL7, small resting pre-B cells that are involved in rearrangement of
the Igl. chain genes resulted, and in these cells Rad54-GFP was not detectable, except for
some aspecific staining (left panel).

Similarly, developing T cells were isolated from thymus and followed through the
various stages of maturation [26]. Again, cycling cells were seen in compartment 2, non-
cycling cells were in compartment 1, and GFP-positive cells were seen in compartments
3 and 4 (Figure 4C). Non-cycling T cells in panel I also carry out V(D)] recombination,
which did not show the presence of Rad54-GFP. Cycling T cells at the same stage
however, displayed Rad54-GFP expression. T cells that are cycling and expanding (panel
II) were positive for Rad54-GFP, but once they stop (panel III), they lost expression.
These data show that Rad54-GFP is expressed in cells that are actively cycling and

expanding, but is not detectable in non-cycling cells, suggesting that Rad54 does not
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Figure 5
Rad54 is present in proliferating cells

(A) PCR on cDNA isolated from different
cell types. Results show PCR products
obtained from cDNA with HPRT primers
(bottom panel) or Rad54 primers (top
panel). Expression is present in all these cell
types, although at different levels.

(B) Confocal images of MEFs, MDFs and
chondrocytes. Dividing cells from each type
were fixed on slides, stained with DAPI and
observed for Rad54-GFP expression. In
each case there is a small percentage of cells
that show nuclear staining of Rad54-GFP
(arrowed).
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appear to have a prominent role in V(D)] recombination, as previously predicted by

studies using Rad54 knockout mice [13].

Rad54-GFP expression in other cell types

So far we have established that Rad54-GFP is present in actively cycling cells
early in development, as well as in hematopoietic progenitors. To investigate the
relationship between the expression of Rad54 and differentiation status of cells, we
isolated three kinds of cells from Rad54“"™“™ embryos and mice - mouse embryonic
fibroblasts (MEFs), mouse dermal fibroblasts (MDFs) and cells from the mouse ear
(chondrocytes). All these cells resumed cycling when put into culture. Quantitative PCR
was performed on cDNA isolated from wild type cells, and Rad54 mRNA was found to
be present in all cell types (Figure 5A). However, the levels were different: ES cells
showed the highest level of Rad54 expression, while MEFs, MDFs and chondrocytes
display a low level of Rad54 message. Q-PCR analysis revealed that relative to ES cells,
MEFs contain 5-fold less Rad54 mRNA. No reliable quantitative data could be obtained
for MDFs and chondrocytes (data not shown). In addition, when observed under the
confocal microscope, all cells showed considerable cytoplasmic auto-fluorescence, but
only a small subset displayed a distinct and uniform nuclear staining (Figure 5B).
Preliminary quantification resulted in approximately 10% MEFs showing nuclear
localization of Rad54-GFP in a subconfluent culture. This was noticeably absent from
the Rad54""" cells. Furthermore, on top of the nuclear localization, Rad54-GFP foci

could be observed, which is indicative for cells in S phase [27].

Discussion
The Rad54™ knock-in system

The intimate connection of Rad54 to homologous recombination has been
extrapolated from biochemical evidence as well as from the characterization of cells
which lack Rad54. Here, the behavior of Rad54 in living cells is investigated where its
spatial and temporal localization has been studied using Rad54"" knock-in cells and mice
at various stages of development, an approach that bypasses the difficulties posed by
overexpression and transient systems. The advantage of using a knock-in strategy, where
the Rad54-GFP fusion construct is integrated into the genome at the endogenous Rad54
locus (Figure 1A and B), is that the level of GFP-tagged Rad54 expression is comparable
to the wild type protein (Figure 1C). The localization and cellular behavior of the tagged
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protein may therefore be expected to mimic that of the wild type protein in embryos and
cells derived from Rad54°™ ™ mice. Functionality of the GFP-tagged protein was
determined using the survival behavior of Rad54“"™" ES cells with increasing doses of
irradiation (Figure 1D), as well as the ability of Rad54 to form foci after treatment with
irradiation (Figure 1E, [19, 28]). This shows that the Rad54GFP knock-in mouse
provides a valid and useful tool to analyze spatial and temporal expression of Rad54 7

vivo.

Rad54-GFP is confined to dividing cells during differentiation of the hematopoeic systems

Correctly targeted ES cells were used to make Rad54°™“™ mice used in further
experiments, including the study of Rad54-GFP expression during various stages of
embryonic development (Figure 2). Rad54-GFP is present at least up to 13.5 dpc and in
various organs. In particular, the hematopoietic system was chosen to track the
expression of Rad54-GFP particularly due to its well-defined cellular differentiation
program that can be followed in detail using appropriate cell surface markers.
Proerythroblasts derived from 12.5 dpc embryos show an active production of Rad54-
GFP (Figure 3A), the foci forming behavior of which was similar to ES cells (Figure 3B).
Since Rad54 is an important player in homologous recombination, it is conceivable that
in proerythroblasts, like in ES cells [13] , this pathway is used to repair DSBs, ensuring
the faithful transmission of the genome during the rapid expansion of these cells.

Rad54-GFP expression is not confined to cells derived from embryos. Rad54-
GFP is highly expressed not only in proerythroblasts from fetal livers but also those
derived from adult bone marrow, indicating that tissue and cell specific expression of
Rad54, and therefore homologous recombination, exists in the adult mouse. This
premise is underscored by the expression profiles of developing B and T cells, where
cells that divide express Rad54-GFP, but non-dividing cells that are carrying out V(D)]
recombination do not (Figure 4). Importantly, these data also make a distinction between
the two possibilities raised in the earlier work [14] and confirms expression of Rad54-
GFP in organs where cells are engaged in high rates of division, rather than showing a

function in V(D)] recombination.
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Rad54-GFP is also present in dividing terminally differentiated cells, but only in a small percentage of
the population.

Finally, Rad54-GFP expression was investigated in dividing cell types other than
ES cells or proerythroblasts (Figure 5). Cells derived from mouse skin and auricular
cartilage are at the stage of terminal differentiation, and do not undergo division z situ.
However when these tissues are isolated and forced into division using culture
conditions, a small recovery of Rad54-GFP expression is observed. However, unlike ES
cells and proerythroblasts where a homogenous expression of Rad54-GFP is seen
throughout the population of cells, only a small percentage of the MEF, MDF and
chondrocyte population express Rad54-GFP: approximately 10% of MEFs show nuclear
localization within a population of cells which is not confluent and is therefore still
dividing rapidly. Homologous recombination has been postulated to be a cell cycle
dependent process, taking place during S and G2 phases simply due to the presence of
the sister chromatid during this time [29]. The fact that Rad54 is present at a slightly
higher level in S/G2 phases strengthens this argument [30]. Therefore, a possible
explanation for the differences in Rad54 expression profiles between ES
cell/proerythroblast populations and MEFs/MDFs/chondrocytes is that the former are
continuously expanding and therefore have a larger fraction of cells in S/G2 phase
compared to the latter [31], where the longer doubling time of the latter makes the
different phases of the cell cycle more distinct. We have as yet not determined whether
Rad54 is confined to a specific cell cycle stage in these cells, or if there is a small
percentage of cells that continuously express Rad54-GFP, although previous experiments
have suggested that the level of Rad54 expression is highest at S phase [30]. Cells could
be stained with S phase specific antigens such as Ki67 to determine the correlation
between low expression of Rad54-GFP in these cells and S phase. We have also not
excluded the possibility that the knock-in locus is silenced selectively in most primary
MEFs/MDFs/chondrocytes, and this can be examined by methylation-specific multiplex
ligation dependent probe amplification (MLPA). In addition, MDFs and chondrocytes
are terminally differentiated cells, and this might be the cause of a low Rad54-GFP
expression. This option also needs to be investigated.

Interestingly, it has been found that Rad54” MEFs display wild type resistance to
ionizing radiation, in sharp contrast to the hypersensitivity of Rad54”" ES cells [32]. This
might be correlated to the small percentage of cells that express Rad54-GFP in MEFs

compared to ES cells, demonstrating a functional link between the presence of Rad54
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and its involvement of homologous recombination. Indeed, since Rad54 has been shown
to be only present in specific tissues and even only in certain cellular subsets ([14] and
this work), the adult animal relies on other pathways (such as nonhomologous end
joining) for the repair of DSBs. This premise is further underscored by the finding that
while Rad54”" animals are not sensitive to irradiation, if the core proteins of
nonhomologous end joining are knocked out, a hypersensitivity compared to

nonhomologous end joining mutants only is noted [9-11].

Expression profiles of Rad54-GEP in mitotic and meiotic cells.

Using an in-depth analysis of the Rad54-GFP knock-in mouse, we have shown in
this study that Rad54-GFP expression coincides with mitotic cells and high cellular
proliferation. We have established that Rad54-GFP is present, as expected, in the cells of
the various organs as well as in the early developmental stages of the hematopoeitic
system of the developing embryo. During embryo development, it is critical to ensure
faithful replication of the genome in every cell; therefore homologous recombination is
the DSB repair pathway of choice. The role of Rad54 in recombination is strengthened
by the fact that Rad54”" ES cells are sensitive to ionizing radiation, a DSB-inducing agent
[13]. Since the presence of Rad54-GFP in the erythrocyte precursor cells predicts the
involvement of homologous recombination in progenitor cells, it is probable that
progenitor cells in other adult tissues maintain their genome in the same way. Rad54-
GFP is also expressed in a small subset of MDFs and chondrocytes derived from adult
mouse. The common denominator is that these cells are cycling, and they display
detectable levels of Rad54-GFP expression. However, the function of Rad54 in the latter
type cells is yet undetermined, since by survival analyses, Rad54”" MEFs are not sensitive
to ionizing radiation. Further studies are necessary to determine the purpose of the low
level of Rad54 expression in these cells.

The subcellular localization of Rad54-GFP in meiotic cells has also been
previously determined in mouse testis tubules from the Rad54-GFP mouse [14]. In that
study, three-dimensional optical image analyses showed high Rad54-GFP expression in
the mitotic stem cells (spermatogonia) of the male gametes up until entry into meiotic
prophase. Rad54-GFP expression reappeared in the pachytene stage and was lost from
diplotene onwards.

The analysis of Rad54-GFP expression illustrates the use of the Rad54-GFP

knock-in mouse model to detect proliferating cells zz vivo, since it allows the  situ
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identification of single cells expressing Rad54 protein amidst non-expressing cells
through detailed three-dimensional optical microscopy of isolated tissues. We conclude
that the Rad54-GFP knock-in mouse might be valuable in the identification of yet
unknown stem/progenitor cell niches in various organ systems of the intact animals. The
advantage of the knock-in mouse model is that these studies can be done in live cells,

without the need for staining with S phase specific antigens.
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Abstract

Rad54 is a member of the SWI2/SNF2 family of DNA dependent ATPases. It is an
important accessory protein that has a central role in assisting Rad51 in homologous
recombination via a variety of biochemical activities. Most of these activities are
dependent on RAD54’s ability to hydrolyze ATP. To study the impact of the loss of this
ATPase activity in mammalian cells, we have generated two knock-in mouse embryonic
stem cell lines expressing GFP-tagged Rad54 protein which carry point mutations in the
ATPase domain, K189R and K189A, which render Rad54 devoid of ATPase activity.
Rad54 ATPase mutant cells behave similarly to Rad54 knockout cells with respect to
sensitivity to DNA-damaging agents and demonstrate compromised gene targeting by
homologous recombination. This shows the essential role of ATP hydrolysis by Rad54 in
DNA double strand break repair. However, contrary to knockout cells, mutant cells
demonstrate an elevated level of spontaneous Rad54 foci and Rad51 foci. Time-lapse
imaging indicates that Rad54 mutant cells display a slower rate of damage-induced foci
clearance. In addition, the residence time of the protein in is higher in the mutant cells
than in wild type cells. We conclude that the presence of mutant Rad54 influences both
Rad54 and Rad51 cellular behavior. This study also establishes the role of Rad54 ATPase
activity in effective protein turnover in spontaneous and damage-induced foci as well as
disappearance of foci after damage.

Introduction

Cells have evolved a number of pathways to deal with DNA damage in order to
preserve the integrity of their genome. This damage is created by endogenous and
exogenous sources. Endogenous sources include by-products of cellular metabolism like

oxygen radicals, while exogenous sources include ultraviolet and ionizing radiation [1].

93



Chapter 4

Among different kinds of lesions, DNA double-strand breaks (DSBs) present a special
challenge to the cells because the continuity of the double helix is lost. If misrepaired,
DSBs can cause genome rearrangements such as translocations and deletions that can
result in the development of cancer [1-3]. Thus it is paramount that DSBs are repaired
precisely and in a timely fashion.

Homologous recombination is an error free, high fidelity pathway that repairs
DSBs by using an undamaged homologous DNA molecule (usually the sister chromatid
present after replication) as a template to repair the broken molecule [4]. The process is
carried out by the Rad52 epistasis group proteins, identified by the genetic analyses of
ionizing radiation sensitive Saccharomyces cerevisiae mutants [5, 6]. A number of Rad52
group proteins, including Rad51 and Rad54, are conserved in mammals, as is the core
mechanism of homologous recombination [7]. The central protein of homologous
recombination is Rad51. It mediates the critical step of homologous pairing and DNA
strand exchange between the broken DNA molecule and the homologous intact repair
template. Once a DSB occurs, it is processed to single-stranded DNA tails with a 3’
polarity, onto which Rad51 protomers assemble into a nucleoprotein filament. This
nucleoprotein filament is the active molecular entity in recognition of homologous DNA
and the subsequent exchange of DNA strands. An extensive number of mediator and/or
accessory proteins are implicated in assisting Rad51 at various stages of recombination
[8], one of which is Rad54.

RAD54, first identified in S. cerevisiae, is conserved in vertebrates [9-11]. Rad54 is
a member of the SWI2/SNF2 family of double-strand DNA-stimulated ATPases that
modulate protein-DNA interactions [12, 13]. Rad54 knockout mouse embryonic stem
(ES) cells are ionizing radiation sensitive, have a reduced level of homologous
recombination and display defects in repair of DSBs [10, 14]. A plethora of biochemical
activities of Rad54 have been uncovered that have the potential to augment the central
function of Rad51 in homologous recombination [15, 16]. First, Rad54 physically
interacts with Rad51, both 7 witro and in vive [17-20]. It is interesting to note that in
mammalian cells the interaction between the proteins occurs only in cells that have been
challenged with DNA-damaging agents. This suggests that Rad54 interacts with the
Rad51 nucleoprotein filament, rather than Rad51 protomers that are not engaged in
recombination [20, 21]. Second, Rad54 has a potent ATPase activity that is triggered
specifically by double-stranded DNA [22, 23]. Third, the interaction between Rad54 and
Rad51 is not only physical but also functional, as Rad54 stimulates Rad51-mediated D-

94



ATP hydrolysis by mammalian Rad54 controls nuclear foci kinetics and is essential for DINA damage repair

loop formation, which is the generation of a joint between homologous DNA molecules.
This function is dependent on the ATPase activity of Rad54 [22]. Fourth, the protein
uses energy gained from ATP hydrolysis to translocate along the DNA double helix [24-
26].  Fifth, presumably through its DNA translocase activity, Rad54 can affect the
interaction of proteins with DNA. Specifically, it can influence the position of histones
on DNA and remove Rad51 nucleoprotein filaments from double-stranded DNA [27-
30]. Sixth, its translocase activity also allows the protein to perturb DNA structures.
Rad54 can promote branch migration thereby affecting the processing of the Holliday
junction, which is a 4-way DNA junction that can arise as intermediates at sites where the
recombination partners are physically joined [31]. Finally, Rad54 has been shown to
dissociate intermediates of the homologous recombination reaction by its branch
migration activity [32]. Many of the biochemical activities of Rad54 are affected by
abrogating its ATPase activity. Hence, the proper functioning of Rad54 depends on its
ability to harness the energy from ATP hydrolysis, and this in turn is responsible for
augmenting the role of Rad51.

In the context of a cell, a striking characteristic of a number of proteins involved
in homologous recombination, including Rad51 and Rad54, is their ability to accumulate
at a high local concentration into structures termed foci [20, 33, 34|. This occurs
spontaneously in a low percentage of cells in S phase in the absence of exogenously
induced DNA damage [35, 36]. Upon the administration of DNA damage to cells, the
majority of cells display colocalizing Rad51 and Rad54 foci at sites of DNA damage [20,
37, 38]. While the nature, composition and requirement for foci formation is not
apparent from a biochemical point, it is clear that the foci (particularly of Rad51) are
biologically relevant, because mutant cells that cannot form them are DNA damage
sensitive and display spontaneous chromosomal aberrations [39, 40]. The nature of these
foci with respect to protein composition is highly dynamic. Photobleaching experiments
have shown that Rad51 and Rad54 associate and dissociate with foci, with each protein
having a characteristic dwell time [21]. Thus far, the 7z vzvo function of Rad54 has been
studied by the characterization of cells lacking the protein. In this study, we characterize
cellular behavior of Rad54 and Rad51 in cells where Rad54 is physically present, but

defective in its ATPase activity.
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Materials and methods
Mouse embryonic stem cell culture

The mouse embryonic stem cells used to generate ES cells expressing ATPase-
defective Rad54 had the genotype Rad54”""" where one allele is disrupted, and the
other expresses HA-tagged Rad54 from the endogenous Rad54 locus [20]. All ES cells
were cultured in 45% DMEM, 45% Buffalo rat liver cell conditioned DMEM (filtered),
10% FCS, 0.5% non-essential amino acids, penicillin (100 U/ml), streptomycin (100

Ug/ml), 0.1 mM B-mercaptoethanol, and 1000 U/ml leukemia inhibitory factor (LIF).

Antibodies

The primary antibodies used in this study were: anti-Rad51 (rabbit polyclonal,
[40]), anti-Rad54 (rabbit polyclonal, [10]) and anti-yH2AX (mouse monoclonal clone
JBW301, Upstate). The secondary antibodies used in this study were: goat anti-rabbit
coupled with alkaline phosphatase (Roche), goat anti-mouse coupled with alkaline
phosphatase (Roche) and goat anti-rabbit coupled with Alexa 543 (Molecular

Probes/Invitrogen).

Generation of ES cells carrying knock-in alleles expressing A'TPase-defective Rad54 protein

Targeting constructs bearing either K189A or K189R mutation (Figure 1) were
purified as plasmids and linearized with Pvul, and then purified using electro-elution,
phenol extraction and ethanol precipitation. These linearized constructs were then

wt-HA/-

electroporated into Rad54 cells using a 2 mm cuvette, at 117 V, 1200 uF and for 10
ms in an ECM 830 electroporator (BTX). Replacement of the Rad54"" locus would

generate ES cells with the genotype Rad54"'** ™ or Rad54"'*’* """ Twenty four hours
after electroporation, cells were subjected to puromycin selection (1ug/ml). One
hundred puromycin resistant colonies were isolated for each construct and their DNA
was analyzed for homologous integration of the knock-in constructs in the Rad54-HA
locus by DNA blotting using a probe recognizing exons VII and VIII. Genomic
sequence analysis was performed to confirm the correct integration and presence of
mutations in the Rad54 locus. Protein production was analyzed by immunoblot analysis
using whole cell extracts from the correctly targeted clones with anti-Rad54 antibody.
DNA damage sensitivities of the cells were performed using clonogenic survival assays as
described [10]. Briefly, a known number of cells at various dilutions were seeded in 6 cm

dishes in triplicate. For ionizing radiation, dishes were treated right away with the
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indicated dosage. For the rest, cells were allowed to attach for 12 — 16 hours before
treatment. MMC was added for one hour before washing. Aphidicolin, hydroxyurea and
etoposide were added to cells for 12 hours before replenishing the plates with normal
medium. Colonies resulting from the experiments were counted after 5 — 7 days. Finally,
as a measure of homologous recombination efficiency, the frequency of homologous
versus random integration of gene targeting constructs in the R4 locus was determined as

previously described [41].

Immunofluorescence and quantification of foci

ES cells were seeded on a feeder layer of lethally irradiated (70% - 80%)
confluent mouse embryonic fibroblasts and left to attach overnight. Cells were irradiated
with the indicated doses of ionizing radiation using a *’Cs source and left to recover for
the indicated amount of time. For immunofluorescence, the cells were washed twice with
PBS and fixed with 2% paraformaldehyde for 15 minutes at room temperature.
Permeabilization was carried out with a quick PBS/0.1% Triton X-100 wash, followed by
two more washes for 10 minutes. Blocking was carried out with a PBS+ (PBS/0.15%
glycine/0.5% BSA) wash. Cells were then treated with the primary antibody diluted in
PBS+ and incubated at 37°C for 90 minutes, in a dark and humid chamber. They were
washed with PBS/0.1% Triton X-100, once quickly and twice for 10 minutes. Treatment
with the secondary antibody was similar as outlined above. Samples were mounted on
glass  slides with DAPI/DAPCO/Vectashield (Vector labs) and sealed.
Immunofluorescence was documented using confocal images obtained with a Zeiss LSM
510, consisting of an Axiovert 100 inverted microscope, equipped with an Argon gas
laser (visualizing Alexa 488, green) and a Helium Neon laser (visualizing Alexa 543, red).
Images were taken with 63x oil immersion (N.A. 1.4) on a single plane of thickness ~
1um, through the middle of the cell, unless otherwise stated. Live cells grown on glass
could be observed by growing ES cells on MEF feeder layers on 24 mm circular glass
coverslip and then mounting the coverslip on a specially adapted chamber which allowed
the cells to remain in medium and at 37°C. Images were analyzed with AIM (Catl Zeiss,
Jena). Fluorescent signal in an area equal to or greater than 0.5um x 0.5Um was
considered a focus. In all cases (except for live imaging and automated foci counting,
below), quantification was carried out by manual counting of foci in a single confocal
plane of optimal thickness 1Uum through the approximate middle of the cells’ nuclei.

Quantification was defined as the mean number of foci per cell per confocal plane,
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where the number of foci in each image were counted and then averaged by the number
of cells present. Two foci were defined as colocalizing if they were at the same spot and
contained both colors. Colocalization was quantified as the number of colocalizing foci
as a percentage of the sum of the colocalizing foci plus the total number of non-

colocalizing foci, unless otherwise specified.

Live imaging and automated foci counting

ES cells were grown up to a monolayer of 70% confluency on lethally irradiated
MEF feeder layer overnight on 24mm round coverslips. Cells were irradiated with 8Gy
and were transferred 45 minutes post irradiation to a specially adapted chamber fitted to
the confocal microscope where they could be maintained at 37°C with 5% CO, for long
periods of time. Using a macro for automated time-lapse imaging, the cells were imaged
every 15 minutes, taking 10 Z slices (covering 9um), for a time period of 14 hours for the
wild type cells, and 29 hours for the Rad 545" ¥R cells, which corresponded to the time
the cells need to re-stabilize foci numbers to the ones seen at the beginning of the
experiment. Movies were analyzed in AIM (Carl Zeiss, Jena) software. The maximum
projection of the stacks at the different time points was then processed in Image] [42] to
analyze foci number, where the threshold was adjusted until the size of a single focus was
determined, limiting the fluorescent signal from the range of 57 to 69, so threshold
starting at a value between 57 and 69. From the resulting image, the number of particles
was counted using the particles analysis function. The number of cells in each frame was
counted by increasing the threshold until all cells were covered. The resulting fluorescent
signal/surface of the whole field was divided by the surface of a single cell. The data thus
obtained was graphed as number of foci per cell over the time during which the cells

were imaged.

Fluorescent recovery after photobleaching (FRAP)

A strip of 0.5um wide spanning the width of the nucleus (without any
spontaneously occurring foci) was bleached at 80% of the Argon gas laser intensity, at a
single iteration to determine the mobility of free Rad54 protein [21]. Normalization of
fluorescence intensities and analysis of diffusion rates were performed as described in a
previous publication [21]. Because the level of fluorescence in the ES cells was low, a
number of adjustments were made. The time interval at which subsequent measurements

(at 10% laser intensity) were taken was 0.1 second, and 100 measurements after the
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bleach pulse were made. Wild type ES cells stably transfected with pGK-GFP-p(A) were
used as a positive control for fluorescence recovery, where cells with comparable
fluorescence level as the knock-in cells were chosen and treated as detailed above. The
recovery of free GFP in ES cells resulted in a final post-bleach relative fluorescence
intensity of 0.7, indicating that the strip-FRAP protocol led to the irreversible bleaching
of approximately 30% of all fluorescent protein in the cell nucleus. To determine the

protein turnover in the spontaneous as well as DNA damaged induced foci in the ES

cells, an area of 0.75 x 0.75Um containing a focus was bleached at 80% intensity, and
fluorescence recovery was measured in the area. Fluorescence intensity measurements
were taken every 0.2 seconds, with a total of 100 such measurements after the bleach

pulse. Sixty cells were monitored for each genotype in three independent experiments.

Results
Generation of Rad54 AT Pase-defective knock-in ES' cells

To study the effect of the ATPase activity of Rad54 at the cellular level, mouse
ES cells that express ATPase-defective versions of GFP-fused Rad54 from the
endogenous Rad54 locus were generated. A targeting construct, consisting of the human
RAD54 ¢cDNA exons IV — XVIII fused to a GFP coding sequence and containing a
point mutation in the Walker A ATPase domain (Figure 1A), was electroporated into ES

4 wt-HA/ -

cells of the genotype Rad5 [20]. Two different constructs were used: the first where
lysine at position 189 was replaced by arginine (indicated by K189R), and second in
which the lysine is replaced by alanine, the K189A mutation. The ATPase activity of the
purified Rad54"'™" and Rad54"'™* proteins was more than 100-fold reduced in
comparison to the wild type protein ([23] and data not shown). Clones carrying a
homologously integrated knock-in construct were identified by DNA blot analysis. A
probe that detects exons VII and VIII was used in combination with genomic DNA
digested with Stul. This yielded the expected doublet of bands around 6.5 kb for the
Rad54 knock-in allele. Meanwhile, a 6.0 kb band, which is diagnostic for the Rad54
knockout allele, was observed (Figure 1B). Proper expression of the full-length Rad54-
GFP fusion proteins was confirmed by immunoblot analysis (Figure 1C). In the

K189R-GFP/-
4 /

subsequent studies, two independent clones for Rad5: and a single clone for

Rad54""" ™" \yere used. As a positive control for all experiments, knock-in Rad54" ™

ES cells were used; these cells express wild type Rad54 fused to GFP from the
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Figure 1. Generation of mouse ES cells carrying ATPase-defective Rad54 alleles.
(A) Schematic representation of the mouse Rad54 locus and the gene targeting
constructs. The top line represent a 30 kb portion of endogenous Rad54 locus, where
black boxes indicate exons I through XVIII. The middle line shows the linearized
targeting construct, containing the human RAD54 ¢cDNA sequence spanning exon IV-
XVIII fused to the GFP coding sequence. The K189R and K189A mutations in the
Walker A ATPase domain are indicated by the asterix. The construct contains a gene
encoding for puromycin resistance as a selectable marker. The targeting construct will
replace the regions between exon III and VIII when correctly integrated to generate the
targeted allele, as shown in the targeted locus. Homologous integration results in the
expression of full length, GFP-tagged Rad54 from its endogenous promoter. (B) DNA
blot analysis of ES cells carrying the knock-in contructs. DNA blot analysis was carried
out using genomic DNA purified from puromycin resistant clones and digested with
Stul. Detection of bands was carried out using a probe that recognized exon VII/VIIL
Restriction of the wild type allele by Stul, (indicated by “+7), yields a 9.0 kb band after
hybridization with an exon VII/VIII probe. Diagnostic bands for the neomycin resistant
knockout alleles, indicated by “-”, are 7.6 kb for a hygromycin resistant allele and 6.0 kb
for a neomycin resistant allele. Knock-in alleles are characterized by a doublet of bands
around 6.5 kb. (C) Immunoblot analysis of proteins produced by the Rad54-GFP knock-
in alleles. Whole cell extracts of ES cells with the indicated genotype were probed with
affinity purified anti-human Rad54 antibody. The position of Rad54 and Rad54-GFP are
indicated. The asterix indicates a non-specific signal. Antibodies against Msh6 and actin
were used to confirm equal protein loading,.

endogenous Rad54 locus. The function of Rad54 is not affected by its fusion to GFP
because Rad54" ™" cells are not DNA damage hypersensitive (Chapter 3, this thesis).

The ATPase activity of Rad54 cells contributes to DNA  damage resistance and  homologous
recombination

Mouse Rad54” ES cells are hypersensitive to the ionizing radiation and the
interstrand DNA crosslinker mitomycin C [10]. Therefore, we investigated the effect of
these DNA-damaging agents on Rad54""**“™ and Rad54"'**“"™™~ ES cells. Cells
expressing ATPase-defective versions of Rad54 were hypersensitive to ionizing radiation
and mitomycin C compared to isogenic control cells. This hypersensitivity was similar to
that demonstrated by cells lacking Rad54 protein altogether (Figure 2A). These cell lines
were also tested for their sensitivities to agents that interfered with replication fork
progression, namely UV, aphidicolin, hydroxyurea and etoposide (Figure 2B). There is no
clear hypersensitivity of Rad54” cells or cells with ATPase point mutations to any of
these agents, suggesting that Rad54 is probably not involved in the repair of stalled

replication forks under the conditions tested.
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Figure 2. Effect of DNA-damaging agents on survival of Rad54 ATPase deficient
cells (A) Irradiation and MMC clonogenic survival assays. ES cells of the indicated
genotypes were tested for their ability to survive treatments with increasing doses of
ionizing radiation (top panels) or mitomycin C (bottom panel) using clonogenic survival
assays. The assays were performed in triplicate and the error bars indicated the standard
error of the mean. (B) Clonogenic survival assays with replication stalling agents. ES cells
of indicated genotypes were tested for their ability to survive treatments with increasing
doses of UV, aphidicolin, hydroxyurea and etoposide as described. In each case, a

hypersensitive cell line was used as a control (XPA" for UV, Radl7 74 for the
others).

Next we tested the effect of the Rad54 ATPase activity on homologous
recombination. As a measure of homologous recombination efficiency, we determined
the efficiency of homologous gene targeting [21, 41]. ES cells of the genotypes indicated
in Table 1 were electroporated with a linearized targeting construct for the Rb locus that
carried a hygromycin selectable marker gene. Genomic DNA was isolated from
individual clones and analyzed by DNA-blotting to discriminate between homologous
and random integration events. Homologous recombination efficiency was measured as
the percentage of clones containing the homologously integrated targeting construct
relative to the total number of drug-resistant clones analyzed (Table 1). The homologous
targeting efficiency of approximately 32% in Rad54" """ ES cells was reduced to around
1% in Rad54"*“"™" and Rad54""*“"""" ES cells. A similar reduction in homologous
recombination efficiency was observed in the absence of Rad54. We conclude that the
ATPase activity of Rad54 is essential for its DNA repair and recombination functions
vivo. In these assays, the physical presence of ATPase-defective Rad54 or the complete

absence of the protein results in indistinguishable phenotypes.

Defective ATP hydrolysis by Rad54 results in an increase in_foci in unchallenged cells but does not show
increased DINA damage

We next analyzed the Rad54 ATPase-defective mutant cells for accumulation of
Rad54 foci in the absence of exogenously induced DNA damage. DNA damage repair
protein foci, including Rad54, are observed in unchallenged cells are thought to be
present at sites of spontaneous DNA DSBs, such as those which might occur at impaired
DNA replication forks [43]. Observation of living cells using a confocal microscope
revealed a significant difference in the amount of foci present in cells containing wild
type Rad54 versus cells containing Rad54""™"* and Rad54""*"* (Figure 3, p < 0.0001). The
presence of wild type Rad54 resulted in approximately 1 Rad54 focus per cell per
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Genotype Targeting Efficiency at Rb locus
Rad54" """ 31.9% (16 out of 46)
Rad54"/*% ¢ 0.95% (1 out of 105)
Rad54</# - 1.2% (1 out of 81)
Rad54" <1% (0 out of 82)*

Table 1. Efficiency of homologous recombination in Rad54 ATPase-defective
cells. ES cells with the indicated genotypes were electroporated with a linearized Rb-Hyg
construct [41]. Hygromycin resistant clones were expanded, genomic DNA purified, and
subjected to DNA blot analysis to distinguish between randomly and homologously
integrated events. Values indicate the percentage of clones that contain the homologously
integrated targeting construct relative to the total number of clones analyzed. Absolute
numbers are indicated in parentheses. The differences in recombination efficiency
between Rad54" ™" cells and cells of all other genotypes listed are significant (p <
0.001), while the difference between the mutant genotypes is not. *This value was
previously determined [10].

Rad54 wt-GFP/- Rad54 K189A-GFP/- Rad54 K189R-GFP/-

1.1+0.1 40+0.2 41+0.2

Mean number of spontaneous foci per confocal plane per cell

Figure 3. Cellular behavior of wild type and ATPase-defective Rad54. Confocal
images of living ES cell with the indicated genotypes are shown. ES cells were grown on
a MEF feeder layer and imaged live with the confocal microscope. Spontaneously
occurring accumulations of wild type and ATPase-defective Rad54-GFP can be observed
as nuclear foci. The mean number of spontaneous foci per cell per confocal plane as well
as the standard error of the mean was determined by counting at least 250 cells per
genotype. The difference in the mean number of foci in cells expressing wild type Rad54
is significant from the mean number of foci in the cells expressing either version of
ATPase-defective Rad54 (p < 0.0001), as determined by student’s t test.
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confocal slice (number of cells, n = 360, mean = 1.1, standard error of mean (SEM) =
0.1), while cells in which Rad54 is ATPase-defective displayed on average approximately
4 foci (Rad54'* ™. n = 309, mean = 4.0, SEM = 0.2; Rad54""**“"™"" n = 293, mean
= 4.1, SEM = 0.2). Also, the percentage of cells containing 5 or more Rad54 foci per
confocal slice was approximately 4-fold higher in Rad54“"**“™*" and Rad54"'*" """
compared to Rad54” ™" ES cells (data not shown). It should be noted that the increase
in spontaneous foci is only observed when all Rad54 molecules in the cell are ATPase-
defective, since such an increase is absent in Rad545"**“™/* and Rad54""** " cells
(data not shown).

A number of proteins involved in the cellular response to DNA damage and
DNA damage repair are known to accumulate in foci at sites of DNA damage [4].
Therefore, we examined whether the increased number of ‘spontaneous’ foci detected in
Rad54 mutant cells correlated with sites of DNA damage in these cells. First, we

investigated the level of YH2AX, an early marker for DSBs, in whole cell extracts from

wild type and mutant cell lines. Anti-yH2AX antibodies recognize a specific
phosphorylation on the histone variant H2AX that is triggered by certain types of DNA
damage, including DNA DSBs [44]. However, no increase in the basal level of H2AX
phosphorylation was detected by immunoblotting in populations of unchallenged
Rad54"*%“"™ and Rad54""***“™" compared to Rad54" """ ES cells (Figure 4A, left
panel). The cells expressing ATPase-defective Rad54 were able to increase H2AX
phosphorylation upon treatment with ionizing radiation (Figure 4A, right panel). In
addition, YH2AX accumulates in foci after DSB induction, which was analyzed by
immunofluorescence experiments in our cells (Figure 4B and C). Since both mutant cells
behave similarly in the Western analysis, only Rad54""**“™" cells were examined.
Untreated Rad54" "™ and Rad54""*"* """ ES cells displayed similar levels of YH2AX foci
per cell per confocal slice (Rad54" "™ n = 53, mean = 9.0, SEM = 0.7; Rad54""*"*“"""; n
= 59, mean = 9.7, SEM = 0.8; p = 0.54), consistent with the immunoblotting results
(Figure 4B, quantification in Figure 4C). Furthermore, qualitative analysis revealed that
ES cells contain many more YH2AX foci than Rad54 foci (Figure 4B). However, most, if
not all, Rad54 foci (either those made up of wild type Rad54-GFP or ATPase-defective
Rad54-GFP) localize at sites of H2AX phosphorylation. Therefore, within the limitations
of this technique, we conclude that the number of YH2AX foci and level of YH2AX
phosphorylation are similar in the various genotypes, and this illustrates that Rad54

ATPase mutants do not contain a dramatic increase in level of DSBs compared to wild
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Figure 4. Analysis of DNA damage markers in Rad54 ATPase-defective ES cells.
(A) Detection of y-H2AX by immunoblotting. Whole cell extracts of ES cells with the
indicated genotype were prepared either before (left hand panel) or 1 hour after
irradiation with 8 Gy (right hand panel) and analyzed by immunoblotting using an anti-
YH2AX antibody. Antibodies against Ku80 were used to confirm equal loading (lower
panel). (B) Detection of -H2AX by immunofluorescence in untreated ES cells. The top
panel shows Rad54-GFP, y-H2AX staining and the merged image of Rad54" """ ES
cells, while the bottom panel shows the same in Rad54<"*"*“™/ cells. (C) Quantification
of the average number of YH2AX foci Rad54"“"™" and Rad54"'*"*“™" ES cells. YH2AX
foci were counted in one confocal plane for at least 50 cells and the mean is graphed,

along with error bars representing the standard error of the mean. The means of YH2AX
foci between wild type and Rad54""*” "™ cells are not significantly different (p = 0.54),
as determined by the student’s t-test.

type cells. Hence, the increase in spontaneous Rad54 foci in unchallenged Rad54<"*”*<™"/-

and Rad54X" ¢ ES cells is not due to an increased level of DSBs in these cells as

identified by YH2AX.

ATP hydrolysis by Rad54 affects Rad51 foci behavior in unchallenged cells
Rad54 is an accessory protein for Rad51, which performs the core reaction of

homologous recombination, homologous DNA paring and DNA strand exchange [4].
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Rad54 WtGFF- Rad54 --

Radb4 K189A-GFP/-Rad54 K189R-GFP/-

Rad54

o—Rad51

58+0.3*

Merge

* Numbers represent the mean number of spontaneous foci per confocal plane per cell.

Figure 5. Effect of Rad54 ATPase activity on Rad51 foci. Rad51 immunostaining in
untreated ES cells of the indicated genotypes. The top panels show confocal images of
Rad54 as detected by GFP fluorescence. The middle panels show the Rad51 staining
pattern as detected by anti-Rad51 antibody staining. The merged pictures are shown in
the bottom panel. The mean number of Rad51 foci per cell per confocal plane,
determined by counting at least 150 cells, is indicated. The difference in number of
Rad51 foci per cells between Rad54"” "™ and Rad54” ES cells and the difference
between Rad54"'**“™ and Rad54"'***“™" ES cells is not significant (p = 0.58, 0.50
respectively), while the difference between these two groups is (p < 0.0001), as
determined by student’s t test.

The proteins physically interact and work together closely in a number of biochemical
assays [8]. At the cellular level, both proteins colocalize in DNA damage-induced foci
[20]. We analyzed Rad51 foci in the mutant cells to determine whether the ATPase
activity of Rad54 impacted the behavior of Rad51 iz vive. Unchallenged ES cells were
fixed, stained with an antibody against Rad51. Both Rad51 and Rad54-GFP were
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detected by confocal microscopy (Figure 5). Compared to cells expressing wild type
Rad54-GFP, cells expressing the ATPase-defective variants of Rad54-GFP displayed a
statistically significant two-fold increase in the number of ‘spontaneous’ Rad51 foci
(Rad54” ™ n = 223, mean = 3.0, SEM = 0.2; Rad54"'**“"™": n = 202, mean = 6.1,
SEM = 0.2; Rad54""*’* ™. n = 168, mean = 5.8, SEM = 0.3; p < 0.0001 for comparison
of wild type with mutants). The difference in Rad54 foci number between wild type and
mutants seems to be more pronounced in live cells (Figure 3) than in fixed cells (Figure
5). This could be due to fixation of cells, which results in cell shrinkage as well as a
decrease in fluorescent intensity. In either case however, the difference in foci numbers
are significant. Furthermore, almost all Rad54 foci detected (>90%), including those of

Rad54"*® and Rad54"'**, colocalized with Rad51 (Figure 5). Interestingly, while the

number of Rad51 foci was elevated in cells expressing the ATPase-defective Rad54
mutants, it was not increased in cells completely lacking Rad54 (n = 187, mean = 2.8,
SEM = 0.2; p = 0.58 for comparison between wild type and knockout, p < 0.0001 for

comparison of knockout with mutants). This defines the only phenotypical difference

between Rad54 mutant and Rad54” cells observed so far.

ATPase-defective Rad54 causes a delay in irradiation induced foci disappearance

It has been shown previously that the number of Rad54 foci in cells increases
after DSB induction, such as with y irradiation [20]. We wanted to investigate how the
ATPase activity of Rad54 influences the induction of Rad54 foci by DNA damage. To
study this, we carried out time course experiments, looking at the number of foci in cells
irradiated with 8 Gy and fixed at different time points. The average number of Rad54
foci in the different ES cells was determined (Figure 6A). The number of Rad54 foci
induced upon DNA damage induction peaked at 2 hours for all genotypes before
decreasing over time. However, even after 24 hours, the levels of foci in mutant cells did
not return to that of unchallenged cells. A matching time course was also done with
Rad51 foci, and a comparable profile of foci disappearance, as of Rad54, was observed

(data not shown).
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Figure 6. Quantification of Rad54 foci over time in response to irradiation.

(A) Manual quantification of the disappearance of irradiation induced Rad54 foci in fixed
cells. The mean number of Rad54 foci per cell per confocal plane was determined at time
points 2, 6 and 24 hours post irradiation in Rad54" ™" Rad54" "% and Rad54%"*%

GBS cells.

In order to investigate the rate of DNA damage-induced Rad54 foci
disappearance in wild type and ATPase-defective cells, a more automated system of foci
analysis and counting was developed, using time lapse movies analyzed by AIM and
Image J. The advantage of this approach was that live cells, rather than fixed cells, were
documented. In addition, this method greatly increases the time resolution at which
measurements can be made. It should be noted that the automated foci counting was
done on projections of 10 confocal slices in this experiment using Image], and this is
different from previous quantifications which were done manually and on a single
confocal slice. Since Rad54"'** """ cells behave in a similar way to Rad54“"** ™" cells in
terms of Rad54 foci dynamics (Figure 6A), this experiment was done only with the
K189R mutant cell line. Imaging of live Rad54" """ and Rad54"'**“"™" ES cells was

started 45 minutes after irradiation with 8 Gy (Figure 6B).

Several observations can be made from this experiment. First, the number of foci
in the Rad54""*"* ™" cells is always higher than the wild type and this corresponds to the

result obtained with manual counting of foci per cell per confocal slice. Second, the
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Figure 6. Quantification of Rad54 foci over time in response to irradiation. (con’t)
(B) Stills from time-lapse movies of irradiated Rad54" """ and Rad54<"** """ ES cells.
Cells were treated with 8 Gy and imaged every 15 minutes starting 45 minutes post
irradiation. Every picture represents the maximum projection image of each frame
obtained from the resulting movie at the time point indicated. (C) Automated
quantification of foci per cell over time from the movies represented in panel B. The
mean foci number per cell for each genotype was obtained with Image] from the
maximum projection image of a 10 slice Z stack through each frame and was graphed
against time.

dynamics of the formation of foci after 8Gy is comparable in wild type and mutant; foci
numbers peaks at around 3 to 4 hours in both cell types. Third, foci number starts to
diminish faster in wild type as compared to the mutant. While the peak of foci number in
wild type stays for an interval of two hours (3 < t < 5 hours), time interval in the mutant
is increased to about six hours (3 = t = 9 hours). Finally, the time taken for the mutant
cell line to re-stabilize irradiation induced foci to the number at the start of the
experiment is longer than in the wild type (29 hours for mutant, 14 hours for wild type).
Using an alternative quantification, the time required for a two fold reduction in the
number of Rad54 from their peak values for Rad54"*”*“"™ cells is approximately 18
hours, while for wild type cells, it is 5 hours. Collectively, this data indicates a delay in
foci dynamics in response to irradiation in the K189R mutant cells compared to wild type
cells. When the number of foci over time were compared using an ANOVA analysis, the

difference was significant (p<<0.0001).

Attenuation of ATP hydrolysis by Rad54 increases its residence time in foci

The ATPase activity of Rad54 is essential for many of its biochemical activities
[16], but its effect on the dynamics of the protein is unknown. Using photobleaching
experiments in living cells, we determined previously that all of the homogenously
distributed Rad54-GFP in the nucleoplasm is mobile with a diffusion rate that is
approximately 1.3-fold less than GFP itself [21]. In order to determine whether the
ATPase activity of Rad54 influences its mobility, we performed fluorescence
redistribution after photobleaching (FRAP) experiments using the wild type (n = 60) and
ATPase-defective Rad54-GFP knock-in ES cells (n = 60 for both). Fluorescence in a
small strip spanning the width of the nucleus was bleached by applying a 0.2s high-
intensity laser pulse. Any possible spontaneous Rad54 foci were excluded. Fluorescence
recovery in the strip was monitored every 0.1s for 10s in about 60 nuclei per genotype.

As a control, the recovery rates of Rad54-GFP were compared with ES cells
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Figure 7. Influence of the ATPase of Rad54 on its nuclear mobility. ES cells of the
indicated genotype were subjected to FRAP analyses to determine the effect of Rad54’s
ATPase activity on its mobility in the nucleoplasm either in the presence or absence of
exogenously induced DNA damage. Strip-FRAP analysis of ATPase proficient and
deficient Rad54 to determine its relative effective diffusion rate and immobile fraction in
the nucleus of ES cells before (A & C) and 1 hour after irradiation with 8 Gy (B & D).
Graphs represent the mean values of relative fluorescence from a total of at least 60 cells
bleached. Fluorescence in a small strip spanning the entire nucleus was bleached with a
short high intensity laser pulse and its recovery was monitored over time. The average of
relative fluorescence intensity was plotted as a function of time for each protein using
two different normalization methods (see text). In addition to Rad54 and its variants, the
mobility of GFP itself was monitored (pGK-GFP).

expressing free GIFP. It is presumed that at these levels, which are comparable by eye, all
GFP molecules are freely mobile through the nucleus.

FRAP recovery curves were compared for two parameters — the effective
diffusion rate and the immobile protein fraction. The effective diffusion rate was
determined by the rate of fluorescence recovery during the 0 = t = 3 second time
interval. The immobile protein fraction was determined by the level that is reached by
relative fluorescence intensity at the end of the measurement (t = 10 seconds). In order
to verify the first parameter, the relative fluorescence was plotted over time after
normalizing the data by setting the value of the immediate post-bleach fluorescence
intensity (t = 0 seconds) to 0, and the final post-bleach fluorescence intensity to 1 (Figure
7A). In this way we determined that in unchallenged cells, the rate of fluorescence
recovery for the three genotypes was similar, indicating the similarity in diffusion
behavior of GFP-tagged Rad54. The recovery of free GFP is clearly faster than the
fusion proteins, which is likely to be due to differences in size. The rapid recovery of
relative fluorescence is an indication of the swift rate of protein diffusion through the
nucleoplasm. To elucidate the second parameter, that is, the fraction of immobilized
Rad54, relative fluorescence intensity was plotted over time after normalizing the data by
setting the value of the pre-bleach fluorescence intensity to 1 and the immediate post-
bleach (t = 0 seconds) fluorescence intensity to 0 (Figure 7C). The recovery of free GFP
in ES cells resulted in a final post-bleach relative fluorescence intensity of 0.7, indicating
that the strip-FRAP protocol led to the irreversible bleaching of approximately 30% of
all fluorescent protein in the cell nucleus. The relative fluorescence intensities of

Rad54°"", Rad54™"** ™" and Rad54™"*"*°™ proteins recovered to the approximate levels
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Figure 8. Spot FRAP analysis of Rad54 in foci. (A & B) Spot-FRAP analysis of
Rad54 in foci. A small square containing an individual Rad54 focus was bleached and
monitored for fluorescence recovery for each indicated genotype. The average of the
relative fluorescence intensities, obtained from a total of at least 35 cells bleached was
plotted against time where the value immediately after the bleach is normalized to 0, and
the final post-bleach intensity to 1. The left panel displays the results of experiments
performed on untreated cells containing spontaneous foci (A), while foci analyzed in the
right panel were induced by treating cells with 8 Gy of ionizing radiation (B). As a
control the fluorescence recovery of non-foci associated Rad54 was quantified (black
line). (C) Histogram of Spot-FRAP analysis. The t, obtained from individual
fluorescence recovery curves of all three cell lines were categorized and plotted in a
histogram. Light grey () represents cells untreated by irradiation, and dark grey (H)
represents cells treated with irradiation.

of GFP itself (Figure 7C), showing that the ATPase activity of Rad54 is not required for
the nuclear mobility of its non-foci associated fraction.

The mobility of non-foci associated Rad54 protein was also investigated in
irradiated cells, where it was found that the rate of fluorescence recovery during 0= t < 3
second interval was comparable for all cell lines as shown in Figure 7B (n = 61 for wild
type, n = 56 for both mutants). In contrast to the unchallenged cells, the ATPase
mutants displayed a lower level of final post-bleach fluorescence recovery when treated
with irradiation (Figure 7D). This could be due to the fact that most of ATPase-defective
Rad54 is associated with foci after irradiation and this results in a larger immobile
fraction than in cells expressing wild type protein. The fact that the number of foci per
cell in the mutants is higher than in wild type 2 hours post irradiation confirms this
premise (Figure 0).

A remarkable feature of DNA damage induced foci is their highly dynamic
nature. We previously showed that these accumulations of proteins are not static but that
their components reversibly associate and dissociate [21]. To determine whether the
ATPase activity of Rad54 influences this cell biological feature of the protein we analyzed
protein turnover in the foci using photobleaching techniques. For this purpose, we used
a spot-FRAP protocol in which a small square encompassing a single Rad54-containing
focus was bleached and subsequently monitored (Figure 8).

In this way we quantified the fluorescence recovery of ATPase-proficient (n =
37) and defective Rad54 (n = 37 for Rad54"'* """ n = 43 for Rad54"'** """ (Figure
8A). As a control, the same protocol was applied to non-foci associated Rad54-GFP in
the wild type cells (n = 49). The data was normalized by setting the post-bleach

fluorescence intensity to 1, while the fluorescence intensity immediately after the bleach

115



Chapter 4

pulse was set to O for each focus. It was interesting to note that the recovery rate of
fluorescence was significantly reduced for foci formed by ATPase-defective Rad54
compared to wild type Rad54 (Figure 8A). In addition, the presence of a Rad54-GFP
focus within the region of interest retards the rate of fluorescence recovery as compared
to free Rad54-GFP in the wild type cells (Figure 8A, compare black line to green line).

Protein turnover is normal when a wild type allele is present (Rad54“'* <™

and
Rad54""** ™" making this a recessive effect (data not shown). To quantify this
retardation of fluorescence recovery we determined the half-life (t,,) of fluorescence
recovery in the Rad54 foci formed by the different Rad54 variants; t,, is defined as the
mean of the time at which the relative fluorescence intensity reached half the final
fluorescence intensity in each cell measured for each genotype. The average value of t,,
obtained for the three different Rad54 variants is shown in parentheses in the legends for
Figure 8C. The t,, of ATPase proficient foci was 0.91 * 0.06 seconds, which represents a
faster recovery compared to Rad54“'* "™~ (1,54 + 0.10 seconds) and Rad54<"**<"""-
(1.29 = 0.10 seconds) (p < 0.001 for comparison between wild type and mutants).
Therefore, the inability of Rad54 to hydrolyze ATP resulted in an approximately 40% —
60% slower fluorescence recovery in foci. To visualize these differences more clearly, we
grouped and plotted the t,, values obtained as outlined above in a histogram (Figure 8C).
The resultant graph showed a normal distribution for the wild type Rad54 with a
relatively small base, extending between t = 0 to 1.6 seconds. The peak was at >0.4 — 0.8
seconds. In contrast, the peak for t,, was shifted for the mutants; >1.2 — 1.6 seconds for
Rad54""**C™ and >0.8 — 1.2 seconds for Rad54~'** " In addition, the base of the
distribution was broader, extending between t = 0 to 3.2 seconds in both mutants.

We also compared the rates of fluorescence recovery in foci after irradiation (n =
57 for wild type, n = 58 for mutants) (Figure 8B). Residence time of Rad54 appears to be
increased in all cell lines after 8 Gy irradiation, but again, the increased time of protein
turnover is clear with Rad54 mutants (p < 0.05) (compare Figure 8A left and right panel;
see quantification in Figure 8C). Furthermore, the peak of the residence time of Rad54
for wild type cells shifted (>0.8 — 1.2 seconds, Figure 8C). This was not clearly seen in
the case of the ATPase mutants, although the histogram base seems to increase slightly

after irradiation.
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Discussion

Rad54 is a multifunctional protein that promotes the progression of homologous
recombination, an accurate pathway of repairing DSBs [16]. In addition to a close
functional interaction with Rad51 (the central protein of homologous recombination),
Rad54 also displays potent ATPase activity. This allows the protein to translocate along
DNA and change its conformation, thereby perturbing its structures and influencing
histone positions [15]. In this way, Rad54 assists Rad51 to pair the template DNA with
the broken DNA molecule in need of repair. In this study, we have investigated the
effect of two different mutations in the ATPase domain of Rad54, both resulting in the
loss of ATPase activity, on its cellular behavior.

The primary results of this study are as follows. First, there is a higher number of
Rad54 spontaneous foci in unchallenged cells bearing ATPase-defective Rad54 compared
to cells expressing wild type Rad54. Second, these cells also demonstrate an increase in
spontaneous Rad51 foci. However, this increase of foci containing homologous
recombination proteins does not correspond to an increase in DNA damage. Third, the
ATPase activity of Rad54 is not essential for the initial increase in Rad54 foci in response
to irradiation. In contrast, the rate of the disappearance of DNA damage-induced foci is
delayed when the ATPase activity of Rad54 is attenuated. Finally, photobleaching studies
showed an increased residence time of ATPase-defective Rad54 in foci compared to

ATPase-proficient Rad54. These points are discussed in the next paragraphs.

The ATPase activity of Rad54 is essential for its DNA repair function in vivo

In order to address the importance of the ATPase activity of Rad54 in the cell we
generated mouse embryonic stem (ES) cells that express ATPase-defective mutants fused
to a carboxyterminal GFP tag from the endogenous Rad54 locus (Figure 1), ensuring
physiological levels of mutant protein (Figure 1C).

The DNA damage sensitivity profiles of the ATPase-defective Rad54 mutant are
comparable to Rad54 knockout cells in that they are similarly hypersensitive to MMC and
irradiation (Figure 2A). In addition, Rad54 ATPase-defective and Rad54 knockout cells
are equally impaired in homologous recombination efficiency as measured by
homologous gene targeting efficiency (Table 1), showing that the ATPase activity is
required to effectively integrate a linear piece of DNA into the homologous location in
the genome. These results reveal a correlation between the biochemical importance of

the Rad54 ATPase function and its 7 wvivo importance for DNA repair. On the other
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hand, Rad54 knockout cells as well as cells carrying the Rad54 mutants are not
hypersensitive to UV, aphidicolin, hydroxyurea and etoposide (Figure 2B), showing little
involvement of Rad54 or its ATPase activity in the repair of stalled replication forks in

these assays.

Differential cellular behavior of AT Pase-proficient and -defective Rad54
A remarkable feature of Rad54""** ™" and Rad54"'** """ cells is the presence of

an elevated number of spontaneous Rad54 foci in their nuclei compared to Rad54" ™

cells (Figure 3). Interestingly, the level of YH2AX, a DNA damage marker, is similar in
the Rad54 ATPase-defective and Rad54 ATPase proficient cells (Figure 4A). This
indicates that the increase in the number of spontaneous foci does not correlate with an
increase in spontaneous DNA damage in Rad54 ATPase-defective cells. Consistently,
when analyzed by immunofluorescence, no corresponding increase in the number
YH2AX foci can be detected (Figure 4C). Thus, within the limitations of these
techniques, the level of DNA damage is not significantly different in mutant and wild
type cells, indicating that the elevated number of spontaneous foci is not due to an
increased number of unrepaired breaks. This is consistent with the absence of an overt
proliferation defect, as well as unaffected genomic stability, of the cells expressing
ATPase-defective Rad54 and cells lacking Rad54 (data not shown).

An interesting feature of ES cells is their high number of YH2AX foci compared
to, for example, HelLa cells and fibroblasts. The reason for this could be due to the high
percentage of the rapidly cycling ES cells in the S phase compared to other cell types [45,
46], where physiological DSBs are thought to occur [36]. Our results show that not all

YH2AX colocalizes with Rad54. However, the reverse is true: most Rad54 foci colocalize
with YH2AX (Figure 4B). While the dynamics of YH2AX foci formation and disassembly
as compared to recombination proteins has not been determined, we can nonetheless
conclude that the Rad54 and YH2AX foci mark the sites where DSBs are located at some
point in time. Further, the recruitment of Rad54 to sites of damage marked by YH2AX is
unaffected by its ATPase activity.

In addition to causing an increase in its own foci in unchallenged cells, the
inability of Rad54 to hydrolyze ATP effectively also causes a corresponding increase in

the foci of its partner protein, Rad51 (Figure 5). Biochemical studies have shown that

Rad54 displaces Rad51 from heteroduplex DNA, and that Rad54"" mutant protein
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stabilizes the Rad51 filament, rather than promoting its disassembly over time [30]. This
situation is exacerbated by the fact that Rad51 itself binds DNA stably and its own ATP
hydrolysis is not sufficient to initiate dissociation of the nucleoprotein filaments and
continuous turnover of Rad51 on heteroduplex DNA [30]. In addition it was shown by
foci counting that Rad51 foci exhibit a longer half-life in the absence of Rad54 [47, 48].
Therefore it is conceivable that the overall level of ATPase activity in a system with an
ATPase-deficient Rad54 is too low to properly maintain Rad51 turnover on DNA,

therefore resulting in a possible stalling of the repair reaction and persistent Rad51 foci.

Yet, when Rad54 is absent, the number of spontaneous Rad51 foci is comparable
to wild type, even though these foci are less stable [20, 40]. Therefore the physical
presence of the mutant Rad54 protein makes a significant difference in the dynamics of
Rad51 foci, in contrast to full Rad54 deletion. However, the absence of Rad54 or the
presence of the ATPase defective protein is equally detrimental for cellular survival
capability after exposure to certain DNA damaging agents or for the homologous
targeting efficiency. With respect to the stability of Rad51 foci as well as their clearance
this raises the possibility that another protein takes over Rad54’s function in its absence.
However the redundant protein fails to substitute for Rad54’s DNA repair activity
because this is still impaired in knockout cells. In mutant cells, ATPase-defective Rad54
seems to accumulate normally into foci, and thus the redundant protein might have
limited access to the area, which leads to a change in Rad51 foci dynamics. An excellent
candidate for this function is the Rad54 paralog Rad54B [49]. The presence of the
ATPase-defective Rad54 protein would then dominantly affect this aspect of Rad54B

activity and this possibility needs to be investigated.

Kinetics of assembly and disassembly of Rad54 foci

Foci are considered to be biologically relevant because mutant cell lines that
cannot form them are sensitive to DNA damage and display a higher degree of
spontaneous chromosomal aberrations [4]. Further, the presence and quantification of
foci has been used as an indication of repair activity since foci form within a short time in
response to DNA-damaging agents, and decrease in number over time. Nonetheless, the
nature and purpose of a focus is ambiguous. The Rad54 focus has been characterized as
a highly dynamic structure, on which Rad54 is actively and rapidly associating and
disassociating ([21] and Figure 8). Further a recent study has established a role of Rad54
in the formation of DNA networks, that is, Rad54 is able to bind double-stranded DNA
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in close proximity [54]. Thus, one may speculate that, at least with Rad54, a focus
represents a large concentration of constantly exchanging proteins which brings together
and binds double-stranded DNA for the purpose of recombinational repair.

To date the molecular processes required for the formation and clearance of
recombination proteins in foci are not well understood. Foci have also been assumed to
represent one or all of the various stages of recombination, but it should be emphasized
that there is no direct evidence linking foci with the formation of nucleoprotein
filaments. Therefore the analysis of foci assembly and disassembly is not a definitive
method of distinguishing between the different stages of recombination. In spite of this
the notion that formation of Rad54 damage induced foci does not require Rad54 ATPase
activity (Figure 6) could possibly be a consequence of the proficiency of ATPase-
defective Rad54 in Rad51 filaments stabilization [51]. This is underscored by the finding
that the level of unrepaired breaks in the ATPase mutant cells is similar to wild type cells
and the recruitment of Rad54 to sites of damage is unaffected by its ATPase activity
(Figure 4). Further, the delay in the start of foci clearance is remininescent of synaptic
malfunction, also indicated by biochemical experiments where ATPase-defective Rad54
is deficient in joint molecule formation [52]. Finally, since Rad54 and its ATPase activity
has been implicated in dismantling the Rad51 nucleoprotein filament [30, 53] as well as
branch migration and Holliday junction processing and disassembly [31, 32, 55], the delay
in foci disappearance could be a reflection of this defect.

In this study, we have determined that first, the rate at which damage-induced

foci disappear is about twice as long in the Rad54<"***<"/-

cells than in the wild type cells
(Figure 6), and second, there is retardation in protein turnover in the focus as shown by
photobleaching experiments (Figure 8). The combined effect could result in the
increased number of spontaneous foci seen in Rad54 ATPase mutants. We propose that
when physiological breaks occur in ATPase mutant cells during S phase, the formation of
foci is normal. However, they are not cleared up at the same rate as in wild type cells
because of a delay in being processed and in the subsequent disassembly. This results in

an accumulation of persistent foci, and the long term consequence of this might be the

repair defect seen in these mutants.
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Abstract

Homologous recombination is a versatile DNA damage repair pathway requiring Rad51
and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays similar
physical and functional interactions with Rad51 and DNA compared to Rad54. While
ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in
homologous recombination efficiency, the absence of Rad54B has little effect. However,
the absence of both Rad54 and Rad54B dramatically reduces homologous recombination
efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation
and the interstrand DNA crosslinking agent mitomycin C. Interestingly, at the ES cell
level the paralogs do not display an additive or synergic interaction with respect to
mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically
sensitized to mitomycin C as compared to either single mutant. This suggests that the
paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but
not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes.
Thus, even though the paralogs have similar biochemical properties, genetic analysis in
mice uncovered their non-overlapping roles.
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Introduction

DNA double-strand breaks (DSBs) are among a plethora of lesions that threaten
the integrity of the genome. If not properly processed DSBs can lead to cell cycle arrest
or illegitimate DNA rearrangements such as translocations, inversions, or deletions.
These rearrangements can contribute to cell dysfunction, cell death, or carcinogenesis
(22). DSBs can arise through the action of exogenous DNA damaging agents, but they
also arise from endogenous sources, such as oxidative DNA damage and as a
consequence of DNA replication (10, 22). Homologous recombination is a major DNA
repair pathway by which DSBs are repaired. Homologous recombination is generally a
precise way of resolving DSBs, because it uses homologous sequence, usually provided
on the sister chromatid, as a repair template (54).

Homologous recombination is a complex process requiring a number of proteins
of the RADS52 epistasis group including Rad51 and Rad54. Rad51 is the key player in this
process because it is critical for homology recognition and performs strand exchange
between recombining DNA molecules. A pivotal intermediate in these reactions is the
Rad51 nucleoprotein filament. This forms when Rad51 polymerizes on single-stranded
DNA that results from DNA damage processing (54). Rad54 is an important accessory
factor for Rad51 (56). A number of biochemical characteristics of Rad54 have been well
defined for different species ranging from yeast to humans (8, 18, 24, 31, 37, 38, 42, 47,
48, 53, 55, 59). Rad54 is a double-stranded DNA-dependent ATPase that can translocate
on DNA thereby affecting DNA topology. Biochemically, Rad54 has been implicated to
participate in multiple steps of homologous recombination. It can stabilize the Rad51
nucleoprotein filament in an early stage of recombination (30). At a subsequent stage it
can promote chromatin remodelling (1, 2, 23) and stimulate Rad51-mediated formation
of a joint molecule between the broken DNA and the repair template, referred to as a D-
loop (37). In later stages of the reaction it can displace Rad51 from DNA (49).

Cell biological experiments have revealed that Rad54 accumulates to form
dynamic foci at sites of DNA damage (29, 55) that display rapid turn-over of Rad54 (16).
In those foci Rad54 colocalizes with and stabilizes Rad51 (55, 60). Chromatin
immunoprecipitation experiments using Saccharomyces cerevisiae cells underscore the co-
operation between Rad51 and Rad54 (50, 63). In the absence of Rad54, Rad51 is still able
to pair homologous sequences, but the joint molecules are qualitatively different from

those formed in the presence of Rad54 (50, 62).
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Genetic analysis of RAD54 has been performed in a number of species including
yeast and mice. §. cerevisiae cells with mutated RAD54 are DNA damage sensitive,
including ionizing radiation, are severely defective in gene conversion and exhibit
increased chromosome loss (21, 26, 43, 46). Mouse Rad54 knockout embryonic stem
(ES) cells are ionizing radiation and mitomycin C sensitive, show reduced homologous
recombination efficiency as measured by gene targeting and display aberrant DSB repair
(14, 15). Interestingly, while Rad54 knockout mice are sensitive to the interstrand DNA
cross-linking agent mitomycin C, they are not ionizing radiation sensitive (17). The
contribution of Rad54-mediated homologous recombination to repair ionizing radiation
induced damage in adult animal is revealed when non-homologous DNA end joining, an
alternative and mechanistically distinct DSB repair pathway, is also impaired (9, 17, 32). A
possible explanation for this observation is the existence of redundancy in Rad54
function in mammalian cells.

In S. cerevisiae, a RAD54 homolog, RDH54 (also know as TIDT), has been
identified (13, 27, 45). Its biochemical properties are similar to that of Rad54, for
example, Rdh54 is an ATPase and it stimulates D-loop formation by Rad51 (39). The
phenotypes of rad54 and rdh54 mutants are distinct, but do appear to be related to
defects in homologous recombination. While 72454 mutants are sensitive to the alkylating
agent methyl methanesulfonate, 7/h54 mutants are not or less so (27, 45). However, in
the absence of RADS54, the contribution of RDH54 to cell survival is uncovered because
rad54 rdh54 double mutants are more sensitive to methyl methanesulfonate than either
single mutant. While RAD54 affects both intra- and interchromosomal recombination,
RDH54 seems to be more important for interchromosomal recombination than for
intrachromosomal recombination (3, 27, 45). An interaction between the two genes has
been found in meiosis. While sporulation efficiency and spore viability are reduced in the
rad54 and rdh54 single mutants, these parameters are synergistically reduced in rad54
rdh54 double mutants, likely reflecting partial overlapping functions of RAD54 and
RDH54 during meiotic recombination (44).

A RAD54 homolog, named RAD54B, has also been identified in human cells
(33, 57). This gene has been labeled the mammalian homolog of yeast RDH54. However,
this classification is based on amino acid sequence similarity and not on extensive
functional analysis. Here we report the biochemical and genetic characterization of
mammalian Rad54B. We show that mammalian Rad54B has biochemical properties

similar to that of Rad54. However, the results of genetic experiments using Rad54
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knockout, Rad54B knockout and Rad54 Rad54B double knockout cells and mice, suggests
that mammalian Rad54B is unlikely to be the true S. cerevisiae RDH54 homolog because

the genes are not functionally equivalent.

Materials and Methods

Isolation of human and mouse RAD54B DN.A

The HRAD54B cDNA was initially cloned as two fragments from a human testis
cDNA library by PCR using the following primers (fragment 1:

5-GCAGGGCCAGTGGTTTCTGTC and

5-GTGGTCCTGATCAACAGTAAAT;

fragment 2: 5-ATTTACTGTTGATCAGGACCAC and

5-GAAGAGCAATGGAATGTCAGAA).

The two PCR fragments were digested with Bcll, ligated together, and used as a
template for amplification of the full length ARAD54B cDNA with the following
primers:

5-CGGGATCCCATATGAGACGATCTGCAGCACC and

5-CGGGATCCCCTATGTGCCAGTAGCTTGAG  (BamHI  sites  are
underlined, Ndel site is italicized, and start and stop codons are in bold).

The PCR product was cloned into the BamHI site of pUC18 and sequenced. The
mouse Rad54B cDNA was isolated using a combination of RT PCR with degenerate
primers (25) and cDNA library screening. The resulting 2658 bp cDNA mouse Rad54B
has the Genebank identification number NM009015.

Excpression and purification of hRad54B

The ARAD54B cDNA was subcloned from pUCI18 into the BamHI site of
pFastBac (Invitrogen). The hRad54B-pFastBac was transformed into DH10Bac cells,
and the resulting bacmid was isolated and used to generate a recombinant hRad54B
baculovirus in Sf9 insect cells. The virus was amplified by infecting 100 ml of Sf9
suspension culture at an MOI of 0.1 for 48 hours. To express hRad54B, Hi-Five insect
cells were infected with the hRad54B recombinant virus at an M.O.I. of 10 and harvested
after 72 hours. Cells collected from 150 ml of insect cell culture were suspended in 20 ml
cell breakage buffer (50 mM Tris-HCI, pH 7.5, 10% sucrose, 10 mM EDTA, 600 mM

KCl, T mM DTT, and the following protease inhibitors: aprotinin, chymostatin,
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leupeptin, and pepstatin A, each at 5 pg/ml, and 1 mM PMSF) and lysed by passage
through a French Press. The lysate was clarified by centrifugation (100,000 x g), and the
resulting supernatant was treated with ammonium sulfate (0.21 g/ml). The protein
precipitate was harvested by centrifugation and re-dissolved in 20 ml K buffer (20 mM
KH,PO,, pH 7.4, 10% glycerol, 0.5 mM EDTA, 0.01% Igepal, and 1 mM DTT). The
protein solution, with conductivity equivalent to 150 mM KCI, was passed in tandem
over Q-Sepharose and SP-Sepharose columns (7 ml each), with hRad54B protein passing
through the Q column but being retained on the SP column. To elute hRad54B, the SP
column was developed with a 60 ml, 150-700 mM KCI gradient in K buffer. The
hRad54B-containing fractions (350 mM KCI) were pooled, diluted with an equal volume
of K buffer, and loaded onto a 5 ml macro-hydroxyapatite column, which was developed
with a 60 ml, 0-300 mM KH,PO, gradient in K buffer, with hRad54B eluting at 150 mM
KH,PO,. The peak fractions were diluted with an equal volume of T buffer (25 mM
Tris-HCI, pH 7.5, 10% glycerol, 0.5 mM EDTA, 0.01% Igepal, and 1 mM DTT), and
applied onto a 1 ml Mono S column, which was eluted with a 30 ml, 100-700 mM KCl
gradient in K buffer, with hRad54B eluting at 350 mM KCI. Following the addition of
1/10 volume of 3 M KCl, the peak fractions were pooled and concentrated to 500 pl in a
Centricon-30 microconcentrator (Millipore). The concentrated protein was loaded onto a
20 ml Sephacryl S-300 column pre-equilibrated with K buffer containing 500 mM KCl
and eluted with the same buffer. The peak fractions were pooled, concentrated to 3 to

3.5 mg/ml, and stored in 3 pl portions at —80°C.

Generation of hRad54B antibodies

The portion of hRad54B encompassing amino acid residues 13-395 was fused to
glutathione S-transferase in the vector pGEX-3X. The GST-hRad54B fusion protein was
expressed in E. cw/i BL21 (DE3) cells and purified from inclusion bodies by preparative
SDS-PAGE to use as antigen for raising polyclonal antibodies in rabbits (Strategic
Biosolutions). The same antigen was covalently coupled to cyanogen bromide-activated

Sepharose 4B to use as affinity matrix for purifying antibodies from the rabbit antisera, as

described (52).

DNA substrates
Topologically relaxed $X174 DNA was prepared by treatment with calf thymus
topoisomerase I, as described (59), and pBluescript SK DNA was made in E. co/if DH50
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as described (38). The oligonucleotide used in the D-loop reaction is complementary to
positions 1932-2022 of the pBluescript SK DNA and had the sequence: 5-
AAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGC
TTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTT-3".This

oligonucleotide was 5 end-labeled with [y*P]JATP and T4 polynucleotide kinase to use in

D-loop reactions.

Protein activity assays

Binding of hRad54B to hRad51 was assessed with the use of immobilized
hRad51 protein. hRad51 protein and bovine serum albumin (BSA) were coupled to Affi-
Gel 15 beads following the instructions of the manufacturer (Bio-Rad). The matrices
contained 4 and 12 mg/ml of hRad51 and BSA, respectively. hRad54B (1.3 ng) was
incubated with 5 pl of Affi-BSA or Affi-hRad51 at 4°C for 30 minutes in 30 ul of K
buffer containing 50 mM KCI and 0.1% TritionX-100 with constant gentle tapping. This
was followed by washing the beads twice with the same buffer (50 pl each time) before
treating them with 30 pl of 2% SDS at 37°C for 5 minutes to elute bound hRad54B. In
Fig. 1C, hRad54B (1.3 ug) was mixed with yeast extract containing 100 pg total protein in
30 pl of buffer and mixed with the hRad51 and BSA beads as above. The various
fractions (10 ul each) were analyzed by SDS-PAGE and Coomassie staining or immuno-
blotting for their hRad54B content. Note that in Fig. 1C, lane 5, some hRad51 protein is
detected, which is probably due to the multimeric nature of hRad51. Since not all of the
subunits in this multimeric structure become covalently conjugated to the Affi-gel beads,
the non-covalently linked subunits will be eluted by the SDS treatment. The amount of
covalently conjugated BSA to the Affi-gel beads was quantified by determining the
protein coupling efficiency using SDS-PAGE.

DNA supercoiling and helix-opening activities of hRad54B were assessed as
follows: The indicated amount of hRad54B was incubated with topologically relaxed
0X174 dsDNA (5 uM base pairs) for 2 min at 23°C in 11.8 pl of reaction buffer (50 mM
Tris-HCl, pH 7.8, 3 mM MgCl,, 1 mM dithiothreitol, 2 mM ATP, and an ATP
regenerating system consisting of 10 mM creatine phosphate and 28 pg/ml creatine
kinase). Following the addition of 200 ng of E. /i topoisomerase I in 0.7 pl, the
reactions were incubated at 37°C for 10 minutes and then deproteinized by treatment
with 0.5% SDS and proteinase K (0.5 mg/ml) for 10 min at 37°C. Reaction products
were separated in a 1% agarose gel in TAE buffer (40 mM Tris-acetate, pH 7.4,
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containing 0.5 mM EDTA) and stained with ethidium bromide. The sensitivity of DNA
to P1 nuclease was assayed in the same manner, except that E. co// topoisomerase I was
replaced by 0.4 units of P1 nuclease (Roche) and the DNA species were resolved in a 1%
agarose gel containing 10 uM ethidium bromide. In some instances, the indicated amount
of hRad51 was also included in the initial incubation period.

ATP hydrolysis activity of hRad54B was determined by incubating hRad54B
protein (120 nM) with ¢X174 RFI DNA (23 uM base pairs) and 1.5 mM ATP with or
without 300 nM yRad51 or hRad51 K133R in 10 ul of reaction buffer (20 mM Tris-HCI,
pH 7.4, 25 mM KCI, 1 mM DTT, 4 mM MgCl,, 100 pg/ml BSA) at 30°C for the
indicated times. The level of ATP hydrolysis was determined by thin layer
chromatography, as described (37).

Reactions to measure the effect of hRad54B on hRad51-mediated D-loop
formation were performed as follows: hRad51 (800 nM) was incubated with the 5’-
labeled 90-mer oligonucleotide (2.5 pM nucleotides) for 4 min at 37°C in 40 pl of
reaction buffer (20 mM Tris-HCl, pH 7.4, 100 pg/ml BSA, 1 mM MgCl,, 2 mM ATP,
and the ATP generating system described above). This was followed by the addition of
hRad54B (400 nM) in 4 pl and a 2 min incubation at 23°C. The reaction was completed
by adding pBluescript SK replicative form I DNA (190 uM base pairs) in 6 ul. The
reaction mixtures were incubated at 30°C, and 6.3 ul aliquots were withdrawn at the
indicated times, deproteinized, and run in 1% agarose gels in TAE buffer. The gels were
dried, and the level of D-loop was quantified by phosphorimaging analysis. The reactions
containing hRad51K133R were assembled in buffer that contained 5 mM MgCl,. The
percent D-loop refers to the proportion of the radiolabeled oligonucleotide that was

incorporated into the pBluescript RFT DNA.

Generation of a mRad54B disruption construct and mRad54B knockont mice

A 129 mouse genomic library (Stratagene, Cat# 946308) was screened with a
DNA fragment from the #Rad54B cDNA sequence. A positive clone was picked and the
DNA was subsequently subcloned into a pBluescript KS. The restriction map of the
genomic DNA was determined using EcoRI, Bglll, BamHI and Xbal; it was also noted
that this particular stretch of genomic DNA contained 7 exons. A 1851 bp fragment
between EcoRI and Bglll sites in the genomic DNA was replaced with 1108 bp
Xhol/HindIIl fragment from pMClneo (Stratagene). This pMClneo fragment

contained the neomycin gene under the control of tk promoter. The neomycin marker
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gene was flanked by a approximately 9 kb EcoRI and a 1097 bp BglII-Xbal fragments of
the mRad54B locus. When used in gene targeting, this construct was expected to
eliminate 28 highly conserved amino acids, in effect knocking out functional #Rad54B.
The targeting construct was electroporated into E14 ES cells, which were then put under
G418 selection. Positive clones were screened by DNA blot analysis using Probe A (see
Fig. 5). One out of 238 clones showed a fragment of a size expected for targeted
integration of the construct. This was further confirmed using several restriction enzymes
and both upstream (A) and downstream (B) probes (Fig. 5B). ES cells that contained this
targeted event were injected into blastocysts. This gave rise to 17 chimeric males, which

were then backcrossed to BDF1 females, in order to get pure knockout mice.

Homologous targeting assays

The efficiency of homologous recombination was assessed by homologous gene
targeting assays to different loci, mRad54 and CITCF. The mRad54-puro targeting
construct and experiments have been described previously (15). DNA blot analysis was
carried out to distinguish between targeted events versus random integration of the
mRad54 construct. In the case of CTCF targeting, PCR was carried out on genomic DNA
of transfected clones. The appearance of a 5 kb PCR product indicated a homologous
targeting event. Mouse Rad54B specific PCR served as an internal control. )* tests were
performed to evaluate the significance of differences in homologous recombination

frequencies.

DNA damage sensitivity assays

Cellular clonogenic survival assays have been described previously (15). Every
measurement was performed in triplicate. For ionizing radiation survivals assays, cells
were exposed to the specified dose of y-rays. For mitomycin C survival assays, cells were
incubated in medium containing the specified concentration of mitomycin C for an hour.
The cells were then washed with PBS, and replenished with fresh medium. The cells were
allowed to grow for 10 days, after which the colonies were stained and counted. The
mitomycin C survival experiments were performed four times. Cloning efficiencies of
untreated cells varied between 10-30%.

Ionizing radiation and mitomycin C sensitivity was assessed with the use of two
to four month old littermates from the various genotypes (wild type, mRad54”,
mRad54B"", mRad54” mRad54B"). They were irradiated with a 7 Gy dose (*’Cs source)
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and monitored for 21 days. Surviving animals were euthanized. Male and female mice
were injected with 15, 10, 7.5, 5, 2.5 and 1 mg of mitomycin C per kg bodyweight and
monitored for 14 days.

DNA damage processing was indirectly assessed by the micronucleus assay. 100

ul of peripheral blood was collected by orbital puncture, and the micronucleus assay was
performed as described (19). Five hundred polychromatic erythrocytes were scored for

the presence of micronuclei using an Axioplan fluorescence microscope.

Tmmmunocytochemistry of meiotic chromosomes

Testis were isolated from 1, 2, and 5 month old 129/BI6 mice and processed as
previously described (36). Immunofluorescence was performed as described (4). Sycp3
mouse monoclonal antibody was a kind gift from C. Heyting, Wageningen, The
Netherlands. The anti-hRad51 antibody was as described (16).

Measuring recombination using single sperm typing

Isolation of individual sperm, sperm lysis, single sperm multiplex PCR and
statistical analysis of the frequency of crossing over were carried out as described
previously (12, 28, 41). Recombination in two regions was analyzed. The 13.1 cM
chromosome 2 interval was between (CA), microsatellite markers D2Mit213 and
D2Mit412, while the 24.1 ¢cM chromosome 7 interval was between D7Mit268 and
D7Mit353 (http://www.broad.mit.edu/cgi-bin/mouse/index). The primer sequences are

given in Supplemental Materials Table 1.

Results
Isolation of a cDNA encoding a mammalian Rad54 paralog

DNA oligonucleotides of degenerate sequence based on conserved amino acid
motifs in the SWI2/SNF2 family of proteins were used to isolate a Rad54 paralog, which
we named mouse Rad54B (m7Rad54B), from mouse cDNA libraries. The #Rad54B cDNA
consisted of a 2658 bp open reading frame with the potential to code for an 886 amino
acid protein with a predicted molecular mass of 103 kDa. Amino acid sequence
comparison of mRad54 and mRad54B revealed 33% sequence identity that extends over
the entire length of the proteins. The predicted amino acid sequence of mRad54B shows
80% sequence identity with human Rad54B (hRad54B) (20). Further sequence analysis
indicated that human and mouse Rad54B displayed 34% sequence identity to both .
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cerevisiae Rad54 and Rdh54. To obtain insight in the function of mammalian Rad54B, we

characterized it biochemically and genetically.

Human Rad54B forms a complex with human Rad51

The ARAD54B cDNA was cloned, expressed in High-five insect cells and
purified (Supplemental Fig. 1). In contrast to mammalian Rad54 which can directly
interact with mammalian Rad51 (18, 55), it has been suggested that hRad54B does not
interact directly with hRad51. This conclusion was reached because no association
between hRad51 and hRad54B was detected in either a yeast-two hybrid assay or in
vitro pulldown assays with purified proteins (58). Since genetic evidence implicates
Rad54B in homologous recombination (33), we re-examined whether hRad51 and
hRad54B form a complex. The hRad51 protein was immobilized on Affi-Gel beads and
interaction of hRad54B with these beads was assessed. As shown in Fig. 1 A and B,
hRad54B was retained on the Affi-hRad51 beads but did not associate with beads
conjugated to BSA. To further establish the specificity of the hRad51/hRad54B
interaction, a small amount of purified hRad54B was mixed with an excess of yeast
extract proteins and this mixture was incubated with the Affi-hRad51 beads. As shown in
Fig. 1C and D, among the many proteins that were present, only hRad54B was retained
on the hRad51 affinity beads. As expected, hRad54B did not bind to the control beads
that contained BSA. Taken together, these results demonstrate a direct and highly

specific interaction between hRad54B and hRad51.
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Figure 1. Direct protein-protein interactions between human Rad54B and human
Rad51. hRad51 protein or BSA was coupled to Affi-Gel beads and binding of hRad54B
was investigated. (A) The starting material (St), supernatant (S), wash (W) and eluate (E)
from hRad51- and BSA-containing beads, respectively, were separated in a denaturing gel
and stained with Coomassie blue. Interaction of hRad54B and hRad51 is evident from
the presence of hRad54B in lane 5 compared to its absence in lane 9. (B) Immunoblot of
a similar experiment as shown in panel A probed with anti-hRad54B antibodies. (C) To
assess the specificity of the interaction between hRad54B and hRad51, purified hRad54B
was mixed with a protein extract from S. cerevisiae cells and the mixture was incubated
with the hRad51- or BSA-containing beads. Human Rad54B was specifically retained on
the hRad51-containing beads (lane 5). (D) A similar experiment as shown in panel C,
except the gel was probed with anti-hRad54B antibodies. Size of protein molecular mass
markers is indicated in kDa.

Human Rad54B has DNA translocase activity and promotes DNA helix opening

The Rad54 and Rdh54 proteins use the energy from ATP hydrolysis to
translocate along duplex DNA, inducing positive supercoils ahead of protein movement
and compensatory negative supercoils behind (39, 42, 47, 59). Since, like Rad54 and
Rdh54, hRad54B possesses the seven conserved helicase motifs common to

SWI2/SNF2 family members (51) and double-stranded DNA-dependent ATPase
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Figure 2. Human Rad54B has ATP-dependent DNA translocase activity that
promotes opening of the DNA double helix. (A) A topologically relaxed plasmid
substrate was incubated with hRad54B, after which E. co/i topoisomerase I was added to
remove any negative supercoils generated in the substrate. The ability to translocate along
DNA will result in the formation of an overwound (Form OW) DNA species due to
remaining positive supercoils in the substrate. Human Rad54B generated Form OW
DNA, which increased with increasing amount of protein (lanes 3-6). The assay
depended on E. ¢/ Topo I (lane 7), and hRad54B translocase activity required ATP (lane
8) and its hydrolysis (lane 9, AMP-PNP). The concentrations of hRad54B used were 300,
400, and 500 nM in lanes 3-5, respectively, and 650 nM in lanes 6-9. (B) The presence of
single-stranded DNA that results from an opening of double-stranded DNA by
hRad54B translocation was probed with the use of single-strand nuclease P1. With an
increasing amount of hRad54B, there was more single-stranded DNA present, resulting
in P1 digestion of the single-stranded DNA and formation of the nicked form of the
DNA substrate (lanes 2-5). Nicking activity was greatly diminished upon the omission of
P1 nuclease (lane 6) or ATP (lane 7), or when ATP was substituted with the non-
hydrolyzable ATP analogue AMP-PNP (lane 8). DNA incubated with P1 (lane 1) was
included as control. The concentrations of hRad54B used were 100, 200, and 300 nM in
lanes 2-4, respectively, and 400 nM in lanes 5-8.

activity (58), it was of interest to examine hRad54B protein for translocase activity. To

this end we employed an assay that is based on the principle that E. co/i topoisomerase 1
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removes negative supercoils from DNA, but is unable to act upon positive supercoils.
For the reaction, a topologically relaxed plasmid substrate was incubated with hRad54B,
and then E. co/i topoisomerase I was added to remove any negative supercoils generated
in the substrate. An ability of hRad54B to translocate on DNA will result in the
formation an overwound (Form OW) DNA species (38, 42, 47, 59). Utilizing this assay
system, we found that hRad54B generates Form OW DNA (Fig. 2). This supercoiling
reaction was dependent on ATP hydrolysis by hRad54B, as evidenced by the lack of
Form OW when ATP was omitted from the reaction or replaced with the non-
hydrolyzable analogue AMP-PNP (Fig. 2A, lanes 8 and 9).

The ability of Rad54 to generate negative supercoils in duplex DNA leads to the
transient opening of the DNA strands in the duplex (47, 59), as indicated by the
sensitivity of a topologically relaxed DNA template to the single-strand specific nuclease
P1. We used the same strategy devised for Rad54 to examine whether hRad54B renders
topologically relaxed DNA sensitive to P1. As seen in Fig. 2B, the DNA substrate alone
was not digested by P1 nuclease because of the lack of single-stranded character in the
DNA, but with increasing amounts of hRad54B, progressively more of the DNA
substrate was converted into the nicked form. These results show that the negative
supercoiling induced by hRad54B translocation causes transient opening of the DNA
double strand. As expected, the DNA strand opening activity of hRad54B was
dependent upon ATP hydrolysis, as sensitivity to P1 nuclease was greatly attenuated
when ATP was absent or substituted with AMP-PNP (Fig. 2B, lanes 7 and 8).

Stimulation of human Rad54B activities by human Rad5'1

Since hRad51 and hRad54B physically interact (Fig. 1), we tested whether the
proteins functionally co-operate in biochemical reactions they catalyze. We examined the
effect of hRad51 on hRad54B activities described above. In contrast to a previous report
indicating that hRad51 had no effect on the hRad54B ATPase activity (58), we
consistently detected a significant stimulation of this activity by hRad51 K133R, a mutant
variant of hRad51 that is capable of ATP binding but not hydrolysis (Fig. 3A). The
species specificity of hRad54B ATPase stimulation was established by showing that .
cerevisiae Rad51 was unable to enhance the ATP hydrolytic reaction (Fig. 3A). We next
tested whether hRad51 could stimulate the ability of hRad54B to promote DNA
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Figure 3. Human Rad54B and human Rad51 functionally interact. (A) Human
Rad51 stimulates the ATPase activity of hRad54B. Human Rad54B (120 nM) was

incubated with [y-*P]-ATP and various forms of Rad51, and the percentage of ATP
hydrolyzed was determined. A significant stimulation of hRad54B ATPase activity was
detected with hRad51 K133R (300 nM), a mutant variant of hRad51 that can bind but
not hydrolyze ATP. The effect is species specific because Rad51 from S. cerevisiae
(ScRad51; 300 nM) did not affect the ATPase activity of hRad54B. (B) Human Rad51
stimulates hRad54B in the translocase assay. The formation of Form OW DNA was
determined in the presence of Topo I, hRad54B (300 nM) and hRad51 (0, 200, 300, and
400 nM, respectively, in lanes 4-7). In control reactions, hRad51 (400 nM) and DNA
were incubated with topoisomerase and ATP but no hRad54B (lane 3), with hRad54B
and ATP but no topoisomerase (lane 8), with hRad54B and topoisomerase but no ATP
(lane 9), or with hRad54B, topoisomerase, and AMP-PNP (lane 10, PNP). DNA alone
(lane 1) and DNA incubated with topoisomerase (lane 2), both in the presence of ATP,
were also analyzed. Form OW denotes the positively supercoiled DNA species
generated. (C) Human Rad51 stimulates hRad54B in the P1 nuclease assay. The ability
of hRad54B to open up the DNA double helix is enhanced by the presence of hRad51.
hRad54B (100 nM) was incubated with topologically relaxed DNA, ATP, P1 nuclease,
and hRad51 (100, 200, 300 nM in lanes 5-7, respectively) or without hRad51 (lane 4). In
control reactions, hRad51 (300 nM) and DNA were incubated with P1 and ATP but no
hRad54B (lane 3), with hRad54B and ATP but no P1 (lane 8), hRad54B and P1 but no
ATP (lane 9), or with hRad54B, P1, and AMP-PNP (lane 10, PNP). DNA alone (lane 1)
and DNA incubated with P1 (lane 2), both in the presence of ATP, were also analyzed.

supercoiling and DNA strand opening. Using the same systems described above, hRad51
indeed stimulated the supercoiling activity of hRad54B (Fig. 3B) as well as its ability to
open the DNA double helix (Fig. 3C), while Rad51 alone did not possess either of these
activities (Fig. 3B and C, lane 3).

D-logp formation by human Rad54B and human Rad51

During homologous recombination, homologous pairing between two
recombining DNA molecules results in the formation of a D-loop (51). We showed
previously that the hRad51 and hRad54 proteins functionally co-operate in D-loop
formation (47). Here, we examined the influence of hRad54B on the ability of hRad51 to
mediate the D-loop reaction. As reported before (7, 47), in buffer that contains Mg”",
hRad51 by itself had little ability to form D-loops (Fig. 4A and B, lane 2). Importantly, in
the presence of hRad54B protein, hRad51-dependent D-loop formation could be easily
detected even after only 15 s of incubation (Fig. 4A). Similar to our published results on
the hRad51/hRad54-mediated D-loop reaction (47), the D-loop made by hRad51 and
hRad54B appeared to be unstable. The instability of the D-loop made by
hRad51/hRad54 has been attributed to ATP hydrolysis by hRad51, which is expected to
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Figure 4. Human Rad54B stimulates D-loop formation by human Rad51. The
formation and the subsequent stability of D-loops formed in the presence of hRad51 and
hRad54B was studied. (A) The radiolabeled 90-mer oligonucleotide was incubated with
hRad51 and ATP to allow filament formation, after which hRad54B and the homologous
duplex target (pBluescript RFI DNA) were incorporated, and a portion of the reaction
mixture was removed at the indicated times for analysis (lanes 4 to 10). The controls
include: incubation of DNA substrates with ATP but no recombination protein (lane 1);
incubation of DNA substrates with ATP and either Rad51 (lane 2) or hRad54B (lane 3);
incubation of DNA substrates with hRad51 and hRad54B but no ATP (lane 11), or with

ATP-y-S (lane 12) or AMP-PNP (lane 13). As expected, substitution of pBluescript DNA
with heterologous duplex DNA (1] X174) abolished D-loop formation (lane 14). (B) D-
loop reactions were carried out as in (A) using hRad51K133R. (C) The results from lanes
4 to 10 of panel A (open triangles) and panel B (solid triangles) are plotted.

cause its turnover from the newly made DNA joint to initiate a second round of
homologous pairing that dissociates the D-loop. In support of this premise, when
hRad51 was replaced by the ATPase defective hRad51 K133R protein, the D-loop
formed with hRad54B accumulated to a much higher level (Fig. 4, B and C). Regardless
of whether hRad51 or hRad51 K133R was used, D-loop formation required ATP, which

could not be replaced by ATPYS or AMP-PNP (Fig. 4A and B, lanes 11-13, respectively).
As expected, the D-loop reaction requires homology between the single-stranded and

double-stranded DNA substrates (Fig. 4A and B, lane 14).

Generation of Rad54B disrupted mouse ES cells and mice

The biochemical activities of the mammalian Rad54B protein determined above
are consistent with a role for the protein in homologous recombination. To determine its
role in vivo and to assess the biological relevance of mammalian Rad54B, we generated
Rad54B knockout mouse ES cells and mice. A clone spanning the 3’ region of #Rad54B
was isolated from a mouse genomic library and subsequently characterized by restriction
analysis and intro-exon border mapping (Fig. 5A) and chromosomal localization
(Supplemental Fig. 2) (40, 61). From this clone, a targeting vector was derived that upon
homologous integration into the endogenous 7Rad54B locus would eliminate 28 highly
conserved amino acids spanning the last conserved SWI2/SNF2 family member motif.
The targeting vector was electroporated into E14 ES cells and after selection, correctly
targeted clones were identified by DNA blotting using a unique probe outside the
targeting sequence (Fig. 5B). A targeted clone was propagated and injected into

blastocysts to generate mice carrying the disrupted 7#Rad54B allele. Inactivation of the
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Figure 5. Characterization of part of the mouse Rad54B genomic locus and
generation of mouse ES cells carrying a disrupted mRad54B allele. (A) Part of the
mRad54B genomic locus and structure of the targeting construct. Exons 12-15 are
indicated by black boxes. Shown are the locations of selected restriction sites, EcoRI (E),
BamHI (B), Bglll (Bg), HindIII (H), Xbal (X). The positions of two different probes,
named A and B, are indicated. (B) DNA blot analysis of G418 resistant ES clones using
probe A and EcoRI digested DNA. The wild type (wt) allele yields a 3.0 kb band while
the disrupted allele results in a 3.6 kb band. (lane 1, wild type ES cell; lane 2, clone with a
randomly integrated targeting construct; lane 3, clone with a homologously integrated
targeting construct). (C) RNA blot analysis of #Rad54B transcripts in mice carrying the
disrupted allele. Total RNA (15 ug) isolated from testes of wild type, #Rad54B*" and
mRad54B”" males was probed with 5’ and 3’ #Rad54B cDNA probes. A GAPDH ¢cDNA
probe served as a loading control.

mRad54B gene in mRad54B’ mice was confirmed using RNA blot analysis (Fig. 5C). In
RNA samples prepared from testis from both wild type and #Rad54B"" mice, a 2.3 kb
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mRad54B transcript was observed. No transcript was detected with either a 5’ or 3’ probe
for mRad54B in testes from mRad54B”" mice.

Interbreeding of #Rad54B"" mice resulted in a Mendelian segregation of the
disrupted mRad54B allele. Thus, mRad54B disruption did not result in embryonic or

neonatal lethality. No statistically significant difference in weight was observed among

mRad54B"", mRad54B"" and mRad54B"" littermates. Importantly, the wRad54B" mice
exhibited no macroscopic abnormalities up to at least six months of age. mRad54B""
animals were crossed to obtained blastocysts, which were then used to isolate #Rad54B"
ES cells. Two independent mRad54B” ES cell lines were obtained, one in 129
background, and the other in 129/bl6 background. To obtain cells and animals in which
both mRad54 paralogs were disrupted mRad54B*" mice were crossed with mRad54""
mice. Similar to #Rad54” and mRad54B” mice, mRad54”" mRad54B” mice displayed no
overt phenotypes and appeared normal. mRad54”", mRad54B”", and mRad54" mRad54B"
ES cells were isolated from blastocysts obtained from intercrossing mice carrying

different combinations of the wRad54 and mRad54B knockout alleles.

Frequencies of targeted integration in mouse Rad54B deficient cells

Previously, we have shown the involvement of mammalian Rad54 in homologous
recombination by demonstrating that the efficiency of homologous gene targeting is
reduced by 3 to10-fold in #Rad54"" ES cells (15). To test whether #Rad54B is involved in
homologous recombination as well, we examined the capacity of wild type, mRad54B”
and mRad54”" mRad54B” cells for gene targeting. Cells were transfected with linearized
targeting constructs for either the mRad54 or the CICF locus. Both constructs carried
puromycin resistance selectable marker flanked by regions of homology. Homologous
integration events into #Rad54 and CTCF loci were detected by DNA blotting and PCR,
respectively (Table 1 and data not shown). Interestingly, the efficiency of homologous
recombination as measured by gene targeting was not reduced in mRad54B” cells as
compared to wild type cells (Table 1). However, the involvement of mRad54B in
homologous recombination was revealed in absence of #Rad54. Hardly any homologous

integration events were detected in #Rad54”" mRad54B" ES cells.
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Targeted locus?

ES cell genotype mRad54 CTICF
mRad54+/+ mRad54B+/+ 69.0%  (87/126) 60.0% (54/90)
mRad54*/* mRad54B-/- 64.7% (178/275) 54.0%  (61/113)
mRad54- mRad54B+/+ 2.1%¢<  (6/284) 213%  (36/169)
mRad54"- mRad54B/- <0.17%  (0/560) 2.1% (7/332)

Table 1. Efficiency of homologous recombination in wild type (mRad54"*
mRad54B7"), mRad54", mRad54B"~ and mRad54" mRad54B” ES cells as
measured by homologous gene targeting. *

“ES cells of the indicated genotype were electroporated with the indicated gene targeting
constructs. After selection under the appropriate conditions individual clones were
isolated and expanded. Genomic DNA from the clones was isolated. For clones
electroporated with »Rad54 targeting construct genomic DNA was digested with the
appropriate restriction enzyme, electrophoresed through an agarose gel and transferred
to a nylon membrane. Membranes were hybridized with radiolabeled probes that
discriminated between homologously and randomly integrated targeting construct. For
the clones electroporated with the CTCF targeting construct, genomic DNA was used
for PCR reactions that discriminated between random and homologous integration
events.

” The percentage of clones containing homologously integrated targeting construct
relative to the total number of analyzed clones is indicated. Absolute numbers are
indicated in parentheses. The differences in targeting efficiency between wild type and
mRad54” cells, between wild type and mRad54”" mRad54B”" cells, between mRad54” and
mRad54”" mRad54B" cells, between mRad54B”" and mRad54” cells, and between
mRad54B" and mRad54” mRad54B”" cells are statistically significant for both loci
(p<0.001 by % analysis).

¢ Previously reported (34).

Mouse Rad54B deficiency confers hypersensitivity to ionizing radiation and mitomycin C

To determine whether the contribution of mRad54B to homologous
recombination impinges on the ability of the cell to repair DNA damage, we examined
the effect of ionizing radiation and mitomycin C on the survival of wild type, #Rad54",
mRad54B"" and mRad54"" mRad54B" ES cells. While #Rad54" ES cells are 2- to 3-fold
more sensitive to ionizing irradiation than wild type ES cells (15), #Rad54B”" cells were
only 1.5-fold more sensitive than wild type ES cells (Fig. 6A). The ionizing radiation
sensitivity of the double mutant wRad54”" mRad54B” ES cells was similar to that of
mRad54”" ES cells. For mitomycin C, #Rad54"" and mRad54B” single mutant ES cells
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Figure 6. Effect of ionizing radiation and mitomycin C on wild type, mRad54”,
mRad54B”" and mRad54"~ mRad54B”"ES cells. (A) Clonogenic survival of wild type

(wt) and mutant ES cells after irradiation with increasing doses of y-rays. The percentage

of surviving cells measured by their colony-forming ability is plotted as function of the y-
ray dose. (B) Clonogenic survival of wild type, mRad54"", mRad54B’" and mRad54”
mRad54B”" ES cells after treatment with mitomycin C. Error bars (some obscured by the
symbols) represent standard error of the mean.

showed a similar hypersensitivity compared to the double mutant »Rad54”" mRad54B"
ES cells (Fig. 6B). We conclude that, in addition to mRad54, mRad54B also contributes

to repair of ionizing radiation and mitomycin C induced DNA damage.

Mice lacking both Rad54 paralogs are extremely sensitive to mitomycin C

To establish the impact of #Rad54B on protection from the adverse effects of
induced DNA damage in the adult animal wild type, #Rad54"", mRad54B"" and mRad54""
mRad54B”" mice were exposed to ionizing radiation and mitomycin C. As has been found
for mRad54”" mice neither mRad54B” nor mRad54”" mRad54B”" mice were sensitive to
ionizing radiation. All the 2- to 4-months old littermates survived exposure to 7 Gy of
ionizing radiation (data not shown).

Previously, we showed that #Rad54”" mice are hypersensitive to mitomycin C
(17). To reveal whether #Rad54B also contributes to protection from the mitomycin C
induced DNA damage, wild type, #Rad54”", mRad54B”" and mRad54” mRad54B’" mice
were injected peritoneally with different doses of mitomycin C and monitored for 14
days. As is the case for #Rad54" mice, mRad54B”" mice were hypersensitive to mitomycin

C (Fig. 7). At a dose of 7.5 mg mitomycin C per kg of bodyweight, approximately 60%
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Figure 7. Impact of mRad54B on the mitomycin C sensitivity of mice. (A) Survival
curve of wild type (n=6), mRad54"" (n=11), mRad54B"" (n=13) and mRad54"" mRad54B""
(n=4) mice after a single intraperitoneal injection of 7.5 mg of mitomycin C per kg
bodyweight. (B) Survival curve of mRad54" (n=2), mRad54B" (n=2), and mRad54"
mRad54B” (n=7) mice after treatment with 5 mg/kg mitomycin C. (C) Induction of
micronuclei by mitomycin C in polychromatic erythrocytes. Mice of the indicated
genotypes were intraperitoneally injected with 2.5 mg/kg bodyweight mitomycin C.
Plotted are percentages of micronuclei-containing polychromatic erythrocytes
(MNPCEs) per 500 polychromatic erythrocytes at day zero, two and seven after
treatment. Data points represent average from three independently treated animals. The
standard error of the mean is indicated.
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of the mRad54” and mRad54B’ mice survived, compared to 100% of the wild type mice.
By contrast, none of the wRad54”" mRad54B” mice survived the treatment. The latency
period of death for mRad54B’" mice was comparable to #Rad54" mice. At the lower
dose of 5 mg/kg mitomycin C all wRad54” and mRad54B” mice survived. In stark
contrast, all of the wRad54"" mRad54B’ mice died within 7 days. We conclude that the
mammalian Rad54 paralogs function synergistically to protect mice from the deleterious
effects of mitomycin C.

The bone marrow is a major target for mitomycin C-inflicted damage 7 vzvo.
Therefore, we tested whether mitomycin C treatment affected cells in the blood to a
different extend in mwRad54”" mRad54B’" animals and mRad54" and mRad54B’ animals
using the peripheral blood micronucleus assay. The presence of micronuclei in
polychromatic erythrocytes provides a measure of chromosomal aberrations. A single
dose of 2.5 mg mitomycin C per kg bodyweight was administered to 6- to 8-week old
animals. This treatment resulted in increases in the frequency of micronuclei-containing
polychromatic erythrocytes (Fig. 7C). Before the mitomycin C treatment the percentage
of micronuclei-containing polychromatic erythrocytes was similar in wild type, #Rad54",
mRad54B" and mRad54” mRad54B” animals. Consistent with the mitomycin C
hypersensitivity of #Rad54” mRad54B’ mice, the crosslinking agent induced significantly
higher levels of micronuclei-containing polychromatic —erythrocytes in  mRad54”

mRad54B”" mice rather than mRad54”" and mRad54B’ mice (Fig. 7C).

Abnormal chromosomal distribution of mouse Rad51 during meiosis in the absence of Rad54

In 8. cerevisiae, the function of the Rad54 paralogs appears to overlap to some
extend as indicated by their effects on sporulation efficiency and spore viability (27, 45).
To assess the effect of the mammalian Rad54 homologs on meiosis we analyzed meiotic
prophase chromosomes in spread nuclei of primary spermatocytes isolated from control,
mRad54”", mRad54B”" and mRad54" mRad54B”" mice. The chromosomes were
immunostained for Sycp3 to identify the meiosis-specific synaptonemal complex that
organizes the paired homologous chromosomes (Fig. 8A). Given the functional
interaction between mammalian Rad54 and Rad54B in mitotic cells, we co-stained the
chromosomes for mRad51. During the early stages of meiotic prophase, leptotene and
zygotene, the distribution of mRad51 was similar in spread nuclei from all genotypes.
However, in later stages, pachytene and diplotene, abnormal mRad51 localization was

observed in spread nuclei from mRad54" and mRad54"" mRad54B” mice. In control and
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Figure 8. Analysis of mouse Rad51 localization on meiotic chromosomes from mRad54-
and mRad54B-proficient and -deficient mice. (A) Localization of mRad51 (red) and
Sycp3 (green) on spread nuclei of primary spermatocytes as detected by
immunofluorescence. Shown are chromosome spreads from zygotene, pachytene and
diplotene stages of meiosis from wild type (upper panel) and mRad54"" mRad54B” (lower
panel) mice. In leptotene (not shown) and zygotene no aberrant mRad51 and/or Sycp3
staining was observed irrespective of genotype. In pachytene and diplotene abnormal
mRad51 distribution was detected in a high percentage of meiotic chromosome spreads
derived from mRad54” and mRad54” mRad54B’ mice. (B) Quantification of meiotic
nuclei displaying aberrant mRad51 staining. Proficiency and deficiency of the mRad54
and mRad54B proteins in the animals from which the spermatocytes were taken is
indicated by 4+’ and ‘-‘ signs, respectively. Spermatocytes were isolated from mRad54-
and mRad54B-proficient mice (n=38), mRad54-deficient mRad54B-proficient mice (n=9),
mRad54-proficient mRad54B-deficient mice (n=8) and mRad54 mRad54B-deficient mice
(n=4). Percentage of meiotic nuclei with aberrant mRad51 distributions is indicated. One
hundred meiotic nuclei per animal were analyzed. Error bars indicated standard error of
the mean.

mRad54B"" nuclei, the mRad51 signal was present on the pachytene chromosomes as well
as in an overall staining of the nucleus. However, in spread nuclei derived from mRad54"
and mRad54”" mRad54B’" animals, the mRad51 signal was concentrated in abnormal
focus-like structures on the chromosomes only (Fig. 8A and B). The defective mRad51
distribution is even more pronounced in diplotene, where abnormally long stretches of
mRad51 were observed, instead of the normal homogenous nuclear staining.
Interestingly, despite the cytological abnormalities in mRad51 localization in the absence
of mRad54, meiotic homologous recombination appeared to be affected only mildly.
Using single sperm typing, crossing over was compared between #Rad54” and wild type
animals, each heterozygous for 129/] and C57/BL6 matkers flanking the chosen regions.
The recombination fraction was 0.14 (95% confidence interval [CI] = 0.09 to 0.18) in a
mRad54” animal and 0.20 (95% CI = 0.15 to 0.25) in the wild type control for the
chromosome 2 region. Using two other mice, the chromosome 7 region recombination
fraction was 0.25 (95% CI = 0.21 to 0.30) in the #Rad54" animal and 0.32 (95% CI =
0.27 to 0.37) in the wild type. The 95% confidence intervals for the #Rad54” and wild
type individuals overlapped in both regions indicating there was no statistically significant
difference between the two genotypes. Note, however, that the recombination fraction
for the mRad54” animals was reduced to about the same degree compared to wild type
animals for the genetic intervals on both chromosome 2 and 7 (30% and 22%,
respectively). There was no overt defect in fertility of #Rad54”", mRad54B" and mRad54”
mRad54B” mice (data not shown).
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Discussion

Homologous recombination is a versatile DNA damage repair pathway that is
essential for preservation of genome integrity. Among lesions that initiate homologous
recombination are single-stranded DNA gaps and DSBs. This feature makes
homologous recombination ideally suited to underpin DNA replication, because single-
stranded DNA gaps and DSBs occur at corrupted replication forks that arise either due
to spontaneous or induced DNA damage. Homologous recombination between sister
chromatids can rebuild these disabled replication forks in situ in the absence of a
replication origin (10). Due to this important function homologous recombination is
essential for mammalian cell viability. The requirement for homologous recombination is
not limited to mitotically dividing cells; the process is also central in meiosis to generate
genetic diversity by repairing meiosis-specific DSBs with the homologous chromosome
as a recombination partner.

A key player in homologous recombination is Rad51, the homology recognition
and DNA strand exchange protein. The essential role of homologous recombination for
mammalian cell viability is underscored by the lethality of Rad51 knockout cells and mice
(54). However, not all proteins involved in homologous recombination are essential,
implying that either redundancy in function or the existence of subpathways of
recombination that by themselves are not essential for cell viability. One example of a
homologous recombination protein that is not essential for cell viability is the Rad51
accessory factor Rad54 (6, 15). To address whether there is potential redundancy in
Rad54 function or recombination subpathways requiring a specialized Rad54 protein, we

biochemically and genetically characterized the mammalian Rad54 paralog Rad54B.

The mammalian Rad54 paralogs have similar biochemical activities

We performed biochemical analyses of hRad54B to compare and contrast its
activities with hRad54. We find that, like hRad54, hRad54B is a double-stranded DNA-
dependent ATPase (Fig. 3 and (57)). However, its ATP turnover rate is about 6-fold
lower than hRad54 (53, 58). In addition, we show that hRad54B has DNA translocase
and DNA double helix opening activities similar to those of hRad54 (Fig. 2; (37, 39, 42,
55)). Another well-explored activity of hRad54 is its interaction with hRad51 (18, 31, 55,
59). Interestingly, it has been reported that hRad54B is different from hRad54 in this

respect (58). However, using more direct assays we demonstrate that hRad54B does
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interact with hRad51 and that this interaction is highly specific (Fig. 1). Furthermore, we
demonstrate that this interaction is functional. Human Rad51 stimulates the ATPase
activity, DNA translocase and DNA double helix opening activities of hRad54B (Fig. 3).
Conversely, hRad54B stimulates the formation of D-loops, a critical intermediate in
homologous recombination, generated by hRad51 (Fig. 4). We conclude hRad54B has
biochemical activities similar to those of its paralog, hRad54. Therefore, hRad54 and
hRad54B could provide redundant functions with respect to homologous recombination-
mediated DNA damage repair or could provide similar functions but in a tissue-specific

manner.

A contribution of mRad54B to homologous recombination in vivo is revealed in the absence of mRad54

The biochemical activities of the mammalian Rad54B suggest a role for the
protein in homologous recombination 7z vive. Previously, it has been reported that human
Rad54B contributes to homologous recombination, because homologous gene targeting
is reduced in the human colon cancer cell line HCT116 in which Rad54B had been
inactivated (33). Curiously, this cell line is not sensitive to any DNA damaging agents
tested, including ionizing radiation and interstrand DNA crosslinkers. The disadvantage
of this cell line is its genetic instability; it is mismatch repair deficient, displays micro-
satellite instability and harbors numerous chromosomal aberrations. To assess the
biological impact on homologous recombination and DNA damage repair of mammalian
Rad54B, we generated Rad54B knockout ES cells. In contrast to the HCT116 cells, these
cells are non-transformed, display a stable normal karyotype and carry no additional
adverse mutations that complicate the interpretation of the results. As a further
advantage, the ES cells allowed us to generate double mutants that in addition to
inactivated #Rad54B alleles, also carried disrupted 7Rad54 alleles.

As a reporter on homologous recombination, we measured the efficiency of
homologous gene targeting in wild type ES cells and derivates in which either one or
both Rad54 paralogs are inactivated. In accordance with previous results, the absence of
mRad54 results in a reduced homologous recombination efficiency (15). Depending on
the locus, the reduction varies between 3- to 30-fold (Table 1). In the absence of
Rad54B, we consistently observe an approximately 10% reduction in recombination
efficiency, but even with more than 400 events analyzed, this reduction is not statistically
significant. However, cells lacking both Rad54 paralogs have a 30- to 400-fold reduced

homologous recombination efficiency compared to wild type cells (Table 1). This is a
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reduction of a further 10-fold compared to the absence of mRad54 alone. Thus, the
involvement of mRad54B in the homologous recombination subpathway that mediates

gene targeting is uncovered in the absence of mRad54.

Both mammalian Rad54 paralogs contribute to cell survival in response to DNA damage

Because homologous recombination is a versatile mechanism to repair DNA
damage compared to repair mechanisms that rely on a specific DNA damage recognition
protein to initiate the reaction, it is remarkable that a hRad54B-deficient cancer cell line is
not hypersensitive to DNA damaging agents (33). Given the caveats mentioned above,
we examined DNA damage sensitivity in mouse ES cells instead. Lack of Rad54 in ES
cells results in cellular hypersensitivity to ionizing radiation and mitomycin C (15). In
contrast to the hRad54B-deficient cancer line, ES cells lacking mRad54B are
hypersensitive to ionizing radiation and mitomycin C (Fig. 6). At the cellular level our
results reveal no strong indication for an additive or synergic interaction between the two
Rad54 paralogs with respect to the repair of ionizing radiation and mitomycin C-induced

DNA damage repair.

The Rad54 paralogs synergistically contribute to mitomycin C resistance in mice

The contribution of Rad54 to survival of mice in response to DNA damage
differs from that in ES cells. While #Rad54”" ES are ionizing radiation and mitomycin C
hypersensitive, #Rad54”" mice are mitomycin C but not ionizing radiation hypersensitive
(17). We tested whether the lack of ionizing radiation hypersensitivity in mice is due to
redundancy in mRad54 function provided by mRad54B. However, this is not the case
because mRad54”" mRad54B’ mice are also not overtly ionizing radiation hypersensitive
(data not shown). The contribution of homologous recombination to repair of ionizing
radiation-induced DNA damage is revealed in the absence of non-homologous DNA
end-joining, an alternative mechanistically distinct DSB repair pathway (17). Possibly,
while homologous recombination an important DNA repair pathway for two-ended
breaks, such as those induced by ionizing radiation, in rapidly dividing ES cells, non-
homologous DNA end-joining is much better suited for repair of these lesions in the
many non-diving cells of the adult mice. In contrast, mitomycin C-induced DNA

interstrand cross-links are processed into single-ended DSBs by DNA replication (35).
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Single-ended DSBs cannot be acted upon efficiently by non-homologous DNA end-
joining and require homologous recombination for repair instead (11). As is the case for
mRad54"" mice, mRad54B’" mice are mitomycin C hypersensitive (Fig. 7). Furthermore,
mRad54” mRad54B”" double mutant mice are extremely mitomycin C hypersensitive.
This synergistic effect of the Rad54 paralogs could be due to their functions in distinct
subpathways of interstrand DNA crosslink repair. However, given their biochemical
similarities and the lack of a significant difference in mitomycin C hypersensitivity of
mRad54B”" versus mRad54” mRad54B” ES cells this is unlikely. Alternatively, the Rad54
paralogs might have a tissue-specific function by differentially contributing to interstrand
DNA crosslink repair in different cell types of mice. This premise predicts that there
should be differences in expression of the Rad54 paralogs among different tissues.
Although no direct connection is currently available, the existing data does suggest that
this could be the case. For example, while expression of hRAD54B is extremely low in

the spleen (Supplemental Fig. 2), expression of mRad54 in the spleen is robust (25).

Mammalian Rad54 affects the distribution of Rad51 on meiotic chromosomes

Both Rad54 paralogs in S. cerevisiae contribute to meiosis and therefore we
analyzed the effect of the mammalian Rad54 paralogs on mouse meiotic prophase
chromosomes. Because both mammalian Rad54 paralogs functionally interact with
Rad51, we investigated the distribution of mRad51 on meiotic prophase chromosomes.
During meiosis, mRad51 is first observed in the leptotene and zygotene stages as foci
distributed throughout the nucleus (5). Subsequently, mRad51 foci arrange into linear
arrays that colocalize with the axial elements of the synaptonemal complex. mRad51
staining disappears during late pachytene and diplotene. Interestingly, the absence of
mRad54 results in an aberrant mRad51 distribution on meiotic chromosomes in spread
nuclei from primary spermatocytes, consisting of foci- and thread-like mRad51 structures
localized on the chromosomal loops emanating from the synaptonemal complex that
persist into the diplotene stage (Fig. 8A and B). In contrast, mRad54B deficiency does
not have a dramatic impact on mRad51 localization during meiosis. Possibly, mRad54B
has a minor role, because when mRad54 is also absent, the percentage of meiotic spread
nuclei with abnormal mRad51 distributions increase only slightly in diplotene.

Even though the absence of the Rad54 paralogs causes an abnormal mRad51
distribution, meiosis appears not to be affected with regard to other features. mRad54",

mRad54B"", and mRad54”" mRad54B”" mice are fertile, no increase in apoptosis during
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spermatogenesis is detected, and there is no difference in the number of MLLH1 foci on
meiotic chromosomes in spread nuclei (data not shown). Furthermore, the absence of
Rad54 only slightly affects the frequency of meiotic crossing-over. Meiotic homologous
recombination in mammals might depend for most of the functions provided by Rad54
paralogs on a yet unidentified, potentially meiosis-specific, Rad54 paralog. The aberrant
mRad51 distribution is consistent with a role suggested for Rad54 in . cerevisiae, namely
its ability to remove Rad51 filaments from double-stranded DNA (49). This would be a
late stage function of mRad54 during homologous recombination, at a stage when actual
repair of DSBs has already taken place, or at a stage at which this can be accomplished by

mechanisms that no longer require mRad54.

Comparison of the yeast and mammalian Rad54 paralogs

Taken together our data lead us to conclude that the premise that mammalian
Rad54B is the functional homolog of . cerevisiae Rdh54 is unlikely. While S. cerevisiae
rdh54 mutant cells display no overt DNA damage sensitivities, #Rad54B”" ES cells do.
Furthermore, both . cerevisiae Rad54 paralogs make significant contributions to meiotic
homologous recombination. In particular, Rdh54 plays an important role in
interhomolog recombination (3). In contrast, we have not detected an essential role of
the mammalian Rad54 paralogs in meiosis. It is possible that a yet undiscovered meiosis-
specific Rad54 paralog exists in mammals. Alternatively, rather than being strictly
assigned to meiotic DSB repair, this hypothetical Rad54 paralog might overlap in DSB
repair function with Rad54 and Rad54B and take over part of the function of both
Rad54 and Rad54B in their absence, which would be consistent with the viability of
mRad54"" mRad54B” mice and the essential role of homologous recombination for
mammalian cell viability. However, when challenged with exogenous DNA damaging
agents such as mitomycin C, the DNA damage load might exceed the threshold of its
ability to repair on its own, and this is reflected by the mitomycin C hypersensitivity of
Rad54 and Rad54B deficient mice. The DNA damage threshold may also explain the
apparent normal viability of the Rad54 and Rad54B deficient mice, because the level of
endogenous DNA damage might be low enough to be effectively handled by a yet
unidentified Rad54 paralog.

156



Differential Contributions of Mammalian Rad54 Paralogs to Recombination, DNA Damage Repair, and Meiosis

Acknowledgments

We thank Ellen van Drunen and Miranda Boeve for technical assistance. This work was
supported by grants from the Dutch Cancer Society (KWF), the Netherlands
Organization for Scientific Research (NWO), the European Commission, NIH (grants
GM57814 and CA110415 to PS and GM36745 to NA).

References

1. Alexeev, A., A. Mazin, and S. C. Kowalczykowski. 2003. Rad54 protein
possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA
nucleoprotein filament. Nat Struct Biol 10:182-6.

2. Alexiadis, V., A. Lusser, and J. T. Kadonaga. 2004. A conserved N-terminal
motif in Rad54 is important for chromatin remodeling and homologous strand
pairing. | Biol Chem 279:27824-9.

3. Arbel, A., D. Zenvirth, and G. Simchen. 1999. Sister chromatid-based DNA
repair is mediated by RAD54, not by DMC1 or TID1. Embo | 18:2648-58.

4. Baarends, W. M., E. Wassenaar, J. W. Hoogerbrugge, G. van Cappellen,
H. P. Roest, J. Vreeburg, M. Ooms, J. H. Hoeijmakers, and J. A.
Grootegoed. 2003. Loss of HRO6B ubiquitin-conjugating activity results in
damaged synaptonemal complex structure and increased crossing-over frequency
during the male meiotic prophase. Mol Cell Biol 23:1151-62.

5. Barlow, A. L., F. E. Benson, S. C. West, and M. A. Hulten. 1997.
Distribution of the Rad51 recombinase in human and mouse spermatocytes.
Embo ] 16:5207-15.

6. Bezzubova, O., A. Silbergleit, Y. Yamaguchi-Iwai, S. Takeda, and J. M.
Buerstedde. 1997. Reduced X-ray resistance and homologous recombination
frequencies in a RAD54-/- mutant of the chicken DT40 cell line. Cell 89:185-93.

7. Bugreev, D. V., and A. V. Mazin. 2004. Ca2+ activates human homologous
recombination protein Rad51 by modulating its ATPase activity. Proc Natl Acad
Sci U S A 101:9988-93.

8. Clever, B., H. Interthal, J. Schmuckli-Maurer, J. King, M. Sigrist, and W.
D. Heyer. 1997. Recombinational repair in yeast: functional interactions between
Rad51 and Rad54 proteins. Embo ] 16:2535-44.

9. Couedel, C., K. D. Mills, M. Barchi, L. Shen, A. Olshen, R. D. Johnson, A.
Nussenzweig, J. Essers, R. Kanaar, G. C. Li, F. W. Alt, and M. Jasin. 2004.
Collaboration of homologous recombination and nonhomologous end-joining
factors for the survival and integrity of mice and cells. Genes Dev 18:1293-304.

10. Cox, M. M., M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, S. J. Sandler,
and K. J. Marians. 2000. The importance of repairing stalled replication forks.
Nature 404:37-41.

11. Cromie, G. A,, J. C. Connelly, and D. R. Leach. 2001. Recombination at
double-strand breaks and DNA ends: conserved mechanisms from phage to
humans. Mol Cell 8:1163-74.

12. Cui, X. F., H. H. Li, T. M. Goradia, K. Lange, H. H. Kazazian, Jr., D.
Galas, and N. Arnheim. 1989. Single-sperm typing: determination of genetic
distance between the G gamma-globin and parathyroid hormone loci by using

the polymerase chain reaction and allele-specific oligomers. Proc Natl Acad Sci U
S A 86:9389-93.

157



Chapter 5

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Dresser, M. E., D. J. Ewing, M. N. Conrad, A. M. Dominguez, R.
Barstead, H. Jiang, and T. Kodadek. 1997. DMC1 functions in a
Saccharomyces cerevisiae meiotic pathway that is largely independent of the
RAD51 pathway. Genetics 147:533-44.

Dronkert, M. L., H. B. Beverloo, R. D. Johnson, J. H. Hoeijmakers, M.
Jasin, and R. Kanaar. 2000. Mouse RAD54 affects DNA double-strand break
repair and sister chromatid exchange. Mol Cell Biol 20:3147-56.

Essers, J., R. W. Hendriks, S. M. Swagemakers, C. Troelstra, J. de Wit, D.
Bootsma, J. H. Hoeijmakers, and R. Kanaar. 1997. Disruption of mouse
RADb54 reduces ionizing radiation resistance and homologous recombination.
Cell 89:195-204.

Essers, J., R. W. Hendriks, J. Wesoly, C. E. Beerens, B. Smit, J. H.
Hoeijmakers, C. Wyman, M. L. Dronkert, and R. Kanaar. 2002. Analysis of
mouse Rad54 expression and its implications for homologous recombination.
DNA Repair (Amst) 1:779-93.

Essers, J., H. van Steeg, J. de Wit, S. M. Swagemakers, M. Vermeij, J. H.
Hoeijmakers, and R. Kanaar. 2000. Homologous and non-homologous
recombination differentially affect DNA damage repair in mice. Embo | 19:1703-
10.

Golub, E. I., O. V. Kovalenko, R. C. Gupta, D. C. Ward, and C. M.
Radding. 1997. Interaction of human recombination proteins Rad51 and Rad54.
Nucleic Acids Res 25:4106-10.

Hayashi, M., T. Morita, Y. Kodama, T. Sofuni, and M. Ishidate, Jr. 1990.
The micronucleus assay with mouse peripheral blood reticulocytes using acridine
orange-coated slides. Mutat Res 245:245-9.

Hiramoto, T., T. Nakanishi, T. Sumiyoshi, T. Fukuda, S. Matsuura, H.
Tauchi, K. Komatsu, Y. Shibasaki, H. Inui, M. Watatani, M. Yasutomi, K.
Sumii, G. Kajiyama, N. Kamada, K. Miyagawa, and K. Kamiya. 1999.
Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer.
Oncogene 18:3422-6.

Ho, K. S., and R. K. Mortimer. 1975. X-ray-induced lethality and chromosome
breakage and repair in a radiosensitive strain of yeast. Basic Life Sci 5B:545-7.
Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing
cancer. Nature 411:366-74.

Jaskelioff, M., S. Van Komen, J. E. Krebs, P. Sung, and C. L. Peterson.
2003. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA
joint formation with chromatin. J Biol Chem 278:9212-8.

Jiang, H., Y. Xie, P. Houston, K. Stemke-Hale, U. H. Mortensen, R.
Rothstein, and T. Kodadek. 1996. Direct association between the yeast Rad51
and Rad54 recombination proteins. ] Biol Chem 271:33181-6.

Kanaar, R., C. Troelstra, S. M. Swagemakers, J. Essers, B. Smit, J. H.
Franssen, A. Pastink, O. Y. Bezzubova, J. M. Buerstedde, B. Clever, W. D.
Heyer, and J. H. Hoeijmakers. 1996. Human and mouse homologs of the
Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional
conservation. Curr Biol 6:828-38.

Kim, P. M,, K. S. Paffett, J. A. Solinger, W. D. Heyer, and J. A. Nickoloff.
2002. Spontaneous and double-strand break-induced recombination, and gene
conversion tract lengths, are differentially affected by overexpression of wild-type
or ATPase-defective yeast Rad54. Nucleic Acids Res 30:2727-35.

158



Differential Contributions of Mammalian Rad54 Paralogs to Recombination, DNA Damage Repair, and Meiosis

27. Klein, H. L. 1997. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is
required for mitotic diploid-specific recombination and repair and for meiosis.
Genetics 147:1533-43.

28. Li, H. H., U. B. Gyllensten, X. F. Cui, R. K. Saiki, H. A. Erlich, and N.
Arnheim. 1988. Amplification and analysis of DNA sequences in single human
sperm and diploid cells. Nature 335:414-7.

29. Lisby, M., J. H. Barlow, R. C. Burgess, and R. Rothstein. 2004.
Choreography of the DNA damage response: spatiotemporal relationships
among checkpoint and repair proteins. Cell 118:699-713.

30. Mazin, A. V.; A. A. Alexeev, and S. C. Kowalczykowski. 2003. A novel
function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. |
Biol Chem 278:14029-36.

31. Mazin, A. V., C. J. Bornarth, J. A. Solinger, W. D. Heyer, and S. C.
Kowalczykowski. 2000. Rad54 protein is targeted to pairing loci by the Rad51
nucleoprotein filament. Mol Cell 6:583-92.

32. Mills, K. D., D. O. Ferguson, J. Essers, M. Eckersdorff, R. Kanaar, and F.
W. Alt. 2004. Rad54 and DNA Ligase IV cooperate to maintain mammalian
chromatid stability. Genes Dev 18:1283-92.

33, Miyagawa, K., T. Tsuruga, A. Kinomura, K. Usui, M. Katsura, S. Tashiro,
H. Mishima, and K. Tanaka. 2002. A role for RAD54B in homologous
recombination in human cells. Embo J 21:175-80.

34, Niedernhofer, L. J., J. Essers, G. Weeda, B. Beverloo, J. de Wit, M.
Muijtjens, H. Odijk, J. H. Hoeijmakers, and R. Kanaar. 2001. The structure-
specific endonuclease Erccl-Xpf is required for targeted gene replacement in
embryonic stem cells. Embo ] 20:6540-9.

35. Niedernhofer, L. J., H. Odijk, M. Budzowska, E. van Drunen, A. Maas, A.
F. Theil, J. de Wit, N. G. Jaspers, H. B. Beverloo, J. H. Hoeijmakers, and
R. Kanaar. 2004. The structure-specific endonuclease Erccl-Xpf is required to
resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol
24:5776-87.

36. Peters, A. H., A. W. Plug, M. J. van Vugt, and P. de Boer. 1997. A drying-
down technique for the spreading of mammalian meiocytes from the male and
female germline. Chromosome Res 5:66-8.

37. Petukhova, G., S. Stratton, and P. Sung. 1998. Catalysis of homologous DNA
pairing by yeast Rad51 and Rad54 proteins. Nature 393:91-4.

38. Petukhova, G., S. A. Stratton, and P. Sung. 1999. Single strand DNA binding
and annealing activities in the yeast recombination factor Rad59. | Biol Chem
274:33839-42.

39. Petukhova, G., P. Sung, and H. Klein. 2000. Promotion of Rad51-dependent
D-loop formation by yeast recombination factor Rdh54/Tidl. Genes Dev
14:22006-15.

40. Pinkel, D., T. Straume, and J. W. Gray. 1986. Cytogenetic analysis using
quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S
A 83:2934-8.

41. Qin, J., S. Baker, H. Te Riele, R. M. Liskay, and N. Arnheim. 2002.
Evidence for the lack of mismatch-repair directed antirecombination during
mouse meiosis. | Hered 93:201-5.

42. Ristic, D., C. Wyman, C. Paulusma, and R. Kanaar. 2001. The architecture
of the human Rad54-DNA complex provides evidence for protein translocation
along DNA. Proc Natl Acad Sci U S A 98:8454-60.

159



Chapter 5

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Schmuckli-Maurer, J., M. Rolfsmeier, H. Nguyen, and W. D. Heyer. 2003.
Genome instability in rad54 mutants of Saccharomyces cerevisiae. Nucleic Acids
Res 31:1013-23.

Shinohara, M., S. L. Gasior, D. K. Bishop, and A. Shinohara. 2000.
Tid1/Rdh54 promotes colocalization of rad51 and dmcl during meiotic
recombination. Proc Natl Acad Sci U S A 97:10814-9.

Shinohara, M., E. Shita-Yamaguchi, J. M. Buerstedde, H. Shinagawa, H.
Ogawa, and A. Shinohara. 1997. Characterization of the roles of the
Saccharomyces cerevisiaie RAD54 gene and a homologue of RADS54,
RDH54/TID1, in mitosis and meiosis. Genetics 147:1545-56.

Signon, L., A. Malkova, M. L. Naylor, H. Klein, and J. E. Haber. 2001.
Genetic requirements for RAD51- and RADb54-independent break-induced
replication repair of a chromosomal double-strand break. Mol Cell Biol 21:2048-
56.

Sigurdsson, S., S. Van Komen, G. Petukhova, and P. Sung. 2002.
Homologous DNA pairing by human recombination factors Rad51 and Rad54. ]
Biol Chem 277:42790-4.

Solinger, J. A., and W. D. Heyer. 2001. Rad54 protein stimulates the
postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl
Acad Sci U S A 98:8447-53.

Solinger, J. A., K. Kiianitsa, and W. D. Heyer. 2002. Rad54, a Swi2/Snf2-like
recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell
10:1175-88.

Sugawara, N., X. Wang, and J. E. Haber. 2003. I vivo roles of Rad52, Rad54,
and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12:209-19.
Sung, P., L. Krejci, S. Van Komen, and M. G. Sehorn. 2003. Rad51
recombinase and recombination mediators. ] Biol Chem 278:42729-32.

Sung, P., L. Prakash, S. Weber, and S. Prakash. 1987. The RAD3 gene of
Saccharomyces cerevisiae encodes a DNA-dependent ATPase. Proc Natl Acad
Sci U S A 84:6045-9.

Swagemakers, S. M., J. Essers, J. de Wit, J. H. Hoeijmakers, and R.
Kanaar. 1998. The human RAD54 recombinational DNA repair protein is a
double-stranded DNA-dependent ATPase. ] Biol Chem 273:28292-7.
Symington, L. S. 2002. Role of RAD52 epistasis group genes in homologous
recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630-
70, table of contents.

Tan, T. L., J. Essers, E. Citterio, S. M. Swagemakers, J. de Wit, F. E.
Benson, J. H. Hoeijmakers, and R. Kanaar. 1999. Mouse Rad54 affects DNA
conformation and DNA-damage-induced Rad51 foci formation. Curr Biol 9:325-
8.

Tan, T. L., R. Kanaar, and C. Wyman. 2003. Rad54, a Jack of all trades in
homologous recombination. DNA Repair (Amst) 2:787-94.

Tanaka, K., T. Hiramoto, T. Fukuda, and K. Miyagawa. 2000. A novel
human rad54 homologue, Rad54B, associates with Rad51. ] Biol Chem
275:26316-21.

Tanaka, K., W. Kagawa, T. Kinebuchi, H. Kurumizaka, and K. Miyagawa.
2002. Human Rad54B is a double-stranded DNA-dependent ATPase and has
biochemical properties different from its structural homolog in yeast,
Tid1/Rdh54. Nucleic Acids Res 30:1346-53.

160



Differential Contributions of Mammalian Rad54 Paralogs to Recombination, DNA Damage Repair, and Meiosis

59. Van Komen, S., G. Petukhova, S. Sigurdsson, S. Stratton, and P. Sung.
2000. Superhelicity-driven homologous DNA pairing by yeast recombination
factors Rad51 and Rad54. Mol Cell 6:563-72.

60. van Veelen, L. R., T. Cervelli, M. W. van de Rakt, A. F. Theil, J. Essers,
and R. Kanaar. 2005. Analysis of ionizing radiation-induced foci of DNA
damage repair proteins. Mutat Res 574:22-33.

61. Weeda, G., J. Wiegant, M. van der Ploeg, A. H. Geurts van Kessel, A. J. van
der Eb, and J. H. Hoeijmakers. 1991. Localization of the xeroderma
pigmentosum group B-correcting gene ERCC3 to human chromosome 2q21.
Genomics 10:1035-40.

62. Wolner, B., and C. L. Peterson. 2005. ATP-dependent and ATP-independent
roles for the Rad54 chromatin remodeling enzyme during recombinational repair
of a DNA double strand break. ] Biol Chem 280:10855-60.

63. Wolner, B., S. van Komen, P. Sung, and C. L. Peterson. 2003. Recruitment
of the recombinational repair machinery to a DNA double-strand break in yeast.
Mol Cell 12:221-32.

161



Chapter 5

Supplemental data

A kDa Stain B kDa Blot
200- == 200-
151;5,2 - = -Rads4B 13?: — -Rad54B
66-w 66-
i
— -
45- & & 45-
=8
12 12
C sioo D Stain E Blot
kDa kDa
Q-Sepharose
(Flow trrough} 200- -~ 200-
SP-Se;;harose 1;?: = o -RedSts 1;2: —  -ad54B
Hydroxyapatite 66— = 66-
'
Gel Filtratlon 45 w 45-
Mono S

Supplementary Figure 1. Expression and purification of human Rad54B. The
hRAD54B cDNA was cloned from a testis cDNA library using the polymerase chain
reaction. The c¢cDNA was sequenced and then used to generate a recombinant
bacculovirus. For protein purification, High-five insect cells were infected with the
hRad54B recombinant bacculovirus at an M.O.I. of 10. Cells were harvested, lysed, and
fractionated in a series of chromatographic columns to obtain nearly homogeneous
hRad54B. The overall yield was ~1 mg of hRad54B from 150 ml of insect cell culture.
Three independent preparations of hRad54B gave similar results in all the biochemical
assays described here. (A) Coomassie Blue-stained SDS-PAGE gel of High-five cells
extracts. Lane 1, uninfected cells; lane 2, cells infected with the hRad54B producing
baculovirus. (B) Immunoblot containing the same cell extracts as shown in (A), probed
with anti-hRad54B antibodies. (C) Outline of the fractionation scheme used to purify the
hRad54B protein. (D) Coomassie Blue-stained SDS-PAGE gel containing a sample of
the final hRad54B preparation (1.2 pg). (E) Immunoblot containing the final hRad54B
preparation probed with anti-hRad54B antibodies.
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A

—2.4kb

Supplementary Figure 2. Chromosomal localization and expression pattern of
mammalian Rad54B. (A) Chromosomal localization of mRad54B by fluorescent in sitn
hybridization. The chromosomal localization of #Rad54B was determined by FISH on a
murine erythroid cell line containing a chromosome 4 trisomy (16). Treatment of
metaphase spreads prior to hybridization was described previously (61). A PAC clone
containing #Rad54B genomic DNA fragment was labeled with digoxigenin and used in
combination with chromosome 4 specific telomeric probe labeled with biotin. Together
with mouse Cot-1 DNA probes were hybridized to metaphase spreads as described (40).
To detect the mRad54B signal metaphase spreads were incubated with sheep-anti-
digoxigenin-rhodamine and donkey-anti-sheep-texas-red, the telomeric probe was
detected using avidin D-FITC. Slides were dehydrated with ethanol, air dried and
counterstained with DAPI in antifade media. The 7Rad54B hybridization signal, in green,
was detected on chromosome 4 near band A2. The chromosome 4 specific probe is in red.
DAPI counterstaining of the chromosome spread revealed the chromosome banding
pattern. Mouse Rad54B is located in a region syntenic to human chromosome 8q21,
where human Rad54B is localized (20). (B) Expression of mammalian Rad54B in
different human tissues. A RNA blot (human Multiple Tissue Northern blot, Clontech,
cat # 7759-1) containing approximately 2 pg of poly (A)" RNA isolated from the
indicated tissues was hybridized with a probe derived from the /Rad54B cDNA.
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Supplemental Table 1.

Primers used for single sperm PCR

Marker First-round primers Second-round primers PCR product (129/])
WR,
D2Mir213 5’CAAGATGGAGCA | WL, WR 138 bp
TTTCTGACC3’
WR,
D2Mit412 WL, WR 5’GTATCATCTTTCATG 92 bp
TGAAAAC3
WR,
D7Mit268 WL, WR 5TGCCATGGCACAGG 112 bp
CACTCC®
WL,
D7Mit353 5GAACTCAAGGCT | WL, WR 88 bp
TCACACTTTAGGC?

The primers for each locus were based on sequences found at the Whitehead Institute
website http://www.broad.mit.edu/cgi-bin/mouse/index. The sizes of the C57BL6 PCR
products can also be found at this site. WL, identical to left Whitehead primer; WR,
identical to right Whitehead primer.

PCR reaction conditions Two rounds of PCR were used in single sperm typing. In the
first round, primer pairs for two different markers on the same chromosome were used
to amplify both loci flanking the interval in each sperm. A 2 ul aliquot of first-round PCR
product was then used in each of two separate second-round reactions, one for each
individual marker. The first round of PCR consists of an initial denaturation at 94°C for 4
min, 30 cycles at 94°C for 45 s for denaturation, and one temperature for annealing and
extension for 3 min, with the final extension at 72°C for 5 min. The annealing and
extension temperature was 60°C for D/Mit268, and D7Mit353 and 55°C for D2Mit213,
and D2Mi#4172. All PCRs contained 10 mM Tris-Cl (pH 8.3), 50 mM KCl, 1.5 mM MgCl,,
0.01% gelatin, 50 pM each of dATP, dGTP, dCTP, and TTP, 0.2 uM of each primerand
one unit of Tag DNA polymerase in 50 ul. The conditions for the second round were the
same as for the first round except that a 90 s annealing and extension time was used. The
products were resolved on 6% polyacrylamide gels, stained with ethidium bromide, and

photographed under ultraviolet (UV) illumination.
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Data Analysis Analysis of a large number of sperm makes it possible to determine
whether any individual sperm is a recombinant or a nonrecombinant, even if the phase is
not known; for linked loci, nonrecombinant sperm are more frequent than recombinant
sperm. Calculating the recombination fraction by the ratio of recombinant sperm to total
sperm is subject to error. Instead, the sperm-typing data were analyzed using the
TWOLOC program (12) which estimates the recombination fraction and its standard
error while allowing for experimental errors: inefficient single molecule PCR, more than

one sperm present in a sample, and contamination.
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Abstract

Translocations are genetic aberrations that occur when a broken fragment of a
chromosome is erroneously rejoined to another chromosome. The initial event in the
creation of a translocation is the formation of a DNA double-strand break (DSB), which
can be induced both under physiological situations, such as during the development of
the immune system, or by exogenous DNA damaging agents. Two major repair pathways
exist in cells that repair DSBs as they arise, namely homologous recombination, and non-
homologous end-joining. In some situations these pathways can function inappropriately
and rejoin ends incorrectly to produce genomic rearrangements, including translocations.
Translocations have been implicated in cancer because of their ability to activate
oncogenes. Due to selection at the level of the DNA, the cell, and the tissue certain
forms of cancer are associated with specific translocations that can be used as a tool for
diagnosis and prognosis of these cancers.

Keywords: Translocations; Homologous recombination; Non-homologous end-joining;

Fragile sites

1. Introduction

A chromosomal translocation is a genomic aberration involving the rejoining of a
broken chromosome fragment to another chromosome. While there need not be a net
change in the amount of genetic material following this event, it can result in the
disruption of genes or cause the juxtaposition of elements that disturb normal expression
of the gene present at the breakpoint. This becomes critical when such translocations

result in rearrangements that create genetic elements with oncogenic characteristics. In
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this case, it can lead to a selective advantage of cells containing these translocations with

the potential for uncontrolled proliferation.

2. Clinical implications

Several documented cases of cancer exist in which translocations play an
important role. One of the first described was the Philadelphia chromosome, t(9;22),
found in cancer cells of patients suffering from chronic myelogenous leukemia [1]. The
proto-oncogene ABL (¢~~ABL), a gene encoding a protein tyrosine kinase, was discovered
to be located at the breakpoint on chromosome 9 [2]. ¢~ABL is highly regulated in its
normal chromosomal environment, but is hyper-activated in the context of the
Philadelphia chromosome translocation. Another example is Burkitt’s lymphoma, where
translocations involving chromosome 8 and chromosomes 2, 14 or 22 have been
documented. In this case, the proto-oncogene -MYC and the genes implicated in the
production of antibodies (immunoglobulin (Ig) light (L) and heavy (H) chains) have been
found at the breakpoints [3-5]. As a result, MYC is mis-regulated; it is abnormally
overexpressed under the influence of the Ig gene promoters. MYC could increase DNA
damage load by increased production of reactive oxygen species, due to its role in
mitochondrial gene expression [6]. Other genes have been implicated in cancers
involving translocations, for example, deregulation of the homeobox gene HOXT77 by
the t(10;14) translocation is involved in T-cell acute lymphoblastic leukemia [7].

Over the years, many more translocations occurring in leukemias, lymphomas
and solid tumors have been identified. While found mostly in hematological cancers,
translocations have been implicated in cancers of mesenchymal and epithelial origin as
well [8]. An online database that catalogues the occurrence of diseases with specific
chromosomal aberration has been compiled (http://cgap.nci.nih.gov/Chromosomes/Mitelman).

The identification of translocations is carried out by classical karyotyping or
spectral karyotyping (SKY) analysis [9]. In the clinic, certain types of chromosome
translocations are used in classification of primarily haematopoeitic cancers and for the
clinical prognosis of patients. For example, in an acute myeloid leukemia patient, a t(8;21)
translocation is indicative of a good prognosis, that is, a positive response to treatment
and long-term survival, compared to patients with a t(9;22) translocation. This
information is then used to identify patients that will benefit from chemotherapy, and to

determine the length and dosage of treatment [10].
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3. Pathways of DNA double-strand break repair

The mechanism of the formation of translocations has been the focus of intense
studies over the years. Chromosome breakage is a first step in the creation of a
translocation; in its simplest form, the breakage occurs due to the formation of a DNA
double-strand breaks (DSBs) in a chromosome. DSBs can be caused by both exogenous
agents, such as ionizing radiation and certain chemicals, as well as by endogenous agents,
including the byproducts of cellular metabolism, such as oxygen free radicals [11]. DSBs
can also arise spontaneously in each S phase, for example, when a single-strand break in a
parental strand is passed by a replication fork, a DSB will result [12]. Besides the
pathological DSBs mentioned above, certain cell types undergo processes that require the
induction of physiologically important DSBs. For example, nuclease-induced DSBs in
germ cells trigger meiotic recombination that results in creation of genetic diversity. In
addition, the assembly of active Ig and T cell receptor (TCK) genes as well as in IgH class
switch recombination (CSR) occurring in the immune system requires the controlled
induction of DSBs.

Repair mechanisms exist in the cell to promote the beneficial effects of the
physiologically occurring DSBs and to counteract the deleterious effects of the
pathological DSBs. The importance of DSB repair pathways in genome maintenance is
underscored by the fact that genomic instability is a characteristic feature of cell lines and
animals deficient in DSB repair pathways [13]. Proper functioning of these pathways is
important in the deterrence of the illegitimate reattachment of broken chromosomes,
preventing the disruption and misregulation of genes in this way. There are two
mechanistically distinct methods to rejoin DNA ends, dependent on their requirement
for homologous DNA sequences: homology-directed repair and non-homologous end-

joining. Both can be divided in a number of subpathways that will be discussed below.

3.1 Homwologous recombination

Homologous recombination is generally an error-free pathway of homology-
directed repair. A DSB is accurately repaired by using the undamaged sister chromatid as
a template for the repair of the broken sister chromatid (Figure 1). Homologous
recombination in eukaryotes is carried out by the RAD52 epistasis group of proteins, so
called because they were originally identified by the genetic analysis of ionizing radiation
hypersensitive Saccharomyces cerevisiae mutants [14,15]. In human cells, the proteins in this

group include the MRN (RAD50/MRE11/NBS1) complex, RAD51, the RAD51
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Figure 1. Schematic representation of DNA double-strand break repair pathways.
The homology-directed DSB repair pathways, homologous recombination and single-
strand annealing, are indicated in the left and middle panels, respectively. Non-
homologous end-joining is shown in the panel on the right. The broken DNA molecule
is indicated by the black double lines. During homologous recombination, the intact,
homologous template DNA, indicated in grey, is essential for an accurate repair. DNA
replication is portrayed by the arrowhead. Single-strand annealing can repair breaks
occurring between or within repeated DNA sequences (indicated by grey arrows). This
repair pathway results in deletion of a repeat sequence and the sequences between the
original repeats. Homologous DNA is not required for non-homologous end-joining and
nucleotides at the break might be added or lost, resulting in inaccurate repair. All three
pathways involve damage recognition, resection of broken DNA ends, DNA resynthesis
and ligation. Homology search, although in mechanistically distinct manners, takes place
during homologous recombination and single-strand annealing. Subsequent stages taking
place in the repair pathways are listed on the left. The proteins involved in each pathway,
which are discussed in the text, are indicated below each scheme.

paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3), RAD54 and RAD54B [16].
The products of the breast cancer susceptibility genes, BRCA1 and BRCA2, are also

involved in the modulation of the homologous recombination [17-19].
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When a DSB is detected, the initial damage response is mediated through the
MRN complex and Ataxia telangiectasia mutated protein (ATM) [20]. The resection of
DNA ends is required to generate 3’ single-stranded DNA tails, which are the substrate
for homologous recombination, because they are utilized for the nucleation of
recombination factors on the DNA. RAD51 is an important protein at the core of
homologous recombination. With the help of accessory factors, RAD51 polymerizes on
the 3’ tails to create a nucleoprotein filament. After homology search, the nucleoprotein
filament invades the target duplex at the site of homology to create a critical intermediate,
the D-loop. This joint molecule between the broken sister chromatid and the intact sister
chromatid is used as a template for DNA polymerases such that sequence information
that was lost in the initial processing of the DSB end is restored. The reaction is
concluded with the ligation of DNA strands and the separation of the joint molecules to
yield two intact DNA copies (Fig. 1).

One of the proteins involved in the regulation of homologous recombination is
the product of the breast cancer susceptibility gene, BRCA2. BRCA2 has been implicated
in a mediator-type function involving multiple interactions with RAD51. BRCA2 binds
to and sequesters RAD51, presumably preventing the promiscuous binding of RAD51 to
DNA, that could instigate illegitimate homologous recombination within highly repetitive
DNA content in the genome. However, upon DNA damage induction, RADS51
accumulates at a high local concentration into foci at the sites of damage with the help of
BRCA2 [21,22]. Evidence for the involvement of Brca2 in genome stability has been
provided by murine cells that express a truncated form of Brca2. These cells display
impaired recombination, accumulate DNA breaks, and spontaneous chromosomal

abnormalities, including translocations [23].

3.1.1 Homologous recombination and translocations

Translocations can occur due to an inappropriate use of recombination
mechanisms [8]. In mitotic cells, specifically in the late S/G, phase, the template for DSB
repair through homologous recombination is preferentially the sister chromatid. This
guarantees that the original sequence is restored without any changes [24]. In the human
genome however, the presence of highly repetitive sequences can lead to ectopic
recombination, resulting in DNA rearrangements including translocations. The highly
repetitive A/ sequences in the genome can undergo homology-promoted replication

slippage or homology-mediated illegitimate IDSB repair within and between sister
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chromatids, homologous or heterologous chromosomes. The _AIIL7 (acute
lymphoblastic leukemia 1) gene presents an example of how mistakes in homologous
recombination can result in oncogenic translocations [25]. ALL7 is unique among
leukemia genes because it can be involved in fusions with a large number of different
partner genes located on various chromosomes. Furthermore, ALL7 can itself be
rearranged or duplicated internally by tandem duplication of a portion of the gene [26-
28]. In one case of leukemia with a normal karyotype, parts of the duplicated AILL7 gene
have been found fused with A/ sequences, such that a chimeric, full-length 4/«
sequence is recreated [29]. This evidence points to homologous recombination between

two A/u sequences as a molecular mechanism for the partial duplication of ALL7.

3.2 Single-strand annealing

Single-strand annealing is another subpathway of homology-directed repair, but
in contrast to homologous recombination, it is non-conservative, because it results in
loss of genetic material (Fig. 1). Single-strand annealing is limited to operating between
directly repeated sequences. The action of an exonuclease or helicase at a DSB between
such direct repeats results in the exposure of complementary single strands. In a RAD51
independent fashion, complementary sequences (ranging between 30 — 100 base pairs
flanking the breaks) anneal to form an intermediate, facilitated by the DNA binding and
annealing properties of RAD52 [30]. Single-stranded non-complementary overhangs are
removed by nucleases. The result is the loss of one repeat unit and the intervening

sequence, demonstrating the imprecise nature of this mechanism.

3.2.1 Single-strand annealing and translocations

Single-strand annealing within a chromosome can lead to deletions, and between
two chromosomes, it can result in translocations. This was demonstrated in an
experimental set-up in which the site for the rare cutting endonuclease I-Sce I was
incorporated in the context of homologous sequences placed in chromosomes 14 and 17
in mouse embryonic stem cells [31]. Following the induction of breakages of the
chromosomes by transient expression of I-Sce I, the status of exchanges between
chromosomes was determined. Translocations were only detected when the I-Sce I sites
were present on both chromosomes. Sequence analysis revealed that none of the

recombinants could have arisen by gene conversion accompanied by crossing-over, and
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were therefore the products of single-strand annealing between homologous sequences

[32].

3.3 Non-homologons end-joining

Conceptually, non-homologous end-joining is the simplest way of repairing
DSBs: the straightforward religation of ends without the requirement for a template (Fig.
1). Non-homologous end-joining plays a major role in the elimination of DSBs during G,
phases of the cell cycle since homologous recombination is not efficient in this phase due
to the lack of sister chromatids. In addition, non-homologous end-joining is the
mechanism by which the DSBs that initiate V(D)J-recombination and Ig CSR are
processed in the immune system.

After DSB formation, the KU70/80 heterodimer binds the DNA ends. This
facilitates the recruitment of DNA dependent protein kinase catalytic subunit (DNA-
PK) to the DSB. This sequential binding of the proteins activates the phosphorylation
function of DNA-PK, phosphorylating itself, the KU heterodimer, and other proteins
involved in cell cycle regulation [33]. It has been speculated that KU70/80 might
function as an alignment factor that binds DSB ends, creating easy access for and greatly
stimulating the function of the DNA ligase IV-XRCC4 complex, increasing the efficiency
and accuracy of non-homologous end-joining [34-36]. The Ligase IV-XRCC4 complex
then ligates the juxtaposed DNA ends.

A subpathway of non-homologous end-joining requires the nuclease Artemis.
Based on pulsed-field gel electrophoresis and phosporylation of the histone H2 variant
H2AX as measures of DSBs, approximately 10% of radiation-induced breaks were
shown to require processing by Artemis. This process also requires various other players
like NBS1, MRE11 and DNA-PK, as well as mediator proteins like H2AX and p53BP1.
This highly error-prone pathway repairs DSBs with slower kinetics compared to the
Artemis independent pathway [37,38].

Besides the repair of DNA damage induced pathological DSBs, non-homologous
end-joining is essential for processing of programmed DSBs in the lymphocyte, a cell-
type specific for Ig and TCR production for a functional immune system. Ig and TCR
diversity is created during early B and T cell development. In these cells, the programmed
induction of DSBs occurs at specific sites, named recombination signal sequences, in the
germline variable (V), diversity (D) and joining (J) gene segments. These DSBs are

introduced by recombination activating gene (RAG) 1 and 2 proteins. One of each

175



Chapter 6

region (V, D and J) is brought together and ligated via non-homologous end-joining,
which completes V(D)] recombination and leads to the production of functional Igs and
TCRs [33]. The programmed generation of DSBs is restricted to the G, phase of
developing lymphocytes, by the cell cycle dependent expression of the RAG2 protein
[39-41].

Mature B cells undergo clonal expansion in response to an antigen. In order to
accommodate this, these cells undergo a process called CSR. Here, the preassembled
VDJ,, exon is attached to different constant (C,;) region, changing the antibody effector
function. DNA lesions are introduced by activation induced deaminase (AID) in the
large repetitive switch (S) region, upstream of the C,; genes; these lesions are thought to
be processed by mismatch repair or base excision repair proteins. This creates staggered
single-strand breaks on both DNA strands, ultimately resulting in DSBs within the S
regions. The repair mechanism of these DSBs is still unclear, although it is thought to
involve elements of both non-homologous end-joining and homologous recombination,

including KU70/80, DNA-PK ., H2AX, and p53BP1 [41,42].

3.3.1 Non-homologons end-joining and translocations

The process of breakage and rejoining in V(D)] recombination that is utilized in
the physiological process of mature receptor generation can be misused to create
aberrations. The consequence of this might be the joining of a proto-oncogene locus
with the elements of the antigen receptor locus, bringing the oncogene under an active
promoter. An example of this is the activation of ¢-MYC in Burkitt’s lymphoma [43,44].

Translocations can arise when non-homologous end-joining is not functioning
properly. The first non-homologous end-joining defective mouse discovered was the
severe combined immunodeficiency (SCID) mouse. The cells from this mouse were
found to be defective in DNA-PK, and therefore is defective in joining the DSB
intermediate in V(D)J] recombination [45,46]. As a result, these mice cannot develop a
functional immune system, and eventually succumb to lymphoid tumors [13]. The cancer
phenotype is exacerbated in mice deficient for both non-homologous end-joining and
p53, which develop pro-B cell lymphomas much earlier compared to swd mice. A
possible explanation for this is that there is reduced apoptosis in cells from 53" mice,
and cells that accumulate genetic aberrations are not efficiently eliminated [47,48]. The
RAG-dependent lymphomas in p53-deficient szd mice often contain a characteristic

translocation between chromosomes 12, containing the IgH, and 15 containing ~MYC
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[41,47,49]. This is also seen in humans, where the [gH/-MYC translocation is frequently
seen in lymphomas [41,47,50].

Theoretically, the RAG proteins might make a cut at one true recombination
sequence which is at the V(D)] region, and another cryptic recombination sequence at
the other chromosome involved, resulting in the aberrant rejoining of ends. Thus the
chromosomal loci containing such sequences might be more likely to participate in
translocations. For example, the major breakpoint region of the BCL7 locus, which
forms unusual structures that render them RAG targets (see below). It is conceivable that
RAG post-cleavage synaptic complexes capture non-specific chromosome ends and join
these together with ends generated during V(D)] recombination. It has also been shown
that many B lineage tumors, such as sporadic forms of Burkitt’s lymphoma, harbor
translocations that map within the C region sequences, suggesting aberrant repair of a

DSB that was generated through AID during CSR [41,51].

4. Aberrant DNA structures and translocations

As has been discussed above, translocations can be a consequence of
inappropriate action of DSB repair pathways. However, another important aspect with
regard to the occurrence of translocations is the stability of the genome itself. The
genome is not uniformly stable and contains fragile sites, so called because they have
been implicated in chromosome breakage and DSB formation [52-54]. Many fragile sites
are therefore also recombination “hot spots”, i.e., regions where recombination has a
higher probability of occurring compared to the overall genome [55]. Fragile sites have
been shown to contain expanded repeated sequences [52], specifically purine and
pyrimidine repeat regions.

Other aberrant DNA structures might also trigger the DSB repair pathways to
act. For example, for the translocation t(14;18), implicated in follicular lymphomas, it was
found that the major breakpoint region, about 150 bps on chromosome 18, assumes a
non-B-DNA structure with single-stranded characteristics, which appears to be cleaved
by the RAG complex [56]. A similar non-B-DNA type region was discovered in the
human PKD7 gene, where breakages were seen in a 2.5 kbp poly(putine/pyrimidine)
stretch [57]. Furthermore, DNA with mirror repeat symmetry can form an intra-
molecular triplex structure called H-DNA, which was seen to be clustered in MY, is
also hypothesized to be mutagenic [58]. Another abnormal DNA structure appears in

palindronic AT-rich repeats that have been shown to be involved in DSB formation (at
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the center of the palindrome) and subsequent translocations, such as t(11;22) [59-61].
The zn vitro tertiary structure of this palindrome was investigated and revealed to form a
cruciform structure under physiological conditions. It was hypothesized that this unstable
conformation might be a cause for translocations observed involving this region [62].
These observations indicate that while the translocations are a direct consequence of the
dysfunction of DSB repair mechanisms, the DNA itself may exist in abnormal
conformations, which are then erroneously recognized as substrates by specific DSB
repair proteins. Therefore DNA itself, instead of exogenous DNA damage, can be the

causative agent of aberrations.

5. Perspective

The factors that can exacerbate the formation of translocations can be classified
into cis- and trans-acting factors. An example of a cis-acting factor is DNA structure. It
has been shown in various studies that non-cononical DNA structures can be prone to
breakage. Since the central intermediate in the generation of a chromosome translocation
is a DSB, loci which contain hotspots for DSB formation have a higher probably of
being involved in a translocation. The fact that some of these fragile sites have been
shown to be at the breakpoints of documented oncogenic translocations is consistent
with this. Exogenous agents that cause DNA damage and/or impede DNA replication
can uncover fragile sites [63]. In this regard, an interesting correlation between an
increase in the expression of fragile sites involved in breakage resulting in cancer and
smoking has been documented [64]. On the other hand, trans-acting factors are the
proteins involved in the different types of DSB repair pathways. Cells defective in a DSB
repair protein contain a higher frequency of chromosome aberrations compared to cells
in which DSB repair pathways function optimally.

A crucial question that still remains to be answered is: what is the actual
frequency with which chromosomal translocations occur in normal DSB repair proficient
cells in the body? This issue is not an easy one to address due to complications at
various levels. First of all, there is the consideration that the genome is not uniformly
stable. Because certain DNA structures are more likely to lead to breakage of the DNA
backbone, loci containing such structures have a higher probability of being involved in a
translocation over loci lacking such sites. Second, there is selection at the cellular level. A
critical consideration here is that not all translocations provide the cells with a

proliferative advantage. In fact, cells containing gross DNA aberrations are more likely to
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undergo apoptosis. Third, the effects of aberrations might be difficult to document at the
tissue level, because translocations that are oncogenic in the context of one tissue may
not be oncogenic in the context of others.

Although the factors mentioned above conspire against determining the exact
frequency with which translocations occur, they do provide an advantage in the context
of cancer therapy. The bias at the level of the DNA, the cell, and the tissue eventually
result in the occurrence of specific chromosomal translocations in certain cancers, such

that they can be used for the diagnosis and prognosis of these cancers.
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The maintenance of genomic integrity is vital to the dissemination of correct
genetic information in living cells. DNA can be modified in many distinct ways due to
various endogenous and exogenous sources, all of which can lead to damage and a
compromise of its information. Many specialized repair pathways have evolved to
circumvent the deleterious effects of DNA damage, underscoring the critical importance
of genome maintenance.

A double-strand break (DSB) is a particularly dangerous lesion, as both strands of
the double helix are broken. Incorrect rejoining of DSB-ends or unrepaired DSBs can
lead to genomic fragmentation, deletion and rearrangements at both the micro and
chromosomal level. Homologous recombination is a high fidelity DNA repair process in
which a DSB is repaired in an accurate and timely manner, using the intact sister
chromatid to replace lost genetic information. RADS51 is the central protein in the
pathway, and carries out the important steps of homology recognition and joint molecule
formation. RAD51 is assisted in its role by several accessory proteins, one of which is
Rad54. Rad54 has been described in literature as the Swiss army knife of recombination,
as several integral functions have been described that place the protein in almost every
step of the process. Since most evidence for these functions is derived from biochemical
studies that involve purified proteins and various DNA structures, our main interest in
this thesis has been to elucidate the 77 vivo function of Rad54 and its activity in living
cells, and to hypothesize a link between our studies and the biochemical data.

In Chapter 2, we list the available tools and methodology used to study cellular
behavior of proteins within cells, some of which we have utilized to study our protein of
interest in the subsequent chapters. This chapter also describes in detail the specifics of
the homologous recombination pathway, as well as the cell biology that is known for the
proteins involved in the process.

Chapter 3 describes the development of a model system to study the cellular
behavior of the Rad54 protein during mouse development. Mouse embryonic stem (ES)
cells have been modified at the endogenous Rad54 locus, where part of the genomic
sequence has been targeted and replaced by an artificial Rad54 cDNA construct fused
with a DNA sequence encoding green fluorescent protein (GFP). Importantly, the locus
expresses the Rad54-GFP fusion protein at physiological and endogenous levels. Using

this system we have traced the expression of Rad54-GFP during mouse development as
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well as in fetal and adult cells. We conclude that mitotic progenitor cells express Rad54-
GFP, indicating a role of Rad54 in accurate repair of DSBs in these cells.

In Chapter 4, we investigate the alteration of Rad54 cellular behavior when its
ATPase domain has been tampered with. Using a similar knock-in system as described in
Chapter 3, we have found that the presence of mutant Rad54 affects the number of
spontaneous foci, as well as kinetics of both Rad54 and Rad51 foci. Interestingly, both
the protein turnover in the Rad54 focus as well as the time taken in which the focus is
disassembled is retarded in the ATPase mutants, indicating a requirement for Rad54
ATPase activity in normal and timely clearance of Rad54 foci.

Chapter 5 documents the biochemical, genetic and cellular characterization of
Rad54B, a Rad54 paralog identified in mammals. We have established that Rad54 and
Rad54B have overlapping biochemical characteristics. In addition, ES cells that are
deficient in either or both proteins show similar sensitivities to DNA-damaging agents,
demonstrating a possible functional redundancy. Mice that are deficient in both proteins,
however, show an extreme sensitivity to mitomycin C, indicating a potential tissue-
specific function of each protein. Finally, the above analysis indicates that Rad54B is not
the meiotic counterpart of Rad54 (as suggested by previous studies).

Chapter 6 exemplifies the consequences of improper and inaccurate repair of
DSBs. Mistakes in homologous recombination and nonhomologous end joining can
result in chromosomal translocations, many of which have been documented in various
types of leukemias, lymphomas and solid tumors. The mechanisms by which these

mistakes can occur are discussed in this chapter.
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Samenvatting

Het onderhouden van de integriteit van het genoom is van levensbelang voor de
correctheid van de genetische informatie in de levende cel. Zowel endogene als exogene
factoren kunnen DNA op verscheidene manieren aanpassen, wat kan leiden tot
beschadiging en verlies van informatie. Het belang van onderhoud aan het genoom blijkt
uit de vele gespecialiseerde reparatie mechanismen die zijn geévolueerd om de nadelige
effecten van DNA beschadiging te voorkomen.

Een dubbelstrengs breuk (DSB) is een uitermate gevaarlijke beschadiging,
aangezien beide strengen van de dubbele helix structuur beschadigd zijn. Het foutief
samenvoegen van de uiteinden van een DSB kan leiden tot genomische fragmentatie,
deletie en chromosomale translocaties. Homologe recombinatie (HR) is een proces
waarbij met een hoge betrouwbaarheid en codrdinatie een DSB gerepareerd wordt,
gebruikmakend van het zuster chromatide om de missende genetische informatie weer
aan te vullen. Rad51 is het sleuteleiwit in HR, dat de belangrijke stappen van identificatie
van het identieke DNA en het uitwisselen van de DNA strengen vervult. Rad51 wordt
hierin bijgestaan door verschillende andere eiwitten waaronder Rad54. Rad54 wordt ook
wel het “manusje van alles” van de recombinatie genoemd, verscheidene functies zijn
beschreven die het eiwit in bijna iedere stap van het HR proces plaatsen. Aangezien het
merendeel van het bewijs van deze functies afkomstig is uit biochemische studies die
gebruik maken van gezuiverde eiwitten en verschillende DNA structuren, is de nadruk in
deze thesis vooral gelegd op de 7z vivo functionaliteit van Rad54 en de activiteit in de
levende cel, daarbij een link leggend tussen ons onderzoek en de biochemische data.

In hoofdstuk 2 worden de beschikbare middelen en methodes beschreven die
gebruikt worden om het cellulaire gedrag van eiwitten in de cel te bestuderen, sommige
daarvan worden in de latere hoofdstukken gebruikt in het onderzoeken van het eiwit in
kwestie. Dit hoofdstuk beschijft tevens in detail de specificaties van het HR proces,
zowel als de cel biologie die bekend is voor de eiwitten die in dit proces een rol spelen.

Hoofdstuk 3 beschrijft de ontwikkeling van een model om het cellulaire gedrag
van het Rad54 eiwit te bestuderen gedurende de ontwikkeling van een muis. Embryonale
stam (ES) cellen van een muis zijn aangepast in het endogene Rad54 gen, waarbij een
gedeelte van de genetische code is vervangen door een kunstmatig Rad54 cDNA
construct gefuseerd met de DNA code voor het groen fluorescerend eiwit (GFP).

Belangrijk is dat het gen het Rad54-GFP eiwit op het endogene niveau tot expressie
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brengt. Gebruikmakend van dit systeem hebben we de expressie van Rad54-GFP
gedurende de embryonale ontwikkeling van een muis als wel als in foetus en volwassen
cellen getraceeerd. We zijn tot de conclusie gekomen dat mitotische stam cellen Rad54-
GPF tot expressie brengen, daarmee een rol aangevend voor Rad54 in de accute reparatie
van DSBs in deze cellen.

In hoofdstuk 4 onderzoeken we de afwijking in het cellulaire gedrag van Rad54
wanneer zijn ATPase domein is aangepast. Gebruik makend van een “knock-in” systeem
gelijkend aan dat beschreven in hoofdstuk 3 hebben we ontdekt dat de aanwezigheid van
gemuteerd Rad54 een effect heeft op het aantal spontane foci als wel als de kinetische
eigenschappen van zowel Rad54 als Rad51 foci. Zowel de eiwit omzetting, als de tijd
waarin de focus verdwijnt is vertraagd in de ATPase mutanten, wat een indicatie is voor
de Rad54 ATPase activiteit tijdens de normale en gecoordineerde opruiming van Rad54
foci.

Hoofdstuk 5 documenteert de biochemische, genetische en cellulaire
karakteristicken van Rad54B, een Rad54 paraloog geidentifiseerd in zoogdieren. We
hebben vastgesteld dat Rad54 en Rad54B overlappende biochemische eigenschappen
hebben. Bovendien laten cellen met een tekort aan één of beide eiwitten een
gelijkwaardige gevoeligheid zien voor DNA beschadiging wat mogelijk duidt op een
overlappende functie. Muizen met een tekort aan beide eiwitten laten een extreme
gevoeligheid zien voor mitomycine C, identicatief voor een potentiéle weefsel specifiecke
functie van de eiwitten. Bovenstaande analyse geeft aan dat Rad54B geen meiotische
tegenhanger is van Rad54 (zoals voorgesteld door voorgaande studies).

Hoofdstuk 6 geeft voorbeelden van de consequenties van incorrecte reparatie
van DSBs. Fouten tijdens HR en DNA eind-verbinding kunnen resulteren in
chromosomale translocaties, welke gedocumenteerd zijn in verschillende vormen van
leukemie, lymphonen en massieve tumoren. De mechanismen die ten grondslag liggen

aan deze fouten worden in dit hoofdstuk beschreven.
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List of abbreviations

AGM Aorta-gonad-mesonephros

ATLD Ataxia telangiectasia-like disease
ATP Adenosine 5-triphosphate

cDNA Complementary DNA

Dt Diffusion coefficient

D-loop Displacement loop

DAPI 4 ,6-diamidino-2-penylindole

DNA Deoxyribonucleic acid

DNA-PK DNA dependent protein kinase (catalytic subunit)
DSB Double-strand break

Da Dalton

dpc Days post coitum

dsDNA Double-stranded DNA

E. coli Escherichia coli

eGFP Enhanced GFP

ES Embryonic stem

FACS Fluorescence-activated cell sorting
FLIP Fluorescence loss in photobleaching
FRAP Fluorescence recovery after photobleaching
FSC Forward scatter compartment

GFP Green fluorescent protein

Gy Gray

h Human

YH2AX Phosphortylated H2AX

IR Tonizing radiation

IgM Immunoglobulin M

LIF Leukemia inhibitory factor

m Mouse

mRNA Messenger RNA

MDF Mouse dermal fibroblast

MEF Mouse embryonic fibroblast

MLPA Methylation-specific multiplex ligation dependent probe amplification
MMC Mitomycin C

MRX Mrel11/Rad50/Xrs2

n Number

NBS Nijmegen breakage syndrome

NER Nucleotide excision repair

NHE] Nonhomologous end joining

PBS Phosphate buffered saline

PCNA Proliferating cell nuclear antigen

pol DNA polymerase

polyA Polyadenylation

RNA Ribonucleic acid

RPA Replication protein A

RT-PCR Reverse transcriptase polymerase chain reaction
8. cerevisiae Saccharomyces cerevisiae

SEM Standard error of the mean

ssDNA Single-stranded DNA

ty Half life
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Stellingen behorend bij het proefschrift

The Cell Biology of Rad54: Implications for homologous
recombination

Sheba Agarwal

. Cell biology techniques have evolved extensively in the past years to
visualize true to life pictures of proteins within cells and organs, and
yet making the connection between a particular protein’s biochemical
properties and its cellular behaviour is still a major challenge. This
thesis

. Not all types of mitotic cells in culture express Rad54, possibly due to
its S phase specific expression. However, this could also be related to
the “stemness” or developmental stage of the particular cell type
observed. This thesis

. The Rad54 focus can be interpreted as high local concentration of
constantly interchanging proteins that brings together double-
stranded DNA for synapsis and branch migration. This thesis, Bianco
P.R. et. al. | Mol. Biol. 374 (3) 618 — 640 (2007), Mazina O.M. et. al. |
Biol. Chem. 282 (29) 21068 — 21080 (2007)

. The fact that Rad54”" ES cells display a normal number of
spontaneous Rad51 foci suggests that a redundant protein takes over

Rad54 function with respect to Rad51 foci clearance in these cells.
This thesis

. It is dangerous to extrapolate data from cellular assays to the level of
the organism, as illustrated by the discrepancy in the MMC sensitivity
of Rad54”" Rad54B " knockout cells and animals. This thesis

. Hailed as the “Swiss army knife” of recombination and a “Jack of all

trades”, Rad54 nonetheless seems to be the master of none. Heyer
W.D. et al. Nucleic Acids Res. 34 (15) 4115 — 4125 (2006), Tan T.L. et. a.
DNA repair 2 (7) 787 — 794 (2003)

. Rad51 foci in cells should not be equated to Rad51 nucleoprotein
tilaments. Zhao G.Y. et al. Mol. Cell 25 (5) 663 — 675 (2007)



8.

The conclusion that foci of two different proteins colocalize requires
more than a single confocal image.

Scientific research is no longer a marginalized quest to satisfy
curiosity, but a booming mainstream business. Scientists now have to
also be businessmen, showmen, salesmen, lawyers, mediators and
politicians, but many individuals have compromised their scientific
integrity in order to achieve this.

10.1It should be an absolute requirement for all scientists to take formal

11.

courses in people management skills, just like managers in any
company or business.

Albert Einstein said “Only two things are infinite, the universe and
human stupidity, and I'm not sure about the former.” Stupidity by
itself is simply a relative condition, not a cardinal sin, but stupidity
combined with arrogance will bring about the eventual demise of the
human species.
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