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1.1 ORGAN TRANSPLANTATION

Solid organ transplantation is during the past two decades the fi nest and most suitable treat-

ment with the best quality of life for patients with end stage organ failure. The fi rst documented 

‘unrelated’ kidney transplantation was performed on June 17, 1950 in Chicago, United States 

on a 44-year-old woman with polycystic kidney disease2. Unfortunately, the donated kidney 

was rejected because no adequate immunosuppressive therapy was available at the time and 

the development of eff ective anti-rejection drugs was years away. The fi rst successful kidney 

transplantation was performed on December 23rd in 1954 from one healthy identical twin to 

his twin brother who was almost dying of renal disease3. The operation succeeded and renal 

function was restored in the recipient and resulted in enormous excitement in the media and 

among medical professionals. One decade further, the fi rst human liver transplantation was 

performed in 1963 by a surgical team led by dr. Thomas Starzl4. 

The discovery and availability of potent immunosuppressive drugs that were able to prevent 

rejection of the transplanted donor graft, was followed by an era of many successful solid organ 

transplantations. The use of these immunosuppressive drugs resulted in acceptable graft-

survival rates in the Netherlands. The graft survival rate over 2007 was 94% after clinical kidney 

transplantation with living donors, 85% after clinical kidney transplantation with deceased 

donors and 76% after clinical liver transplantation (Nederlandse Transplantatie Stichting). 

Nevertheless, acute rejection may occur in the fi rst 3 to 6 months after transplantation, but this 

can be well treated with (steroid) anti-rejection therapy. 

Although, the use of new classes of drugs and new combinations of immunosuppressive 

drugs have been shown to improve short-term outcomes as they improve graft survival and 

decrease the rate of acute allograft rejection in the fi rst year of transplantation, a dark side of 

immunosuppressive drug therapy has emerged. There are two major caveats with prolonged 

immunosuppression after organ transplantation for the patient. First, the considerable clinical 

load that comprises numerous adverse eff ects conveyed to the patient and results in increased 

morbidity as e.g. they increase the susceptibility for infections and malignancies, but these 

also include non-immunological complications as osteoporosis, diabetes and an increase in 

cardiovascular risk factors, (nephro)toxicity and even mortality5, 6 Secondly, the relatively poor 

effi  cacy in preventing immunologically driven chronic allograft rejection7 resulting in graft 

failure after long-term usage of immunosuppressive drugs. 

The side eff ects of immunosuppressive medication are due to lack of specifi city as they do 

not only aff ect the cells of the immune system but also aff ect non-immune cells like parenchy-

mal cells, smooth muscle cells, etc. Therefore, therapy that specifi cally targets immune cells 

involved in the reactivity against the donor graft without aff ecting cells of the immune system 

that provide immunity against infections and non-immune cells is severely needed. 
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1.2 THE IMMUNE SYSTEM

The immune system has been evolved to protect us from pathogens such as viruses and bacte-

ria. There are two types of immune responses: 1) the innate immune response, which is the fi rst 

line of defense against pathogens by macrophages and phagocytic cells and 2) the adaptive 

immune response, which is a specifi c immune response against particular foreign antigens (Box 

1) or a specifi c pathogen. Adaptive immunity occurs during the lifetime of an individual as an 

adaptation to infection with that antigen or pathogen and off ers life-long protection against 

re-infection with the same pathogen. Adaptive immune responses are initiated in peripheral 

lymphoid tissues (Figure 1B) after antigen presentation (Box 1). 

 Two major types of peripheral lymphoid tissues:  

1. the spleen, that collects antigens from the blood; 
2. the secondary lymph nodes, which collect antigens from sites of infection in the tissues.  
 

Two major phases of any immune response: 
  

 
 1. Recognition of antigens; molecules recognized by receptors on lymphocytes in lymphoid 

tissues. 
2. A reaction to eradicate the antigens.  

  Lymphocytes circulate in the peripheral blood and can mediate immunity (20% of white blood cells in adults). They 
have specialized functions. Lymphocytes comprise: 
 

 1. B cells that differentiate in the fetal liver and the postnatal bone marrow and produce 
antibodies; 

2. T cells that develop in the thymus (Fig. 1A) and recognize antigens with their T-cell receptor. 
T cells comprise:    *CD8+ cytotoxic T cells kill virally affected cells;  

  *CD4+ helper T cells coordinate the immune response by direct cell-     
   cell interactions and release cytokines which help B cells to produce      

    antibodies. 
  *Regulatory T cells can control immune responses to self-antigens. 

3. Natural Killer cells can lyse certain tumour cells and virus-infected cells. 
  Antigen-presenting cells (APCs) are required by T cells to enable them to respond to antigens.  
Dendritic cells, macrophages and B cells recognize native antigens not processed and presented by other cells. 

 

 The cells of the innate immune system (natural killer cells, macrophages, phagocytes) play a crucial part in the initiation 
and subsequent direction of adaptive immune responses by T and B lymphocytes. 
 
Mixed lymphocyte reactions (MLR): in vitro assay to imitate immune responses from to patient to donor.

  
Major histocompatibility Complex (MHC) - Human Leucocytes Antigens (HLA, Human Variant of MHC) 
The function of the MHC molecules on T cells is to bind peptide fragments derived from pathogens and display them on 
the cell surface for recognition by the appropriate T cells.    

 Large numbers of T cells are specifically reactive against particular non-self or allogeneic MHC molecules resulting in 
a cell-mediated immune response.   
  
Alloreactivity: reactivity of immune cells of one individual against antigens from another individual.  
  Clonal selection is the central principle of adaptive immunity and involves recognition of antigen by a particular 
lymphocyte; leading to proliferation (expansion) and cytokine secretion by activated T cells and differentiation into 
effector T cells. The clonal expansion of these effector T cells can cause acute cellular rejection. 

 
 
  
 Cytokines are the soluble mediators of immunity and defined as a large group of molecules (proteins or peptides) 

involved in signaling between cells during immune responses.  
 

Box 1. Introduction into the Immune System

Adapted from the textbooks ‘Immunology’13 and ‘Immunobiology The immune system in health and disease’14.
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A

Figure 1. Primary and secondary lymphoid organs 

(A) Location of the thymus and the spleen (primary lymphoid organs) in the human thorax, ©ADAM. (B) Structure and function of a lymph node 

and its components, where antigen recognition takes place (secondary lymphoid organ), adapted from the textbook ‘Human Anatomy’1.
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1.2.1 Transplantation immunobiology

Immediately after solid organ transplantation, the immune system will respond to the foreign 

antigens of the donor graft in order to eliminate the graft by causing rejection. Professional 

antigen-presenting cells (APCs), mainly dendritic cells (DCs) from the donor will migrate from 

the donor graft towards the secondary lymphoid organs in the recipient (Box 1 and Figure 1B), 

where they can activate naïve T cells and resting/central memory alloreactive T cells from the 

recipient (Box 1 and Figure 3A). Immune responses (Box 1) are triggered after recognition of 

the allogeneic major histocompatibility complex mismatched antigens (MHC) or the human 

MHC, which is called Human Leukocyte Antigens (HLA), by receptors on T cells of the recipient 

(Box 1). This mode of T-cell activation by APCs of the recipient is called the direct pathway of 

allorecognition. Upon activation by alloantigens, CD4+ helper T cells produce massive amounts 

of the T-cell growth factor Interleukin (IL)-2 which is required for their clonal expansion and 

for their diff erentiation into eff ector T cells (Teff ). The direct pathway of antigen presentation 

is imitated in vitro by allogeneic mixed lymphocyte reactions (MLR) (Box 1). The major role of 

APCs in rejection has been demonstrated in experimental models showing that depletion of 

donor APCs can sometimes prolong graft survival8. 

A second mechanism for initiating an immune response and T-cell activation is the indirect 

pathway of allorecognition, which is stimulation of recipient T cells by recipient APCs that can 

present peptides of donor origin8. Evidence has been provided to demonstrate the contribu-

tion of the indirect pathway to rejection in animal experimental models9-11 e.g. allogeneic skin 

grafts in mice that lack MHC class II antigens are rejected rapidly11. In humans, data about the 

relationship between reactivity of T cells with indirect allospecifi city and graft rejection are 

lacking12. Thus, the role of the indirect pathway in rejection remains to be elucidated.

Whether via the direct or indirect pathways, both mechanisms of the immune system are 

activated after organ transplantation and can mediate acute or chronic cellular graft rejection 

respectively. These mechanisms that can cause an activated immune system of the recipient 

indicate the need for immunosuppressive drug therapy to eliminate alloreactive eff ector T cells 

from the recipient in order to prevent graft rejection. 

1.3 REGULATORY T CELLS (TREG)

The immune system does not only have a defense mechanism to eliminate everything that is 

foreign. It has also built-in mechanisms to maintain immune homeostasis and to prevent the 

attack of healthy self-tissues. The fi rst line of self-tolerance is the elimination of self-reactive 

T cells during negative selection in the thymus (Figure 1A) and B cells in the bone marrow. 

However, some self-reactive T cell clones ‘escape’ central tolerance and enter the peripheral 

compartment. There are several important mechanisms known by which the immune system 

can achieve peripheral tolerance. Except for other mechanisms to achieve tolerance concerning 
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Teff  cells as clonal deletion, ignorance, activation-induced cell death and anergy, the induction 

of regulatory T cells may play an important role in the acquisition of peripheral tolerance15.  

Treg are able to control unwanted immune responses and have been shown to play a pivotal 

role in controlling autoimmunity. Their function has also been implicated in infl ammatory 

diseases such as asthma and infl ammatory bowel disease16-19. A growing body of evidence 

suggests that CD4+ T cells that highly express the IL-2 receptor-α chain (CD25) on their surface 

have specifi city for the direct pathway and play a role in transplant ‘tolerance’. The Holy Grail 

in transplantation is to achieve long-term tolerance. Tolerance refers to a state of sustained 

specifi c non-responsiveness of the recipients’ immune system to donor alloantigens, allowing 

long-term allograft survival in the absence of potential harmful chronic immunosuppressive 

drugs. Immunological tolerance is a state of antigen-specifi c T-cell unresponsiveness’ or an 

immunologic blind spot for a specifi c antigen, whereas the responses to all other antigens are 

completely intact. Immunologic tolerance in the organ transplantation context is defi ned as 

a durable state of antigen-specifi c unresponsiveness, induced by exposure to donor antigens 

from the graft, in a patient who is otherwise fully immunologically competent20. 

When there is a state of minimal immune responsiveness by active regulation of the immune 

responses that are directed against the donor graft, this will automatically lead to little require-

ment for immunosuppressive drugs. Transplanted patients may benefi t from a reduction in the 

dose and time of usage of the immunosuppressive drugs and even cessation after transplanta-

tion. ‘Operational tolerance’ is defi ned as long term (more than 12 months) independence from 

all immunosuppression in patients with normal graft functions. Mechanisms and protocols to 

actively induce ‘operational tolerance’ have already been investigated for more than 50 years 

in animal experimental models21, but few papers report (liver) transplant patients that are 

tolerant for their graft22-24. Therefore, skewing of the immune system to a more donor-antigen 

specifi c therapy might be more promising.

1.3.1 Regulatory T-cell subsets

Myriad surface expression profi les have revealed several subpopulations of Treg (Figure 2). The 

naturally occurring CD4+CD25+ T cells have their origin in the thymus (Figure 1A) and comprise 

5-10% of total CD4+ T cells in the human peripheral blood. Their function is to control the 

proliferation of CD4+ and CD8+ Teff  cells. 

In 1971, Gershon and Kondo were the fi rst to report the importance of suppressor T cells 

as they showed the immunosuppressive eff ect of the presence of thymocytes during antigen 

pre-treatment in mice25. Hall et al. showed that a subset of T ‘helper/inducer’ T cells were 

responsible for the onset of specifi c unresponsiveness in rats treated with cyclosporine26. Five 

years later, the same group demonstrated in cyclosporine treated rats that CD4+ T suppres-

sor cells with inhibitory capacities were induced for this unresponsiveness27. After a period 

of quiescence, Sakaguchi and his colleagues provided evidence that CD25+ T cells, of which 

the majority is CD4+, prevent autoimmune disease and that depletion of these cells induces 
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autoimmunity16. They showed that when allogeneic skin grafts were transplanted at the time of 

CD25neg cell injection into immune defi cient mice, there were heightened immune responses, 

but when CD25+ T cells were reconstituted, these immune responses were immediately damp-

ened16. A decade after this publication, it was reported that the severe Immune dysregulation, 

Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome was caused by a mutation in the 

FOXP3 (forkhead/winged-helix box protein 3, Scurfi n) gene28. Thereafter, it was demonstrated 

that over-expression of Scurfi n FoxP3 in CD4+ T cells attenuated activation-induced cytokine 

production and proliferation by these cells29. The FoxP3 protein acted as a repressor of 

IFN-γ, 
IL-12

Th1 (Tbet)

Th2 (GATA3)

Th17 (RORγt)

nTreg (FoxP3)

iTreg (FoxP3)

   iTreg
Tr1 (IL-10)
   

   Lymph nodes

IL-4

IL-6, TGF-β

  IL-2, TCR stimulation

    iTreg
Th3 (FoxP3)

RA, TCR stimulationIL-10, TCR stimulationTGF-β, TCR stimulation

       Naive T cell
CD4+CD25negFoxP3neg }

IL-6, IL-21

Effector  T cells

  Thymus

Figure 2. CD4+ T cell diff erentiation and conversion

Diff erentiation factors are depicted next to the arrows. Transcription factors are shown between brackets. The factors that are required for thymic 

and peripheral generation of regulatory T cells are shown. Th; T helper, nTreg; natural regulatory T cell, iTreg; induced regulatory T cell, Tr; T 

regulatory cell type, TCR; T-cell receptor, RA; retinoic acid. It is important to note that this is a simplifi ed model and that there is a great plasticity 

of CD4+ T-cell diff erentiation than described in this fi gure68.
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transcription and in this way regulated T-cell activation29. The breakthrough came when the 

association between the CD4+CD25+ T cells and FoxP3-expression was drawn by demonstrating 

that FoxP3 plays an important role in guiding the diff erentiation and function of CD4+CD25bright 

T cells as they highly express this transcription factor30, 31. Now it has been revealed that FoxP3 

binds to the promoters of over 700 genes and has both activating and inhibitory activities32, 

33. Furthermore, it can interact with NFAT, the key regulator of T-cell activation and anergy33, 

34. A few years later, human CD4+CD25brightFoxP3+ T cells were shown to downregulate the IL-7 

receptor α-chain (CD127) that is highly expressed by Teff  cells and memory T cells35.  

Recently, it was reported that the level of FoxP3 expression and the extent of post-transla-

tional FoxP3-acetylation seems to be important factors in governing the suppressive activity of 

naturally occurring Treg36, 37. 

As CD4+CD25bright Treg require IL-2 for their expansion, homeostasis and function38, the 

mechanism of suppression by Treg takes place via several mechanisms. The most well-known 

mechanism is that they inhibit the proliferation of Teff  cells by 1) the inhibition of the IL-2 

production by Teff  cells or 2) via scavenging of IL-2, which is one of the crucial mechanisms 

of suppression to control alloreactivity39, 40. Other notorious mechanisms of suppression may 

occur via interactions mediated through cell-surface molecules such as TGF-β, CTLA-4 (cyto-

toxic T lymphocyte-associated antigen-4) that can cause signaling through B7-1 and B7-2 on 

DCs leading to the production of indoleamine 2,3-dioxygenase41, ICAM (intracellular adhesion 

molecule), and modulators of Treg function GITR (glucocorticoid-induced TNFR-related pro-

tein) and OX40. TGF-β seems to correlate with the maintenance of FoxP3-expression. However, 

FoxP3-expression by itself is not suffi  cient to confer suppressive function42, 43. Moreover, 

it is postulated that IFN-γ and IL-35 play a role in the paracrine suppressive mechanisms of 

regulatory T cells44, 45. However, the contribution of IL-35 to regulatory T cells function remains 

controversial46. Other factors include granzyme B that can be secreted by CD4+CD25bright T cells 

and predominantly acts as an eff ector molecule to directly lyse autologous Teff  cells and B cells 

after activation47-49. 

Treg are not only discharged into the periphery by the thymus, a small group of Treg has its 

origin in the periphery, and is known as induced (i) Treg15 (Figure 2). Though, the contribution of 

iTreg in restraining immune responses to allo-antigen in vivo is unknown, the antigen-specifi c 

Treg are supposed to have potent suppressive properties in the inhibition of immune responses 

against donor-antigens as has been shown in vitro. It has been demonstrated that human naïve 

CD25neg T cells can diff erentiate into induced CD4+CD25+FoxP3+ T cells and CD8+CD25+FoxP3+ 

T cells with regulatory activities in vitro after stimulation with antigen in the presence of CD14+ 

monocytes50, 51. CD3/CD46-induced regulatory T cells have been shown to mediate granzyme 

and perforin mediated lysis of activated Teff  cells47. 

Other regulatory T cell types include the CD4 and CD8 double negative (CD4negCD8neg) T 

cells52, CD3+γδTCR+ T cells24, the natural killer T cells53, IL-10-producing Tr1 T cells54 (Figure 2) 

and the TGF-ß-producing Th3 T cells55 (Figure 2). 
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CD4negCD8neg Treg comprise 1-2% of peripheral blood mononuclear cells (PBMC) and are 

associated with graft acceptance. They are capable of inhibiting immune responses via directly 

killing Teff  cells in an antigen-specifi c fashion via FASL and are CD27+56, 57. The CD3+γδTCR+ T 

cells (Vδ1-type) produce massive amounts of IL-10 and were found to have a higher activation 

state in tolerant patients than in healthy controls24. Levels of CD3+γδTCR+ T cells (Vδ1-type) 

were increased in the peripheral blood of tolerant recipients as compared with immunosup-

pression- dependent patients or healthy controls, suggesting that these cells may have an 

important function in establishing tolerance after transplantation23. They play an important 

role in controlling the development of various immune pathologies and enhance allo- and 

xeno-transplant survival. Moreover, in comparison with αβ-TCR+ T cells, the CD3+γδTCR+ T cells 

are insensitive to the immunosuppressive drug cyclosporine A58. The invariant natural killer T 

cells lyse autologous T and B cells via perforin and produce Th1 cytokines (IFN-γ and TNF-α) and 

Th2 cytokines (IL-4, IL-5, IL-10 and IL-13) (Box 1). In experimental models using knockout mice 

that lack iNKT cells, it has been demonstrated that they play an important immune regula-

tory role in the maintenance of transplant tolerance59. NKT levels can also be infl uenced by 

immunosuppressive drugs. The combination of several classes of drugs seems to enhance the 

levels of NKT cells and CD4+FasL+ T cells. In primates that received immunosuppressive therapy 

consisting of both the calcineurin inhibitor tacrolimus and the lymphocyte proliferation inhibi-

tor sirolimus after kidney transplantation, increased levels were detected compared with the 

tacrolimus and sirolimus treated groups alone60. 

The IL-10-producing Tr1 Treg also harbor the CD4+CD25+ phenotype and have their immu-

noregulatory eff ect on APCs and T cells as they downmodulate the co-stimulatory molecules 

CD80 and CD86 on APCs as well as MHC class II, indispensable for T-cell activation15. 

As tolerance to food antigens (oral tolerance) might be achieved by the administration of 

high antigen dose and may lead to hyporesponsiveness mediated by anergy or deletion, low 

doses of antigen lead to the generation of antigen-specifi c regulatory Th3 cells that produce 

TGF-β61, 62. Furthermore, TGF-β-production by Th3 cells does not necessarily always correlates 

with the expression of other anti-infl ammatory cytokines as IL-4 and IL-1063. Th3-cells have 

been shown to transfer tolerance in vivo and to suppress antigen-specifi c responses in vitro64. 

Treg are not only present within the CD4+ T cell population, other subsets within the CD8+ T 

cell population that also have (antigen-specifi c) regulatory capacities are the CD28neg T cells65. 

These cells share several similarities in their molecular markers with the CD4+CD25bright T cells65 

e.g. they can also express FoxP367. 

To summarize, there are diff erent Treg subsets that have a diff erent origin (Figure 2) and 

diverse mechanisms of action with the common purpose to regulate immune responses. 

Finally, it is important to take into account that there is a great degree of fl exibility in the dif-

ferentiation options of CD4+ T cells i.e. the expression of the transcription factor Foxp3 by iTreg 

may not be that stable68. 
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1.3.2 Generation of regulatory T cells for therapeutic application

Although the continued use of immunosuppressive drugs provides a degree of long-term 

maintenance of allograft function, as mentioned earlier, fi nding new protocols to target the 

activated T cells directed against donor-antigens to release the patient from the severe side 

eff ects is a challenging task for transplantation immunologists. 

Treg are able to restrain donor-directed immune responses in vitro and may for that purpose 

be critical inducers of graft acceptance. However, natural occurring Treg are not specifi c as they 

are not directed against donor-antigens and those natural occurring Treg that cross-react with 

the Teff  cells are present at low frequency. 

The ultimate goal of transplantation may be established by increasing the frequency or 

enhancing the suppressive activities of regulatory T cells. To accomplish operational tolerance, 

expansion protocols have been developed to increase their number in vitro and ultimately re-

infuse them into the patient by adoptive transfer. There are two protocols of in vitro expansion; 

1) antigen-specifi c69 and 2) polyclonal70. Alloantigen-specifi c Treg are supposed to provide 

higher therapeutic benefi ts in solid organ transplantation compared with polyclonal Treg, 

because they suppress immune responses that are directed against alloantigens and will 

diminish the overall immunity against pathogens71. Unfortunately, there are major drawbacks 

with the isolation, expansion and purity of these T cells in vitro. First, it is only possible to study 

the suppressive capacities of CD25brightCD127-/low T cells. Although the majority of these cells 

are FoxP3+, FoxP3neg cells are present in this population35. Furthermore, it has been demon-

strated that Treg may lose their CD25 and FoxP3-expression in vitro72, 73. It has been shown that 

only the CD45RA (naïve) CD4+CD25bright population gives rise to a homogenous population74. 

Moreover, when Treg are expanded in vitro, it is unknown whether they still contain their migra-

tory capacities in vivo and reach the place where immune activation takes place; the peripheral 

lymph nodes (Figure 1B).  

Other in vivo experimental transplantation studies have shown that Treg can be generated 

from naïve T cells that are recruited to the allograft by conversion of CD25neg precursors into 

CD25+ T cells (Figure 2)75, 76. The induction of FoxP3 expression can only take place in the pres-

ence of TCR triggering and cytokines (Figure 2) or by immunosuppressive drugs as has been 

shown in experimental models50, 77-80. Whether Treg induction occurs in vivo depends on the 

context in which the T-cell encounters antigen dose in terms of antigen form, antigen dose, 

co-stimulation and the APC subtype71. More research needs to be done to fully characterize 

the natural and adaptive regulatory T cells and to reveal their role in transplantation tolerance. 

1.4 T-CELL ACTIVATION AND TARGETS OF IMMUNOSUPPRESSIVE DRUGS

T cells require three distinct signals for most optimal activation to initiate an immune response. 

Signal 1 is provided by the CD3 complex on T-cell receptors that recognizes antigen on the 
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surface of dendritic cells and transduce this signal across the cell membrane (Figure 3)81. Signal 

2 is the co-stimulatory signal that is provided by dendritic cells and is delivered when CD80 

and CD86 on the surface of the dendritic cells engage CD28 on T cells (Figure 3). The combina-

tion of signal 1 and 2 activates three signal transduction pathways: the calcium-calcineurin 

pathway, the RAS-mitogen-activated protein (MAP) kinase pathway and the protein kinase 

C-nuclear factor-κB pathway which in turn can activate i.e. the nuclear factor of activated T cells 

(NFAT), activating protein 1 (AP-1), and NF-κB respectively (Figure 3). Activation of the NFAT, 

AP-1 and NF-κB transcription factors trigger the expression of many molecules such as the 

immunomodulator IL-2, CD154 (CD40L) and CD2581. APCs do not only trigger T-cell activation 

via cell-cell contact. They produce many cytokines as e.g. IFN-γ and IL-4 that can provide signal 

3 and trigger T-cell activation and diff erentiation. Next to APCs, Th cells function as a source 

for cytokine production. IL-2, -4, -7, -9, -15 and 21 (cytokines of the IL-2 family) share the com-

mon γ-chain (γc) and can recruit Janus Kinase 1 and 3 (Jak3) upon autophosphorylation (Figure 

3). These cytokines, in particular IL-2 and IL-15 activate the mammalian ‘target of rapamycin’ 

(mTOR) pathway and deliver growth signals through the phophoinositide-3-kinase that is the 

major trigger for T-cell proliferation81 and diff erentiation into Teff  cells. Immunosuppressive 

drugs that are currently in clinical practice act on distinct pathways for T-cell activation (Figure 

3) and will be outlined in the next paragraphs.

1.5 SUBCLASSES OF IMMUNOSUPPRESSIVE DRUGS

1.5.1 Induction therapy

Induction therapy consists of polyclonal or monoclonal antibodies directed against epitope(s) 

on T cells. The purpose of induction therapy is to deplete or modulate T-cell responses at the 

time of antigen presentation. 

Rabbit anti-thymocyte globulins (rATG) are comprised of polyclonal immunoglobulins that 

are purifi ed from the serum of rabbits after immunizing these animals with human thymocytes. 

Induction therapy using rATG is given to patients during the fi rst days after organ transplanta-

tion to decrease the incidence of delayed graft function and to reduce the dosage of calcineurin 

inhibitors during the fi rst days after transplantation. After two days of rATG-induction therapy, 

transplanted patients receive maintenance therapy consisting of a calcineurin inhibitor, myco-

phenolate mofetil (MMF) and prednisone. By binding to epitopes on the surface of lymphocytes 

and monocytes, rATG depletes these cells from the circulation and secondary lymphoid tissues, 

thereby preventing acute rejection of the graft (Figure 3)82-84. Toxic side eff ects include throm-

bopenia, the cytokine-release syndrome, and occasional serum sickness or allergic reactions. 

The IL-2 receptor is also a potential target for immunosuppressive drugs. Monoclonal antibod-

ies that bind to the CD25 antigen at the surface of activated T cells inhibit IL-2 mediated T cell 

activation, which is a crucial phase in the cellular immune response of allograft rejection (Figure 3). 



General Introduction 19

dendritic cell

T cell

α
ß
γ

Nucleus

IL-15

IL-15R

α
ß
γ

JAK3

JAK3

NFAT AP-1 NF-κB

Signal 1

JAK3

γγγ

N

FF

Nuucclele sususe mRNA

►
►

►

►►

S

G2
M

G1

CD3/TCR

dendritic cell

T cell

MHC/peptides

cell cycle

calcineurin

Signal 2

CD28

CD80

   86

PI-3K

MMF

JAK3-inhibitor

rA
TG

  Tacrolimus,
cyclosporine

rATG

NFAF TAANFNFAATTAFAFFF A NAA NNAP-1 NAPA NNP 11PP

MAP kinases

D3/TC

kkinasi

CRRCRR

es sessIKKes sessIKK

F-FF-κκBκκκBB

CD3

APAP in

eeeeeee

eurin MMMMAA

peptide

CD4

CD8

Daclizumab
Basiliximab

IL-2rATG

Signal 3

IL-2R

Prednisone

PI-3K

mTOR  cdK/cyclins

 Sirolimus,
 Everolimus

A

B

Figure 3. T-cell activation 

(A) Dendritic cell encounters T cell and forms an immunological synapse (B) Signals for T-cell activation and individual targets of 

immunosuppressive drugs as described in this dissertation. Antigens (‘peptides’) trigger T-cell receptor (TCR) activation (signal 1). CD80 and CD86 

on the dendritic cell engage CD28 on the T cell to provide signal 2. Signal 1 and 2 activate three signal transduction pathways. These pathways 

trigger the transcription of the IL-2Rα chain CD25. Jak3 is activated by the third signal which is mediated via cytokines of the γc. The mode of 

action of every group of immunosuppressants is depicted in white textballoons81.
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Therefore, anti-IL-2Rα antibodies are used as induction therapy at times before but generally after 

transplantation. In contrast to rATG that exist in two mixtures with a lymphocyte non-depleting 

and depleting eff ect, anti-IL-2Rα antibodies are only non-depleting. Daclizumab (Zenapax-Hoff -

mann-La Roche) was the fi rst humanized mAb (~90% human and 10% murine) to the IL-2-receptor 

(Figure 3). The current commercially available preparation of anti-IL-2Rα monoclonal antibodies is 

the chimeric mAb (~75% human and 25% murine protein) basiliximab (Figure 3)85.

1.5.2 Calcineurin inhibitors

The introduction  of cyclosporine A by Sir Roy Calne in 1980 was a revolution in the transplanta-

tion fi eld as it markedly improved patient outcomes. Cyclosporine A was and still is the corner-

stone of immunosuppression in transplantation for more than two decades. Cyclosporine A 

binds to cyclophilins, which are cytoplasmic chaperone proteins of the immunophilin family, 

forming a complex that engages calcineurin leading to blockade of NFAT that is required for the 

transcription of the gene encoding IL-2 (Figure 3)86. Adverse eff ects of cyclosporine A include 

nephrotoxicity, hypertension, hyperlidemia, gingival hyperplasia, hirsutism and tremor. More-

over, it can also induce the hemolytic-uremic syndrome and post-transplantation diabetes 

mellitus81 and increases the growth of facial and body hair. 

Tacrolimus engages another member of the immunophilin family, FK506 (tacrolimus)-bind-

ing protein 12 to create a complex that inhibits calcineurin with greater molar potency than 

cyclosporine A81. Although there are no chemical similarities, cyclosporine A and tacrolimus 

act in the same way via the prevention of translocation of the signal evoked by antigen from 

the surface to the nucleus of the T cell (Figure 3). However, tacrolimus prolonged the life of 

experimental organ grafts87, 88 and treatment with tacrolimus resulted in less rejection than 

with cyclosporine, as indicated by several trials89, 90. Minute quantities of this compound have 

extremely powerful immunosuppressive properties. Side eff ects of tacrolimus are nephrotoxic-

ity and toxic eff ects on the central nervous system and the islets of Langerhans. 

1.5.3 Jak inhibitors

Upon binding of cytokines and growth factors to the cell, intracellular signaling is conducted 

via the Janus family of tyrosine kinases (Jak) which consists of four kinases.  Binding of cytokines 

of the IL-2 family to their receptors that signal via the γc (as mentioned above) can activate the 

phosphorylation of Jak3 which then phosphorylates the tyrosine residues on the receptor91. 

Mutations of the γc or Jak3 have profound eff ects on the immune system and result in severe 

combined immunodefi ciency (SCID) in mice. In humans, these mutations can cause X-linked 

severe combined immunodefi ciency (X-SCID) syndrome92, 93 in which the T and NK-cells are 

absent. When Jak3 associates with the γc, and is phosphorylated, signal transducers and acti-

vators of transcription (STAT) proteins are recruited to the Jak-γc receptor complex. Following 

binding of a cytokine to its receptor, STATs are phosphorylated by activated Jaks and dimerize. 

Subsequently STAT dimers translocate into the nucleus leading to gene transcription. Jak3 
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recruits STAT5, that can bind to the promoter region of several downstream target genes as 

FOXP3 and IL-2Rα. STAT5A and STAT5B play essential roles in orchestrating immune regulation 

and the development of immune cells94. 

Signal 3, the cytokine-signal that initiates signaling via the Jak-STAT pathway can be blocked 

by the Jak inhibitor CP-690,550 (Figure 3). It is being developed as an alternative immunosup-

pressive drug to calcineurin inhibitors in order to serve as the primary immunosuppressive 

agent for preventing acute rejection in kidney allograft recipients. Currently Phase II clinical 

trials with this compound are running. 

1.5.4 Proliferation inhibitors

MMF and the mTOR-inhibitors sirolimus (rapamycin) and everolimus are the most commonly used 

lymphocyte proliferation inhibitors. MMF is derived from mycophenolic acid (MPA) from the peni-

cillum molds. For their replication, lymphocytes require synthesis of purine and pyrimidine nucleo-

tides that are regulated by iosine monophosphate dehydrogenase (IMPDH) and dihydro-orotate 

dehydrogenase (DHODH), respectively. MMF inhibits the synthesis of guanosine monophosphate 

nucleotides by IMPDH and thereby blocks the purine synthesis, preventing proliferation of T and B 

cells95. Its main non-immune related toxicity is gastrointestinal symptoms (mainly diarrhea), neu-

tropenia, and mild anemia. In addition, absorption of this drug may be reduced by cyclosporine.

Sirolimus and everolimus can -just as tacrolimus- bind to FK506 binding protein 12, the com-

plex that inhibits the calcineurin phosphatase and T-cell activation. The most common adverse 

eff ects are hyperlipidemia, increased exposure to the toxicity eff ects of calcineurin inhibitors, 

thrombocytopenia, delayed graft function and mouth ulcers. Sirolimus and everolimus both 

have anti-neoplastic and arterial protective eff ects.

1.5.5 Corticosteroids

In the 1950s, hormones that can bind to glucocorticoid receptors on virtually all cells and exert 

pleiotropic eff ects on multiple signaling pathways were discovered, named corticosteroids96. 

Within the cell, the cortisol-glucocorticoid receptor complex moves to the nucleus and binds 

as a homodimer to DNA-sequences, thereby facilitating or inhibiting transcription. Corticoste-

roids inhibit transcription factors as NF-κB and IL-2, TNF-α and IFN-γ. Furthermore, they inhibit 

protein synthesis to ultimately result in the inhibition of the release of numerous cellular media-

tors, such as interleukins, prostaglandins, leukotrienes, etc. that intervene in immunological 

reactions, thereby aff ecting the concentration, distribution and function of leucocytes. Because 

of the diverse mechanisms of actions of the corticosteroids, they are probably one of the most 

potent immunosuppressive drugs used in the setting of solid organ transplantation, as they 

inhibit the function of both APCs and (predominantly CD4+) T cells at the level of proliferation 

and cytokine production86. 

Corticosteroids were seen as ‘miracle drugs’ by physicians that off ered a relief for a diverse 

group of diseases. In 1950, dr. Philip Hench was awarded with the Nobel Prize for treatment of 
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a patient with rheumatoid arthritis with corticosteroids. In the early 1960s, corticosteroids were 

used to reverse acute rejection in a living donor kidney transplant recipient97 and physicians 

all over the world quickly adopted the routine use of corticosteroids, in particular prednisone, 

prednisolone or methylprednisolone into the cocktail already consisting of a calcineurin inhibi-

tor and a proliferation inhibitor that became the ‘standard’ therapy  for all kidney transplantation 

patients98. However, therapy with this class of immunosuppressive drugs is accompanied with 

various chronic toxicities. They cause major complications as water and salt retention leading 

to swelling and edema, high blood pressure, diabetes, showing that this two-edged sword has 

its impact on solid-organ transplantation. 

1.6 AIM AND OUTLINE OF THIS THESIS

CD4+CD25bright Treg require IL-2 for their expansion, homeostasis and function38. Inhibition of 

the IL-2 pathway may therefore hamper the frequency and suppressive activities of regulatory 

T cells. However, to date, the eff ect of the calcineurin inhibitor cyclosporine on the function 

of CD4+CD25bright Treg remains controversial. On one hand, several publications99-102 demon-

strate a negative infl uence on the number and suppressive capacities of CD4+CD25bright Treg 

e.g. cyclosporine has been shown to inhibit FOXP3 mRNA expression in MLR103. On the other 

hand, evidence suggests that it does not seem to aff ect the frequency and suppressive capacity 

of CD4+CD25brightFoxP3+ T cells5, 104, 105. Therefore, a study in human organ transplant recipients 

in which the eff ect of calcineurin inhibitors on the suppressive activities of human peripheral 

CD4+CD25bright Treg is investigated would be enlightening. 

RATG has been shown to induce CD4+CD25brightFoxP3+ Treg in vitro and in peripheral cells 

of healthy individuals78. Moreover, data showing that horse ATG does not have the capacity 

to induce Treg106 demonstrate that Treg-induction is a species-specifi c characteristic of rabbit 

ATG. Thus, the mechanisms of action of T-cell depletion agents does not seem to concentrate 

fully on T cell depletion but also on the immune regulatory component that may contribute 

to donor-specifi c hyporesponsiveness after solid organ transplantation. These fi ndings create 

new potential for rATG to manipulate the immune system of organ transplant recipients by 

inducing (donor-specifi c) Treg, as has been shown before for the mTOR inhibitors everolimus 

and sirolimus107-110. 

Data with regard to the eff ect of MMF on Treg are scarce. Few groups reported that MMF 

does not interfere with the suppressor function of Treg100, 111. MMF has been shown to decrease 

the CD25-expression on lymphocytes112. Considering that MMF does not interfere with the IL-2 

signaling pathway, one can only speculate that it will not negatively aff ect Treg function. As 

the cytokine signal and the downstream Jak-STAT5 pathway both are important for FoxP3-

expression and the function of Treg, the Jak inhibitor CP-690,550 might aff ect Treg. 
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The scarce and controversial data from (animal) experimental models and studies describing 

the eff ect of immunosuppressive drugs on Treg, urges the quest for the analysis of regulatory T 

cells in immune suppressed organ transplant patients. This thesis focuses on the eff ects of vari-

ous immunosuppressive drugs on the cell surface marker expression, frequency and function 

of human Treg in the peripheral blood. 

Chapter 2 describes the eff ect of triple therapy, consisting of cyclosporine, MMF and pred-

nisone on the suppressive capacity of natural CD4+CD25bright T cells in kidney transplant 

patients at 6-24 months after transplantation. In Chapter 3, we address the infl uence of 

two diff erent immunosuppressive protocols; 1) tacrolimus/rapamycin and 2) tacrolimus/

MMF in the fi rst year after clinical kidney transplantation on the generation of donor-specifi c 

regulatory T-cell function. In this prospective study, we monitor the phenotype, frequency and 

function of CD4+CD25brightFoxP3+ T cells in the peripheral blood of kidney transplant patients 

who received these immunosuppressive therapies. The chapters 4, 5 and 6 are dedicated 

to the rabbit anti-thymocyte globulins. The eff ect of rATG-induction therapy on peripheral 

blood cells of kidney transplant patients is shown in chapter 4. In a prospective and controlled 

study, that included kidney transplant patients who received rATG-induction therapy and 

triple therapy consisting of tacrolimus, MMF and prednisone and kidney transplant patients 

in the control group that received triple therapy only, we measure the phenotype and fre-

quency of CD4+CD25brightFoxP3+CD127-/low T cells and analyze their function. To elaborate 

on the results of Treg induction by rATG in cells from healthy individuals as has been shown 

before78, chapter 5 questions whether rATG can also induce Treg in peripheral blood cells 

of patients with end-stage renal disease, who are candidates for kidney transplantation and 

rATG-induction therapy. Chapter 6 investigates whether tacrolimus infl uences the induction 

of CD25+ T cells by rATG. Chapter 7 describes the impact of the Jak inhibitor CP-690,550 on 

peripheral CD4+CD25bright T cells and CD25-/dim Teff  cells of healthy individuals according to 

their STAT5 phosphorylation and their suppressive and proliferative function respectively. 

Furthermore, we investigate the suppressive activities of peripheral CD25bright T cells of kidney 

transplant patients who received CP-690,550 therapy, whereas CP-690,550 is present in the 

suppression assays. These results will be compared with that of the CD25bright T cells from 

patients in the cyclosporine (comparator) group. Chapter 8 draws attention to the infl uence 

of immunosuppressants on regulatory T cells in liver transplantation. The eff ect of conversion 

from a calcineurin inhibitor based immunosuppressive treatment to a MMF based treatment 

on the frequency of CD4+CD25brightFoxP3+ T cells in liver transplant patients and calcineurin 

inhibitor associated side eff ects are described. 
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ABSTRACT 

The role of CD4+CD25bright regulatory T cells (Treg) in controlling alloreactivity is established, 

but little is known whether antigen-specifi c Treg are induced in fully immunosuppressed 

kidney transplant patients. The frequency and function of CD25bright T cells of 9 stable kidney 

transplant patients before and 0.5-2 yr after transplantation were measured. Patients received 

triple therapy consisting of cyclosporine, MMF and prednisone. To investigate the infl uence 

of transplantation and immunosuppression on Treg function, we compared their suppressive 

capacities pre- and post-transplantation using mixed lymphocyte reactions (MLR) and kept the 

CD25-/dim eff ector T-cell (Teff ) population constant. After transplantation, the percentage of 

CD4+CD25bright T cells signifi cantly decreased from 8.5% pre-transplant to 6.9% post-transplant 

(median, p=0.05). However, the lower percentage of post-transplant CD4+CD25bright T cells was 

not associated with reduced, but rather improved suppressor function of these cells. The prolif-

erative response of pre-transplant Teff  to donor-antigens was more profoundly suppressed by 

post-transplant Treg than by pre-transplant Treg (pre-transplant 18% vs. post-transplant 55%, 

median, p=0.03) and was comparable against third party antigens at a CD25bright : CD25-/dim 

ratio of 1:20. In immunosuppressed kidney transplant patients, the donor-directed suppressive 

capacity of CD4+CD25bright regulatory T cells improved, which may contribute to the develop-

ment of donor-specifi c hyporesponsiveness against the graft.
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INTRODUCTION

After kidney transplantation, patients receive immunosuppressive therapy to prevent and to 

treat rejection of the allograft. Triple therapy, consisting of CNIs, MMF and steroids has contrib-

uted to low rates of acute rejection1. These immunosuppressants are able to inhibit alloreactiv-

ity by suppressing the donor-directed immune responses of activated eff ector T cells2. Unfor-

tunately, the current prescribed drugs interfere with T-cell responses in a nonspecifi c manner, 

resulting in adverse eff ects, e.g., they increase the susceptibility for infections and malignancies 

but also non-immunological complications such as osteoporosis, diabetes and cardiovascular 

problems2, 3. To decrease or even to prevent these side eff ects, a more specifi c approach to 

target the donor-specifi c T cells is necessary. An option could be cell-based therapy, where 

immunosuppression is mediated via cells already present in the patient. FoxP3+CD4+CD25bright 

regulatory T cells (Treg) are prime candidates comprising a distinct subpopulation of T cells 

that have the ability to suppress the activation of other T cells and their cytokine production 

(i.e., IL-2 or IFN-γ)4-6. The contribution of Treg in the induction and maintenance of tolerance of 

the graft after organ transplantation has been demonstrated in several murine models7-9 but 

studies showing their involvement in operational drug-free tolerance in patients are rare10-12. 

In clinically tolerant recipients the number of Treg is normal, yet decreased in kidney transplant 

patients with chronic rejection10. 

Although we and others previously reported that Treg may mediate donor-directed 

hyporesponsiveness in kidney-transplant patients13-16, there is signifi cant concern that 

immunosuppressants may infl uence the frequency or the suppressive activities of Treg, and 

thus hinder the development of hyporesponsiveness2, 17, 18. The function of CD25bright T cells 

is investigated by measuring the level of suppression of a Teff  population in a proliferation or 

cytokine suppression assay19. In such proliferation suppression assays, the read-out of Treg 

function is the response of the Teff  population. However, both the Treg and Teff  population 

itself may be aff ected by several factors such as kidney failure, uremia, dialysis, the transplant, 

immunosuppressants and other various factors. These factors may aff ect the read-out of Treg 

function, which is disregarded in the suppression assay. Therefore, to analyze changes in Treg 

function, the Teff  population should remain constant in a suppression assay.

In the present study, we investigated whether kidney transplantation infl uences the fre-

quency and allosuppressive function and specifi city of peripheral CD25bright regulatory T cells 

after transplantation. To study the changes in the function of CD25bright T cells, we performed a 

suppression assay in which we determined the suppression of the pre-transplant Teff  popula-

tion in the presence of pre- or post-transplant Treg. 
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MATERIALS AND METHODS

Patients 

Patients were asked by informed consent for their willingness to donate blood, a procedure 

that was approved by the Medical Ethical Commission (METC) of the Erasmus Medical Centre. 

Heparinized peripheral blood was obtained before and 5-24 months after transplantation from 

kidney transplantation patients (n=9) treated with triple therapy consisting of cyclosporine 

(whole blood trough level 178 ng/mL median, ranging from 85 to 250 ng/mL), MMF and low-

dose prednisone. The median age of the patients was 59 yr, ranging from 43 to 68 years. All 

patients received a kidney from a deceased donor. The serum creatinine level decreased to 147 

μM/L after transplantation (median, ranging from 99 to 252 μM/L). The mismatches between 

donor and recipient for HLA A-B-DR were 1.1 ± 0.6 / 1.3 ± 0.7 / 1.1 ± 0.3 (Mean ± SD), respectively. 

Patients (n=18) of an additional cohort for FoxP3 staining received kidneys from a deceased 

donor and were treated with triple therapy consisting of tacrolimus, MMF and prednisone. 

Isolation of Peripheral Blood Lymphocytes

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient centrifugation 

over Ficoll-paque (density 1.077 g/mL) (Amersham Pharmacia Biotech, Uppsala, Sweden). 

PBMC were washed twice with RPMI 1640 medium (BioWhittaker, Verviers, Belgium) and frozen 

in RPMI 1640-DM (Gibco BRL, Scotland, UK) supplemented with 2 mM/L L-glutamine (Gibco 

BRL), 100 IU/mL penicillin (Gibco BRL), 100 μg/mL streptomycin (Gibco BRL), 10% fetal bovine 

serum (FBS) (BioWhittaker), and 10% dimethylsulfoxide (Merck, Schuchardt, Germany) and 

stored at -140˚C until analysis. 

Isolation of human CD25bright cells and fl ow cytometric analysis

Pre- and post transplantation PBMC of each patient were thawed on one day and washed twice 

with FBS and RPMI-1640 supplemented with DNase (20 μg/mL; Roche Molecular Biochemicals, 

Mannheim, Germany) to prevent aggregation of cells. PBMC were suspended in 10 % Human 

Culture Medium (HCM), which consisted of RPMI 1640 medium with L-glutamine (Bio Whit-

taker) supplemented with 10% pooled human serum (Blood Bank, Rotterdam, the Netherlands) 

and 100 IU/mL penicillin (Gibco BRL), 100 μg/mL streptomycin (Gibco BRL). The CD25bright T cells 

were isolated from PBMC after incubation with anti-CD25 microbeads, Miltenyi Biotec, Bergisch 

Gladbach, Germany) followed by a positive selection (POSSEL-program) on the autoMACS 

(Miltenyi Biotech). The untouched residual fraction consisted of CD25-/dim T cells and was used 

as responder population in the MLR. The isolated and the residual fractions were washed 

and resuspended in HCM for functional analysis. The PBMC population and the isolated and 

residual fractions were characterized by fl ow cytometry. The purity of the fractions used for 

functional analysis was determined by fi rst measuring the percentage of CD4+CD25bright in the 

PBMC population and subsequently in the isolated and residual fractions. The purity of CD25+ 
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T cells in the CD25bright isolated fraction was >90%, a typical example is depicted in Figure 1A. 

To determine the CD25 expression per cell, we measured the geometric mean fl uorescence 

intensity (gMFI) of CD25 of the CD4+CD25bright population in the PBMC and in the CD25bright 

isolated fraction. Therefore, we used CD4-PERCP (BD Biosciences, San Jose, CA, USA) and CD25-

PE epitope B (clone M-A251, BD Biosciences). Flow cytometry was performed on a four color 

FACS Calibur machine with Cell Quest Pro software (BD Biosciences). 

In the additional cohort consisting of 18 kidney transplant patients, PBMCs pre- and post-

transplant were isolated and fl ow cytometry was performed with the same monoclonal antibod-

ies as described above, supplemented with FoxP3-APC (clone PCH101; eBioscience, San Diego, 

CA, USA). Calibration was performed at least once a week calibration with reference CaliBRITETM 

beads (unlabeled/FITC/PE/PERCP/APC catalog No. 349502, BD Biosciences). Instrument settings 

of the FACS Calibur machine were comparable in the period when fl ow cytometry was performed.

Proliferation assay

The proliferation capacity of the Teff , the thawed donor and third party PBMC or spleen cells 

(100 μL/5x104 cells per well, in triplicate) was tested by adding phytohemagglutinin (PHA) at 

a fi nal concentration of 1 μg/mL in each well. Proliferation was assessed after 72 hr incubation 

at 37°C in a humidifi ed atmosphere of 5% CO2 of which 3H-thymidine (0.5 μCi/well: Amersham 

Pharmacia Biotech) was added for the last 8 hr before harvesting. 3H-thymidine incorporation 

into DNA was assessed using a Betaplate counter (LKB-Wallac, Turku, Finland).

Treg function was determined by MLR in which the suppressive capacity of pre- or post-

transplant CD25bright cells was measured by their ability to inhibit the proliferative response 

of the pre-transplant Teff . Pre- and post-transplant Treg were co-cultured in triplicate with 

pre-transplant Teff . Irradiated (40 Gy) donor spleen cells and HLA mismatched (2-2-2) third 

party PBMC were used as stimulator cells (1x105 cells/100 μL) and co-cultured with 5x104 

cells/100 μL of a mixture of CD25bright : CD25dim/-  at 1:10, 1:20 and 1:40 ratios in triplicate wells 

in round-bottom 96-well plates (Nunc, Roskilde, Denmark). After 7 days of incubation at 37°C 

in a humidifi ed atmosphere of 5% CO2, proliferation was measured after 3H-thymidine (0.5 μCi/

well: Amersham Pharmacia Biotech) incubation for the last 16 hr before harvesting. 

Calculations and statistical analysis

The median counts per minute (cpm) for each triplicate was determined and the level of sup-

pression of the Teff  population by Treg at diff erent ratios was expressed as the percentage inhi-

bition of the Teff  population. The percentage inhibition is calculated by applying the following 

formula: [(cpm Teff ) – (cpm Teff  + Treg)] / (cpm Teff ) x 100.

Statistical analysis of the fl ow cytometry and MLR data was performed using Graphpad 

Prism (version 4). For the determination of levels of statistical signifi cance, the two-sided prob-

ability values according to the Wilcoxon matched pairs test or Mann Whitney U-test were used. 

P values ≤ 0.05 were considered statistically signifi cant.
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RESULTS

Flow cytometric analysis of the CD4+CD25bright regulatory T cells before and after 
transplantation

The percentage of CD4+CD25bright cells of total CD4+ lymphocytes in PBMC was signifi cantly 

lower after than before transplantation (pre-transplant 8.5% vs. post-Transplant 6.9% median, 

p=0.05, Figure 1B). To defi ne the level of CD25 expression per cell, the gMFI of CD25 of the 

CD25bright T cells was determined in the PBMC population. This was lower after transplantation, 

suggesting that the IL-2α receptor (CD25) is down-regulated (p=0.03, Figure 1C). However, 

instead of CD25, FoxP3 is considered to be the most reliable Treg marker20-23. In the current 
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Figure 1. Phenotyping of CD4+CD25bright T cells by fl ow cytometry

(A) Representative example of phenotyping of CD4+CD25bright T cells. CD4+CD25bright T cells are located in the oval gate and are expressed as 

the percentage of the CD4+ lymphocytes in the PBMC population. The purity of the isolated CD25bright and the residual CD25-/dim fractions is 

determined by gating the CD25bright T cells. (B) The percentage of CD4+CD25bright cells of the CD4+ in PBMC samples before- and after transplant 

was measured, p=0.05. (C) For the CD25-expression per cell, the gMFI of CD25 of the CD25bright cells was assessed in the PBMCs. The gMFI 

signifi cantly decreased after transplantation, p=0.03. Post-Tx, post-transplantation; pre-Tx, pre-transplantation.
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study, we were unfortunately not able to measure the FoxP3 levels because of limited material 

available for fl ow cytometry. Therefore, in an additional new cohort we stained PBMC of 18 

kidney transplant patients for FoxP3 and we found that 70% (median) of the CD4+CD25bright T 

cells were FoxP3+ pre- and post-transplant (data to be published). We also found that 95% of 

the CD4+FoxP3+ cells were located in the CD4+CD25bright population. 

CD25bright T cells of both pre- and post-transplant are able to regulate allogeneic immune 
responses

The function of Treg and Teff  before and after transplantation was studied in the MLR. In 

response to irradiated donor- or third party cells, the isolated CD25bright T cells did not prolifer-

ate, a characteristic feature of Treg, data not shown. When stimulated with donor antigens, 

we observed a signifi cant diff erence in the proliferative response of CD25-/dim T cells before 

compared with after transplantation (Figure 2A), suggesting that the anti-donor responses of 

the Teff  population before and after transplantation are not the same (pre-transplant 13071 

± 4114 cpm vs. post-transplant 7309 ± 4777cpm, mean ± SEM, p=0.08). When pre-transplant 

Treg were reconstituted to pre-transplant Teff , it resulted in a dose-dependent inhibition of the 

proliferation of CD25-/dim T cells. In contrast, when post-transplant Treg were reconstituted to 

post-transplant Teff  this dose-dependent inhibition was less clear (Figure 2A). 

After stimulation with third party antigens, the proliferation of CD25-/dim T cells was com-

parable before and after transplantation (39647 + 13846cpm; 35941 + 9894cpm, mean + SEM 

respectively), as shown in Figure 2B. The isolated Treg pre- and post transplant suppressed the 

third party allogeneic response of both CD25-/dim T cells pre- and post-transplant respectively 

in a dose-dependent manner (Figure 2B). 

The decrease in anti-donor reactivity after transplantation, while the third party reactivity 

remained comparable, suggests that the Teff  population is downregulated by one or more 

factors including Treg.

Post-transplant Treg inhibit the donor-directed response of pre-transplant Teff  stronger than 
pre-transplant Treg

To control for the variability in the proliferation capacity of the Teff  in the read-out of Treg function, 

we subsequently determined the inhibition of the proliferative response of the pre-transplant 

Teff  by Treg isolated before and after transplantation. At a CD25bright : CD25-/dim ratio of 1:10, 

both the pre- and post-transplant Treg were able to suppress the alloreactivity of pre-transplant 

Teff  when stimulated with donor- and third party antigens (Figures 3A and 3B, respectively). 

However, the pre-transplant Teff  seemed more suppressed by post-transplant Treg than by 

pre-transplant Treg (Figures 3A and 3B). As depicted in Figure 3A, when diluting the Treg at a 

CD25bright : CD25-/dim ratio of 1:20, the donor-directed proliferation of the pre-transplant Teff  was 

signifi cantly more suppressed in the presence of the post-Transplant Treg than in the presence 

of the pre-transplant Treg (p=0.05). When comparing the proliferation of the pre-transplant Teff  
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in response to third party alloantigens, again a comparable pattern of improved suppression 

by post-transplant Treg was observed, but this did not reach statistical signifi cance (Figure 3B). 

These results suggest that Treg isolated after transplantation are more potent at suppressing 

the Teff  of before transplantation than Treg isolated before transplantation.

A

B

Figure 2. Suppression assay 

(A) MLR stimulated with donor-antigens before and after transplantation. Note the diff erence in the anti-donor response by the pre-transplant 

Teff  (white bars; mean ± SEM) and post-transplant Teff  (dotted bars; mean ± SEM). The proliferation capacity of the post-transplant Teff  cells is 

lower after transplantation; therefore, inhibition by post-transplant Treg cannot be measured. (B) MLR stimulated with third party alloantigens 

before and after transplantation. The proliferation of the pre- and post-transplant Teff  is inhibited after reconstitution of pre- and post-transplant 

Treg respectively at a CD25bright : CD25-/dim ratio of 1:10, 1:20 and 1:40 in a dose-dependent manner. Error bars represent mean ± SEM
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Subsequently, we determined the suppressive capacity of the Treg by calculating the percentage 

of inhibition of the proliferating Teff  population for the individual patient. As illustrated by Figure 

4A indeed, a larger percentage of proliferating pre-transplant Teff  was inhibited in the presence 

of post-transplant Treg than in the presence of pre-transplant Treg at a CD25bright  :  CD25-/dim  

ratio of 1:20 (pre-transplant 18% vs. post-transplant 55%, median p=0.03). When stimulated with 

third party alloantigens, the regulation of the pre-transplant Teff  by pre- and post-transplant 

Treg was comparable (pre-transplant 49% vs. post-transplant 37%, median, Figure 4B). 

A B

Figure 3. Suppressive capacity of the CD25bright T cells on pre-transplant Teff 

(A) MLR in which the suppression of the pre-transplant Teff  is determined upon stimulation with donor-antigens in the presence of pre-transplant 

Treg (gray bars; mean ± SEM) and post-transplant Treg (black bars; mean ± SEM) at a CD25bright : CD25-/dim ratio of 1:10 and 1:20, p=0.05. (B) 

MLR stimulated with third party antigens in the presence of pre-transplant (gray bars; mean ± SEM) and post-transplant Treg (black bars; mean 

± SEM) at a CD25bright : CD25-/dim ratio of 1:10 and 1:20.

A B

Figure 4. Percentage inhibition of post-transplant Teff  by pre-transplant and post-transplant Treg for the individual patient (A) Percentage 

inhibition of the anti-donor proliferative response of pre-transplant Teff  by pre- and post-transplant Treg at a CD25bright : CD25-/dim ratio of 1:20, 

p=0.03. Median is depicted pre- and post transplant. (B) Percentage inhibition of third party proliferative response of pre-transplant Teff  by pre-

transplant and post-transplant Treg at a CD25bright : CD25-/dim ratio of 1:20. Median is depicted pre- and post transplant. 
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DISCUSSION

After clinical kidney transplantation, CD4+CD25bright regulatory T cells are able to control the 

anti-donor immune response. When in vitro studying the functional capacity of Treg at diff er-

ent time-points in a suppression assay, the variability in the Teff  response is always left out of 

consideration. The Teff  population may be aff ected by several factors as for example kidney 

failure, uremia, dialysis, the transplant, immunosuppressants and other various factors, as the 

proliferation in response to donor-antigens decreased after transplantation (Figure 2A). Given 

that the proliferation capacity of Teff  is the actual read-out of Treg function, comparing Treg 

function of several time-points may lead to a misinterpretation of the results.

In the present study, we excluded the variability of Teff  by performing a suppression assay in 

which the Teff  population was kept constant and not hindered by immunosuppressive drugs. 

Our results demonstrated that after transplantation, lower numbers of CD4+CD25bright T cells and 

a lower CD25 expression per cell are found. However, the donor-directed suppression by Treg 

improved after transplantation (Figures 3A and 4A). These donor-directed Treg might be involved 

in inducing a state of donor-specifi c hyporesponsiveness in the patient on the long term. 

Many experimental animal models have shown that antigen specifi c CD4+CD25bright regula-

tory T cells are involved in the induction and maintenance of tolerance after transplantation24-26. 

In human T cells, Treg function can be examined by studying the indirect and direct pathway. In 

a patient cohort of Salama et al. in 40% of stable renal transplant recipients, there was evidence 

of an antigen-specifi c regulatory CD25+ cell population suppressing responsiveness towards 

alloantigens in the indirect pathway15. Indeed, there was also evidence that in a subset of CNI-

free kidney allograft recipients long after transplantation, functional CD4+CD25bright regulatory 

T cells are present in the peripheral blood that are -at least partially- responsible for the state of 

proliferative donor non-responsiveness13, 16. 

The post-transplant decrease in the percentage of CD4+ T cells that express CD25, and 

the decrease in CD25 expression per cell can be explained by the interaction of cyclosporine, 

steroids and MMF with signaling of cytokines of the IL-2-family, necessary for their homeosta-

sis27-29. In several studies it was found that CNIs reduce the number of circulating regulatory 

T cells in stable transplant recipients30, 31. In addition, Noris et al. clearly demonstrated that 

CD4+CD25bright regulatory T cells do not develop during CsA treatment and they suggest that 

this is due to the immunosuppressive treatment2. Despite our and other in vitro data show-

ing that CNIs negatively aff ect the fraction of Treg after transplantation18, 30, 31, we found an 

improvement in Treg function. Therefore, to study the role of Treg in alloreactivity it is clear that 

functional analysis is critically important. Nowadays, the CD25 molecule is the most commonly 

marker to isolate T cells with regulatory capacities, but FoxP3 is regarded as a more specifi c 

marker to defi ne regulatory T cells, therefore we characterized the CD4+CD25bright T cells also 

for their FoxP3 expression20-23. In an additional new cohort, we stained PBMC of kidney trans-

plant patients for FoxP3. We found that the CD4+CD25bright T cells pre- and post-transplantation 
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predominantly expressed FoxP3. Moreover, our isolated CD25+ T cells did not proliferate upon 

stimulation with antigen and were functional, suggesting that the majority of these cells con-

sist of Treg. These data again emphasize the need of functional analysis of Treg in addition to 

fl owcytometric analysis. 

The improvement in Treg activity after transplantation might be due to an impaired function 

of the immune system of the patient before transplantation that might be infl uenced by several 

factors such as kidney failure, uremia and dialysis. Transplantation as treatment of end-stage 

renal disease results in a better kidney function and may even result in a general ‘boost’ of the 

immune system that in vivo is overruled by immunosuppressive drugs. After transplantation, 

the immune system regains the ability to mount immune responses to foreign pathogens. This 

recovered immune system triggers an anti-donor response and consequently may induce Treg 

activity that is directed against donor-antigens. In vitro this potent response can be measured, 

because the cells are not any more exposed to immunosuppressants. 

It is unknown however, whether donor-specifi c Treg are induced de novo after transplanta-

tion or whether they act as expanded Treg that control alloactivated Teff  cells after transplanta-

tion32. Accumulating evidence suggests that Treg are not only thymically-derived but can also 

be induced from naïve CD25- T cells (adaptive Treg) in the periphery after low-dose antigen 

stimulation24, 33.

Considering the lower percentage of CD4+CD25bright T cells after transplantation in our 

study, it is not very likely that there is induction of de novo (donor-specifi c) Treg by conversion 

or expansion of antigen-specifi c Treg. However, Treg activity could be improved, because the 

proportion of Treg with the memory phenotype is augmented due to induction of donor-

specifi c Treg that corresponds to a smaller compartment with naïve Treg34. The proportion Treg 

with the eff ector memory or central memory phenotype can be measured by fl ow cytometric 

immunostaining for memory markers, such as CD27 and CD45RO. 

To conclude, we report that although the frequency of Treg was even lower after than before 

transplantation, their suppressive capacity after transplantation improved in comparison with 

before transplantation. These Treg may be involved in the development of donor-specifi c hypo-

responsiveness after kidney transplantation, although passive mechanisms as clonal deletion 

and anergy of Teff  against donor-antigens still may also occur4. We, therefore hypothesize that 

to investigate changes in Treg function, the proliferation of the Teff  population that is infl u-

enced by several factors, should remain constant. 

Having these conclusions drawn, one should take into account that the small number of 

patients is a limitation of this study. Finally, since we show that donor-directed Treg are gen-

erated after transplantation, another interesting question to be investigated is whether the 

time-span after transplantation has an eff ect on the existence of donor-directed regulatory T 

cells after transplantation. Therefore, blood samples obtained at fi xed time points after trans-

plantation should be analyzed.
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ABSTRACT

In the search for mechanisms that can induce and maintain transplant tolerance, donor-specifi c 

CD4+CD25brightFoxP3+ regulatory T cells have been frequently mentioned. However, it remains 

to be demonstrated, whether these cells are generated after clinical transplantation. We 

prospectively analyzed the phenotype and function of peripheral regulatory CD4+CD25bright 

T cells of 79 patients before, 3, 6, and 12 months after kidney transplantation. The immune 

regulatory capacities of CD4+CD25bright T cells were assessed by their depletion from peripheral 

blood mononuclear cells (PBMC) and in co-culture with CD25neg/dim responder T-cells in mixed 

lymphocyte reactions (MLR). In the fi rst year after transplantation, the number and proportion 

of CD4+CD25bright T cells signifi cantly decreased (p<0.05 and p<0.001, respectively). In the MLR, 

we observed donor-specifi c hyporesponsiveness in the presence of signifi cantly increased pro-

liferation to third and fourth party-antigens, (p<0.001 and p<0.05, respectively). Furthermore, 

functional analysis of CD25bright cells showed that the eff ect of depletion of these cells from 

PBMC, and their suppressive capacities in co-culture with donor-antigens stimulated CD25neg/

dim responder T-cells (1:10 ratio) signifi cantly improved (p<0.01 and p<0.001, respectively). 

Moreover, the diff erence between the stimulation with donor-antigens and third party-antigens 

became apparent at 6 months after transplantation. These fi ndings demonstrate that donor-

specifi c CD4+CD25bright regulatory T-cell function is generated in fully immune suppressed 

renal recipients in the fi rst year after transplantation.
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INTRODUCTION

The ultimate challenge in organ transplantation is to achieve transplant tolerance. Although 

studies describing this condition after clinical kidney transplantation (KTx) are already 

extremely rare1-3, the development of tolerance in humans remains elusive. Nevertheless, the 

involvement of and even cell therapy with CD4+CD25bright regulatory T cells (Treg) has been 

frequently suggested3-8. 

Associations between tolerance and Treg were found in immunosuppression-free liver 

transplant recipients from whom the proportion and number of Treg was elevated5, 7. Also, in 

a small group of operational tolerant renal recipients the level of peripheral Treg as well as 

the transcription factor for Treg, FoxP3, was higher when compared with patients with chronic 

rejection9, 10. 

Although these fi ndings suggest an association between transplant tolerance and the pres-

ence of Treg, data providing evidence for the presence of functional donor-specifi c Treg after 

transplantation are only available from stable immune suppressed kidney transplant recipi-

ents11-13. However, it remains to be demonstrated that Treg also play a role in the induction of 

donor-specifi c hyporesponsiveness in patients after transplantation. 

Unlike experimental animals, kidney transplant patients receive lifelong immunosuppres-

sion to prevent graft rejection. Because these regimens infl uence T cells14, they may also aff ect 

the induction and function of Treg15. Particularly, because most of these drugs target the IL-2 

pathway, which is crucial for the function, homeostasis and survival of CD4+CD25+FoxP3+ T 

cells16-19. Thus, these immunosuppressive drugs may interfere with the development of donor-

specifi c Treg thereby impairing a potential key player responsible for graft acceptance. 

Therefore, we performed a prospective study on 79 fully immunosuppressed kidney 

transplant patients to determine whether donor-specifi c Treg are induced in the fi rst year after 

transplantation. Understanding the dynamic features of antigen-specifi c regulatory T cells will 

contribute to our understanding of the role of these cells in antidonor reactivity. 
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MATERIALS AND METHODS

Subjects

The medical ethics committee of Erasmus Medical Centre approved the study protocol and all 

patients provided informed consent (medical ethics committee number 2004-264). As part of a 

multicentre trial20, patients were enrolled from March 2004 until March 2006 and follow-up was 

performed for 1 year. We included 79 patients, who were equally randomized to treatment arm 

1 with tacrolimus/rapamycin (n=39) or arm 2 with tacrolimus/mycophenolate mofetil (MMF, 

n=40, Table 1). There were no signifi cant diff erences in patient characteristics between the two 

arms of treatment at baseline. In both arms of treatment, patients received prednisone for the 

fi rst 4 to 6 weeks. The dosing and aimed whole blood trough levels of the study medication 

are summarized in Table 2. Peripheral blood samples were obtained within 24 hr before and 3, 

6, and 12 months after KTx. Blood samples before KTx were obtained before patients received 

immunosuppressive medication. In addition, blood was obtained from 17 healthy controls 

(HC), consisting of 10 men and 7 women with a mean age of 52±8.6 years. These characteristics 

of our HC were comparable with our patient population. 

Flow cytometric analysis

Blood samples were collected in heparinized tubes and analyzed for the presence of T-cell 

subsets by four-color fl ow cytometry using mAbs directly conjugated to fl uorescein isothiocya-

nate (FITC), phycoerythrin (PE), allophycocyanin (APC) or peridinin chlorophyll protein (PerCP). 

One hundred microliters of blood was incubated with 10 μL of the dual mAb combinations 

Table 1. Patient characteristics at baseline

Demographics 
Arm 1

(n=39)
Arm 2

(n=40)
Gender (M/F) 27 / 12 24 / 16

Age (yr) 51 ± 17 51 ± 16

Dialysis type HD/ PD/ ND 20/ 12/ 7 19/ 15/ 6

Time on dialysis (mo) 11 (0-75)* 17 (0-280)*

Origin of donor kidney

Living related/ deceased 25 / 14 27 / 13

1st KTx / >1st KTx 34 / 5 p35 / 5

HLA A mismatch 1.0 ± 0.7 0.9 ± 0.7

HLA B mismatch 1.1 ± 0.7 1.2 ± 0.7

HLA DR mismatch 1.1 ± 0.7 1.0 ± 0.7

Primary kidney disease

Immunological disease   

Hypertensive nephropathy

Diabetic nephropathy

Unknown

Polycystic kidney disease

Urological disease

8

8

6

7

5

5

9

8

8

7

5

3

Mean ± SD, *Median (range), Arm 1; Tacrolimus/Rapamycin, Arm 2; Tacrolimus/MMF, HD=Hemodialysis, PD=Peritoneal Dialysis, ND=No Dialysis
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CD45-FITC/CD14-PE; IgG1-FITC/IgG2b-PE; IgG1-PerCP/ IgG1-APC as isotype control. Furthermore, 

we used the mAb CD3-FITC, CD4-PerCP, CD8-APC and CD25-PE. To further determine how 

Treg evolve, we added a combination of CD4-PerPC/CD25-PE/CD45RO-APC/CCR7-FITC to 100 

μL whole blood. The antibodies were purchased from BD Biosciences (San Jose, CA) and R&D 

Systems (Abingdon, UK). After 30 min of incubation at room temperature, red blood cells were 

lysed with fl uorescence-activated cell sorter solution (BD Biosciences) during 10 min. Cells 

were then washed twice, and analyzed on a fl ow cytometer (FACSCalibur, BD Biosciences) 

using SimulSet and CELL Quest Pro software (BD Biosciences). To establish an analysis gate that 

included at least 90% of the lymphocytes, the CD45/CD14 reagent was used. At least 20,000 

gated lymphocyte events were acquired from each tube. Cells with a CD45RO- phenotype were 

considered to be naive cells and cells with a CD45RO+ phenotype memory cells. 

Expression of FoxP3 and CD127

FoxP3 is a transcription marker for Treg and in July 2006 it was shown that the expression of 

CD127 inversely correlates with FoxP3 expression and the suppressive function of Treg21. We 

began the experiments on our study cohort using fresh materials before the anti-FoxP3 anti-

body became available for analysis (eBioscience, San Diego, CA, USA) and before its correlation 

with CD127 was reported. Therefore, to gain insight into the expression profi le of FoxP3 and 

CD127 in our patient materials, we stained peripheral blood samples of an additional cohort 

of patients (n=34). These samples were taken 24 hr pre KTx and stained with CD4-PerCP (BD 

Biosciences), CD25-PE (epitope B, BD PharMingen, San Diego, CA), CD127-FITC (eBioscience) 

and FoxP3-APC (clone PCH101, eBioscience). Patient characteristics from this additional cohort 

were comparable with our study population from Table 1.

Isolation of peripheral blood lymphocytes

Peripheral blood mononuclear cells (PBMC) were isolated from 49 mL heparinized peripheral 

blood by density gradient centrifugation using Ficoll-Paque (density 1.077 g/mL; Amersham, 

Uppsala, Sweden). PBMC were collected from the interphase, washed twice in Roswell Park 

Table 2. Dosing and trough levels of study medication

Pre-operative
Post-

operative
Day
1-14

Day
15-28

Day
28-42

Day
43-365

Tacrolimus arm 1
0.2 

mg/kg*

0.2

 mg/kg

10-15 

 ng/mL**

4-8 

ng/mL

4-8 

ng/mL

4-6 

ng/mL

Sirolimus arm 1 - 6 mg 2 mg 2 mg 1 mg -

Tacrolimus arm 2
0.2 

mg/kg

0.2 

mg/kg

10-15 

ng/mL

8-12 

ng/mL

8-12 

ng/mL

5-10 

ng/mL

MMF arm 2
1000 

mg
-

2 x 1000 

mg/d

2 x 500 

mg/d

2 x 500 

mg/d

2 x 500 

mg/d

(Methyl)prednisone 500 mg*** 125 mg 20 mg 15 mg 5 mg -

*The initial daily dose is 0.2 mg/kg p.o. given in two doses (pre/postoperatively), **and then adjusted by whole blood trough levels. *** 

intravenously bolus.
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Memorial Institute 1640 (BioWhittaker, Verviers, Belgium) and resuspended in Human Culture 

Medium (HCM) consisting of Roswell Park Memorial Institute 1640-Dutch Modifi cation (Gibco, 

BRL, Scotland, UK) supplemented with 10% heat inactivated pooled human serum, 4 mM 

L-Glutamine (Gibco BRL), 100 IU/mL penicillin (Gibco BRL) and 100 μg/mL streptomycin (Gibco 

BRL). 

Isolation of CD25bright cells

After isolation, PBMC were washed once and resuspended in 45μL MACS-buff er/10x106 PBMC 

prepared according to the manufacturer’s protocol (Miltenyi, Bergisch Gladbach, Germany). The 

CD25bright cells were depleted from PBMC by incubating PBMC with anti-CD25 microbeads (Epi-

tope A, Miltenyi Biotec) followed by a positive selection (POSSELD-program) on the autoMACS 

(Miltenyi). Cells not selected by the microbeads were referred to as the CD25neg/dim fraction11. 

To control for the autoMACS procedure, 6x106 PBMC were treated by the same protocol in the 

absence of anti-CD25 microbeads. 

Purity of the fractions was measured by fl ow cytometry using CD3-FITC, CD4-PerCP, CD8-

APC (BD Bioscience) and CD25-PE (epitope B, BD PharMingen). Phenotypical analysis of both 

fractions demonstrated that the average proportion of CD4+ cells in the CD25bright fraction was 

95% and in the CD25neg/dim fraction 62% (Figures 1A and B). The proportion of CD4+CD25bright 

cells in the CD25bright fraction was 72% (Figure 1C) and the proportion of CD4+CD25neg/dim cells 

in the CD25neg/dim fraction was 96% (Figure 1D). These proportions were not diff erent over time 

and comparable with proportions measured in samples from HC (Figure 1).  

Mixed Lymphocyte Reactions

In the MLR, 5x104 freshly isolated patient-PBMC and CD25neg/dim cells were stimulated with 

5x104 irradiated (40 Gy) donor PBMC (donor-antigens) and 5x104 (40 Gy) HLA A, B and DR fully 

mismatched third party PBMC. Because it has been described that improved histocompatibility 

between recipient and donor enhances immune regulation and graft survival after KTx22, we 

also stimulated patient-PBMC and CD25neg/dim cells with 5x104 (40 Gy) fourth party PBMC. 

Fourth party PBMC have the same number of mismatches at the HLA A, B and DR level to the 

recipient as the donor to the recipient, but the mismatches are based on diff erent antigens. 

The same third party and fourth party were used for an individual patient at all analysed time 

points. The MLR was performed in HCM, in triplicate, in a 96-wells round bottom plate for 7 

days. At day 6, 3H-thymidine 0.5 μCi/well was added to the culture; and 16 hr later, samples 

were harvested and radioactivity was measured in counts per minute (CPM) using a β-counter 

(PerkinElmer, Oosterhout, the Netherlands).

Regulation of alloantigens stimulated responder cells by CD25bright cells

Regulation of proliferation by CD25bright cells was quantifi ed both by their depletion from PBMC 

and in co-culture experiments with the CD25neg/dim responder cells. After depletion the increase 
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in proliferation refl ects the regulatory capacity of the CD25bright cells. To compare the eff ect of 

depletion over time, we calculated the percentage of increase (% increase) in those cultures 

where the eff ect of depletion was positive. 

% Increase= CPM CD25neg/dim cells – (CPM PBMC)

  CPM CD25neg/dim cells   x 100

In the MLR, isolated CD25bright cells were added to CD25neg/dim responder cells at a ratio of 1:5, 

1:10, 1:20, and 1:40. The eff ect was calculated as the percentage of inhibition (% IH), when the 

proliferative response of alloactivated CD25neg/dim cells was more than 1000 CPM; and the eff ect 

of depletion was positive. 

% Inhibition=  CPM CD25neg/dim cells – (CPM CD25neg/dim cells + CD25bright cells)

  CPM CD25neg/dim cells  x 100

A

B

C

D

Figure 1. Isolation of CD25bright cells by autoMACS

(A-B) The average proportion of CD4+ cells in the isolated CD25bright fraction was 95% and 62% in the CD25neg/dim fraction. (C) In the CD25bright 

fraction, the proportion of CD4+CD25bright cells was 72%. (D) The proportion of CD4+CD25neg/dim cells in the CD25neg/dim fraction was 96%. 

Proportions were not diff erent over time (ANOVA) and comparable to proportions measured in samples from healthy controls (Unpaired t test). 

All data were normally distributed.
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Proliferation of mitogen stimulated cells 

We determined the capacity of PBMC and CD25neg/dim cells (5x104) to proliferate upon stimulation 

with 1 μg/mL Phytohemagglutinin (PHA; Murex Biotech LTd, Kent, UK). All cultures were per-

formed in HCM, in triplicate in a 96-wells plate for 3 days. At day 2, 3H-thymidine 0.5 μCi/well was 

added to the culture; and 16 hr later, the samples were harvested and radioactivity was counted.

Statistical Analysis

All calculations were performed using GraphPad Prism 4.0 or SPSS 11.5. On the basis of the dis-

tribution of the data, we performed parametric or nonparametric testing. For paired analysis, the 

paired t test was performed; and to compare data from patients versus HC, we used the unpaired t 

test. For nonparametric testing, the Mann Whitney U test was performed. To determine if a certain 

parameter changed signifi cantly over time, One-Way ANOVA or Kruskal Wallis test was used. To 

analyze several variables at a fi xed time point, Cox or linear regression analysis was performed. A 

p value less than 0.05 is marked with *, p less than 0.01 with **, and p less than 0.001 with ***. For 

each analysis, statistics are described more specifi cally in the appropriate table and fi gure legends.

RESULTS 

Of 79 randomized patients receiving a kidney transplant, 62 (78%) completed the study and 

17 (22%) were withdrawn due to adverse events. There was no diff erence between patients 

treated in arm 1 (tacrolimus/rapamycin) or arm 2 (tacrolimus/MMF) for adverse events (8 vs. 9), 

patient survival (97% vs. 98%), graft survival (97% vs. 93%), rejection incidence (13% vs. 10%), 

or renal function (serum creatinine 119 μmol/L vs. 130 μmol/L) at one year. Blood trough levels 

of the medication were within target range. The trough levels of tacrolimus were higher in arm 

2 than in arm 1, which was consistent with the study protocol (Table 2). All the patients who 

had rejection were treated with antirejection therapy and are therefore described separately. 

Characterization of CD4+CD25bright regulatory T cells

Analysis of whole blood samples from patients and healthy controls (HC) was performed for 

lymphocyte subsets, including Treg defi ned as the CD4+CD25bright T-cell population in combi-

nation with slightly less CD4 expression (Figure 2A). Flow cytometry showed that the absolute 

number of Treg and their proportion, decreased within the fi rst year after KTx (Table 3 and 

Figure 2B, p<0.05 and p<0.001, respectively). 

We also analyzed the expression of CD45RO, CCR7, FoxP3 and CD127 by Treg. These 

results revealed that the absolute number of CD4+CD25brightCD45RO+ cells (Table 3) and 

their proportion decreased after KTx (p<0.05 and p=0.06, respectively). The absolute number 

of CD4+CD25brightCCR7+ cells did not change in the fi rst year after transplantation (Table 3), 

whereas their proportion increased (p<0.01). 
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As described in Materials and Methods we determined the expression of FoxP3 and CD127 

by Treg on peripheral blood samples from an additional cohort of patients before KTx. Based 

on the gate in Figure 2A, the average percentage of Treg that expressed FoxP3 was 72%. This 

fi nding is in line with the results described in an article by Liu et al21. The average percentage of 

FoxP3+ Treg with a CD127neg/low phenotype was 87%. 

A B

Figure 2. Phenotypic analysis of whole blood 

(A) Dotplot of CD3+ T cells stained for CD4 and CD25 gated for the CD4+CD25bright cells. (B) The data were normally distributed and statistical 

analysis showed that the percentage of CD4+CD25bright T cells of CD4+ T cells from patients decreased in the fi rst year after transplantation 

(ANOVA, p<0.001) and was lower than healthy controls (HC) at 12 mo (Unpaired t test, p<0.001).

Table 3. Flow cytometric results of patients without rejection

Cell Subsets Month 0 Month 3 Month 6 Month 12 HC

CD3+
792**

(695-890)

859

(698-1025)

872*

(759-986)

900

(774-1027)

1150

(810-1490)

CD8+
298

(250-346)

348

(267-429)

353

(291-415)

357

(290-424)

375

(213-536)

CD4+
488***

(423-554)

505*

(409-601)

509**

(440-577)

527**

(455-600)

772

(571-974)

CD25bright
38**

(33-43)

34**

(27-41)

33***

(28-28)

32***

(27-37)

60

(43-77)

CD25brightCD45RO+
33**

(29-37)

26***

(22-31)

26***

(22-30)

26***

(22-29)

48

(34-62)

CD25brightCCR7+
22***

(19-25)

23**

(17-27)

22***

(18-26)

22***

(18-26)

41

(28-53)

Absolute numbers in cell/μL (mean & 95% CI), HC = Healthy Controls. All data were normally distributed. An unpaired t test was performed for 

patients versus HC at all time points. One way ANOVA demonstrated that the number of CD4+CD25bright cells and CD4+CD25brightCD45RO+ cells 

signifi cantly decreased over time (both p<0.05). Signifi cance is presented as * p<0.05, ** p<0.01, *** p<0.001.
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Proliferation of PBMC 

The average proliferation of patient-PBMC to the mitogen PHA was more than 51000 CPM at all 

tested time points and comparable with the proliferation of PBMC from HC (57000 CPM). Before 

transplantation, proliferation of patient PBMC to donor-antigens, third and fourth party-anti-

gens was signifi cantly lower as compared with proliferation of PBMC from HC to alloantigens 

(Figure 3, all p<0.001). After transplantation, proliferation of PBMC to donor-antigens remained 

low whereas increasing proliferation to third and fourth party-antigens, was measured (Figure 

3, p<0.001 and p<0.05, respectively). Thus, we observed a proportional hyporesponsiveness 

towards donor-antigens.

The suppressive function of CD25bright cells

The eff ect of depletion of CD25bright cells from PBMC on direct alloresponses was determined in 

MLR. Because of the limited amount of peripheral blood available from our patients, we could 

not analyze the eff ect of depletion of CD25bright cells in cultures stimulated with fourth party-

antigens. After depletion of the CD25bright fraction, we observed an overall increase of the pro-

liferative response in cultures stimulated with donor-antigens and third party-antigens before 

and after transplantation (Figure 4A). Before transplantation, the average eff ect of depletion on 

proliferative responses of alloreactive cells was 51% on stimulation with donor-antigens and 

Figure 3. Proliferation of PBMC

The data were not always normally distributed and therefore statistical analysis was based on a nonparametric distribution. Before 

transplantation, proliferation of patient-PBMC to donor-antigens, third party antigens and fourth party antigens was signifi cantly lower as 

compared to proliferation of PBMC from healthy controls to alloantigens (Mann Whitney U test, all p<0.001). After transplantation, proliferation 

to donor-antigens remained low, while the response to third party antigens and fourth party antigens increased (Kruskal-Wallis Test, p<0.001 

and p<0.05 respectively).  
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57% upon stimulation with third party-antigens (Figure 4B). After transplantation, the eff ect 

of depletion increased signifi cantly in co-cultures stimulated with donor-antigens and less so 

with third party-antigens (Figure 4B, p<0.01 and p=0.07, respectively). Furthermore, at 6 and 

12 months after transplantation the % increase was higher in cultures stimulated with donor-

antigens than with third party-antigens (Figure 4B, p<0.05 and p=0.09, respectively).

The suppressive capacity of the isolated CD25bright cells on a per cell basis was determined in 

co-culture experiments with CD25neg/dim responder cells. The isolated CD25bright cells did not pro-

liferate upon stimulation with allo-antigens. Co-culture experiments proved that the suppressive 

eff ect of CD25bright cells on CD25neg/dim responder cells is a dose-dependent phenomenon (Fig-

ures 4C and D). Before transplantation, the capacity of CD25bright cells to suppress donor-antigens 

or third party-antigens stimulated CD25neg/dim responder cells (ratio 1:10) was signifi cantly lower 

when compared with HC, (both p<0.05, Figure 4E). After transplantation, the average suppressive 

capacity of CD25bright T cells improved signifi cantly in cultures stimulated with donor-antigens (Fig-

ure 4E, 51%-75%, p<0.001), but not with third party-antigens (50%-57%, p=0.49). Furthermore, at 

6 and 12 months after transplantation, the capacity of CD25bright cells to suppress donor-antigens 

stimulated CD25neg/dim cells was signifi cantly higher than on stimulation with third party-antigens 

(Figure 4E, p<0.01 and p<0.001 respectively). The results on the % inhibition at a 1:10 ratio were 

comparable with the ratio of 1:5, 1:20 and 1:40, but signifi cance was lost at 1:20 and 1:40. 

Rejectors versus non-rejectors

In this study, 9 out of 79 patients (11%) had a rejection episode. All rejections occurred in the 

fi rst month after transplantation (median 12 days; range 3-28). Antirejection therapy consisted 

of high dose solumedrol. At baseline, no diff erences were found between rejectors and non-

rejectors for clinical characteristics, fl ow cytometric results, proliferation of PBMC and the sup-

pressive function of CD25bright cells. Therefore, we found none of these factors are a predictor 

for rejection before transplantation. 

We analyzed the suppressive capacity of CD25bright cells from rejectors at 12 months after trans-

plantation. Our results show that this suppressive capacity in co-cultures of CD25neg/dim responder 

cells stimulated with donor-antigens or third party-antigens was not diff erent from nonrejectors 

at month 12. This is in line with a study from Demirkiran et al.23 on liver transplant recipients.

Immunosuppressive drugs: tacrolimus/MMF versus tacrolimus/rapamycin

We compared the two arms of treatment to determine whether therapy with tacrolimus/MMF 

versus tacrolimus/rapamycin aff ected Treg diff erently. No diff erence was observed for any of 

the phenotypical or functional Treg-characteristics analyzed in this study between these arms 

of treatment. 
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A B

C

D

E

Figure 4. Functional analysis of CD25bright cells

Except for the data in (A), all data were normally distributed. (A) PBMC (+) and CD25neg/dim cells (-). Depletion of CD25bright cells from PBMC 

resulted in improved proliferation in donor-antigens and third party-antigens stimulated co-cultures from patients before (0) and 12 mo after 

transplantation (Mann Whitney U test). (B) The eff ect of depletion was calculated as the percentage increase. After transplantation, the eff ect of 

depletion increased signifi cantly in co-cultures stimulated with donor-antigens and less vigorously with third party antigens (ANOVA, p<0.01 and 

p=0.07, respectively). At 6 and 12 mo, the percentage increase was higher in co-cultures stimulated with donor-antigens than with third party 

antigens (paired t-test, p<0.05 and p=0.09, respectively). (C-D) In HC and patients (12 mo, third party antigens stimulated co-cultures), inhibition 

of alloantigens stimulated CD25neg/dim cells by CD25bright cells proved to be dose dependent. (E) The suppressive capacity of CD25bright cells was 

calculated as the percentage inhibition. Before transplantation, the percentage inhibition was signifi cantly lower in co-cultures stimulated with 

donor-antigens and third party antigens when compared to HC (unpaired t test, both p<0.05). After transplantation, the percentage inhibition 

increased in co-cultures stimulated with donor-antigens (ANOVA, p<0.001), but not signifi cantly with third party antigens (p=0.49). At 6 and 

12 mo, the percentage inhibition was signifi cantly higher in co-cultures stimulated with donor-antigens than with third party antigens (paired t 

test, p<0.01 and p<0.001, respectively). 
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Multivariate analysis 

In a multivariate analysis the factors like gender, recipient age, dialysis type, time on dialysis, 

origin of donor kidney, fi rst KTx/more than fi rst, number of HLA mismatches, primary kidney 

disease, blood group, cytomegalovirus status, and the level of panel reactive antibodies before 

KTx were not associated with the number, proportion, or function of CD25bright T cells on a fi xed 

time point or over time.

DISCUSSION

To investigate whether donor-specifi c CD4+CD25bright regulatory T-cell function is generated in 

de novo kidney transplant recipients; we prospectively analyzed their suppressive capacity in 

the fi rst year after transplantation. In the MLR, depletion of CD25bright cells from PBMC, and their 

capacity to suppress the proliferation of CD25neg/dim cells, demonstrated improved Treg func-

tion in the fi rst year. We also found donor-specifi c hyporesponsiveness, whereas Treg activity 

was signifi cantly more donor-directed compared with third party-antigens. 

Data from in vitro and animal studies indicated that immunosuppressive drugs have detri-

mental eff ects on Treg15, 17, 24. However, the development of donor-specifi c Treg in the present 

study shows that the immune system can bypass these unfavorable eff ects in vivo to a certain 

extent. Apart from the restored kidney function25, an explanation might be that immunosup-

pressive drugs like cyclosporine and tacrolimus do not inhibit the transcription of IL-214, an 

important cytokine for the function and survival of CD4+CD25brightFoxP3+ T cells16-19. However, 

the pivotal role for this cytokine was not always observed26, as other members of the IL-2 family 

may compensate for the absence of IL-218, 27. This probably results from their shared signalling 

through the common gamma chain (i.e. CD132), which activates the signal transducer and acti-

vator of transcription factor 5 (STAT5), and therefore induces the expression of the transcription 

factor for regulatory cells FoxP38, 28, 29. 

The observed donor-specifi c hyporesponsiveness as compared with the reactivity to third 

and fourth party-antigens did not result from better histocompatibility between donor and 

recipient22. Regulation could be another explanation. Indeed, the suppressive function of Treg 

from our patients became increasingly potent to donor-antigens stimulated cultures after 

transplantation. It has been reported that Treg respond dynamically to their antigenic environ-

ment in a transgenic mouse model, which showed that these regulatory T cells proliferated 

in response to T-cell receptor engagement30. In the transplantation setting, the continuous 

presence of donor-antigens could therefore stimulate the peripheral proliferation and accu-

mulation of Treg. Moreover, it has been reported that operationally tolerant patients have an 

unexpected strongly altered T-cell receptor Vβ usage and high TCR transcript accumulation in 

selected T cells31. This may explain why we found generation of donor-specifi c regulatory T cell 

function and not higher Treg numbers. Also, development of potent Treg might be favoured 
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by the lymphopaenic state of transplant patients (Table 3), because stimuli that originate from 

lymphopaenia favor their homeostatic proliferation and enhance their suppressor function32. 

In the present study, we measured donor-specifi c hyporesponsiveness in the direct pathway 

of allorecognition, which was mediated by CD4+CD25bright Treg. In contrast, a cross-sectional 

study from Game et al.33 stated that Treg do not contribute to the direct pathway of hypore-

sponsiveness in stable transplant patients. The diff erence between their fi ndings and the pres-

ent study may be explained by diff erences in immunosuppressive strategies, the lower number 

of patients studied (n=12 vs. n=79) and the time after transplantation (2-20 years vs. ≤1 year, 

respectively). Especially the latter may be essential, because the indirect pathway becomes 

more important in the long term4. In addition, other mechanisms could be envisioned that 

contribute to the measured donor-specifi c hyporesponsiveness, including anergy, ignorance 

and clonal deletion of donor-specifi c eff ector T cells. 

The generation of donor-specifi c Treg function occurred in the presence of immunosuppres-

sive agents that have the potential to hamper their development and suppressive function15, 24, 

27. Therefore, the individual eff ect of these drugs or their combinations may still have infl uenced 

the dynamics by which donor-specifi c Treg function is generated. Several studies indicated 

that rapamycin does not interfere with the suppressive activity of CD4+CD25brightFoxP3+ T cells 

and favors their expansion in vivo34-36, whereas MMF and calcineurin inhibitors for example, 

tacrolimus prevent the expansion of these cells14, 34. Here, we did not observe a diff erence 

in the eff ect of treatment with tacrolimus/rapamycin or tacrolimus/MMF on the number and 

function of Treg. These fi ndings can be explained by the dominant eff ect of tacrolimus in both 

arms of treatment. Especially, because calcineurin inhibitor-based treatment is associated with 

decreased numbers of Treg and possibly impairs their functional development15, 24, 34, 37. 

Another explanation for the observed changes in the peripheral compartment may be an 

increased recruitment of Treg to secondary lymphoid tissues and the transplanted organ26, 30, 35, 

38-40. CCR7 is a homing marker for the lymphoid tissues and in this study we demonstrated that 

the proportion of Treg that expressed CCR7 signifi cantly increased. This suggests an increased 

potential of the peripheral Treg compartment to home to lymphoid tissues41, 42. Also CCR7 is 

expressed by naive T cells41, 42 and indeed fl ow cytometric analysis revealed a decreased pro-

portion of Treg with a memory phenotype, indicating an increased proportion of naive Treg. 

Because it has been demonstrated that especially naive Treg give rise to potent antigen-specifi c 

Treg43, their strong proportional increase may have favored the development of the observed 

donor-specifi c Treg function. 

In summary, we prospectively analyzed the development of peripheral CD4+CD25bright 

T cells from kidney transplant recipients in the fi rst year after transplantation. Our results 

demonstrated that even in the presence of full immunosuppression potent donor-specifi c 

CD4+CD25bright regulatory T-cell function is generated in these patients.  



Donorspecifi c Regulatory T Cells in Kidney Transplant Patients 59

ACKNOWLEDGEMENTS

The authors thank dr. Nicolle Litjens for her help with the fl ow cytometric measurements and 

for her advice with the interpretation of the data.



Ch
ap

te
r 3

60

REFERENCES

 1. VanBuskirk, A.M. et al. Human allograft acceptance is associated with immune regulation. J Clin Invest 
106, 145-155 (2000).

 2. Strober, S., Benike, C., Krishnaswamy, S., Engleman, E.G. & Grumet, F.C. Clinical transplantation toler-
ance twelve years after prospective withdrawal of immunosuppressive drugs: studies of chimerism 
and anti-donor reactivity. Transplantation 69, 1549-1554 (2000).

 3. Roussey-Kesler, G. et al. Clinical operational tolerance after kidney transplantation. Am J Transplant 6, 
736-746 (2006).

 4. Salama, A.D., Najafi an, N., Clarkson, M.R., Harmon, W.E. & Sayegh, M.H. Regulatory CD25+ T cells in 
human kidney transplant recipients. J Am Soc Nephrol 14, 1643-1651 (2003).

 5. Li, Y. et al. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric 
living donor liver transplantation. Am J Transplant 4, 2118-2125 (2004).

 6. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological 
tolerance to self and non-self. Nat Immunol 6, 345-352 (2005).

 7. Martinez-Llordella, M. et al. Multiparameter immune profi ling of operational tolerance in liver trans-
plantation. Am J Transplant 7, 309-319 (2007).

 8. Long, E. & Wood, K.J. Understanding FOXP3: Progress Towards Achieving Transplantation Tolerance. 
Transplantation 84, 459-461 (2007).

 9. Louis, S. et al. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational 
drug-free tolerance. Transplantation 81, 398-407 (2006).

 10. Brouard, S. et al. Identifi cation of a peripheral blood transcriptional biomarker panel associated with 
operational renal allograft tolerance. Proc Natl Acad Sci U S A 104, 15448-15453 (2007).

 11. Velthuis, J.H., Mol, W.M., Weimar, W. & Baan, C.C. CD4+CD25bright+ regulatory T cells can mediate 
donor nonreactivity in long-term immunosuppressed kidney allograft patients. Am J Transplant 6, 
2955-2964 (2006).

 12. Bestard, O. et al. Achieving donor-specifi c hyporesponsiveness is associated with FOXP3+ regulatory 
T cell recruitment in human renal allograft infi ltrates. J Immunol 179, 4901-4909 (2007).

 13. Akl, A. et al. An investigation to assess the potential of CD25(high)CD4(+) T cells to regulate responses 
to donor alloantigens in clinically stable renal transplant recipients. Transpl Int 21, 65-73 (2008).

 14. Halloran, P.F. Immunosuppressive drugs for kidney transplantation. N Engl J Med 351, 2715-2729 
(2004).

 15. Demirkiran, A., Hendrikx, T.K., Baan, C.C. & van der Laan, L.J. Impact of Immunosuppressive Drugs 
on CD4+CD25+FOXP3+ Regulatory T Cells: Does In Vitro Evidence Translate to the Clinical Setting? 
Transplantation 85, 783-789 (2008).

 16. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 is critically required for 
the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol 172, 6519-6523 (2004).

 17. Baan, C.C. et al. Diff erential eff ect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on 
the induction of FOXP3 in human T cells. Transplantation 80, 110-117 (2005).

 18. Maloy, K.J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fi t. Nat Immunol 6, 1071-1072 
(2005).

 19. D’Cruz, L.M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T 
cells in the absence of interleukin 2 signaling. Nat Immunol 6, 1152-1159 (2005).

 20. E. van Gurp. Renal function following kidney transplantation is equally good regardless of whether 
tacrolimus is combined with sirolimus or mycophenolate mofetil [abstract]. Transpl Int 20, 25 (2007).

 21. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human 
CD4+ T reg cells. J Exp Med 203, 1701-1711 (2006).

 22. Rodriguez, D.S. et al. Immune regulation and graft survival in kidney transplant recipients are both 
enhanced by human leukocyte antigen matching. Am J Transplant 4, 537-543 (2004).



Donorspecifi c Regulatory T Cells in Kidney Transplant Patients 61

 23. Demirkiran, A. et al. Low circulating regulatory T-cell levels after acute rejection in liver transplanta-
tion. Liver Transpl 12, 277-284 (2006).

 24. Coenen, J.J. et al. Rapamycin, not cyclosporine, permits thymic generation and peripheral preserva-
tion of CD4+ CD25+ FoxP3+ T cells. Bone Marrow Transplant 39, 537-545 (2007).

 25. Meyer, T.W. & Hostetter, T.H. Uremia. N Engl J Med 357, 1316-1325 (2007).
 26. Lohr, J., Knoechel, B. & Abbas, A.K. Regulatory T cells in the periphery. Immunol Rev 212, 149-162 

(2006).
 27. Yates, J. et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and 

IL-15 preserve optimal suppressive potency in vitro. Int Immunol 19, 785-799 (2007).
 28. Antov, A., Yang, L., Vig, M., Baltimore, D. & Van Parijs, L. Essential role for STAT5 signaling in CD25+CD4+ 

regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol 171, 3435-3441 
(2003).

 29. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a 
STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571-1579 
(2006).

 30. Walker, L.S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A.K. Antigen-dependent proliferation of 
CD4+ CD25+ regulatory T cells in vivo. J Exp Med 198, 249-258 (2003).

 31. Brouard, S. et al. Operationally tolerant and minimally immunosuppressed kidney recipients display 
strongly altered blood T-cell clonal regulation. Am J Transplant 5, 330-340 (2005).

 32. Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4(+)
CD25(+) suppressor T cells in vivo. Nat Immunol 3, 33-41 (2002).

 33. Game, D.S., Hernandez-Fuentes, M.P., Chaudhry, A.N. & Lechler, R.I. CD4+CD25+ regulatory T cells do 
not signifi cantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. 
J Am Soc Nephrol 14, 1652-1661 (2003).

 34. Zeiser, R. et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleu-
kin-2 production. Blood 108, 390-399 (2006).

 35. Coenen, J.J., Koenen, H.J., van Rijssen, E., Hilbrands, L.B. & Joosten, I. Rapamycin, and not cyclosporin 
A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood 
107, 1018-1023 (2006).

 36. Game, D.S., Hernandez-Fuentes, M.P. & Lechler, R.I. Everolimus and basiliximab permit suppression by 
human CD4+CD25+ cells in vitro. Am J Transplant 5, 454-464 (2005).

 37. Gao, W. et al. Contrasting Eff ects of Cyclosporine and Rapamycin in De Novo Generation of Alloanti-
gen-Specifi c Regulatory T Cells. Am J Transplant 7, 1-11 (2007).

 38. Muthukumar, T. et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 
353, 2342-2351 (2005).

 39. Dijke, I.E. et al. Intragraft FOXP3 mRNA expression refl ects antidonor immune reactivity in cardiac 
allograft patients. Transplantation 83, 1477-1484 (2007).

 40. Veronese, F. et al. Pathological and clinical correlates of FOXP3+ cells in renal allografts during acute 
rejection. Am J Transplant 7, 914-922 (2007).

 41. Valmori, D., Merlo, A., Souleimanian, N.E., Hesdorff er, C.S. & Ayyoub, M. A peripheral circulating com-
partment of natural naive CD4 Tregs. J Clin Invest 115, 1953-1962 (2005).

 42. Menning, A. et al. Distinctive role of CCR7 in migration and functional activity of naive- and eff ector/
memory-like Treg subsets. Eur J Immunol 37, 1575-1583 (2007).

 43. Hoff mann, P. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homoge-
neous regulatory T-cell lines upon in vitro expansion. Blood 108, 4260-4267 (2006).





Cha pter 4
The Eff ect of Rabbit Anti-Thymocyte Globulin 

Induction Therapy on Regulatory T cells in 
Kidney Transplant Patients

Nephrology Dialysis and Transplantation 24, 1635-1644 (2009)

Varsha D.K.D. Sewgobind1,2, Marcia M.L. Kho1, Luc J.W. van der Laan2, 

Thijs K. Hendrikx1, Thea van Dam1, Hugo W. Tilanus2, Jan N.M. IJzermans2, 

Willem Weimar1 and Carla C. Baan1

Departments of 1Internal Medicine and 2Surgery

Erasmus MC, University Medical Center Rotterdam, the Netherlands



Ch
ap

te
r 4

64

ABSTRACT

Prevention of alloreactivity by rabbit Anti-Thymocyte Globulins (rATG) may not only result 

from immunodepletion, but also from the induction of T cells that control allogeneic immune 

responses. In the present prospective and controlled study, we investigated the eff ect of rATG 

on the frequency, function and phenotype of peripheral immunoregulatory CD4+ T cells in 

kidney transplant patients. After transplantation, 16 patients received ATG-induction therapy 

and triple therapy consisting of tacrolimus, mycophenolate mofetil (MMF) and steroids. The 

control group (n=18) received triple therapy only. By fl ow cytometry, T cells were analyzed 

for CD25, FoxP3, CD127, CD45RO and CCR7. To study their suppressive capacities, CD25bright T 

cells were co-cultured with CD25-/dim T cells (Teff ) in mixed lymphocyte reactions, stimulated 

with donor and third party (3P)-antigens. Pre-transplant levels of FoxP3+CD127-/low T cells were 

6% of CD4+ T cells. One wk post-ATG treatment, no measurable numbers of regulatory T cells 

were present (p<0.01). After 4 weeks, the cell numbers of CD4+FoxP3+CD127-/low T cells slowly 

reappeared and thereafter remained low (p<0.01). At 14 weeks, a signifi cant shift towards the 

CD45RO+CCR7+ (central memory) phenotype within CD4+FoxP3+ T cells was observed (p<0.01). 

At 26 weeks, the proliferative alloresponses of the peripheral blood mononuclear cells (PBMC) 

and CD25-/dim Teff  profoundly decreased compared with pre-transplant (p=0.01 and p=0.02 

respectively), while the regulatory capacity of the CD25bright T cells, of which 90% consisted of 

FoxP3+CD127-/low T cells, remained unaff ected. The CD25bright T cells suppressed the anti-donor 

(94%) and 3P responses (93%). Our fi ndings show that rATG therapy does not spare peripheral 

immunoregulatory T cells in vivo, but after regeneration preserves their suppressive activity.
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INTRODUCTION

Thymus-derived natural immunoregulatory CD4+ T cells do not only have important activities 

in the prevention of autoimmunity1, 2, but also control immune responses towards transplanted 

organs and tissues2, 3. They require IL-2 for their homeostasis, function and maintenance and 

therefore highly express the IL-2 receptor α-chain, CD254. IL-2 and other members of the 

IL-2 family that signal via the common γ-chain (γc; CD132) are important for the induction 

of immunoregulatory CD4+ T cells5, 6. The markers most generally used to defi ne human 

immunoregulatory CD4+ T cells are that they constitutively express the forkhead/winged helix 

transcription factor FoxP37, 8, while they do not constitutively express the IL-7 receptor α-chain 

and are therefore CD127-/low9. The majority of the immunoregulatory CD4+ T cells express the 

CD45RO memory marker, GITR, CTLA-410 and the homing markers CCR7 and CD62L, both 

necessary for their migration11. The proliferation of CD25-/dim Teff  can be inhibited by anergic 

peripheral CD4+CD25bright T cells either directly in a cell-cell contact-dependent manner12, 13 

or via the suppression of the IL-2 and IFN-γ production14-16. Other molecular mechanisms of 

immunoregulatory CD4+ T cell-mediated suppression are through the secretion of IL-10 and 

TGF-β and via killing of the Teff  directly by cytolysis17, 18.

It has been shown that immunosuppressive drugs, such as the calcineurin inhibitors 

cyclosporine and tacrolimus negatively aff ect the frequency and function of CD4+CD25bright 

T cells19-21. However, other agents, for instance the mTOR inhibitors and rabbit anti-thymocyte 

globulins, may favour the expansion of the CD4+CD25bright T cells22-24. Induction therapy with 

anti T-cell depletion strategies as rATG is used to avoid rejection or to minimize the nephrotoxic 

eff ect of CNI on immediate graft function25-27. Known mechanisms of action by rATG are deple-

tion of immunocompetent cells through complement-dependent lysis or activation-associated 

apoptosis28, 29, and modulation of several molecules on residual circulating leucocytes that 

are involved in regulating leucocyte-endothelium adhesion and leucocyte migration, e.g. the 

chemokine receptors CXCR4, CCR5 and CCR728,30. Experimental studies suggested that the 

immunosuppressive activity of rATG may also result from its eff ect on CD4+CD25brightFoxP3+ T 

cells by either the selective sparing of immunoregulatory CD4+ T cells or by the induction and 

expansion of regulatory T cells24, 31, 32. Therefore, rATG-treatment in patients may modulate the 

immune system and enhance the process leading to hyporesponsiveness towards the allograft. 

Here, we characterized the frequency, function and phenotypic characteristics (e.g. FoxP3, 

CD127, CD45RO and CCR7) of peripheral blood CD4+CD25bright immunoregulatory T cells of 

kidney-transplant patients that received rATG induction therapy combined with triple therapy 

consisting of tacrolimus, mycophenolate mofetil and steroids, prior to transplantation and at 4, 

14 and 26 weeks after transplantation. Patients without rATG therapy and only triple therapy 

served as controls. 
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MATERIALS & METHODS

Patients and study design

Kidney transplant patients (n=34) were enrolled in this study. The patients (n=16) were 

given one infusion of 2 mg/kg Anti-thymocyte Globulin (Rabbit) (Thymoglobulin®, Genzyme 

Corporation, Cambridge, MA) each day at Day 1, 2 and 3 after transplantation followed by a 

triple therapy maintenance regimen consisting of tacrolimus, MMF and prednisone. MMF and 

prednisone were given from Day 1 and tacrolimus was given from Day 2 after transplantation. 

A control non-rATG patient group (n=18) was given triple therapy alone. Patient characteristics 

are depicted in Table 1. The patients were part of a feasibility study on a pilot for a future ran-

domized controlled trial and were included between April and August 2007. After informed 

consent, peripheral blood was drawn pre-transplant and at 4, 14 and 26 weeks after transplan-

tation. The Medical Ethical Commission of the Erasmus Medical Center approved the protocol. 

Flow cytometry

EDTA-blood was analyzed for the presence of T-cell subsets by four-color fl ow cytometry using 

mAbs directly conjugated to fl uorescein isothiocyanate (FITC), phycoerythrin (PE), allophy-

cocyanin (APC) or peridinin chlorophyll protein (PerCP). Blood (100 μL) was incubated with 

CD45-FITC/CD14-PE, IgG1-FITC/IgG2b-PE and CD19-APC. Furthermore, CD3-FITC, CD4-PerCP, 

CD8-APC, and CD3/16/56-FITC/PE were also used (BD Biosciences, San Jose, CA and R&D Sys-

tems, Abingdon, UK). After 30-min incubation at RT, red blood cells were lysed. White blood 

cells were washed twice, and analyzed on a fl ow cytometer (FACSCalibur) using SimulSet and 

CELL Quest Pro software (BD Biosciences). The number of leucocytes was determined by the 

cell counter CASY® model TT (Schärfe System GmbH, Reutlingen, Germany). 

FoxP3 intracellular staining was performed according to the manufacturer’s instructions 

(FoxP3-APC, clone PCH101, eBiosciences, San Diego, CA). Extracellular staining was conducted 

prior to intracellular staining with FITC-conjugated CD127, IgG1, or CCR7, PERCP-conjugated 

CD4 and PE-conjugated CD25 or CD45RO at 4°C for 30 min (BD Biosciences. To discriminate 

between eff ector memory (CD45RO+CCR7-), central memory (CD45RO+CCR7+) and naïve 

Table 1. Demographics of Kidney Transplant Patients

rATG - group Non - rATG group
Patients (n) 16 18

Recipient gender (M/F) 7/9 8/10

Recipient age at KTx 53 ± 17* 53 ± 13*

HLA Incompatibilities

HLA-A MM (number)

HLA-B MM (number)

HLA-DR MM (number)

0.8 ± 0.8*

1.2 ± 0.7*

0.9 ± 0.7*

1.0 ± 0.8*

1.3 ± 0.8*

1.1 ± 0.8*

Acute Rejection (n) 1 (6%) 3 (17%)

Infections (n) 4 (25%) 2 (11%)

*Mean ± SD 
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(CD45RO-CCR7+) T cells, CCR7 was combined with CD45RO33. Flow cytometric analysis was 

performed with at least 100 events in the gate.  

Isolation of Peripheral Blood Lymphocytes 

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient centrifugation 

over Ficoll-paque, frozen in 10% DMSO enriched RPMI 1640 medium (BioWhittaker, Verviers, 

Belgium) and stored at -140˚C.

Isolation of human CD4+CD25bright T cells 

PBMC were thawed and resuspended in 10% human culture medium (HCM), that consisted of 

RPMI 1640 medium with L-glutamine (Bio Whittaker) supplemented with 10% pooled human 

serum, 100 IU/mL penicillin and 100 μg/mL streptomycin (Gibco BRL). The CD25bright T cells were 

isolated from PBMC after incubation with anti-CD25 microbeads, (Miltenyi Biotech, Bergisch 

Gladbach, Germany) followed by positive selection (POSSELD-program) on the autoMACS 

(Miltenyi Biotech). The untouched residual fraction consisted of > 98% of CD25-/dim Teff  and was 

used as responder population. Both fractions were stained with CD4-PERCP (BD Biosciences) 

and CD25-PE epitope B (clone M-A251, BD Biosciences). The purity of CD25bright was > 90%. 

Suppression Assay

The function of CD4+CD25bright T cells was determined by MLR in which the suppressive capac-

ity of CD25bright T cells was measured twice; fi rstly by their depletion from PBMC, and secondly 

by their ability to inhibit the proliferative responses to donor and 3P antigens of the CD25-/

dim Teff . The CD25-/dim Teff  were co-cultured in triplicate with and without CD25bright T cells. 

Irradiated (40 Gy) donor spleen cells and HLA mismatched (2-2-2) 3P spleen-cells were used 

as stimulator cells (1x105 cells/100 μL) and co-cultured with 5x104 cells/100 μL of a mixture of 

CD25bright : CD25-/dim  at 1:10, 1:20, 1:40 and 1:80 ratios in round-bottom 96-well plates (Nunc, 

Roskilde, Denmark). Moreover, the CD25bright T cells were co-cultured with irradiated CD25-/

dim Teff  in the presence of donor- and 3P antigens to confi rm their anergic state. After 7 days’ 

incubation at 37°C in a humidifi ed atmosphere of 5% CO2, the proliferation was measured after 
3H-thymidine (0.5 μCi/well: Amersham Pharmacia Biotech) incubation during the last 16 hr 

before harvesting. The median counts per minute (cpm) for each triplicate was determined and 

the level of suppression of the CD25-/dim Teff  by CD25bright T cells was calculated and expressed 

as the percentage inhibition of the Teff . 

Statistical analyses

Statistical analyses were performed using Graphpad Prism (v.4.03). Based on the distribution 

of the data we performed non-parametric testing. For determination of the levels of statistical 

signifi cance, the two-sided probability values according to the Kruskal-Wallis test, the Wilcoxon 

matched pairs test and the Mann Whitney U Test was used. For comparisons within the rATG-group 
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over time, the non-parametric Kruskal-Wallis test was used and the results were validated with 

the Wilcoxon matched pairs test. To test diff erences between groups the Mann Whitney U test 

(unpaired measurements) was used. Post-hoc analyses were performed using Bonferroni’s test 

for multiple comparisons. P values < 0.05 were considered statistically signifi cant.  

RESULTS

Patients

We observed acute rejections in three patients of the non-rATG group and in one patient of 

the rATG-group within 26 weeks post-transplantation (Table 1). The number of infections was 

not signifi cantly diff erent between both groups. There were no diff erences in renal function or 

blood trough levels of tacrolimus between both groups in the fi rst 26 weeks. However, in the 

non-rATG group, the MMF trough level was signifi cantly higher at 14 wks after transplantation 

compared with the rATG-group, probably due to adjustments according to leucocyte levels.

Flow cytometry of lymphocyte subsets

After rATG-treatment we observed a signifi cant decrease in CD3+ T cells, CD3-CD16/56+ NK cells, 

CD8+ T cells, CD4+ T cells, CD4+CD25bright T cells and not in CD19+B-cells compared to pre-transplant 

levels in the rATG-group (p<0.01, Figure 1). The magnitude of the decrease in T cells, NK-cells, CD4+ 

T cells, CD4+CD25bright T cells, CD4+CD25brightFoxP3+ T cells and CD4+CD25brightFoxP3+CD127-/low 

T cells was more outspoken compared to the non-rATG group (p<0.01).

After 4 weeks, the number of all cell types in both groups increased although this recovery 

occurred more gradually in the rATG-group. The number of CD3+ T cells in this group remained 

signifi cantly lower compared to pre-transplant levels and partial recovery was only 50% of 

baseline at 26 weeks (Figure 1A). Along with the recovery of the CD4+ T cells, the CD4+CD25bright 

T cells recovered only to ~30% of baseline at 26 weeks (p<0.01, Figures 1E and F, respectively). 

To determine the percentage of bona fi de regulatory T cells, we further phenotyped 

CD4+CD25bright T cells for the regulatory T-cell marker FoxP3. Pre-transplant, the percentage of 

CD4+CD25bright  T cells that expressed FoxP3 fl uctuated between individuals, though the major-

ity of the CD4+CD25bright T cells expressed FoxP3 in both groups, which is in line with the results 

of Liu et al. (top 10% of CD4+CD25bright in the gate; 72% ± 2, mean ± SEM, top 5%: > 80% and top 

2% > 90%)9. Therefore, the pattern of the absolute cell number of CD4+CD25brightFoxP3+ T cells 

(Figure 1G) is comparable to the CD4+CD25bright T cell counts. Almost all CD4+CD25brightFoxP3+ 

T cells were CD127-/low (90% ± 1, mean ± SEM, Figure 1H). 

At all time-points after transplantation, the cell-numbers of the CD4+, CD4+CD25bright, 

CD4+CD25brightFoxP3+ and CD4+CD25brightFoxP3+CD127-/low T cells were signifi cantly lower 

in the rATG group than in the non-rATG-group. In the non-rATG group, at 26 weeks, all cell 

numbers returned to baseline levels (Figure 1). 
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Figure 1. Prospective analysis of PBMC and T-cell subpopulations by fl ow cytometry 

Kinetics of diff erent cell types and cell subsets in the rATG treated patients (n=16, solid line) and non-rATG treated patients (n=18, dotted line). 

Data are depicted as mean ± SEM. (A) T cells (B) B cells (C) NK cells (D) CD8+ T cells (E) CD4+ T cells (F) CD4+CD25bright T cells of CD4+ T cells (G) 

CD4+CD25brightFoxP3+ T cells of CD4+ T cells and (H) CD4+CD25brightFoxP3+CD127-/low of CD4+ T cells. Statistically signifi cant diff erences within the 

rATG group over-time were tested by Kruskal-Wallis Test and validated by the Wilcoxon matched pairs test and diff erences between the rATG- and 

non-rATG groups were tested with the Mann-Whitney U Test. 
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Suppressive capacity of CD4+CD25brightFoxP3+CD127-/low T cells

The proliferative capacity of the PBMC and the CD25-/dim Teff  was analyzed in the MLR. At 14 and 

26 weeks, the proliferative responses of the allo-activated PBMC population were reduced com-

pared to pre-transplant (Figures 2A and B). This phenomenon was not observed in the non-rATG 

group. After depletion of the CD25bright T cells, the proliferation of the CD25-/dim Teff  in response 

to alloantigens showed the same pattern as the PBMC, as their proliferative capacity is aff ected by 

rATG (Figures 2C and D). These fi ndings suggest that the anti-donor hyporesponsiveness can be 

the result of impaired responses by eff ector T cells and suppressive actions by regulatory T cells.

Therefore, we studied the suppressive capabilities of the CD4+CD25brightFoxP3+CD127-/low 

T cells at 26 weeks after rATG treatment. Due to the low number of T cells, it was not possible 

to study the regulatory activities of CD25bright T cells at 4 and 14 weeks after rATG-treatment. 

At 26 weeks, the number of PBMC was suffi  cient and the function of the CD25bright T cells was 
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Figure  2. Mixed lymphocyte reactions with PBMC and CD25-/dim Teff 

PBMC of rATG treated patients (n=6) and non-rATG treated patients (n=6) were isolated pre-transplant (dotted bars) and at 14 and 26 weeks and 

were stimulated in vitro with donor (A) and 3P spleen cells (B) in the MLR. (C) CD25-/dim T cells were stimulated in vitro with donor and (D) 3P 

antigens. Proliferation is depicted as counts per minute (cpm) after 3H-Thymidine incorporation. Error bars represent mean ± SEM. 
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measured. After depletion of the CD25bright T cells, the anti-donor and 3P proliferative responses 

of the CD25-/dim Teff  increased, pre- and post transplant (Figure 3). The CD25bright T cells of post-

transplant were anergic in response to donor- and 3P antigens and in the presence of irradiated 

CD25-/dim Teff . Pre- and post-transplant, co-culture of CD25bright T cells and the CD25-/dim Teff  

resulted in the inhibition of the anti-donor and 3P proliferative responses of the CD25-/dim Teff  

in a dose-dependent manner (Figure 3). When the percentage of inhibition of the CD25-/dim Teff  

response to 3P antigens was calculated at diff erent CD25bright : CD25-/dim ratios, this remained 

proportionally unaltered (Figure 3). Post-transplant, the percentage of inhibition of the anti-

donor response at a 1:10 ratio was similar to the non-rATG-group (proliferation [cpm] 0:1 vs. 

1:10 ; 20684 ± 11107 vs. 3142 ± 2326, mean ± SEM, percentage inhibition: 85%). These results 

show that though diminished in number, the CD25bright T cells have proportionally adequate 

suppressor activity after rATG-treatment, whereas the proliferative capacity of the CD25-/dim Teff  

is signifi cantly aff ected by rATG.

Phenotypical characterization of CD4+FoxP3+ T cells

We subsequently quantifi ed the CD4+ regulatory T cells using an approach independent 

of CD25 expression (Figure 4A). At 1 week after rATG-treatment, no measurable numbers of 

CD4+FoxP3+CD127-/low T cells were present in the circulation. At 4 weeks, 5 out of 16 patients 

(31%) had a suffi  cient number of T cells to perform a FoxP3 staining. In the rATG-group, the 

percentage of CD4+FoxP3+ T cells that had the CD127-/low phenotype did not change (89% ± 

1.0, mean ± SEM) as depicted in Figure 4B, indicating that the recovered CD4+FoxP3+ T cells 

harbored the phenotype of genuine regulatory T cells. After 4 weeks, along with the depletion 

of CD4+ T cells in the rATG-group, the number of patients that had detectable cell numbers of 

CD4+FoxP3+CD127-/low T cells increased (88%), but in each patient, the homeostatic reconstitu-

tion occurred slowly (Figure 4C). 

Naïve, central memory and eff ector memory regulatory T cells 

In the literature it has been described that T cells with the memory phenotype are resistant of 

immunodepletion by rATG34 but in our patient cohort we did not measure any T cells imme-

diately after rATG-treatment. Hence, the percentage of CD4+CD45RO+ profoundly rose above 

baseline and was higher than non-rATG group (Figure 5A). The percentage of CD4+CCR7+ mas-

sively decreased after depletion and was lower than the non-rATG group at 14 and 26 weeks 

(Figure 5B). 

Subsequently, we analyzed whether the recovered CD4+FoxP3+ T cells after rATG induction 

were predominantly of the memory phenotype as homeostasis-driven proliferation after 

immunodepletion may account for an increase in memory CD4+FoxP3+ T cells35. Therefore, we 

phenotyped the CD4+FoxP3+ T cells for CD45RO and CCR7. The combination of both markers 

allows a distinction between the central memory and eff ector memory T cells33, 36, 37. 
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Within the rATG-treated patients in whom we measured CD4+FoxP3+ T cells, a shift in the 

proportion of FoxP3+ cells expressing CD45RO was observed. Along with the CD4+ T cells, the 

proportion of CD4+FoxP3+ T cells that expressed CD45RO+ was higher at 14 and 26 weeks com-

pared to baseline levels and higher than the non-rATG group (Figure 5C). rATG also infl uenced 

the CD4+FoxP3+ T cells expressing CCR7, as the proportion of CD4+FoxP3+CCR7+ was lower than 

in the non-rATG group at 14 and 26 weeks (Figure 5D).

After rATG-treatment, signifi cant diff erences were observed in the composition of the naïve 

(CD45RO-CCR7+), central memory (CD45RO+CCR7+) and eff ector memory (CD45RO+CCR7-) 

CD4+FoxP3+ T cell populations. At 14 and 26 weeks, the percentage of naïve T cells within the 
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Figure 3. Suppressive capacity of regulatory T cells before and after rATG treatment in suppression assays

The ability of CD25bright T cells to suppress the anti-donor (grey bars) and 3P responses (dark gray bars) of the CD25-/dim Teff  was analyzed before 

and after rATG-treatment. Proliferation is depicted as counts per minute (cpm) after 3H-Thymidine incorporation and the percentage of inhibition 

of the CD25-/dim eff ector T cell response (mean) is shown. (A) Suppression assay with PBMC before rATG-treatment. The anti-donor and 3P 

response of the PBMC and the CD25-/dim Teff  is given. After co-culture of CD25-/dim Teff  and CD25bright T cells, the anti-donor and 3P responses of 

the CD25-/dim Teff  were inhibited in a dose-dependent manner. (B) At 26 weeks after rATG-treatment, CD25-/dim Teff  were also inhibited in a dose-

dependent manner. Note that the y-axis is only 10% of the pre-transplant values. Error bars represent mean ± SEM of n=6. 
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rATG-group was lower than pre-transplant and lower compared to the non-rATG group (Figure 

5E). The fall in the proportion of naïve T cells after rATG-treatment was associated with an increase 

in the proportion of the CD45RO+ memory pool that was due to an increase of the central memory 

CD4+FoxP3+ T cells (Figure 5F). The percentage of eff ector memory CD4+FoxP3+ T cells remained 

stable over time, but was higher than in the non-rATG group at 14 and 26 weeks (Figure 5G).

DISCUSSION

In the present prospective controlled study, we investigated the eff ect of rATG induction ther-

apy on the function and phenotype of peripheral CD4+CD25brightFoxP3+CD127-/low regulatory T 

cells in KTx patients. Our fi ndings demonstrate that the CD3+ T cells, CD3-CD16/56+ NK cells, and 

CD4+ T cells, but not CD19+ B cells are depleted after rATG-treatment (Figure 1). The number of T 

cells steadily recovered to 50% of baseline at 26 weeks. Interestingly, the recovery the number 

of CD4+T cells remained at 30% of baseline. This may be attributed by a slow regeneration and 

thymic output of CD4+ T cells, which occurs more gradually in the elderly38. 
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Figure 4. Characterization of regulatory T cells that are recovered after rATG treatment

(A) Representative fl ow cytometric results of CD127-/low expression within CD4+FoxP3+ T cells. About 90% of the CD4+FoxP3+ T cells have the 

CD127-/low phenotype. (B) The percentage of CD127-/low of CD4+FoxP3+ T cells remained constant both in the rATG and non-rATG group. (C) 

Evaluation of the kinetics of CD4+FoxP3+CD127-/low T cells before and after transplantation. Absolute cell numbers are shown. CD4+FoxP3+CD127-/

low T cells were depleted after rATG-treatment (p<0.01) and showed similar kinetics and pattern as the CD4+CD25bright T cells. Data are depicted 

as mean ± SEM. 
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Figure 5. Phenotyping of the naïve, eff ector memory and central memory regulatory T cells

Longitudinal and detailed analysis of CD4+ T cells and CD4+FoxP3+ T cells in the rATG-group (solid line) and the non-rATG group (dotted line). 

Within the CD4+FoxP3+ T cells the (A) CD4+CD45RO+ T cells as CD45RO+ of CD4+ (B) CD4+CCR7+ T cells as CCR7+ of CD4+ (C) CD4+FoxP3+CD45RO+ 

T cells as CD45RO+ of CD4+FoxP3+ (D) CD4+FoxP3+CCR7+ T cells as CCR7+ of CD4+FoxP3+ (E) Naïve (CD4+FoxP3+CD45RO-CCR7+) T cells as 

CD45RO-CCR7+ of CD4+FoxP3+ (F) Central memory (CD4+FoxP3+CD45RO+CCR7+) T cells as CD45RO+CCR7+ of CD4+FoxP3+ and (G) Eff ector 

memory (CD4+FoxP3+CD45RO+CCR7-) T cells as CD45RO+CCR7- of CD4+FoxP3+ were characterized. Results are expressed as the percentage of 

positive cells. Error bars represent mean ± SEM. 
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We found that the regulatory T cells whether defi ned as CD4+CD25bright, CD4+CD25brightFoxP3+, 

CD4+CD25brightFoxP3+CD127-/low or CD4+FoxP3+CD127-/low T cells, were totally depleted from 

the peripheral blood after rATG-treatment (Figures 1 and 4). Our results are in accordance with 

Louis et al. who reported that ATG did not specifi cally spare the CD4+CD25bright T cells29. 

In concert with the slow repopulation of the CD4+ T cells, the CD4+CD25bright and 

CD4+FoxP3+CD127-/low T cells did not fully recover and showed an impaired homeostasis in the 

fi rst 26 weeks after rATG-treatment. We found that the FoxP3 expression did not change at the 

protein level after rATG treatment within 26 weeks after transplantation. Again in line with this, 

it was described that the FoxP3 mRNA transcripts were not upregulated within 2 years after 

transplantation29. From these data it can be concluded that regulatory and non-regulatory 

CD4+ T cells show the same behavior after rATG induction therapy. Several studies with other 

immunodepleting agents as e.g. Campath-1H (anti-CD52) support our and above mentioned 

data by showing that the number of CD4+CD25brightFoxP3+ regulatory T cells signifi cantly 

decreased after treatment and remained very low thereafter, suggesting that this eff ect is 

driven by immunodepletion in general39-41. 

After rATG-treatment, the proliferative capacity of the PBMC and CD25-/dim Teff  markedly 

decreased as shown in Figures 2 and 3. Besides general phenomena that account for the 

hyporesponsiveness as anergy, clonal deletion and ignorance of donor-directed eff ector T 

cells, we have several rATG-specifi c explanations for the observed hyporesponsiveness. Firstly, 

the low proliferation can be attributed to a low percentage of T cells among the lymphocyte 

population and the low number of CD4+ T cells within the T cell population as this resulted 

in an inverse CD4+ to CD8+ ratio (Figure 1). The low number of CD4+ T cells is associated with 

an inferior T-helper cell response to CD8+ T cells in comparison with before transplantation. A 

second explanation is given by Preville et al. who demonstrated in non-human primates that 

non-depleted CD3+ and CD4+ T cells in lymph nodes that were coated by rATG, down regulated 

CD2, CD3, CD4 and CD8 molecules and had impaired responsiveness in the MLR42. Thirdly, 

other studies reported that T-helper cell function is aff ected by rATG by impaired co-stimulatory 

signals delivered by monocytes43 or by decreased expression of the co-stimulatory molecule 

CD28 on T cells44, 45 and fourthly, by a post-transcriptional defect of CD25 expression resulting 

in a reduced IL-2 response, whereas a normal IL-2 secretion is preserved43. Fifthly, as demon-

strated by Haidinger et al., the low proliferative capacities of the Teff  population could also be 

due to disruption of the T-cell/Antigen Presenting Cell (APC) interface by rATG46. Sixthly, rATG 

triggers lysis of dendritic cells47, 48 and impairs their maturation49 and therefore DCs will not 

play an active role in the antigen presentation to T cells. Here, we report another explanation 

for the hyporesponsiveness of the PBMC, i.e. the partial involvement of functional regula-

tory T cells. Depletion of the CD25bright population from the PBMC resulted in an increased 

proliferation and in co-culture experiments these CD25bright T cells profoundly suppressed 

the anti-donor and 3P responses after rATG-treatment (Figure 3). Therefore, our main fi nding 

is that rATG aff ected the function of recovered Teff  whereas the suppressive activity of the 
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newly generated regulatory T cells remained proportionally unaltered. The CD4+FoxP3+ T cells 

measured in the rATG-group are probably not regenerated by the thymus as the percentage 

of naïve T cells profoundly decreased as shown in Figure 5. This suggests that there could be a 

transient eff ect on the regenerative capacity of thymus. As we observed a shift in the frequency 

of CD4+FoxP3+CD127-/low T cells towards the central memory phenotype (Figure 5), it is likely 

that the naïve CD4+FoxP3+ T cells diff erentiated into memory CD4+FoxP3+ T cells. Factors such 

as donor-antigens or rabbit immunoglobulins that act as foreign antigens might contribute to 

this diff erentiation. Since the increase in the proportion of CD4+FoxP3+ memory T cells was not 

observed in the control group, particularly rabbit immunoglobulins must play an important 

role. To our knowledge, we provide the fi rst evidence that rATG therapy in KTx patients aff ects 

the function of CD25-/dim Teff  and preserves CD4+CD25bright regulatory T-cell function. As one 

might expect from experimental studies, the therapeutic eff ect of rATG in vivo neither arose 

from the expansion of residual regulatory T cells nor from de novo generation that resulted in 

an increase above baseline. Most importantly, the regulatory T cells that recovered after rATG-

treatment were able to eff ectively govern allogeneic immune responses by eff ector T cells as 

before rATG-treatment.
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ABSTRACT

Rabbit Anti-Thymocyte Globulins (rATG) are known to convert CD4+CD25negFoxP3neg T cells 

from healthy individuals into CD4+CD25+FoxP3+ T cells. In this study, we investigated the eff ect 

of rATG on the induction of regulatory T cells (Treg) from blood cells of patients with end-stage 

renal disease who are candidates for transplantation and rATG-induction therapy. The induced 

Treg were analyzed and compared with naturally occurring CD4+CD25+FoxP3+ T cells. The 

CD25neg T cells of pre-transplant patients (n=7) and healthy controls (n=4) were stimulated 

with rATG or control rabbit immunoglobulins for 24 hr. The phenotype of induced regulatory 

T cells was examined by fl ow cytometry and their function was studied in the conventional 

suppression assay. Further characterization was performed by mRNA-analyses. After 24 hr, 

the percentage of CD4+CD25+FoxP3+CD127-/low T cells and CD8+CD25+FoxP3negCD127+ T cells 

became higher in the rATG-treated samples compared with the rIgG-treated samples (p<0.01). 

The rATG-induced CD25+ T cells, whether CD4+ or CD8+ inhibited the allogeneic responses of 

CD25-/dim eff ector T cells as vigorously as natural CD25+ T cells. However, the proportion of 

FoxP3+ within the top 2% rATG-induced CD4+CD25+ T cells was lower than within the natural 

CD4+CD25+ T cells (11± 2% vs. 95± 5%, p<0.01). The mRNA-expression levels of IL-27, IL-10, 

IFN-γ, perforin and granzyme B were markedly higher compared with natural CD25+ T cells (all 

p=0.03), whereas CTLA4 (p=0.03), TGF-β (p=0.02) and RORγt (p=0.04) were lower. rATG allows 

the induction of regulatory T cells from patient peripheral blood mononuclear cells (PBMC) in 

vitro. In comparison with natural Treg, the rATG-induced Treg are phenotypically distinct, but 

have similar regulatory activities. rATG may benefi cially contribute to the mechanisms that 

control alloreactivity. 
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INTRODUCTION

Immunoregulatory T cells may play an important role in the suppression of both autoreactiv-

ity1 and alloreactivity2,3. Apart from the naturally occurring CD4+CD25+FoxP3+CD127-/low T cells 

that comprise 2% to 7% of the peripheral CD4+ T cells, the adaptive regulatory T cells (Treg) 

are a fi eld of interest, for example, the FoxP3+TGF-β-producing T helper (Th) 3 cells4 and the 

FoxP3negIL-10-producing Tr1 cells that upregulate FoxP3 after antigen stimulation5. 

The suppressive nature of Treg can be exploited to develop a cell-based therapy to acquire 

tolerance in the setting of organ transplantation. In the past, much eff ort has been taken to 

expand peripheral Treg in vitro with the ultimate goal to reinfuse them into the patient and 

induce graft acceptance6, 7. However, the in vitro expansion procedure encounters major 

hurdles with the specifi city and purity of the expanded cells and their migratory capacity in 

vivo. 

A more promising way of skewing the immune system towards Treg has been shown in 

vitro and in experimental animal models with immunosuppressive drugs such as the mTOR-

inhibitors, sirolimus and everolimus8, 9; co-stimulatory inhibitors, CTLA4Ig10 and anti-CD40L11; 

the inosine monophosphate inhibitor mycophenolate mofetil (MMF)12; and T-cell depletion 

agents such as anti-CD3 antibody13, Campath-1H14, and the polyclonal rabbit anti-thymocyte 

globulins (rATG)15-17. rATG is generally used as induction therapy for organ transplant patients to 

prevent rejection18, 19. However, the in vitro induction assays to generate Treg were performed 

with peripheral blood cells of healthy individuals, whereas patients that receive rATG-induction 

therapy post-transplantation had end-stage renal disease (ESRD). The peripheral blood mono-

nuclear cells (PBMC) of these patients are aff ected by the toxic eff ects of, for example, uremia 

that is further intensifi ed by treatment with dialysis, which may result in impaired T-cell func-

tion, despite evidence of activation markers of the immune system20-23. Therefore, these PBMC 

may, thus, respond in a diff erential manner to rATG than the PBMC of healthy individuals. 

In this report, we studied whether functional Treg can be induced in vitro with rATG in PBMC 

of ESRD patients. Furthermore, we examined the characteristics of rATG-induced Treg and com-

pared these with the CD4+CD25+FoxP3+CD127-/low naturally occurring Treg. Our study does not 

only provide a better perceptive of the phenotype and suppressive activities of induced Treg 

in patients after rATG-therapy but also may have therapeutic implications for the drug-driven 

induction and expansion of Treg in these patients.
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MATERIALS & METHODS

Regulatory T-cell induction experiments 

PBMC were isolated by density gradient centrifugation over Ficoll-paque (Amersham Phar-

macia Biotech, Uppsala, Sweden) from the peripheral blood or buff y coats from 11 subjects 

(n=7 patients with ESRD or n=4 healthy blood bank donors, Sanquin Blood Bank, Rotterdam, 

the Netherlands). PBMC were washed twice and were then resuspended in 10% Human Cul-

ture Medium (HCM), which consisted of Roswell Park Memorial Institute 1640 medium with 

L-glutamine (Bio Whittaker, Verviers, Belgium) supplemented with 10% pooled human serum 

and 100 IU/mL penicillin and 100 μg/mL streptomycin (Gibco BRL, Scotland, UK). The CD25+ T 

cells were depleted from the PBMC by incubation with anti-CD25 microbeads, (Miltenyi Bio-

tech, Bergisch Gladbach, Germany) followed by negative selection on the autoMACS (Miltenyi 

Biotech, DEPLETE-S program). The untouched residual fraction consisted of CD25neg cells (98%). 

To induce Treg with rATG, the residual CD25neg fraction was washed and resuspended in 

HCM to a fi nal concentration of 5x105/mL. rATG (Thymoglobulin, Genzyme Corporation, Cam-

bridge, MA) or a control polyclonal rabbit IgG antibody (rIgG, Sigma-Aldrich, St.Louis, MO) in 

a fi nal concentration of 10 μg/mL was added to 12-wells plates (Greiner, Alphen a/d Rijn, the 

Netherlands) for 24 and 72 hr. 

Binding of rATG to lymphocytes was determined by incubation of CD25neg T cells in the pres-

ence of 10 μg/mL rATG or rIgG for 0.5 hr and 24 hr. Before fl ow cytometric analysis, cells were 

washed twice with Roswell Park Memorial Institute 1640 medium. 

To check the function of induced CD4+CD25+ and CD8+CD25+ T cells after 24 hr, CD3+CD4+ 

and CD3+CD8+ T cells were sorted with the FACSAria (BD Biosciences, San Jose, CA) on day 0 

and then depleted for CD25 by autoMACS. To examine whether the induction of CD25+ Treg is 

rATG-specifi c, we also stimulated CD25neg cells with CD3/CD28 Dynabeads (Dynal, Invitrogen, 

Breda, the Netherlands). 

Flow cytometry

Flow cytometry was performed using antibodies directly conjugated to fl uorescein isothiocya-

nate (FITC), phycoerythrin (PE), allophycocyanin (APC) or peridinin chlorophyll protein (PerCP) 

and Amcyan. After incubation with rATG or rIgG, PBMC were harvested and FoxP3-intracellular 

staining was performed in round-bottom 96-wells plates (Nunc, Roskilde, Denmark, 200 μL/

well) according to the manufacturer’s instructions (FoxP3-APC, clone PCH101, e-Bioscience, 

San Diego, CA). Extracellular staining was conducted before intracellular staining with FITC-

conjugated CD127 (eBioscience), IgG1, PERCP-conjugated CD4, PE-conjugated CD25 epitope 

B (clone M-A251, BD Biosciences, San Jose, CA), PE-conjugated CD25 and Amcyan-conjugated 

CD3 at 4°C for 30 min (BD Biosciences). 
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For in vitro detection of rATG antibodies PE-conjugated sheep-anti-rabbit (Serotec, Oxford, 

UK) was used. Isotype controls IgG1-FITC and IgG1-PE for CD25 and CD127 and IgG2a-APC were 

included at each staining as controls and the Fluorescence Minus One controls24.

Intracellular staining for PE conjugated granzyme B (Sanquin, CLB) and APC-conjugated 

FoxP3 was performed after extracellular staining with CD3-Amcyan, CD4-PERCP, CD25 epitope 

B PE-Cy7 (clone M-A251) and CD127-FITC. 

Intracellular cytokine staining was performed as described previously25, 26. In brief, during 

the last 5 hr of incubation with rATG, the Protein Transport Inhibitor Monensin (BD Biosciences) 

was added to the cell cultures. After extracellular staining, cells were permeabilized and then 

stained with either PE-labeled IL-10 (BD Biosciences). Flow cytometry was performed on an 

eight-color FACS Canto II supplemented with DIVA software (BD Biosciences). 

To determine the eff ect of the depletive mechanism of rATG in vitro, an apoptosis assay 

was performed on PBMC from ESRD patients. PBMC were stained for the apoptotic cell marker 

Annexin V-PE according to the protocol of the manufacturer (BD Biosciences) and measured on 

the FACS Canto II (BD Biosciences). The late apoptosis and necrosis marker 7-aminoactinomycin 

D (7-AAD) was added to each sample 15 min before measurement. PBMC before and after 

rATG treatment were also microscopically analyzed to determine the cell counts on day 0 and 

after 24 hr to calculate the percentage of cells in culture after 24 hr. Trypan blue staining was 

performed to determine the percentage of dead cells.

For the sorting experiments, PBMC were labeled with CD3-Amcyan, CD8-FITC and CD4-APC 

(BD Biosciences). The purity of CD3+CD4+ and CD3+CD8+ T cells on day 0 after sorting on the 

FACS Aria II was more than or equal to 98%.

Isolation of human natural and induced regulatory T cells and suppression assays

To test their function, CD25+ T cells were isolated from the PBMC after incubation with anti-

CD25 microbeads, (Miltenyi Biotech) followed by a positive selection (POSSELD-program) on 

the autoMACS (Miltenyi Biotech). The isolated and the residual fractions were washed and 

resuspended in HCM for functional analysis. The untouched residual fraction consisted for more 

than or equal to 98% of CD25-/dim cells and 2% CD25bright T cells. The purity of CD25 in the CD25+ 

isolated fraction was more than or equal to 90%. 

The function of regulatory T cells was determined by mixed lymphocyte reactions (MLR) 

in which the suppressive capacity of CD25+ T cells was measured by their ability to inhibit 

the proliferative response of the CD25-/dim eff ector T cells (CD25-/dim Teff ). CD25-/dim Teff  were 

co-cultured in triplicate with natural CD25+ T cells or with induced CD25+ T cells. Control experi-

ments were performed in which CD25-/dim Teff  were co-cultured with and without the residual 

fraction after isolation of the induced CD25+ T cells. 

To determine the potency of the induced Treg, CD25-/dim cells of a allogeneic HLA-mis-

matched individual or of the patient were co-cultured with induced CD25+ T cells. Irradiated 

(40 Gy) 2-2-2 HLA mismatched allogeneic PBMC or spleen cells were used as stimulator cells 
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(1x105 cells/100 μL) and co-cultured with 5x104 cells/100 μL of a CD25+ : CD25-/dim  mixture at 

1:10, 1:20 and 1:40 in triplicate wells in round-bottom 96-well plates (Nunc, Roskilde, Denmark). 

Moreover, the natural and rATG-induced CD25+ T cells were co-cultured with irradiated CD25−/

dim Teff  in the presence of alloantigens to confi rm their anergic state. 

After 7 days of incubation at 37°C in a humidifi ed atmosphere of 5% CO2, proliferation was 

measured after 3H-thymidine (0.5 μCi/well: Amersham Pharmacia Biotech, Buckinghamshire, 

UK) incubation for the last 16 hr before harvesting. 3H-thymidine incorporation into DNA was 

assessed using a Betaplate counter (LKB-Wallac, Turku, Finland).

Before adding 3H-thymidine to the 96-wells plate in the MLR, supernatant was collected to 

determine the IL-2 and IFN-γ levels. Cytokine levels (picograms per millilitre) were assessed in 

duplicate by ELISA (IL-2; e-Bioscience and IFN-γ; U-CyTech Bioscience Utrecht, the Netherlands). 

To investigate the role of IL-10 in the mechanism of suppression of rATG-induced CD25+ T cells, 

suppression assays were performed in the absence and presence of 5 μg/mL anti-IL10 receptor 

antibody (purifi ed anti-human CD210 [IL-10R] BioLegend, San Diego, CA).

Quantitative (Q) PCR

To analyze gene expression patterns, total RNA was isolated from the various cell population 

using the High Pure RNA Isolation kit (Roche Applied Science, Penzberg, Germany) as described 

previously27. In brief, RNA concentrations were measured with the NanoDrop (ThermoScientifi c, 

Wilmington, Delaware) and cDNA was synthesized from mRNA. The mRNA expression levels of 

IL-2, IFN-γ, TGF-β, IL-4, IL-10 and IL-35 [EBI3 and IL-12A], IL-27 [EBI3 and IL-27p28], GATA3, FOXP3, 

RORγt, CTLA-4, GITR and the cytotoxic molecules granzyme B and perforin were analyzed. The 

choice of primers and probes for GATA3, IL-4, perforin and granzyme B was defi ned using the 

primer express software (Applied Biosystems, Forster City, CA). Assay-on-demand products for 

the measurement of 18S (Hs99999901_s1), FOXP3 (Hs00203958_m1), RORγt (Hs00172858_m1), 

CTLA-4 (Hs00175480), CD25 (Hs00166229_m1), IL-2 (Hs00174114_m1), IL-10 (Hs00174086), 

EBI-3 (Hs01057148.m1), IL-27p28 (Hs00377366.m1) and IL-12A (Hs00168405.m1), IFN-γ 

(Hs00174143.m1) and TGF-β (Hs00171257_m1) mRNA were designed by Applied Biosystems 

(Forster City, CA). After 2 min at 50°C and 10 min 95°C, the polymerase chaine reaction was 

performed by 40 cycles of 15 sec at 95°C and 1 min at 58°C (GATA-3, IL-4, Granzyme B), 59°C 

(perforin 1) or 60°C (18S, FoxP3, RORγt, CTLA-4, CD25, IL-2, IL-10, EBI-3, IL-27p28, IL-12A, IFN-γ 

and TGF-β) using a StepOnePlus Real-Time PCR System (Applied Biosystems). The amount of 

each target molecule was quantifi ed by measuring the cycle threshold (Ct) values, which were 

transformed to the number of cDNA copies (2[40-Ct]). Each run contained several negative con-

trols (no template) and the same two positive reference samples to check intra- and inter-assay 

variations. The Ct values within and between experiments were all less than 0.25. The relative 

concentrations of the analyzed markers were normalized to the relative concentration of the 

housekeeping gene 18S that was present in each sample and multiplied by 106 because of the 

lower concentration of the target gene compared with the concentration of 18S28. 
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Cytotoxic T lymphocyte Mediated Lysis assay

Activated CD25-/dim T cells (n=6 blood bank donors) that served as target cells were isolated 

by autoMACS as described above and were stimulated with 200 IU/mL recombinant IL-2 (pro-

leukin; Chiron BV, Amsterdam, the Netherlands), 2 μg/mL of the mitogen phytohemagglutinin 

(PHA) and 100 ng/mL IFN-γ (to upregulate HLA-class II, U-Cytech, the Netherlands) in 24-wells 

plates (Greiner) for 7 days at 37°C. On day 7, these autologous or allogeneic target blasts (Target 

[T]) were labeled with europium-diethylenetriamene pentaacetate (DTPA). HLA-class II expres-

sion by the target cells was analyzed after staining with HLA-DR FITC and CD4-PERCP by fl ow 

cytometry (BD Biosciences).

For eff ector cells we used PBMC that were stimulated with allogeneic irradiated PBMC and 

200 IU/mL IL-2 for 7 days at 37°C. At day 7, these activated cells (Eff ector [E]) were cocultured 

in 96-wells plates for 4 hr with autologous or allogeneic target blasts and served as the nega-

tive and positive control for cytotoxicity, respectively. Natural CD25+ T cells and rATG-induced 

CD25+ T cells were also used as eff ector cells and cocultured with autologous and allogeneic 

target blasts at diff erent E:T ratios (40:1, 20:1, 10:1 and 5:1). After 4 hr of incubation, the plates 

were centrifuged, and 20 μL of the supernatant was harvested. Enhancement solution (100 μL, 

PerkinElmer, Groningen, the Netherlands) was added the wells. Fluorescence of the released 

Europium was measured and expressed in counts per second. The percentage lysis was 

calculated as follows: (measured E:T europium release – background europium release (0:1) / 

(max. Europium release – background europium release) x100%). Maximum europium release 

was measured by incubation of target cells with 1% Triton (Sigma-Aldrich, Zwijndrecht, the 

Netherlands).

Statistical analyses

Statistical analysis of the fl ow cytometric and MLR data was performed using Graphpad Prism 

(version 4.03). To test whether the values have normal distribution, the Kolmogorov-Smirnov 

test was used. For the determination of levels of statistical signifi cance, the two-sided prob-

ability values according to the Wilcoxon matched pairs test, Mann Whitney U test or Student’s 

t test were used. P values less than or equal to 0.05 were considered statistically signifi cant.

RESULTS

Binding assay of rATG on PBMC

To evaluate whether rATG changes the phenotype and function of CD25neg T cells, we fi rst 

detected the binding of rATG to these T cells. To elucidate this, CD25neg T cells were incubated 

for 0.5 hr and 24 hr with 1, 10 and 100 μg/mL rATG or with a rabbit IgG control antibody. In 

the presence of 1 μg/mL rATG, 50% of the cells were bound to rATG already after 0.5 hr. In the 

presence of 10 μg/mL, rATG was attached to all CD25neg T cells and saturation was maximal and 



Ch
ap

te
r 5

88

persisted for at least 24 hr (Figure 1). These results were not found during incubation without 

any antibody or with the control rIgG antibody that is not directed against epitopes on human 

thymocytes (Figure 1).

Induction of regulatory T cells by rATG

Next, diff erent doses of rATG were incubated with CD25neg T cells of healthy individuals for 24 hr 

to test the most optimal dose to accomplish the induction of regulatory T cells. This resulted in 

a substantial dose-dependent increase in the percentage of CD25+ T cells (Figure 2A). However, 

in the presence of 10 and 100 μg/mL rATG, the percentages of cells in culture after 24 hr were 

substantially lower (33% and 20% respectively, mean n=3) than in the absence of rATG (65%). 

Indeed, the highest rATG-dose induced the largest percentage of dead lymphocytes after 24 hr 

(Figure 2B). Therefore, the induction experiments with patient PBMC were performed with 10 

μg/mL rATG. A representative example of rATG-induced CD25-expression in patient CD25neg T 

cells at this particular dose is given in Figure 2C. rATG induces an increase in the proportion of 

CD25+ T cells up to 40%. 

In all CD25neg samples of patients, the percentage of CD4+CD25+ T cells increased to 38 ± 

5.5% (mean ± SEM) with rATG, but not rIgG stimulation after 24 and 72 hr (Figure 2D). As within 

CD4+ T cells, CD25+ T cells were also induced within CD8+ T cells after 24 hr (26 ± 2.4%, mean ± 

SEM, Figure 2E). 

When combining CD25 with the expression of the transcription factor FoxP3, that is involved 

with the development and function of CD4+CD25+ regulatory T cells,29, 30 we observed that 

of the top 2% rATG-induced patient CD4+CD25+ T cells (Figure 2C), almost 10% harbored the 

FoxP3+CD127-/low phenotype, which is signifi cantly higher than the rIgG-treated cells (Figure 

2F). The percentage of FoxP3+CD127-/low within the induced CD4+CD25+ T cells is signifi cantly 

lower than within the natural CD25+ T cells (Figure 2G, 9.4 ± 1.3% vs. 95 ± 5%, p<0.01). These 

low proportions of FoxP3+ T cells were also found in samples of healthy individuals. In contrast 

to the rATG-induced CD4+CD25+ T cells, the rATG-induced CD8+CD25+ T cells were all Fox-

P3negCD127+ (data not shown).    

 CD3 

  anti-rabbit Ig 
without rATG/rIgG 

After 24 hrs 
10 μg/mL rIgG 

After 24 hrs 
10 μg/mL rATG 

After 24 hrs 

1002.520.53

Figure 1. Flow cytometric analysis of the binding of rATG to CD3+CD25neg T cells

After 24 hrs of incubation with rATG (10 μg/mL), rATG is attached to all T cells.  
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Figure 2. Induction of regulatory T cells

(A) rATG dose-response curve for the induction of CD25+ T cells in healthy controls, n=3. (B) Representative example of rATG-induced cell-death. 

CD25neg T cells were stimulated with 10 and 100 μg/mL rATG for 24 hrs. After 24 hrs, the percentage of 7-AAD/Annexin-V double-positive cells 

was largest in the presence of 100 μg/mL. (C) One representative example of rATG-driven induction of CD25+ T cells from CD25neg T cells that were 

isolated from PBMC of an ESRD-patient. 
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Functional analysis of induced CD25+ T cells 

To test the functional capacities of the rATG-induced CD25+ T cells, we isolated these cells and 

co-cultured them with autologous CD25-/dim Teff  of the same ESRD patient in a suppression 

assay. The function of the rATG-induced CD25+ T cells was assessed by their potency to inhibit 

the proliferation of CD25-/dim T cells in the MLR and to inhibit cytokine secretion by CD25-/dim T 

cells when stimulated with allo-antigen. 

The allogeneic proliferative responses of the CD25-/dim Teff  were lower in the presence of 

natural and rATG-induced CD25+ T cells from patient PBMC samples; a representative example 

of is depicted in Figure 3A. Moreover, similar to the natural CD25+ T cells, the rATG-induced 

CD25+ T cells were also able to inhibit the allogeneic immune responses of autologous CD25-/

dim Teff  cells (Figure 3A). Subsequently, the level of suppression by the natural and rATG-induced 

CD25+ T cells was calculated and expressed as the percentage of inhibition. The percentage 

inhibition by natural CD25+ T cells from ESRD patients at a CD25-/dim : CD25+ ratio of 10 to 1 was 

D E

GF

Figure 2. Induction of regulatory T cells (continued)

The percentage of CD25+ T cells within the (D) CD4+ T cells and (E) CD8+ T cells of patients increased in the presence of rATG (black bars) after 24 hrs of 

incubation and was signifi cantly higher compared to the rIgG-treated samples (gray bars) and remained stable for 72 hrs. (F) FoxP3+CD127-/low T cells 

were induced within the rATG-induced CD4+CD25+ T cells. Data are depicted as mean ± SEM of N=7 ESRD patients. (G) FoxP3+CD127-/lowexpression 

in natural (n) and induced (I) CD4+CD25+ T cells from N=7 ESRD patients. Diff erences were statistically tested by the Wilcoxon matched paired test. 

*p<0.05, **p<0.01. 
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90% (mean) and at a 20 to 1 ratio 70% (mean). These percentages did not signifi cantly diff er 

from the suppression by their corresponding rATG-induced CD25+ T cells (Figure 3B). The data 

obtained from PBMC of healthy controls are in line with that of ESRD patients (Figure 3C). As 

an important function of natural CD25+ T cells is to inhibit the cytokine production of activated 

CD25-/dim T cells in the MLR, we also examined whether the rATG-induced CD25+ T cells have 

this capability. After co-culture of CD25-/dim T cells and rATG-induced CD25+ T cells, both the 

IL-2 and IFN-γ production by CD25-/dim T cells in response to stimulation with allo-antigen were 

indeed lower, (Figures 3D and E, respectively). Another key characteristic of natural CD25+ sup-

pressor T cells is that they do not proliferate upon stimulation with alloantigen. We found that 

the rATG-induced CD25+ T cells also did not show a proliferative response upon stimulation 

with alloantigen for 7 days, suggesting that the cells are anergic (487 ± 153, mean ± SEM).

Next, we questioned whether the CD4+CD25+ or CD8+CD25+ T cells account for the inhibition 

that was observed by all rATG-induced CD25+ T cells. Therefore, we fi rst isolated CD4+CD25neg 

and CD8+CD25neg T cells from PBMC of healthy individuals on day 0 and incubated both 

populations for 24 hr with rATG or rIgG. The rATG-induced CD4+CD25+ and CD8+CD25+ T cells 

inhibited the proliferative responses of autologous CD25-/dim T cells at the same magnitude 

compared with the total CD25+ T cells (Figure 3F).

We further examined whether the suppressive properties of the rATG-induced CD25+ T cells 

were HLA-restricted. Therefore, the inhibition of the proliferative responses on a HLA-A, -B, and 

-DR 2-2-2 mismatched CD25-/dim cell population was analyzed. Interestingly, the rATG-induced 

CD25+ T cells showed equal suppressive properties in the inhibition of allogeneic CD25-/dim cells 

of a 2-2-2 HLA mismatched individual compared with autologous CD25-/dim cells (Figure 3G).  

To address whether the induction of suppressive CD25+ T cells is rATG-specifi c, we also 

stimulated CD25neg T cells with anti-CD3/CD28 for 24 hr. The anti-CD3/CD28-induced CD25+ 

T cells were not able to suppress allogeneic immune responses by autologous CD25-/dim cells, 

showing that the induction of regulatory function is a rATG-specifi c property (Figure 3H).  

The eff ect of rATG on the function of natural CD25+ T cells in mixed lymphocyte reactions

To determine the direct eff ect of rATG on the function of natural rATG-treated CD25+ T cells, 

CD25-/dim cells were co-cultured with natural CD25+ T cells in a suppression assay in the absence 

and presence of 10 μg/mL rATG at a CD25+ : CD25-/dim ratio of 0:1, 1:10, and 1:20. When the 

CD25-/dim cells were co-cultured with the CD25+ T cells in the presence of rATG, the allogeneic 

response (counts per minute: 4924 ± 1128, mean ± SEM) was proportionally inhibited in a 

similar manner as in the absence of rATG (percentage of inhibition: +rATG: 58 ± 18; -rATG: 43 ± 

9%). This suggests that in the presence of rATG, immunoregulatory function of the CD25+ T cells 

remains proportionally intact.
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Figure 3. Suppression assays with natural (n) and rATG-induced (I) CD25+ T cells

CD25+ T cells were isolated and co-cultured with autologous CD25-/dim cells. (A) One representative example of proliferative responses after 
3H-Thymidine incorporation in counts per minute (cpm) of one ESRD patient. Proliferative responses by CD25-/dim cells after stimulation with 

alloantigen (horizontally striped bars) are lower in the presence of natural (white bars) and rATG-induced (black bars) CD25+ T cells. Error bars are 

mean ± SEM of each triplicate. (B) Suppressive capacities of (n) and (I) CD25+ T cells from N=5 patients, expressed as percentage of inhibition at 

a 10:1 and 20:1 CD25-/dim :CD25+  ratio. (C) Percentage inhibition of (n) and (I) CD25+ T cells of N=3 healthy controls, N=3. (D) IL-2 and (E) IFN-γ 

production in the MLR at a [CD25+ : CD25-/dim] ratio of 0:1 and 1:10, N=3 healthy controls. In the presence of (I) CD25+ T cells, the secretion of 

these cytokines is partially inhibited. (F) rATG-induced CD4+CD25+ and CD8+CD25+ T cells from healthy controls, N=3 were isolated and tested 

for their regulatory activities. Percentage of inhibition is shown. 
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Gene expression analysis of induced CD25+ T cells 

First, we analyzed the gene-expression patterns of the rATG-induced CD25+ T cells in healthy 

individuals and compared these with the natural CD25+ T cells. The rATG-induced CD25+ T cells 

are characterized by low levels of FOXP3, GATA3, CTLA-4, TGF-β and IL-12A (Figure 4). High 

mRNA expression levels were found for GITR, IL-10, EBI3, the heterodimeric cytokine IL-27 that 

is comprised of EBI3 and a unique IL-12p35-like protein IL-27p28, IFN-γ, perforin, and granzyme 

B. The latter cytotoxic molecule was abundantly expressed in the rATG-induced CD25+ T cells 

compared with the natural CD25+ T cells (Figure 4A). IL-2, IL-4 and the transcription factor for 

Th17-cells RORγt were undetectable. To assess whether the FAS/FAS ligand (FASL) apoptotic 

pathway might be involved in the function of rATG-induced regulatory T cells, we also assessed 

the mRNA expression levels of FAS and FASL in the rATG-induced CD25+ T cells; however the 

mRNA-levels of both genes were not signifi cantly higher compared with the natural CD25+ T 

cells and unstimulated CD25neg T cells of day 0, thereby not attributing an important role to cell 

death, mediated by this pathway (Figure 4A).  

Second, we assessed the mRNA expression patterns of natural CD25+ T cells in the absence 

and presence of rATG. Even in the rATG-treated natural CD25+ T cells, FOXP3 and GITR were 

upregulated 2-fold and IL-10, EBI3, IL-27p28, perforin and granzyme B were upregulated 10-fold 

compared with the untreated natural CD25+ T cells (Figure 4B). 
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Figure 3. Suppression assays with natural (n) and rATG-induced (I) CD25+ T cells (continued)

(G) Suppression assay in which rATG-induced CD25+ T cells were co-cultured with allogeneic CD25-/dim cells. (H) Representative example of 

suppression assay with CD3/CD28 induced CD25+ T cells. The proliferation in the absence [CD25+ : CD25-/dim] of 0:1 and in the presence of CD25+ 

T cells is shown. Data are shown as mean ± SEM of each triplicate
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Figure 4. mRNA-profi les of regulatory T cells

(A) mRNA expression patterns of CD25neg T cells, natural (n) CD25+ T cells and  rATG-induced (I) CD25+ T cells that were isolated from PBMC of 

N=4 healthy controls  after 24 hrs of stimulation with rATG. Gray bars represent CD25neg cells; vertically striped bars are (n) CD25+ T cells and 

squared bars the (I) CD25+ T cells. Relative [target gene/18S] ratios are shown for FOXP3, GATA3, CTLA4, GITR, IL-10, TGF-β, EBI3, IL-27p28, IL-12A, 

IFN-γ, perforin, granzyme B, FAS and FASL. 
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Flow cytometric analyses of Granzyme B and IL-10 expression and their functional 
signifi cance

To confi rm that granzyme B is one of the potential eff ector molecules by which the rATG-

induced CD25+ T cells regulate immune responses, we determined granzyme B expression at 

the protein level on CD25+ T cells by fl ow cytometry. Again, we compared the rATG-induced 

CD25+ T cells with the natural CD25+ T cells. Furthermore, the rATG-induced CD4+CD25+ T cells 

were double stained for FoxP3 to examine whether rATG-induced CD4+CD25+FoxP3+CD127-/

low T cells coexpressed granzyme B. As shown in Figure 5, the proportion of rATG-induced 

CD4+CD25+ (Figures 5A and B) and rATG-induced CD4+CD25+FoxP3+CD127-/low T cells (Figures 

5C and D) that expressed granzyme B was signifi cantly higher compared with the natural 

CD25+ T cells. Within the rATG-induced CD8+CD25+ T cells, the majority (59 ± 4.4%, mean ± 

SEM) expressed granzyme B.

To check whether the rATG-induced CD25+ T cells have cytotoxic activities, we performed a 

cytotoxic T lymphocyte mediated lysis assay. Natural and rATG-induced CD25+ T cells were used 
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Figure 4. mRNA-profi les of regulatory T cells (continued)

(B)  mRNA expression patterns of (n) CD25+ T cells isolated from PBMC on day 0 and (n) CD25+ in the absence and presence of rATG-incubation. 

Relative [target gene/18S] ratios are shown for FOXP3, GITR, IL-10, EBI3, IL-27p28, perforin and granzyme B. Error bars represent mean ± SEM. 

Signifi cance was tested by the Mann-Whitney U Test, *p<0.05.
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as eff ector cells (E). Target (T) blasts were generated from autologous and allogeneic PBMC. Acti-

vated target blasts were incubated in the presence of IFN-γ to upregulate HLA-class II expression. 

As shown in Figure 5E, T-cell blasts abundantly expressed HLA-class II in the presence of IFN-γ. 

Alloantigen-stimulated PBMC lysed allogeneic and not the negative control; the autologous target 

blasts. The natural and induced CD25+ cells showed no cytotoxicity on allogeneic blasts (Figure 5F). 

Furthermore, IL-10-expression was also induced by rATG not only within the induced CD25+ 

T cells but also within the (n) CD25+ T cells that were stimulated with rATG and therefore, we 

also verifi ed in the rATG-induced CD25+ T cells whether the IL-10 mRNA is translated into the 

protein. In contrast to the mRNA, the IL-10 protein was found at low levels (<5%) in the induced 

Treg compared with the natural Treg. To confi rm whether these low IL-10 protein levels have 
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Figure 5. Validation of mRNA-expression levels by fl ow cytometry 

Flow cytometric analyses of granzyme B expression within natural (n) and rATG-induced (I) CD4+CD25+ and CD4+CD25+FoxP3+CD127-/low T cells. 

(A) Representative example of relative granzyme B expression within (n) and (I) CD4+CD25+ T cells. Percentage of positive cells is shown by the 

marker. (B) Within the rATG-induced CD4+CD25+ T cells of healthy controls, the proportion of granzyme B was signifi cantly higher compared to the 

natural (n) CD25+ T cells. Mean ± SEM are shown of N= 3 healthy controls. (C) Representative example of relative granzyme B expression within 

natural and rATG-induced CD4+CD25+FoxP3+CD127-/low T cells. (D) The frequency of granzyme B expression is signifi cantly higher within the 

CD4+CD25+FoxP3+CD127-/low T cells compared to the natural CD4+CD25+FoxP3+CD127-/low T cells. Mean ± SEM are shown of N=3 healthy controls. 
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biological activity, the role of IL-10 in the mechanism of suppression by rATG-induced CD25+ 

T cells was studied in suppression assays that were performed in the absence and presence of 

anti-IL-10 receptor antibody. In the presence of the anti-IL-10 receptor antibody, the suppres-

sive capacity by rATG-induced CD25+ T cells was not abolished, data not shown. 
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Figure 5. Validation of mRNA-expression levels by fl ow cytometry (continued)

(E) One representative example of upregulation of HLA-class II on CD4+ T cell blasts (gated on CD3+CD4+ T cells) in the presence of IFN-γ. 

(F) Cytotoxicity assay with natural and induced Treg as eff ector cells (E) and europium labeled target blasts (T). Natural and induced Treg are 

cocultured with allogeneic target blasts. Mean ± SEM are shown for N=6 healthy controls. Diff erences were statistically tested by the Students 

t Test. **p<0.01.
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DISCUSSION

In this study, we examined whether rATG is able to induce functional Treg in PBMC of patients 

with ESRD, who are candidates for rATG-induction therapy. The characteristics of these rATG-

induced CD25+ T cells were compared with natural CD25+ T cells.  

We show that at a rATG dose of 10 μg/mL converts T cells from patients into suppressive 

CD4+CD25+FoxP3+CD127-/low T cells at the same magnitude as T cells from healthy controls 

(Figures 2 and 3). This indicates that the induction of CD25+ T cells is able to occur in kidney 

transplant patients during and after rATG-induction therapy. Although immune cells from ESRD 

patients cells are extensively exposed to the toxic eff ects of uremia and stressed by dialysis 

and, therefore, do not function properly, as shown in several publications20, 21, 31, our fi ndings 

demonstrate that the T cells of these patients are apparently not defective in their ability to 

induce regulatory T cells after rATG-stimulation in vitro. 

The top 2% rATG-induced CD4+CD25+ T cells only consisted of 10% FoxP3+CD127-/low T cells 

(Figure 2), whereas others and we have reported that the top 2% of natural CD4+CD25+ T cells 

consisted for more than or equal to 90% FoxP3+CD127-/low T cells32, 33. The induced CD4+CD25+ 

T-cell population is thus heterogeneous and comprises both FoxP3+CD127-/low T cells with 

the regulatory phenotype and other T cells with the FoxP3negCD127+ phenotype. In contrast, 

the rATG-induced CD8+CD25+ T cells did not express FoxP3 and were CD127+. However, the 

total induced CD25+ T-cell population had profound regulatory properties that were compa-

rable with natural CD25+ T cells and were not markedly diff erent in their suppressive activities 

between patients and healthy individuals (Figure 3). Moreover, the rATG-induced CD4+CD25+ 

and CD8+CD25+ T cells were able to eff ectively suppress the allogeneic immune responses 

(Figure 3). The function of natural CD25+ T cells treated with rATG remained proportionally 

unaltered. 

Gene expression analyses revealed that the rATG-induced CD25+ T cells and natural CD25+ T 

cells both highly express GITR. However, there were also marked diff erences. The rATG-induced 

CD25+ T cells expressed EBI3, IL-10, IL-27, IFN-γ, perforin, and granzyme B compared with the 

natural CD25+ T cells. The latter suggests that their mechanism of suppression may diff er from 

that of natural CD25+ T cells (Figure 4). EBI3 was upregulated in the induced CD25+ T cells, 

whereas the other transcript that forms the heterodimeric cytokine IL-3534, IL-12A, was not 

upregulated. Natural CD25+ T cells highly expressed IL-12A but not EBI3 compared with the 

CD25neg T cells; therefore IL-35 is not supposed to be a reliable marker for CD4+CD25+ Treg35. 

IL-27 is encoded by IL-27p28 and EBI336. It promotes Th1-cell diff erentiation of naïve CD4+ T 

cells and induces the expression of the IL-12Rβ2 gene by naïve CD4+ T cells to make these cells 

responsive to IL-1234, 37. In contrast, as an attenuator of immune responses, it suppresses the 

diff erentiation into Th17-cells. In its latter role, IL-27 also induces IL-10 expression38. Thus in 

our study, the high IL-10 levels might be due to IL-27 production. In T cells, IL-27 induces IFN-γ, 

perforin and granzyme B production and enhances CTL-activity37, 39, 40. The mRNA expression 
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levels of granzyme B and IL-10 were also upregulated when natural CD25+ T cells were treated 

with rATG, showing that the expression of the mRNA and protein is driven by rATG. It has been 

demonstrated that IL-10 was required for inducing perforin and granzyme B in human IFN-γ/

IL-10 producing CD4+ T cells that showed cytolytic activity41 and these cells could enhance 

cytolytic function in activated CD8+ T cells42, 43. Cell death mediated by the FAS-FASL pathway 

does not seem to play an important role according to their lower mRNA expression levels 

compared with the (n) CD25+ T cells. Brown et al.44 who reported that the perforin pathway 

and the granule exocytosis and not the FASL pathway are predominant in CD4+ T cells pathway 

support these data. Our data show that the rATG-induced CD25+ T cells are anergic and inhibit 

the proliferation and cytokine secretion of T cells and express IL-10 mRNA, but that the IL-10 

pathway does not contribute to the suppressive mechanism of rATG-induced Treg. Further-

more, the rATG-induced Treg do not operate by cytotoxicity as shown in Figure 5F. There could 

be two explanations for the absence of cytotoxic activity by the rATG-induced T cells. First, the 

frequency of granzyme B expressing cells is lower in the rATG-induced CD4+CD25+ T cells (11% 

mean, Figure 5B) than in cytotoxic CD8+ T cells or NK cells (40% of CD8+ T cells and 50% of NK 

cells after stimulation)45. The frequency of granzyme B expressing cells is thus expected to be 

higher to accomplish cytotoxic activity. Second, granzyme B expression in the induced regula-

tory T cells is merely a phenotypic marker of T-cell activation and is not linked to cytotoxic 

activities (cell granule exocytosis). The lack of correlation between granzyme B expressing 

PBMC in ELIspot and cytotoxic activities has also been found earlier by our group46 and has 

been shown in other human non-cytotoxic granzyme B-expressing cells types47. In these cells 

and the rATG-induced Treg, granzyme B may have other nonapoptotic functions47.  

The question remains, what the driving force is behind the induction of functional suppres-

sor T cells that seems to be a unique characteristic for rATG. Nonspecifi c activation by CD3/

CD28 although perfectly able to induce FoxP3, does not lead to the generation of functional 

regulatory T cells as shown by our fi ndings (Figure 3) and by others48, 49. In this study, we found 

that rATG not only induces FoxP3 but also induces regulatory function independent of FoxP3 as 

the rATG-induced CD8+CD25+FoxP3negCD127+ T cells. However, the rATG-induced CD8+CD25+ 

T cells might regulate through cytotoxic mechanisms in an irreversible manner, instead of 

reversible suppression via cell-cell contact or cytokines.  

It is well known that TGF-β promotes and maintains FoxP3-expression in expanded 

CD4+CD25+ T cells and is required for their immunosuppressive capacity50. Addition of TGF-β 

into CD4+CD25neg cells induced FoxP3+ T cells with regulatory capacities51. In our rATG-treated 

cultures, activated non-Treg within the CD25neg cells on day 0 might operate as a source of 

TGF-β. An additional explanation for the induction of regulatory function by rATG might be 

the direct eff ect of an unspecifi ed rabbit protein present in the rATG-preparation that skews 

CD25neg T cells into a regulatory phenotype52. Otherwise, a component within the rATG-mixture 

could promote acetylation or inhibition of histone deacetylation through histone deacetylases 

(HDACs), leading to FOXP3 transcription that may result in the generation of Treg53. 
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Recently, we reported the phenotypical and functional analyses of CD4+CD25+FoxP3+ T cells 

in the peripheral blood of rATG-treated patients32. The results obtained from the rATG-group 

were compared with that of a non-rATG control group. The most important conclusions were 

that the CD25+ T cells slowly recover after rATG-treatment until approximately 30% of baseline 

at 6 months posttransplantation. After rATG-treatment, the function of the isolated CD25+ T 

cells was proportionally comparable with before, showing that rATG treatment has an eff ect 

on their numbers but does not aff ect their function. After transplantation patients receive 

combination therapy consisting of rATG induction therapy, tacrolimus, MMF and steroids. 

Tacrolimus, MMF or steroids may infl uence the induction of Treg by rATG. Therefore, in this 

study, we determined to what extent rATG can convert T cells from ESRD patients into cells that 

may control the allogeneic immune response in a clean study set up.

Taken together, we here demonstrate that cells of ESRD patients are not defective in their 

ability to induce Treg after rATG-stimulation as rATG induces CD4+CD25+FoxP3+CD127-/low T 

cells in PBMC of ESRD patients to the same extent as in healthy controls. This indicates that 

CD25+ T cells can be induced in patients who are candidates for transplantation followed by 

rATG-induction therapy. Furthermore, rATG also induces Treg within the CD8+ T-cell population 

that are CD25+, but eff ectively suppress allogeneic immune responses, independently from 

FoxP3. Although, diff erent in gene expression characteristics, the induced CD25+ T cells exhibit 

equal suppressive potency compared with natural CD25+ T cells. Therefore, rATG may ben-

efi cially contribute to the mechanisms that control alloreactivity. These fi ndings may provide 

more insight in the characterization of induced regulatory T cells after rATG induction therapy 

in kidney transplant patients. More research has to be done to reveal the exact mechanism of 

suppression by the rATG-induced Treg. 
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ABSTRACT

Rabbit Anti-Thymocyte Globulins (rATG) induce CD4+CD25+FoxP3+ regulatory T cells that 

control alloreactivity. In the present study, we investigated whether rATG convert T cells into 

functional CD4+CD25+FoxP3+CD127-/low regulatory T cells in the presence of drugs that may 

hamper their induction and function, i.e. calcineurin inhibitors. CD25neg T cells were stimulated 

with rATG or control rIgG in the absence and presence of tacrolimus for 24 hr. Flow cytom-

etry was performed for CD4, CD25, FoxP3 and CD127 and the function of CD25+ T cells was 

examined in suppression assays. mRNA-expression profi les were composed to study the 

underlying mechanisms. After stimulation, the percentage CD4+CD25+FoxP3+CD127-/low 

increased (from 2 to 30%, mean, p<0.01) and was higher in the rATG-samples than in control 

rIgG-samples (2%, p<0.01). Interestingly, FoxP3+ T cells were also induced when tacrolimus 

was present in the rATG-cultures. Blockade of the IL-2 pathway did not aff ect the frequency of 

rATG-induced FoxP3+ T cells. The rATG-tacrolimus induced CD25+ T cells inhibited proliferative 

responses of alloantigen-stimulated eff ector T cells as vigorously as rATG-induced and natural 

CD4+CD25+FoxP3+CD127-/low T cells (67 ± 18% vs. 69 ± 16% vs. 45 ± 20%, mean ± SEM, respec-

tively). At the mRNA-expression level, rATG-induced CD25+ T cells abundantly expressed IL-10, 

IL-27, IFN-γ, perforin and granzyme B in contrast to natural CD25+ T cells (all p=0.03), whereas 

FoxP3 was expressed at a lower level (p=0.03). These mRNA data were confi rmed in regulatory 

T cells from kidney transplant patients. Our fi ndings demonstrate that tacrolimus does not 

negatively aff ect the induction, phenotype and function of CD4+CD25+ T cells, suggesting that 

rATG may induce regulatory T cells in patients who receive tacrolimus maintenance therapy.
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INTRODUCTION 

The major goal of transplantation immunobiology is to prevent alloreactivity by inducing a 

state of donor-specifi c hyporesponsiveness in order to acquire graft acceptance. There are 

several protocols to establish this. First, a straightforward way of inhibiting alloreactivity can 

be accomplished by immunosuppressive therapy. However, a major limitation of the most 

common immunosuppressive regimens is that they lack specifi city as they do not only dampen 

the immune responses against the allograft. Secondly, apart from mechanisms like clonal dele-

tion, anergy, or activation induced cell death (AICD), the in vivo skewing of the immune system 

towards the regulatory T cells that control alloreactivity seems to be promising in obtaining 

donor-specifi c hyporesponsiveness as demonstrated in experimental transplantation models1, 2.

It is tempting to speculate that immunosuppressive drugs may also contribute to the 

development of donor-specifi c hyporesponsiveness via the active induction of regulatory T 

cells. Indeed, experimental studies analyzing the eff ects of various immunosuppressive agents 

suggest that these drugs benefi cially contribute to immunoregulatory mechanisms3-5. For 

instance, rabbit Anti-Thymocyte Globulins (rATG), which are given as induction therapy after 

transplantation, convert human CD25neg T cells into functional suppressive CD4+CD25+FoxP3+ 

T cells in vitro5, 6. 

Previously, we reported that the number of CD4+CD25bright regulatory T cells slowly and 

incompletely recovered in kidney transplant recipients within 6 months after rATG-induction 

therapy when given in combination with a calcineurin inhibitor and MMF7. Nevertheless, the 

donor-specifi c suppressive properties of these peripheral CD4+CD25bright T cells were equiva-

lent to that of the CD4+CD25bright T cells before transplantation. In line with these results, it 

has been shown that steroids do not hamper the recovery of CD4+CD25+ regulatory T cells 

after treatment of kidney transplant patients with a non-depletive rATG-solution8. Moreover, 

the patient group that received rATG-treatment without steroids did not show enhanced levels 

of regulatory T cells after treatment. Our study and the latter implicate that CNIs might be 

responsible for the lack of enhanced regulatory T cell numbers after rATG therapy compared 

with pre-treatment.  

As CD4+CD25+ regulatory T cells require IL-2 and other members of the IL-2 cytokine family 

for their development, homeostasis and function 9-12, their frequency or function might be 

aff ected by CNIs that inhibit the transcription factor NFAT required for IL-2 transcription13-15 or 

by anti-IL-2 receptor antibodies (daclizumab/basiliximab) that block IL-2 signaling15. This may 

imply that in patients, these agents may negatively infl uence the benefi cial eff ects of rATG on 

the induction of regulatory T cells.

To understand the factors that enhance or harm the development of functional rATG-induced 

regulatory T cells, we investigated the induction of rATG induced-regulatory T cells in the pres-

ence and absence of a CNI (tacrolimus), antibodies that abolish IL-2 (anti-IL-2) and that block 

IL-2R signaling (daclizumab) on human peripheral blood cells. Furthermore, the rATG-treated 
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cells were functionally analyzed and characterized according to their gene-expression patterns 

to reveal their underlying mechanisms. The gene-expression profi les obtained in vitro were 

verifi ed in kidney transplant patients who received rATG induction therapy and CNI mainte-

nance therapy and were compared with a non-rATG group. These fi ndings may have important 

implications for understanding one of the mechanisms of action of rATG in transplanted 

patients after rATG induction therapy which is followed by concomitant immunosuppression.

MATERIALS AND METHODS 

Induction of regulatory T cells 

PBMC were isolated by density gradient centrifugation over Ficoll-Paque (Amersham Phar-

macia Biotech, Uppsala, Sweden) from buff y coats of 5 blood bank donors (Sanquin Blood 

Bank, Rotterdam). PBMC were washed twice and resuspended in 10% Human Culture Medium 

(HCM), which consisted of RPMI 1640 medium with L-glutamine (Bio Whittaker, Verviers, Bel-

gium) supplemented with 10% pooled human serum and 100 IU/mL penicillin and 100 μg/

mL streptomycin (Gibco BRL). The CD25+ T cells were depleted of the PBMC by incubation with 

anti-CD25 microbeads, (Miltenyi Biotech, Bergisch Gladbach, Germany) followed by negative 

selection on the autoMACS (Miltenyi Biotech, DEPLETE-S program). The untouched residual 

fraction consisted of CD25neg cells (>95%, Figure 1A). To induce regulatory T cells with rATG, 

the residual (CD25neg) fraction was washed and resuspended in HCM to a fi nal concentration 

of 5x105/mL. RATG (10 μg/mL, Thymoglobulin, Genzyme Corporation, Cambridge, MA), or a 

control polyclonal rabbit IgG antibody (rIgG, 10 μg/mL, Sigma-Aldrich, St. Louis, MO) was added 

for 24 and 72 hr. Tacrolimus (10 ng/mL, Astellas, Tokyo, Japan), monoclonal anti-human IL-2Rα 

antibody (1 μg/mL, R&D Systems, Minneapolis, MN) or anti-human IL-2 antibody (1 μg/mL, R&D 

Systems) was added to the rATG-treated cultures for 24 hr. 

Flow cytometry 

Flow cytometry was performed using antibodies directly conjugated to fl uorescein isothiocya-

nate (FITC), phycoerythrin (PE), allophycocyanin (APC) or peridinin chlorophyll protein (PerCP) 

and Amcyan. After incubation with rATG or rIgG, PBMC were harvested and FoxP3-intracellular 

staining was performed according to the manufacturer’s instructions (FoxP3-APC, clone PCH101, 

eBioscience, San Diego, CA). Extracellular staining was conducted prior to intracellular staining 

with FITC-conjugated CD127 (eBioscience), IgG1, PERCP-conjugated CD4, PE-conjugated CD25 

epitope B (clone M-A251, BD Biosciences, San Jose, CA), PE-conjugated CD25 and Amcyan-con-

jugated CD3 at 4°C for 30 min. (BD Biosciences). In a separate plate, PE-conjugated granzyme 

B (Pelicluster, clone CLB-GB11, CLB, Amsterdam) was added simultaneously during incubation 

with the FoxP3-antibody. Prior to this intracellular staining, extracellular staining with PE-Cy7-

conjugated CD25 epitope B (clone M-A251, BD Biosciences) and PERCP-conjugated CD4 was 
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performed. Isotype controls IgG1-FITC and IgG1-PE for CD25 and granzyme B and CD127 and 

IgG2a-APC were included at each staining as controls as well as the Fluorescence Minus One 

(FMO) controls16. 

Phosphospecifi c fl ow cytometry was performed according to the manufacturer’s specifi ca-

tions (BD Biosciences) on CD25neg cells (buff y coats blood bank donors, Sanquin, n=3) before 

(unstimulated) and after 24 hr of rATG (10 μg/mL) and rATG-tacrolimus (10 ng/mL) stimula-

tion. PBMC and CD25neg cells (1x106) that were stimulated with PMA-ionomycine 10 min at 

37ºC served as the positive controls. Phosphorylation of P38 in CD3+CD4+, CD4+CD25+ and 

CD4+CD25neg gated cells was determined by fi ve color fl ow cytometry using the following 

antibodies: MAPK-P38-PE (clone 36/p38 pT180/pY182, BD Biosciences), CD3-PERCP, CD4-PB, 

CD25-PE-Cy7 epitope B (clone M-A251, BD Biosciences). Cells were analyzed on a FACSCanto II 

fl ow cytometer (BD Biosciences) for data analysis. Twenty thousand gated lymphocyte events 

were acquired from each tube. Median fl uorescent intensity values (MFI) were generated by 

analyzing the data with Diva 6.0 software (BD Biosciences). FMO controls and unstained control 

tubes were also included16.

Isolation of human natural and induced regulatory T cells and suppression assays

To test their function, natural and induced CD25+ T cells were isolated from the PBMC after 

incubation with anti-CD25 microbeads, Miltenyi Biotech) followed by a positive selection 

(POSSELD-program) on the autoMACS (Miltenyi Biotech) as described before17. The isolated 

and the residual fractions were washed and resuspended in HCM for functional analysis. The 

untouched residual fraction consisted for > 98% of CD25-/dim eff ector cells. The purity of the 

CD25+ isolated fraction was > 90%17. 

The function of CD25+ T cells was determined by mixed lymphocyte reactions in which 

their suppressive capacities were measured by their ability to inhibit the proliferative response 

of autologous CD25neg eff ector T cells (CD25neg Teff ). CD25neg Teff  were co-cultured in trip-

licate with natural CD25+ T cells or with induced CD25+ T cells. Irradiated (40 Gy) 2-2-2 HLA 

mismatched allogeneic PBMC were used as stimulator cells (105 cells/100 μL) and co-cultured 

with 5x104 cells/100 μL of a CD25+ : CD25neg mixture at 1:10 in triplicate wells in round-bottom 

96-well plates (Nunc, Roskilde, Denmark).  Moreover, the natural and rATG-induced CD25+ T 

cells were co-cultured with irradiated CD25−/dim Teff  in the presence of alloantigens to confi rm 

their anergic state.

After 7 days of incubation at 37°C in a humidifi ed atmosphere of 5% CO2, proliferation was 

measured after 3H-thymidine (0.5 μCi/well: Amersham Pharmacia Biotech, Buckinghamshire, 

UK) incubation for the last 16 hr before harvesting. 3H-Thymidine incorporation into DNA was 

assessed using a Betaplate counter (LKB-Wallac, Turku, Finland). 
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Patient samples

Kidney transplant patients (n=6) were enrolled in this study and were part of a feasibility study. 

Patients (n=3) were given one infusion of 1.5 mg/kg Anti-thymocyte Globulin (Rabbit) (Thymo-

globulin®, Genzyme Corporation, Cambridge, MA) each day at day 1, 2 and 3 after transplan-

tation followed by a triple therapy maintenance regimen consisting of tacrolimus, MMF and 

prednisone. MMF and prednisone were given from day 1 and tacrolimus was given from day 

2 after transplantation. A control non-rATG group (n=3) was treated with tacrolimus, MMF and 

prednisone. Heparinized blood was drawn at 12 weeks (median) post-transplant, when median 

T-cell numbers were 400 T cells/μL (N=3 rATG patients). PBMC were isolated as described above 

by density gradient centrifugation over Ficoll-Paque. Subsequently, CD4+CD25+CD127-/low 

and CD4+CD25negCD127+ T cells were sorted with the FACSAria II (BD Biosciences) on PERCP-

conjugated 7-AAD, Pacifi c Blue-conjugated CD4, PE-Cy7-conjugated CD25 and PE-conjugated 

CD127 (BD Biosciences). The purity of CD25+ within sorted cells was ≥ 98%. After isolation, T-cell 

subsets were snap-frozen for PCR analyses. 

Quantitative (Q) PCR

To analyze the gene expression patterns of the samples obtained from healthy individuals and 

patients, the CD25neg T cells on day 0, rATG-induced and rATG-tacrolimus induced CD25+ and 

CD25neg T cells after 24 hr, and natural CD25+ T cells were harvested and total RNA was isolated 

using the High Pure RNA Isolation kit (Roche Applied Science, Penzberg, Germany), according 

to the manufacturer’s instructions. RNA-isolation from the patient samples was performed by 

extraction with phenol. In brief, cDNA was synthesized from total RNA with random primers as 

described before15. Q-PCR was applied to quantify the mRNA expression levels of IL-4, RORγt, 

perforin and granzyme B using the primer express software (Applied Biosystems, Forster City, 

CA). Assay-on-demand products for the detection and quantifi cation of 18S (Hs99999901_s1), 

CD25 (Hs00166229.m1), FOXP3 (Hs00203958_m1), IL-2 (Hs00174114.m1), IL-10 (Hs00174086.

m1), EBI-3 (Hs01057148.m1), IL27p28 (Hs00377366.m1) and IFN-γ (Hs00174143.m1) mRNA 

was designed by Applied Biosystems (Forster City, CA). The PCR-reactions were performed 

using a StepOnePlus Real-Time PCR System (Applied Biosystems). The amount of each target 

molecule was quantifi ed by measuring the cycle threshold (Ct) values, which were transformed 

to the number of cDNA copies [2(40-Ct)]18. Each run contained several negative controls (no 

template) and two positive reference samples to check intra- and inter-assay variations. The 

same reference samples were used in all experiments. There were no signifi cant diff erences in 

Ct values of reference samples within and between the experiments (all <0.25 Ct). The relative 

concentrations of the analyzed markers were normalized to the relative concentration of the 

housekeeping gene 18S that was present in each sample and multiplied by 106 due to the 

lower concentration of the target gene compared with the concentration of 18S18. 



Induction of Regulatory T cells by rATG and Tacrolimus 111

Cytotoxic T lymphocyte Mediated Lysis (CML) assay

Activated CD25-/dim T cells (n=6 blood bank donors) that served as target cells were isolated 

by autoMACS as described above and were stimulated with 200 IU/mL recombinant IL-2 (pro-

leukin; Chiron BV, Amsterdam, the Netherlands), 2 μg/mL of the mitogen phytohemagglutinin 

(PHA) and 100 ng/mL IFN-γ (to upregulate HLA-class II, U-Cytech, the Netherlands, Figure 5D) 

in 24-wells plates (Greiner) for 7 days at 37°C. On day 7, these autologous or allogeneic target 

blasts (Target; T) were labeled with Europium-DTPA. HLA-class II expression by the target cells 

was analyzed after staining with HLA-DR FITC and CD4-PERCP by fl ow cytometry (BD Biosci-

ences).

For eff ector cells we used PBMC that were stimulated with allogeneic irradiated PBMC and 

200 IU/mL IL-2 for 7 days at 37°C. At day 7, these activated cells (Eff ector; E) were cocultured 

in 96-wells plates for 4 hr with autologous or allogeneic target blasts and served as the nega-

tive and positive control for cytotoxicity, respectively. Natural CD25+ T cells, rATG-induced and 

rATG-tacrolimus induced CD25+ T cells were also used as eff ector cells and cocultured with 

autologous and allogeneic target blasts at diff erent E:T ratios (40:1, 20:1, 10:1, 5:1). After 4 hr of 

incubation, the plates were centrifuged and 20 μL of the supernatant was harvested. Enhance-

ment solution (100 μL, PerkinElmer, Groningen, the Netherlands) was added the wells. Fluores-

cence of the released Europium was measured and expressed in counts per second (cps). The 

percentage lysis was calculated by [(measured E:T Europium release – background Europium 

release (0:1) / (max. Europium release – background Europium release) (x100)]. Max. Europium 

release was measured by incubation of target cells with 1% Triton (Sigma-Aldrich, Zwijndrecht, 

the Netherlands).

Calculations and statistical analyses 

Statistical analysis of fl ow cytometry was performed using Graphpad Prism (version 5). To test 

if the values have normal distribution, the Kolmogorov-Smirnov test was used. For the deter-

mination of levels of statistical signifi cance, the two-sided probability values according to the 

Mann Whitney U Test. The One way ANOVA was performed for multiple testing and post hoc 

analyses were performed using Bonferroni’s test for multiple comparisons. P values <0.05 were 

considered statistically signifi cant.
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RESULTS 

Induction of human CD4+CD25+FoxP3+CD127-/low regulatory T cells with rATG  

We performed induction experiments with rATG by the incubation of human CD25neg T cells 

that were depleted from PBMC (Figure 1A). A typical example of induced CD25-expression after 

stimulation with rATG is shown in Figure 1B. CD25+ T cells were induced in the rATG-treated 

samples (27% ± 1.7, mean ± SEM, n=5, Figure 1C) and the percentage CD25+ was signifi cantly 

higher than in the rIgG-treated samples (2.6% ± 0.5, Figure 1C). Also, when incubated with rATG 

in the presence of tacrolimus, the proportion of CD25+ T cells was signifi cantly higher than the 

rIgG-treated samples (41% ± 1.6, Figure 1C), whereas tacrolimus alone had no eff ect on the 

percentage of CD25+ T cells compared with the rIgG-treated samples. 

To evaluate the eff ect of IL-2, we subsequently inhibited the IL-2 pathway. Incubation of 

CD25neg T cell cultures in the presence of an IL-2Rα inhibitor and rATG for 24 hr also resulted in a 

signifi cantly higher percentage of CD25-expressing CD4+ T cells than in the rIgG treated samples 

(IL-2Rα: 21% ± 3.9 and anti-IL-2: 34% ± 8.1, Figure 1C). Next, the percentage of FoxP3+CD127-/low 

T cells was assessed within the CD4+CD25+ T cells. FoxP3+CD127-/low T cells were induced within 

the CD25+ T cells in all cultures with rATG (Figure 1D). The percentage of FoxP3+CD127-/low of 

CD4+CD25+ T cells for the rIgG, rATG, rATG-tacrolimus, IL-2Rα and anti-IL-2 antibody were 2% ± 

0.6, 30% ± 3.9, 19% ± 4.4, 27% ± 2.2 and 30% ± 3.5 respectively (Figure 1E). 

It has been reported that phosphorylation P38, an important component of the Mitogen-

activated Protein Kinase (MAPK) pathway that is linked to NFAT, can be inhibited by CNI19-21. 

Interestingly, P38 phophorylation is required for TGF-β induced conversion of CD4+CD25neg 

cells into CD4+CD25+FoxP3+ regulatory T cells22. Therefore, we questioned whether P38 phos-

phorylation was also induced after stimulation of CD25neg cells with rATG to induce FoxP3-

expression. We found that phosphorylation was present at low level in unstimulated CD25neg 

cells (Figure 2A) and increased after 10 min. of stimulation with PMA-ionomycine. 

Subsequently, the phoshphorylation level of P38 was measured in the total CD4+ population 

after 24 hr of incubation of CD25neg cells with rATG and rATG-tacrolimus. The phosphorylation of 

P38 was increased in the rATG-treated samples and in the rATG-tacrolimus incubated samples. We 

did not fi nd a diff erence in P38 phosphorylation level the between rATG- and the rATG-tacrolimus 

treated samples (Figure 2B). When gated on the rATG-induced CD25+ T cells, the level of phos-

phorylated P38 was comparable with that in natural CD25+ (Figure 2C). Moreover, the level of 

phosphorylated P38 was higher in natural and rATG-induced CD25+ than in CD25neg (Figure 2C). 

Functional analysis of regulatory T cells 

Subsequently, we studied the suppressive capacity of rATG- and rATG-tacrolimus induced 

CD4+CD25+ T cells. Therefore, these induced CD4+CD25+ T cells were isolated from the total 

PBMC population after 24 hr and cocultured in a suppression assay with autologous CD25neg T 

cells during stimulation with alloantigen. 
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Figure 1. Induction of regulatory T cells

(A) Depletion of CD25+ T cells from PBMC. (B) Incubation of CD25neg T cells with rIgG, Tacrolimus, rATG, rATG+Tacrolimus, rATG+IL-2 receptor 

(R) α and rATG+anti-IL-2. Gate shows the percentage of CD25+ of CD4+ T cells. (C) Percentage of CD25+ T cells of CD4+ of n=3. Diff erences were 

statistically tested by ANOVA, p<0.0001. 
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Figure 1. Induction of regulatory T cells (continued)

(D) Representative example of percentage FoxP3+CD127-/low within the induced CD25+ T cells of all cultures in the presence of rATG. CD25neg cells 

from PBMC (top panels) were stimulated for 24 hrs with rATG, rATG + Tacrolimus, rATG + anti-IL2Rα and rATG + anti-IL-2. After 24 hrs, induced 

CD25+ T cells were gated and analysed for their FoxP3+CD127-/low expression (middle panels). Gates for positivity were set on FoxP3+CD127-/low 

cells within natural (nCD25+) T cells after 24 hrs of incubation with rATG. FoxP3+CD127-/low cells were absent within CD25neg cells incubated with 

control rIgG (lower panels). (E) Percentage of FoxP3+CD127-/low of induced CD25+ T cells, n=3 healthy individuals. Error bars represent mean ± 

SEM. Diff erences were statistically tested by ANOVA, p<0.0001, *p<0.05, ***p<0.001.
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Figure 2. P38 phospho-specifi c fl ow cytometry

(A) Representative example of P38 phosphorylation levels in unstimulated, PMA-ionomycine stimulated, rATG-stimulated CD4+CD25neg 

cells. Median Fluorescence intensities are depicted of phosphorylated (P) P38 in CD4+ T cells after 24 hrs. of culture (B) P38 phosphorylation 

in unstimulated CD4+CD25neg cells, PMA-ionomycine stimulated CD4+CD25neg cells, rATG stimulated CD4+CD25neg cells and rATG-tacrolimus 

stimulated CD4+CD25neg cells, n=3 (C) Phosphorylation of P38 in unstimulated and PMA-ionomycine stimulated natural CD4+CD25+ 

(nCD4+CD25+) and CD4+CD25neg cells from PBMC and rATG-induced CD4+CD25+ and CD25neg cells. 
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After coculture with natural CD25+, rATG-induced CD25+ or rATG-tacrolimus induced CD25+ 

T cells, the proliferative responses by CD25neg T cells were lower (Figure 3A). The rATG-induced 

CD25+ T cells that were induced in the presence or absence of tacrolimus inhibited the response 

at a comparable level to natural CD25+ T cells (mean ± SEM) at a 1:10 ratio (rATG-induced CD25+: 

69% ± 16, rATG-tacrolimus-induced CD25+: 67% ± 18 vs. natural CD25+: 45% ± 20, Figure 3B). The 

analogous suppressive capacities of the rATG-induced and the rATG-tacrolimus-induced CD25+ 

T cells suggest that rATG promotes bona fi de regulatory T cells even in the presence of tacrolimus.   

A key characteristic of natural CD25+ suppressor T cells is that they do not proliferate upon 

stimulation with alloantigen. We found that the rATG-induced and rATG-Tacro induced CD25+ 

T cells also did not show a proliferative response upon stimulation with alloantigen for 7 days, 

suggesting that the cells are anergic (rATG: 487 ± 153, rATG-Tacro: 369 ± 186, mean ± SEM). 

Gene expression profi le of rATG-induced regulatory T cells in the absence and presence of 
tacrolimus

To reveal the key molecules involved in the mechanism of action of rATG tacrolimus induced 

CD25+ T cells, we investigated their gene-expression profi les on these T cells and compared them 

with rATG-induced and natural CD25+ T cells. The purity of CD25+ within sorted cells was ≥ 98%. 

The mRNA expression of FOXP3 was signifi cantly lower in the rATG-induced and rATG-

tacrolimus induced CD25+ T cells compared with the natural CD25+ T cells (Figure 4). IL-10, 

EBI3, IL-27p28, IFN-γ, perforin and Granzyme B were all abundantly expressed in the rATG- and 

rATG-tacrolimus induced CD25+ T cells compared with the natural CD25+ T cells (Figure 4). 

Next, we compared the profi les of the rATG-induced CD25+ T cells in the presence and 

absence of tacrolimus and it appeared that the mRNA-expression of all tested genes, with the 

exclusion of FOXP3 and IL-27p28, were signifi cantly higher in the rATG-(I) CD25+ T cells in the 

A B

Figure 3. Suppression assays with natural (n) and rATG-Induced (I) and rATG-Tacrolimus (Tacro) Induced CD25+ T cells 

(A) Proliferative responses after 3H-Thymidine incorporation are shown in counts per minute (cpm) of  CD25neg T cells in response to allo-antigen 

(black bar) and of CD25neg T cells in the presence of (n) CD25+ T cells (gray bar), rATG (I) (dotted bar) and rATG-Tacrolimus induced (striped bar) 

CD25+ T cells. (B) Percentage inhibition of the proliferation of CD25neg T cells by (n) (gray bar), rATG-(I) (dotted bar) and rATG-Tacrolimus induced 

(striped bar) CD25+ T cells. Mean ± SEM are shown for n=5 healthy individuals. 
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presence of tacrolimus (Figure 4). Overall, the gene expression profi le of the rATG-tacrolimus 

induced CD25+ T cells was comparable with the rATG-induced CD25+ T cells whereas distinct 

from that of the natural CD25+ T cells (Figure 4). IL-2, IL-4 and the transcription factor for Th17-

cells RORγt were undetectable.

Figure 4. Relative mRNA expression patterns of (n) (gray bar), rATG (I) (dotted bar) and rATG-tacrolimus (I) (striped bar) CD25+ T cells for FOXP3, 

IL-10, EBI3, IL27p28, IFN-γ, perforin and granzyme B for n=4 healthy individuals. Error bars represent mean ± SEM. Signifi cance was tested by 

ANOVA; FOXP3; p<0.0001, IL-10; p=0.0007, EBI3; p<0.0001, IL-27p28; p=0.01, IFN-γ; p=0.0008, perforin; p<0.0001, Granzyme B; p=0.0014, 

*p<0.05. 
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Flow cytometric analyses of Granzyme B and cytotoxic activities by induced regulatory T cells

The fi nding that granzyme B mRNA levels were upregulated in the rATG-induced and >80-fold 

in rATG-tacrolimus induced CD25+ T cells compared with natural CD25+ T cells, prompted us to 

link the results on transcriptional level with the translational level. Therefore, we investigated 

the expression of this protein in these T cells as well. The percentages and fl uorescence intensi-

ties of granzyme B+ T cells within the CD4+CD25+FoxP3+ T cells were measured to determine 

co-expression of granzyme B and FoxP3. A representative example of granzyme B+ T cells 

within CD4+CD25+FoxP3+ T cells is shown in Figure 5A. A considerably higher percentage was 

granzyme B+ of the rATG-tacrolimus-induced CD4+CD25+FoxP3+ T cells, compared with natural 

Figure 4. (continued) Relative mRNA expression patterns of (n) (gray bar), rATG (I) (dotted bar) and rATG-tacrolimus (I) (striped bar) CD25+ T 

cells for FOXP3, IL-10, EBI3, IL27p28, IFN-γ, perforin and granzyme B for n=4 healthy individuals. Error bars represent mean ± SEM. Signifi cance 

was tested by ANOVA; FOXP3; p<0.0001, IL-10; p=0.0007, EBI3; p<0.0001, IL-27p28; p=0.01, IFN-γ; p=0.0008, perforin; p<0.0001, Granzyme 

B; p=0.0014, *p<0.05. 
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CD4+CD25+FoxP3+ T cells (Figures 5A and B). Also the fl uorescence intensities of granzyme B 

were higher in the rATG-tacrolimus and rATG-induced CD25+FoxP3+ T cells compared with the 

natural CD25+FoxP3+ T cells, suggesting a higher per-cell expression (Figure 5A). The percent-

age of granzyme B+ T cells was the same between rATG and rATG-tacrolimus induced CD25+ 

T cell populations, whether defi ned as CD4+CD25+FoxP3+ (Figure 5B) or CD4+CD25+ T cells 

(Figure 5C). 

1%

       672.81

  18.7%

         
                                              1061.07

22.4%

             1253.06

Isotype
control

Natural
CD4+CD25+FoxP3+CD127-/low

rATG (I)
CD4+CD25+FoxP3+CD127-/low

rATG-Tacro (I)
CD4+CD25+FoxP3+CD127-/low

  

                                         564.02

   3%

A

B C

Figure 5. Flow cytometric analyses of granzyme B expression (A) within natural, rATG (I) and rATG-Tacro (I) CD25+FoxP3+CD127low T cells. The 

marker represents percentage of Granzyme B positive cells. Median fl uorescence intensities of granzyme B are also depicted. (B) Percentage 

granzyme B positive cells within CCD25+FoxP3+ T cells for n=3 healthy individuals and (C) percentage granzyme B positive cells within 

CD4+CD25+ T cells of n=3 healthy individuals. Mean ± SEM are shown. 
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Figure 5. (continued) (D) One representative example of upregulation of HLA-class II on CD4+ T cell blasts (gated on CD3+CD4+ T cells) in the 

presence of IFN-γ. (E) Cytotoxicity assay with natural, rATG and rATG-tacro Induced Treg as eff ector cells (E) and europium labeled target blasts (T). 

Natural and Induced Treg are cocultured with allogeneic target blasts. Mean ± SEM are shown for N=6 healthy controls.
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To check whether the rATG-induced and rATG-Tacro induced CD25+ T cells have cytotoxic 

activities, we performed a cytotoxic T lymphocyte mediated lysis (CML) assay. Natural, rATG-

induced and rATG-Tacro induced CD25+ T cells were used as eff ector cells (E) and Target (T) 

blasts were generated in the presence of IL-2 and IFN-γ from autologous and allogeneic PBMC 

and labeled with Europium. First, we checked the HLA-class II expression on T cell blasts. In 

the presence of IFN-γ, T cell blasts abundantly upregulated HLA-class II (Figure 5D). Allogeneic 

stimulated PBMC were able to lyse allogeneic but not autologous target blasts. The percentage 

lysis of allogeneic target blasts by natural, rATG and rATG-tacro-induced CD25+ was comparable 

with the autologous control, showing that they do not lyse allogeneic target blasts (Figure 5E).

Gene expression profi le of regulatory T cells in kidney transplant patients after rATG induction 
therapy

To confi rm expression levels found in vitro in cells from healthy individuals, the mRNA-expression 

patterns of the same set of genes on CD25+ T cells from kidney transplant patients that received 

rATG-induction therapy followed by maintenance therapy that consisted of tacrolimus. A non-

rATG group that received maintenance therapy alone served as control because their PBMC are 

composed of only natural regulatory T cells and are not heterogeneous as expected for the rATG-

treated patients. The FACS-sorted CD4+CD25+CD127-/low T cells of patients within the rATG-group 

showed signifi cantly higher expression of CD25 and FoxP3 than the same T-cell subset from 

patients in the non-rATG group (Figure 6). Moreover, the mRNA-expression levels of IL-10, IL-2, 

IFN-γ, perforin and Granzyme B were also highly expressed in the CD4+CD25+CD127-/low from 

rATG-treated patients compared with the CD4+CD25+CD127-/low  T cells from the control group 

(Figure 6). The mRNA levels of IL-27p28 and EBI3 were not detectable in the patient samples.

DISCUSSION 

The main mechanism of action of most immunosuppressive drugs is to downregulate immune 

responses against allo-antigen by eff ector T cells. However, it became apparent that immuno-

globulins can serve as the trigger for cytokines as i.e. IL-10 or TGF-β in the microenvironment of 

T cells to induce or expand regulatory T cells. 

In the present study, we explored the eff ect of immunosuppressants that hamper the IL-2 

pathway, on inducible regulatory T cells by rATG. We show that rATG induce CD25 and FoxP3-

expression both in the presence and absence of tacrolimus and Daclizumab (Figure 1). These 

rATG-tacrolimus CD25+ T cells have the same phenotype (Figure 1) and P38-phosphorylation 

levels (Figure 2), exhibit equal suppressive activities (Figure 3) and have similar gene-expression 

patterns (Figure 4) compared with rATG-induced CD25+ T cells, showing that tacrolimus does 

not negatively aff ect Treg induction by rATG. The gene-expression levels of rATG-induced CD25+ 

T cells in the presence of tacrolimus even seem to be enhanced. When the gene-expression 
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Figure 6. Relative mRNA expression patterns of CD25, FOXP3, IL-10, IL-2, IFN-γ, perforin and granzyme B within CD25+ T cells that were isolated 

from PBMC of rATG (striped bars, n=3) and control patients (gray bars, n=3). Data are shown as mean ± SEM. Statistical signifi cance was tested 

by Mann-Whitney U Test, *p<0.05.
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levels were verifi ed in kidney transplant patients that received rATG-induction therapy, the in 

vitro data were confi rmed (Figure 6). 

As it is well known that IL-2 expands CD4+CD25brightFoxP3+ T cells in vitro23-25, the role of IL-2 

in the development and homeostasis of FoxP3+ T cells with suppressive function is inconclu-

sive. Incubation of human CD4+CD25neg T cells with IL-2 does not necessarily result in induction 

of CD25 or FoxP326, 27. After activation with anti-CD3/CD28 and IL-2, the FoxP3neg T cells only 

transiently express FoxP3 but do not exhibit suppressive properties, showing that FoxP3 has to 

be constitutively expressed to induce regulatory activity26, 28, 29. In contrary to these results, it 

has been reported that FoxP3 is present in IL-2-/-, IL-2Rα-/- and IL-2Rβ-/- Treg that have regulatory 

function, whereas T cells from an IL-2Rγ-/- mice do not express FoxP39. Thus in line with our 

results using human cells, the direct (anti-IL-2) or indirect blockade of IL-2 (calcineurin inhibi-

tor) still permits T cell signaling by other cytokines of the common γ-chain (CD132) that may 

compensate for the absence of IL-2 and may provide signals involved in the development, 

homeostasis and function of regulatory T cells10. As it has been reported that blockade of the 

IL-2 pathway or the expression of Th17-inducing cytokines (IL-6 and IL-23)30 may lead to the 

induction of Th17 cells and not of regulatory T cells, we now show that FoxP3+regulatory T cells 

are induced even in the presence of IL-2 pathway inhibitors. 

Antigenic stimulation alone is suffi  cient to induce conversion of conventional T cells into 

regulatory T cells. This conversion even takes place at a higher rate when IL-2 is blocked, result-

ing in reduced proliferation of naïve T cells that will diff erentiate into FoxP3+ regulatory T cells31. 

Regulatory T cells that can be induced in the periphery upon encounter with antigen have been 

reported earlier, e.g. the FoxP3+TGF-β-producing Th3-cells and the FoxP3negIL-10-producing Tr1 

cells that upregulate FoxP3 after antigen stimulation4. In our rATG-tacrolimus model, foreign 

rabbit antigens may serve as TCR trigger. However, although this resulted in an increased pro-

portion of CD25, this was not associated with a higher proportion of FoxP3 positivity when the 

IL-2 pathway was blocked. Thus, for the induction and development of FoxP3-expression, both 

γc-cytokines and TCR stimulation are required.

Interestingly, the protein levels of other cytokines of the IL-2 family, IL-7 and IL-15 are 

increased in the serum of renal allografts recipients during the early post-transplant period as 

demonstrated by Simon T et al.32. These other cytokines of the IL-2 family may thus bypass the 

function of IL-2 itself to facilitate a certain FoxP3 expression and may allow the induction of 

regulatory T cells in the presence of a calcineurin inhibitor in vitro and in vivo as shown by our 

fi ndings. IFN-γ is highly expressed by rATG-induced Treg. It has been described earlier that this 

cytokine may also play a crucial role in the function of induced regulatory T cells in vivo33, 34. 

Furthermore, a convincing role has been attributed to perforin and granzyme B in regulatory 

T cells to mediate suppression and induce tolerance35, 36. However, the rATG- and rATG-tacro 

induced Treg do not operate by cytotoxicity as shown in Figure 5E. There could be two explana-

tions for the absence of cytotoxic activity by the rATG-induced T cells. First, the frequency of 

granzyme B expressing cells is lower in the rATG-induced CD4+CD25+ T cells (11% mean, Figure 
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5C) than in cytotoxic CD8+ T cells or NK cells (40% of CD8+ T cells and 50% of NK cells after 

stimulation)37. Thus, to accomplish lysis of target blasts, the frequency of granzyme B express-

ing cells should be higher. Secondly, granzyme B expression in the induced regulatory T cells 

is merely a phenotypic marker of T cell activation and is not linked to cytotoxic activities (cell 

granule exocytosis). The lack of correlation between granzyme B expressing PBMC in ELISPOT 

and cytotoxic activities has also been found earlier by our group38 and has been shown in other 

human non-cytotoxic granzyme B-expressing cells types39. In these cells and the rATG-induced 

regulatory T cells, granzyme B may have other non-apoptotic functions39.  

RATG-induced CD4+ and CD4+CD25+ T cells are characterized by high NFAT1-expression as 

has been described by Feng et al.6. This observation clarifi es the induction of FoxP3 in these 

cells, thereby conferring FOXP3-expression and regulatory activity. A disruption of the interac-

tion between FOXP3 with NFAT resulted in a graded manner with the ability of FOXP3 to repress 

the expression of IL-2 and to upregulate CTLA-4 and CD2540, 41. Thus, one may speculate that by 

the addition of a calcineurin inhibitor, NFAT cannot be phosphorylated and is not able to form a 

complex with FoxP341, resulting in a downregulation of FOXP3. Phosphorylation of MAPK-P38, 

that regulates the transcription and activation NFAT19, 20 has been shown to be necessary for the 

in vitro induction of FoxP3+ regulatory T cells with TGF-β22. Our results show that the phosphory-

lation of P38 was induced in rATG-incubated cells and reached almost the same level as after 

PMA-ionomycine stimulation. Considering that the NFAT and MAPK pathways interact with 

each other and both pathways can be inhibited by a calcineurin inhibitor21, one would expect 

that rATG-induced P38 phosphorylation is inhibited in the rATG-tacrolimus-induced Treg. 

Our fi ndings show that the rATG-induced P38 phosphorylation was not inhibited in the pres-

ence of tacrolimus and FoxP3-expression was also not impaired (Figure 2B). Apparently, rATG 

is such a potent stimulus of this pathway and dominates the inhibitory eff ect of tacrolimus. 

Interestingly, the P38 phosphorylation level was higher within the rATG-induced CD25+ cells 

than within CD25neg cells and comparable with the natural CD25+ level, showing that they are 

bona fi de regulatory T cells (Figure 2C). Moreover, the suppressive capacities of rATG-tacroli-

mus-induced CD25+ T cells were the same as rATG- and natural CD25+ T cells. There are three 

possible explanations for this phenomenon. Firstly, it could be that there is Ca2+-independent 

transcription of IL-2 as a calcineurin inhibitor only inhibits IL-2 production for 70-80% and thus 

is not the only pathway leading to proliferation42, 43, providing enough IL-2 for Treg homeosta-

sis and function. Secondly, it has been demonstrated that therapeutic levels of cyclosporine A, 

do not inhibit all calcineurin that is present in the cell (only about 50%), thereby allowing strong 

signals to trigger cytokine expression44-46. Thirdly, in a study with atopic dermatitis patients, the 

authors reasoned that partial T cell activation to induce activation-induced cell death makes 

Teff  more sensitive to cyclosporine A than Treg47. This notion is supported by our fi ndings, as 

tacrolimus apparently only aff ects the signaling of eff ector T cells by inhibiting their activation 

and their IL-2 production. In addition, an important function of calcineurin is to prevent dele-

tion of activated T cells through the inhibition of activation-induced cell death. A CNI alleviates 
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this inhibition by transducing a ‘stress’ activation signal into the cell that subsequently triggers 

apoptosis. The stress activation signal may account for the ‘activated’ T-cell gene-expression 

pattern of rATG-induced Treg in the presence of tacrolimus.

In kidney transplant patients with rATG induction therapy and CNI maintenance therapy, 

regulatory T cells with the memory phenotype slowly recover after rATG-induction therapy as 

reported previously7. This recovery can be attributed to homeostatic proliferation in the pres-

ence of low-dose (rabbit) antigen that triggers the output of naïve T cells by the thymus and 

conversion into memory (regulatory) T cells in the periphery. The naïve and memory (regula-

tory) T cells will proliferate to refi ll the empty space. The latter phenomenon does not only 

result in a recovery of regulatory T cells but may also lead to a higher regulatory T cell numbers 

or FoxP3-expression compared with baseline. Indeed, in our patients the gene expression of 

FoxP3 was higher than in the non-rATG control group (Figure 6). 

One has to take into account that the induced FoxP3-expression in our model may not 

only represent a marker for regulatory T cells, but also for T-cell activation. Our rATG-induced 

CD25+ cells expressed FoxP3 at lower level (19% to 31%) than natural regulatory T cells (85%). 

Furthermore, according to their mRNA-pattern they show a rather ‘activated T-cell’ phenotype. 

These data emphasize that their phenotype does not fully resemble natural regulatory T 

cells. However, the suppression assays show that the rATG-induced CD25+ cells and natural 

regulatory T cells have comparable regulatory activities. It is therefore essential to address 

whether the induced FoxP3+CD25+ T cells within the heterogeneous CD25+ T-cell population 

or CD25+FoxP3neg cells exhibit suppressive activities. To date, it is not possible to study the func-

tion of human FoxP3+ T cells, because it is an intracellular marker. Thus, phenotypical analysis 

or mRNA expression analysis alone is not suffi  cient to classify cells into a particular T-cell subset. 

It is essential to examine the function of T cells and combine these data with the phenotype 

analysis as we did in the present study.  

Taken together, in the present report, we show that in the presence of immunosuppressants 

that indirectly inhibit IL-2 (tacrolimus) or IL-2 pathway inhibitors (anti-IL-2, anti-IL-2Rα), it is still 

possible to induce regulatory T cells by rATG that are phenotypically, functionally and at the 

gene-expression level identical as regulatory T cells that are induced by rATG in the absence of 

these immunosuppressants. Furthermore, it remains unclear whether natural or induced regu-

latory T cells are more important in their contribution to donor-specifi c hyporesponsiveness 

after transplantation. More research has to be done to characterize these rATG-induced T cells 

and to fully utilize their immunosuppressive properties to promote graft-acceptance.
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ABSTRACT  

The Janus kinase (jak) inhibitor CP-690,550 inhibits alloreactivity and is currently being 

investigated for prevention of allograft rejection after transplantation. In this study, 

we examined the eff ect of CP-690,550 on IL-2-mediated Jak/STAT5 phosphorylation by 

CD4+CD25brightFoxP3+CD127-/low T cells (Treg) and CD4+CD25neg eff ector T cells (Teff ) in kidney 

transplant patients. Phospho-specifi c fl ow cytometry was used to study the eff ect of CP-690,550 

on IL-2-induced intracellular Signal Transducer and Activator of Transcription (STAT) 5-phos-

phorylation. IL-2 induced phosphorylation of STAT5 (P-STAT5) in both Treg and Teff , which was 

signifi cantly higher for CD4+CD25bright Treg (increased by 71%, mean) than for CD4+CD25neg 

Teff  (increased by 42%). In the presence of 100 ng/mL CP-690,550, a clinically relevant exposure, 

IL-2 induced P-STAT5 was partially inhibited in CD4+CD25bright Treg (% inhibition; 51%), while 

almost blocked in the Teff  (% inhibition; 84%, p=0.03). The IC50 was 2-3 times higher for Treg 

(104 ng/mL) than for Teff  (40 ng/mL, p=0.02). In the presence of CP-690,550, Treg exhibited 

additional suppressive activities on the alloactivated proliferation of Teff  (% inhibition; 56%, 

mean). In addition, CD4+CD25bright Treg from kidney transplant patients receiving CP-690,550 

vigorously suppressed the proliferation of Teff  (% inhibition; 87%). Our fi ndings show that the 

Jak inhibitor CP-690,550 eff ectively inhibits Teff  function but preserves the suppressive activity 

of CD4+CD25bright regulatory T cells. 
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INTRODUCTION

After organ transplantation, alloreactivity is triggered by antigen-presenting cells that activate 

T cells via three signals: I. via the T-cell receptor, II. via co-stimulation and III. via the cytokine 

signal1. The cytokine signal is important in the mediation of growth signals to the cell and 

activates a signaling cascade that is transduced via the Janus family of kinases (Jaks). Cytokines 

of the IL-2 family exert their biological functions through Jak molecules 1 and 3 and via STAT 

(signal transducer and activator of transcription) transcription factors. Phosphorylation of 

Jaks results in recruitment of STAT molecules to the receptor. Subsequently, STAT molecules 

dimerize and then translocate into the nucleus, leading to gene transcription. These molecules 

regulate multiple aspects of T-cell diff erentiation and function. Therefore, Jaks have emerged as 

targets for drug development to block T-cell growth, diff erentiation, activation, and to suppress 

alloreactivity2-4. 

T-cell receptor triggering and IL-2/IL-15 stimulation induce FoxP3-expression in both 

antigen-specifi c adaptive CD4+CD25+ regulatory T cells (Treg) and in CD4+CD25neg eff ector 

T cells that requires STAT5-signaling5, 6. However, FoxP3+ regulatory T cells are distinct from 

activated FoxP3+ eff ector T cells by their stable and constitutive expression of FoxP3 and by 

their suppressive capacities. It has been reported that STAT5-/- mice have a dramatic reduction 

in Treg7 and blockade of STAT5b in mice or a mutation in the STAT5b gene in humans results in 

decreased accumulation and regulatory function of CD4+CD25bright T cells8. The IL-2Rβ-chain, 

Jak3 and STAT5 are also essential for Treg development and maintenance9, 10. 

The Jak inhibitor CP-690,550 is being developed for clinical organ transplantation in a cal-

cineurin (CNI)-free protocol. CP-690,550 has been shown to be a potent immunosuppressive 

agent in inhibiting alloreactivity in various (animal) experimental models11-13. In a prospec-

tive Phase I study, we demonstrated that the number of peripheral blood CD4+CD25+ Treg 

decreased in kidney transplant patients after CP-690,550 treatment14. The regulatory capacities 

of the residual Treg remained unchanged during treatment. 

The immunomodulatory eff ect of CP-690,550 on T cells can be directly measured by the 

detection and quantifi cation of cytokine-induced STAT5 phosphorylation in a fl ow cytomet-

ric assay15. In this study, we investigated whether there is a diff erential inhibitory eff ect of 

CP-690,550 on IL-2-activated STAT5 phosphorylation in Teff  and Treg. Moreover, we analyzed 

the proliferative function of Teff  and the suppressive activity of CD25bright T cells in kidney 

transplant patients who were part of a Phase II trial and received CP-690,550 therapy in com-

bination with basiliximab induction therapy, mycophenolate mofetil (MMF) and prednisolone. 

These results were compared with a control group consisting of kidney transplant patients who 

received cyclosporine instead of CP-690,550. 
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MATERIALS & METHODS

Whole blood staining for P-STAT5 in the presence of IL-2 

Whole blood samples (200 μL) were freshly obtained from healthy individuals (n=4) and stimu-

lated with culture medium (RPMI-1640) containing IL-2 at a fi nal concentration of 2000 IU/mL 

(130 ng/mL) and incubated for 30 min at 37 ºC. Cells were lysed and fi xed by adding Lyse/Fix 

Buff er (BD Biosciences, San Jose, CA) to the tubes at a fi nal concentration of 2% and incubated 

for 10 min at 37ºC. Next, cells were washed in staining buff er (fl ow buff er with 0.5% bovine 

serum albumin (BSA) and permeabilised with cold 70% methanol for 30 min on ice. Cells were 

washed twice in staining buff er and resuspended in 25 μL staining-buff er. 

IL-2 induced phosphorylation of STAT5 in diff erent T-cell subpopul ations was determined by 

fi ve color fl ow cytometry using antibodies directly conjugated to phycoerythrin (PE), phycoery-

thrin-Cy7 (PE-Cy7) Peridinin chlorophyll protein (PerPC), allophycocyanin (APC) and Pacifi c Blue 

(PB). Cells were simultaneously incubated for 30 min with the following antibodies according to 

manufacturer’s specifi cations: P-STAT5 (Y694)-PE, FoxP3-APC (clone PCH101, eBiosciences, San 

Diego, CA), CD3-PERCP, CD4-PB, CD25-PE-Cy7 epitope B (clone M-A251, BD Biosciences, San 

Jose, CA) and CD127-FITC. Cells were then washed in fl ow buff er and analyzed on a FACSCanto 

II fl ow cytometer (BD Biosciences, San Jose, CA) for data analysis. Twenty thousand gated lym-

phocyte events were acquired from each tube. Median fl uorescent intensity values (MFI) were 

generated by analyzing the data with Diva 6.0 software (BD Biosciences, San Jose, CA).  The 

eff ect of IL-2 on STAT5 phosphorylation was calculated by the percentage P-STAT5-PE positive 

cells or the median fl uorescence intensity of P-STAT5-PE of the IL-2 stimulated sample minus 

the unstimulated sample (background). Fluorescence Minus One (FMO) controls and unstained 

control tubes were also included.

Whole blood staining for P-STAT5 after pre-incubation with CP-690,550

Whole blood samples (200 μL) were pre-incubated for 60 min with culture medium containing 

CP-690,550 at a fi nal concentration of 1, 2.5, 10, 25, 50, 100, 250 or 1000 ng/mL (provided by 

Pfi zer Inc, New London, CT). Next, cells were incubated in culture medium containing IL-2 (130 

ng/mL) and then the phosphofl ow cytometry protocol as described above was performed. The 

percentage of inhibition of STAT5 phosphorylation was calculated at each concentration of 

CP-690,550 and expressed as a percentage of the IL-2-induced STAT5 phosphorylation. Sigmoid 

curves were drawn using Graphpad Prism (v.5.02) and IC50 was calculated. 

Patients

Kidney transplant patients who were part of a Phase II trial (A3921030) were included in this 

study. Patients (n=4) in the study group received 15 mg CP-690,550 twice daily (B.I.D) for at least 

90 days after transplantation and received maintenance therapy consisting of mycophenolate 

mofetil (MMF, Cellcept, Roche Laboratories, New Jersey) 500 to 1000 mg B.I.D and prednisolone 



The Jak Inhibitor CP-690,550 and Regulatory T Cells 135

5 to 7.5 mg daily. Patients in the comparative group (n=3) received cyclosporine (Neoral, 

Novartis Pharma BV, Basel), MMF and prednisolone. Patients in both groups received 20 mg of 

basiliximab anti-CD25 monoclonal antibody induction therapy on the day of transplantation 

and on day 4 after transplantation. After informed consent was obtained from the participating 

patient, heparin tubes with blood were obtained 1 day before and 56 days after transplanta-

tion. The medical ethical committee of the Erasmus MC, Rotterdam approved the study. 

Isolation of Peripheral Blood Lymphocytes for functional studies 

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient centrifugation 

over Ficoll-paque from buff y coats of healthy blood bank donors (n=6, Sanquin Blood Bank, 

Rotterdam, the Netherlands) and from heparinized blood of kidney transplant patients (n=7). 

PBMC were then frozen in 10% DMSO enriched RPMI 1640 medium (BioWhittaker, Verviers, 

Belgium) and stored at -140˚C.

Isolation of human CD25bright T cells from peripheral blood of healthy individuals

PBMC were thawed and resuspended in 10% Human Culture Medium (HCM), which consisted 

of RPMI 1640 medium with L-glutamine (Bio Whittaker) supplemented with 10% pooled human 

serum, 100 IU/mL penicillin and 100 μg/mL streptomycin (Gibco BRL). CD25bright T cells were 

isolated from PBMC after incubation with anti-CD25 microbeads, (Miltenyi Biotech, Bergisch 

Gladbach, Germany) followed by positive selection (POSSELD-program) on the autoMACS 

(Miltenyi Biotech). The untouched residual fraction consisted of > 98% CD25-/dim Teff  and was 

used as responder population in the suppression assays. Both fractions were stained with CD4-

PERCP (BD Biosciences) and CD25-PE epitope B (clone M-A251, BD Biosciences) and the purity 

of CD25bright was determined by fl ow cytometry (> 90%). 

Isolation of human CD25bright T cells from peripheral blood of kidney transplant patients

All patients in the CP-690,550 group (n=4) and in the cyclosporine group (n=3) were treated 

with basiliximab anti-CD25 induction therapy, MMF and prednisone maintenance therapy. 

Anti-CD25 induction therapy caused shedding of the IL-2Rα-complex. Therefore, it was not 

possible to isolate the CD25bright T cells on epitope A. To recover the CD25-expression on T 

cells, PBMC were rested overnight in HCM with low dose IL-2 (5 ng/mL). After 24 hr, the CD25-

expression recovered to normal levels (Figure 4) and the CD25bright T cells, consisting of 85% 

FoxP3+ T cells, could be isolated according to the protocol described above. 

Mixed lymphocyte reactions

The eff ect of CP-690,550 on the proliferative capacity of CD25-/dim Teff  from healthy individuals 

was studied by mixed lymphocyte reaction. The CD25bright T cells were depleted from PBMC 

and the residual CD25-/dim T cells were activated with irradiated (40 Gy) HLA mismatched 
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(2-2-2) PBMC as stimulator cells (1x105 cells/100 μL) in the presence of various CP-690,550 

concentrations (10, 25, 50, 100, 250, 500 and 1000 ng/mL). 

The function of CD25bright cells of healthy individuals was analyzed by their ability to inhibit 

the proliferative response of alloantigen-activated CD25-/dim Teff . The CD25-/dim Teff  were co-

cultured in triplicate with and without CD25bright T cells. Irradiated (40 Gy) HLA mismatched 

(2-2-2) PBMC were used as stimulator cells (1x105 cells/100 μL) and co-cultured with 5x104 

cells/100 μL of a mixture of CD25bright : CD25-/dim  at an 1:5 ratio in round-bottom 96-well 

plates (Nunc, Roskilde, Denmark). Suppression assays with PBMC of healthy individuals were 

performed in the presence of 50 and 100 ng/mL CP-690,550 to study the eff ect of CP-690,550 

on Treg function.

Suppression assays with PBMC of kidney transplant patients (n=7) were performed in the 

same manner as described above but now only in the presence of 100 ng/mL CP-690,550 or 

100 ng/mL cyclosporine. There were two reasons for choosing these concentrations. First, the 

CP-690,550 Phase I study showed that trough plasma levels after CP-690,550 oral administra-

tion stabilized at 50 to 100 ng/mL in kidney transplant patients who received CP-690,550 30 mg 

B.I.D. Secondly, from the MLRs of healthy individuals, it became apparent that the proliferative 

responses of Teff  exposed to CP-690,550 concentrations above 100 ng/mL were not utilizable 

as a read-out for Treg function in the suppression assay (mean cpm<1000).

After incubation for 7 days at 37°C in a humidifi ed atmosphere of 5% CO2, the proliferation 

was measured after 3H-thymidine (0.5 μCi/well: Amersham Pharmacia Biotech) incubation dur-

ing the last 16 hr before harvesting. The median counts per minute (cpm) for each triplicate was 

determined and the level of suppression of the CD25-/dim Teff  by CD25bright T cells was calculated 

and expressed as the percentage inhibition of the Teff . 

Statistical analysis

Statistical analysis was performed using Graphpad Prism (v.5.02). To test whether there is a 

normal distribution, the Kolmogorov-Smirnov Test was used. For determination of the levels 

of statistical signifi cance, the two-sided probability values according to the Wilcoxon matched 

pairs test or Mann Whitney U Test were used. P values < 0.05 were considered statistically 

signifi cant, without correction for multiple comparisons. 

RESULTS 

IL-2 induced STAT5 phosphorylation in CD4+CD25neg, CD4+CD25dim and CD4+CD25bright T cells 
in the absence and presence of CP-690,550

Activation of the Jak-STAT5 signaling pathway after IL-2 stimulation was examined in the 

CD4+CD25neg, CD4+CD25dim and CD4+CD25bright T-cell subsets in freshly obtained peripheral 

whole blood samples from healthy individuals. Approximately 57% (mean) of CD4+ T cells 
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were CD25neg T cells (of which 0.9% was FoxP3+), 38% were CD25dim T cells (8% FoxP3+) and 5% 

were CD25bright T cells (84% FoxP3+, Figure 1A). Of all CD4+CD25brightFoxP3+ T cells, 90% were 

CD127-/low. After 30 min of IL-2 stimulation, the percentage of P-STAT5 markedly increased in 

the CD25-positive subsets, a typical example of STAT5 phosphorylation is shown in Figure 1B. 

The highest proportions of P-STAT5 were found within the CD25bright T cells (mean % P-STAT5 

within CD25dim: from 4 to 71%, and within CD25bright: from 12 to 83%, Figure 1C). STAT5 mol-

ecules were also phosphorylated in the CD25neg T cells (from 1 to 43%). Analogous data were 

obtained when the median fl uorescence intensities (MFI) of P-STAT5 were analyzed in all CD4+ 

T-cell subsets (MFI of P-STAT5 within CD25neg: from 213 to 655, CD25dim: from 225 to 1108 and 

CD25bright: from 200 to 1270, Figure 1D). 
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Figure 1. IL-2 induced STAT5 phosphorylation 

(A) Representative example of CD25-expression within CD4+ T cells and FoxP3-expression within the CD4+CD25neg, CD4+CD25dim and 

CD4+CD25bright T cells. Gates for FoxP3-positivity are set on the isotype control (IgG2a) control. Percentages positive cells are shown within 

the gates. (B) The percentage P-STAT5 within CD4+CD25neg, CD4+CD25dim and CD4+CD25bright T cells is analyzed after phospho-specifi c fl ow 

cytometry on whole blood samples. Percentage positive cells are shown in the left corner of the FACS plots and median fl uorescence intensity 

(MFI) is shown in the right corner. 
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To study the eff ect of CP-690,550 on STAT5-phosphorylation and the activation status of the 

CD4+CD25neg, CD4+CD25dim and CD4+CD25bright T cells, whole blood was preincubated with increas-

ing concentrations of CP-690,550 followed by IL-2 stimulation. A representative example of the 

phosphofl ow cytometry of the IL-2 induced P-STAT5 and the inhibition of CP-690,550 is depicted in 

Figure 2A. The IL-2 induced P-STAT5 was partially inhibited in the presence of 100 ng/mL CP-690,550 
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Figure 1. IL-2 induced STAT5 phosphorylation (continued)

(C) Percentages P-STAT5 positive cells and (D) median fl uorescence intensities of P-STAT5 are shown within CD4+CD25neg, CD4+CD25dim and 

CD4+CD25bright T cells of n=4 patients. Mean ± SEM are depicted. Diff erences are statistically tested by Mann-Whitney U Test or Wilcoxon matched 

pairs Test. *p<0.05, **p<0.01.
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(Figure 2B, mean %P-STAT5: CD25neg; from 37 to 6%, CD25dim: from 70 to 16% and CD25bright: from 

81% to 40%) and  almost fully inhibited (>95%) in the presence of 1000 ng/mL. Inhibition of P-STAT5 

levels in unstimulated cells was not observed, showing that there is no basal level of P-STAT5 in fresh 

whole blood cells (Figure 2B). CP-690,550 was able to inhibit the P-STAT5 levels in the three subsets 

of all blood samples in a dose-dependent manner (Figure 2B). However, IC50 was signifi cantly higher 

in CD25bright T cells (104 ng/mL, mean), compared with CD25dim (45 ng/mL, p<0.05) and CD25neg T 

cells (40 ng/mL, p<0.05, Figure 2C). The same results were found with the MFI of P-STAT5 (CD25neg: 

from 614 to 262, CD25dim: from 1044 to 369 and CD25bright: from 1212 to 677, Figure 2D and mean 

IC50 CD25bright: 90 ng/mL vs. CD25dim: 37 ng/mL, p<0.05, vs. CD25neg: 35 ng/mL, p<0.05, Figure 2E).  
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Figure 2. The eff ect of CP-690,550 on IL-2 induced STAT5 phosphorylation

(A) Flow cytometric example of IL-2-induced STAT5 phosphorylation in CD4+CD25neg, CD4+CD25dim and CD4+CD25bright in the absence and 

presence of 100 ng/mL and 1000 ng/mL CP-690,550. (B) Percentage positive cells of P-STAT5 at increasing doses of CP-690,550 are shown within 

CD4+CD25neg, CD4+CD25dim and CD4+CD25bright for n=4 patients. Mean ± SEM are shown at each dose.



Ch
ap

te
r 7

140

% IH PSTAT5

1 10 100 1000 10000
0

25

50

75

100

CD25bright

CD25dim

CD25neg

104

40

45

IC50

CP [ng/mL]

%
 IH

 o
f P

ST
AT

5
*

*

0
+1

00
0 0 +1 +2

,5 +1
0

+2
5

+5
0
+1

00
+2

50
+1

00
0

0

500

1000

1500

2000
+IL-2-IL-2

CD25bright

CD25dim

CD25neg

*
*

*

*
*

**

* * *

**

CP [ng/mL]

M
FI

 P
-S

TA
T5

(m
ea

n
 S

EM
)

% IH PSTAT5 (median)

1 10 100 1000 10000
0

25

50

75

100

CD25bright

CD25dim

CD25neg

90

35

37

IC50

*
*

CP [ng/mL]

%
 IH

 o
f P

ST
AT

5

C

D

E

Figure 2. The eff ect of CP-690,550 on IL-2 induced STAT5 phosphorylation (continued)

(C) Sigmoid curves with percentage inhibition of P-STAT5 by CP-690,550 calculated on the percentage STAT5 positive cells. The IC
50

 is shown for 

the CD25neg, CD25dim and CD25bright T cells within CD4+ T cells. (D) Median fl uorescence intensities of P-STAT5 at increasing doses of CP-690,550. 

(E) Sigmoid curve with percentage inhibition of P-STAT5 by CP-690,550 calculated on the median fl uorescence intensities. *p<0.05.   
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The eff ect of CP-690,550 on the function of Teff  and Treg from healthy individuals

To study the eff ect of CP-690,550 on the proliferation of alloactivated CD25-/dim Teff  from 

healthy individuals, MLRs were performed. Teff  were stimulated with allo-antigen for 7 days in 

the presence of increasing concentrations of CP-690,550, ranging from 1 to 1000 ng/mL. Start-

ing at 50 ng/mL, CP-690,550 inhibited alloreactivity by Teff  in a dose-dependent manner (mean 

percentage inhibition at 50 ng/mL: 77%, 100 ng/mL: 87%, 250 ng/mL: 94%, 500 ng/mL: 95% 

and 1000 ng/mL: 96%, Figure 3A). The regulatory activities of CD25bright T cells in the presence 

of CP-690,550 were analyzed by suppression assays in which CD25bright T cells were co-cultured 

with the Teff  at a ratio of 1 to 10, respectively. The suppression assays were performed in the 

presence of 50 or 100 ng/mL CP-690,550. These concentrations were most appropriate because 

the maximal drug eff ect on Treg could be achieved as the Teff  proliferation was not completely 

inhibited. In the absence of CP-690,550, the proliferative response of allo-antigen stimulated 

Teff  was signifi cantly lower when cocultured with CD25bright T cells (cpm: [CD25-/dim] 31627 

A B

DC

Figure 3. Functional assays with cells of healthy individuals 

(A) Dose-response curve for the inhibition of proliferation of alloactivated CD25-/dim T cells by CP-690,550 in the MLR. The proliferation of CD25-/

dim T cells is shown in counts per minute (cpm) (B) Suppression assay in which alloactivated CD25-/dim T cells are cocultured without and with 

CD25bright T cells. The proliferation is shown at a [CD25-/dim : CD25bright] ratio of 10:1. (C) Suppression assay in the presence of 50 ng/mL CP-690,550 

and (D) 100 ng/mL CP-690,550. Data are shown for n=6 healthy individuals. Error bars represent mean ± SEM. Diff erences are statistically tested 

by the Mann-Whitney U Test, *p<0.05. 
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and [CD25-/dim + CD25bright] 9361, p<0.05, Figure 3B). In the presence of the aforementioned 

CP-690,550 concentrations, Treg exerted suppression of the proliferation by Teff  in response 

to alloantigens (cpm at 50 ng/mL: [CD25-/dim] 7783 and [CD25-/dim + CD25bright] 3625, p<0.05 

and at 100 ng/mL [CD25-/dim] 6674 and [CD25-/dim + CD25bright] 2969, p<0.05, Figure 3C and D). 

These results suggest that Teff  (77-87%) are more sensitive to the eff ect of clinically relevant 

CP-690,550 levels than Treg (23-13% decrease in function). 

The function of Teff  and Treg from kidney transplant patients treated with CP-690,550

As CP-690,550 preserves Treg suppressive function in vitro, we next questioned what the eff ect 

of CP-690,550 would be on PBMC of kidney transplant patients who were treated with this 

agent. Pre- and post-transplant (56 days) PBMC were collected from 7 kidney transplant patients 

who were part of a controlled Phase II study, with cyclosporine as comparator. All patients in 

the CP-690,550 group (n=4) and in the cyclosporine group (n=3) were treated with basiliximab 

anti-CD25 induction therapy, MMF and prednisone maintenance therapy. This anti-CD25 induc-

tion therapy post-transplant caused shedding of the IL-2Rα-complex, which makes isolation of 

CD25bright T cells impossible. To recover the CD 25-expression of the basiliximab-treated patients 

for isolation, PBMC were rested overnight in culture medium containing 5 ng/mL IL-2. After 24 hr, 

the CD25-expression recovered to common levels (Figure 4) and the CD25bright T cells (consisting 

of 85% FoxP3+ T cells) could then be isolated. Previously, we have shown that anti-CD25 mAb 

therapy does not negatively aff ect FoxP3 protein expression and CD25bright T-cell function 16. 

The proliferative capacity of Teff  was studied by depletion of CD25bright T cells from the PBMC. 

The proliferation in response to alloantigens was signifi cantly lower post-transplantation in both 

groups, (cpm: 13073 pre-transplant to 4057 post-transplant within the CP-690,550 group, and 

to 3219 post-transplant within the cyclosporine treated group, Figure 5A). The functionality of 

post-transplant  
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CD4+ T cells 
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Figure 4. CD25 expression on CD4+ T cells of kidney transplant patients treated with basiliximab 

CD25-expression disappeared after treatment (left plot). CD25-expression recovered after overnight incubation of PBMC in culture medium with 

5 ng/mL IL-2 (right plot).
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the suppressor cells was studied in conventional suppression assays. Pre-transplant CD25bright 

T cells were able to nearly completely suppress the proliferation of pre-transplant Teff  at a 

Treg-to-Teff  ratio of 1:5 (cpm: [CD25-/dim] 13073 and [CD25-/dim + CD25bright] 500, percentage 

inhibition: 96%, Figure 5B). 

We studied the eff ect of CP-690,550 on Treg function by adding this compound at various 

concentrations to our system. This was done to be absolutely certain of the maximal drug eff ect 

and to minimize the infl uence of other drugs on the PBMC of the patients in vivo. Clinically 

relevant levels of CP-690,550 or cyclosporine were added to the suppression assays on day 

0. Considering that the post-transplant Teff  showed a low proliferative response (Figure 5A), 

we chose to use the pre-transplant Teff  as a read-out for post-transplant Treg function in the 

suppression assay. The proliferation of pre-transplant Teff  decreased when CP-690,550 was 

added to the MLR (Figure 5C). When post-transplant CD25bright T cells isolated from CP-690,550-

treated patients were co-cultured with pre-transplant Teff  exposed to CP-690,550, the prolifera-

tion was further inhibited (percentage inhibition; 85%, Figure 5C). The same set of experiments 

was carried out with PBMC from patients of the cyclosporine group. As shown in Figures 5A 

and D, there was a decrease in the proliferation of the pre-transplant Teff  in the presence of 

A

B

Figure 5. Functional assays with cells of kidney transplant patients 

(A) Proliferation of alloactivated CD25-/dim T cells of pre-Tx of all patients (white bar) and post-Tx from patients of the CP-690,550 group (striped 

bar) and of the cyclosporine group (squared bar). (B) Suppression assay in which alloactivated CD25-/dim T cells of pre-Tx are cocultured with Treg 

(CD25bright T cells) of pre-Tx at a 5 to 1 ratio.
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cyclosporine. Post-transplant CD25bright T cells from cyclosporine-treated patients were able to 

further inhibit these responses (percentage inhibition; 89%).

When the percentage of inhibition was calculated, there was neither a diff erence between 

the suppressive capabilities post-transplant CD25bright T cells and pre-transplant CD25bright T 

cells nor did we fi nd signifi cant diff erences between the groups (percentage inhibition pre-

transplant vs. post-transplant CP-690,550 group: 94% vs. 85% and cyclosporine group: 97% vs. 

89%, Figure 5E).  

C

D

E

Figure 5. (continued) (C) Suppression assay of PBMC from patients in the CP-690,550 group in which CD25-/dim T cells of pre-Tx are cocultured 

with Treg (CD25bright T cells) of post-Tx at a 5 to 1 ratio in the presence of 100 ng/mL CP-690,550. (D) Suppression assay of PBMC from patients in 

the cyclosporine group in which CD25-/dim T cells of pre-Tx are cocultured with Treg (CD25bright T cells) of post-Tx at a 5 to 1 ratio in the presence 

of 100 ng/mL cyclosporine. (E) Percentage inhibition of the proliferative response of pre-Tx CD25-/dim by pre-Tx and post-Tx Treg of both groups. 
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DISCUSSION

Cytokines of the IL-2 family that signal via the γc are important in lymphoid development, 

homeostasis and diff erentiation as well as in immune regulation and infl ammation3, 17. There-

fore, interference with this pathway has been considered a suitable target for the suppression 

of alloreactivity after clinical organ transplantation. As part of a Phase I study, the eff ect of the 

Jak-inhibitor CP-690,550 has been tested on the number of circulating lymphocyte subsets 

and the function of PBMC of kidney transplant patients who received therapy consisting of the 

immunosuppressive drug CP-690,55014. In a previous study, we showed that the number of 

Treg decreased after CP-690,550 treatment but the remaining cells still exerted their function, 

whereas the IFN-γ secretion by Th1 cells was inhibited. These data suggest that the function of 

Teff  cells is more sensitive to the eff ects of CP-690,550 than the regulatory capacity of Treg14. In 

the present study we investigated whether there is a diff erential eff ect of CP-690,550 on Treg 

and Teff . Therefore, we examined the eff ect of CP-690,550 on the IL-2 induced STAT5-phosphor-

ylation of CD25neg, CD25dim and CD25brightFoxP3+ T cells within CD4+ T cells in whole blood 

samples from healthy individuals. Furthermore, the proliferative and suppressive functions 

of the CD25-/dim and CD25bright T cells isolated from kidney transplant patients who received 

CP-690,550 therapy were examined pre- and post treatment. These results were compared with 

a control group, consisting of kidney transplant patients who received cyclosporine therapy. 

By applying phospho-specifi c fl ow cytometry on whole blood samples of healthy individu-

als, we showed that Teff  are more susceptible to blockade of Jak by CP-690,550 compared with 

Treg (Figure 2). The functional studies with PBMC of healthy individuals and kidney transplant 

patients confi rmed the diff erence in sensitivity to CP-690,550 between Treg and Teff  (Figures 

3 and 5). These fi ndings may favor the onset of hyporesponsiveness, particularly because Teff  

cells are the major culprits in causing alloreactivity and rejection of the allograft after organ 

transplantation. 

An intriguing observation was that T cells that lacked CD25-expression also showed 

enhanced levels of phosphorylated STAT5 after IL-2 stimulation. This phenomenon can be 

explained by the binding of IL-2 via the dimeric low affi  nity receptor complex IL-2Rβγ that is 

mostly found on naïve and memory T cells18. Pre-B cells, thymocytes and NK cells have low 

levels of CD25, whereas activated T cells and Treg have a trimeric IL-2Rαβγ-receptor complex 

and have a high affi  nity binding by cooperative interactions between the α and β chains and a 

low activation threshold19-21. Therefore, the highest levels of P-STAT5 can be found in the two 

latter T-cell subsets. Nevertheless, the β and γ-chains remain the most crucial elements for IL-2 

signaling.

After binding of the cytokines of the IL-2 family, heterodimerization of the receptor sub-

units occurs and Jak3 associates with the β and γ-receptor chains and Jak1 associates with 

the β-chain. The Jaks auto-phosphorylate and cause STAT5 dimerization/trimerization after 

activation22. There are several explanations for the diff erent sensitivity for CP-690,550. Firstly, 
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by a diff erent distribution of the IL-2 α, β, and γ chains or a variation in the recruitment of Jak1 

and Jak3 molecules between Treg and Teff . Treg might have more Jak3 and/or Jak1 molecules 

and therefore need more CP-690,550 to inhibit all molecules23. Furthermore, it is also unclear 

how many confi gurations of STAT homo- and heterodimeric complexes are present in the 

Treg and Teff  cells before, during and after cytokine stimulations. Secondly, it has been shown 

that diff erent regions of the cytoplasmic domain of the IL-2Rβ-chain interact and couple with 

distinct signaling pathways and cellular responses in Treg and Teff 24. In Teff , IL-2 stimulation 

predominantly results in IFN-γ production and proliferation, whereas in Treg IL-2 is required 

to induce and maintain FoxP3-expression and suppressive function. IL-2 induced STAT5 

phosphorylation might not be important for Treg function, but apparently is important for Teff  

function, because inhibition of the STAT5 phosphorylation by CP-690,550 results in an almost 

90% decrease in proliferation of Teff , whereas Treg function is still present when only 40% of 

the cells have P-STAT5. FOXP3-expression is induced by STAT5 as STAT5-tetramers are able to 

bind a highly conserved binding site on the promoter region of the FOXP3-gene25. Accordingly, 

Treg in our study already express FoxP3, and therefore cannot be aff ected, so only the induction 

of de novo FoxP3-expression and the development of Treg are inhibited. On the other hand, 

FoxP3-expression alone is not suffi  cient for the acquisition of suppressive capacity, as it has 

been shown that activated Teff  cells can also induce FoxP3, in a STAT5-dependent manner5. 

To maintain FoxP3, more pathways are necessary and apparently these pathways operate 

separately. This may explain the presence of functional Treg. 

Collectively, our data demonstrate that although STAT5-phosphorylation is partially inhibited 

in Treg in the presence of the Jak-inhibitor CP-690,550, they still exhibited suppressive activi-

ties. Apparently, in CD25bright T cells, STAT5 phosphorylation is not (or partly) coupled with their 

function, in contrast to the CD25neg and CD25dim T cells that require STAT5 phosphorylation 

for their function (Figures 2, 3 and 5). It already has been reported that there is a fundamental 

diff erence between allo-responsive Treg and Teff  in the susceptibility to a diverse set of immu-

nosuppressive agents such as anti-CD4 mAb, rATG, anti-CD40L and the IL-2 signal inhibitor 

rapamycin. These agents commonly lead to the selective expansion of antigen-specifi c natural 

Treg or higher resistance of Treg than Teff  to an anti-proliferative or apoptosis-inducing eff ect 

of these agents26-28. According to our fi ndings, this list can be expanded with CP-690,550 and 

cyclosporine. In summary, we have shown that the function of Treg is largely independent of 

IL-2/Jak3/STAT5 signaling as the indirect inhibitor of the functions of IL-2, CP-690,550 and the 

CNI cyclosporine both spare Treg function, whereas they eff ectively inhibit Teff  STAT5 phos-

phorylation and function. Our fi ndings may have important implications in the usage of these 

immunosuppressive drugs and their mechanisms in the modulation of anti-donor responses 

after clinical organ transplantation.
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ABSTRACT

CD4+Foxp3+ regulatory T cells (Treg) depend on IL-2 for their function and survival. By interfer-

ing with the IL-2 production, calcineurin inhibitors (CNI) may negatively aff ect Treg. Here, we 

describe the eff ects of conversion from CNI to mycophenolate mofetil (MMF) monotherapy on 

renal function, and on Treg frequency and phenotype in liver transplant recipients. Patients 

(n=16) with renal impairment on CNI were converted to MMF and received a single dose of 

the IL-2-receptor blocking antibody (Daclizumab). Control patients (n=8) continued CNI 

treatment. Renal function rapidly and signifi cantly improved after conversion. Daclizumab 

treatment resulted in a 75% blocking of CD25 at one month causing a signifi cant reduction 

in the percentage of CD4+CD25+ cells but not aff ecting the percentage of CD4+CD25+Foxp3+ 

cells. Six months after conversion to MMF, the percentage of CD4+CD25+Foxp3+ cells increased 

signifi cantly by 125%. FOXP3 mRNA analysis of mononuclear cells confi rmed the enrichment 

of Foxp3 in peripheral blood. Interestingly, the CD25 expression level on CD4+Foxp3+, but 

not CD4+Foxp3- cells signifi cantly increased compared with preconversion. Conversion to 

MMF increases the percentage and CD25 expression of CD4+Foxp3+ cells indicating that MMF 

therapy can overturn the repressive eff ect of CNI on circulating Treg levels and therefore may 

promote Treg-mediated suppression of alloreactivity.
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INTRODUCTION

The checks and balances of immune reactive and immune suppressive cells likely determine 

whether there is immune reactivity to donor antigens or non-responsiveness (tolerance). 

Tolerance to self and foreign antigens involves the action of regulatory T cells (Treg)1, 2. These T 

cells with suppressive capacities were fi rst identifi ed for their ability to prevent organ specifi c 

autoimmune diseases in mice1. In experimental transplant models these cells can transfer 

tolerance to donor antigens as well2. Recent studies suggest that calcineurin inhibitors (CNI, 

cyclosporine A or tacrolimus), belonging to the current standard immunosuppressive therapy 

after organ transplantation (Tx), interfere with the expansion, survival and possibly the function 

of Treg in vitro3, 4 and in vivo5, 6. CNI are known as potent blockers of IL-2 production and it is 

established that IL-2 is critically important for the survival of Treg7. This could explain why CNI 

have been reported to be detrimental to both spontaneous experimental transplant tolerance 

in vivo and tolerance induced by co-stimulatory blockade8, 9. The clinical use of CNI is associated 

with considerable non-immunological side eff ects, most importantly renal dysfunction due to 

nephrotoxicity10 but also diabetes mellitus, hyperlipidemia and hypertension.

Clinical studies have shown that conversion of CNI to immunosuppressants like rapamycin 

or mycophenolate mofetil can halt or even reverse CNI associated side eff ects. In liver Tx, CNI 

conversion to MMF based immune suppression improves renal function but is also associated 

with a considerable risk of acute rejection11, 12. Recent studies suggest that rapamycin, unlike 

CNI, does not interfere with the survival and alloantigen-driven expansion of Treg in vitro3, 4 

and in vivo6. There is now accumulating evidence that the inosine monophosphate inhibitor 

MMF, an IL-2 independent immunosuppressant, has similar eff ects on Treg as rapamycin. It was 

shown in diff erent experimental transplant models that MMF does not interfere with Treg func-

tion and positively aff ects tolerance induction5, 9, 13. 

In the present study stable liver transplantation patients were converted from CNI to MMF 

monotherapy. To minimize the risk of conversion-associated acute rejection, recipients were 

treated with additional induction IL-2 receptor blockade. The aim of this study was to observe 

the eff ects of conversion on the frequency and phenotype of circulating CD4+Foxp3+ Treg. 

After conversion to MMF, rapid eff ects on renal function as well as changes in the frequency 

and CD25 expression of circulating CD4+Foxp3+ Treg were observed. Possible implications of 

these changes with respect to transplant tolerance will be discussed.
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PATIENTS AND METHODS

Patients and study design

Liver transplant recipients transplanted at the Erasmus MC (University Medical Center Rot-

terdam) on CNI maintenance monotherapy and at least 12 months after Tx, were screened 

for renal dysfunction. Renal dysfunction was defi ned based on increased serum creatinin and 

blood urea nitrogen (BUN) levels and a calculated creatinin clearance of less than 60 mL/min. 

To exclude other causes of renal dysfunction, ultrasound of kidneys and aorta were performed. 

Only patients older than 18 years were consecutively enrolled. Exclusion criteria included 

abnormal graft function (increased serum levels of aminotransferase, alkaline phosphatase, 

gamma-glutamyl transferase and bilirubin, without histological signs of acute rejection), active 

infection, malignancy, and a history of severe (steroid-resistant or repeated) rejection and other 

causes of renal dysfunction. This study was approved by the Medical Ethical Committee of the 

Erasmus MC and an appropriate informed consent was obtained from all patients.

Initially this was an open, randomized study comparing MMF-Daclizumab based regimen 

with standard CNI based drug regimen. At time-point zero one infusion of 2 mg/kg bodyweight 

of Dacluzimab was given intravenously and oral MMF was started at a dose of 2 g a day. CNI was 

stopped at the same day. MMF dose was not adapted to trough levels. The composite primary 

endpoint of this study was the improvement of renal function: decrease in serum creatinin, 

BUN and increase in creatinin clearance during the fi rst 6 months after randomization. Cre-

atinin clearance was calculated with the Cockroft-Gault equation and in a subset of patients 

glomerular fi ltration rate (GFR) was measured. Secondary endpoints included biopsy proven 

rejection, allograft dysfunction, patient death at 6 months and graft loss at 6 months. During 

the follow up, liver and renal functions were assessed on regular basis in the outpatient clinic. 

When acute rejection was diagnosed intravenous methylprednisolon (Solumedrol, 3x1000mg) 

was administered together with re-introduction of CNI and discontinuation of MMF. Acute 

rejection was confi rmed by histological examination of liver biopsies using the Banff  classifi ca-

tion. General characteristics of the study group are summarized in Table 1. For fl ow cytometric 

and reverse-transcriptase polymerase chain (RT-PCR) analysis fi ve heparinized peripheral blood 

samples  (in total 30 mL) were obtained from all patients before and at 1, 3, and 6 months after 

randomization. 

Flow cytometric analysis

Peripheral Blood Mononuclear Cells were obtained by density gradient centrifugation over 

Ficoll-Paque plus (Amersham Biosciences, Buckinghamshire, UK) and stored frozen at –135ºC. 

After thawing, PBMC were washed twice with phosphate-buff ered saline containing 0.3% 

bovine serum albumin followed by staining with primary monoclonal antibodies in phosphate-

buff ered saline/0.3% bovine serum albumin (30 min at 4 ºC). The following fl uorochrome-

conjugated monoclonal antibodies were used: CD25 (clone 2A3)-fl uorescein isothiocyanate 
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(FITC), CD25 (clone M-A251)-phycoerythrin (PE), and CD4-PerCP-Cy5.5 from Becton Dickinson 

(San Jose, USA); CTLA-4-APC, CD3-fl uorecein isothiocyanate, and IgG2a-PE from Immunotech, 

(Marseille, France); Foxp3-APC and isotype IgG2a-APC from eBiosciences (San Diego, USA). To 

determine the level of CD25 blockade by Daclizumab, we used two diff erent clones of anti-

CD25 antibody, which bind diff erent epitopes. Antibody concentrations were titrated to obtain 

the same mean fl uorescence intensity for both CD25 antibodies. In this manner, the extent of 

CD25 blocking by cell-bound Daclizumab was calculated. To defi ne maximal receptor blocking 

as control, 5x106 PBMC were incubated with 25 μg/mL Daclizumab (10 min at 4 ºC) in vitro 

before CD25 staining.

After primary incubation cells were washed, and for staining of intracellular FoxP3, the 

cells were fi xed and permeabilized using fi xation/permeabilization supplied by eBiosciences. 

Analysis by fl ow cytometry was performed using FACS Calibur and CELLQuest Pro software 

(Becton Dickinson, San Jose, CA). The percentages of Treg were calculated as a percentage of 

total CD3+CD4+ T cells. The relative CD25 expression within the FoxP3+CD4+ and FoxP3negCD4+ 

cell populations was calculated based on the geometric mean fl uorescence intensity for both 

populations at baseline (t=0), which were considered 100%. 

Quantitative RT-PCR

From PBMC (1x106 cells), erythrocytes were lysed with a buff er containing ammoniumchloride, 

sodium bicarbonate and EDTA by incubation for 7 min on ice. The remaining leukocyte fraction 

was pelleted and resuspended in 0.5 mL TRIzol reagent (Life Technologies, GmbH, Karlsruhe, 

Germany) at 4ºC. After homogenization, 20 μg poly A (Boehringer, Mannheim, Germany) was 

added and the TRIzol lysates were directly stored at -80ºC. Total RNA was extracted with 160 μL 

of cold chloroform-isoamylalcohol and subsequently precipitated with ice-cold 80% ethanol 

(350 μL). The precipitated solution was then loaded on an RNA-isolation column from the 

Table 1. Baseline patient characteristics

Study patients (n=16) Controls (n=8) p-value
Mean age ± SD (yr) 60±11 66±5 NS

Gender (M/F) 8/8 3/5 NS

Mean time after Tx (yr) 9±4 7±2 NS

Indication LTx

            Sclerosing Cholangitis

            Alcoholic Cirrhosis

            Cryptogeneic Cirrhosis

            Biliary Cirrhosis

            Viral Hepatitis

            Acute Liver Failure

            Haemangioendothelioma

3

2

3

3

2

3

0

2

2

1

1

0

1

1

NS

NS

NS

NS

NS

NS

NS

Maintenance Immunosuppression

           Cyclosporine A monotherapy

           Tacrolimus monotherapy

11

5

5

3

NS

NS

Tx, Transplantation; LTx, liver transplantation
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Qiagen RNeasy isolation kit (Qiagen, Venlo, the Netherlands) and RNA was isolated according to 

the manufacturer’s instructions. Total RNA was denaturated for 10 min at 80°C and then chilled 

to 4°C. First-strand cDNA synthesis was performed as previously described14. Real-time RT-PCR 

was used to quantify FOXP3 mRNA. The constant region of the T cell receptor α chain (TCR-Cα) 

RNA was quantifi ed to use as reference gene. The primers and probes for FOXP3 were obtained 

from Assays-on-Demand Gene Expression Product and pre-developed Taqman PDAR assays 

(Applied Biosystems, Forster City, CA). Each Taqman probe was labeled at the 5’ end with the 

reporter dye molecule 6-carboxyfl uorescein. Five microliters cDNA was added to 20 μL PCR 

mixture containing 12.5 μL Universal PCR Master Mix (Applied Biosystems), 0.625 μL primer/

probe mix and 6.875 μL H2O. The choice of primer and probe for the measurement of TCR-Cα 

transcripts was as previously described14. 

Amplifi cations were performed using the ABI 7700 sequence detector system (Applied 

Biosystems) under the following conditions: a fi rst step of 2 min 50°C and 10 min 95°C followed 

by 40 cycles of 15 sec at 95°C and 1 min at 60°C (for TCR-Cα 1 min at 58°C). The target message 

was quantifi ed by measuring threshold cycle (Ct). Two negative controls (no template), and 

two positive reference samples were included for each determination. Samples negative for 

the TCR-Cα genes were excluded from further analysis. The relative FOXP3 expression based 

on TCR-Cα was calculated using the comparative ΔΔCt formula: ΔΔCT (Ct Target – Ct TCR-Cα) 

sample - (Ct Target – Ct TCR-Cα) control. The fold change was calculated using 2 –ΔΔCt.

Statistical Analysis

Statistical analysis was performed using SPSS Inc. software version 11.0 (Chicago, IL, USA). 

For the clinical data the intention-to-treat analyses was used. Comparisons were performed 

with Wilcoxon matched paired test or the Mann-Whitney U test. P-values less than 0.05 were 

considered to be signifi cant.

RESULTS

Clinical Outcomes

Sixteen liver transplantation recipients with renal impairment on CNI were converted to MMF 

immunosuppression and received a single dose of IL-2-receptor blocking antibody (Dacli-

zumab). Control group (n=8) continued CNI treatment. Two cases of acute rejection occurred 

in the conversion group: one at 1 month and the other at 6 months after conversion. Rejection 

was confi rmed with histologically and successfully treated with intravenous methylprednisolon 

and re-introduction of CNI. Improvement of renal function was observed as early as 1 month 

after conversion to MMF. Relative to baseline values, serum creatinin decreased with a mean of 

16% ± 9% (SD) at 6 months after conversion (Table 2). BUN levels also signifi cantly decreased. 

In the control group, serum creatinin and BUN remained unchanged. The calculated creatinin 



Conversion from CNI to MMF in Liver Transplant Patients 157

clearance increased signifi cantly in the conversion group (p=0.001), whereas remaining stable 

in the control group (Table 2). In seven patients in the conversion group, the GFR was measured 

and showed a signifi cant increase at 6 months confi rming the improvement of renal function 

(p=0.018), whereas no changes were seen in the control group (n=4). Conversion patients at 6 

months (n=13) had a signifi cant lower serum bilirubin level (p=0.034), whereas this remained 

unchanged in control patients (n=7; Table 2). 

Changes in CD4+CD25bright T cells after conversion to MMF

To assess the eff ect of immunosuppression conversion on Treg, fl owcytometric analysis of CD4 

and CD25 in PBMC was performed. A representative dot plot of CD4 and CD25 double staining 

within the CD3+ T cells is shown in Figure 1A. For the detection of CD25, an antibody (clone 

M-A251) was used that can bind independently from blocking by Daclizumab. One month after 

conversion to MMF, CD25 expression on CD4+ T cells was signifi cantly decreased by a mean 

of 64% ± 4% SEM (p<0.001; Figure 1B). In order to determine whether this down-regulation 

is associated with CD25 blocking by Daclizumab, double immunostainings were performed 

using dependent (i.e. does not bind in the presence of Daclizumab) and independent CD25 

detection antibodies. As shown in Figure 1C, maximal CD25 blocking was observed at 1 month 

after conversion (75%) and this coincided with the reduction of CD4+CD25bright T cells. Blocking 

by Daclizumab was reduced to baseline levels by 6 months (Figure 1C). At 6 months, when 

CD25 blocking by Daclizumab was alleviated, all conversion patients showed a more than 25% 

increase in CD4+CD25bright cells. The relative levels of CD4+CD25bright cells, as a percentage of 

baseline, was signifi cantly increased and also statistically signifi cant diff erent from the levels 

in the control group (p=0.003; Figure 1B). The mean percentage of CD4+CD25+CTLA-4+ within 

total CD3+ T cells was increased at 6 months after conversion from 2.0 ± 0.8 SEM at baseline 

Table 2. Improved renal function after conversion from CNI to MMF monotherapy 

Patients Baseline 1 mo 3 mo 6 mo N
Mean serum creatinin (μmol/L)

Control

Conversion

 154±23

 158±35

 150±19

 141±27*

 150±25

 143±31*

 152±32

 132±30*

7

13

Mean serum BUN (mmol/L)

Control

Conversion

 12±2

 13±4

 12±2

 10±3*

 12±2

 10±3*

 11±3

 9±2*

7

13

Creatinin Clearence (mL/min)

Control

Conversion

38±16

45±14

ND

ND

ND

ND

42±14

56±19*

7

13

GFR (mL/min)

Control

Conversion

44±13

39±7

ND

ND

ND

ND

44±12

46±11*

4

7

Serum Bilirubin

Control

Conversion

10±2

10±3

ND

ND

ND

ND

9±2

8±2*

7

13

Shown are the means ± SD *p< 0.05 statistical signifi cantly diff erent from baseline values. 
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to 4.3 ± 2.4 SEM (p<0.05, data not shown). None of these changes were seen in the control 

group. In sum, these data indicate that Daclizumab reduces the percentage of CD4+CD25bright T 

cells whereas after 6 months conversion from CNI to MMF a signifi cant increased proportion of 

circulating CD4+CD25bright cells was observed.
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Figure 1. Changes in percentage of CD4+CD25bright T cells after conversion to MMF monotherapy 

(A) Representative dot plots of CD4+CD25bright cells within the CD3+ T-cell population. (B) Shown are the relative percentage of CD4+CD25bright 

cells, as a percentage of baseline, in conversion (MMF, n=11) and control patients (CNI, n=7). At 1 mo after conversion, a median decrease of 

62% ± 4 SEM in the relative percentage of CD4+CD25bright cells was observed (*p<0.001). At 6 mo, all conversion patients showed at least a 

25% increase in CD4+CD25bright cells over baseline values. The median increase was 130% (*p<0.001) and was also signifi cantly diff erent from 

the control group at 6 mo (p=0.003). Bar represents median and dashed lines indicate baseline levels. (C) Level of CD25 blocking by Daclizumab 

on CD4+ T cells. Blocking was calculated based on diff erential staining of two CD25 detecting antibodies, one binding to the same epitope as 

Daclizumab and one binding a distinct epitope. Maximum level of CD25 blocking (>75%) was observed at 1 mo and coincided with the down 

regulation of CD25 expression. Blocking values returned to baseline at 6 mo after conversion (n=9). In the control group (n=5) approximately 

15% CD25 blocking was observed which was unrelated to Daclizumab, but possibly related to bound IL-2.
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Increase of CD25+Foxp3+T cells after conversion to MMF

To further confi rm the eff ect of immunosuppression conversion on Treg, additional fl ow cyto-

metric analyses were performed for Foxp3. A representative dot plot of CD25 and Foxp3 expres-

sion within the CD4+ T cells is shown in Figure 2A. The total proportion of CD25+Foxp3+ cells 

within the CD4+ T cells signifi cantly increased after conversion (Figure 2B). Ten out of 11 patients 

showed a more then 20% increase in the percentage of CD25+Foxp3+ cells at 6 months. After 

conversion, the mean increase over baseline levels at 6 months was 125% ± 43% SD (p=0.004; 

Figure 2B). Also a signifi cant diff erence was observed (p=0.007) when comparing the relative 

percentage CD25+Foxp3 of conversion and control groups. No signifi cant changes from base-

line were seen in the control CNI group. RT-PCR analysis confi rmed the increase of Foxp3+ cells at 

transcript level at 6 months after conversion (60% increased FOXP3 mRNA over baseline levels, 

p=0.002), whereas no changes were observed in the control group. In two patients who were 

withdrawn from MMF and reconverted to CNI monotherapy (at 3 and 6 months after conversion), 

the proportion of Foxp3+ cells and FOXP3 mRNA expression decreased after reintroduction of 

CNI (Table 3). No association was observed between the percentage of CD25+Foxp3+ cells and 

the development of acute rejection. Overall, these fi ndings suggest that removal of CNI and 

introduction of MMF positively aff ect the percentage of circulating CD4+CD25+Foxp3+ Treg.
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Figure 2. Increase in proportion of CD25+Foxp3+ T cells after conversion to MMF

(A) Representative dot plot showing CD25+Foxp3+ cells within the CD4+ T-cell population. (B) The relative percentage of CD25+Foxp3+ cells 

within the CD4+ population, as a percentage of baseline values, are shown from conversion (MMF, n=12) and control patients (CNI, n=7). No 

decrease was observed at 1 mo, but the relative levels of CD25+Foxp3+ cells increased signifi cantly at 6 mo after conversion (*p=0.004) and was 

also diff erent from the control group at 6 mo (p=0.008). Quantitative RT-PCR analysis of PBMC confi rmed the enrichment of Foxp3 mRNA at 6 

mo after conversion (p=0.002 compared to baseline; data not shown). No signifi cant changes were observed within the control patients who 

continued on CNI. Bar represents median and dashed lines indicate baseline levels. 
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Changes in CD25 expression on Foxp3+ cells after conversion to MMF

We examined the diff erential expression of CD25 on CD4+Foxp3+ and CD4+Foxp3- cells after 

conversion. The increased CD25 expression on CD4+ T cells observed at 6 months after con-

version was predominantly confi ned to CD4+Foxp3+ cells (Figure 3). The CD25 expression of 

CD4+Foxp3+ cells was increased at 6 months by 140%±56 SEM (p<0.05) over baseline levels. An 

increase of 56%±51 SEM in CD25 expression was observed on CD4+Foxp3- cells, but this did not 

reach statistical signifi cance.

DISCUSSION

The success of solid-organ transplantation depends on the continuous administration of toxic 

and antigen non-specifi c immunosuppressive drugs to prevent rejection. Currently, mainte-

nance immunosuppressive therapy in most liver transplant recipients includes a CNI. This study 

shows that the percentage of CD25+Foxp3+ cells within the CD4+ T cells signifi cantly increased 

after conversion from CNI to MMF (Figure 2) and in two patients it seemed to decrease again 

after reconversion from MMF to CNI (Table 3). Conversion to MMF also resulted in phenotypical 

changes within the Treg population. After conversion, an increase of CD25 expression level (i.e., 

Table 3. Changes in Foxp3+ cells after re-conversion to CNI in two patients

% Foxp3+ of CD4+ T cells Relative FOXP3 mRNA expression

Pre MMF
After CNI              

restart
Pre MMF

After CNI              
restart

Patient 1 2.7 6.3 3.2 67.4 208.6 103.6

Patient 2 5.2 7.7 5.0 33.7 68.3 31.0

Reconversion (patient 1 at 3 mo, patient 2 at 6 mo) from MMF to CNI decreased the percentage of CD4+Foxp3+  T cells and FOXP3 mRNA levels

Figure 3. Changes in CD25 expression on Foxp3+ cells after conversion

The relative CD25 expression was calculated based on the geometric mean fl uorescence intensity at baseline (100%). At 6 mo after conversion, 

CD25 expression signifi cantly increased on Foxp3+ cells (*p<0.05) but not on Foxp3- cells. Shown is mean ± SEM of 11 conversion patients.
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mean fl uorescence intensity) on Foxp3+ cells was observed (Figure 3) suggesting that these 

cells may have become more susceptible to IL-2 signals.

IL-2 has been shown to be of critical importance for the function and survival of Treg7,15. 

Immunosuppression interfering with the IL-2 pathway may therefore aff ect the suppressive 

capacity and homeostasis of Treg. CNI interfere with the nuclear factor of activated T-cells 

(NFAT) signaling pathway that is an important regulator of IL-2 production. Recently, a close 

relationship between NFAT and FOXP3 was shown to be critical for Treg function16. By inter-

fering with this interaction, CNI are believed to inhibit Treg17. In experimental bone marrow 

transplantation CsA administration inhibited Treg function in vivo by reducing IL-2 production5. 

Exogenous IL-2 was shown to overturn the suppressed FoxP3 expression and the suppressive 

function of Treg induced by cyclosporine A, underlining the importance of IL-2 for Treg. In this 

same study it was shown that rapamycin and MMF had no detrimental eff ect on the function 

of Treg, both in vitro and in vivo5. There is now accumulating evidence that MMF like rapamycin 

spares Treg in their survival and function18. It was shown in diff erent experimental transplant 

models that MMF does not interfere with Treg function and positively aff ect tolerance induc-

tion5, 9, 13. In the clinical setting, Segundo et al.19 recently demonstrated that the use of CNI, and 

not rapamycin, is associated with a reduced percentage of circulating Treg in renal transplant 

recipients. To our knowledge for the fi rst time our study shows that conversion to MMF therapy 

can actually reverse the suppressive eff ect of CNI on the percentage of Treg in circulation.

In our study, we showed that the percentage of CD4+CD25+Foxp3+ Treg increased after 

conversion from CNI to MMF. Interestingly, this increase was accompanied by a signifi cant 

increase of CD25 expression on CD4+Foxp3+ Treg (Figure 3). However, 1 month after conver-

sion, when over 75% of CD25 is eff ectively blocked by Daclizumab (Figure 1C), CD25 expression 

was signifi cantly decreased (Figure 1B), both on CD4+Foxp3+ and CD4+Foxp3- cells. The CD25 

downregulation was not due to epitope blocking because the antibody used (clone M-A251) 

for detection recognizes a diff erent (independent) epitope than Daclizumab. Contrarily, loss of 

CD25 expression may be due to Daclizumab-associated receptor internalization or shedding. 

Kreijveld et al.20 reported that during Daclizumab treatment in kidney transplant recipients 

levels of Foxp3+ Treg decreased. In contrast, Kohm et al.21 showed a functional inactivation, 

rather than depletion, of Treg by CD25 antibodies. These contradicting fi ndings may be due 

to the intensive immunosuppressive therapy following kidney transplantation, which may act 

synergistically on Treg. In our study, monotherapy with MMF in combination with one gift of 

Daclizumab did not result in decreased levels of CD4+Foxp3+ Treg 1 or 3 months after con-

version, but in an increase at 6 months and beyond (data not shown) and was supported by 

analysis of CD4+CD25+CTLA-4+ T cells.

The possible negative eff ect of CNI on tolerance by aff ecting Treg is accompanied with non-

immunological side eff ects, in particular nephrotoxicity, causing signifi cant morbidity. This ini-

tially randomized study shows that conversion from a CNI based immunosuppressive regimen 

to MMF monotherapy improves renal function with a low risk of acute rejection, supporting 
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previous conversion studies in liver transplant recipients11, 12. Two patients developed an 

episode of acute rejection, one at 1 month and the other at 6 months after conversion. The 

patient who developed acute rejection at 6 months after conversion had an MMF blood trough 

level of 1.8 mg/L at the time of rejection, whereas being approximately 7 mg/L in the months 

before. After initial improvement with steroids, biliary obstruction was diagnosed, which may 

have contributed to the portal cellular infi ltrate seen in the liver biopsy. No diff erences in MMF 

trough levels were seen in the other patient, who developed acute rejection, and graft function 

normalized after treatment. 

In conclusion, we show that CNI withdrawal in liver transplant recipients increases the pro-

portions of circulating CD4+CD25+Foxp3+ Treg. Whether this has important implications on the 

balance between alloreactivity and tolerance remains to be determined. Clinically, conversion 

from CNI to MMF clearly results in an improvement of renal function and a decrease in blood 

pressure. 
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SUM MARY

For the last decades, solid organ transplantation is the most appropriate treatment for patients 

with organ failure in terms of improving their quality of life and survival. Without any thera-

peutic interference, the immune system of the patient will reject the new organ, because it is 

regarded as foreign. Acute cellular rejection can occur within several days after transplantation 

and is mediated by Teff  cells that will proliferate in response to antigens of the allograft. To 

prevent allograft rejection, organ transplant patients need immunosuppression consisting of a 

combination of immunosuppressive drugs (a calcineurin inhibitor, a proliferation inhibitor and 

steroids). However, these drugs do not only suppress immune responses triggered by donor 

antigens (anti-donor reactivity). They generally inhibit immune responses including those to 

pathogens, leading to an increased number of infections. In particular CNIs and mTOR-inhibitors 

have toxic side-eff ects to the kidneys and some classes of these immunosuppressive drugs 

can cause cancer which can also be a major drawback for their long-term use. This a-specifi c 

mode of action during the life long administration of immunosuppressive drugs demands a 

more specifi c treatment after transplantation. However, for graft acceptance, suppression of 

ongoing immune responses by immunosuppressive drugs is essential. Preferably, these drugs 

must specifi cally target the donor-reactive Teff  cells, which is rather complicated to establish. 

The CD4+CD25brightFoxP3+CD127-/low T cells comprise an endogenous specialized subset 

of T cells that govern immune responses against self-antigens and are therefore assigned 

as regulatory T cells (Treg)1. These ‘suppressor’ cells may control proliferative immune 

responses by eff ector T cells (Teff ) that are directed against the allograft. Next to the 

CD4+CD25brightFoxP3+CD127-/low T cells, there is a diversity of Treg subsets with immunosup-

pressive activities: CD4negCD8neg T cells2, γδ-cells, natural killer T cells3, IL-10-producing Tr1 T 

cells4, TGF-ß-producing Th3 T cells5 and CD8+CD25+FoxP3+ T cells. This dissertation focuses on 

the role of CD4+FoxP3+CD25brightCD127neg/low T cells in transplantation patients. In addition, 

the eff ect of immunosuppressive medication on their generation, characteristics and function 

is studied. As an endogenous source, these Treg have a lot of potential to induce tolerance as 

they can suppress the proliferation of donor-reactive Teff  cells, which are held responsible for 

the onset of cellular rejection of the graft after transplantation. 

The main mechanism of action of the most often used immunosuppressive drugs for 

transplant patients is that they directly and indirectly inhibit the proliferation of activated T 

cells. These agents have diff erent targets on the T cell as they can block signal 1; T-cell receptor 

triggering (CNIs) or signal 3; the cytokine signal (anti-CD25, Jak-inhibitor and mTor-inhibitor). 

These immunosuppressive agents will not only exert their eff ect on activated T cells as the may 

infl uence the frequency, phenotype and function of CD4+CD25brightFoxP3+CD127-/low T cells. 

Recent experimental studies showed that these agents do not only hamper the function of Treg 

but may also contribute to the mechanisms that control alloreactivity. Therefore it is tempting 
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to speculate that immunosuppressive drugs may even be used to manipulate the immune 

system in favor of these T cells.

Little is known about the specifi c eff ects of immunosuppressive drugs on immune regulation 

by Treg in humans. The central aim of this thesis is to investigate the eff ect of immunosuppres-

sive agents on immune regulation by CD4+CD25brightFoxP3+CD127-/low T cells in the peripheral 

blood of organ transplant patients. The results in this dissertation may contribute to a better 

understanding and may allow skewing of the immune system towards immune regulation by 

a fi ne-tuned immunosuppressive therapy that is benefi cial for the patients’ Treg. An overview 

of the diverse Treg subsets, the characteristics of CD4+CD25brightFoxP3+CD127-/low Treg and the 

diff erent types of immunosuppressive drugs with their side-eff ects and mechanisms of action 

at the cellular immunological level are described in chapter 1. 

In chapter 2 we report that antigen-specifi c Treg are induced in kidney transplant patients 

who received triple therapy consisting of cyclosporine, MMF and prednisone. The frequency 

and function of CD25bright T cells of nine stable kidney-transplant patients before and 0.5 - 2 

years after clinical kidney transplantation were measured. Within this relatively short period 

after transplantation, patients can be considered as fully immune suppressed. To more accu-

rately study the function of CD25bright T cells post-transplant, we modifi ed the ‘conventional’ 

suppression assay in which pre-transplantation Treg function is determined by coculture with 

allo-activated pre-transplantation Teff  and post-transplantation Treg function by coculture with 

allo-activated post-transplantation Teff . To exclude the infl uence of other confounding factors 

after transplantation on the proliferation of Teff  cells, which is the read-out of the suppression 

assay, the suppressive capacities of Treg pre- and post transplantation were compared, whereas 

the Teff  population was kept constant (only of pre-transplantation). After transplantation, the 

percentage of CD4+CD25bright T cells signifi cantly decreased. However, the lower percentage of 

post-transplant CD4+CD25bright T cells was not associated with reduced, but rather improved 

suppressor function of these cells. The proliferative response of pre-transplant Teff  to donor-

antigens was more profoundly suppressed by post-transplant Treg than by pre-transplant 

Treg and was comparable with third party antigens. In immune suppressed kidney transplant 

patients, the donor-directed suppressive capacity of CD4+CD25bright Treg improved, which may 

contribute to the development of donor-specifi c hyporesponsiveness against the graft.

In chapter 3, we questioned whether donor-specifi c CD4+CD25brightFoxP3+ cells are generated 

after clinical kidney transplantation. Therefore, in a prospective study, the phenotype and 

function of peripheral CD4+CD25bright T cells of patients before and 3, 6 and 12 months after 

kidney transplantation were analyzed. Patients were equally randomized to treatment arm 

1 with tacrolimus/rapamycin or arm 2 with tacrolimus/MMF. The immune regulatory capaci-

ties of CD4+CD25bright T cells were assessed by their depletion from PBMC and in co-culture 
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with Teff  cells in the MLR. In the fi rst year after transplantation, the number and proportion of 

CD4+CD25bright T cells signifi cantly decreased. In the MLR, we observed donor-specifi c hypore-

sponsiveness in the presence of signifi cantly increased proliferation to third- and fourth party 

antigens. Functional analysis of CD25bright cells showed that the eff ect of depletion of these cells 

from PBMC, as well as their suppressive capacities in co-culture with donor antigens stimulated 

Teff  cells signifi cantly improved. Moreover, the diff erence in proliferation by Teff  cells between 

anti-donor and anti-third party stimulation became apparent at 6 months after transplanta-

tion. Although the combined use of tacrolimus and rapamycin results in a synergistic inhibitory 

eff ect, there was no diff erence in the number and function of Treg between the patients in the 

two arms of therapy. Thus, donor-specifi c CD4+CD25bright Treg are induced even under eff ective 

immunosuppression in renal recipients within the fi rst year after clinical kidney transplantation. 

In chapter 4, 5 and 6, rabbit anti-thymocyte globulins (rATG) are the major topics. One of 

the mechanisms of action of rATG is that they can convert CD4+CD25negFoxP3neg T cells from 

healthy individuals into CD4+CD25+FoxP3+ T cells as has been described in the literature. We 

investigated the eff ect of rATG-induction therapy on Treg from kidney transplant patients. 

Moreover, two in vitro studies describe the in vitro eff ect of rATG on PBMC from patients with 

end stage renal diseases who are candidates for rATG-induction therapy. The induction of Treg 

by rATG and the eff ect of rATG on the function of natural occurring Treg were examined on 

PBMC of candidates for kidney transplant patients and of healthy individuals. 

In chapter 4, the eff ect of rATG on the phenotype, frequency and function and of 

peripheral immunoregulatory CD4+ T cells in kidney transplant patients was established in a 

prospective and controlled study. Patients received ATG-induction therapy and triple therapy 

consisting of tacrolimus, MMF and steroids. The control group received triple therapy only. 

Pre-transplant levels of FoxP3+CD127−/low T cells were 6% of CD4+ T cells. One week post-ATG 

treatment, no measurable numbers of Treg were present. After 4 weeks, the cell numbers of 

CD4+FoxP3+CD127−/low T cells slowly reappeared and thereafter remained low. At 14 weeks, a 

signifi cant shift towards the CD45RO+CCR7+ (central memory) phenotype within CD4+FoxP3+ 

T cells was observed. At 26 weeks, the proliferative alloresponses of the PBMC and CD25−/dim 

Teff  profoundly decreased compared with pre-transplant, whereas the regulatory capacity of 

the CD25bright T cells, of which 90% consisted of FoxP3+CD127−/low T cells, remained unaff ected. 

The CD25bright T cells suppressed the anti-donor and third party responses. These fi ndings show 

that rATG therapy does not spare peripheral Treg in vivo, but after regeneration preserves their 

suppressive activity. 

Chapter 5 describes the in vitro eff ect of rATG on the induction of Treg from blood cells of 

patients with end-stage renal disease who are candidates for transplantation and rATG-

induction therapy. The rATG-induced Treg were in depth characterized and compared with 

naturally occurring CD4+CD25+FoxP3+ T cells. The CD25neg T cells of pre-transplant patients 
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and healthy controls were stimulated with rATG or control rabbit immunoglobulins (rIgG) 

for 24 hr. After 24 hr of culture, the percentage of CD4+CD25+FoxP3+CD127neg/low T cells and 

CD8+CD25+FoxP3negCD127+ T cells became higher in the rATG-treated samples compared with 

the rIgG-treated samples. There was no diff erence between patients and healthy individuals. 

The rATG-induced CD4+CD25+ and CD8+CD25+ T cells inhibited the allogeneic responses 

of CD25neg/dim Teff  as vigorously as natural CD4+CD25+ T cells. However, the proportion of 

FoxP3+ within the top 2% rATG-induced CD4+CD25+ T cells was lower than within the natural 

CD4+CD25+ T cells. The mRNA levels of IL-27, IL-10, IFN-γ, perforin and granzyme B were mark-

edly higher than in the natural CD25+ T cells, whereas CTLA4, TGF-β and RORγt were lower. 

RATG allows the induction of cells with suppressive activities from patient PBMC in vitro. In 

comparison with natural Treg the rATG-induced Treg are distinct on their phenotype and gene-

expression profi le, but have similar regulatory activities. Thus, rATG may benefi cially contribute 

to the mechanisms that control alloreactivity. 

In chapter 6, we elaborated on the in vitro Treg-induction capacity by rATG and addressed 

whether rATG convert T cells into functional CD4+CD25+FoxP3+CD127neg/low T cells in the pres-

ence of drugs that may hamper their induction and function, i.e. CNIs. CD25neg T cells from 

healthy individuals were stimulated with rATG or control rIgG in the absence and presence of 

tacrolimus for 24 hr in culture. Interestingly, FoxP3+ T cells were also induced when tacrolimus 

was present in the rATG-cultures. Blockade of the IL-2 pathway did not aff ect the frequency 

of rATG-induced FoxP3+ T cells. The rATG-tacrolimus induced CD25+ T cells inhibited prolifera-

tive responses of alloantigen-stimulated Teff  cells as vigorously as rATG-induced and natural 

CD4+CD25+FoxP3+CD127neg/low T cells. In contrast to natural CD25+ T cells, rATG-induced CD25+ 

T cells abundantly expressed IL-10, IL-27, IFN-γ, perforin and granzyme B mRNA, whereas FoxP3 

mRNA was expressed at a lower level. These mRNA data were confi rmed in Treg from kidney 

transplant patients who received rATG induction therapy. The fi ndings of this study indicate 

that tacrolimus does not aff ect the induction and function of CD4+CD25+ T cells, suggesting 

that rATG may induce Treg in patients who receive tacrolimus maintenance therapy. 

In chapter 7, we focused on the third signal that is required for T-cell growth and activation; 

the cytokine signal. Cytokines of the IL-2 family that signal via the common γ chain activate the 

Jak-STAT pathway. These cytokines are critical factors for the growth, diff erentiation and func-

tion of CD4+CD25neg/dim Teff  cells and CD4+CD25bright Treg. In this study, we examined whether 

CP-690,550 has an eff ect on the regulatory activity of CD4+CD25brightFoxP3+CD127-/low T cells. 

The eff ect of CP-690,550 on the IL-2-induced intracellular STAT5-phosphorylation of Teff  and 

Treg was investigated in peripheral blood samples from healthy controls by phospho-specifi c 

fl ow cytometry. The function of Teff  and Treg from healthy individuals and kidney transplant 

patients was examined by MLRs and suppression assays in the presence and absence of 

CP-690,550. IL-2 induced phosphorylation of STAT5 was signifi cantly higher for CD4+CD25bright 
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Treg than for CD4+CD25neg Teff . In the presence of 100 ng/mL CP-690,550, a clinically relevant 

dose, the IL-2 induced P-STAT5 was partially inhibited in CD4+CD25bright Treg, whereas almost 

completely blocked in the Teff . The IC50 was 2-3 times higher for Treg than for Teff  cells. In the 

presence of CP-690,550, the Treg exhibited additional suppressive activities on the alloactivated 

proliferation of Teff . Also the CD4+CD25bright Treg from kidney transplant patients receiving 

CP-690,550 therapy vigorously suppressed the proliferation of Teff . These fi ndings show that 

the Jak-inhibitor CP-690,550 eff ectively inhibits Teff  function but preserves the suppressive 

activity of CD4+CD25bright Treg.

In chapter 8, we investigated the eff ects of conversion from CNI to IMPDH inhibitor (MMF) 

monotherapy on renal function and on Treg frequency and phenotype in liver transplant recipi-

ents. Patients with renal impairment on CNI were converted to MMF and received a single dose of 

IL-2-receptor blocking antibody (Daclizumab). Control patients continued CNI treatment. Renal 

function rapidly and signifi cantly improved after conversion. Daclizumab treatment resulted 

in blocking of CD25 at month 1 and a signifi cant reduction in the percentage of CD4+CD25+ 

cells but did not aff ect the percentage of CD4+CD25+Foxp3+ cells. Six months after conversion 

to MMF, the percentage of CD4+CD25+Foxp3+ cells increased by 125%. FOXP3 mRNA analysis 

of mononuclear cells confi rmed the enrichment of Foxp3 in peripheral blood. Interestingly, 

the CD25 expression level on CD4+Foxp3+, but not CD4+Foxp3neg cells signifi cantly increased 

compared with pre-conversion. Thus, conversion to MMF increases the percentage and CD25 

expression of CD4+Foxp3+ cells indicating that MMF therapy can overturn the repressive eff ect 

of CNI on circulating Treg levels and therefore may promote Treg-mediated suppression of 

alloreactivity. 
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GENER AL DISCUSSION

Hyporesponsiveness to donor-antigens may occur through diff erent mechanisms including 

T-cell and B-cell deletion, anergy, and immune regulation. Transplanted patients would benefi t 

from immune-specifi c therapy that governs immune reactions which are specifi cally directed 

against the allograft. The aspecifi c mechanisms of actions of the currently used immunosup-

pressive drugs lead to adverse reactions. Therefore, a cell based therapy specifi cally directed 

against the donor graft may lead to an early onset of donor specifi c hyporesponsiveness as 

compared with treatment with immunosuppressive drugs. Trials with Treg are indeed ongoing 

as Tr1 cells are already infused into diabetes patients6 and used in hematopoietic stem cell 

transplantation7, 8. In vitro expanded CD4+CD25+CD127- Treg have been transferred to patients 

with acute or chronic graft versus host disease (GvHD) and allowed for signifi cant alleviation of 

the symptoms9.  

However, there are several major drawbacks with the in vitro expansion and reinfusion of 

CD4+CD25brightCD127-/lowFoxP3+ T cells. First, isolation of a 100% pure FoxP3+ T cell population 

is challenging due to the intracellular localization of FoxP3. Thus, surrogate surface markers 

(CD25, CD127) can be used for isolation to enrich for FoxP3. Isolation of CD25brightCD127-/low T 

cells seems to increase the purity for FoxP3 compared with isolation of T cells solely based on 

CD25bright 10. Secondly, the culture conditions (medium, growth factors, time-span) to obtain 

a high yield of donor-specifi c CD25brightCD127-/low T cells are not fully optimized yet. Thirdly, 

once injected, the FoxP3-expression of the expanded cells might be unstable11 and can be lost 

within an infl ammatory and activated microenvironment which may lead to the generation of 

IL-17 producing cells12 or pathogenic memory T cells in vivo13.  

Hence, it seems more attractive to manipulate the immune system with immunosuppressive 

drugs by skewing the Teff -Treg balance towards the Treg. This can be done by in vivo generation 

of Treg with current therapeutic drug regimens. Such a drug-therapy should stimulate immune 

regulation by its benefi cial eff ects on Treg and would be more easily and rapidly applicable into 

the clinic. It can be just a matter of reducing, adjusting and fi ne-tuning the doses of immunosup-

pressive drugs to benefi cially infl uence the Teff  to Treg ratio in order to induce tolerance. With 

this thesis, we aimed to reveal the eff ect of immunosuppressive agents on immune regulation 

in order to fi nd the most optimal combination for a positive skewing of Treg by their induction, 

expansion or sparing in organ transplant patients.

The infl uence of calcineurin inhibitors on regulatory T cells 

In line with others14, 15, we show in chapter two that cyclosporine, as part of the immunosup-

pressive drug regimen of kidney transplant patients, contributes to a decrease in the frequency 

of CD4+CD25bright T cells. This decline in the frequency is not only due to the CNI, but can also be 

attributed to steroids. There is evidence showing that cyclosporine accounts for this decrease 

in the frequency. Cyclosporine prevents the induction of FoxP3+ in the MLR16 and that it aff ects 
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the frequency of CD4+CD25bright T cells in liver transplant patients 14, 17. Moreover, it has been 

reported that cyclosporine aff ects another subset of Treg, the CD8+CD28neg T cells18. It is obvi-

ous that Treg need IL-2 to maintain their homeostasis and when the IL-2 production is blocked, 

they immediately go into apoptosis. 

In contrast to their frequency, we demonstrate that the function of the remaining CD25bright T 

cells when analyzed ex vivo was not aff ected by the immunosuppressive therapy that included 

cyclosporine, which is in line with another group18. TCR stimulation and cytokine signaling are 

both required for Treg to properly exert their function. Hence, Treg function remains possible 

because not all Teff  cells are aff ected in their IL-2 production and there is enough IL-2 left for 

Treg to exert their suppressive activities. Secondly, functional Treg are present because they 

consume other cytokines of the IL-2 family, e.g. IL-15, of whom the production is calcineurin-

independent. Third, one has to take into account that there is also a small amount of calcineurin-

independent secretion of IL-2 itself that could explain the IL-2 that is present19.  

Because of the inhibitory eff ect of immunosuppressive drugs and other factors on Teff  cell 

proliferation which is the read-out of Treg function post-transplant, we adjusted the ‘conven-

tional’ suppression assay to determine Treg function post-transplant, chapter two. The Teff  of 

pre-transplant was used as the read-out for Treg function post-transplant instead of the Teff  

post-transplant, thereby excluding any intrinsic defect in the proliferative capacity caused by 

immunosuppressive drugs. By using this diff erent suppression assay, we concluded that cyclo-

sporine does not aff ect Treg function.

An interesting future experiment could be to culture Treg in the presence of cyclosporine for 

24 hr and to subsequently analyze their suppressive capacity in a suppression assay. However, 

Treg probably will not survive the 24 hr of culture without TCR stimulation and may die; therefore 

this can only be done in the presence of TCR-stimulation or IL-2 stimulation. Chapter seven, the 

Jak-inhibitor study, also describes the eff ect of cyclosporine on the function of Treg from kidney 

transplant patients treated with cyclosporine (the control group). In the presence of clinically 

relevant levels of cyclosporine in the suppression assays, Treg from the cyclosporine-treated 

patients were still able to additionally suppress the proliferation of the Teff  cells that survived. 

In this study, the results that were found in chapter two were confi rmed, as we show again that 

Treg can exert their function during exposure to cyclosporine. 

After analyzing the eff ect of CNI’s on the suppressive activity of Treg, we subsequently 

examined their eff ect on the induction of Treg in vitro. In the literature, it has been shown that 

rATG induces Treg in CD25neg cells from healthy individuals20. However, in chapter four we 

stated that Treg levels did not increase in kidney patients after rATG-treatment but declined 

and slowly recovered during standard immunosuppression consisting of tacrolimus, MMF and 

prednisone. Considering that IL-2 is an essential growth factor that is required for the genera-

tion of Treg21, 22 we speculated that the replenishment of Treg into the peripheral compartment 

of these patients might be delayed by tacrolimus that prevents Treg induction. This hypothesis 

was studied in vitro by Treg-induction experiments in the presence of tacrolimus. Interestingly, 
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Treg were generated by rATG even in the presence of tacrolimus, anti-IL-2R antibody or anti-IL-2 

antibody. The stimulatory eff ect of rATG, which includes enhanced NFAT1-expression20 is domi-

nantly present and can overturn the repressive eff ect of tacrolimus. Therefore, rATG-induction 

therapy may allow the replenishment of functional Treg under standard therapy. 

Furthermore, an important fi nding was that CNI therapy does not changes the phenotype 

and composition of naïve/memory Treg post transplant as we observed in chapter four in the 

control group for the rATG-group that received tacrolimus, MMF and prednisolone. Accord-

ing to our fi ndings, the CNI-dose that is used for organ transplant patients is deleterious for 

Teff  cells and does not aff ect Treg. The CNI dose can be reduced, to fi nd a proper balance that 

preserves Treg numbers; however, it is questionable whether this will not lead to an increased 

number of (acute) rejections. Most importantly, CNIs allow immune regulation of the remaining 

Teff  by Treg that are spared. 

Immunosuppressive therapy and the induction of donor-specifi c regulatory T cells

In chapters two, three, and four we show that the proliferation of donor-directed immune 

responses by Teff  cells is signifi cantly lower than the third party immune responses after 

coculture with Treg post-transplant in the suppression assay. This observation implies that 

donor-specifi c Treg are generated within 1 year after transplantation under the infl uence of 

maintenance therapy (consisting of a CNI or rapamycin, MMF and prednisolone). Donor-spe-

cifi c Treg are generated in the periphery and can be considered as adaptive Treg. The immune 

system adapts to donor antigens by the generation of these donor-specifi c Treg. Whereas 

the third party response of PBMC improves as can be seen in chapter three, the responses 

against the donor are lower and remain at a stable level. Inversely, the donor-specifi c regulation 

improves after transplantation, whereas the regulation of third party responses remains stable. 

It is unknown whether these Treg are generated as a result of adaptation; as they may also 

be characterized as natural occurring Treg that respond by cross reactivity and recognize part 

of the donor-antigens as their own. For instance, Treg may suppress responses against broad 

HLA-antigens (e.g. HLA-Bw4 and HLA-Bw6). On the other hand, Treg suppression might be HLA-

restricted in a way that Treg only inhibit responses that have a certain HLA- A, B or DR subtype 

(e.g. if the patient has a HLA-B51-specifi city, Treg of the patient may recognize HLA-B51 that 

may be present on donor (stimulator cells in the MLR). The Treg of the patient will suppress the 

immune responses that are considered to be directed against these ‘self’ antigens. 

In chapter four, we determined the function of the Treg present in the peripheral blood at 

26 weeks after transplantation when the number of Treg in the peripheral blood was suffi  cient 

to isolate the induced Treg and to study their function. The Treg from patients in the rATG-group 

seem to govern the donor-directed immune responses by Teff  cells more vigorously than the 

third party immune responses. The Treg from kidney transplant patients in the control group 

(thus without rATG induction therapy) did not show this trend, indicating that rATG-induction 

therapy may trigger the generation of donor-specifi c Treg.
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A condition for the induction of Treg is T cell receptor signaling which can be triggered by 

the presence of suboptimal, low dose antigen. Furthermore, cytokines and growth factors are 

also required. Thus, donor antigens that are present after transplantation and rabbit proteins 

from the rATG mixture both may serve as the trigger for activation of the immune system 

and the following induction of donor-specifi c adaptive Treg. Another phenomenon that may 

explain the induction of donor-specifi c Treg is the homeostatic proliferation after rATG-induced 

T-cell depletion in the presence of donor-antigens. This homeostatic proliferation accounted 

for the massive increase in the proportion of memory FoxP3+CD45RO+ T cells that may have 

generated donor-directed specifi city. Taken together, donor-specifi c regulatory T cells can be 

generated during standard maintenance immunotherapy by their regeneration in the thymus 

or may be induced in the presence of donor antigens in the periphery. RATG-induction therapy 

may accelerate the induction of donor-specifi c Treg process by homeostatic proliferation after 

immune depletion and by the induction of T cells with suppressive function.

In vitro induction of regulatory T cells by rATG

Apart from depletion of lymphocytes in vivo, rATG induces Treg in vitro20. One can speculate 

about the active component in the rATG mixture that in vitro triggers the induction of CD25 

and FoxP3-expression. Although this thesis is predominantly focused on FoxP3+CD25+ T cells, 

interestingly, rATG also induced FoxP3negCD25neg/dim T cells with suppressive activities after 24 

hr of culture (30% inhibition at a [Treg: Teff ] ratio of 1:10). Apparently, rATG confers regulatory 

activity to cells in a FoxP3-independent manner. 

As we demonstrate Treg induction in CD25neg cells the absence of allo-antigen stimulation, 

it remains to be investigated whether there is conversion of allo-activated CD25neg Teff  cells to 

Treg during the 7-day MLR in the presence of rATG. If this phenomenon occurs in the MLR, it 

will have a positive eff ect in the 7-day suppression assay, in which alloactivated Teff  cells were 

cocultured with natural Treg in the presence of rATG. Potential rATG-induced Treg may syner-

gise with the existing natural Treg in the downregulation of alloactivated Teff  cells. We show in 

chapter fi ve that the rATG aff ected alloactivated Teff  response is additionally inhibited by Treg. 

It is interesting to dissect the components of the rATG-immunoglobulins mixture. The human 

thymocyte suspensions are derived from thymus fragments that were surgical waste during 

cardiac surgery in children. Thymus donors must be less than 14 years old and fi t the selection 

criteria. They must also be at low risk for Creutzveldt-Jacob disease and other transmissible 

subacute spongiform encephalopathies. Blood samples from these donors are screened for a 

number of viruses. After sensitization of specifi c pathogen-free rabbits with human thymus 

fragments, γ immune globulins are purifi ed and pasteurized. The immunosuppressive product 

contains cytotoxic antibodies directed against a broad array of surface antigens expressed on 

T cells and adhesion molecules including CD2, CD3/TCR, CD4, CD8, CD11a, CD25, CD28, CD45, 

HLA-Class I and II. 
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Factors that infl uence the in vivo induction of Treg include the strength of the co-stimulatory 

molecules and TCR-mediated signals, microenvironmental factors and the cytokine milieu23-25. 

Rabbit proteins could be the potential TCR trigger for in vitro Treg induction. Taking this into 

account, we incubated human CD25neg T cells with control polyclonal rabbit immunoglobu-

lins. After 24 hr there was no induction of CD25 or FoxP3 expression. Moreover, Feng et al.20 

reported that horse-ATG does not have the ability to induce or expand Treg, showing that the 

part of the immunoglobulins that is arranged in a diff erent species does not stimulate the 

TCR. Apparently, the variable part of the immunoglobulins that is directed against epitopes 

on human T cells is responsible for TCR stimulation. For future research, it would therefore be 

interesting to separate the variable from the constant part of the antibodies after purifi cation 

of the antibodies from rabbits and incubate these parts separately with human CD25neg T cells 

in vitro. Another idea for future research is to investigate whether a non-depleting rATG mixture 

that is directed against the lymphoblastic Jurkat T-cell line is also able to induce Treg in vitro. It 

has been reported that Fresenius ATG did not enhance Treg levels in kidney transplant patients 

after transplantation26. 

The development of immune regulation and immunoregulatory mechanisms is often elic-

ited as a feedback mechanism during alloactivation to prevent the outgrowth of aggressive Teff  

cells. Thus, rATG induces CD25-expression on CD25neg cells and when they become activated, 

Treg arise to downregulate this activation status. As it is well known that FoxP3 is an activa-

tion marker, one could speculate that the FoxP3-expression induced in T cells induced by rATG 

functions as a T-cell activation marker. Other evidence for this statement was derived from the 

mRNA expression profi les that showed that granzyme B also served as an activation marker as 

the granzyme B-expression by rATG-induced CD25+ T cells did not result in cytotoxicity. In our 

hands, high mRNA- and protein levels did not automatically correlate with functional activity. 

To prove that Treg induction was rATG-specifi c, and not the result of a-specifi c T-cell activa-

tion, we included an essential control experiment. We showed that CD3/CD28 activated CD25+ 

cells did not inhibit allogeneic immune responses and that our rATG-induced CD4+CD25+ and 

CD8+CD25+ T cells were able to suppress allogeneic immune responses, by not only autolo-

gous Teff  cells but even allogeneic Teff  cells. The latter fi nding shows that they can suppress 

the proliferation of each activated T cell, independent of the HLA-specifi city. Moreover, they 

suppress their cytokine production and their proliferation, which is a characteristic of natural 

CD4+CD25bright Treg, indicating that there is no ‘sopping up’ or scavenging of growth factors 

which is a characteristic of activated T cells.

If granzyme B is not responsible for the suppressive capacity of the rATG-induced Treg, 

which molecule ìs? Besides IL-10 and granzyme B, we found that IL-27 was signifi cantly upregu-

lated. However, one of the functions of IL-27 is that it upregulates granzymes and perforins and 

stimulates cytotoxicity via CD8+ T cells. Cytotoxicity may play an important role in elimination 

of T cells in vivo.
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Future research may focus on the stability of the rATG-induced Treg that can be tested 

according to the methylation-sites of FOXP3. These methylation sites are found to be a novel 

target to explore within the experimental fi eld of Treg. True ‘bona fi de’ Treg can be identifi ed 

in a heterogeneous population including activated T cells that transiently express FoxP3 

and Treg that constitutively express FoxP327. It would therefore be interesting to unravel the 

methylation-status of FoxP3 Treg-specifi c demethylated regions (TSDR) to determine whether 

the expression of FoxP3 is stable or not; this could reveal something about the stability and 

presence of Treg. To become Treg, T cells can be incubated with a DNA demethylation agent. 

Demethylation of FOXP3 gene has been shown to increase the number of Treg in experimental 

models28. Wieczorek et al. analyzed FOXP3 demethylation prior to and after rATG treatment. 

According to a decline of demethylated sites in the FOXP3 gene on the DNA after rATG-treat-

ment, they found that Treg levels decreased27. They concluded that DNA Methylation Analysis 

of FOXP3 can be used to quantify Treg because demethylation of the FOXP3 TSDR is a feature 

of stable ‘bona fi de’ Treg27.

rATG induction therapy depletes regulatory T cells 

The clinical relevance of the rATG-induced T cells with suppressive function in the presence 

of high dose rATG that is given in the clinic is hard to deduce. In chapter four we reported 

that the CD4+CD25brightFoxP3+CD127-/low T cells are completely depleted after three doses of 

2 mg/kg rATG and slowly reappear slowly at 4 weeks after rATG-induction therapy. Their level 

does not reach baseline in the fi rst 26 weeks after treatment. Other groups have demonstrated 

that the recovery of CD4+ T cells can take for more than fi ve years and the levels still do not 

reach baseline levels29. The origin of Treg that reappear in the peripheral blood at 14 and 26 

weeks after rATG-treatment is unknown. They might be replenished by the lymphoid organs or 

they might be newly thymus-derived emigrants. The idea of thymus-derived generation is sup-

ported by a study with non-human primates, in whom rATG-mediated T-cell depletion occurs 

in all compartments of the body. Regeneration is only possible by the thymus which is the only 

source of Treg present in the periphery. 

The phenotype of the FoxP3+ T cells present in the blood after rATG-treatment changes, 

as the number of naïve FoxP3+ T cells decreased after rATG-treatment and memory FoxP3+ 

T cells increased. This change is due to the homeostatic proliferation of memory T cells that 

are replenished. Otherwise, they could be converted from naïve T cells into memory T cells 

in the periphery in the presence of suboptimal doses of antigens (induction). Whether there 

is induction in vivo (thus conversion from CD25negFoxP3neg T cells to CD25+FoxP3+ T cells) is 

complicated to investigate in patients. We did not fi nd an increase in the proportion or absolute 

numbers. Publications with enhanced Treg frequencies after rATG-induction therapy or that 

demonstrate the suppressive capabilities of Treg immediately after rATG-induction therapy are 

lacking. However, Treg induction is still an option when rATG is present in the body. Thus, in the 

fi rst weeks after rATG-treatment, rATG may induce T cells, until it is broken down. In contrast, we 
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found that in between rATG-treatment and 4 weeks after treatment, T-cell depletion prevailed 

and no T cells were present in the circulation, chapter four. After rigid depletion of T cells, 

they start to slowly recover so conversion of Teff  into Treg may occur. Although patients receive 

maintenance therapy consisting of a CNI, this should not be a restriction for Treg-induction, 

as clearly demonstrated in chapter fi ve. The only explanation for the absence of enhanced 

Treg numbers could be the absence of components of the complement-system in vitro. RATG 

eliminates peripheral blood cells by inducing cell-death via complement-dependent lysis. In 

chapter fi ve, we demonstrate in vitro apoptosis of PBMC at high concentrations of rATG that 

resulted in an even higher proportion of Treg among the cells that survived. In contrast, in vivo, 

all T cells die after rATG-induction therapy and there is no sparing or survival (of a selective 

subset) of cells. Therefore, the confounding factor is to be identifi ed.

The fi ndings described in this thesis can therefore contribute to the determination of the 

right choice and dosage adjustment of immunosuppressive drugs. This dissertation may con-

tribute in making the right combination of ‘pro-tolerogenic’ drugs. According to the fi ndings 

of this thesis, some recommendations for treatment of transplant patients with rATG induction 

therapy can be made. First, rATG induction therapy should be given to candidates for kidney 

transplantation prior to transplantation; to deplete Teff  cells and to create the most optimal 

circumstances for antigen-specifi c induction of Treg before infl ammation is elicited, instead 

of during infl ammation. A study in which CD4+FoxP3+ regulatory T cells were quantifi ed in 

kidney allograft infi ltrates showed that their proportion of CD4+ T cell infi ltrates was higher in 

the borderline change and subclinical cellular rejection biopsies than in acute cellular rejection 

biopsies. In the acute phase of the allogenic response, these regulatory T cells could act to 

diminish the interstitial infl ammation and its associated lesions30. Secondly, if potent enough 

to prevent graft rejection, patients should receive a rATG dose of <2 mg/kg (at this particular 

dose, total depletion of Treg occurs), to allow Treg induction. Partial depletion might trigger 

immune activation, induction of regulatory T cells and expansion of the remaining natural 

Treg that survive. In this manner, Treg numbers will recover earlier because there is no harsh 

immunodepletion. In particular the recovery of Treg by the thymic output and their induction 

in the periphery in the presence of donor-antigens may contribute to donor-specifi c hypore-

sponsiveness, which is favorable for the patient. Moreover, in the presence of a low rATG dose, 

the immune system will not be prone to (viral) infections, as with high doses but is able to cope 

with these pathogens by triggering a proper immune response.

Calcineurin-free protocols and regulatory T cells

As shown by our data, Treg do not require STAT5 signaling to exert their function. Inhibition 

of Jaks which results in the suppression of STAT5 phosphorylation in the presence of clinically 

relevant doses of CP-690,550 does not infl uence their suppressive activities. We therefore 

suggest that STAT5 signaling is only considered necessary for the induction of de novo FoxP3-

expression and thus for the generation of de novo Treg. The clinical signifi cance of CP-690,550 in 
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the prevention of graft rejection is currently still investigated in a clinical trial phase. The results 

of a randomized pilot trial with CP-690,550 (part of the phase II study) showed that treatment of 

kidney transplant patients with CP-690,550 did result in clinically relevant immunosuppression 

comparable with the tacrolimus control group31. If CP-690,550 prevents graft rejection and 

improves graft function by the end of the trial phases, it can be considered as a drug therapy 

that is ‘harmless’ to Treg function, whereas Treg frequency is aff ected. A previous paper from our 

group show that Treg numbers recovered quickly after CP-690,550 therapy32. Donor-specifi c 

immune regulation by the immune system is not aff ected by all immunosuppressive drugs that 

are investigated in the present thesis. 

To examine the impact of the Jak-inhibitor CP-690,550 on Teff  and Treg subsets, we used 

phospho-specifi c fl ow cytometry, chapter seven. This technique allowed us to characterize 

the IL-2 induced STAT5 phosphorylation downstream of Jak in Treg and Teff  cells. Furthermore, 

by using this technique, we revealed diff erential levels of STAT5 phosphorylation in Treg versus 

Teff  in the presence of the Jak-inhibitor CP-690,550. The observed diff erence in sensitivity for 

CP-690,550 in Treg versus Teff  was confi rmed in functional assays. 

It can be interesting to study the infl uence of an immunosuppressive drug in patients by 

obtaining blood and then in vitro perform functional tests. However, one has to take into 

account that the immunosuppressive drug has already exerted its eff ect on the blood cells. 

Therefore, functional experiments should be performed in the presence of therapeutic concen-

trations of the drugs, or after incubation of the Treg separately for 24 hr and then tested for their 

function in a suppression assay which may reveal the eff ect of these drugs on the function of 

directly. In this way we are able to demonstrate that the immunosuppressive drugs can target 

T cells in the concentrations that correlate with the trough levels as measured in the patients. 

In chapter eight we demonstrate that the level of FoxP3+ cells increased after conversion 

from a CNI to MMF. Conversion to MMF therapy can actually reverse the suppressive eff ect 

of CNI on the percentage of Treg in circulation. Whether the FoxP3+ Treg in the presence of 

MMF modulates anti-donor reactivity after liver transplantation is to be tested. However, in 

kidney transplant patients that were converted to MMF monotherapy, the suppressive capacity 

of CD4+CD25brightFoxP3+ T cells was preserved33. Rapamycin has been shown to be a benefi -

cial agent for Treg because it renders Treg less prone to apoptosis than activated Teff  cells16, 

34. Conversion of triple therapy consisting of tacrolimus, MMF and prednisone to rapamycin 

monotherapy has been shown to increase Treg numbers in kidney transplant patients33. The 

suppressive activities on the anti-donor proliferation by Treg in the presence of rapamycin 

monotherapy were comparable with before conversion to rapamycin33. For rapamycin, the 

preservation of Treg suppressive capacity is due to the maintenance of their FoxP3 mRNA 

expression16. These results were also supported by an animal experimental model of graft 

versus host disease that showed that rapamycin and MMF preserve the suppressive function 

of Treg35.
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Conclusion: Immunosuppressive drug therapy that promotes regulatory T cells

CNIs do not aff ect Treg function, which is most important, but do aff ect the frequency of Treg. 

Yet, CNI-free protocols (CP-690,550, MMF or rapamycin) are ‘Treg-sparing’ because these pro-

tocols induce a rapid recovery of Treg, which can even result in enhanced levels compared to 

baseline. This rapid recovery of functional Treg allows immune regulation when it is needed 

most; early after transplantation during infl ammation and an elevated activation state of the 

immune system. The combination of a T-cell depleting agent with rapamycin increase de novo 

Treg, as has been reported before36. RATG induction therapy and MMF or rapamycin mainte-

nance therapy would be a Treg-promoting regimen. We show that conversion from CNI to MMF 

clinically clearly results in an improvement of renal function and a decrease of blood pressure 

in liver transplant patients. Conversion from a CNI to rapamycin has been reported to improve 

renal function, with acceptable rates of adverse events37. 

The world-wide transplantation program ‘Kidney Disease Improving Global Outcomes’ 

(KDIGO) and the Transplantation Society recommend -at the time of writing- anti-IL-2R induc-

tion therapy for all kidney transplantation patients in combination with maintenance therapy 

consisting of a CNI and MMF38. These recommendations by the KDIGO were made from a clini-

cal point of view as they prevent graft rejection by the inhibition of alloreactivity. A (possible) 

favorable eff ect of immunosuppressive drugs on immune regulation by the immune systems’ 

endogenous source of regulatory T cells was not explored. 

The present dissertation provides two key messages. First, we show that Treg are generated 

during immunosuppressive therapy which allows us to move the Teff -Treg balance from Teff  

cells towards Treg with the right choice and combination of immunosuppressive agents. 

Second, the research described in this thesis may also contribute in fi ne-tuning the immuno-

suppressive regimen after organ transplantation in favor of regulatory T cells in the periphery, 

that are involved in donor-specifi c hyporesponsiveness. Fine-tuning implies that the dosage 

given to the patient aff ects or eliminates Teff  cells, whereas at the same time maintaining Treg 

levels and their function. For all drugs used in this thesis, mixed lymphocyte reactions and sup-

pression assays in the presence of the immunosuppressive drug of relevance, were performed 

to mimic the in vivo immune responses. A summary of the impact of the immunosuppressive 

drugs on immune regulation as described in this thesis is depicted in Table 1.
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Table 1. Eff ects of immunosuppressive drugs on eff ector T cells (Teff ) and regulatory T cells (Treg) as described in this thesis

Immunosuppressive agent

T-cell 
population

Teff 
Frequency

(In vivo)

Teff 
Function

(Ex vivo and

 In vitro)

Treg
Frequency

(In vivo)

Treg
Induction

(In vitro)

Treg
Function

(antigen-specifi c)

Cyclosporine
↓ ↓ ↓ ↓ ↑

Tacrolimus
↓ ↓ ↓ ↓ ↑

 rATG
↓ ↓ ↓ ↑ ↑

rATG + Tacrolimus
↓ ↓ ↓ ↑ ↑

Mycophenolate Mofetil
↓ ↓   ↑33 ↓  Unaff ected33,35

Prednisolone
↓ ↓ ↓      ↑39,40   ↑40

CP-690,550
↓ ↓   ↓32 ↓

Unaff ected

Rapamycin
↓ ↓ ↑ ↓  Unaff ected/↑41
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SAME NVATTING

Orgaantransplantatie is de ultieme behandelingsmogelijkheid voor patiënten met een falend 

orgaan. Het probleem dat zich echter voordoet na orgaantransplantatie is dat het immuunsys-

teem van de patiënt het nieuwe orgaan echter als lichaamsvreemd ziet en het transplantaat 

daarom kan afstoten. Sir Peter Medawar heeft in 1944 in een huidtransplantatiemodel in het 

konijn ontdekt dat transplantaatafstoting een verworven activiteit is van het immuunsysteem1. 

In 1945, leidde een transplantatie bij tweelingkalveren met een gemeenschappelijke placenta 

en daardoor dezelfde weefselkenmerken, tot het besef dat orgaantransplantatie alleen kan 

slagen, indien de immuunreactie van de ontvanger tegen het transplantaat kan worden voor-

komen of onderdrukt2. Dit werd bevestigd door de eerste succesvolle niertransplantatie bij de 

mens, bij een eeneiige tweeling, waar donor en ontvanger ook identiek waren voor hun weef-

selkenmerken3. Tussen niet-identieke personen is naast een zo groot mogelijke overeenkomst 

tussen weefselkenmerken van donor en ontvanger, onderdrukking van de immuunreactie bij 

de ontvanger noodzakelijk. 

De ontdekking van de eerste geneesmiddelen die immuunreacties tegen het transplantaat 

onderdrukken (ook wel immunosuppressiva genoemd), zorgden ervoor dat goede trans-

plantaatoverleving niet alleen voorkwam bij transplantaties tussen familieleden. Door betere 

weefseltyperingen en het voortgaande onderzoek naar nieuwe en eff ectievere immunosup-

pressieve geneesmiddelen, werd het ook mogelijk om transplantaties tussen niet-verwante 

personen te verrichten4. 

Immuunreacties worden gemedieerd door T cellen van het immuunsysteem, een gespeci-

aliseerde groep cellen die in de thymus wordt gegenereerd (Figuur 1 introduction) en zich via 

de bloedbaan verplaatst via de lymfebanen naar de lymfeklieren, of naar het bolwerk van T 

cellen in de milt. In de lymfeklieren komen T cellen in aanraking met partikels (antigenen) die 

afkomstig zijn van bacteriën en virussen. Omdat deze antigenen lichaamsvreemd zijn, zullen T 

cellen hierop reageren door een immuunreactie op gang te brengen. Zo zorgen zij ervoor dat 

alles wat lichaamsvreemd is, verwijderd wordt uit het lichaam. In een immuunreactie krijgen 

T cellen door middel van antigenen het signaal om in actie te komen (raken geactiveerd) en 

gaan vervolgens interleukine-2 (IL-2) produceren; een groeifactor dat zij nodig hebben voor 

hun groei (proliferatie) en rijping (diff erentiatie). Door de massale productie en consumptie 

van IL-2 worden T cellen gestimuleerd om zich te vermenigvuldigen (expanderen) en om uit te 

rijpen tot zogenaamde ‘eff ector’ T cellen (T-eff ). Deze T-eff  cellen vallen vervolgens bacteriën en 

virussen aan, waardoor infecties voorkomen worden. De natuurlijke functie van T cellen van het 

immuunsysteem is dus een eerstegraads verdediging tegen schadelijke bacteriën en virussen4,5. 

Na orgaantransplantatie worden antigenen die afkomstig zijn van het donororgaan 

gepresenteerd aan T cellen. Door de immuunreactie die optreedt tegen deze donorantigenen 

worden de donorcellen afkomstig van het donororgaan opgeruimd waardoor het transplan-

taat wordt afgestoten. Het optreden van acute transplantaatafstoting door T cellen (cellulaire 
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afstoting) binnen de eerste weken tot maanden na transplantatie is onder andere afhankelijk 

van de intensiteit van de immuunreacties die afhangt van de mate van overeenkomst van de 

weefselkenmerken tussen donor en ontvanger4. Het optreden van acute cellulaire transplan-

taatafstoting wordt eveneens sterk bepaald door de immunosuppressieve behandeling van de 

ontvanger na transplantatie. Om te onderzoeken wat het eff ect van een bepaald geneesmiddel 

op het immuunsysteem is, bootsen we in het laboratorium immuunreacties na met ‘mixed 

lymfocyten reacties’ (MLR). Perifere bloed cellen (PBMC), waar zich T cellen in bevinden, worden 

uit het bloed van de patiënt geïsoleerd en gestimuleerd met PBMC uit het bloed van een 

levende donor of T cellen uit de milt van een overleden donor. In een MLR wordt alleen naar de 

reactiviteit van patiënt op donor gekeken en niet andersom. Dit wordt bereikt door de PBMC 

van de donor te bestralen zodat ze het vermogen om te delen kwijtraken en alleen de T cellen 

van de patiënt kunnen delen. De mate van reactiviteit van patiënt op donor wordt bepaald aan 

de hand van de T-cel groei van de patiënt. 

De ontwikkeling van de calcineurine remmer cyclosporine A, dat de IL-2 productie remt, 

en door Sir Roy Calne in 1980 als eerste getest werd, was een ware doorbraak in het trans-

plantatieveld, aangezien dit de patiënt en transplantaatoverleving enorm heeft verbeterd6,7. 

Orgaantransplantatiepatiënten worden sindsdien vaak behandeld met standaardtherapie; 

een combinatie van de meest eff ectieve geneesmiddelen die transplantaatafstoting kunnen 

voorkomen. Deze combinatietherapie bestaat tegenwoordig uit een calcineurine remmer 

(cyclosporine A of het nog nieuwere tacrolimus), T-cel groei remmer (mycofenolaat mofetil; 

MMF of sirolimus/rapamycin of everolimus) en steroide; (prednisolon). Steroïden zijn erg 

krachtig doordat zij aangrijpen op diverse processen, waaronder de T-cel groei, activatie en 

de productie van groei- en ontstekingsfactoren (cytokines)8. Ook veroorzaken zij celdood en 

scheiden ze bepaalde factoren uit die de ontstekingsreactie dempen8. Standaardtherapie 

wordt bij niertransplantatiepatiënten met een verhoogd risico op transplantaatafstoting 

(patiënten die getransplanteerd worden met een nier van een overleden donor) vooraf 

gegaan door inductie therapie, bestaande uit anti-thymocyten immunoglobulines (ATG). 

Deze immunoglobulines worden opwekt in konijnen waarbij immuuncellen afkomstig van 

thymi van kinderen zijn ingespoten. Afhankelijk van de dosis- zorgt ATG ervoor dat (alle) T 

cellen in het lichaam vernietigd worden zodat zij geen immuunreacties op gang brengen. 

Om zijn eff ectieve werkingsmechanisme wordt ATG ook gegeven als afstotingstherapie.

Na orgaantransplantatie worden patiënten vele jaren tot decennia behandeld met 

standaardtherapie. Helaas remmen immunosuppressiva ook de natuurlijke functies van het 

immuunsysteem waaronder de afweer tegen bacteriën en virussen, waardoor patiënten een 

verhoogd risico op infecties oplopen. Naast deze bijwerkingen zijn er ook allerlei andere scha-

delijke neveneff ecten en op de lange termijn is er een verhoogd risico op tumoren. Ook zijn 

in het bijzonder de calcineurine remmers schadelijk voor de nieren. Door de ernst van de vele 

bijwerkingen, de lange termijn symptomen en de nierschade is gezocht naar een vervangend 

immunosuppressivum dat wel net zo eff ectief is in het voorkomen van transplantaatafstoting, 
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maar minder bijwerkingen heeft. Het geneesmiddel CP-690,550 is een dergelijk immunosup-

pressivum waarvan onderzocht wordt of ter vervanging van calcineurine remmers kan worden 

gebruikt. CP-690,550 onderdrukt de gevoeligheid van T cellen voor IL-2, zodat dit niet ‘geconsu-

meerd’ kan worden en T cellen dus geremd worden in de groei en rijping9. 

Door de talrijke en ernstige bijwerkingen van de huidige immunosuppressiva, wordt ook 

veel onderzoek verricht naar alternatieve behandelmethodes die heel gericht T cellen aanpak-

ken die specifi ek op het transplantaat reageren en betrokken zijn bij afstoting. Een van die 

alternatieve behandelmethodes om acceptatie van het orgaan te bereiken zou kunnen liggen 

in de functie van een gespecialiseerde groep T cellen van het immuunsysteem; de regulatoire 

T cellen (T-reg). Er zijn verschillende groepen van T-reg. Echter, de CD4+CD25bright T cellen heb-

ben een hoge behoefte aan IL-2 en laten zich daarom op basis van hun uiterlijke kenmerken 

typeren door een verhoogde (bright) aanwezigheid van de IL-2α receptor (CD25) op het celop-

pervlak10. Een receptor is te vergelijken met een sleutelgat waar maar een specifi eke sleutel 

in past. IL-2 functioneert als sleutel voor CD25 en door binding van IL-2 aan het CD25 eiwit 

kan de T cel externe signalen die het via IL-2 ontvangt doorgeven aan de binnenzijde van de 

cel. Bovendien maakt ruim 90% van de CD4+CD25bright T cellen grote hoeveelheden Foxp311-13 

en CTLA414 aan; twee belangrijke eiwitten die zich in de celkern bevinden en CD4+CD25bright 

T cellen nodig hebben om hun functie uit te oefenen. Ook kenmerken deze cellen zich door 

afwezigheid van de receptor (CD127) voor de groeifactor interleukine-7, dat zich wel bevindt 

op alle andere T cellen15. In verschillende dierexperimentele modellen is aangetoond dat 

CD4+CD25brightFoxp3+CD127-/low T cellen zich onderscheiden van de overige T cellen doordat 

zij immuunresponsen die gericht zijn tegen lichaamseigen weefsel onderdrukken16. 

In de mens is aangetoond dat deze immuunonderdrukkende regulatoire eigenschappen een 

belangrijke rol spelen in het voorkomen van auto-immuunziekten waarbij het immuunappa-

raat verstoord is en zich richt tegen lichaamseigen weefsel. In het laboratorium (in vitro) is door 

middel van suppressie assays (Figuur 1) aangetoond dat deze CD4+CD25brightFoxp3+CD127-/low  

T cellen immuunresponsen (celdeling en o.a. de IL-2 productie van T-eff  cellen17) onderdrukken 

door middel van cel-cel contact met T-eff  cellen. Andere subgroepen van T-reg onderdrukken 

immuunreacties van T-eff  cellen doordat zij veel van een bepaald anti-ontstekingseiwit pro-

duceren dat de T-eff  groei remt. Zo produceren de Th3-cellen TGF-β18 en de Tr1 cellen IL-1019. 

Mogelijk kunnen de CD4+CD25brightFoxp3+CD127-/low T cellen ook na orgaantransplantatie op 

een specifi eke manier immuunreacties onderdrukken die gericht zijn tegen het transplantaat. 

Aangezien de afweeronderdrukkende medicijnen de groei en rijping van T cellen belemmeren, 

is onze hypothese dat deze geneesmiddelen mogelijk ook het aantal en immuunregulatoire 

functie van CD4+CD25brightFoxP3+CD127-/low T cellen beïnvloeden. 

Onderzoek naar T-reg vindt vooral plaats in het laboratorium en met proefdieren. Er is maar 

zeer weinig bekend over de specifi eke eff ecten van immunosuppressiva op de immuunregula-

tie in patiënten die een orgaantransplantatie ondergaan. Dierexperimentele modellen hebben 

aangetoond dat ATG het ontstaan van T-reg juist gunstig beïnvloeden. Inductie therapie met 
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ATG kan mede hierdoor acceptatie van het donororgaan bij patiënten bevorderen. CP-690,550 

grijpt aan op de signaaltransductie route die belangrijk is voor de groei van T cellen. Door op 

moleculair niveau de werking van dit geneesmiddel te bestuderen, zouden we misschien een 

verschil in gevoeligheid voor dit geneesmiddel tussen T-reg en T-eff  kunnen aantonen. 

In dit promotieonderzoek hebben wij het eff ect van verschillende immunosuppressiva op 

de uiterlijke kenmerken (het fenotype) en de functie van T-reg in nier- en levertransplantatie-

patiënten bestudeerd. Dit hebben wij enerzijds onderzocht in prospectieve studies waarbij de 

CD4+CD25brightFoxP3+CD127-/low T cellen aan de hand van hun uiterlijke kenmerken en functie 

in kaart zijn gebracht. Anderzijds hebben wij ook in vitro onderzoek gedaan naar de werkings-

mechanismen van de immunosuppressiva op cellulair en moleculair niveau. De doelstelling 

van deze dissertatie is om te streven naar een therapie voor transplantatiepatiënten waarbij 

het aantal en de functie van T-reg niet worden aangetast of zelfs toeneemt en de functie wordt 

versterkt. T-reg onderdrukken dan de immuunreactiviteit door T-eff  cellen die gericht is tegen 

het transplantaat, terwijl de afweer tegen infectieuze bacteriën en virussen behouden blijft. 

In hoofdstuk 2 onderzoeken wij of donorspecifi eke T-reg geïnduceerd worden in patiënten 

met standaardtherapie bestaande uit cyclosporine, MMF en prednison. Om dit te onderzoeken 

hebben wij het percentage CD25bright T cellen van het totale aantal CD4+ T cellen gemeten 

in het bloed van stabiele niertransplantatiepatiënten op 0.5-2 jaar na niertransplantatie. In 

deze periode na transplantatie kregen deze patiënten de volledige standaardtherapie in 

dezelfde doses als waarmee begonnen is, wat betekent dat de mate van immunosuppressie 

gelijk is aan kort na transplantatie. Naast het fenotype hebben we ook de functie van T-reg 

bestudeerd door middel van suppressie assays. In een zogenaamde ‘conventionele’ suppressie 

assay wordt de functie van pretransplantatie T-reg bepaald door deze in een kweek te brengen 

met de T-eff  cellen van pretransplantatie en de functie van posttransplantatie T-reg door deze 

in kweek te brengen met de T-eff  cellen van posttransplantatie. De groei van T-eff  cellen die 

gericht is tegen donorcellen of tegen 3e partij cellen wordt in af- en aanwezigheid van T-reg 

bepaald. Derde partij cellen zijn afkomstig van een individu die volledig verschilt in zijn weef-

seltypering van de patiënt. In aanwezigheid van T-reg verwachten we dat de groei van T-eff  

cellen onderdrukt wordt. De T-eff  cellen van post transplantatie staan echter onder invloed 

van verschillende ‘stress’ factoren waaronder donorantigenen, immunosuppressiva etc., die 

de groei en vitaliteit van deze T-eff  cellen belemmeren. Daarom hebben we in hoofdstuk 

2 om de functie van T-reg posttransplantatie te bepalen de conventionele suppressie assay 

aangepast. De functie van T-reg posttransplantatie is nu bepaald door de remming op de groei 

van T-eff  cellen van pretransplantatie te meten, waarvan we weten dat deze beter groeien dan 

posttransplantatie T-eff  cellen op donor- en 3e partij cellen. Na transplantatie hebben we een 

daling in het aantal CD4+CD25bright T cellen gevonden. Echter, functioneel gezien waren de 

T-reg van posttransplantatie in staat om de immuunresponsen tegen de donor nog sterker 

te onderdrukken dan de T-reg van pretransplantatie. Er was geen verschil in de remming door 
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T-reg van posttransplantatie op de T-eff  groei tegen donorcellen of 3e partijcellen. Uit deze 

resultaten concluderen wij dat T-reg posttransplantatie in het lichaam betrokken zijn bij het 

onderdrukken van donorspecifi eke immuunreacties tegen het donororgaan. 

In hoofdstuk 3 is getracht uit te zoeken of na klinische niertransplantatie donorspeci-

fi eke CD4+CD25brightFoxP3+ T cellen ontstaan die de specifi eke immuun reacties tegen het 

donororgaan kunnen onderdrukken. In een prospectieve studie is het fenotype en de functie 

van CD4+CD25bright T cellen geanalyseerd op 3, 6 en 12 maanden na niertransplantatie. De 

patiënten zijn gerandomiseerd in verschillende behandelgroepen; arm 1 staat op tacrolimus 

en rapamycin therapie en arm 2 op tacrolimus en MMF therapie. De immuunregulatoire 

capaciteit van CD4+CD25bright T cellen is op twee manieren bepaald. Ten eerste, door ze te 

isoleren uit PBMC en dan de respons tegen donor- en 3e partij cellen vóór en na isolatie te 

meten. Ten tweede door de geïsoleerde CD25bright T cellen in verschillende radio’s met T-eff  

cellen in cocultuur te brengen zoals in een conventionele suppressie assay gedaan wordt. In 

het eerste jaar na transplantatie was er een signifi cante daling in het absolute aantal en het 

percentage CD4+CD25bright T cellen. In de MLR was er een donorspecifi eke hyporesponsiviteit 

van patiënten PBMC die gestimuleerd werden met donorcellen en een signifi cante toename in 

de groei bij stimulatie met 3e partij- en 4e partijcellen. Zoals eerder gesteld, onderdrukken T-reg 

de immuunreacties van T-eff  cellen. T cellen in PBMC kunnen we indelen in een niet-delende 

T-reg populatie en een delende T-eff  populatie. Functionele analyse van CD25bright T cellen 

toonde aan dat de groei van T cellen toeneemt als zij verwijderd zijn uit de PBMC populatie. 

Deze toename in de groei werd signifi cant groter in de tijd. In suppressie assays verbeterde de 

suppressieve capaciteit van T-reg zichtbaar signifi cant in de tijd. Bovendien werd het verschil 

in T-eff  groei op donor en 3e partij cellen evenals de remming hiervan door T-reg zichtbaar op 

6 maanden na transplantatie. Hoewel tacrolimus en rapamycin dezelfde aangrijpingspunten 

hebben op T cellen, zagen we geen verschil in de beide armen van therapie. Uit hoofdstuk 

3 concluderen we dat in niertransplantatiepatiënten onder invloed van immunosuppressieve 

therapie donorspecifi eke CD4+CD25bright T cellen worden geïnduceerd in het eerste jaar na 

klinische niertransplantatie. 

In de hoofdstukken 4, 5 en 6 staan konijn anti-thymocyten globulines centraal. In de litera-

tuur is beschreven dat ATG CD4+CD25brightFoxP3+ T cellen kan vormen uit humane CD25neg 

T-eff  cellen. Dit in vitro fenomeen zou zeer gunstig zijn voor de patiënt, omdat deze door ATG-

gestuurde inductie van T-reg in de patiënt kan zorgen voor een toename van (donorspecifi eke) 

T-reg ten koste van T-eff  cellen die zorgen voor transplantaatafstoting. 

In hoofdstuk 4 beschrijven wij in een prospectieve studie het eff ect van ATG-inductie 

therapie op het fenotype, de frequentie en de functie van perifere immunoregulatoire 

CD4+CD25brightFoxP3+CD127-/low T cellen in niertransplantatiepatiënten. De studiegroep 

werd behandeld met ATG-inductie therapie, tacrolimus, MMF en steroïden. De resultaten 

van de studiegroep zijn vergeleken met die van een controlegroep zonder ATG-inductie the-

rapie. Pretransplantatie vertoonde 6% van de CD4+ T cellen in het bloed het FoxP3+CD127-/
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low fenotype. Op 1 week na transplantatie en ATG-inductie therapie waren geen meetbare 

CD4+FoxP3+CD127-/low T cellen meer aanwezig. Na 4 weken vond langzaam herstel plaats 

van dit aantal, maar in de eerste 26 weken na ATG-behandeling bleef het aantal signifi cant 

lager dan vóór transplantatie. Op 14 weken observeerden we binnen de CD4+FoxP3+ T cel-

len een signifi cante verschuiving naar het CD45RO+CCR7+ (central memory) fenotype. Bij het 

analyseren van de functie van PBMC en T-eff  cellen zagen we op 26 weken na transplantatie 

een signifi cante afname in de groei van PBMC en T-eff  cellen tegen donor- en 3e partij cellen 

bij patiënten in de ATG-groep vergeleken bij pretransplantatie. De CD25bright T cellen waarvan 

90% uit FoxP3+CD127-/low T cellen bestaat, konden deze immuunreacties goed onderdrukken. 

Op basis van deze resultaten concluderen wij dat ATG-inductie therapie T-eff  cellen en T-reg 

elimineert uit het bloed en lichaam, maar dat de T-reg die na regeneratie aanwezig zijn in het 

bloed hun suppressieve activiteit behouden. 

We vroegen ons aan de hand van deze resultaten af waarom de T-reg aantallen niet juist ver-

hoogd waren na ATG-behandeling omdat in vitro is aangetoond dat ATG T-reg kan genereren. 

Onze hypothese was dan ook dat de T-eff  cellen van pretransplantatie bij patiënten met eindsta-

dium nierfalen dusdanig verstoord zijn in hun functie, dat zij het vermogen om in een T-reg te 

veranderen wellicht verloren hebben. In een in vitro studie beschreven in hoofdstuk 5 hebben 

we daarom T-reg inductie bestudeerd in patiënten met eindstadium nierfalen die kandidaat 

zijn voor niertransplantatie en ATG-inductie therapie. De ATG-geïnduceerde T-reg hebben we 

gekarakteriseerd en vergeleken met natuurlijke CD4+CD25brightFoxP3+CD127-/low T cellen die in 

het bloed aanwezig zijn voor transplantatie en door de thymus zijn gevormd. CD25neg cellen 

afkomstig uit PBMC zijn voor 24 uur geïncubeerd met ATG of met controle immunoglobuli-

nes uit een konijn die niet gericht zijn tegen humane thymocyten. De ATG-geïnduceerde 

CD4+CD25+ en CD8+CD25+ waren -in dezelfde mate als natuurlijke CD4+CD25bright T cellen- in 

staat om de groei van T-eff  cellen tegen 3e partij cellen te onderdrukken. Echter, het percentage 

FoxP3 binnen de top 2% van deze geïnduceerde CD25+ T cellen was signifi cant lager dan in de 

natuurlijke CD4+CD25bright  cellen. Tenslotte hebben we de expressie van een aantal moleculen 

gekwantifi ceerd die aanwezig zijn in natuurlijke CD4+CD25bright  T cellen of die wellicht iets 

onthullen over het mechanisme dat ATG-geïnduceerde T-reg uitoefenen. Voordat een eiwit 

ontstaat, wordt eerst messenger RNA (mRNA) gevormd, dat van het gen in het DNA afkomt. 

mRNA is dus een soort tussenstadium dat noodzakelijk is om van het gen in het DNA een eiwit 

te genereren. De mRNA-niveaus van IL-10, IL-27 IFN-γ, perforine en granzyme B (de laatste 4 

eiwitten veroorzaken celschade, ‘cytotoxiciteit’ genaamd) waren hoger in ATG-geïnduceerde 

T-reg dan in natuurlijke CD25bright T cellen, terwijl de mRNA-expressie van CTLA4, TGF-β en 

RORγt lager was. Er kan dus gesteld worden dat ATG in vitro functionele T-reg uit CD25neg 

cellen van patiënten met eindstadium nierfalen induceert. Ten opzichte van natuurlijke T-reg 

hebben deze geïnduceerde T-reg een verschillend fenotype, en overeenkomsten en verschil-

len op mRNA profi elen. De regulatoire activiteit is echter vergelijkbaar. ATG draagt dus bij aan 
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de mechanismen die de immuunreactiviteit temperen en daarom kan de hierboven gestelde 

hypothese kan dus worden verworpen. 

Als T-reg inductie mogelijk is in patiënten met eindstadium nierfalen, was onze volgende 

hypothese dat wellicht de immunosuppressieve therapie die gecombineerd wordt met ATG-

inductie therapie verantwoordelijk is voor het uitblijven van T-reg inductie in onze niertrans-

plantatiepatiënten. In de literatuur wordt gesproken over het belang van IL-2 voor de generatie, 

homeostase en functie van T-reg. Daarom zouden calcineurine remmers, die de IL-2 productie 

onderdrukken, mogelijk ook de inductie van T-reg kunnen verstoren. In hoofdstuk 6 vroegen 

wij ons af of ATG T cellen naar T-reg kan converteren in aanwezigheid van geneesmiddelen 

die hun inductie en functie kunnen beïnvloeden zoals calcineurine remmers. Om dit te onder-

zoeken hebben wij CD25neg cellen uit PBMC van gezonde individuen geïncubeerd met ATG of 

controle immunoglobulines voor een periode van 24-uur, maar nu in aan- en afwezigheid van 

tacrolimus. Opmerkelijk genoeg werden er ook FoxP3+ T cellen geïnduceerd in aanwezigheid 

van tacrolimus. Blokkade van het eff ect van IL-2 op T cellen (d.m.v. anti-CD25 en anti-IL-2 anti-

lichamen) beïnvloedde de frequentie van ATG-geïnduceerde FoxP3+ T cellen ook niet. De ATG-

tacrolimus geïnduceerde CD25+ T cellen beschikten over voldoende suppressieve capaciteit 

om de groei van T-eff  cellen te onderdrukken die gestimuleerd zijn met bestraalde cellen van 

een ander individu. Echter, in tegenstelling tot de natuurlijke CD25bright T cellen, vertoonden 

deze geïnduceerde T-reg hoge expressie van IL-10, IL-27, IFN-γ, perforine en granzyme B, terwijl 

FoxP3 signifi cant lager tot expressie werd gebracht. Deze mRNA resultaten zijn bevestigd in 

niertransplantatiepatiënten die ATG-inductie therapie hebben gekregen na transplantatie. De 

bevindingen zoals beschreven in deze studie hebben geleid tot de volgende conclusie. Tacro-

limus heeft geen negatief eff ect op de inductie en functie van ATG-geïnduceerde CD4+CD25+ 

T cellen en mogelijk induceert ATG ook T-reg in patiënten die behandeld worden met een 

combinatie van ATG-inductie therapie en tacrolimus. 

In hoofdstuk 7 hebben wij ons gefocust op de signalen die van buitenaf aan de T cel wor-

den gegeven en noodzakelijk zijn voor T cel groei en activatie. Deze signalen zijn afkomstig 

van groeifactoren en cytokines. Voornamelijk de signalen van IL-2 zijn belangrijk voor de groei, 

diff erentiatie en functie van T-eff  cellen en T-reg. Cytokines van de IL-2 familie hebben allen 

hun eigen bindingsreceptor op het celoppervlak, maar in de cel maken zij allen gebruik van 

dezelfde γ-receptor, waardoor het signaal van buitenaf door alle groeifactoren van de IL-2 

familie op dezelfde manier de cel door geleid wordt. Eenmaal in de cel, wordt het signaal door 

de cel geleid via Janus Kinasen (Jak) eiwitten die aan het γ-gedeelte binden. Deze Jaks geven 

het signaal door aan STAT (Signal Transducers and Activators of Transcription) eiwitten die het 

signaal daarna naar de celkern leiden. Jak-STAT signalering leidt tot de vorming van nieuwe 

eiwitten die de T cel nodig heeft voor zijn groei en functie. In deze studie hebben we onder-

zocht of de Jak-remmer CP-690,550 de regulatoire activiteit van CD4+CD25brightFoxP3+CD127-/

low T cellen beïnvloed. De Jak-activiteit in aan- en afwezigheid van de Jak-remmer hebben we 

bepaald aan de hand van de activatie (fosforylatie) van STAT5. Kwantifi catie van gefosforyleerd 
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STAT5 geeft een indicatie van de activatie status van Jak3 en kan dus worden gebruikt om het 

inhiberende eff ect van CP-690,550 te bepalen. Met behulp van ‘fosfo-specifi eke fl ow cytome-

trie’ hebben we de gefosforyleerde eiwitten in kaart gebracht. Om T-reg functie te bepalen zijn 

suppressie assays in af- en aanwezigheid van CP-690,550 uitgevoerd met het materiaal van 

gezonde individuen en niertransplantatiepatiënten die CP-690,550 therapie hebben gekregen 

gedurende 29 dagen na transplantatie en daarnaast anti-CD25 inductie therapie, MMF en pred-

nison. Een controlegroep kreeg standaardtherapie bestaande uit anti-CD25 inductie therapie, 

cyclosporine, MMF en prednisone. 

De IL-2 geïnduceerde fosforylatie van STAT5 was signifi cant hoger in de CD4+CD25bright T cel-

len dan in CD25-/dim T-eff  cellen. In aanwezigheid van een klinische relevante dosis CP-690,550 

van 100 ng/mL, werd deze IL-2 geïnduceerde STAT5 fosforylatie gedeeltelijk geremd in de 

CD4+CD25bright T cellen, terwijl deze bijna geheel geremd werd in CD25-/dim T-eff  cellen. De 

dosis waarbij 50% remming van de STAT fosforylatie optreedt, de IC50 was 2-3x hoger voor 

T-reg dan voor CD25-/dim T-eff  cellen. De groei van T-eff  cellen in respons op bestraalde PBMC 

van een ander individu werd dosisafhankelijk geremd door CP-690,550. Onder invloed van kli-

nische relevante doses van CP-690,550 waren T-reg in staat om deze groei van T-eff  cellen nog 

meer te onderdrukken. De suppressieve capaciteit van T-reg van niertransplantatiepatiënten 

die behandeld zijn met CP-690,550 is vergelijkbaar met die van voor transplantatie, en met de 

suppressieve capaciteit van T-reg van patiënten uit de controlegroep. Deze bevindingen laten 

zien dat de Jakremmer CP-690,550 op eff ectieve wijze T-eff  groei onderdrukt en tegelijkertijd 

de suppressieve activiteit van T-reg behoudt. 

Hoofdstuk 8 beschrijft het eff ect van conversie van immunosuppressieve geneesmiddelen 

na levertransplantatie. In deze studie betreft het de conversie van een calcineurine remmer naar 

de T-cel proliferatieremmer MMF na transplantatie. Patiënten met slechte nierfunctie werden 

geconverteerd naar MMF en ontvingen ook een dosis van de IL-2 receptor blocking antilichaam 

Daclizumab. Controle patiënten continueerden de behandeling met de calcineurine remmer. 

Daclizumab behandeling resulteerde in afdekking van het IL-2 bindende deel van de CD25 

moleculen op 1 maand na transplantatie. Wanneer CD25-expressie gekwantifi ceerd werd aan 

de hand van het IL-2 onafhankelijke gedeelte, waarbij IL-2 binding geen beperkende factor 

is voor de kwantifi catie van CD25, bleek dat er een signifi cante daling was in het percentage 

CD4+CD25+ T cellen. Echter, er was geen daling in het aantal CD4+FoxP3+ cellen. Zes maanden 

na MMF-conversie nam het percentage CD4+CD25brightFoxP3+ T cellen zelfs toe met 125%. 

mRNA-analyse van FOXP3 bevestigde deze verrijking van FoxP3 in het perifere bloed. Opmer-

kelijk genoeg steeg na MMF-conversie het aantal CD25-moleculen per cel op CD4+FoxP3+ cel-

len, maar niet op CD4+FoxP3neg cellen vergeleken bij pre-conversie. Op deze manier zorgt MMF 

therapie voor herstel van circulerende T-reg aantallen in het bloed na het onderdrukkende 

eff ect van calcineurine remmers. Door dit eff ect kan MMF therapie dus mogelijk de T-reg-

gemedieerde suppressie van immuunreactiviteit tegen het transplantaat kunnen bevorderen.
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CONCLUSIE

Immunosuppressieve therapie wordt vaak gekozen op basis van de mate van eff ectiviteit in de 

preventie van transplantaatafstoting en de minste bijwerkingen. Deze medicatie is niet speci-

fi ek gericht tegen de immuunreacties tegen het transplantaat, maar ook tegen immuunreacties 

tegen bacteriën en virussen. Regulatoire T cellen zijn juist in staat om die immuunresponsen 

die gericht zijn tegen het transplantaat te onderdrukken. Er valt dus winst te behalen voor de 

patiënt als de regulatie van immuunreacties tegen het transplantaat niet negatief en mogelijk 

zelfs positief wordt beïnvloed door de immunosuppressieve therapie. Met behulp van immu-

nosuppressieve geneesmiddelen die T-reg-aantallen of T-regfunctie stimuleren, is het mogelijk 

om het immuunsysteem te sturen richting donorspecifi eke immuunregulatie. De (combinatie 

van) immuunosuppressieve geneesmiddelen die wij hebben onderzocht, vertonen geen 

nadelig eff ect op de functie van regulatoire T cellen. Donorspecifi eke regulatoire T cellen 

ontstaan in het eerste jaar na transplantatie onder standaardtherapie. ATG-inductie therapie 

in combinatie met rapamycine, CP-690,550 of MMF kan de aanmaak van deze donorspecifi eke 

regulatoire T cellen wellicht versnellen. In de toekomst zouden we deze immunosuppressiva 

kunnen gebruiken om het immuunsysteem actief te sturen in de richting van donorspecifi eke 

regulatoire T cellen. 
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ABBREV IATIONS 

APC  Allophycocyanin 

BSA  Bovine Serum Albumin

CML  Cytotoxic T lymphocyte Mediated Lysis

CNI   Calcineurin Inhibitor

CPM  Counts per Minute

CsA  Cyclosporine A

FITC  Fluorescein Isothiocyanate

FMO  Fluorescence Minus One 

γc  gamma chain

gMFI  geometric Mean Fluorescence Intensity

HC  Healthy Controls  

HCM  Human Culture Medium 

HLA  Human Leukocyte Antigens 

IH  Inhibition

Jak  Janus family of tyrosine kinases 

KTx  Kidney Transplantation 

MACS  Magnetic Cell Sorting

MFI  Median Fluorescence Intensity

MLR  Mixed Lymphocyte Reaction

MMF  Mycophenolate Mofetil 

PBMC  Peripheral Blood Mononuclear Cells

PE  Phycoerythrin 

PERCP  Peridinin chlorophyll protein 

PHA  Phytohemagglutinin

post-Tx  post-transplantation

pre-Tx  pre-transplantation

P-STAT5  phosphorylated STAT5

rATG  Rabbit Anti-Thymocyte Globulins

rIgG  Rabbit Immunoglobulins

SD  Standard Deviation 

SEM  Standard Error of the Mean 

STAT  Signal Transducer and Activator of Transcription

Teff   Eff ector T cells

Treg   Regulatory T cells

Tx  Transplantation
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