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Abstract

This note gives a few practical guidelines for cointegration analysis. The focus
is on testing the cointegration rank in a VAR model and on how an intercept
and a trend should be incorporated in the model. Only two cases appear
relevant for most economic data.

*There is no new material in this note, and all results have been derived elsewhere. The
discussion of the two relevant cases should however be useful for those who use standard packages
like for example EViews. I thank Marius Ooms for bringing this issue to my attention, and Peter
Boswijk, Richard Paap and Dick van Dijk for helpful comments.
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1 Introduction

Cointegration analysis is an important tool when modelling economic data with
trends. Ever since its formal introduction in Engle and Granger (1987), it has been
popular among practitioners and theorists. The current standard for analysis is the
maximum likelihood method, based on a vector autoregression [VAR], proposed in
Johansen (1988, 1995). Statistical packages like EViews incorporate this method
and thus allow for its wide application.

Inference in cointegration models is not easy. There are many decisions to be
made, and a good summary of these is given in Doornik, Hendry and Nielsen (1998).
An important decision concerns the inclusion of deterministic terms in the cointe-
grating VAR. Results in Banerjee, Dolado, Galbraith and Hendry (1993), Johansen
(1994), and Nielsen and Rahbek (1998) show that the statistical properties of the
commonly used test procedure are affected, in the sense that its size cannot be con-
trolled in some cases, and that there is substantial power loss in other cases. Much
of this literature is of a technical nature, and not easy to read for many practitioners.
It is the aim of this note to collect the main results and to give a few simple practical
guidelines. Note again that nothing is really new in this note, and that part of the
material is included in the excellent paper by Nielsen and Rahbek (1998). It merely
summarizes the current state of knowledge for those who want to use the relevant
routines in, for example, EViews (version 2.0 or 3.0).

In Section 2, I give preliminaries concerning univariate and multivariate unit root
analysis. In Section 3, I consider the relevant cases for economic data. The prime
focus is on testing the rank of the matrix containing the cointegrating relations. In

Section 4, I conclude with some remarks.

2 Some preliminaries

This section contains some preliminaries concerning unit root testing. The focus
is on the model representation when an intercept and trend are included. To save
notation, I only consider autoregressive models of order 1. Of course, most results

carry over to higher order models, although the computations are slightly different.



2.1 Univariate autoregression

Consider a univariate time series y;, t = 1,2, ... ,n, when it can be described by

Y — b — 0t = Pr(yp—1 — p— 6(t — 1)) + &y, (1)

where ¢, is assumed to be a standard white noise process. The behavior of y;, when
generated by (1), depends on the values of ¢, p and §. When |¢| < 1, y; is a
trend-stationary series. When both p and § are unequal to zero, one might say that
y; is attracted by p + 6t. Informally stated, when forecasting y,., at time y,, with
h large, the forecast will approximately equal y,,p, = p + 6(n + h). If § = 0, this
long-run forecast is .

When ¢; =1 in (1), the model reduces to
Y =0+ y—1 +er (2)

Notice that p in (1) is not identified when ¢; = 1. Recursive substitution results in

¢
yt:y0+6t+25ia (3)

i=1
where g is a pre-sample starting-value. The Z§:1 g; component is called the stochas-
tic trend. Notice from (3) that the long-run forecast of y; equals yo + d6¢t. In other
words, a nonzero drift ¢ in (2), implies that this forecast is a function of an intercept
and a linear deterministic trend, even though there is no such deterministic trend
included explicitly in (2).

An alternative way of writing (1) concerns separating the long-run forecast (for

both cases |¢;| < 1 and ¢; = 1) and the drift (for ¢; = 1), which results in

Avyy =04 p(y—1 — p— 0(t — 1)) + &4, (4)

where A is defined as (1 — L), with L the usual lag operator, and where p = ¢; — 1.
This expression immediately shows that when p = 0, y; has a stochastic trend with
drift d. It also indicates that when p < 0, (4) is a univariate equilibrium correction

equation and vy, is a stationary AR(1) series with attractor p + Jt.



In the univariate case it appears most easy to test for ¢; = 1 in yet another

version of (1), which is

Ay = p* + 6"+ py—1 + ey, (5)

with
m* = (1—¢1)p+ @14, (6)
5 = (1 — ¢1)0. (7)

This representation shows that the test regression includes the deterministic trend
variable, even though it disappears under the null hypothesis of ¢; = 1. However,
setting 6* equal to zero implies that one imposes, before any test is carried out, that
¢1 = 1 (which is what one aims to test) or that 6 = 0 (which means that the data
have no trend). If the data do have a trend, the latter assumption is not plausible.
So, the practical rule is to better include the trend in (5) even though it vanishes
under the null hypothesis. Alternatively, one may use a joint test for p = 0 and
d* = 0, see Dickey and Fuller (1981), and it is exactly this procedure which is to be

recommended for multivariate time series below.

2.2 Multivariate autoregression
Consider the VAR(1) model
Yi=®1Yi1 + e, (8)

for an (m x 1) time series Y; containing y;, through y,,,, where e; is a (m x 1)
vector white noise series. For cointegration analysis it is convenient to write (8) in

equilibrium correction format, that is,
AY, =11V, 1 + e, (9)

where IT = ®; — [,,,. The matrix II contains information on cointegrating relations

between the m elements of ;. In cointegration analysis it is common to write (9) as

AY, =af'Y 1 + ey, (10)



where o and 8 are (m x r) full rank matrices. When 0 < r < m, there are r
cointegrating relations between the m variables, see Engle and Granger (1987) and
Johansen (1995).

The maximum likelihood cointegration test method, developed in Johansen (1988)
tests the rank of the matrix II using the reduced rank regression technique based
on canonical correlations. For model (10) this amounts to calculating the canonical
correlations between AY; and Y; ;. This gives the eigenvalues 5\1 > ... > j\m and
the corresponding eigenvectors Bl, ey Bm The most reliable test for the rank of 11

is the likelihood ratio [LR] test statistic @

Q=-n Z log(1 — \;). (11)

i=r+1
The null hypothesis is that there are at most r cointegration relations. Asymptotic
theory for @) is given in Johansen (1995), and the critical values for this @ for model
(10) are given in Table 15.1 in Johansen (1995).

Notice that the model in (10) assumes that the m time series do not have a
trend, and that the cointegrating relations 3'Y; have zero equilibrium values. This
may however not be a reasonable assumption for many economic data. In the next

section, I discuss two extensions of (10), which are often more useful.

3 Two relevant cases

In this section, I expand on the contents of Section 2.2 by incorporating an intercept
and trend in the VAR model. The discussion closely follows that for the univariate

case in Section 2.1, most notably equation (4).

3.1 None of the m time series displays a trending pattern

The imposed restriction that the cointegrating relations 4'Y; in (10) all have an
attractor which is exactly equal to zero does not seem plausible for many economic

data. Hence, it is more appropriate to extend (10) as follows

AY = (B — ) + e (12)



To compute the LR statistic, one should now calculate the canonical correlations
between A1Y; and (Y; 1,1). The relevant asymptotic theory is given in Johansen
(1995). The critical values of the corresponding LR test appear in Table 15.2 in
Johansen (1995). This case corresponds with Option 2 in the relevant routine in

EViews.

3.2 Some or all of the m time series display a trending pat-
tern

When (some or all) series display trending patterns, one should consider a multi-

variate version of (4), which is
Alift = Mo + O!(,Blift_l — M1 — (Slt) + €. (]_3)

In words, this model allows the individual time series to have trends by not restricting
I to zero, while the cointegrating relations attain their equilibrium values at p;+9d;t.
In very special cases, all parameters in 0; may equal 0, but it is safe not to assume
that on beforehand.

To compute the LR statistic, one should calculate the canonical correlations

between demeaned first differenced series and demeaned (Y;_i,t)".

The relevant
asymptotic theory is again given in Johansen (1995). The critical values of the LR
test appear in Table 15.4 in Johansen (1995). This second case corresponds with
Option 4 in the relevant routine in EViews.

In case one a priori assumes that 0; = 0 in (13), one implicitly assumes that there
are links between the deterministic growth patterns across the m individual time
series. This assumption has an impact on the value of the LR test statistic and on
its asymptotic distribution. The relevant theory is given in Johansen (1995), and the
critical values appear in Table 15.3 in Johansen (1995). This case corresponds with
(the default) Option 3 in EViews. However, as mentioned above, the assumption
that §; = 0 may not be a sensible assumption for many economic data. The same

holds for the assumption that p; = 0 and 6; = 0 in (13) (which is case II in Franses
(1998, Table 10.3)).



3.3 What if one wants to allow for quadratic trends?

From the discussion above it is immediately clear which model representation is most
useful when testing the rank of IT while allowing for quadratic trends. A natural

extension of (13) is now given by
Aly;f = Mo + 50t + Oé(ﬂIY;gfl — M1 — 51t — 52t2) + €. (14)

To my knowledge the relevant asymptotic theory for (14) has not been developed yet,
but is should follow the basic principles outlined in Johansen (1995). A restricted
version of (14), for which similar cautionary remarks should be made as above, con-
cerns the assumption that d, = 0. This model is again analyzed in Johansen (1995),
and the relevant critical values appear in Table 15.5 of his book. In EViews, this
model (with the possibly implausible parameter restriction) appears under Option

d.

4 Concluding remarks

To summarize, there seem to be only two relevant model representations for the
analysis of cointegration amongst most economic time series variables. Statistical
theory for these cases has been developed in Johansen (1995). They are included in
the EViews (version 2.0) statistical package, under Options 2 and 4. This conclusion
should not be interpreted as that the statistical theory of other models is not relevant.
Merely, for most practical purposes there seem to be only two important cases.
Once the cointegrating rank has been fixed, the next steps in empirical model
building can include tests for specific values of 3 and tests for the statistical rele-
vance of r sets of deterministic regressors. An excellent treatment of many of these

empirical issues is given in Doornik et al. (1998).
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