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Preface

The important thing is not to stop questioning. Curiosity has its

own reason for existing. One cannot help but be in awe when he

contemplates the mysteries of eternity, of life, of the marvellous

structure of reality. It is enough if one tries merely to comprehend

a little of this mystery every day. Never lose a holy curiosity.

— Albert Einstein (1879 – 1955)

T
his thesis describes the research I carried out as part of my Ph.D. study at the
Philips Research Laboratories, Hamburg, Germany and at the Erasmus MC,
University Medical Center Rotterdam, The Netherlands.
Legends make us believe that in the remote past research had to be carried

out by solitary and eccentric scientist secluded in a small and dark tower room.
During the past three years, I have experienced the exact opposite. To be successful,
research requires the cooperation of a multitude of inspiring people working in a
multi-disciplinary research team. Thus, I would like to acknowledge the people who
have made the completion of this doctoral dissertation possible.

First of all, I would like to thank my promotor and co-promotor, Prof. Wiro J.
Niessen and Dr. Michael Grass. Wiro gave me the opportunity to join the Biomedical
Imaging Group at Erasmus MC to perform this Ph.D. research. I am deeply indebted
to him for his assistance and supervision of this work, and for teaching me how to
carry out academic research. Michael initiated this project. His vast experience and
clear ideas on scientific research, passed on during many interesting discussions, were
extremely helpful and motivating. I would also like to thank Andy Ziegler, who was
my tutor at Philips Research Laboratories during the first six months of this work.
I am greatly indebted to him for his infinite patience and help in introducing me to
the fantastic world of iterative CT image reconstruction and medical CT imaging.

The majority of this thesis was carried out at Philips Research Laboratories,
Hamburg, Germany (PFL-H) where numerous people were involved. Many people
contributed to making my time at the laboratory pleasurable and productive: Dirk
Schäfer who introduced me to thin-plate spline interpolation and multiplanar reforma-
tion methods; Holger Schmitt helped me with all kinds of questions about myocardial
perfusion; Peter Forthmann provided me with many good ideas about scattered inter-
polation, and in particular I am grateful to him for kindly providing me the segmented
human heart shown on the cover of this book; Udo van Stevendaal for his help on in-
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troducing me to the cardiac-motion compensation image reconstruction theory; Ewald
Rössl for his help for improving the inverse deformation field technique used in chapter
5; Klaus Erhard helped me with all kinds of image reconstruction-related questions;
Herman Schomberg provided me support and discussion on theoretical questions.
Special thanks go to Thomas Köhler for our frequent brainstorming about iterative
and analytical image reconstructions. During my stay at PFL-H I also had the great
opportunity to collaborate intensively with the people from Digital Imaging group.
My great thanks go to Cristian Lorenz, Jens von Berg, Steffen Renisch and Sven
Kabus for introducing me to the field of image registration for aligning pulmonary
CT images. Finally, I want extend many thanks to Roland Proksa for revising my
publications and to our department heads, Dye Jensen and Günter Zeitler. I enjoyed
and appreciated the friendly and cooperative atmosphere of the “hamburger” Philips
Research Laboratories.

The work described in chapter 4 was partially completed at the Erasmus Uni-
versity MC Rotterdam, Departments of Medical Informatics and Radiology, Biomed-
ical Imaging Group Rotterdam, The Netherlands. I enjoyed the collaboration with
this group, and I valued the excellent support of Coert Metz, Michiel Schaap and Ste-
fan Klein on introducing me to the field of coronary centerline extraction and elastic
image registration, and Ihor Small for kindly providing me the latex templates used
to realize this book.

It is hard to not mention my co-Ph.D. students at PFL-H who have made my
stay in Hamburg special and a pleasure: my office mate Mariya Doneva, Tobias Voigt,
Eberhard Hansis, Ronny Ziegler, Sebastian Zander, Hanno Homann and Uwe Jandt.
I greatly enjoyed our daily coffee breaks, and discussions about medical imaging,
soccer, religion, Italian politics, Italian kitchen, and so on.

I am beholden to my beloved parents, Mario and Maria, my brothers Dario
and Marco and my cousins Mimmo and Alfonso for their material and non-material
support in all these years and for leading me always in the right direction.

Last but not least, I would like to acknowledge my girlfriend, Valentina, who
will soon become my wife. She is always happy to share my joy and, when needed,
remove my doubts. She was, is and will always be the most important person of my
life. I will never finish to thank her for supporting me throughout these years and
making my existence so special.

Alfonso A. Isola
Rotterdam, February 2010
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Chapter One

Introduction

Radiology has not come to the end of its expansion, and in spite

of all the advances of fifty years the vista of progress still stretches

out in front of us. In the fascinating country already charted and

signposted there are still many by-paths to be explored even by

those who now travel by motor car where the pioneers had to

blaze the exciting trails before the paths were made. And for

those spirits that are more adventurous there are still uncharted

lands over the horizon, lands that will open up and through which

one day the roads will run.

— Alfred Ernest Barclay (1876 – 1949)

1.1 Historical perspective of computed tomography

C
omputed tomography (CT) is a method that generates images of the interior
of the body by digital computation applied to the measured transmission of
X-rays. It achieves this by rotating an X-ray source and a set of aligned X-ray

detectors around the patient. The word tomography is derived from the Greek tomos
(cut) and graphein (to write).

The history of CT starts in Germany in 1895 when Wilhelm Conrad Röntgen
(1845-1923) (Fig. 1.1(a)) discovered a new type of radiation, which he called X-rays
[105]. This type of electromagnetic radiation, which has a shorter wavelength than
visible light and the ability to penetrate matter, was immediately used to image the
interior of the human body. The images thus obtained showed a two-dimensional
(2D) projection of the inner structures. The contrast in the images was based on
the differences in X-ray attenuation coefficients and in the thickness of the various
tissues. In 1901 Röntgen received the first Nobel prize for physics. Basic to the CT
technology are the theoretical principles of reconstruction of a three-dimensional (3D)
object from multiple two-dimensional (2D) views relying on a complex mathematical
model, as formulated by Johann Radon in 1917 [100].

In 1956 the South African nuclear physicist Allan M. Cormack (1924-1998)
(Fig. 1.1(b)) initiated his work on cross-sectional imaging to improve the radiother-
apy treatment planning. In 1963 and 1964 he published his work on the problem of
reconstructing a cross-section of a body by using information from projection data
through that body [13]. Cormack tested his method with transmission measurements
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(a) (b) (c)

Figure 1.1. Three Nobel prize winners who played a role in the history of com-
puted tomography. (a) W. C. Röntgen, (b) A. M. Cormack, (c) G. N. Hounsfield.
Photographs c© The Nobel Foundation.

obtained from a phantom using gamma radiation. His efforts were not directly used
for diagnostic applications. In any case the computing power was not sufficient at that
time. The principle of reconstructing cross-sections was introduced into the medical
world by the British engineer Godfrey Newbold Hounsfield (1919-2004) (Fig. 1.1(c)).
Hounsfield developed his own reconstruction technique as he was unaware of Cor-
mack’s work. In 1972 he presented the first full-scale CT-scanner (EMI Mark I, EMI
Ltd., London, United Kingdom) and the first picture of a patient’s head [34]. This
image represented a cross-section with a thickness of 13 mm and consisted of a matrix
of 80 by 80 pixels, which showed the anatomical structure of the brain. Compared
to a plain X-ray image, the CT image showed remarkable contrast between tissues
with small differences in X-ray attenuation coefficient. Godfrey Hounsfield and Allan
Cormack were both rewarded in 1979 by the Nobel prize committee with the Nobel
prize for medicine “for the development of computer assisted tomography”.

An outstanding innovation opening the doors towards heart imaging was intro-
duced in 1982 [7] with the electron-beam CT (EBCT). This system does not contain
any moving mechanical parts, but it accelerates a focused electron beam towards
stationary tungsten targets, thus permitting very rapid scanning times. A dramatic
reduction of temporal resolution to 50-100 ms for an axial slice, and a slice thick-
ness at the submillimeter level (0.8 mm) enabled the acquisition of images showing
the calcium in the coronary arterial wall which could be quantified [3]. Using X-ray
opaque contrast agent, the first non-invasive coronary angiography studies could be
obtained [1]. A major drawback of EBCT were the high cost of both the purchase
and maintenance of the system, which has greatly limited widespread use of this
technique. The introduction of CT technology based on the so-called spiral or helical
acquisition, late in the 1980s, also represented an important step. In these systems,
a sliding ring containing both, the X-ray emitting source and the detectors, allows a
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fast continuous rotation of the gantry that sweeps around the body of the patient in
a helical course as the table is continually moving in the direction of the longitudinal
axis [49]. The rotation time of the gantry was initially in the order of 1 s, while in
1994 it had been reduced to 0.75 s. For the first time a true volumetric acquisition of
an anatomical region in 25-30 s became feasible, with slices between 2-10 mm thick-
ness [49]. Despite these features, however, the achievement of adequate images of the
heart and the coronary arteries was still beyond the scope of CT.

An important advance was the introduction of multi-slice CT (MSCT) technol-
ogy, in 1993. Systems initially had 2 rows of detectors [72], which reduced the time of
the examination. Then, systems equipped with 4 rows of parallel detectors were set
up, in 1998, providing rotation times of 0.5 s and, by means of complex segmentation
algorithms, reconstructions with a temporal resolution between 125-250 ms [88]. Spa-
tial resolution was also improved as slice thickness was reduced to 1-1.25 mm. With
these advances, the achievement of a cardiac volume free of movement artifacts was
feasible, although this implied a breath-hold time between 35-45 sec. Systems with 8,
12 and 16 rows of detectors soon followed, the latter becoming available in 2002, for the
first time allowing, the acquisition of cardiac volume data with true isotropic spatial
resolution: identical size of the voxel in the three planes, between 0.5-0.625 mm, and
with rotation time below 0.5 s [67,87,106]. The required breath-hold time for 16-slice
equipments is between 20-30 s. Relevant as they are, these improvements have not
been considered sufficient for cardiac examination, and in 2004-2005, new generations
of MSCT equipped with 32, 40, and 64 detectors have been introduced [31, 64, 89].
The main advantage, in practice, of these new systems is the reduction in scan time,
allowing breath-hold times lower than 10 s, which results in a high image quality for
most cardiac studies that are free from arrhythmia or respiratory artifacts.

Latest CT scanners image 256 slices simultaneously, with a coverage along ro-
tational axis up to 80 mm and rotation time as short as 0.27 s. Moreover, several
protocol-driven and patient-adaptive dose reduction technologies are integrated that
automatically use the quantity and quality of radiation where and when needed, lead-
ing to dose reductions of up to 80% over previous methods (Philips Brilliance iCT,
Philips Healthcare, Cleveland, OH, USA). A recently introduced 320 slices CT system
(Aquilion One, Toshiba Medical Systems, Tokyo, Japan) thanks to its array of 320
ultra high resolution 0.5 mm detector elements, it has a z-axis detector coverage of
160 mm, large enough to cover the entire heart in a single rotation and thus avoiding
to scan over several heart beats [110].

1.2 Cardiac CT applications

Cardiac imaging is a rapidly emerging clinical technique for non-invasive diagnosis of
cardiovascular diseases [10]. For example, monitoring of coronary artery calcium pro-
gression could be a potential tool for the identification of patients at risk of suffering
from myocardial infarction [144].

Early detection and evaluation of high-grade stenotic segments in the coronary
arteries is another important clinical application of cardiac CT imaging, as it can be
used for diagnosing coronary artery disease and guiding therapy options to prevent
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acute myocardial infarctions [31, 64]. Furthermore, analysis of CT images of the
left ventricle (LV) allows detection of possible mitral valve stenosis, which can be
responsible for pumping abnormalities and the consequent insufficient blood flow from
the heart to all the organs and tissues of the human body.

Another application is functional imaging of the heart. By retrospecting gating
(see Chp. 1.3.2) a reconstruction from the same data set in any given phase of the
cardiac cycle is allowed. Hence, an evaluation of functional cardiac parameters is
possible, enabling the assessment of cardiac parameters such as wall motion and
ejection fraction. Finally, myocardial perfusion imaging by follow-up CT scanning is
a promising diagnostic tool to assess the extent of infarcted myocardial regions.

1.2.1 Coronary artery calcium scoring

There is an increasing interest in cardiology to go beyond the traditional coronary
risk factors and, pending the discovery of a simple screening test for the detection of
the asymptomatic vulnerable patient, also base the coronary risk prediction in the
detection and quantification of coronary artery calcium as a marker of atherosclerotic
disease.

Coronary artery calcium is an excellent marker of the process of atherosclerosis,
as it is present almost exclusively in atherosclerotic plaques of the vessel wall, its
amount correlating with the burden of the disease [144]. Electron-beam computed
tomography (EBCT) has proven to be the first non-invasive technique for the quantifi-
cation of coronary artery calcium. The development of MSCT has become a valuable
alternative to EBCT.

The coronary artery calcium quantification method adopted for MSCT exams was
initially introduced in 1990 by Agatston for EBCT scanners [3]. The Agaston Score [3]
is strongly dependent on acquisition protocol and cardiac motion. This method is
based on the X-ray attenuation coefficient (or CT number, measured in Hounsfield
(HU)) and the area of calcium deposits. According to this method, densities equal to
or greather than 130 HU are considered to correspond to calcium. Volume and mass
calculation of the amount of calcium are alternative methods to the Agaston score
for the evaluation of coronary artery calcium.

1.2.2 Detection and characterization of coronary artery
stenoses

Multi-slice computed tomography (MSCT) is a potentially useful tool for a compre-
hensive study of the complex aspects of coronary artery lesions [31]. It allows, on one
hand, to obtain of a noninvasive coronary angiography, or a luminogram of the arter-
ies, where the degree of obstruction of lesions can be assessed. On the other hand,
MSCT is not limited to this analysis but it is also able to provide information on
the arterial wall itself and on the extent and components of atherosclerotic plaques.
The assessment of coronary artery lesions by MSCT implies different, important as-
pects of their relevance, as is the magnitude of obstruction, and the composition of
atherosclerotic plaques and its morphological features, all related to the stability of
lesions. Typical degree of obstruction are: non-significant stenoses (less than 50% of
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the vessel lumen); borderline stenoses (50-70%), and significant stenoses (more than
70%). A classification for the components of the lesion can be done in: thrombolic
lesions, non-calcified, mixed or “soft” lesions (adipose or fibroadipose), and calcified
lesions (fibrocalcified and calcified). The calcium component in the latter kind of
lesion can be focal, diffuse, eccentrical or concentrical.

A typical diagnostic tool of MSCT to study coronary artery lesions consists of
the visualization of reconstructed axial images. Although limited to a 2D view, axial
images provide an adequate method for the analysis of cardiac and thoracic anatomy,
and due to its excellent resolution, also for the evaluation of the components of the
coronary atherosclerotic lesions.

To improve coronary artery visualization and lesion interpretation a multiplanar
reconstruction (MPR) [10] can be utilized. The MPR consists of obtaining sections of
the vessels on multiple orientation and is not limited to the axial plane. By means of
curved MPR, a clear view of both lumen and the wall of the vessel is possible, leading
to a detailed analysis of lesions. To perform a curved MPR, semi-automatic centerline
extraction techniques [77,111] are used to determine the center of the vessel through
consecutive axial images. By computing this information, the system provides a two-
dimensional image of the course of the vessel independent of its anatomic distribution.

Finally, another coronary artery diagnostic tool is 3D volume rendering. This
tool provides a 3D reconstruction of the coronary tree. The presence of a noncalcified
atherosclerotic lesion, characterized by a reduction in the luminal density, is promptly
detected, although 3D images are not the preferred method for the estimation of the
severity of the lesion.

1.2.3 Morphological and functional assessment of heart
chambers

Data on volume and function, particularly of the left ventricle, constitute impor-
tant clinical information in all patients with heart disease. While a number of other
imaging methods provide accurate data on these parameters and can be applied in
clinical routine, MSCT estimations are valuable in those patients with proven or
suspected ischemic heart disease who are referred to a noninvasive coronary angiog-
raphy study [115]. The analysis of ventricular volume and function is performed from
multiplanar reformations of the retrospectively ECG-gated data set obtained from a
cardiac CT scan.

Myocardial perfusion imaging by MSCT represents a promising tool to support
the diagnosis and treatment of acute infarctions [61, 66, 90]. An assessment of the
heart muscle viability can allow to distinguish between necrotized and dysfunctional
but viable tissues after acute or chronic ischemia, and can be used as an indicator of
early heart disease [127].

Hypoenhanced regions on the initial scan, and hyperenhanced regions on late
scans obtained 5-15 minutes after contrast material injection represent two types
of abnormal myocardial enhancement patterns which have been described in litera-
ture [61, 66, 90]. A strong relationship, between the presence and size of these two
abnormal myocardial defects and the degree of follow-up regional dysfunction after
acute myocardial infarction was observed [66]. Also, the probability of myocardial
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functional recovery is significantly inversely related to the presence and size of both
early hypoenhanced and late hyperenhanced regions [66].

Animal studies have shown early hypoattenuation to be a measure of low reflow
regions, which may result from abnormal flow at the level of either the epicardial
artery and/or the myocardial capillaries [61,66,79,94,103].

Late hyperenhancement has been shown to be a marker of necrotic tissue [66,103].
The mechanism of hyperenhancement of healed myocardial infarction or collagenous
scar is thought to be related to an accumulation of contrast media in the interstitial
space between collagen fibers [61,66].

Finally, dynamic myocardial perfusion imaging by MSCT can be an efficient
tool to quantitatively evaluate the condition of the myocardial tissue. Hereto, a
cardiac follow-up CT scan (e.g. the Step-and-Shoot scanning-mode) can be applied
to generate a sequence of volumes acquired during the first-pass of a contrast agent
bolus. Then, the X-ray attenuation changes for each voxel in the acquired images
can be visually evaluated by using the corresponding time-intensity curves [78, 120].
Moreover, these time-intensity curves can be used as an input for the assessment of
quantitative perfusion-related parameters [78,120].

1.3 Cardiac CT acquisition strategies

Challenges for image reconstruction in cardiac CT arise from the rather fast cardiac
motion and incomplete data that are associated with helical (and circular) scanning
combined with cardiac gating [26, 38, 44, 46, 48, 74, 121]. Cardiac CT is a special CT
protocol, which has passed through three, chronologically overlapping, developmental
stages and is now in its fourth stage of development. The first stage was fluoroscopy-
based CT (1972-1995) stimulated by physiologic research needs. The next was clinical
CT-based exploration (1975-1980) of the potential of clinical CT in cardiology. This
was followed by the electron beam CT-based stage (1980-present), which was the
first CT approach applicable to clinical cardiology. Finally, volumetric CT imaging
methods achieved with multislice scanning approaches of helical CT (1998-present)
show great promise for clinically applicable CT of the cardiovascular system.

MSCT allows fast acquisition and makes it possible to acquire redundant data.
These improvements enabled the imaging of the heart. Especially reconstructions of
quiet cardiac phases which can be found, as an example, at late diastole, yield good
results [31, 64, 89]. This is due to the fact that the scanner’s temporal resolution
is high enough compared to the motion-speed of the heart. In order to correlate
the reconstruction with the beating heart, an electrocardiogram (ECG) is recorded
parallel to the acquisition.

There are two techniques of cardiac CT image reconstruction: ECG-triggered,
or prospective scanning, and ECG-gated, or retrospective scanning. Both techniques
are discussed in the following subsections. These two methods have in common that
reconstruction is performed at a certain phase point referred to as reference phase
point. To ensure that sufficient line integrals are acquired, a time window (gating
window) is placed around the reference phase point. The width of this window is
responsible for the temporal resolution of the system.
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Figure 1.2. Prospective triggering: scanning time points are estimated in respect
to the ECG’s R-peaks (a), and the Step-and-Shoot acquisition (b).

1.3.1 Prospective ECG triggering

When CT scanning is necessary to rule out coronary artery disease only, and func-
tional information is not needed, it is sufficient to image and expose a single cardiac
phase. In the prospective mode [29,36] the scanning is performed at a predetermined
time window of the cardiac cycle, usually during mid-diastole (or diastasis) and end-
systole (Fig. 1.2(a)). This time window can be defined in milliseconds from the R
wave of the ECG, or as a percentage of the cardiac cycle. It can be combined with
a helical or circular mode of acquisition, where the combination with the circular
acquisition is more frequent. A typical scanning-mode used in prospective acquisition
is the so called Step-and-Shoot (Fig. 1.2(b)). During acquisition, the table stops at a
certain position, then data are acquired during one rotation of the gantry. The table
is forwarded up to the next position, another cycle is recorded. This procedure is
repeated until the complete volume is covered (Fig. 1.2).

Technological advances which enable the use of prospective gated coronary CT
reconstructions represent a significant improvement in radiation dose reduction. Us-
ing a 64-slice and dual-source MSCT, prospective triggering has been shown to be
technically and clinically feasible, and compared to retrospective gating dose reduc-
tions of 52-85 % have been reported [20, 29]. Despite the promising results of these
prospective ECG-triggered CT studies, current 64-slice and dual-source MSCT is lim-
ited to patients with heart rates below 75 bpm. Earls [19] noted that more than 40%
of all patients presenting to cardiac CT angiography would have to be excluded from
prospective CT acquisition without pharmacological heart rate control. Despite mul-
tiple oral and/or intravenous β blocker administrations, it was noted in [19] that 9.5%
of patients still failed to meet appropriate prospective heart rate thresholds. More-
over, in obese patients with body mass index greather than 30 kg/m2 lower image
quality was observed [20].

Another great drawback for ECG triggering is the so-called heart rate variability
[125] which describes the variation of beat-to-beat intervals. As the offset for each
scan is derived from the preceding RR intervals, an ectopic beat can result a deviant
delay and thus lead to incorrect projections at wrong table positions.

Recently, a 256-slice MSCT scanner with 0.27 s rotation, 120 kW X-ray tube,
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Figure 1.3. Retrospective scanning method: diagrams of the ECG-gating (a) and
the corresponding segmented helical scan used for the reconstruction(b).

and an 80.0 mm detector array has been introduced (Philips Brilliance iCT, Philips
Healthcare, Cleveland, OH, USA). While large scale studies are necessary, first early
clinical results indicate that this new system potentially enables imaging beyond the
75 bpm and the 30 kg/m2 body mass index thresholds without any β blocker med-
ication. Moreover, in order to reduce the susceptibility of the prospective scanning
to heart rate variations, new real-time arrhythmia handling mechanism are utilized.
When arrhythmias are detected, the scan is stopped to prevent unnecessary dosage,
and the anatomic region is then scanned after the ECG signal stabilizes [21,143].

1.3.2 Retrospective ECG gating

Imaging tissue, or an organ, over multiple physiological phases (e.g. over the car-
diac cycle) can provide both anatomical and functional information. In retrospective
scanning [26, 45, 47, 57, 86, 122] the acquisition is performed in a continuous helical
mode during one breath-hold. A simultaneous recording of the ECG allows for the
reconstruction of images at determined phases throughout the cardiac cycle (Fig. 1.3).
After the scan, each projection is assigned to its exact phase point. Thus, a predic-
tion of phase points is not necessary. Retrospective gating enables calculation of the
optimal width of the gating window. Heart rate is a crucial aspect in this mode,
since more cardiac cycles are available in the breath-hold period. Consquently, a
higher number of segments is available for the image reconstruction, thus improving
the temporal resolution.

Retrospective scanning is thus the adequate mode of acquisition to study the left
ventricular function, provided the acquisition of data over the whole cardiac cycle is
continuous.

Continuous acquisition in the restrospective scanning mode leads to a higher ra-
diation dose than in the prospective mode. To reduce the X-ray dosage, retrospective
CT angiography is frequently performed using a helical scanning direction in combi-
nation with radiation dose modulation, i.e., the peak tube current is only used within
a chosen temporal window of the R-R interval, while, outside this window a minimal
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tube current is applied. Nevertheless, prospective ECG-triggered coronary CT an-
giography has shown to reduce radiation dose below that of retrospective ECG-gated
coronary CT angiography with dose modulation [29]. Despite prospective triggering
scanning is frequently applied for coronary CT angiography, retrospective exams are
still preferred at higher heart rates or in obese patients, although with the new gener-
ation of 256-slice MSCT scanners the new exact maximum thresholds are still under
research.

1.4 Cardiac CT reconstruction strategies

Nowadays, several strategies to reconstruct the 3D attenuation coefficient distribution
from the measured projection data exist. In general, the reconstruction techniques can
be divided into two classes: analytical and iterative methods. Analytical reconstruc-
tion methods [9,22,51,128] apply an analytical inversion of the Radon transform [100]
to give a direct solution to the reconstruction problem. Iterative reconstruction meth-
ods [17, 60, 85, 126, 148] solve the problem numerically by minimizing the difference
(or ratio) between the forward projected image and the measured data, sometimes
under the constraint of a priori knowledge about the imaged object. In the following
subsections, a brief presentation of an analytical and iterative reconstruction methods
for cardiac CT is given.

1.4.1 Aperture weighted cardiac reconstruction for cone-beam
CT

The Aperture Weighted Cardiac Reconstruction for Cone-Beam CT (AWCR) is
a heart-rate-adaptive helical cardiac cone beam reconstruction technique [57]. It is
based on 3D filtered back-projection (FBP) [9,22,51,128] using retrospective gating.
It is similar to Extended Cardiac Reconstruction (ECR) [26], but makes use of data
from all illumination windows. As previously mentioned, an ECG is recorded in
parallel to the scanning. This provides a relation between the cardiac cycle and the
time points at which every projection is recorded. One major aspect of AWCR is a
weighting of line integrals depending on their associated phase point. Indeed, line
integrals of quiet heart phases are emphasized while line integrals of strong motion
shall be suppressed. Thus redundant line integrals belonging to the same phase point
but not necessarily to the same cardiac cycle are collected. To achieve this, at least
in good approximation, the common acquisition protocol is a helical cone-beam scan
using a low pitch and short rotation times. Furthermore, larger detector arrays are
of help to cover large parts of the object of interest.

The AWCR algorithm can be divided into few steps. First of all the fan-beam
geometry is transformed into a parallel-beam geometry. Subsequently, the data are
pre-weighted with the cosine of the cone-angle and high pass filtered in row direction
applying a band limited ramp filter. Finally, the 3D-back-projection is performed
after a weighting with an additional weighting function which takes cardiac motion
constraints and the voxel-specific illumination into account. A more detailed intro-
duction to the AWCR-framework can be found in [57].
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1.4.2 Iterative reconstruction for cardiac cone-beam CT

Iterative reconstruction methods [4,25,60] represent a different approach for CT imag-
ing which consists of assuming that the cross section consists of an array of unknowns,
and then setting up algebraic equations for the unknowns in terms of the measured
projection data. General advantages of iterative [4, 25, 60] compared to analytical
reconstruction [85,93,126] are the ability to model the acquisition process accurately
and to introduce a-priori knowledge about the imaged object. Moreover, iterative
reconstruction methods have the potential to require less data than FBP methods,
and they are more robust to the effects of noise [17,85,126,148]. However, at the same
time, a well known drawback of iterative reconstruction methods is the necessity that
a field-of-view (FOV) has to be reconstructed that covers the whole volume, which
contributed to the absorption. In the case of a high resolution reconstruction, this im-
poses very large memory and computation requirements during reconstruction. ROI
reconstructions [149] can mitigate this problem.

Volumetric CT reconstruction algorithms determine the absorption function f of
the object sampled by a set of 2D projections at different angles. A linear combina-
tion f̃ of a limited set of basis functions b can be used to represent the continuous
function f . A commonly used basis function is the cubic voxel. The boundaries of
a voxel are exactly in the middle between neighboring grids. Spherically symmet-
ric basis functions (also called “blobs”) represent another kind of bases which are
frequently used in CT image reconstruction. Following Lewitt [69] for the works pre-
sented in this thesis, the Kaiser-Bessel basis functions [68] are used. These spherically
symmetric basis functions have many advantages compared to simple cubic voxels,
e.g. they are spatially limited and effectively frequency limited, and their appearance
is independent of the source position [68].

The main goal of iterative CT reconstruction is to find the optimal set of co-
efficients µi that minimizes the difference (or ratio) between the measured pj and

calculated p̃j
(n) =

∑N
i=1 Ajiµ

(n)
i projections, where Aji are the elements of the sys-

tem matrix, n is the iteration number, and j = (1, 2, . . . ,D) are the detector pixels.
In chapter 2, a detailed description of the forward projection model [147] used to
determine the contribution, Aji, of each blob to the detector pixel, j, will be given.

Generally, iterative reconstruction methods may be divided into two groups. The
first group including the algebraic reconstruction technique (ART) [25] (utilized for

Hounsfield’s first CT scans), solves a system of linear equations pj =
∑N

i=1 Ajiµi and
does not take the statistics of the measurements into account. An ART algorithm
finds the optimal set of coefficients µi by iteratively applying a correction array to
each voxel (or blob) i as follows

µn+1
i = µn

i + λ
pj − p̃j

n

∑

i

aji

aji, (1.1)

where the relaxation parameter, 0 < λ < 2, controls the speed of convergence, and
aji indicates a backprojection weight [147].

In Eq.1.1 a ray-by-ray update scheme is used. Hereto, each voxel value is sequen-
tially updated by using the correction term generated by each ray in one projection.
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(a) (b) (c)

Figure 1.4. Imaging artifacts. The motion blurring (a), the banding (b), and
the streak (c) artifacts are shown. In (b) the green arrow indicates an image area
strongly degraded by banding artifacts.

A commonly used modification of ART is the Simultaneous Algebraic Reconstruc-
tion Technique (SART) [4] which lead to superior image quality by simultaneously
applying to a voxel the average of the corrections generated by all rays in a projection.

The second group consists of the statistical iterative reconstruction methods, such
as the convex Maximum Likelihood method (ML) [60]. These methods take care of the
photon statistics in the measurement, resulting in a higher signal-to-noise ratio (SNR)
of the reconstructed images compared to the analytical reconstruction methods [85,
93,126].

In the next chapters 2-5, in order to increase the convergence speed of the iterative
algorithm, efficient ordering schemes [28] will be applied to collect the measured
projections in different ordered subsets. Moreover, as previously done for the AWCR
method, a suitable cardiac weighting will be introduced for each projection pj in the
reconstruction algorithm in order to select data belonging to the same cardiac phase
and to perform an ECG-gated iterative reconstruction [86,149].

1.5 Imaging artifacts

The detection of coronary artery lesions from an MSCT study is less problematic than
their quantification. Artifacts can severely degrade the quality of a CT image and
can lead to inaccurate or false diagnoses.

There are different sources of artifacts in an MSCT coronary angiography (e.g.
aliasing, beam hardening, shading, metal, and patient or breathing motion-related
artifacts) which are frequently responsible for those cases of disagreement between
this technique and conventional invasive angiography [63, 84]. A good overview on
CT image artifacts appearances, causes and possible corrections is given in [35]. The
following paragraphs will focus on patient cardiac motion-related artifacts.
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1.5.1 Motion artifacts

Movement artifacts primarily occur when images are reconstructed in inadequate
phases of the cardiac cycle, e.g. in systole or during atrial contraction period. In-
creased heart rate can induce these artifacts by the shortening of systolic and diastolic
periods and also by the increased heart motion. Premature atrial or ventricular beats,
or arrhythmias in general, may also be causes of these artifacts.

Motion artifacts lead to blurred images leading to a poorly defined outline of
vessel segments, particularly the right coronary artery (RCA) and left circumflex
(LCx) arteries, due to their anatomic relationship with the atria (Fig. 1.4(a)). The
use of beta-blocking agents or sedatives may reduce the appearance of movement
artifacts.

1.5.2 Banding artifacts

These artifacts appear when the heart rate changes significantly during the acquisition
time. A strong heart rate variation may lead to a reconstructed image composed
of slices corresponding to slightly different phases of the cardiac cycle, resulting in
images in which the cardiac shape abruptly changes in a stepwise manner (Fig. 1.4(b)).
Banding artifacts are prone to appear at the end of the acquisition time, when the
regularity of the cardiac cycle frequently tends to dissipate.

Modern CT systems with large area detectors (Aquilion One, Toshiba Medical
Systems, Tokyo, Japan) can image the entire heart in one axial scan without table
movement [110], and hence can avoid banding artifacts [23].

1.5.3 Streak artifacts

Streaking artifacts are usually induced by inconsistencies present in single measure-
ments which yields bright lines or streaks in the reconstructed image (Fig. 1.4(c)).
The projection data inconsistency could be the result of an inherent problem associ-
ated with the data collection process (e.g. patient cardiac motion). Because streak
artifacts can mimic coronary artery diseases and cause misdiagnosis, special attention
has to be paid to recognizing, avoiding, or correcting them.

1.6 Motion compensated reconstruction

As discussed so far, cardiac motion-related artifacts can degrade the quality of med-
ical images and can hamper a reliable diagnosis of the heart condition. A motion
compensated (MC) reconstruction [5, 71, 92, 98, 112, 113, 136] is therefore of great in-
terest to reduce motion artifacts. In particular, MC reconstruction approaches can
be applied to image coronary arteries of patient with a high heart rate variation, or
if functional data is required, to reconstruct cardiac ROIs at phases of fast cardiac
motion. In both situations, the current prospective and retrospective ECG gating
methodologies fail to produce motion-artifact free images of the heart.

The prerequisite of MC reconstruction is the availability of motion vector fields
(MVF). For a volumetric cardiac reconstruction the MVF is represented by a R

3 → R
3
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Figure 1.5. Format of the motion-vector field. For each voxel xi(R) of the volume
V (R) in the reference phase R, the motion-vector field m (xi(R), R, P ) describing
the displacement of the voxel x∗i (P ) = xi(R)+m (xi(R), R, P ) in an arbitrary phase
P is given.

mapping m (xi (R) , R, P ), which displaces each grid point xi (R) at a reference heart
phase R to a new position x∗

i (P ) in an arbitrary heart phase P (Fig. 1.5) by

x∗
i = x∗

i (P ) = xi(R) + m (xi(R), R, P ) , (1.2)

where R ∈ [0, 1) is the selected reference percentage of the RR interval, and i =
1, 2, . . . , N with N = NxNyNz and Nx, Ny, and Nz are the number of grid points in
x, y, and z directions, respectively.

Several methodologies for extracting motion information from an ECG-gated 4D
image data set exist in literature [5,43,95,124,136], three efficient techniques will be
applied in the next chapters of this thesis. An MC iterative reconstruction can be
used to take the motion of each blob into account during the forward projection step.
In case of divergent motion, the MC iterative reconstruction method should take care
of the blob-volume change as well. In the next chapter an MC iterative method which
uses such volume-adapted blobs as basis functions will be proposed.

1.7 Thesis outline

The main focus of this thesis is to develop and evaluate methods to obtain motion
artifact-free CT images of a cardiac region of interest at phases of strong cardiac
motion. Generally, at these phases, standard ECG-gated or -triggered reconstruction
methods produce blurred images. The aim of this work is twofold:

• To introduce a novel MC iterative CT reconstruction method for a cardiac ROI,
which takes the motion into account during the iterative reconstruction process.

• To introduce three novel motion estimation techniques to determine the un-
known cardiac local MVF required to perform an MC reconstruction.
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First, a novel MC iterative CT reconstruction method is presented. Subsequently,
a number of motion estimation methods are proposed. The first method needs of an
initial precomputed 4D ECG-gated image data set and a limited number of manually
indicated anatomical point landmarks in order to determine the MVF of a chosen
cardiac ROI. Second, a semi-automatic coronary artery motion estimation technique
with minimal user interaction is proposed, selecting a single pair of coronary artery
points in one frame only. Subsequently, a minimum cost path-based approach is
used to extrapolate a multi-phase coronary centerline which is used to determine the
unknown MVF. Third, a fully-automatic non-rigid registration-based local motion
estimation method is proposed to determine the unknown MVF of a selected cardiac
ROI.

A brief summary of the chapters is provided below.

In Chapter 2, a new three-dimensional method to reconstruct moving objects
from cone-beam X-ray projections using an iterative reconstruction algorithm and a
given motion vector field is introduced. For the image representation, volume-adapted
spherically symmetric basis functions (blobs) are used which can be implemented effi-
ciently as basis functions. A novel method to calculate line integrals through volume-
adapted blobs is proposed which takes also the motion induced blob-size change into
account. A phantom data validation of this new MC iterative approach is presented,
and an image quality comparison with a non-motion compensated iterative method
and an MC FBP reconstruction approach is given.

In Chapter 3, a novel method for motion compensated iterative CT reconstruc-
tion of a cardiac region of interest is presented. As basic reconstruction method a
statistical iterative approach is chosen. The 4D motion field used during reconstruc-
tion is obtained from a 3D thin-plate spline warping of a limited number of manually
indicated anatomical landmarks of the right coronary artery. Results based on two
clinical data sets at strongest motion phases are visually and quantitatively com-
pared to results achieved using a standard gated iterative reconstruction. Moreover
comparisons with an MC FBP reconstruction method are made.

In Chapter 4, a new method which combines iterative computed tomography re-
construction and coronary centerline extraction techniques to obtain motion artifact-
free reconstructed images of the coronary arteries is proposed and evaluated. The
method relies on motion-vector fields derived from a set of coronary centerlines ex-
tracted at multiple cardiac phases within the RR interval. Hereto, start and end points
are provided by the user in one time-frame only. The performance of the method is
validated on three patients, and an image quality comparison with the results achieved
by a classical gated iterative method is given. Finally, the results are also compared
to the manual coronary artery motion estimation method introduced in the previous
chapter.

In Chapter 5, a novel method for motion-corrected iterative CT reconstruc-
tion of a cardiac region of interest is proposed. Given a precomputed (non-motion
compensated) gated 4D ROI image data set, a fully automatic elastic image regis-
tration is applied to recover a dense cardiac displacement field of the ROI from a
chosen cardiac reference phase to a number of phases within the RR interval. Here,
a stochastic optimizer and multi-resolution approach are adopted to speed up the
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registration process. The method is evaluated on phantom data and in four clinical
data sets at strong cardiac motion phases. Results are compared with standard gated
iterative reconstruction. A qualitative and quantitative accuracy study is presented
for the estimated cardiac motion field.





Chapter Two

Motion-compensated iterative
cone-beam CT image reconstruction

with adapted blobs as basis
functions

I can calculate the motion of heavenly bodies, but not the mad-

ness of people.

— Isaac Newton (1642 – 1727)

Abstract — This chapter presents a three-dimensional method to reconstruct
moving objects from cone-beam X-ray projections using an iterative reconstruction
algorithm and a given motion vector field. For the image representation, adapted
blobs are used, which can be implemented efficiently as basis functions. Iterative re-
construction requires the calculation of line integrals (forward projections) through
the image volume, which are compared with the actual measurements to update
the image volume. In the existence of a divergent motion vector field, a change in
the volumes of the blobs has to be taken into account in the forward and back-
projections. An efficient method to calculate the line integral through the adapted
blobs is proposed. It solves the problem, how to compensate for the divergence in
the motion vector field on a grid of basis functions. The method is evaluated on
two phantoms, which are subject to three different known motions. Moreover, a
motion-compensated filtered back-projection reconstruction method is used. Using
the correct motion vector field within the iterative motion-compensated reconstruc-
tion method, sharp images are obtained, with a quality that is significantly better
than gated reconstructions.

Based upon: A. A. Isola, A. Ziegler, T. Koehler, W. J. Niessen, M. Grass, “Motion-compensated
iterative cone-beam CT image reconstruction with adapted blobs as basis functions”, Physics in

Medicine and Biology, vol. 53, no. 23, pp. 6777-6797, 2008.
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2.1 Introduction

I
n cardiac cone-beam computed tomography (CT), a large effort is continuously
dedicated to increase scanning speed in order to limit the influence of patient
and organ motion. Especially cardiac motion causes artifacts such as blurring

and streaks in tomographic images. A variety of algorithms has been proposed in
the literature to reduce or compensate for motion artifacts, see [26, 44, 45, 57, 101,
107,112,122,134] and references therein. Most of the correction methods address the
calculation of consistent projection data belonging to the same motion state. These
data define a subset of all measurements. Reconstruction of another subset leads to
a different motion state of the investigated object. For retrospectively gated cardiac
cone-beam CT scanning, sophisticated filtered backprojection (FBP) methods have
been developed based on different weighting schemes like the Extended Cardiac Re-
construction (ECR) [26], the Extendend Parallel Backprojection (EPB) [45] and the
Aperture Weighted Cardiac Reconstruction (AWCR) [57]. In addition to the above
analytical reconstruction algorithms, also cardiac iterative reconstruction methods
have been investigated, such as a modified ART algorithm for gated cardiac CT re-
construction [86].

Overall, the gated cardiac reconstruction methods yield excellent results, not only
with respect to processing time and SNR, but also regarding image quality. However,
they are limited in their temporal resolution due to the mechanical movement of
the gantry. This can lead to a residual motion blurring, especially in the phases
of fast cardiac motion. A motion-compensated (MC) reconstruction method can be
used to improve the resolution of the reconstructed image and to suppress motion
blurring. Blondel et al. in [5] used a precomputed motion vector field to modify the
projection operator and calculated an MC reconstruction with ART. The motion
induced distortion of the volume leads to a computation of curved line integrals and a
change of the voxel volume in the forward projection step. The voxel volume distortion
is neglected in Blondel’s article. Pack et al. in [92] proposed a dynamic reconstruction
method with known motion field, but under the restrictive assumption that the objects
of interest have to move according to a continuous and linear motion field. To perform
an MC reconstruction, a computation of the motion vector field (MVF) of the moving
object is required. For cardiac CT, several cardiac MVF estimation methods have
been proposed in literature [5, 43,98,124,136].

Lately, there is a growing interest to use iterative reconstructions for CT data.
The main reason for this is that the iterative algorithms allow to include a priori
knowledge and a noise model in the reconstruction process, which results in a higher
signal-to-noise ratio (SNR) of the reconstructed images compared to the analytical
reconstruction algorithms [17,85,126,148]. A drawback for iterative techniques is the
high computational effort. An important part of the iterative algorithms is the rep-
resentation of the continuous object, which is scanned with transmission CT. For
iterative reconstruction, the continuous object has to be represented with a finite set
of coefficients. Spherically symmetric volume elements (blobs) as basis functions for
the image representation have many advantages compared with simple cubic voxels or
other basis functions, e.g. their appearance is independent of the source position [69].
The reconstruction with spherically symmetric basis functions is used in PET re-
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construction [15] and in iterative parallel CT image reconstruction [56]. However, a
reconstruction of measurements acquired with divergent rays, as recorded with current
helical cone-beam CT systems, leads to the question, how the spherically symmetric
volume elements have to be sampled correctly. This problem does not appear in a
geometry, where the rays are parallel like in PET, or after re-binning CT data to
parallel beam geometry. In these cases, the size of the basis functions can be adapted
to the sampling of the measurement. For divergent rays, spherically symmetric vol-
ume elements, which are close to the source, have a different contribution to forward
and back projection than the spherically symmetric volume elements, which have a
greater distance from the source. Ziegler et al. [147] presented a method of sampling
the spherically symmetric volume elements motivated by the beam geometry of a
CT system: due to the divergent ray geometry, the spherically symmetric volume
elements are magnified depending on their distance to the source. The convolution
of the magnified spherically symmetric volume elements with the sensitive detector
areas defines the weights, which are used for the forward and back projection steps.
In addition, in [147], also an efficient implementation of such model is presented.
However, in case of MC reconstruction, such a model neglects the change of the local
blobs density caused by the existence of a divergent MVF. It is shown in this chapter
that this leads to an image with streak artifacts. In fact, an MVF with non-vanishing
divergence leads to a non-equidistant grid of blobs, hence, the volumes of the blobs
and their forward projections on the detector have to be changed. This chapter in-
troduces a new method of sampling the spherically symmetric volume elements by
modifying the model discussed above. This new three-dimensional method evaluates
spherically symmetric basis functions in combination with a divergent MVF. In short,
a blob adaptation is implemented efficiently by changing the blob-size and its forward
projection on the detector depending on the neighboring 3D grid points.

This chapter is organized as follows. Section 2.2 describes the used MC iterative
algorithm and explains a new method for the line integral calculation. Finally, the
phantoms and their motion models used for an experimental validation of the method
are described. In Section 2.3, the obtained results are presented. After the discussion
of the results in Section 2.4, the conclusions are summarized in Section 2.5.

2.2 Method and materials

2.2.1 Iterative reconstruction using spherically symmetric
basis functions

Iterative reconstruction algorithms reconstruct images of transmission CT scans with
a large variety of trajectories and detector geometries. A difference or ratio between
the measured and calculated forward projection of an intermediate image is deter-
mined. It is used to update the intermediate image via back projection. This proce-
dure is repeated, leading to an iterative reconstruction algorithm.

The main part of the model is the representation of the continuous object to be
imaged. For the 3D case, the continuous distribution, f, of absorption of the scanned
object has to be represented by a finite set of numbers. It is common to represent f
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as a function f̃, which is a sum of basis functions, b, arranged on a regular 3D grid
with N equidistant grid points, ~xi, and reads

f̃(~x) =
N

∑

i=1

µib(~x − ~xi), (2.1)

where N = NxNyNz and Nx, Ny and Nz, are the number of grid points in the x, y
and z direction, respectively. The set of numbers µi are the coefficients of expansion
which describe the function f̃ relative to the chosen basis set b(~x− ~xi). The choice of
the basis functions and the way they are used in forward and backward projections
have an influence on the image quality and was investigated previously [69]. In the
reconstructions presented in this chapter, the Kaiser-Bessel basis functions [68] are
used. These spherically symmetric basis functions (also called blobs [117]) are defined
by

bm,a,α(r) =

{
√

1−(r/a)2
m

Im

[

α
√

1−(r/a)2
]

Im(α) if 0 ≤ r ≤ a

0 else
. (2.2)

where r is the radial distance from the blob center, Im denotes the modified Bessel
function [141] of order m, a is the radius of the basis function, and α is a parameter
controlling the blob shape. In this chapter, the standard parameters are used for the
Kaiser-Bessel basis functions defined in (2.2), m=2, a/g=2.00, and α=10.4 with grid
increment g. These settings satisfy the frequency criteria described in [76].

Usually, in a CT acquisition system, the detector is discretized in detector pixels
j, with j = (1, 2, . . . ,M) and M = V R for a total of V projections and R detector
pixels in each projection. The forward projection, p̃j

(n), at iteration, n, can be written
for a detector pixel, j, as

p̃j
(n) =

N
∑

i=1

Ajiµ
(n)
i . (2.3)

This means, that in the forward projection, the contribution, Aji, of each basis func-
tion to the detector pixel, j, has to be determined.

2.2.2 Voxel-dependent footprint

The calculation of the weights, Aji, is an important step in iterative reconstruction.
For an ideal rectangular detector pixel, Aji is calculated as the line integral through
the basis function b at position ~xi integrated over the area of the detector pixel j.
This can be computed analytically for a given shape of a basis function b and reads

Aji =
1

D

∫ v2(j)

v1(j)

∫ u2(j)

u1(j)

r (u, v) F [ ~xd (u, v) , ~xs, ~xi] dudv, (2.4)

where

F [ ~xd (u, v) , ~xs, ~xi] =

∫ 1

0

b [~x (l, u, v) − ~xi] dl (2.5)

is the so-called ”footprint” of the basis function b, ~xd (u, v) is the detector coor-
dinate parameterized, respectively, by a column u and row v. ~x (l, u, v) = ~xs +
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l [ ~xd (u, v) − ~xs] is the direct line from the X-ray source position, ~xs, to the detector,
u1 (j) (v1 (j)) is the column (row) detector position of the lower pixel border of pixel
j, u2 (j) (v2 (j)) is the corresponding column (row) detector coordinate of the upper
pixel border (Fig. 2.3), D = [u2 (j) − u1 (j)] [v2 (j) − v1 (j)] is the detector pixel area,
and r (u, v) is the detector response. For an idealized detector with a homogeneous
response and no dead space between the detector pixels, the detector response would
be r (u, v) = 1 across the whole detector.

For spherically symmetric basis functions, the line integral calculation in Eq. 2.5
depends only on the distance of the line of integration from the basis function center
~xi [69]. This footprint calculation ignores the integral over the detector pixel area in
Eq. 2.4. Ziegler et al. in [147] present a voxel-dependent footprint calculation. Here,
the footprint F, which was introduced in Eq. 2.5 is analytically calculated for a blob.
The footprint reduces to the Abel transform [8] of the radial profile bm,a,α and can
be expressed as

Fm,a,α [ ~xd (u, v) , ~xs, ~xi] = Fm,a,α

(

w ~xd(u,v), ~xs, ~xi

)

= 2

∫ (a2−w2)
1/2

0

bm,a,α

[

(

w2 + t2
)1/2

]

dt |w| ≤ a,
(2.6)

where

w = w ~xd(u,v), ~xs, ~xi
=

√

‖~xi − ~xs‖2 −
{

(~xi − ~xs) · [ ~xd (u, v) − ~xs]

‖ ~xd (u, v) − ~xs‖

}2

(2.7)

is the perpendicular distance from the center of the blob to the line integral, and t is
the distance along the line, such that the radial coordinate, r, of a point on the line is

given by r =
(

w2 + t2
)1/2

[68,69]. Since bm,a,α is space limited to the ball of radius a,
the integral in Eq. 2.6 is defined for |w| ≤ a, and accordingly the limits of integration

are
[

0,
(

a2 − w2
)1/2

]

instead of [0,∞).

The footprint in Eq. 2.6 is defined in the coordinate system of a blob with the
origin at the blob center. To evaluate the footprint Fm,a,α on the detector, a voxel-
dependent scaling of the footprint was proposed in [81]. For FBP, a voxel-dependent
interpolation kernel, which is similar to a scaling of the footprint, was published
recently [16].

The data aquisition geometry with a helical cone-beam CT system can be de-
scribed as follows. The X-ray source moves on a helical trajectory

~xs (γ) =
(

dcs cos γ, dcs sin γ,
γ

2π
pabs

)

, (2.8)

around the object. The rotation axis coincides with the Z axis. The parameter γ
∈ [0, 2π) describes the position of the gantry, dcs is the distance of the center of
rotation from the source, the pitch pabs is the absolute table travel per rotation. A
focus-centered detector rotates at distance dds from the X-ray source, i.e., the detector
is cylindrical with the X-ray source focus at the axis of the cylinder. This means that
the detector is parallel to the rotation axis, Z, and the transaxial plane is defined by
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Source xs

Voxel xi

βi

θi

dcs

dds
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     DET
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  x-ray source helical trajectory

Figure 2.1. A 3D sketch of the acquisition geometry of a focus centered detector
with an X-ray source. Here, dis is the distance of the blob i from the source, dds

is the distance of the detector from the source, dcs is the distance of the center of
rotation from the source, and θi represents the angle between the plane of the gantry
and a vector pointing from the source to the blob i.

the X and Y axis. A 2D coordinate system (u,v) is used for the detector. Finally, βi

represents the X-ray source fan angle (Fig. 2.1).
In this focus-centered geometry, and with spherically symmetric basis functions,

voxel-dependent scaling of the footprint can easily be performed. It is scaled with
a factor rφ (i) = dds/ (dis · cos θi) in the angular direction, and the factor, rζ(i) =
dds/

(

dis · cos2 θi

)

in the axial direction z (see Fig. 2.1). The footprint of Eq. 2.6 can
be evaluated in the detector coordinate system (u,v). The dependence can be written
as

Fm,a,α

(

w ~xd(u,v), ~xs, ~xi

)

= Fm,a,α (wi,u,v)

= Fm,a,α





√

[

u − u0 (i)

rφ (i)

]2

+

[

v − v0 (i)

rζ (i)

]2


 ,
(2.9)

where ~xd [u0 (i) , v0 (i)] = dds ~xi/ (‖~xi‖ · cos θi) is the coordinate of the center of the
volume element i projected on the detector and

w ~xd(u,v), ~xs, ~xi
= wi,u,v =

√

{[u − u0 (i)] /rφ (i)}2
+ {[v − v0 (i)] /rζ (i)}2

.

As a result of the method described above a blob close to the source has a bigger
footprint than a blob close to the detector.

The calculation of the weights requires the evaluation of the footprint as given
in Eq. 2.9. This evaluation can be performed by the calculation of the mean of the
footprint over the sensitive area of the detector pixel [147], and is expressed with the
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scaled footprint in Eq. 2.9 as

Aji = L

∫ v2(j)

v1(j)

∫ u2(j)

u1(j)

r (u, v) Fm,a,α





√

[

u − u0 (i)

rφ (i)

]2

+

[

v − v0 (i)

rζ (i)

]2


 dudv,

(2.10)
with L = 1/{

∫ a

−a

∫ a

−a
r(u, v)Fm,a,α[(u2 + v2)1/2]dudv}. Aliasing artifacts due to un-

dersampling of footprints are avoided with this method, independent of the size of
the volume elements and the grid increment.

The model in Eq. 2.10 performs well in case of iterative cone-beam CT recon-
structions of static objects. However, if an iterative cone-beam CT reconstruction
of a moving object (e.g., the heart) has to be performed, this calculation of weights
leads to reconstructed images with several motion artifacts. In fact, the calculation
of Aji weights in Eq. 2.10 does not take care of the motion of the volume element
itself and the change of blobs-volume caused by divergent MVF.

In the following subsection, a new three-dimensional MC iterative reconstruc-
tion method is proposed that modifies the model in Eq. 2.10 in order to evaluate
blobs in combination with an MVF, where also divergent MVF are investigated and
incorporated in the model.

2.2.3 Volume-dependent footprint for motion-compensated
iterative reconstruction

The proposed MC iterative reconstruction method needs a set of MVFs between the
different time phases. For a cardiac cone-beam CT reconstruction, the MVF can be
given by displacement vectors ~mi

(

~xi(φ
P
r ), φP

r , φ
)

of the corresponding grid position
~xi(φ

P
r ) from a reference heart phase φP

r to a new grid position ~xi
∗(φ) in an arbitrary

heart phase φ (Fig. 2.2) by

~xi
∗ = ~xi

∗(φ) = ~xi(φ
P
r ) + ~mi

(

~xi(φ
P
r ), φP

r , φ
)

. (2.11)

Inserting the MVF of Eq. 2.11 into Eq. 2.1 and Eq. 2.10 yields

f̃∗(~x) =
∑

i µib(~x − ~xi
∗) and (2.12)

A∗
ji = L

∫ v2(j)

v1(j)

∫ u2(j)

u1(j)

r (u, v) Fm,a,α







√

√

√

√

[

u − u∗
0 (i)

r∗φ (i)

]2

+

[

v − v∗
0 (i)

r∗ζ (i)

]2





dudv,

(2.13)

where ~xd [u∗
0 (i) , v∗

0 (i)] = dds
~x∗
i /

(∥

∥

∥

~x∗
i

∥

∥

∥ · cos θ∗i

)

is the modified coordinate of the

center of the volume element i projected on the detector, r∗φ(i) = dds/ (d∗is · cos θ∗i )
the modified scaling factor in angular direction with d∗is the modified distance of blob i
from the source, r∗ζ (i) = dds/

(

d∗is · cos2 θ∗i
)

the modified scaling-ratio in axial direction
z, and θ∗i the modified angle between the plane of the gantry and a vector pointing
from the source to the modified position of voxel i. In case of a non divergence-free
MVF, the movement of the equidistant ~xi centers of the basis functions in different



24 2 Motion-compensated iterative cone-beam CT reconstruction with blobs

Y

X

                                     detector

φ

m (x (φ ),φ ,φ)

φP

P P

x

x*

       source path

i

i

r

i i r r

 (u  ,v )
0        0

 (u  ,v )
0        0

*     *

Figure 2.2. The MVF applied at the blob position xi. The green vector represents
the displacement vector ~mi

(

~xi(φ
P
r ), φP

r , φ
)

of the corresponding grid position ~xi(φ
P
r )

from a reference heart phase φP
r to a new grid position ~xi

∗(φ) in an arbitrary heart
phase φ , the black line represents the line integral through the blob at grid position
~xi in the reference heart phase φP

r , the red line represents the new correct line
integral through the blob at new grid position ~x∗i in an arbitrary heart phase φ, and
finally the dashed red line is the wrong line integral calculated through the blob at
the wrong grid position ~xi in an arbitrary heart phase φ.

directions causes a non-equidistant grid of positions ~xi
∗. Therefore, the volume of

each blob, and consequently also their footprints on the detector, have to be changed
(Fig. 2.3). The calculation of weights in Eq. 2.13 does not take care of the change of the
volumes of blobs, which leads to incorrect image reconstructions with several streak
artifacts as will be shown in the results section. A volume-dependent adaptation of
the blob-footprint is needed to compensate for this effect.

A two step method that approximates the change of the blob-footprint is pro-
posed. First, the width of the blob is changed depending on the neighboring grid
points. A good approximation is the adaptation of the width of the ith basis function
by the factors

rx(i) =
x∗

i+1 − x∗
i−1

xi+1 − xi−1
(2.14)

ry(i) =
y∗

i+Nx
− y∗

i−Nx

yi+Nx
− yi−Nx

(2.15)

rz(i) =
z∗i+NxNy

− z∗i−NxNy

zi+NxNy
− zi−NxNy

, (2.16)
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in the X, Y and Z direction. xi, yi, and zi are the x -, y-, z -coordinates of the ith grid
point. x∗

i , y∗
i and z∗i are the x -, y-, z -coordinates of the ith grid point after applying

the MVF (Fig. 2.3).
Actually, a precomputed Voronoi tessellation [91,139] should be used in order to cal-
culate exactly the adaptation ratios of the width of each blob of the grid. However,
the proposed adaptation method permits a very fast calculation of the approximated
blob-width adaptation factors during the reconstruction process without any addi-
tional precomputation loads.

In a second step, the ratio of the footprint of the ith blob before and after the
adaptation is calculated depending on the actual source and detector position. This
can be performed for spherically symmetric basis functions by calculating

rf (i) =
√

(

r2
x(i) cos2(ϕ∗

i ) + r2
y(i) sin2

(ϕ∗

i )
)

cos2(θ∗

i ) + r2
z (i) sin2

(θ∗

i ), (2.17)

where ϕ∗
i is the angle in the XY-plane between the X-axis and the line going through

the X-ray source and the modified center of the ith basis function (Fig. 2.3). A volume-
dependent adaptation of the blob-footprint with the factor rf (i) leads to a footprint
in the coordinate system of a blob with the origin at the blob center, that takes care
of the divergence of the MVF. Moreover, a similar volume-dependent adaptation is
needed to assess the change of the blob-footprint over the detector pixel. This is
achieved by scaling the width of the footprint of the ith basis function in the detector
coordinate system by the factors

ru(i) =
√

r2
x(i) sin2 (ϕ∗

i ) + r2
y(i) cos2 (ϕ∗

i ) (2.18)

rv(i) = rz(i), (2.19)

in the u and v direction respectively (Fig. 2.3). Finally, the weight calculation in
Eq. 2.13 becomes

As
ji = rf (i)L

v2(j)
∫

v1(j)

u2(j)
∫

u1(j)

r (u, v)Fm,a,α







√

√

√

√

[

u − u∗
0 (i)

r∗φ (i) ru (i)

]2

+

[

v − v∗
0 (i)

r∗ζ (i) rv (i)

]2





dudv,

(2.20)
where As

ji are the new volume-dependent weights to use for calculating the forward
projections in Eq. 2.3.

The chapter presents an MC iterative 3D CT reconstruction method with main
proposed application in cardiac CT. Using the a priori knowledge that smoothness
and regularity are constraints that most organic objects in this world are subject to,
it makes sense to require the given MVF to be regular and smooth. For the regularity
constraint, all the ith grid points have to satisfy the following spatial conditions before
and after an MVF is applied:







xi−1 < xi < xi+1

yi−Nx
< yi < yi+Nx

zi−NxNy
< zi < zi+NxNy

,
(2.21)
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Figure 2.3. Sketch of the volume-dependent adaptation of the footprint of a blob in
a focus-centered detector geometry. In the top row, the blob i, in a regular grid (left),
in a non-equidistant grid after applying a divergent MVF (center), and in a non-
equidistant grid after applying a divergent MVF and a volume-dependent adaptation
of its footprint (right), are sketched. In the middle row, the corresponding density
plots of the footprints of this blob on the detector are shown. In the bottom row, a
zoom of the footprint of the blob i on the detector after applying a divergent MVF
(left), and after applying a divergent MVF and a volume-dependent adaptation of
its footprint (right), are shown. Here, the center of the footprint on the detector is
at position [u∗0(i), v

∗

0(i)].

this means that the three blob-width ratios rx, ry, and rz in Eq. 14, Eq. 15 and
Eq. 16 will be always strictly positive, otherwise the given irregular MVF will lead
to non-anatomical motions. In short, the divergent MVF can expand or reduce the
volume of the blobs but never delete one or more of them.
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2.2.4 Motion-compensated image reconstruction with cardiac
gated SART

The Simultaneous Algebraic Reconstruction Technique (SART) [4] is used for inves-
tigating the volume-adapted weights calculation. However, this model can be applied
to any iterative reconstruction algorithm such as the ART [25] or Maximum Like-
lihood [60] methods. The SART is a commonly used modification of ART, which
increases the reconstruction speed. Here, an entire cone-beam projection is back pro-
jected into the image. In the ART method, the backprojection step of iteration n,
the difference between the calculated projection, p̃j

(n), and the measured projection,

pj , is used to update the coefficient, µ
(n)
i using the following equation

µ
(n+1)
i = µ

(n)
i + λn

pj − p̃j
(n)

∑

i a2
ji

aji, (2.22)

where the relaxation parameter, 0 < λn < 2, controls the speed of convergence.
Here, the backprojection does not have a voxel-dependent contribution that scales

with the distance of a voxel to the source and detector, or with the voxel volume.
The weights, aji, are chosen to be

aji = As
j,i/[r∗φ(i)r∗ζ (i)rf (i)ru(i)rv(i)]. (2.23)

In helical cone-beam CT, projections are usually truncated in the direction of
the rotation axis [58]. This truncation leads to artifacts in iterative helical cardiac
cone-beam reconstructions. The problem can be solved by introducing an aperture
weight, wa

j , for each detector pixel, j, in the back projection as has been used for FBP
reconstructions [57]. The aperture weighting function is the same for all projections
and only depends on the distance of a detector pixel, j, from the XY -plane defined by
the source position. For the reconstructions presented in this work, a cos2 aperture
weighting function is used, which reads

wa
j =































cos2
(

qH−(z+

d −zj)
H(q+1)

π
2

)

, z+
d − qH ≤ zj ≤ z+

d + H

1, z−d + qH ≤ zj ≤ z+
d − qH

cos2
(

qH−(zj−z−

d )
H(q+1)

π
2

)

, z−d − H ≤ zj ≤ z−d + qH

0, else .

(2.24)

where H is the height of a detector pixel, z+
d (z−d ) is the axial coordinate of the

detector end in the positive (negative) axial direction, zj is the axial coordinate of
the detector pixel j, and q is the number of rows on each side that are furnished with
an aperture weight. An example of the aperture weight of a blob on the rotation axis
is shown in Fig. 2.4.

If an iterative cardiac-gated reconstruction has to be performed, an additional
cardiac gating window weight, wc

j , is introduced for each projection pj , in the re-
construction algorithm in order to select data belonging to the same heart phase. A
list of Nr R-peaks at angular CT system positions φR

k is determined from the pa-
tient’s electrocardiogram (ECG) recorded synchronously with the projection data,
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these angular positions are converted to the corresponding projection indices that
were recorded at these angles. From the list of R-peaks, the centers φP

k of the gating
windows, the so-called phase points, can be determined using, for example, a fixed
percentage P∈ [0, 1) of the RR interval. The same percentage is used for all heart
cycles (Fig. 2.4).

φP
k = φR

k + P
(

φR
k+1 − φR

k

)

∀k = 1, . . . , Np. (2.25)

Np = Nr−1 phase points are obtained. A gating function with a width wk is centered
at each phase point φP

k . The width wk of the gating function determines the amount of
projection data used from each cycle for the reconstruction and primarily determines
the temporal resolution. It can be used to balance motion blurring, SNR, and artifact
level.

In this work, an optimized window width [86] is used. It guarantees an optimal
temporal resolution since only the data from the smallest possible gating window
around a phase point are used for the reconstruction. The effect of various gating
function shapes on the images quality has been investigated in [86]. For the 3D re-
constructions presented in this chapter, a rectangle with smooth edges (bump shape)
is used for the cardiac-gated reconstructions, and reads

bumpν

(

j, φP
k , wk

)

=














1,
∣

∣j − φP
k

∣

∣ ≤ (1 − ν) wk

2

1
2

[

1 − sin
(

π
wkν

(∣

∣j − φP
k

∣

∣ − wk

2

)

)]

,

∣

∣

∣

∣

2|j−φP
k |−wk

2

∣

∣

∣

∣

< wkν
2

0, else .

(2.26)

j is the index of a projection, ν∈ [0, 1], the bump shape has non-zero values on an
interval of (1 + ν) wk. Where wk is the full width at half maximum of the bump
shape.

For all heart cycles, the cardiac weighting function wc
j can be written as

wc
j =

Np
∑

k=1

bumpν

(

j, φP
k , wk

)

. (2.27)

One update of the SART algorithm requires to sum simultaneously over all the
projections in one subset Sm. The projections in the subsets have a constant angular
increment inside each gating window, and the order of the subsets is determined
randomly. A random sequence is used because it was found to perform very similar to
more sophisticated ordering schemes like the one proposed in [28]. With the selection
of ordered subsets, and using the cardiac and the aperture weighting functions shown
above, the SART method becomes an ECG-gated aperture weighted SART (gated
AWSART) method, which can be written as

µ
(n+1)
i = µ

(n)
i +

λn
∑

j∈Sm
ajiwc

jw
a
j

∑

j∈Sm

pj − p̃j
(n)

∑

i aji
ajiw

c
jw

a
j . (2.28)

In our experiments the bump0.4 shape has been used, because this shape gives
little motion blurring while suppressing streaks efficiently at the same time [86].
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Figure 2.4. The aperture weight wa
j of a blob on the rotation axis and the cardiac

gating function wc
j . Only the projections inside the gray intervals are used for the

iterative cardiac-gated image reconstruction.

2.2.5 Software phantoms and simulations

In order to demonstrate the feasibility of the MC iterative reconstruction with the pro-
posed volume-dependent footprint calculation, two phantoms are subjected to three
different motion trajectories. The first phantom consists of a bone sphere inside a big-
ger concentric water sphere, the center of the spheres is placed at the origin. Instead,
the second phantom consists of two concentric bone spheres with different radius and
absorption density, placed inside a bigger water sphere. For the first phantom, two
different motion model are used. The two applied trajectories are a cyclic diagonal
translation of the two spheres (Fig. 2.5(a)), i.e., all the grid points move identically
along a diagonal in all directions in space, so a divergence free MVF is produced;
and a cyclic change of the radius of the bone sphere (Fig. 2.5(b)), i.e., the total vol-
ume stays constant, but the water and bone sphere volume depend on time. This
second motion leads to a divergent MVF. The phantom with cyclic diagonal trans-
lation of the two spheres (Fig. 2.5(a)) is an approximation of the cardiac motion of
the coronary arteries which is dominated by a 3D translation (Fig. 2.6(a)). While the
phantom with the cyclic change of the radius of the bone sphere (Fig. 2.5(b)) is an
approximation of the volume of contrast agent change within a chamber of the heart
(Fig. 2.6(b)). Finally, for the second phantom a more complex asymmetric motion
trajectory is applied. It consists to a cyclic diagonal translation of the two inner
bone spheres, with a contemporaneous cyclic change of the radius of the smaller bone
sphere (Fig. 2.5(c)). Even this third motion is divergent due to the pulsation motion
of the smaller bone sphere. The used cyclic motion-model is a simple sinusoidal move-
ment, and its chosen cycle time corresponds to a heart rate of 64 beats per minute
(bpm). The MVF for the three cases are known exactly (in Fig. 2.7, the MVF com-
ponents for the phantom with motion trajectory in Fig. 2.5(c) are shown). For the
image acquisition, a simulated helical cone-beam CT scanner with assumed point-like
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Figure 2.5. The three trajectories used in this work for the phantoms study. (a)
describres the cyclic diagonal translation of the two spheres, (b) describes the cyclic
change of the radius of the bone sphere, while (c) describes the cyclic diagonal
translation of the two inner bone spheres, with a contemporaneous cyclic change of
the radius of the smaller bone sphere. The percentages indicate the different phase
points inside the motion period. The first motion trajectory leads to an homogeneous
MVF, instead the second and the third trajectories lead to a divergent MVF.

(a) (b)

Figure 2.6. Sketch of a divergent and non-divergent MVF in a beating heart. (a)
shows the systolic motion (left) and the systolic and diastolic motions superimposed
(right), of the coronary arteries. This motion is dominated by a 3D translation, and
the relative MVF can be considered non-divergent. Instead, (b) shows the ventric-
ular diastole (left) and the ventricular diastole and systole motions superimposed
(right). The volume of contrast agent change within the right (blue) and left ven-
tricles (red) can lead to a divergent motion. The green arrows represent the MVFs
of the two motion cases.

X-ray source is used. Moreover, the same reconstructions are performed with noisy
measurements, and the noisy projection data sets are supplied with a Poisson noise
in such a way that a non attenuated ray deposits 3.0 · 105 photons per projection
angle in each detector element. Finally, the phantoms are reconstructed at a phase
point of 25% which is the phase of highest motion. In Table 2.1 all the phantoms and
simulation parameters are summarized.
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Phantom in Fig. 2.5(a), 2.5(b) Phantom in Fig 2.5(c)

Trajectories
Sine amplitude 4 mm Sine amplitude (pulsation) 3 mm
Sine cycle time 64 bpm Sine ampl. (translation) 6 mm
# motion cycles 13 Sine cycle time 64 bpm

# motion cycles 13

Materials

Bone sphere radius 15 mm Small bone sphere radius 10 mm
Water sphere radius 25 mm Big bone sphere radius 16 mm
Bone sphere density 700 HU Water sphere radius 34 mm

Small bone sphere density 700 HU
Big bone sphere density 350 HU

AWSART recon.

# subsets 90 # subsets 90
# views per subset 100 # views per subset 100
# iterations 30 # iterations 20
λ 0.8 λ 0.8
Cubic grid size 0.47 mm3 Cubic grid size 0.47 mm3

Helical CT scanner

# Detector rows 16 # Detector rows 16
# Detector columns 672 # Det. columns 672
Rotation time 0.42 s Rotation time 0.42 s
Detector height 21.9 mm Detector height 21.9 mm
dcs 570 mm dcs 570 mm
dcd 470 mm dcd 470 mm
Pitch 2.88 mm Pitch 2.88 mm
# views per turn 1160 # views per turn 1160
# rotations 30 # rotations 35

Table 2.1. Parameters for the simulations. The dcd describes the distance of the
center of rotation from the focus-centered detector.

2.3 Results

For reasons of comparison, MC gated AWSART reconstructions with and without
the proposed volume-dependent adaptation of the blobs-footprint are performed for
the phantoms subject to divergent and divergent-free motion in Fig. 2.5, and the
results are presented in Fig. 2.8 and Fig. 2.9. Moreover, a reconstruction with the MC
aperture weighted cardiac reconstruction (MC AWCR) method [136] is presented as
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Figure 2.7. The divergent MVF for the phantom with asymmetric motion in
Fig. 2.5(c). The MVF presented above is relative to the motion between the reference
phase point of 25% and the phase point of 5%. In (a) the x-component (coronal
view), in (b) the y-component (axial view), and in (c) the z-component (coronal
view) of the MVF are shown, respectively. The red line in (a) indicates the mvfx

values, which are shown in (d).
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well. The reconstructed images are shown in Fig. 2.10 and Fig. 2.11. In Table 2.2
and 2.3, image quality measures of the reconstructed images in Fig. 2.8 and Fig. 2.10
are presented. In details, in Table 2.2, the mean absolute difference (MAD) and the
normalized correlation coefficient (NCC) computed between the phantoms images
(at 25% RR) and the reconstructed images with and without the proposed volume-
dependent adaptation of the blobs-footprint are presented. These are given as

MAD =
1

N

N
∑

i=1

∣

∣µRe
i − µPh

i

∣

∣ , (2.29)

NCC =

∑N
i=1

[(

µRe
i − µ̄Re

) (

µPh
i − µ̄Ph

)]

√

∑N
i=1

(

µRe
i − µ̄Re

)2
√

∑N
i=1

(

µPh
i − µ̄Ph

)2
· 100%, (2.30)

where µRe
i and µPh

i represent the absorption coefficients at the ith grid point in the

reconstructed images and in the phantom, respectively, and µ̄ =
∑N

i=1 µi/N . A MAD
(NCC) close to 0 (100%) means that the two volumes have a very high similarity. Fur-
thermore, even the mean and the standard deviation (STD) values measured inside a
homogeneous bone region are shown. In Table 2.3, the same image quality measures
are computed between the phantoms images (at 25% RR) and the gated AWSART,
the gated MC AWSART, and the MC AWCR images are presented. Finally, the re-
sults of the reconstructions performed with noisy measurements are shown in Fig. 2.12
and Fig. 2.13.

Motion Vector Field Method MAD [HU] NCC [%] Mean[±STD] [HU]

No diverg. (Fig. 2.5(a))
MC gat. AWSARTnvs 25.76 99.38 700.92[±0.17]
MC gated AWSART 25.76 99.38 700.92[±0.17]

Divergent (Fig. 2.5(b))
MC gat. AWSARTnvs 34.99 98.94 676.27[±23.27]
MC gated AWSART 26.20 99.10 703.03[±0.51]

Divergent (Fig. 2.5(c))
MC gat. AWSARTnvs 49.95 99.20 607.17[±5.98]
MC gated AWSART 35.09 99.35 708.47[±1.22]

Table 2.2. Image quality measures. The mean absolute difference (MAD) and the
normalized correlation coefficient (NCC) between the phantoms images and the re-
constructed images with (MC gated AWSART) and without (MC gat. AWSARTnvs)
the proposed volume-dependent adaptation of the blobs-footprint shown in Fig. 2.8
are presented, respectively. Furthermore, the mean and the standard deviation val-
ues are calculated inside the red circles in Fig. 2.8.

2.4 Discussion

The proposed volume-adapted calculation of weights takes care of the change of the
blobs volume. The divergent MVF is incorporated in the model and the images recon-
structed are streak artifact free (Fig. 2.8(f),(h),(j) and (l)). This can also be derived
from the line scans presented in Fig. 2.9(a) to (f), where the reduction of Hounsfield
value variation is visualized for homogeneous phantom areas. In Fig. 2.8(a) to (d),
the images reconstructed with and without the blob-volume adaptation for the case
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MC gated AWSART

W/O Vol-Scal

(case No Div MVF) 
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Figure 2.8. Coronal view of the MC gated AWSART reconstructed images (at
25% phase point) with (W) and without (W/O) the proposed volume-dependent
adaptation of the blobs-footprint performed for the phantom with divergent-free
(top row) and divergent (middle and bottom rows) MVF. The green lines indicate
the µ-values, which are shown in Fig. 2.9. The red circles indicate the homogeneous
bone region used for the computation of the image quality measures listed in Ta-
ble 2.2. In (a), (b), (e), (f), (i) and (j) the images are shown with Level=0 HU and
Window=1400 HU, instead in (c), (d), (g), (h), (k) and (l) the same images are
shown with Level=0 HU and Window=300 HU.

of divergent-free MVF are shown. As discussed before, the divergent-free MVF, does
not change the grid geometry, therefore the volume of each blob does not change. Our
method of volume-adapted calculation of weights takes care of this, in fact all the com-
pensation factors in Eq. 2.17, Eq. 2.18 and Eq. 2.19 are unity in case of divergent-free
MVF applied on the grid. Hence, for phantom subject to divergent-free motion, to use



34 2 Motion-compensated iterative cone-beam CT reconstruction with blobs

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
−

1
1

0
0

−
1

0
0

0

−
9

0
0

−
8

0
0

−
7

0
0

−
6

0
0

−
5

0
0

−
4

0
0

−
3

0
0

−
2

0
0

−
1

0
0 0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

v
o

xe
ls

absorption coe!cients (HU)

P
h

a
n

to
m

 (n
o

 m
o

tio
n

)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (n

o
 v

o
l.d

e
p

.fo
o

tp
rin

t)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (w

ith
 v

o
l.d

e
p

.fo
o

tp
rin

t)

absorption coe!cients (HU)

v
o

xe
ls

absorption coe!cients (HU)

P
h

a
n

to
m

 (n
o

 m
o

tio
n

)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (n

o
 v

o
l.d

e
p

.fo
o

tp
rin

t)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (w

ith
 v

o
l.d

e
p

.fo
o

tp
rin

t)

(b
)

(c)

(d
)

(e)
(f)

absorption coe!cients (HU)

absorption coe!cients (HU)

absorption coe!cients (HU)

v
o

xe
ls

v
o

xe
ls

v
o

xe
ls

2
5

3
5

4
5

−
2

5
0

−
2

0
0

−
1

5
0

−
1

0
0

−
5

0 0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

v
o

xe
ls

5
5

6
5

7
5

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0
P

h
a

n
to

m
 (n

o
 m

o
tio

n
)

M
C

 g
a

te
d

 A
W

S
A

R
T

 (n
o

 v
o

l.d
e

p
.fo

o
tp

rin
t)

M
C

 g
a

te
d

 A
W

S
A

R
T

 (w
ith

 v
o

l.d
e

p
.fo

o
tp

rin
t)

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5

−
1

0
0

0

−
8

0
0

−
6

0
0

−
4

0
0

−
2

0
0 0

2
0

0

4
0

0

6
0

0

8
0

0

P
h

a
n

to
m

 (n
o

 m
o

tio
n

)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (n

o
 v

o
l.d

e
p

.fo
o

tp
rin

t)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (w

ith
 v

o
l.d

e
p

.fo
o

tp
rin

t)

1
5

2
5

3
5

4
5

−
1

5
0

−
1

2
5

−
1

0
0

−
7

5

−
5

0

−
2

5 0

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

P
h

a
n

to
m

 (n
o

 m
o

tio
n

)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (n

o
 v

o
l.d

e
p

.fo
o

tp
rin

t)
M

C
 g

a
te

d
 A

W
S

A
R

T
 (w

ith
 v

o
l.d

e
p

.fo
o

tp
rin

t)

P
h

a
n

to
m

 (n
o

 m
o

tio
n

)

M
C

 g
a

te
d

 A
W

S
A

R
T

(n
o

 v
o

l. d
e

p
. fo

o
tp

rin
t)

M
C

 g
a

te
d

 A
W

S
A

R
T

(w
ith

 v
o

l. d
e

p
. fo

o
tp

rin
t)

4
5

5
5

6
5

7
5

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

(a)

F
ig

u
r
e

2
.9

.
A

b
so

rp
tio

n
co

effi
cien

ts
o
f

th
e

M
C

g
a
ted

A
W

S
A

R
T

reco
n
stru

cted
im

a
g
es

w
ith

a
n
d

w
ith

o
u
t

th
e

p
ro

p
o
sed

v
o
lu

m
e-

d
ep

en
d
en

t
a
d
a
p
ta

tio
n

o
f

th
e

b
lo

b
s-fo

o
tp

rin
t

p
erfo

rm
ed

fo
r

th
e

p
h
a
n
to

m
s

w
ith

d
iv

erg
en

t
M

V
F
,

resp
ectiv

ely,
a
lo

n
g

th
e

lin
es

in
d
ica

ted
in

F
ig

.
2
.8

(e)
a
n
d

in
F
ig

.
2
.8

(f)
(to

p
row

),
a
n
d

a
lo

n
g

th
e

lin
es

in
d
ica

ted
in

F
ig

.
2
.8

(i)
a
n
d

in
F
ig

.
2
.8

(j)
(b

o
tto

m
row

).
In

o
rd

er,
o
n

th
e

to
p

row
,
in

(a
)

th
e

h
a
lf

p
h
a
n
to

m
p
ro

fi
le

is
sh

ow
n
,
in

(b
)

a
clo

se-u
p

o
f
th

e
w

a
ter

reg
io

n
(0

H
U

)
is

sh
ow

n
,
a
n
d

in
(c),

a
clo

se-u
p

o
f
th

e
b
o
n
e

reg
io

n
(7

0
0

H
U

)
is

sh
ow

n
.

W
h
ile,

o
n

th
e

b
o
tto

m
row

,
in

(d
)

th
e

h
a
lf

p
h
a
n
to

m
p
ro

fi
le

is
sh

ow
n
,
in

(e)
a

clo
se-u

p
o
f
th

e
w

a
ter

reg
io

n
(0

H
U

)
is

sh
ow

n
,
a
n
d

in
(f),

a
clo

se-u
p

o
f
th

e
b
o
n
e

sp
h
eres

reg
io

n
(3

5
0
,
7
0
0

H
U

)
is

sh
ow

n
.



2.4 Discussion 35

g
at

ed
 A

W
S

A
R

T

g
at

ed
 A

W
S

A
R

T

g
at

ed
 A

W
S

A
R

T

g
at

ed
 A

W
S

A
R

T

g
at

ed
 A

W
S

A
R

T

g
at

ed
 A

W
S

A
R

T

M
C

 g
at

ed
 A

W
S

A
R

T

M
C

 g
at

ed
 A

W
S

A
R

T

M
C

 g
at

ed
 A

W
S

A
R

T

M
C

 A
W

C
R

M
C

 A
W

C
R

M
C

 A
W

C
R

M
C

 g
at

ed
 A

W
S

A
R

T

M
C

 g
at

ed
 A

W
S

A
R

T

M
C

 g
at

ed
 A

W
S

A
R

T

M
C

 A
W

C
R

M
C

 A
W

C
R

M
C

 A
W

C
R

F
ig

u
r
e

2
.1

0
.

A
x
ia

l
v
ie

w
o
f
th

e
re

co
n
st

ru
ct

ed
im

a
g
es

(a
t
2
5
%

p
h
a
se

p
o
in

t)
o
f
th

e
p
h
a
n
to

m
su

b
je

ct
to

a
cy

cl
ic

d
ia

g
o
n
a
l
tr

a
n
sl

a
ti

o
n

m
o
ti

o
n

(t
o
p

ro
w

),
to

a
cy

cl
ic

ch
a
n
g
e

o
f

th
e

ra
d
iu

s
o
f

th
e

b
o
n
e

sp
h
er

e
(m

id
d
le

ro
w

),
a
n
d

to
a

cy
cl

ic
d
ia

g
o
n
a
l

tr
a
n
sl

a
ti

o
n

a
n
d

p
u
ls

a
ti

o
n

m
o
ti

o
n
s

(b
o
tt

o
m

ro
w

).
O

n
th

e
le

ft
si

d
e

th
e

im
a
g
es

a
re

p
re

se
n
te

d
w

it
h

L
ev

el
=

0
H

U
a
n
d

W
in

d
ow

=
1
4
0
0

H
U

,
w

h
il
e

o
n

th
e

ri
g
h
t

si
d
e

th
e

sa
m

e
im

a
g
es

a
re

p
re

se
n
te

d
w

it
h

L
ev

el
=

0
H

U
a
n
d

W
in

d
ow

=
3
0
0

H
U

.
In

o
rd

er
,

o
n

ea
ch

ro
w

,
th

e
im

a
g
es

a
re

p
re

se
n
te

d
re

co
n
st

ru
ct

ed
w

it
h

th
e

g
a
te

d
A
W

S
A

R
T

m
et

h
o
d

(l
ef

t)
,

th
e

M
C

g
a
te

d
A
W

S
A

R
T

m
et

h
o
d

(c
en

te
r)

,
a
n
d

w
it

h
th

e
M

C
A
W

C
R

m
et

h
o
d

(r
ig

h
t)

.
T

h
e

re
d

li
n
es

in
d
ic

a
te

th
e

µ
-v

a
lu

es
,

w
h
ic

h
a
re

sh
ow

n
in

F
ig

.
2
.1

1
.

T
h
e

g
re

en
ci

rc
le

s
in

d
ic

a
te

th
e

h
o
m

o
g
en

eo
u
s

b
o
n
e

re
g
io

n
u
se

d
fo

r
th

e
co

m
p
u
ta

ti
o
n

o
f
th

e
im

a
g
e

q
u
a
li
ty

m
ea

su
re

s
li
st

ed
in

T
a
b
le

2
.3

.



36 2 Motion-compensated iterative cone-beam CT reconstruction with blobs

(a) (b) (c)

75 85 95 105 115 125 135 145

−1000

−900 

−800 

−700 

−600 

−500 

−400 

−300 

−200 

−100 

0    

100  

200  

300  

400  

500  

600  

700  

800  

voxels

a
b

so
rp

ti
o

n
 c

o
e

!
ci

e
n

ts
 (

H
U

)

Phantom no motion
MC AWCR
MC gated AWSART

75 85 95 105 115 125 135 145

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

300

400

500

600

700

800

voxels

a
b

so
rp

ti
o

n
 c

o
e

!
ci

e
n

ts
 (

H
U

)

Phantom no motion
MC AWCR
MC gated AWSART

voxels

a
b

so
rp

it
o

n
 c

o
e

!
ci

e
n

ts
 (

H
U

)

Phantom no motion
MC AWCR
MC gated AWSART

75 85 95 105 115 125 135 145

−1000

−800

−600

−400

−200

0

200

400

600

800

Figure 2.11. Absorption coefficients of the phantom without motion, of the MC
AWCR reconstructed image, and of the MC gated AWSART reconstructed image,
respectively, along the red lines indicated in Fig. 2.10. In figure (a), the absorption
coefficients for the case of the phantom with a cyclic diagonal translation motion
are shown, in figure (b), the absorption coefficients for the case of the phantom with
a cyclic change of the radius of the bone sphere are shown, while in figure (c) the
absorption coefficients for the case of the phantom with a cyclic diagonal translation
and a pulsation motions are shown.

Motion Vector Field Method MAD [HU] NCC [%] Mean[±STD] [HU]

No diverg. (Fig. 2.5(a))
gated AWSART 56.36 97.48 705.16[±0.98]

MC gated AWSART 25.76 99.38 700.90[±0.16]
MC AWCR 11.20 99.55 702.23[±0.06]

Divergent (Fig. 2.5(b))
gated AWSART 34.55 98.67 699.32[±0.76]

MC gated AWSART 26.20 99.10 702.47[±0.35]
MC AWCR 12.30 99.38 700.22[±0.11]

Divergent (Fig. 2.5(c))
gated AWSART 40.63 99.07 694.61[±4.06]

MC gated AWSART 35.09 99.35 707.93[±1.55]
MC AWCR 18.21 99.42 698.49[±0.12]

Table 2.3. Image quality measures. The mean absolute difference (MAD) and
the normalized correlation coefficient (NCC) between the phantoms images and
the gated AWSART, the MC gated AWSART, and the MC AWCR reconstructed
images in Fig. 2.10 are presented, respectively. Furthermore, even the mean and the
standard deviation values are calculated inside the green circles in Fig. 2.10.
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Figure 2.13. Like the Fig. 2.11, but here the absorption coefficients along the red
lines indicated in Fig. 2.12 are shown.

the MC gated AWSART method with or without the proposed scaling of the volume of
the blobs will lead to identical image quality results (Table 2.2). The results obtained
in the three phantom cases, show, how the iterative MC reconstruction method using
the correct motion fields and the proposed volume-adapted blob-footprint calculation
allows to obtain almost motion artifact free images (Fig. 2.10, 2.11). Finally, in all
the three cases, the quality of the images reconstructed with the MC gated AWSART
method is almost identical to the image quality obtained with the MC AWCR method
(Table 2.3). Remaining differences can be due to the approximation of the proposed
blob-volume adaptation and to the discretization of the MVF used. The differences
as slight over- and undershoot at sharp object boundaries is well known in the appli-
cation of iterative reconstruction methods in X-ray tomography [146]. Even in case of
noisy measurements, the proposed MC iterative reconstruction method shows robust
performance and achieves an image quality almost similar to the one obtained with
the MC analytical method (Fig. 2.12, 2.13).

As said in the introduction, an MC image reconstruction is feasible only if an
MVF of the moving object is available. In cardiac CT, the exact calculation of
the heart’s MVF is a non-trivial problem. Even if several cardiac motion estimation
methods have been proposed in literature, this issue is still under research [5, 43,
98, 124, 136]. In clinical application, the approximate knowledge of the MVFs could
be cause of several inconsistencies in the MC reconstructed images. For example,
an erroneous MVF could lead to MC reconstructed images with residual blurring
artifacts. Moreover, an incorrect cardiac MVF estimation could lead to MC cardiac
images with several unexpected anatomical incongruencies (e.g. broken or misaligned
coronary arteries segments). The scope of this work was to test the correctness and
robustness of a novel MC iterative reconstruction method with volume adapted blobs
as basis functions by using a given exact MVF. The next step will be the study of
proper cardiac MVF estimation methods to apply for MC iterative reconstructions
with clinical patient data sets.
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2.5 Conclusions

In this chapter, a three-dimensional method was presented for reconstructing moving
objects from cone-beam X-ray projections using an iterative reconstruction algorithm
taking a given MVF into account. For the image representation, adapted blobs are
used as basis functions. An efficient method to calculate the line integrals through an
adapted blob is proposed to solve the problem of how to compensate for the divergence
in the MVF on a grid of basis functions. Two phantoms with three different known
motion patterns were reconstructed, with excellent results. The proposed method
can be used for the computation of 3D cardiac CT images in heart phases of strong
motion. In the next chapters 3-5, this new method will be evaluated in clinical cardiac
cases. In order to achieve consistent results, accurate motion estimation methods will
be applied.





Chapter Three

Motion-compensated iterative
reconstruction of a region of

interest in cardiac cone-beam CT

The fear of infinity is a form of myopia that destroys the possi-

bility of seeing the actual infinite, even though it in its highest

form has created and sustains us, and in its secondary transfinite

forms occurs all around us and even inhabits our minds.

— Georg Cantor (1845 – 1918)

Abstract — A method for motion compensated iterative CT reconstruction of a
cardiac region-of-interest is presented. The algorithm is an ordered subset maximum
likelihood approach with spherically symmetric basis functions, and it uses an ECG
for gating. Since the straightforward application of iterative methods to CT data
has the drawback that a field-of-view has to be reconstructed, which covers the
complete volume contributing to the absorption, region-of-interest reconstruction
is applied here. Despite gating, residual object motion within the reconstructed
gating window leads to motion blurring in the reconstructed image. To limit this
effect, motion compensation is applied. Hereto, a gated 4D reconstruction at multiple
phases is generated for the region-of-interest, and a limited set of vascular landmarks
are manually annotated throughout the cardiac phases. A dense motion vector field
is obtained from these landmarks by scattered data interpolation. The method is
applied to two clinical data sets at strongest motion phases. Comparing the method
to standard gated iterative reconstruction results shows that motion compensation
strongly improved reconstruction quality.

Based upon: A. A. Isola, A. Ziegler, D. Schäfer, T. Köhler, W. J. Niessen, M. Grass, “Motion
compensated iterative reconstruction of a region of interest in cardiac cone-beam CT”, Computerized

Medical Imaging and Graphics, vol. 34, no. 2, pp. 149-159, 2010.
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3.1 Introduction

C
ardiovascular diseases are the major cause of mortality and morbidity in most
of the developed countries. Coronary artery disease is one of the main cardio-
vascular diseases.

Owing to recent advances in imaging hardware, diagnostic quality of coronary
computed tomography (CT) has improved [31], and the role of CT in the (non-
invasive) diagnosis of coronary arteries is expanding. Cone-beam computed tomogra-
phy (CBCT) has proven to be useful in providing detailed morphological images of the
coronary arteries. Still, the heart pulsation continues to be a limiting factor in cardiac
CT. Electro-cardiogram (ECG) gated [26, 45, 47, 57, 86, 122] or triggered [29, 36] re-
construction methods can mitigate this problem, but never remove it completely. The
standard gated CT reconstruction method assumes that the heart is stationary within
the cardiac time window, which is an approximation.

If the motion of the object during acquisition can be recovered, motion compen-
sation can be applied during image reconstruction to remove blurring due to cardiac
motion [5,39,92,98,112,136]. In addition, such an approach can potentially limit the
radiation dose, as information from all of the acquired phases can be used for the
reconstruction. For cardiac CT, estimating the heart motion vector field (MVF) is
non-trivial issue and several methods have been proposed in literature. A first com-
mon step in many MVF estimation methods is to reconstruct a gated 4D dataset,
i.e. a time sequence of 3D images.

Automatic MVF estimation methods have been proposed by Blondel et al. [5] and
Jandt et al. [43]. Both presented a motion compensated (MC) reconstruction method
that employed a 3D coronary centerline model to estimate the MVF of the coronary
vessel tree from rotational X-ray projections. Stevendaal et al. [136] proposed a whole
heart MVF estimation by applying model-based segmentation and shape tracking.
Prümmer et al. [98] proposed a 4D FDK-like algorithm that used image registration
techniques for heart motion estimation. Taguchi et al. [123,124] proposed an iterative
projection-based method that exploits a block-matching algorithm [83] to estimate
the heart MVF from a 4D cardiac image data set. Schirra et al. [113] presented an
MC analytical reconstruction method, where a rigid image registration was applied
during quiescent cardiac phases to determine the MVF of calcified lesions of the
coronary arteries. Here, temporal interpolation in parameter space was used in order
to estimate motion during strong motion phases.

For coronary stent reconstruction, a manual MVF estimation method based on
detecting 2-D markerball centers of the stent in projection image data has been pro-
posed by Perrenot et al. [95]. Stevendaal et al. proposed [136] an MC ROI analytical
reconstruction by using an MVF obtained by manually identifying a limited number
of right coronary artery (RCA) landmarks.

Generally, MVF estimation methods yield an irregular distribution of measure-
ments. To obtain a dense MVF, the measurements need to be resampled. The
nearest-neighbor by inverse distance weighting (NNIDW) [116] and the thin-plate-
spline (TPS) [6] interpolation methods can be used to interpolate or extrapolate a
dense MVF to the entire image domain [133].

This chapter presents a method for MC gated iterative CT reconstruction of a
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cardiac region-of-interest (ROI). The cardiac MVF is derived from a limited set of
manually indicated landmarks. A method’s landmarks localization error-sensitivity
study is carried out. The maximum landmark position indication-error is determined
which can be tolerated without degrading the MC reconstructed images by motion
blurring. In order to obtain a dense MVF at the resolution of the regular recon-
struction grid, the NNIDW and the TPS interpolation are applied, and results are
compared. Reconstruction results for two clinical cases are shown and compared to
standard gated iterative reconstruction results. Moreover, a motion-compensated fil-
tered back-projection reconstruction method [136] is used, and the analytical and
iterative reconstructed images are compared.

The chapter is organized as follows: Section 3.2 describes the MC iterative recon-
struction algorithm, the MVF estimation and the scattered data interpolation meth-
ods. The experiments and results on the clinical data sets are presented in Sec. 3.3
and discussed in Sec. 3.4. Finally, conclusions are drawn in Sec. 3.5.

3.2 Method and materials

3.2.1 Introduction

In the following subsections MC iterative reconstruction is presented. First, the basic
iterative algorithm is introduced (subsection 3.2.2). Subsequently, in subsection 3.2.3,
it is described how a motion vector field can be incorporated in the iterative ROI
reconstruction framework, and an efficient forward- and back-projection model for MC
iterative reconstruction is presented. Finally, a manual method for MVF estimation
of cardiac landmarks is described. In this subsetcion, a brief overview on the TPS and
the NNIDW methods is given.

3.2.2 Basis functions and the iterative statistical reconstruc-
tion method

Transmission tomography aims at the reconstruction of a density distribution f of the
object scanned. The continuous function f can be represented as a linear combination
f̃ of a limited set of basis functions b, placed on a 3D grid with N equidistant grid
points, ~xj :

f̃(~x) =

N
∑

j=1

µjb(~x − ~xj), (3.1)

where N = NxNyNz and Nx, Ny, and Nz are the number of grid points in x, y, and z
directions, respectively. The set of numbers µj are the coefficients of expansion which

describe the function f̃ relative to the chosen set of basis functions b(~x − ~xj). Le-
witt [69] investigated how different sets of basis functions can influence the quality
of the images. Spherically symmetric volume elements are alternatives to the more
conventional voxels for the reconstruction of volume images. In the reconstructions
presented in this chapter, the Kaiser-Bessel basis functions [68] are used. These spher-
ically symmetric basis functions (also called blobs) are spatially limited and effectively
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frequency limited. The standard parameters are used for the Kaiser-Bessel basis func-
tions, which satisfy the frequency criteria described in [76]. Blobs as basis functions
have many advantages compared with simple cubic voxels, e.g. their appearance is
independent of the source position [68].

For the iterative ROI reconstruction presented in this contribution, an aperture
weighted cardiac modified version of the iterative ordered subsets convex maximum
likelihood (OSML) algorithm [50] is used. The OSML method is an ordered sub-
set modification of the convex ML method [60], in which one update of the OSML
method requires the sum over only a subset Sm of all projections simultaneously. The
OSML reconstruction method takes the Poisson statistics of the measured photons
into account. In a general CT acquisition, the various projections, i, measuring pho-
ton counts, Yi, are independent. The log-likelihood function L(u), with the absorption
coefficient, µj , at position j can be written as

L (u) =
∑

i

(

−die
∑

j Aijµj − Yi

∑

j

Aijµj

)

+ c1, (3.2)

where u is the image vector u=(µ1, µ2, . . . , µj), di is the expected number of photons
leaving the source towards the i-th projection. Aij are the elements of the system
matrix, and c1 is an irrelevant constant that does not depend on u. The function
L(u) has to be maximized to find the optimally reconstructed image. As described
in Kamphuis et al. [50], an approximate solution of maximizing Eq. 3.2 leads to the
following iterative step (n 7→ n + 1) in the OSML method:

µn+1
j = µn

j + λµn
j

∑

i∈Sm
Aij

[

die
−〈Aiµ

n〉 − Yi

]

∑

i∈Sm
Aij 〈Aiµn〉 die−〈Aiµn〉

, (3.3)

with µn
j > 0, and forward projections 〈Aiµ

n〉 =
∑

j Aijµj . The relaxation parameter,
λ, is included to control convergence speed.

An aperture weighted cardiac modified version (AWCOSML) of the iterative
algorithm based on Eq. 3.3 can be written as

µn+1
j =µn

j + λµn
j

∑

i∈Sm
wc

i w
a
i Aij

[

die
−〈Aiµ

n〉− Yi

]

∑

i∈Sm
wc

i w
a
i Aij〈Aiµn〉die−〈Aiµn〉

, (3.4)

where wc
i (wa

i ) is the cardiac (aperture) weight for the measurement i [149]. Nielsen
et al. [86] investigated the effect of various cardiac gating function shapes on image
quality; following their results a rectangle with smooth edges is used in this evaluation.
The reference phase point φP

k which define the k-th center of the gating windows with
1 ≤ k ≤ K, is determined from the patient’s ECGs, which are recorded in parallel
with the CT acquisition.

In helical CT object points enter and leave the cone. Empirically, it was found
that this leads to artifacts which can be reduced by means of introducing an aperture
weighting function wa

i in the iterative reconstruction update formula [57, 149]. The
aperture weighting function is the same for all projections and only depends on the
distance of a detector pixel, i, from the XY -plane defined by the source position. For
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the reconstructions presented in this work, a cos2 aperture weighting function is used.
Once all subsets are processed, one iteration is completed. Each subset Sm contains
projections that have a constant angular increment inside each gating window, and
the sequence of the subset is determined randomly.

The reconstruction process can be controlled by the relaxation parameter λ.
Based on empirical evaluation, λ = 0.8 is chosen, which gave reasonable results. An
important aspect for all iterative reconstruction methods is the manner in which the
basis function is used for the interpolation in the forward- and back-projection.

3.2.3 MC iterative reconstruction of a cardiac region of
interest

The proposed MC iterative reconstruction method requires an estimated MVF for all
phases. For a cardiac reconstruction the MVF is represented by displacement vectors
~mj

(

~xj

(

φP
r

)

, φP
r , φ

)

of the corresponding grid point ~xj

(

φP
r

)

from a reference heart
phase φP

r to a new position ~xj
∗ (φ) in an arbitrary heart phase φ by

~xj
∗ = ~xj

∗(φ) = ~xj(φ
P
r ) + ~mj

(

~xj(φ
P
r ), φP

r , φ
)

. (3.5)

Inserting the MVF of Eq. 3.5 into Eq. 3.1 yields

f̃∗(~x) =
∑

j µjb(~x − ~xj
∗). (3.6)

As shown in Eq. 3.4, in order to perform the forward- and back-projection steps,
the Aij contribution of each blob to the detector pixel, i, have to be determined.
Ziegler et al. [147] proposed a method for calculating the Aij weights. In the first
step, the center of each blob is projected onto the detector. The footprint of a blob,
which consists of all parallel line integrals through the volume element, is magnified
and centered at the projected blob-center on the detector. The magnification of the
volume element is given by the ratio of the source-detector to source-blob distance.
In a last step, the convolution of the footprint with the detector pixels is performed,
which yields the weights Aij .

In case of MC reconstruction of a moving object (e.g. the heart), the motion of
the blob itself and the change of its volume caused by the existence of a divergent
MVF (Eq. 3.5) is neglected. The non-vanishing divergence of the MVF results in a
non-equidistant set of grid points. In case of MC reconstruction, a modified forward
and back projection model is required which adapts the individual blob size in such
a way that the representation of the image becomes more homogeneous [39] (see
Chp. 2). In the next section 3.3, the applicability and performance on clinical data is
shown.

Iterative reconstructions are computationally intensive, especially in case of high
resolution image reconstruction over the entire FOV. In many clinical cases, the ROI
is smaller than the volume that is irradiated. For example, in coronary cone-beam
CT imaging, the ROI is often reduced to the main coronary vessels. Due to the
reduced volume, ROI reconstruction is an efficient solution to increase the speed
of iterative or analytical image reconstructions. For filtered back-projection (FBP)
reconstruction methods [9, 51, 128], an ROI reconstruction is possible without any
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extra efforts. Generally, an iterative reconstruction requires that an FOV has to be
reconstructed that covers the whole volume, which contributed to the absorption.

In order to determine the sinogram of the ROI only, which is taken for the MC
iterative ROI reconstruction, the method proposed by Ziegler et al. in [149] is used.
The RCA of two clinical data sets was chosen as ROI for the reconstructions presented
in this chapter.

3.2.4 Motion estimation by manual tracking of anatomical
landmarks

In this subsection, the manual MVF estimation approach is described.
To determine the MVF, first a 4D ROI image data set is generated using a retro-

spectively gated FBP reconstruction [57]. Here, the 3D ROI images are reconstructed
at equidistant phase points φP

k throughout the entire cardiac cycle with the small-
est possible gating window width [74]. In this work, the MC gated reconstruction is
performed in a phase of strong cardiac motion (e.g. systole). To detect a suitable
fast motion phase within the RR interval, a motion map [75, 113] technique can be
applied. The mean absolute difference is evaluated between subsequent volumes of
the 4D ROI image data set of each patient to determine the motion map.

For single coronary segment manual motion tracking can be carried out. It is
performed by scrolling through all the slices of the volume data set and identifica-
tion of well known landmarks, e.g. ostium, marginal acute branches (MAc-1,-2 ), and
interventricular posterior branch (PDA). This procedure is repeated for all data sets
reconstructed at different heart phases. The displacement vectors from the chosen
reference phase to all the other phases are determined for these landmarks. The MVF
at the corners of the ROI are set to zero, in order to suppress projection of blobs out-
side the ROI sinogram. Finally, these motion fields are used as input control points
for a TPS warping [6], which yields a dense MVF ~mj .

A well known drawback of the manual motion tracking is the frequent poor
visibility of the anatomical landmarks. In fact, landmark visibility depends on many
different factors as for example: the noise level, motion artifacts in phases of fast
cardiac motion, and the grade of experience of the observer. In the clinical cases
presented here, manual landmark tracking was not feasible in fast heart motion phases.
Therefore, to fill this MVF estimation gap in these phases, the RCA’s landmarks
positions were determined by cubic spline interpolation [113]. The landmarks positions
tracked inside the volumes reconstructed at slow motion phase points are used as
knots.

The second step is to resample the MVF from the limited set of points irregu-
larly placed inside the chosen ROI [133]. A resampling is necessary to extend the
MVF to all the positions ~xj of the reconstruction regular grid. To select a suitable
scattered data interpolator, the a priori knowledge on the cardiac motion, e.g. that it
should be smooth, can be exploited. Different available scattered data interpolation
methods satisfy this smoothness condition, i.e. they are continuously differentiable.
Among these the most known is the nearest-neighbor by inverse distance weighting
(NNIDW) [116]. The NNIDW interpolation method requires a metric operator to
evaluate the distance between the interpolated grid point ~xj and a number of nearest
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neighbors. Subsequently, these distances to the power of p are used to determine the
inverse distance weights useful for the interpolation [116].

Another potential interpolant is the TPS. Proposed by Bookstein in [6], the TPS
satisfies the smoothness condition and can be used for data interpolation. The TPS
interpolation requires as an input that at least 3 control points have to be given.

In the following section, both the above mentioned scattered data interpolation
methods are applied in a clinical case and the results are compared.

3.3 Experiments and results

The MC iterative ROI reconstruction method was applied to two clinical cardiac cases.
Both data sets were acquired on a Brilliance 40(64) CT scanner (Philips Healthcare,
Cleveland, OH, USA); the scanning parameters are listed in Table 3.1. The ROI
has been chosen with a radius of 25 mm (case A) and 32.5 mm (case B), and the
corresponding ROI’s sinograms are shown in Fig. 3.1.

Case A B
Pitch [mm] 5 8
Relative Pitch 0.2 0.2
Collimation 40×0.625 mm 64×0.625 mm
Rotation time [s] 0.42 0.42
Tube voltage [keV] 120 120
Anode current [mA] 333 333
Mean heart rate [bpm] 55 56
Minimum heart rate [bpm] 53 54
Maximum heart rate [bpm] 58 59
Reconstruction Phase %RR 20 20

Table 3.1. CT scanning and reconstruction parameters.

In order to study the effect of motion compensation, the MC AWCOSML method
is compared with a non-compensated AWCOSML method. The iterative reconstruc-
tions are performed using 15 subsets, each one filled with 500 projections (case A) and
600 projections (case B). The order of the subsets is determined randomly. A simple
cubic grid of blobs is used (0.5 mm), and relaxation parameter was set to λ=0.8.

To perform an MC gated iterative reconstruction at a reference phase point of
strong cardiac motion a motion map is used for both cases (Fig. 3.2). The end systole
and the diastasis are clearly visible in regions between [35, 45]% RR and [65, 80]%
RR. For both cases, the reference phase was selected at φP

r =20% RR (systole) with a
fixed gating window width wk = 40% RR. The 4D ROI images data were generated
by an aperture weighted cardiac reconstruction (AWCR) method [57] at phase points
within the range from 0 to 40% RR in steps of 5% RR with a fixed gating window
width of 22% RR.

The MVF is determined from these images from phase to phase by manual land-
mark tracking and motion field interpolation as described in subsection 3.2.4. In the
clinical case A only four RCA’s landmarks (RCA’s ostium, MAc-1, MAc-2, and PDA)
were well visible and were used to reconstruct the RCA (Fig. 3.3), while in the second
case B only two clearly visible RCA’s landmarks (RCA’s ostium and MAc-1 ) were
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Figure 3.1. A view of the ROI of the clinical cases A and B. Top: complete FOV
of one complete projection of the heart in the clinical case. Middle: complete FOV
with ROI removed. Bottom: ROI projection.
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Figure 3.2. The motion maps of the two clinical cases A and B. The mean absolute
differences ((a),(b)) evaluated between the subsequent volumes of the corresponding
4D ROI image data sets, are presented.

used to reconstruct the same coronary vessel (Fig. 3.4).
As first experiment, an error-sensitivity study is carried out, in order to determine

the maximum landmark localization-error which can be tolerated without degrading
the reconstructed images. This can be done by adding an increasing random error to
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MAc 1-

MAc 2-
PDA

R.Conal
Ao

1) 3)

4) 5)

2)

6)

Figure 3.3. Manual RCA’s landmarks motion tracking. In 1) and 6) the 3D vol-
ume rendering of the RCA vessel is shown. In 2),3),4) and 5) the corresponding
landmarks on different views of a full FOV AWCR reconstruction are shown. Leg-
end: Ao=Aorta, R. Conal=Right Conal branch, Ostium=RCA’s ostia, MAc1-
2=Marginal Acute branches, and PDA=Interventricular posterior branch. (Case
A, AWCR method, at 75% RR, Level=0 HU, Window=500 HU).
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0% 40% 50% 70% 90%20%

Figure 3.4. Two different axial views of the 4D ROI volumes data set. Top: an
axial view where the RCA’s ostium is visible. Bottom: an axial view where the
RCA’s first marginal acute branch (MAc-1) is visible. The red circles indicate the
ostium and MAc-1 positions. (Case B, AWCR method, at [0,20,40,50,70,90] %RR,
Level=200 HU, Window=900 HU).
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the observed landmarks position as long as a blurred MC reconstruction is produced.
Due to the lower motion of the Aorta, the RCA’s ostium is generally well visible
in the whole RR interval. The corresponding landmark position is left unchanged.
Differently, at phases of stronger cardiac motion, the MAc-1 is blurred and a landmark
observation-error can likely take place.

Three different simulations are carried out. At each cardiac phase within the
chosen gating window, the corresponding MAc-1 landmark position is separately
randomly displaced along the positive x,y, and z direction. For each direction, eight
different error-displacement bins are tested: [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2.5], [2.5,
5], [5, 7.5], [7.5, 10], and [10, 15] mm. Given these modified landmark positions, a
TPS interpolation is applied to recover a dense MVF ~mj . Subsequently, for each
direction and for each error-displacement bin, an MC AWCR method [136] is applied
to generate the corresponding reconstruction. Finally, the reconstructed images are
shown in Fig. 3.5.

In a second experiment, the TPS and the NNIDW scattered data interpolation
methods are applied to case B, in order to recover its dense MVF ~mj from the above
correctly indicated landmarks. For the NNIDW interpolation method, six nearest
neighbors are selected for each grid point ~xj , the euclidean metric is chosen as distance
function, and a power paremeter p = 2 is used. The MC AWCOSML reconstructed
images, where the MVF is calculated with the TPS and the NNIDW interpolation
methods are compared in Fig. 3.6 and Fig. 3.7.

The proposed MC AWCOSML method is validated on both clinical cases. Here,
the MC reconstructions are compared with the images produced performing a non-
compensated AWCOSML method. The MVFs required for the corresponding MC
reconstructions are determined by TPS interpolation. The reconstruction results
after 15 iterations are shown for case A in Fig. 3.8, and for case B in Fig. 3.10. In
Figures. 3.9 and 3.11 the 3D volume rendered images are presented for case A and B,
respectively.

For the sake of comparison, the same clinical cases are reconstructed with the
MC AWCR method. Hence, the analytical and iterative reconstructed images are
compared in Fig. 3.12. In Table 3.2, quantitative image quality measures evaluated
inside the red circles in the reconstructed images in Fig. 3.12 are presented.

Case Method Mean[±STD] [HU] SNR

A
MC AWCR 83.2[±32.5] 33.3

MC AWCOSML 88.3[±27.4] 39.7

B
MC AWCR 103.2[±19.2] 57.5

MC AWCOSML 95.3[±16.2] 67.6

Table 3.2. Image quality measures. The MC AWCR and MC AWCOSML im-
ages mean, standard deviation (STD), and signal-to-noise ratio (SNR) values are
determined inside the red circles (radius=15 mm) in Fig. 3.12.
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(f )

(d) (e) (f )

(a) (b) (c)

Figure 3.6. Axial (a,b,c), coronal (e), and sagittal (d,f) views. The MC AW-
COSML reconstructed images, where the MVF is determined with the TPS (left)
and the NNIDW (right) interpolation methods, are shown. (Case B, at phase point
20% RR, gating window width of 40% RR, 15 iterations, Level=0 HU, Window=500
HU).
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Figure 3.7. Absorption coefficients of the MC AWCOSML reconstructed images,
where the MVF is determined with the TPS (blue) and the NNIDW (dashed red)
interpolation methods, respectively, along the red lines indicated in Fig. 3.6(a).
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(e)

(a)

(c)
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(b)

(e)

(d)

(f )

(g)

Figure 3.8. Axial (a,b,c,d,e), coronal (f) and sagittal (g) views. Images recon-
structed with the AWCOSML with gating window width of 40% RR (left), the AW-
COSML with gating window width of 22% RR (center), and the MC AWCOSML
with gating window width of 40% RR (right) are shown. (Case A, at phase point
20% RR, 15 iterations, Level=0 HU, Window=500 HU).

3.4 Discussion

Owing to cardiac motion, cardiac CT image quality of gated reconstructions strongly
depends on the cardiac phase. The larger the gating window the better the image’s
SNR, because more projections contribute to the reconstruction results. However, a
wider gating window produces more motion artifacts. Also, at certain cardiac phases
of rapid motion, cardiac CT reconstruction quality is seriously compromised. In the
cases presented in this chapter, a reconstruction without MC at systole (20% RR)
yields blurred images.

Utilizing MC in the reconstruction, it is shown on two example clinical data sets
that motion blurring is almost removed. Sharp images can be obtained, even in a
phase of strong motion reconstructed with a large gating window.

In order to generate the initial 4D volume data sets that were used to estimate
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AWCOSML (at 20% RR) MC AWCOSML (at 20% RR) AWCOSML (at 70% RR)

Figure 3.9. 3D volume rendering of the reconstructed volumes of case A. In order,
the volume reconstructed with the AWCOSML method at a reference phase of 20%
RR (left), the MC AWCOSML method at a reference phase of 20% RR (center),
and the AWCOSML method at a reference phase of 70% RR (right), are presented.
(Gating window width of 40 % RR, 15 iterations).

the MVF, a gating window width of 22% RR was used [74]. In contrast, for the final
volume reconstructions, in order to show the positive impact of the MVF on image
quality, a wider gating window width of 40% RR was used.

The first inspection about the landmarks localization error-sensitivity of the pro-
posed method (Fig. 3.5) shows as a localization error less or equal to 5 mm (corre-
sponding to 10 times the voxel size) does not affect the final MC reconstructed image.
Even a larger error can be tolerated, though it should not exceed 7.5 mm. In Fig. 3.5
it is shown that a MAc-1 landmark localization error in x or y direction larger than
7.5 mm yields images where the RCA’s MAc-1 is blurred.

In this contribution, given a limited set of observer-indicated landmarks, the
TPS and the NNIDW scattered data interpolation methods are used to determine the
dense cardiac ROI MVF. In accordance with Stevendaal et al. [133], in this paper
similar results are achieved using both interpolants (Fig. 3.6). Consequently, from the
absorption profiles presented in Fig.3.7, only very small differences are observable.
Moreover, since limited sets of landmarks are used, the computation times of both
methods are comparable. In conclusions, both scattered data interpolation techniques
can be applied for the MVF resampling, without affecting the quality of the MC
reconstructed images.

Therefore, a clinical validation of the proposed MC statistical iterative method
is carried out, and results are compared with traditional ECG-gated iterative recon-
structions.

In the first clinical case, using only a simple gated reconstruction, some anatom-
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Figure 3.10. Axial (b,d,f,g), coronal (c), and sagittal (a,e) views. The AWCOSML
with gating window width of 40% RR (left), the AWCOSML with gating window
width of 22% RR (center), and the MC AWCOSML with gating window width of
40% RR(right) reconstructed images are shown. (Case B, at phase point 20% RR,
15 iterations, Level=0 HU, Window=500 HU).
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AWCOSML (at 20% RR) MC AWCOSML (at 20% RR)

Figure 3.11. 3D volume rendering of the reconstructed volumes of case B. The
AWCOSML (left) and the MC AWCOSML (right) reconstructed images are shown.
(Phase point 20% RR, gating window width of 40 % RR, 15 iterations).

ical RCA’s features as its ostium and its marginal acute branches were practically
invisible or strongly blurred (Fig. 3.8,3.9). By adding the MC framework, most fea-
tures were recovered. In Fig. 3.8(b) the MAc-1 branch is clearly visible. Even the
MAc-2 vessel is clearly visible in the Fig. 3.8(d). The Aorta is very sharp in Fig. 3.8(a)
and the RCA’s outlet is well visible in Fig. 3.8(c) and Fig. 3.8(g). Finally the RCA’s
PDA and the complete RCA vessel are clearly visible in Fig. 3.8(e) and in Fig. 3.8(f),
respectively. In Fig. 3.9 the 3D volume rendering of the images reconstructed with the
AWCOSML method at 20% RR, the MC AWCOSML method at 20% RR, and with
the AWCOSML method at 70% RR for the case A are shown. From these images it
can be observed how the MC reconstruction can strongly reduce the blurring artifact
in the reconstructed images. In fact, the MC reconstruction at 20% RR produces
an RCA vessel that is consistent with the one obtained with a simple AWCOSML
method at the quiet phase of 70% RR. Even the secondary vessels are clearly visible.

Similar results are achieved for the second clinical case (Fig. 3.10). In Fig. 3.10(a),
a sagittal view of the chosen ROI is presented. Here, the AWCOSML method leads
to blurred images where the Aorta is very sharp, but a section of the RCA is almost
invisible. Instead, the MC AWCOSML method leads to a motion-free reconstructed
image where both the Aorta and the RCA vessel section are clearly observable. The
false RCA’s shrinkages which are present in the non-compensated reconstructions
could lead to diagnostic inaccuracies. In Fig. 3.10(c), a coronal view of the RCA
vessel is presented. Again, due to the residual cardiac motion within the recon-
struction gating window, the standard AWCOSML reconstructions produce images
representing two different motion states of the RCA vessel. Even though, the AW-
COSML reconstruction with the narrowest gating window width of 22% RR looks
sharper, the absorption reduction caused by the motion artifact could lead again to
an ambiguous diagnosis of the RCA vessel condition. Moreover, due the two RCA
vessels achieved, the correct position of the vessel at the chosen reference phase is still
unknown. The MC AWCOSML reconstruction, introducing the whole ROI motion
information inside the reconstruction framework, allows to use all projections which
contribute to the absorption value of each blob in the reconstruction grid. In the MC
reconstructed images the above absorption reduction is avoided, the correct motion
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state is represented, and the exact RCA vessel position is obtained (Fig. 3.10(c)).
Similar conclusions can be achieved for the reconstructed images in Fig. 3.10(d-e).
Here, the AWCOSML reconstructions lead to strongly blurred images with a stenotic
RCA’s ostium. Instead, the MC AWCOSML reconstruction produces an image where
the correct RCA’s ostium with any stenosis is shown (Fig. 3.10(d-e)). In Fig. 3.10(f)
it is clearly visible as the AWCOSML method fails to recover the RCA vessel sec-
tion, which instead is clearly visible in the MC AWCOSML reconstruction. Finally,
in Fig. 3.10(g) it is noticeable as the AWCOSML reconstructions produce strongly
blurred images of the RCA’s MAc-1, which instead it is clearly observable in the
MC AWCOSML reconstructed image. The 3D volume rendering images, confirm the
blurring artifact reduction achieved by the MC AWCOSML (Fig. 3.11). This leads to
significantly better image quality than achieved with AWCOSML.

Finally, from the reconstructed images presented in Fig. 3.12, it is observable
that the MC iterative and the MC analytical reconstruction methods lead to almost
similar results without motion artifacts. At the used number of iterations the resulting
image quality is comparable. In accordance with Ziegler et al. [148,149], a higher SNR
resulting from statistical iterative reconstructions can be observed (Table 3.2). Here,
the motion compensated reconstruction and statistical iterative image reconstruction
show their combined advantages.

Though, strong improvement, can be achieved based on manual landmarks track-
ing, the fact that the current method requires interaction, and that a successful MC
reconstruction depends on the level of experience of the observer is a limitation of
the proposed method. Albeit for the clinical cases proposed in this chapter, it was
previously shown that small errors on the landmarks tracking do not affect the final
reconstruction results too much. An automatic MVF estimation methodology will be
preferable for clinical applications. Obviously, the next step will be to integrate fully
automatic local motion estimation into this framework. From the study presented
in this work it can be concluded, that this method may either be based on auto-
matic landmark tracking or on image based ROI registration. Temporal and spatial
continuity can be achieved by interpolation.

However, the manual approach as proposed in this chapter, can be very useful
for individual vessel segments. With limited user interaction in a number of cardiac
phases, a significant improvement in image quality can be achieved. This can be useful
for segments which contain suspicious structures and in which standard reconstruction
results yield limited quality. For example in segments case of hardly visible soft
plaques, the parallel SNR improvement and motion artifact reduction can be used to
reduce ambiguous diagnosis without performing a second examination.

3.5 Conclusions

A MC gated iterative ROI reconstruction method was presented that leads to strong
image quality improvements compared to a gated iterative ROI method. The method
was successfully tested on two clinical cases. The gain in speed, typical in ROI re-
construction, is not compromised owing to motion compensation. The integration of
the MC framework with the gating approach allows to achieve images with reduced
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motion blurring and a higher SNR. The main application of the method proposed is
seen in cardiac CT, e.g. for coronary vessel segment reconstructions. The next step
will be the implementation of semi- and fully-automatic image-based MVF estimation
methods.





Chapter Four

Cardiac motion-corrected iterative
cone-beam CT reconstruction

using a semi-automatic minimum
cost path-based coronary centerline

extraction

There are two possible outcomes: If the result confirms the hy-

pothesis, then you’ve made a measurement. If the result is con-

trary to the hypothesis, then you’ve made a discovery.

— Enrico Fermi (1901 – 1954)

Abstract — In this chapter a method which combines iterative computed tomog-
raphy reconstruction and coronary centerline extraction technique to obtain motion
artifact-free reconstructed images of the coronary arteries is proposed and evalu-
ated. The method relies on motion-vector fields derived from a set of coronary center-
lines extracted at multiple cardiac phases within the RR interval. Hereto, start and
end points are provided by the user in one time-frame only. Using an elastic image
registration, these points are propagated to all the remaining cardiac phases. Con-
sequently, a multi-phase three-dimensional coronary centerline is determined by
applying a semi-automatic minimum cost path based extraction method. Corre-
sponding centerline positions are used to determine the relative motion-vector fields
from phase to phase. Finally, dense motion-vector fields are achieved by thin-plate-
spline interpolation and used to perform a motion-corrected iterative reconstruction
of a selected region of interest. The performance of the method is validated on
three patients, showing the improved sharpness of cardiac motion-corrected gated
iterative reconstructions compared to the results achieved by a classical gated iter-
ative method. The results are also compared to the manual coronary artery motion
estimation method proposed in the previous chapter.

Based upon: A. A. Isola, C. T. Metz, M. Schaap, S. Klein, M. Grass, W. J. Niessen, “Cardiac motion-
corrected iterative cone-beam CT reconstruction using a semi-automatic minimum cost path-based
coronary centerline extraction”, Medical Image Analysis, under review.

under review
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4.1 Introduction

C
ardiovascular disease (CVD) is one of the leading causes of death world-
wide [145]. In 2005 about 30% of global deaths were caused from CVD (in-
cluding cardiac infarctions and apoplectic strokes). If the current trend will

not be opposed, by 2020 about 20 million deceases will be caused by this disease [73].
Acute coronary events are caused by spontaneous rupture of non-calcified plaques.

Non-invasive monitoring of patients that have these non-calcified plaques can be help-
ful for diagnosis and the treatment [10,64]. In the last decade, due to the technological
progress in computed tomography (CT) imaging devices, the imaging of coronary ar-
teries with CT has become a rapidly emerging application for diagnosis and therapy
guidance of coronary arteries diseases [31].

Three-dimensional (3D) electrocardiogram (ECG)-gated CT reconstructions are
used [26,45,57,86,122] to provide images of a chosen cardiac time window. Hereto, an
ECG of the patient is recorded simultaneously with the CT acquisition. Subsequently,
cardiac gating techniques are applied to improve the effective temporal resolution and
to minimize cardiac motion artifacts. Nevertheless, due to the rather fast heart motion
compared to the scanner rotation time, residual motion artifacts are still visible in
the ECG-gated CT reconstructed images.

If the cardiac motion information is included in the reconstruction model, and
a cardiac motion-corrected (MC) reconstruction is carried out [5, 39, 40, 92, 112, 135],
motion artifacts in the reconstructed images can be strongly reduced, even if the
cardiac window includes phases of fast cardiac motion (e.g. systole). Moreover, since
information from all the aquired cardiac phases can be used for the reconstruction,
such a method can potentially reduce the radiation dose to the patient.

Owing to the strong motion of the coronary arteries, specialised methodologies
are required to track their movement along the cardiac cycle. In prior works, manually
indicated anatomical landmarks [40,95] have been used to assess the coronary artery
motion field. However, automatic coronary centerlines extraction methods [5, 42, 43,
77,111] appear to be a more accurate solution to determine the unknown MVF of tiny
structures as the coronary arteries. Indeed, given the coronary centerlines at different
phases within the RR interval, the relative MVFs correspond to the displacement of
the centerline points from phase to phase. Obviously, in order to calculate the MVFs,
corresponding points along the coronary centerlines have to be detected. In [43], Jandt
et al. applied a 3D-3D correspondence measure to determine corresponding points
along the extracted multi-phase 3D coronary centerlines.

At phases of fast cardiac motion, where due to strong motion artifacts the above
coronary centerline extraction methods are likely to fail, a temporal interpolation
can be used to estimate the position of the centerline points. Hereto, the centerlines
extracted at adjacent cardiac phases can be used as interpolation knots. Subsequently,
given the previously determined coronary centerline MVF, a suitable interpolator, as
e.g. the thin-plate-spline (TPS) [6], can be applied to obtain a dense MVF for the
whole chosen time window [40,43,112,133]. In the last step, the determined MVF can
be used to perform an MC region of interest (ROI) reconstruction.

Iterative reconstruction methods [25, 60], have proven to be a good alternative
to classical analytical reconstruction methods [85,93,126]. Iterative methods are able
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to reconstruct objects with different acquisition geometries, and even in situations
where the data elements are noisy or where only a moderate amount of data is avail-
able. However, the well known large computation time of iterative reconstructions
continues to be a non-trivial issue which limits their use for clinical applications. In
recent works [37, 149] it was shown that ROI reconstruction can lead to a strong
reduction of the iterative reconstruction’s computation time.

In this chapter, an MC reconstruction method for coronary arteries is proposed
which combines iterative ROI reconstruction method and a coronary centerline ex-
traction technique. Since the right coronary artery (RCA) moves more than twice
faster than the left coronary artery (LCA) over the cardiac cycle [2, 32, 137], a ROI
containing the RCA is selected and reconstructed. The method proposed by Metz
et al. [77] is applied to extract the coronary artery centerlines from a given four-
dimensional (4D) CT data set. Hereto, the start and end-point of the vessel segment
of interest are indicated in one of the volumes of the 4D CT data set and propagated
to the other timepoints by means of a non rigid image registration method [54,55,59].
Subsequently, the MVF for the coronary centerlines is determined from a selected
reference phase to all other phases within the chosen reconstruction gating window.
A dense MVF over the whole chosen ROI is achieved using TPS interpolation. Us-
ing this MVF, an MC ECG-gated modified version of the Simultaneous Algebraic
Reconstruction Technique [39] is applied to produce motion artifact-free images of
the RCA for three patients. The MC iterative reconstruction results are visually and
quantitatively compared to the corresponding images resulting from a classical non
motion-corrected ECG-gated iterative reconstruction method. Moreover, the results
are also compared to results obtained with the manual coronary artery motion esti-
mation method [40] introduced in previous chapter.

The chapter is organized as follows: in Section 4.2 all components of the proposed
MC reconstruction algorithm are presented. The results on the clinical data sets are
shown in Sec. 4.3 and discussed in Sec. 4.4. Finally, conclusions are given in Sec. 4.5.

4.2 Methodology

In the following subsections the components of the proposed MC reconstruction
framework are presented. First, the 4D CT acquisition method is briefly described
(4.2.1). Then, in subsection 4.2.2 a semi-automatic coronary artery centerline ex-
traction method for local MVF estimation is described. Finally, the MC iterative
algorithm used is introduced (4.2.3). The method’s workflow is summarized by the
diagram in Fig. 4.1. Solid rectangles represent algorithms, dashed rectangles indicate
human user-interaction, and oval shapes represent both input data and output results
of the algorithms.

4.2.1 4D ROI image reconstruction

The proposed method requires a 4D image data set in order to determine an MVF
of the chosen ROI. In this contribution, 4D reconstruction is achieved by using an
aperture weighted cardiac reconstruction (AWCR) method [57]. Hereto, the patient’s
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Figure 4.1. Workflow for the proposed MC iterative ROI reconstruction.

ECG is recorded simultaneously with the acquisition of the projection data to deter-
mine a list of Nr R-peaks at angular CT system positions φR

k , where k denotes the
heart cycle index inside the recorded ECG. These angular positions are converted to
the corresponding projection indices that were recorded at these angles. From the list
of R-peaks, the centers φP

k of the gating windows, the so-called phase points, can be
determined using, for example, a fixed percentage P∈ [0, 1) of the RR interval. The
same percentage is used for all cardiac cycles,

φP
k = φR

k + P
(

φR
k+1 − φR

k

)

∀k = 1, . . . , Np. (4.1)

Np = Nr − 1 phase points are obtained. A gating function with a width wk is
centered at each phase point φP

k . Hence, only projections which lie inside this gating
window are used to reconstruct the image. 3D AWCR images are reconstructed at
equidistant phase points throughout the entire cardiac cycle. For each reconstruction,
an automatic method proposed by Manzke et al. [74] is applied to select the smallest
possible gating window width which provides sufficient angular coverage of projections
for the reconstruction at each phase point.

In this chapter, MC iterative ECG-gated reconstructions are performed at phases
of strong cardiac motion. To select suitable fast and quiet cardiac motion phases
within the RR interval, a motion map (MM) [30,40,75,113] is derived by calculating
the mean absolute difference (MAD) between subsequent volumes of the 4D data set.
The MAD is given by

MADl =
1

N

N
∑

i=1

∣

∣I l(~xi) − I l+1(~xi)
∣

∣ , (4.2)

where N = NxNyNz and Nx, Ny and Nz are the number of image grid points in the
x, y and z direction respectively, I l(~xi) is the intensity of the image at voxel position
~xi, and l denotes the timepoint index inside the 4D ROI data set. In cases of limited
motion, two subsequent timepoint images are very similar and therefore the MAD
will be small.
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4.2.2 Local motion estimation by semi-automatic coronary
centerline extraction

Estimation of an MVF is a pre-requisite for MC cardiac CT reconstruction. For a car-
diac reconstruction the MVF can be represented by displacement vectors ~mi(~xi(Pr),
Pr, P ) of the corresponding grid point ~xi (Pr) from a reference heart phase Pr to a
new grid position ~xi

∗ (P ) in an arbitrary heart phase P by

~xi
∗ = ~xi

∗(P ) = ~xi(Pr) + ~mi (~xi(Pr), Pr, P ) , (4.3)

The MVF for the chosen cardiac ROI is determined by extracting the centerline
of the RCA at each phase inside the chosen reconstruction gating window width. The
centerline of the coronary artery segment of interest is determined by a minimum
cost path approach [77]. The start and end-point of the vessel segment of interest are
manually defined in one of the time-frames of the 4D CT data.

Subsequently, these start and end-points are propagated to the other time-frames
using an elastic registration approach [54]. As an image dissimilarity metric, the sum
of squared differences is used. The deformation field is represented by B-splines
bases [109,129]. To minimize the dissimilarity metric an adaptive stochastic gradient
descent optimizer is used [54]. Trilinear interpolation is applied to determine im-
age values at off-grid positions. The adaptive stochastic optimizer employs stochastic
sampling to randomly select a subset of image samples at each optimization’s itera-
tion. Finally, a multi-resolution approach is applied to avoid a local minimum. Hereto,
the images are smoothed using Gaussian blurring with a standard deviation depen-
dent on the resolution level, followed by a downsampling step, to reduce memory
consumption. The (isotropic) B-spline control point spacing is also dependent on the
resolution level.

Given the multi-phase pairs of start and end-points, the corresponding coronary
artery centerline is determined using the method proposed by Metz et al. in [77]. Here,
the Dijkstra’s algorithm [18] is used to find the path having minimum cumulative costs
through a cost image. This cost image is derived from the input ROI image and is
based on a frequently used vesselness measure [24], and on a priori information about
the intensity in which the coronary arteries appear in CT images, viz. as bright tubular
structures in a darker environment [77].

Due to the frequent presence of strong motion blurring artifacts, this coronary
centerline extraction method is likely to fail to extract an accurate centerline in the
volumes reconstructed at fast cardiac motion phases. To fill the centerlines estimation
gap at these phases, the coronary centerlines points are determined by cubic spline
interpolation [113]. The centerline positions extracted from the volumes reconstructed
at the closest phases with low motion are used as interpolation knots.

At this point, a 4D coronary centerlines data set is available. Since the coro-
nary centerlines positions extracted by the described method are not equally spaced,
a 3D-3D correspondency between the multi-phase centerlines points is not readily
available. Assuming that the start and end centerline points correspondence has cor-
rectly been achieved by the registration method, and assuming that the vessels length
does not change significantly during the cardiac cycle, a possible solution to find a
3D-3D correspondence among multi-phase extracted centerlines positions is to apply
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a spatial resampling. Cubic spline interpolation is applied to the 4D coronary center-
lines data set in order to determine equally spaced centerline points. Here, the initially
extracted coronary centerline points are used as interpolation knots.

Subsequently, these equidistant centerline positions are used to determine the
corresponding displacement vectors from a chosen reference phase Pr to all the ar-
bitrary phases P within the chosen ECG-gating window (Eq. 4.3). A dense MVF
for the complete cardiac ROI is estimated by fitting a TPS [6] throught the center-
line displacements. Thereby, 8 additional control points with zero displacements are
placed at the corners of the ROI, in order to suppress image grid points that leave
the ROI and are projected outside its sinogram.

4.2.3 Motion-corrected iterative cardiac CT ROI reconstruc-
tion

Once an MVF is determined, an MC cardiac reconstruction can be performed at a
chosen reference phase using the acquired cone-beam projection data.

The main goal of volumetric analytical and iterative reconstruction algorithms
is to produce a 3D representation of the absorption distribution f of the scanned ob-
ject. The correspondence between the discrete and continuous versions of the density
function f can be estabilished using a limited set of basis functions b placed on a 3D
grid with N equidistant grid points, ~xi:

f̃(~x) =

N
∑

i=1

µib(~x − ~xi), (4.4)

where f̃ indicate the discrete density function, and the set of numbers µi are the
coefficients of expansion which describe the function f̃ relative to the chosen basis set
b(~x − ~xi). In [69] a detailed investigation on how different sets of basis functions can
influence the quality of the images is presented.

In this work, the Kaiser-Bessel basis functions (also called blobs) are used [68].
These spherically symmetric basis functions are spatially and frequency limited, and
have many advantages compared to classical voxels, e.g. their appearance is indepen-
dent of the source position [68]. The standard parameters are used for the Kaiser-
Bessel basis functions (m=2, a/g=2.00, and α=10.4, with grid increment g), which
satisfy the frequency criteria described in [76].

The forward projection, p̃j
n, through an intermediate image at iteration n, can

be written for a detector pixel, j, as

p̃j
n =

∑N
i=1 Ajiµ

n
i j = 1, 2, . . . ,M. (4.5)

This means, that in the forward projection, the contribution, Aji, of each blob to
the detector pixel, j, has to be determined. Ziegler et al. [147] proposed a method
for calculating the Aji weights. In the first step, the center of each blob is projected
onto the detector. The footprint of a blob, which consists of all parallel line integrals
through the volume element, is magnified and centered at the projected blob-center
on the detector. The magnification of the volume element is given by the ratio of
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the source-detector to source-blob distance. In a last step, the convolution of the
footprint with the detector pixels is performed, which determines the weights Aji.

Generally, in an iterative reconstruction method, the image is iteratively updated
by backprojecting the difference (or ratio) between a calculated projection p̃j

n and
the corresponding measured projection pj . In this work, an aperture weighted cardiac
modified version of the Simultaneous Algebraic Reconstruction Technique [4] (gated
AWSART) is used [149].
For an ECG-gated AWSART, one iterative step (n 7→ n + 1) can be summarized by
the following equation:

µn+1
i = µn

i +
λ

∑

j∈Sm

ajiw
c
jw

a
j

∑

j∈Sm

pj − p̃j
n

∑

i

aji

ajiw
c
jw

a
j , (4.6)

where aji indicates a backprojection weight [147], and wc
j denotes a cardiac gating

window weight, which is introduced for each projection pj in the reconstruction al-
gorithm in order to select data belonging to the same cardiac phase. In [86] a study
on the effect of various gating function shapes on the image quality was shown. For
the iterative reconstructions presented in this work, a rectangle with smooth edges
(bump) shape is applied [86].

In helical cone-beam CT the object points can enter and leave the cone, this
can produce artifacts in the reconstructed images. Empirically, it was found that
these artifacts can be reduced by adding an aperture weighting function wa

j , for each
detector pixel, j, in the back projection formula [57, 149]. For the reconstructions
presented in this contribution, a cos2 aperture weighting function is used [39,57,149].

All the measured projections are collected in different ordered subsets Sm. Once
all subsets are processed, one iteration is completed. The ordering scheme chosen for
the subsets Sm significantly affects the convergence speed of the algorithm. In this
work, the projections of each subset Sm are selected equiangularly within each gating
window, and the subset sequence is determined randomly [28].

The reconstruction process can be controlled by the relaxation parameter λ. It
is selected to be λ = 0.8, which in previous works [39, 40, 147] has shown to lead to
good results.

In case of blob-based MC iterative reconstruction of a moving object (e.g. the
heart, the lungs), the projection model proposed in [147] neglects the motion of the
blob itself and the change of its volume caused by the existence of a divergent MVF
(Eq. 4.3). The non-vanishing divergence of the MVF results in a non-equidistant grid
with several gaps between the blobs. In a prior work, Isola et al. [39] have shown as
these gaps could produce streak artifacts in the MC reconstructed images. Hence,
to reduce these artifacts, Isola et al. [39] proposed an MC modified version of the
gated AWSART method (MC gated AWSART), where initially each blob center is
moved accordingly to its MVF as given in Eq. 4.3, then an efficient blob adaptation
is performed by changing the individual blob-size and its footprint on the detector
depending on the neighboring blobs positions. This method is applied for the MC
reconstructions presented in this chapter.

The well known large computation time of iterative reconstruction continues
to be a limiting factor which still limits its application in clinical fields. This issue
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is dramatically increased when a high resolution image reconstruction is required.
Basically, the long computation time of an iterative reconstruction is caused from its
necessity that a field-of-view (FOV) has to be reconstructed that covers the whole
assorbing volume. Only then the calculated forward projections will be identical to
the projections measured by the scanner. Since in many clinical cases, the ROI is
smaller than the volume that is irradiated, e.g. coronary arteries angiographies, an
ROI reconstruction [37, 149] can be an efficient solution to speed up the iterative
image reconstructions.

In this work, the iterative ROI reconstruction framework proposed by Ziegler et
al. [149] is applied.

4.3 Experiments and results

In this section, experiments on clinical data are performed to evaluate our proposed
MC iterative reconstruction method. The results are compared with standard non
motion-corrected gated AWSART reconstructed images, and with results obtained
with a manual coronary artery motion estimation method.

4.3.1 Clinical cases and helical cone-beam CT scanners

The MC iterative ROI reconstruction method is applied to three clinical cardiac cases
(A-C). Projection data are acquired using a Brilliance 40(64) CT scanner (Philips
Healthcare, Cleveland, OH, USA). Heart rate statistics of the patients and parameters
of the CT acquisition and reconstruction are listed in Table 4.1. In each clinical case,
a suitable ROI is selected that is large enough to contain the RCA of the three
patients (Table 4.1). Then, for the selected ROI, the AWCR method is performed at
phase points within the range 0 to 100% RR in steps of 5 % RR with a fixed gating
window width of 22 % RR. Then, the mean absolute difference (MAD) is calculated
between the subsequent reconstructed images of the 4D ROI data set. The determined
MMs for all the investigated clinical cases are shown in Fig. 4.2.

4.3.2 Manually indicated start-end coronary centerline points

Given the previously determined MMs, the fast cardiac motion phases Pr= 50%, 50%,
and 55% RR are selected as iterative reconstruction reference phases for the case A, B
and C, respectively. For all image reconstructions a gating window width of 40% RR
is used. In all three cases, the volume reconstructed at the cardiac resting phase 40%
RR (end systole) is chosen to select the pairs of start-end centerline points. Here, the
RCA’s ostium from the aorta and the interventricular posterior branch (PDA) are
selected as starting and ending coronary centerline points, respectively.

In our implementation to non-rigidly register the manually indicated points to
all other phases, the adaptive optimizer randomly selects 2000 image-samples at each
optimization’s iteration. The stochastic gain settings are automatically estimated by
this optimizer. For the multi-resolution approach 4 levels are used. The images are
smoothed using Gaussian blurring with standard deviation dependent on the reso-
lution level, followed by a downsampling step, to reduce memory consumption. The
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Figure 4.2. The MMs of the three clinical cases A, B and C. The MADs ((a),(b),(c))
are presented. For a smoother representation of the MAD curves, a cubic spline
interpolation was used.
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Table 4.1. CT scanning, AWSART reconstruction, and patient parameters

Clinical case A B C
Table feed [mm] 5.0 8.0 8.0
Relative pitch 0.2 0.2 0.2
Collimation[mm] 40×0.625 64×0.625 64×0.625
Rotation time [s] 0.42 0.42 0.42
Tube voltage [keV] 120 120 120
Anode current [mA] 333 333 476
Mean heart rate [bpm] 55 56 61
Minimum heart rate [bpm] 53 54 53
Maximum heart rate [bpm] 58 59 65
ROI radius [mm] 25 33 34
Reference phase [%RR] 50 50 55
Gating window width [%RR] 40 40 40
# Subsets 300 205 300
# Views per subset 100 100 100
# Iterations 15 15 15
λ 0.8 0.8 0.8
Cubic grid size [mm] 0.3 0.3 0.3

(isotropic) B-spline control point spacing is also dependent on the resolution level. At
each resolution level 500 optimization iterations are performed. All the image regis-
tration’s settings are listed in Table 4.2.

Resolution Gaussian blurring STD Downsampling factor Control point spacing
[voxel unit] [mm]

0 4 8 80
1 2 4 40
2 1 2 20
3 0 1 10

Table 4.2. Parameters of the image registration multi-resolution approach. The
Gaussian blurring standard deviation (STD) is given in voxel units, and a down-
sampling factor of 1 equals the original image.

Since a reconstruction gating window width of 40% RR is used, 8 3D-3D reg-
istrations are needed. The computation time per registration was approximately 2
minutes on a desktop computer (2.66 GHz Intel Core2 Quad CPU, 3.25GB RAM).

4.3.3 Coronary motion-vector field estimation

Once the start and end point are available at each phase within the chosen reconstruc-
tion gating window, the method described in subsection 4.2.2 is applied to determine
the corresponding RCA centerlines at the relatively quiet cardiac phases.

For the coronary artery centerlines extraction the parameters settings which have
been found to be otpimal by Metz et al. in [77] are utilized. The computation time per
coronary centerline extraction was approximately 1 minute. The resulting centerlines
at different quiet cardiac phases within [30-70]% RR for patient case B are shown
in Fig. 4.3 (blue lines). For the clinical cases presented here, coronary centerlines
extraction is not feasible in fast heart motion phases (e.g., in case B at phase points 50
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Figure 4.3. Three different views of a tracked 4D RCA centerline at phase points
within the [30-70]% RR interval (case B). The blue lines indicate the RCA centerlines
extracted at quiet cardiac phases by the minimum cost path-based approach (phase
points within [30-45]% and [60-70]% RR). While, the red lines correspond to the
cubic spline interpolated centerlines at the strong motion cardiac phases 50 and 55%
RR.

and 55% RR). Therefore, the centerlines at these phases are determined by cubic spline
interpolation [113] (red lines, Fig. 4.3). Subsequently, a cubic spline interpolation-
based spatial-resampling is applied to recover corresponding equally-spaced points
along the extracted coronary centerlines. Here, a spatial sampling interval of one
voxel size (0.3 mm) is used. Then, these equidistant centerlines positions are used to
determine the motion vectors of the coronary centerlines from the selected reference
phase Pr to all the other phases P within the chosen ECG-gating window. Finally, a
TPS warping is applied to produce a dense MVF for the complete cardiac ROI. This
MVF is used to perform the MC iterative reconstructions presented in the following
subsection. Due to the limited number of points, alltogether spatio-temporal cubic
spline interpolation and TPS warping took approximately 1 minute for each cardiac
phase within the gating window.

4.3.4 Clinical validation

The gated AWSART and the MC gated AWSART reconstructed images and the
corresponding 3D volume rendered images after 15 reconstruction iterations are pre-
sented in Fig. 4.4,4.5 and 4.6. Moreover, the corresponding multi-planar reformatting
(MPR) [10] images for the three clinical data sets are given in Fig. 4.7.

For clinical case A in Fig. 4.4, the AWSART gated reconstruction method fails to
produce motion blurring artifact-free images of the RCA. As an example, in Fig. 4.4(a)
and (j) the ostium of the RCA from the aorta and its right conal branch are clearly
visible in the MC gated AWSART reconstructions (right) but strongly blurred in the
AWSART gated reconstructed images (left). The same conclusions can be drawn
for the reconstructed images in Fig. 4.4(f)-(i). Here, an RCA section and the com-
plete vessel are very sharp in the MC reconstructions (right) and poorly visible in
the non motion-corrected reconstructed images (left). Finally, the 3D volume ren-
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b) c) d)a)

e) f) h)

i) j)

k)

g)

Figure 4.4. The axial (a-d), coronal (e,g,h), and sagittal (f,i,j) views and the
corresponding 3D volume rendering (k). In order, the gated AWSART (left column)
and the MC gated AWSART (right column) reconstructed images are shown. (Case
A, at phase point 50% RR, gating window width of 40 % RR, 15 iterations, ROI’s
radius=25 mm, level=0 HU, window=500 HU).
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i)

a)

g)

h)

d)

e)

b) c)

f)

Figure 4.6. The axial (a-d), coronal (e) and sagittal (f-h) views and the corre-
sponding 3D volume rendering (i). In order, the gated AWSART (left column) and
the MC gated AWSART (right column) reconstructed images are shown. The red
arrows indicate regions where the proposed motion estimation method fails to pro-
duce a good approximation of the local motion.(Case C, at phase point 55% RR,
gating window width of 40 % RR, 15 iterations, ROI’s radius=32 mm, level=100
HU, window=1000 HU).



4.3 Experiments and results 75

b) c)
a)

Figure 4.7. The MPR images of the gated AWSART (left) and MC gated AWSART
(d) reconstructions showing the RCA vessel of the three clinical case A (a), B (b)
and C (c) are shown. In (c), the red arrows indicate the RCA’s marginal acute
branches. (Level=0 HU, window=500 HU).

dering in Fig. 4.4(k) confirms the reduction of motion artifacts while using the MC
gated AWSART method (right) compared to the corresponding AWSART gated re-
constructed image (left) in which the motion artifacts are still visible.

Similarly, the effect of motion compensation on the reconstructed image quality
is clearly visible for case B in Fig. 4.5 as well. Most noticeable is the improved image
sharpness. Moreover, while an inconsistent ghost RCA is visible in the AWSART
gated reconstructed images in Fig. 4.5 (a) and (f) (left), the MC reconstruction
method results in a coherent RCA motion state where only a single coronary vessel is
visible (Fig. 4.5 (a) and (f) (right)). The RCA’s marginal acute branch is clearly vis-
ible in the MC reconstructions in Fig. 4.5 (c), while the non motion-corrected image
looks strongly blurred (Fig. 4.5 (c) (right)). The coronary’s ostium and the complete
vessel in the MC images in Fig. 4.5 (d)-(e) (right) look sharper than the ones visible
in the non motion-corrected images (Fig. 4.5 (d)-(e) (left)). Moreover, in Fig. 4.5 (b)
and (g) (right) a sharper aortic valve and aorta are visible in the MC reconstructed
images.

Finally, for clinical case C the RCA is recovered and well visible after MC re-
construction. This last clinical case also shows a weakness of the current approach.
Although, the motion artifacts are reduced noticeably in all the presented images
(Fig. 4.6), in some slices as e.g. Fig. 4.6(c)-(d) (right), residual motion artifacts still
remain (red arrows). This is beacuse the TPS extrapolation in the construction of
the MVF fails to correctly represent the motion of cardiac regions which are rela-
tively far away from the extracted RCA centerlines. Nevertheless, it is important to
point out that the object of interest (i.e., the RCA) is clearly visible in all the MC
reconstructed images. In Fig. 4.6(a)-(h) (left), the AWSART gated reconstructed
images are strongly affected by the motion artifact and the coronary vessel is almost
invisible. On the contrary, the corresponding MC gated AWSART reconstructed im-
ages (Fig. 4.6(a)-(h) (right)) show a very sharp aorta and RCA. Moreover, a ghost
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PDA is visible in the non motion-corrected reconstruction in Fig. 4.6(d) (left), while
in the MC reconstructed image, the same branch is well visible (Fig. 4.6(d) (right)).
The RCA’s ostium from the aorta in the MC gated AWSART image in Fig. 4.6(e)-
(f) (right) looks sharper compared to the corresponding gated AWSART image in
Fig. 4.6(e)-(f) (left). Finally, the 3D volume rendering in Fig. 4.6(i) shows that the
MC framework allows to recover the patient’s coronary artery better compared to the
corresponding uncompensated ECG-gated reconstruction.

Similar conclusions can be drawn from the multi-planar reformatting (MPR) [10]
images of the three clinical cases given in Fig. 4.7. The red arrows in Fig. 4.7(c)
indicate the RCA’s marginal acute branches which are not visible in the corresponding
non-motion corrected MPR image.

4.3.5 Image quality assessment

In order to analyze the quality of the images more quantitatively, an image sharpness
metric proposed by Wee et al. [142] is used. This statistical approach uses eigenvalues
in image sharpness metric determination to provide robust assessment in the presence
of various noisy conditions. Firstly, the input image is normalized by its energy to
minimize the effects caused by image contrast. Secondly, the covariance matrix is
computed from this normalized image before it is diagonalized using Singular Values
Decomposition to obtain a series of eigenvalues. Since information on blur and addi-
tive random noise is carried by the least dominant eigenvalues, the image sharpness of
the normalized image is determined by the trace of the first largest eigenvalues. Due
to its formulation, the metric value decreases when there is an increment in image
blurness [142].

In this contribution, the image sharpness metric of the reconstructed images is
calculated using the first 6 largest eigenvalues. In Fig. 4.8 the ratios between the image
sharpness metric values of gated AWSART and MC gated AWSART reconstructed
images of the three clinical cases A, B and C are presented, respectively.

The conclusions which were drawn from a visual inspection of the reconstructed
images can be confirmed: the MC gated AWSART reconstructed images present a
higher image sharpness compared to the gated AWSART reconstructions. Indeed,
from the image sharpness ratios presented in Fig. 4.8, it is clearly visible as the non
motion-corrected images present lower sharpness measures which lead to ratios smaller
than unity.

4.3.6 Manual and semi-automatic coronary arteries motion
estimation

In this subsection the proposed semi-automatic and a manual coronary artery mo-
tion estimation method [40] (Chapter 3) are compared. The MPR images of the
corresponding MC gated AWSART reconstructions of the clinical case A are given
in Fig.4.9. From the presented images, it can be observed that when using the semi-
automatic motion estimation methodology better results are obtained (Fig. 4.9(a)-(b)
(right)). Moreover, a manual motion estimation [40] requires that one experienced
observer looking for a set of well known RCA’s landmarks spatial positions through-
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Figure 4.8. Image sharpness measure ratios of the clinical cases A (black line), B
(dashed green line) and C (dotted blue line), respectively. Here, the image sharpness
metric is determined for 100 axial slices of the gated AWSART and MC gated
AWSART reconstructions containing the whole RCA. The red line indicates unity.

out the whole 4D image data set. This manual indication process can be very tedious,
prone to errors, slow, and observer-dependent.

4.4 Discussion

In this chapter, a motion corrected ECG-gated iterative coronary artery reconstruc-
tion method was presented which uses a semi-automatic minimum cost path-based
coronary centerline extraction to derive the motion vector field of the region of in-
terest. Performance was visually assessed by comparing the resulting image quality
in three clinical cases reconstructed with and without motion compensation, respec-
tively. Furthermore, an image sharpness metric was evaluated to provide a more
quantitative comparison of the reconstructed images.

The method requires a limited amount of user interaction to select the cardiac
phase of reconstruction, and to manually indicate the start and end point of coronary
centerline of interest in a chosen time-frame of the 4D data set. All other steps of
the algorithm are fully automatic. The method lends itself to be applied for indi-
vidual coronary vessel segment reconstruction. In the three clinical cases presented
here, a general decrease of the motion artifacts was achieved using the proposed MC
gated AWSART reconstruction method. The coronary artery of interest looks sharper
which can be clearly noticed in Fig. 4.4-4.7 (right). Non motion-corrected ECG-gated
iterative reconstructed images are strongly affected by motion artifact and the main
coronary artery and its secondary branches are almost invisible (Fig. 4.4-4.7 (left)). In
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b)a)

Figure 4.9. The MPR images of the gated AWSART (left), the MC gated
AWSART (MVF estimated by manually landmarks indication) (center) and the
MC gated AWSART (MVF estimated by coronary extraction) reconstructions are
shown. In order a coronal (a) and sagittal (b) slices showing the RCA vessel of the
clinical case A are given. (Level=0 HU, window=500 HU).

accordance to these qualitative observations, the quantitative image sharpness eval-
uations have confirmed that a general blurring artifact reduction is achieved inside
the MC gated AWSART images (Fig. 4.8). Compared to a manual coronary artery
motion tracking [40] (Chapter 3), the proposed semi-automatic coronary centerline
extraction method has proved to be a faster and objective solution which did not
require any landmarks human-indication (Fig. 4.9).

Although our method shows promising results, it also has some limitations. First,
since the MVF of the ROI was determined from extracted RCA centerlines at multiple
timepoints, the proposed method yielded only local improvements in the reconstructed
images. For example, in case C the motion artifact was strongly reduced using TPS
extrapolated MVF in the regions surroundings the extracted RCA centerlines (Fig. 4.6
(a)-(h) (right)). However, the same MVF failed to correctly represent the motion of
cardiac regions which were relatively far away the extracted centerlines. This was
proven by the appearance of motion artifacts visible in the MC reconstructed images
in (Fig. 4.6 (c)-(d) (right), red arrows).

Second, the proposed MC iterative method consists of two steps. In the first step,
the cardiac MVF is estimated by a semi-automatic minimum cost path-based coronary
centerline extraction approach. The determined MVF is used to perform an MC
iterative reconstruction in a second step. In a recent theoretical work, Schomberg [114]
proposed a single-pass methodology which could allow the determination of the MVF
directly during the reconstruction process. The success of a concept like this needs
to be evaluated for the case of X-ray tomography using clinical data.
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4.5 Conclusions

A coronary centerline extraction technique can be an efficient tool to determine the
motion of the coronary artery of interest. Based on the estimated motion information,
an MC ECG-gated iterative ROI reconstruction method was presented which effec-
tively reduces motion artifacts in the reconstructed coronary CT images. Although
iterative reconstructions are in general time-consuming, it was shown that their appli-
cation is still feasible when only applied to a ROI. Visual and quantitative assesment
of the method on three clinical cases confirm its potential.





Chapter Five

Fully automatic non-rigid
registration-based local motion
estimation for motion-corrected

iterative cardiac CT reconstruction

All truths are easy to understand once they are discovered; the

point is to discover them.

— Galileo Galilei (1564 – 1642)

Abstract — A method for motion-corrected iterative CT reconstruction of a car-
diac region of interest is proposed. Given a precomputed (non-motion compensated)
gated 4D ROI image data set, a fully automatic elastic image registration is applied
to recover a dense cardiac displacement field of the ROI from a chosen cardiac ref-
erence phase to a number of phases within the RR interval. Here, a stochastic
optimizer and multi-resolution approach are adopted to speed up the registration
process. Subsequently, motion-compensated iterative reconstruction using the de-
termined motion field is carried out. For the image representation volume-adapted
spherical basis functions (blobs) are used in order to take the volume change caused
by a divergent motion vector field into account. The method is evaluated on phan-
tom data and in four clinical data sets at a strong cardiac motion phase. Comparing
the method to standard gated iterative reconstruction results shows that motion
compensation strongly improves the image quality in these phases. A qualitative
and quantitative accuracy study is presented for the estimated cardiac motion field.
For the first time a blob-volume adaptation is applied on clinical data, and in the
case of divergent motion it yields improved image quality.

Based upon: A. A. Isola, M. Grass, W. J. Niessen, “Fully automatic nonrigid registration-based local
motion estimation for motion-corrected iterative cardiac CT reconstruction”, Medical Physics, vol.
37, no. 3, pp. 1093-1109, 2010.
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5.1 Introduction

C
ardiovascular computed tomography (cardiovascular CT) is increasingly used
for diagnosis and therapy planning of cardiovascular disease. In cardiovascular
CT the reconstructed images are analysed to detect possible abnormalities in

cardiac anatomy or function. Early detection and evaluation of stenotic segments in
the coronary arteries is an important clinical application of cardiac CT imaging, as
it can be used for diagnosing coronary artery disease and guiding therapy options to
prevent acute myocardial infarctions.

Up to now, ECG-gated CT reconstruction methods [26,45,47,57,86,122] are the
gold standard for the diagnosis of cardiovascular diseases. These techniques lead to
images with reduced motion artifacts at the expense of an increased radiation dose
to the patient and a limited temporal resolution. The ECG is used to select only
the projections acquired during a time window centered in a chosen quiescent cardiac
phase. For cardiac cone-beam CT, Manzke et al. [74] proposed an adaptive method
to determine the optimal ECG-gating window width without user interaction. This
method guarantees that all voxels receive data over an interval of at least π during
the backprojection. In this way, the temporal resolution is optimized since only data
from the smallest possible time window width is selected. Furthermore, this algorithm
leads to a trade-off between temporal resolution and improved image signal-to-noise
ratio (SNR), obtained using over scan data. For cardiac C-arm CT, an ECG-gated
image reconstruction method is also feasible [62], but the slower rotation speed of
the C-arm scanner leads to a temporal spread of the ECG-gated projections that
is much higher compared to that produced by a clinical CT scanner. Within the
automatically (or manually) determined time window the heart is assumed stationary.
The frequent appearance of motion blurring artifacts in the reconstructed images
proves this assumption to be violated.

A potential solution to reduce motion artifacts due to the heart pulsation is
motion-compensated (MC) CT reconstruction [5, 39,40,71,92,98,112,136]. A funda-
mental pre-requisite for MC reconstruction is the knowledge of the three-dimensional
(3D) object motion vector fields (MVF) from a reference phase of the heart pulsation
to all other phases within the RR interval.

Several cardiac motion estimation methodologies have been proposed in litera-
ture [5, 40, 43, 95, 124, 136]. Usually, these methods attempt to find a correspondence
between a limited number of automatically tracked or manually indicated anatomical
landmarks from a given four-dimensional (4D) cardiac image data set. This proce-
dure provides a sparse and irregular distribution of displacement vectors. To deter-
mine a dense MVF for the whole regular reconstruction grid, resampling is necessary.
Generally, a spatial resampling interpolation method (e.g. Thin-plate-spline [6] or
Nearest Neighbor by inverse distance weighting [116]) is used for this purpose. In
order to improve accuracy, the estimation of a dense MVF directly from the image
data would be of interest. This can for example be achieved using image registration
techniques [14, 33, 55, 59, 70, 71, 98, 113], which have been frequently applied in the
domain of motion analysis.

Elastic (or non-rigid) image registration techniques (EIR) based on B-spline basis
functions [129] have been used extensively in biomedical imaging applications for the
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monomodal or multimodal registration of pairs of clinical images [55, 59, 109], or for
recovering directly a dense MVF of a chosen cardiac region of interest (ROI) [65].
In recent work, Prümmer et al. [98] proposed a 4D FDK-like algorithm that used a
non-rigid 3D-3D image registration method for heart motion estimation.

The main drawback of EIR techniques is their long computation time, mainly
caused by the calculation of the derivative of the similarity criterion for all degrees of
freedom during each iteration of the optimization step. To solve the EIR problem, two
classes of optimizers can be considered: deterministic methods [41, 97] that assume
an exact knowledge of the criterion and its derivatives; and stochastic methods [52,
102, 118] which assume that only an approximation of the cost function is known.
A popular search technique is the stochastic gradient descent method by Robbins-
Monro [102]. Recently, with this approach, Klein et al. [55] have shown that the EIR
computation time can be strongly decreased, without affecting the rate of convergence,
accuracy, or robustness.

Iterative reconstruction algorithms are able to reconstruct images of transmission
CT scans even in situations where the data elements are noisy and where only a sparse
number of projections is available. Generally, iterative reconstruction methods may
be divided into two groups. The first group including the algebraic reconstruction tec-
nique (ART) [25], solves a system of linear equations and does not take in account the
statistics of the measurements. To the second group belong all the statistical iterative
reconstruction methods, such as the convex Maximum Likelihood method (ML) [60],
which take care of the photon statistics in the measurement, resulting in a higher
SNR of the reconstructed images compared to the analytical reconstruction meth-
ods [85,93,126].

A well known drawback of conventional iterative reconstruction methods is the
necessity that a field-of-view (FOV) has to be reconstructed that covers the whole
volume, which contributed to the absorption. In the case of a high resolution re-
construction, this imposes very large memory and computation requirements during
reconstruction. ROI reconstructions [149] can mitigate this problem.

In this chapter a method for MC iterative CT reconstruction of a cardiac ROI is
proposed. Given a precomputed (non-motion compensated) gated 4D ROI image data
set, a fully automatic elastic image registration is applied to recover a dense MVF of
the ROI from a chosen cardiac reference phase to a number of phases within the RR
interval. To speed-up the whole registration algorithm a stochastic Robbins-Monro
optimization method and a multiresolution approach [82,132] are adopted.

The method is evaluated on a dynamic cardiac phantom and on four clinical data
sets performing reconstructions at a strong cardiac motion phase, and images of the
right (RCA) and left (LCA) coronary arteries, of the left ventricle (LV), and of the
aortic and mitral valves are presented.

This chapter is organized as follows: Section 5.2 describes in detail the imple-
mentation of the proposed motion compensation framework. Section 5.3 presents the
results of the experimental validation of the method. Section 5.4 and 5.5 contain the
discussion and conclusion, respectively.
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5.2 Methodology

5.2.1 Introduction

The method for correcting the motion in cardiac CT is based on three subsequent
steps: As a first step, the projection data are acquired in low-pitch helical acquisition
mode together with the ECG and are reconstructed at different phase points. As a
second step, the motion-vector field is calculated from the reconstructed images with
the help of fully automatic elastic image registration. Finally, a motion-corrected
iterative reconstruction is carried out for a reference phase using those projections,
which cover the part of the cardiac cycle for which the motion-vector field has been
determined. These steps are described in the following sections 5.2.2–5.2.5.

5.2.2 Generation of 4D image data sets

As an input for the determination of the motion-vector field, a 4D image data set is
required. The images can be obtained by a low-pitch helical acquisition mode together
with the ECG and a reconstruction at different cardiac phase points. This can be
achieved, e.g., by an aperture weighted cardiac reconstruction (AWCR) [57].

In order to perform a 4D image reconstruction, the projection data have to be re-
constructed at different phase points within the cardiac cycle. A list of Nr R-peaks at

angular CT system positions φ
Rp

k is determined from the patient’s electrocardiogram
(ECG) recorded synchronously with the acquisition of the projection data. From the
list of R-peaks, the phase points at angular positions φP

k can be determined using,
for example, a fixed percentage P∈ [0, 1) of the RR interval. The same percentage is
used for all heart cycles.

φP
k = φ

Rp

k + P
(

φ
Rp

k+1 − φ
Rp

k

)

∀k = 1, . . . , Np. (5.1)

Np = Nr − 1 phase points are obtained. A cardiac gating function with a width
wk is centered in each phase point P at angular position φP

k . The width wk of
the gating function determines which projection data from each cycle are used for
the reconstruction and primarily determines the temporal resolution. In general,
reconstructions of 3D images are performed at equidistant phase points P throughout
the entire cardiac cycle with the smallest possible gating window width [74].

Due to the non-linearity of the cardiac motion during one single heart beat, and
its rate variation between each beat, it can be expected that different motion blurring
is observed in the gated reconstruction phases. A non-equidistant phases selection
according to a typical heart motion model could lead to more homogeneous cardiac
motion states. Nevertheless, to find a heart motion model which fit well to the cardiac
motion of each patient is a non-trivial issue that goes beyond the scope of this work.

5.2.3 The elastic image registration (EIR) framework

The pre-requisite for performing a motion-corrected cardiac iterative reconstruction [39]
of the acquired projection data is the existence of an MVF. For a volumetric cardiac
reconstruction the MVF is represented by a R

3 → R
3 mapping m (xi (R) , R, P ),
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Figure 5.1. Flowchart of the EIR algorithm. First, given a set of input images at
different cardiac phases, a multiresolution approach is applied and a set of gradually
downsampled versions of the original images is created. Then, a B-spline interpolator
is used to determine the continuous version of the discrete input images. Finally,
an iterative optimization process is performed to determine the optimal B-spline
coefficients cj of the deformation function T that minimize the similarity criterion
E.

which displaces each grid point xi (R) at a reference heart phase R to a new position
x∗

i (P ) in an arbitrary heart phase P by

x∗
i = x∗

i (P ) = xi(R) + m (xi(R), R, P ) , (5.2)

where R∈ [0, 1) is the selected reference percentage of the RR interval, and i =
1, 2, . . . , N with N = NxNyNz and Nx, Ny, and Nz are the number of grid points in
x, y, and z directions, respectively.

Given a reference image fr and a test image ft, the EIR finds a correspondence
function T : R

3 → R
3, which relates points in the test image ft to the reference image

fr (Fig. 5.1). A minimization problem is solved to determine the deformation field T

which minimizes an image similarity measure that is computed for each grid position
in the reference fr and warped test fw(x) = ft(T(x)) images. In our implementation
T is modeled using cubic B-splines [109,129–131].
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5.2.3.1 B-spline interpolation

The 3D deformation function T is described by uniformly spaced cubic B-spline:

T(x) = x +
∑

j∈Jc

cjβ3(x/h − j), (5.3)

where β3 is a 3D tensor product of 1D centered cubic B-spline, Jc is a set of parameter
indices, and h = (hx, hy, hz) is the knot spacing. The scale parameter h can be used
to set the desired node spacing, which determines the level of smoothness of the
defomation field T. The second term in Eq.5.3 corresponds to the MVF from the
reference to the test image.

5.2.3.2 Similarity measure and invertibility

Since here a mono-modal image registration is required, the sum of squared differences
(SSD) is used as similarity measure. The SSD metric relies on the assumption that
intensity representing homologous point must be the same in both images. The SSD
measure is defined by

ES
c =

N
∑

i=1

(fr(xi) − fw(xi))
2, (5.4)

Due to the high degrees of freedom, EIR is inherently an ill-posed problem and
could lead to unrealistic folding of the deformation fields in the absence of suitable
constraints [14]. Since the human organ and tissue motion is invertible, one important
physical constraint for the estimated deformation T is that it should be invertible
as well. By the inverse function theorem [108], the invertibility is guaranteed if the
Jacobian detJT(x) 6= 0 ∀x. Moreover, since the determinant is continuous in the
spatial domain, detJT must be positive since it is assumed that there are regions
with identity transformations (i.e. detJT(x) = 1 ∀x). Penalty functions have been
often used to prevent Jacobian determinant from being negative [53, 104, 109]. For
unconstrained optimization it is useful to add a penalty function M(c) to the similarity
measure ES

c , and look for a minimum of the combined criterion

EM
c (c) = ES

c (c) + γM (c) , (5.5)

where EM
c is the criterion to be optimized, γ is the regularization parameter, and c

is the vector of the parameters cj describing the deformation function T (Eq. 5.3).
For the 3D registrations presented in this chapter a topology-preserving smooth

penalty function M(c) proposed by Chun et al. in [12] is used, and reads

M (c) =
∑

l∈{x,y,z}

∑

i,j,k
[

p
(

cl
i+1,j,k − cl

i,j,k; ς l,x
1 , ς l,x

2

)

+ p
(

cl
i,j+1,k − cl

i,j,k; ς l,y
1 , ς l,y

2

)

+ p
(

cl
i,j,k+1 − cl

i,j,k; ς l,z
1 , ς l,z

2

)

]

,

(5.6)
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where ς l,r
1 = hlkl for ∀r ∈ {x, y, z} , ς l,r

2 = hlkl for ∀r 6= l and ς l,r
2 = hlKl for ∀r = l,

kl and Kl are positive constants, and p represents the following piecewise quadratic
function:

p (t; ς1, ς2) =







1
2 (t + ς1)

2
, t < −ς1

0, −ς1 ≤ t ≤ ς2
1
2 (t − ς2)

2
, ς2 < t

, (5.7)

where the argument t denotes a difference between two adjacent deformation coeffi-
cients.

This penalty function encourages positive Jacobian determinants by bounding
the differences of two adjacent deformation coefficients in the x,y,z direction. By con-
straining the differences only instead of the coefficients, even large deformations T(x)
with gradients within the bounds are included in the search solution space. Compared
to the direct Jacobian penalty methods, this approach has the advantages to enforce
the invertibily on the continuous domain, it is memory-efficient, and finally it has
faster computation because no interpolation for Jacobian values is needed [12].

5.2.3.3 Fast stochastic optimization methods

As shown in Eq.5.3, the deformation function T is represented by a summation of B-
spline basis functions, where cj denote the expansion coefficients. Given our paramet-
ric deformation model in Eq. 5.3, and the combined criterion in Eq. 5.5, the solution
of the registration problem can be defined as the result of the following minimization:

c = argmin
c

EM
c . (5.8)

To find the optimal deformation T that minimizes the cost function in Eq. 5.5, a
suitable optimization method should be applied.

In this work the stochastic gradient descent of Robbins-Monro [102] (RM) is used,
since it has the advantage to decrease the computation time per iteration, without
affecting the rate of convergence, final precision, or robustness [55].

The RM follows the same scheme as the deterministic gradient descent [97] with
the distinction that the gradient of the cost function, ∇cE

M
c (c(n)), is replaced by an

approximation ∇cẼ
M
c (c(n)), resulting in the following update rule:

∆c(n) = −ρn∇cẼ
M
c (c(n)). (5.9)

The gain factor ρn can be defined as a decaying function of the iteration number n
and in practice the following expression is often used [55,119]:

ρn =
a

(n + A)
α , (5.10)

with A ≥ 1 and the user-defined constants a > 0 and 0 ≤ α ≤ 1.
A stochastic approximation of the derivative of the similarity criterion ∇cẼ

M
c

can be determined by using a new, randomly selected subset of voxels in every iter-
ation of the optimization process. In this way, a bias in the approximation error is
avoided. This technique, commonly called stochastic subsampling, has been evaluated
on non-rigid registration in Klein et al. [55].
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For the EIRs presented in this chapter, the selection of uniformly distributed
samples follows a quasi-Monte Carlo Halton sequence [27] (Fig. 5.1).

5.2.3.4 Multiresolution elastic image registration

A multiresolution approach [82,132] can improve the robustness and the efficiency of
the EIR algorithm. First, the problem is solved at a coarse level, with subsampled
images and a deformation field with reduced number of degrees of freedom. Subse-
quently, the results are propagated to the next finer level. This iterative procedure
will expand alternately the grids of the B-spline control points of the images and of
the deformation field until the finest level is reached. In this work, the multireso-
lution approach uses 3D B-spline reduce/expand operators [132] of factor of two to
build the pyramid (i.e. a set of gradually reduced versions of the original images and
the deformation field), which is optimal in the L2-sense. As an example, in Fig. 5.2
a 2D-2D registration of the Lena image is shown.

5.2.4 Extraction of the cardiac motion vector fields

Since the second term in Eq. 5.3 represents the MVF from the reference to the test
image, the EIR can be used to estimate the MVF between a pair of volumes for
each grid position xi. Due to the severe motion artifacts in the images reconstructed
at phases of fast cardiac motion, it is advantageous to apply the EIR only between
images related to phases of relatively weak motion. In this way, it is possible to avoid
the accuracy degradation of the motion estimation produced by the matching errors.
To determine appropriate motion phases within the RR interval, a motion map (MM )
technique is used [74,113].

Hence, from the determined motion map the desired strong motion reference
phase R and a limited set of quiescent motion phases Q, with Q∈ [0, 1), are selected.
A temporary reference phase RT , with RT ∈ [0, 1), is chosen from the set of quiescent
phases. Therefore, in order to recover the relative MVFs, a number of 3D-3D EIRs are
performed between the volumes reconstructed at the phase RT and the other quiescent
phases Q selected. A continuous 4D displacement vector m

(

xi(R
T ), RT , P

)

from the
temporary reference phase RT to all the arbitrary phases P within the RR interval is
obtained by applying a cubic-spline interpolation using as knots all the EIR’s MVFs
computed previously.

After the last interpolation step, the MVF m
(

xi(R
T ), RT , R

)

from the tempo-
rary RT to the actual reference phase R is available. Given the determined m(xi(R

T ),
RT , R), it is possible to recover the inverse MVF im

(

xi(R), R,RT
)

in the opposite
direction from the actual R to the temporary RT reference phase, by using a fixed-
point-based iterative approach [11].

The displacement vector m (xi(R), R, P ) from the reference phase R to all the
arbitrary phases P in the RR interval is determined by:

m (xi(R), R, P ) = im
(

xi(R), R,RT
)

+ m
(

im
(

xi(R), R,RT
)

, RT , P
)

. (5.11)

Once the vector im
(

xi(R), R,RT
)

is obtained for each grid position xi at the
actual reference phase R, the corresponding codomain points si can be determined
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Figure 5.2. The Lena 2D-2D registration. In order, in the top row the reference
(a), the test (b) and the warped test (c) images are shown. In the middle row
the absolute difference images before (d) and after (e) the registration, and the
estimated transformation T (f) are given. While, in the bottom row the x (g) and
the y (h) components and the determinant of the jacobian matrix of T (detJT) (i)
are presented. Here g.u.=grayscale unit. (Image size: 256 × 256, deformation size:
8×8, 3 resolution levels, RM optimizer, a = 3500, A = 51, α = 0.602, 2000 iterations
per resolution level, 2000 randomly selected voxels per iteration, topology-preserving
regularizer, γ = 0.001).
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on the grid at the quiescent temporary reference phase point RT (see Fig. 5.3, middle
grid). Since the vectors m

(

xi(R
T ), RT , P

)

are available for the only grid positions xi,

in a second step a B-spline interpolation is applied to recover the m
(

si(R
T ), RT , P

)

values at off-grid positions si. Finally, the m (xi(R), R, P ) = tP,i can be easily deter-
mined by summing the im

(

xi(R), R,RT
)

and the m
(

si(R
T ), RT , P

)

(Fig. 5.3).

Reference phase R Temporary reference phase RT
Arbitrary phases P

x
s t

    m(x (R), R, P) = im(x (R), R, R ) + m(im(x (R), R, R ), R , P )
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i
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Figure 5.3. Extraction of the MVF m (xi(R), R, P ) from the actual strong moving
reference phase R to all the arbitrary phase points P within the RR interval in two
steps.

5.2.5 Motion-corrected image reconstruction with SART

Once an MVF is determined, an MC cardiac iterative reconstruction can be performed
for the cone-beam projection data, which are acquired with a CT scanner equipped
with a rigidly coupled focus-centered 2D detector and a X-ray source moving on a
helical path around the object.

Volumetric CT reconstruction algorithms determine the density absorption func-
tion f of the object irradiated using a set of 2D projections measured at different
angles. A linear combination f̃ of a limited set of basis functions b can be used to
represent the continuous function f :

f̃(x) =

N
∑

i=1

µib(x − xi), (5.12)

where x = (x, y, z), and the basis functions b are placed on a 3D grid with N grid
points. The set of parameters µi are the coefficients of expansion which describe the
function f̃ relative to the chosen basis functions b(x − xi). Following Lewitt [69] in
this work, the Kaiser-Bessel basis functions [68] are used. These spherically symmetric
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basis functions (also called blobs) are spatially limited and effectively frequency lim-
ited. The standard parameters are used for the Kaiser-Bessel basis functions, which
satisfy the frequency criteria described in [76]. Blobs as basis functions have many
advantages compared with simple cubic voxels, e.g. their appearance is independent
of the source position [68].

The main goal of iterative CT reconstruction is to find the optimal set of co-
efficients µi that minimizes the difference (or ratio) between the measured pj and

calculated p̃j
(n) =

∑N
i=1 Ajiµ

(n)
i projections, where Aji are the elements of the sys-

tem matrix, n is the iteration number, and j = (1, 2, . . . ,D) are the detector pixels.
For the iterative ROI reconstructions presented in this chapter, an ECG-gated

aperture weighted Simultaneous Algebraic Reconstruction Technique (SART) [4] is
applied. The SART method is a modified version of the ART [25], which increases the
speed of reconstruction. Here an entire cone-beam projection is back projected into
the image. The update formula used during the backprojection step of the ECG-gated
aperture weighted SART method (gated AWSART) can be written as

µ
(n+1)
i = µ

(n)
i +

λn
∑

j∈Sm
ajiwc

jw
a
j

∑

j∈Sm

pj − p̃j
(n)

∑

i aji
ajiw

c
jw

a
j . (5.13)

Here, aji indicates a backprojection weight [147], and wc
j represents a cardiac gating

window weight, which is introduced for each projection pj in the reconstruction algo-
rithm in order to select data belonging to the same heart phase. The effect of various
gating function shapes on the images quality has been previously studied [86]. For
the 3D reconstructions presented in this work, a rectangle with smooth edges (bump)
shape is used for the cardiac-gated iterative reconstructions [86].

In helical CT the object points can enter and leave the cone, which can lead to
artifacts in the reconstructed images. Empirically, it was found that these artifacts
can be reduced by adding an aperture weighting function wa

j , for each detector pixel,
j, in the back projection formula [57, 149]. For the reconstructions presented in this
work, a cos2 aperture weighting function is used [39,57,149].

One update of the ECG-gated SART algorithm requires to sum simultaneously
over all the projections in one subset Sm. The projections of one subset are se-
lected at equal angles and the order is determined randomly. A random sequence
is used because it was found to perform very similar to more sophisticated ordering
schemes [28].

The relaxation parameter, 0 < λn < 2, controls the speed of convergence. Based
on empirical evaluation, λn = 0.8 is chosen, which gave reasonable results.

In this work, the MC gated AWSART method proposed by Isola et al. [39] is
adopted to reconstruct the selected cardiac ROI at the chosen reference phase R.

To determine the forward projection, p̃j , the Aji contribution of each blob to
the detector pixel, j, have to be determined. In case of a divergent beam, care needs
to be taken to correctly sample the blobs; e.g. blobs which are close to the source,
have a different contribution to forward and back projection than more distal blobs.
Ziegler et al. [147] presented a blob sampling method motivated by the acquisition
geometry: due to the divergent X-ray geometry, the spherically symmetric volume
elements are magnified depending on their distance to the source. The convolution of
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the magnified volume elements with the sensitive detector areas defines the weights
Aji.

However, in case of MC reconstruction of a moving object (e.g. the heart, or
the lungs), the motion of the blob itself and the change of its volume caused by the
existence of a divergent MVF (Eq. 5.2) is neglected. Isola et al. in [39] have shown that
the non-vanishing divergence of the MVF yields a non-equidistant set of grid points,
and an inconsistency in the line integral calculation which produces streak artifacts
in the reconstructed images. Therefore, in case of MC reconstruction, a modified
forward and back projection model was proposed which adapts the individual blob
volume and its relative footprint on the detector in such a way that the representation
of the image becomes more homogeneous. Phantom simulations have shown that this
approach improves MC reconstruction quality [39]. An initial validation of the method
on clinical data is presented in the subsection 5.3.6.

Iterative reconstruction is associated with high computational costs, especially in
case of high resolution image reconstructions over the entire FOV and multiple time
phases. Usually, in many clinical cases, the ROI is smaller than the volume that is
irradiated, e.g. in coronary CT angiography, the ROI is often restricted to only one or
more of the coronary arteries. Hence, an ROI reconstruction can be an efficient solu-
tion to increase the speed of iterative or analytical image reconstructions. For filtered
back-projection (FBP) reconstruction methods [9, 51, 128], an ROI reconstruction is
possible without additional efforts. To the contrary, an iterative reconstruction re-
quires that an FOV has to be reconstructed that covers the whole volume, which
contributed to the absorption. Only then the forward projections can be identical to
the raw measurements. In this work, in order to recover the sinogram of only the
ROI from the complete clinical raw measurements, a four-steps method as proposed
by Ziegler et al. in [149] is adopted. This method consists of four consecutive steps and
it is briefly described in the following. The first step includes an analytical FBP re-
construction of the whole FOV. In the second step the ROI is removed from the image
of the previous step by setting the corresponding grid values to zero and performing
a reprojection through this image on the same trajectory and detector geometry as
the measurement. The sinogram, which results of the reprojection, is subtracted from
the measurement data set in a third step. These processed projections contain the
projections of the ROI only, which are taken for the iterative ROI reconstruction in a
fourth step [149]. In case of MC gated iterative volume reconstruction, the last step
can be replaced with an MC iterative ROI reconstruction method.

5.3 Experiments and results

To evaluate our MC reconstruction method a series of experiments was performed.
First, a method validation on a dynamic cardiac phantom is given. Second, a consis-
tency check of the estimated MVF, and a qualitative evaluation of the reconstructed
images for human cases are presented. Subsequently, coronary artery reconstruc-
tions of three patients are shown. Finally, a clinical validation of the blobs volume-
adaptation method proposed in [39] is given for the MC iterative reconstruction of
the LV of a fourth patient.
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5.3.1 CT scanning and reconstruction settings

The phantom data were simulated for a scanner with 16 detector rows of 0.75 mm
projected height and a helical scan with a relative pitch of 0.2. All the human data
sets were acquired on a Brilliance 40(64) CT scanner (Philips Healthcare, Cleveland,
OH, USA). In order to perform ECG-gated reconstructions, an ECG of the patients
was recorded simultaneously with the CT acquisition. Approximately 10 heart beats
are expected in the full scan of each patient. Furhter scanning and reconstruction
parameters are listed in Table 5.1.

Table 5.1. CT scanning and AWSART reconstruction parameters

Cases A B C D Phantom
Pitch [mm] 5 8 8 8 2.4
Relative pitch 0.2 0.2 0.2 0.2 0.2
Collimation 40×0.625 mm 64×0.625 mm 16×0.75 mm
Rotation time [s] 0.42 0.42 0.42 0.42 0.42
Tube voltage [keV] 120 120 120 120 120
Anode current [mA] 333 333 333 333 119
Mean heart rate [bpm] 55 56 68 75 64
Minimum heart rate [bpm] 53 54 65 73 64
Maximum heart rate [bpm] 58 59 71 83 64
ROI radius [mm] 25 33 29 37 -
Reference Phase [%RR] 50 50 60 20 40
Gating wind. width [%RR] 40 40 40 40 40
# Subsets 300 205 192 274 363
# Views x subset 100 100 100 100 100
# Iterations 10 10 10 10 10
λn 0.8 0.8 0.8 0.8 0.8
Cubic grid size [mm] 0.3 0.3 0.3 0.3 0.5

5.3.2 Phantom study

For the simulations performed in this work, a dynamic cardiac phantom modelled
with ellipsoids and two tori to simulate coronary arteries was used. The heart size
was modified dynamically according to a model ventricular volume curve derived from
clinical cases [140] (Fig. 5.4). This volume curve was applied to every cardiac cycle
of the phantom with a constant rate of 64 bpm.

The first step of this phantom evaluation was the 4D image data set reconstruc-
tion. The AWCR method was performed at phase points P within the range 0 to
100% RR in steps of 5 % RR with an optimized gating window width [74]. The sys-
tolic phase point R= 40% RR was selected as reference reconstruction phase. This
rapid motion phase corresponds to the minimum of the ventricular volume curve in
Fig. 5.4(b). Consequently, here a significant temporal cubic-spline interpolation error
should occur. Thus, it is interesting to investigate how much this error can actually
degrade the final MC reconstruction.

In order to apply the registration process, a subset of volumes reconstructed at
slow motion phases Q located in the regions between [20,35]% RR and [50,60]% RR
was selected. Among these quiescent phases a temporary reference phase RT = 30%
RR was chosen. Therefore, six 3D-3D registrations were performed between the tem-



94 5 Elastic registration-based motion estimation for MC iterative cardiac CT

0 0.5 1 1.5 2 2.5 3
50

60

70

80

90

100

110

120

130

Time [s]

V
o
lu

m
e
 [
m

l]

Ventricular cardiac cycle

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

50

60

70

80

90

100

110

120

130

140

Phase points [%RR]

V
o
lu

m
e
 [
m

l]

Ventricular volume curve

(b)

(c)

Figure 5.4. The dynamic cardiac phantom and the ventricular volume curve (see
[140]). In (a), the red dashed vertical lines indicate the R-peaks, and the blue
dots represent values from the model. In (b), the same volume curve values at the
corresponding cardiac phases in one beating cycle are given. Here, the red and green
dots indicate the systole (40% RR) and diastole (75% RR), respectivelly. While, in
(c) a volume rendered image of the dynamic cardiac phantom is shown.
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a)

c)

b)

Figure 5.5. Phantom’s axial (a), coronal(b) and sagittal (c) views. In order, the
ground truth synthetic images at 40% RR (first column), the static (second column)
and dynamic (third column) cardiac phantom’s gated AWSART and the dynamic
cardiac phantom’s MC gated AWSART (fourth column) reconstructed images at
phase point 40% RR with gating window width of 40% RR are shown. (after 10
iterations, Level=-200 HU, Window=1000 HU).

porary reference phase RT and all the other quiescent phases Q (for the registration
settings see the following subsection 5.3.3). A cubic-spline interpolation was applied
to fill the MVF estimation gap at the strong motion phases 40% and 45% RR. Finally,
the MVF were shifted to the actual reference phase R = 40 %RR following all the
remaining steps explained in the subsection 5.2.4. Given the estimated MVF, an MC
gated AWSART reconstruction was performed at phase 40% RR with a fixed gat-
ing window of 40% RR. For the sake of comparison, gated AWSART reconstructions
of the static and dynamic heart phantom were performed at identical phase point
and gating window width. These reconstructions are presented in Fig. 5.5, while
quantitative image similarity measures are given in Table 5.2.

As shown in Fig. 5.5 (third column), the gated AWSART reconstruction per-
formed at 40% RR with a gating window of 40% RR leads to an image where the
ventricle shape and the coronary arteries are strongly blurred. To the contrary, the
MC gated AWSART reconstruction in Fig. 5.5 (fourth column) produces a sharp
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Table 5.2. Image similarity measures. The MAD and the normalized correlation
coefficient (NCC) between the cardiac phantom ground truth images and the gated
AWSART reconstructed images of the static and dynamic cardiac phantom, and
the MC gated AWSART reconstructed images of the dynamic cardiac phantom in
Fig.5.5 are presented. Moreover, the ventricle volume of each reconstructed heart
phantom is given.

Method Motion state MAD [HU] NCC [%] Volume [ml]
Ground truth Static 0.0 100.0% 50.0

gated AWSART
Static 4.5 99.5% 49.9

Dynamic 64.9 90.7% 46.0
MC gated AWSART Dynamic 33.5 92.0% 53.5

image where the ventricle shape and the vessels are well defined. By analysis of the
image similarity measures in Table 5.2, it can be observed that the MC reconstruction
presents better MAD and NCC values compared to the gated AWSART reconstructed
image. The ground truth phantom ventricle has a volume of 50 ml at 40% RR, while
in the MC reconstruction its measured volume is of 53.5 ml. This slightly bigger
volume is due to the temporal cubic-spline interpolation error which has shifted the
reference phase from 40% to 41% RR.

5.3.3 Cardiac motion estimation

In order to generate an MM a 4D ROI data set was required, hence an AWCR method
was performed at phase points P within the range 0 to 100% RR in steps of 5 % RR
with an optimized gating window width [74]. Then, the mean absolute difference
(MAD) was calculated between the subsequent reconstructed images of the 4D ROI
data set. The determined MMs for all the clinical cases are shown in Fig. 5.6. The fast
cardiac motion phases R= 50%, 50%, 60% and 20% RR (red points in Fig. 5.6) were
chosen as reference reconstruction phases for the cases A-D, respectively. In order
to apply the registration process, a subset of volumes reconstructed at quiescent
phases Q was selected (red intervals in Fig. 5.6). Generally, suitable cardiac slow
motion phases Q are located in regions between [0,5]% RR, [35,45]% RR (end systole)
and [65,85]% RR (diastasis). Among these quiescent phases a temporary reference
phase RT was selected. The phases RT = 70%, 70%, 75% and 30% RR (red stars in
Fig. 5.6) were chosen for the cases A-D respectively. For the EIR step a 3-level multi-
resolution approach was applied, and in each level the deformation field B-spline
knot spacing h was empirically chosen every 12 blobs. Since no a priori knowledge
was available about the deformation, according to Chun et al. in [12], the topology-
preserving regularization parameters were chosen symmetrically. The regularization
parameter γ in Eq.5.5, for all the four clinical data sets was set experimentally to
γ = 0.001. For the RM optimizer, at each multiresolution level, the gain factor ρn

in Eq.5.10 was calculated using the same following parameters (a = 3500, A = 51,
α = 0.602), it was iterated for 5000 iterations, and in each iteration a different random
subset of 5000 image voxels was selected which are members of a Halton sequence for
computing the similarity criterion. A number of 3D-3D registrations between the
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Figure 5.6. The MM of the four clinical cases A,B,C and D. The mean absolute
differences ((a)-(d)) are presented. For a smoother representation of the MAD
curves, a cubic-spline interpolation was used. Moreover, the selected actual (red
points) and temporary (red stars) reference phases, and the intervals of quiescent
motion phases (red intervals) used for the image registration process are shown.

previous temporary reference phases RT and all the other selected quiescent phases
Q were executed. Each registration took approximately 6 minutes on a 2.8 GHz AMD
Opteron. As an example, in Fig.5.7 the registration results achieved for the case B are
shown. A cubic-spline interpolation was used to achieve a temporal continuous MVF
m

(

xi(R
T ), RT , P

)

from the temporary phase RT and all the other arbitrary phases P

in the entire RR interval. Given the m
(

xi(R
T ), RT , R

)

a fixed-point-based iterative
approach [11] was used to recover the inverse MVF from the actual strong motion
to the temporary quiescent reference phase im

(

xi(R), R,RT
)

. Here, to determine

the im
(

xi(R), R,RT
)

it was iterated for 10 iterations which took approximately 3
minutes. After performing all the remaining steps previously described in section
5.2.4 the final MVFs m (xi(R), R, P ) were achieved.
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a) b) c) d) e)

h)g) i) j)f)

Figure 5.7. Registration results for the case B. In order, at the top, a sagittal view
of the volume reconstructed at 70% RR (a), the corresponding view of the volume
reconstructed at 40% RR (b), the corresponding view of the volume reconstructed at
40% RR warped to the 70% RR phase (c), and the absolute difference images before
(d) and after (e) the registration are shown. At the bottom with the same order
the registration results for an axial view are presented. (AWCR method, optimized
gating window width, Level=0 HU, Window=500 HU)

5.3.4 Consistency study of the estimated motion vector fields

In clinical applications, due to the absence of ground truth evaluating the accuracy
of estimated MVF is a complex issue. In this contribution, the current gold standard
AWCR reconstruction [57] with the narrowest gating window width was considered
as the best representation of the ground truth. This reconstruction was compared
with the MC AWCR reconstruction [136]. Fig.5.8 presents the reconstruction results
(top), and the mean absolute difference (MAD) between the AWCR reconstructions
with a gating window width of 22% RR and the MC AWCR reconstructed volumes
with gating window widths of 22%, 40%, 60% and 80% RR, performed at each phase
within the RR interval with step of 10% RR.

A common way to evaluate the consistency of an MVF estimation methodology
can be to determine the cumulative MVF over a closed motion sequence, which should
ideally be equal to zero. For the method described in this chapter, the EIR was applied
only between volumes imaged at cardiac rest phases. Therefore, it makes sense to
perform the EIR consistency check, over one of the selected region of quiescent phases
within the RR interval. Chosen a starting phase point P, the cumulative MVF of a
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Figure 5.8. MVF consistency study. In order in each column (top) the AWCR
reconstructed images with a gating window width of 22% RR (first row), and the
MC AWCR reconstructed images with a gating window width of 22, 40, 60, and 80
% RR (second-fifth rows) at five different phase points within the RR interval are
shown (case A, cubic grid size = 0.3 mm, Level=0 HU, Window=500 HU). At the
bottom, the corresponding MAD curves are presented.
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closed sequence m (·, P, P ) can be determined by

m (·, P, P ) =

L−1
∑

i=0

m (·, P + νi, P + ν (i + 1)) +

0
∑

i=L−1

m (·, P + ν (i + 1) , P + νi) ,

(5.14)
where ν = 1, 2, . . . is the step, and L = 1, 2, . . . represents the number of subsequent
MVFs considered to build the closed MVF sequence. For the consistency check per-
formed in this chapter, P=65% RR, ν = 5% RR, and L = 4 are used for all the
clinical cases. In Table 5.3, the mean and the standard deviation (STD) values of
the cumulative MVF m (·, 65%RR, 65%RR) x,y, and z components are determined
over the all image voxels. Moreover, the percentages of voxels with MVF components
within four different inconsistency bins are shown (Table 5.3). From both the re-

Table 5.3. Closed sequence consistency check. The mean and the STD of the MVF
m (·, 65%RR, 65%RR)’s components values determined over the all image voxels are
presented. Moreover, even the percentages of image voxels with MVF’s components
inconsistency within different inconsistency bins are shown.

Case m (·, 65%, 65%) Mean[±STD] < 0.3 mm [0.3-0.6) mm [0.6-1.2) mm > 1.2 mm

A
MVFx -0.01[±0.27] mm 93.65 % 4.78 % 1.39 % 0.18 %
MVFy -0.02[±0.30] mm 92.13 % 5.60 % 1.88 % 0.39 %
MVFz 0.06[±0.33] mm 90.77 % 4.91 % 2.70 % 1.62 %

B
MVFx 0.08[±0.44] mm 91.51 % 5.40 % 2.50 % 0.59 %
MVFy -0.06[±0.42] mm 93.84 % 3.65 % 1.78 % 0.73 %
MVFz 0.09[±0.45] mm 90.26 % 4.45 % 3.41 % 1.88 %

C
MVFx -0.10[±0.48] mm 90.51 % 7.85 % 1.49 % 0.15 %
MVFy 0.04[±0.44] mm 87.34 % 8.11 % 2.65 % 1.90 %
MVFz 0.09[±0.40] mm 86.10 % 8.25 % 3.22 % 2.43 %

D
MVFx -0.01[±0.25] mm 97.79 % 1.60 % 0.54 % 0.07 %
MVFy -0.02[±0.33] mm 98.59 % 1.09 % 0.29 % 0.03 %
MVFz -0.01[±0.26] mm 98.59 % 1.07 % 0.33 % 0.01 %

sults presented in Fig. 5.8 and the MM shown in Fig. 5.6(a), it can be observed that
consistent motions are estimated in the regions of slow cardiac motion ([30,45]% and
[65,85]% RR). Indeed, here the MC AWCR reconstruction with the narrowest gating
window of 22%RR present a very good quality which is comparable with the quality
of AWCR reconstruction (Fig. 5.8, blue curve). Moreover, despite to the increased
gating window width, in these phases even the MC AWCR performed with a gating
window width of 40%, 60%, and 80% RR still remove the residual motion blurring ar-
tifacts (Fig. 5.8,bottom, red,green, and magenta MAD curves). Clearly, at the phases
of strong motion the strength of the MC reconstruction can be observed. In the regions
between [0,25]%, [50,60]%, and [90,100]% RR excellent MC AWCR reconstructions
are achieved. Here, all the MAD curves show higher values due to the strong motion
blurring artifacts which are present in the AWCR reconstructed images, but removed
in the MC AWCR results. Furthermore, as can be observed in the curves at he bot-
tom in Fig. 5.8, the MAD values never exceed 30 HU in the interval of strong cardiac
motion, and 20 HU in the phases of slow cardiac motion. Since very high absorption
values are present in regions filled of contrast agent (e.g. the Aorta, the left ventricle
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and the RCA and LCA), these very low maximum values of the MAD prove that a
very good global overlap was achieved between the volumes reconstructed with the
AWCR and the MC AWCR methods.

Finally, from both the images and the MAD curves shown in Fig. 5.8 can be
observed as MC reconstructions overcome the quality of non-compensated reconstruc-
tions in the whole RR interval.

Similar conclusions are achieved for the quantitative consistency check results
presented in Table 5.3. In accordance with the qualitative observations discussed
above, the presented results show as for the all clinical cases the determined cumu-
lative MVFs m (·, 65%RR, 65%RR)’s components have mean values close to zero,
and STD values about the voxel size. For the 90% of voxels, a subvoxel precision
is achieved for the cumulative MVF components, and in the 95% of them the MVF
inconsistency never exceeds two times the voxel size. In conclusion, this final quanti-
tative study confirms as the EIR method can be an efficient solution to carry out a
reliable MVF estimation between volumes reconstructed at quiescent phases.

5.3.5 MC iterative coronary ROI reconstructions in patient
data

The proposed MC iterative ROI reconstruction was used to reconstruct the coro-
nary arteries of three different clinical cases. A suitable ROI was selected that was
large enough to contains the LCA and RCA of the three patients (Table 5.1). The
images were reconstructed at the strong cardiac motion reference phases R= 50%,
50%, 60% RR for the case A,B and C, respectively. For all image reconstructions a
gating window width of 40% RR was used. Finally, the gated AWSART and the MC
gated AWSART reconstructed volumes produced after 10 iterations and the relative
3D volume rendered images, are shown in Fig. 5.9,5.10 and 5.11 for the case A, B,
and C, respectively. Here, for reasons of comparison, even the gated AWSART recon-
structions at the quiescent phase of 75% RR with a gating window width of 40% RR
are presented.

For the clinical case A, an RCA was reconstructed. The gated AWSART re-
construction leads to blurred images (Fig. 5.9(a)-(i) (left)), whereas the MC gated
AWSART reconstruction produces significantly better images quality, where the Aorta,
the RCA’s ostium, the interventricular posterior branch, the whole RCA, and its
right conal and marginal acute branches are clearly visible (Fig. 5.9(a)-(i) (right)).
The same improvements are observable in the 3D volumes rendering in Fig. 5.9(j),
where for the MC gated AWSART a very long RCA segment is recovered and visible
(Fig. 5.9(j) (center)). Due to the residual strong cardiac motion, the gated AWSART
image is blurred and an inconsistent ghost RCA is obtained (Fig. 5.9(j) (left)).

An RCA is shown for the clinical case B. Even here, the MC reconstructed im-
ages of the RCA (Fig. 5.10(a)-(c) (right)) and the Aorta (Fig. 5.10(a)-(b) (right)) look
sharper than the corresponding non-compensated gated reconstructions (Fig. 5.10(a)-
(c) (left)). The 3D volumes rendering presented in Fig. 5.10(d) confirms as the pro-
posed MC gated AWSART method (center) allows to strongly reduce the motion
blurring artifacts which degrade the quality of the standard gated reconstruction
(left).
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Excellent results are achieved even for the LCA’s ROI reconstruction of the clin-
ical case C. In Fig. 5.11(a) the left main and its two main branches, the left anterior
descending and the left circumflex artery are clearly visible in the MC gated AWSART
reconstruction (right), but practically invisible in the gated AWSART image (left).
In the MC images in Fig. 5.11(b) (right) the aortic valve is very sharp and visible, in-
stead in its counterpart non motion-corrected gated image the same valve is strongly
blurred (Fig. 5.11(b) (left)). The same conclusions can be given for the MC results
presented in the coronal and sagittal views in Fig. 5.11(c)-(e), where the LCA vessel,
and the aortic valve are well visible. The 3D volumes rendering in Fig. 5.11(f) (cen-
ter) show as even in a phase of strong cardiac motion, the MC iterative reconstruction
leads to an image where not only the LCA’s main branches, but even the secondary
vessels as its first diagonal branch and its first marginal branch are recovered and
noticeably visible.

Finally, it is interesting to observe as in all cases presented the MC gated AWSART
reconstructions at strong motion phases produce coronary arteries that are consistent
with those obtained with a standard gated AWSART method at a quiet phase of 75%
RR (Fig. 5.9(j)(right), 5.10(d)(right), 5.11(f)(right)). Despite the impressive results,
the ECG-gated reconstructions at phases of slow cardiac motion present an higher im-
age sharpness compared to that achieved using the proposed MC approach at strong
motion phases.

5.3.6 Validation on clinical data of the blobs volume-adaptation
for MC iterative reconstructions

In this subsection an investigation of the performance of the efficient projection model
for blobs in MC iterative cone beam CT reconstruction [39] on clinical data is pre-
sented. Due to the characteristic divergent pumping motion of the chambers of the
heart, the comparison between the MC gated AWSART reconstructions with and
without the proposed blobs-volume scaling, is shown for the LV reconstruction of the
clinical case D.

The gated AWSART and MC gated iterative reconstructions with (MC gated
AWSART) and without (MC gated AWSARTnvs) the proposed blob volume scaling
are performed by using the settings listed in Table 5.1. In Fig.5.12 the relative recon-
structed images are shown. Furthermore, in Fig.5.13 the absorption profiles along the
red and green lines in the images in Fig.5.12(b) and Fig.5.12(c) are presented.

In Fig. 5.12(a) (left) the gated AWSART reconstructed images are strongly af-
fected by the motion blurring artifact. This makes impossible to perform a preven-
tive analysis of the cardiac condition of the LV, the ventricular myocardium, the left
atrium, the ascending Aorta, and the aortic and mitral valves. In Fig. 5.12(a) (middle)
the MC gated AWSART reconstructed images performed using the estimated MVFs
and the proposed volume-dependent blob-footprint adaptation look sharper and the
motion blurring artifact is strongly reduced. The same enhancement is clearly vis-
ible in Fig. 5.12(b)-(c) (middle). Here, the pulmonary artery, the ascending Aorta
and the aortic valve are well defined. Moreover, even a section of the LCA vessel
which was strongly blurred and almost invisible in the non-compensated iterative
reconstruction, in the MC images it looks sharper and well visible. For reasons of



106 5 Elastic registration-based motion estimation for MC iterative cardiac CT

a)

b)

c)

Figure 5.12. Axial (a) and coronal (b)-(c) views of the gated AWSART (left
column), the MC gated AWSART (middle column), and the MC gated AWSARTnvs

(right column) reconstructed images are shown. (Case D, at phase point 20% RR,
gating window width of 40 % RR, 10 iterations, ROI’s radius=37 mm, Level=150
HU, Window=650 HU).
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Figure 5.13. Absorption coefficients of the gated AWSART, the MC gated
AWSART, and the MC gated AWSARTnvs image reconstructions performed for
clinical case D, respectively, along the red lines indicated in Fig. 5.12(b), and along
the green lines indicated in figure Fig. 5.12(c).

comparison, in the right column in Fig. 5.12(a)-(c), even the MC gated AWSARTnvs

reconstruction images performed using the same estimated MVFs are shown. Even
in this case the motion artifacts are reduced, but the quality of the images is clearly
degraded. Here, due to the divergent pumping motion of the LV chamber, the blobs
are locally moved in different directions and an irregular reconstruction grid is pro-
duced. If any volume-dependent blobs-footprint adaptation is performed, several gaps
are generated among the blobs of the irregular grid. These yield a non-homogeneous
image representation and degrade tremendously the quality of the reconstructed im-
ages. In different areas of the LV, of the myocardium, and of the ascendig Aorta, a
strong reduction of the absorption coefficients produces several dark stains that can
induce to an erroneous or practically impossible diagnosis of the LV (Fig. 5.12(a)-(c)
(right)). The proposed volume-dependent blob footprint adaptation shows to avoid
this strong reduction of the absorption coefficients, by taking into account the varia-
tion of the blobs volume caused from the divergent MVF of the LV. This is confirmed
even from the absorption coefficient profiles shown in Fig. 5.13(a)-(b). Here, for the
MC gated AWSARTnvs, even if it is completely filled of contrast agent, the absorp-
tion coefficients inside the LV are so reduced that they become comparable with the
absorption coefficients of the myocardium. Instead, with the MC gated AWSART
and the proposed blob-volume adaptation an higher contrast between the LV and the
myocardium absorption coefficients is recovered.

5.4 Discussion

In this chapter, the use of a fast elastic image registration method for fully automatic
local cardiac motion compensated gated iterative coronary artery reconstruction was
presented and evaluated. The evaluation included a validation on a dynamic cardiac
phantom, an MVF consistency check, a qualitative inspection of reconstructed image
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quality, and a clinical validation of the method proposed in [39] for volume-dependent
adaptation of the footprint of the blobs in case of MC iterative reconstructions.

The ECG-gated CT reconstructed images are strongly affected by the chosen
phase of reconstruction. In this work, subvolumes of the heart of different patients
have been reconstructed in fast cardiac motion phases. Here, the ECG-gated iterative
reconstructions, even if the smallest possible gating window width is used, fail to
generate motion artifact-free images. This hampers the interpretation of coronary
segments which could contain suspicious structures.

From the MC gated iterative reconstruction results presented in Fig. 5.5, 5.9, 5.10,
5.11, and 5.12, it is noticeable that adding a reliable object motion model inside the
iterative reconstruction framework can lead to excellent reconstructed images with
reduced motion blurring. After the clinical validation study, the efficient projection
model proposed in [39] reduced the strong artifacts caused by the change of the blobs
volume, when a divergent MVF is applied for MC iterative reconstructions.

Compared with local improvements obtainable with other landmarks- or coronary
centerlines-MVF estimation methodologies [5,43,95], here the improvement of the MC
reconstruction is visible uniformly inside the ROI. Future research should be focused
on the application of the proposed method on whole heart MC iterative reconstruction.
Here, further investigations are required to verify if accurate cardiac MVFs can be
achieved.

The calculation of the temporal resolution of an MC reconstruction with the
proposed motion model is not straightforward and no recipy to calculate temporal
resolution known from the literature includes motion compensation. The interval of
possible values for the temporal resolution varies from the time required to measure a
single projection at the selected phase point (ideal MC reconstruction) to the temporal
resolution of a data set reconstructed with an ECG-gated reconstruction method
using all projections inside the gating window. Apparently the temporal resolution
is improved when using an MC reconstruction method, but the exact quantification
remains an open area of research.

Despite the promising results, some method limitations are not negligible. First,
since the image registration estimates the unknown cardiac MVF at the quiescent
motion phases, future work should address the challenge to estimate the MVF even
at fast motion phases. It is important to stress that a non-equidistant phase sampling
is to the cost of interpolation errors between phases where rapid cardiac motions take
place. A linear or cubic-spline temporal interpolation of the MVF might not capture
the real motion of the heart. Registering the images reconstructed at fast motion
phases could provide important spatial information of the heart at these phases. A
possible solution to use the cardiac strong motion phases during the registration step,
could be to add a temporal smoothing term to the combined criterion in Eq. 5.5 in or-
der to produce a smoothed version of the motion trajectory of each image voxel. In this
case, care should be taken in order to properly tune the corresponding regularization
parameter, since a strong temporal regularization could lead to non-optimal solutions
with poor images spatial alignment. An alternative approach is surface-model-based
segmentation [96, 138] togheter with image registration in order to extrapolate the
cardiac MVF.

Second, one requirement to this approach is having accurate initial reconstruc-



5.5 Conclusions 109

tions to be aligned. The frequent presence of image artifacts can affect the real MVF
which describes the heart motion. A 2D-3D non-rigid registration [99] can be a po-
tential solution for a more accurate cardiac motion estimation. Here, the 3D MVF is
determined by aligning only one initially ECG-gated reconstructed volume to a series
of ECG-gated projections.

Third, the proposed MC iterative method consists of two passes. Initially, the
cardiac MVF is estimated by image registration, subsequently, this motion informa-
tion is used to perform an MC iterative reconstruction. To increase the method’s
speed and accuracy, single-pass methodologies may permit the determination of the
MVF during the reconstruction process [114].

5.5 Conclusions

In conclusion, a fully automatic local cardiac motion compensated gated iterative
method with volume-adapted blobs as basis functions is proposed. The method leads
to excellent MC gated iterative reconstructed images which outperform the quality
of the images reconstructed with a classical gated iterative method. In clinical cases,
a volume-dependent blobs-footprint adaptation proves to be a good solution to take
care of the change of the blobs volume caused by a divergent MVF. Though the image
quality of reconstructions at cardiac phases of fast motion is increased significantly,
a gated reconstruction in the cardiac resting phase remains superior in image quality
at moderate heart rate.





Chapter Six

Summary

If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is.

— John Louis von Neumann (1903 – 1957)

I
terative CT reconstruction techniques are an excellent alternative to classical FBP
reconstruction methods. In particular, statistical iterative methods have shown to
produce reconstructed images with a higher SNR compared to that achieved with

analytical methods. A drawback of iterative reconstruction is its high computational
cost. However, in case of a cardiac subvolume reconstruction, e.g. a coronary vessel
segment or the left ventricle, iterative ROI reconstruction represents an excellent
solution to reduce the computational effort.

As a consequence of cardiac motion, CT image quality of ECG-gated and -
triggered reconstructions strongly depends on the cardiac phase. The larger the gating
window the better the SNR of the image, because more projections contribute to the
reconstruction results. However, a wider gating window produces more motion ar-
tifacts. Also, at certain cardiac phases of rapid motion, cardiac CT reconstruction
quality is seriously compromised.

Cardiac-motion compensated CT reconstruction methods have shown to be a
potential tool to correct the artifacts caused by object-motion during CT acquisition.
Hereto, an efficient local motion estimation methodology has to be developed in order
to extract the unknown motion information related to the chosen cardiac ROI. Fur-
thermore, divergence in motion vector fields as occurring for the ventricular pumping
motion should be taken into account during MC reconstruction. If this effect would
be neglected, this would lead to strong streak artifacts or dark stains which could
hamper the visualization of the coronary vessels and the heart chambers.

The objective of this thesis was to derive new techniques in the field of diagnostic
cardiac imaging to overcome these problems. In the first part, a new MC iterative
algorithm was proposed which takes both the motion vector field and its divergence
during line integral calculation into account (Chapter 2). Since an MC reconstruction
requires as input an MVF of the moving object, three methods for motion estima-
tion are proposed: a manual, semi-automatic and fully-automatic motion estimation
methodology, respectively (Chapters 3-5). For all of these methods an initial 4D
multiphase ECG-gated image data set is required.
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In the following the results of the chapters are discussed in more detail:
Chapter 2: In this chapter a new 3D method to reconstruct moving objects from

cone-beam X-ray projections using an iterative reconstruction algorithm and a given
motion vector field was presented and evaluated on phantom data. A comparison
with a non-motion compensated iterative method and a classical FBP reconstruction
approach was given. Results for two simulated data sets subject to three different
motion patterns were shown. The motion compensation framework combined with
an efficient method to calculate the line integral through volume-adapted blobs pre-
vented motion and streak artifacts in the reconstructed images and ensured robustness
against noise.

Chapter 3: In this chapter a novel 3D method for motion compensated iterative
CT reconstruction of a cardiac region of interest was presented. A statistical max-
imum likelihood ECG-gated iterative technique was applied as basic reconstruction
method. A limited number of manually indicated anatomical point landmarks of the
coronary segment of interest were used as an input of a thin-plate spline warping in
order to estimate the unknown MVF of the cardiac ROI. An inspection of the manual
localization error revealed that an error up to 7.5 mm can be tolerated, and that bigger
landmark localization errors lead to blurred reconstructed images of the coronary ves-
sel. Results on two clinical data sets at strongest motion phases were compared with
standard gated iterative reconstruction showing that motion compensation strongly
improved reconstruction quality. MC statistical iterative reconstructed images pre-
sented an higher SNR compared to that achieved with an MC FBP method. Despite
its simplicity and efficiency, the proposed method requires the input of an experienced
observer for landmark localization. This is a limitation, owing to the workload, and
the introduced inter-observer variability.

Chapter 4: In this chapter a method which combines motion-compensated iter-
ative computed tomography reconstruction and minimum cost path-based coronary
centerline extraction technique to obtain motion artifact-free reconstructed images of
the coronary arteries was proposed and evaluated. To reduce the human interaction
during the motion estimation, the method required a pair of starting-ending coronary
vessel points provided by the user in a single time-frame only. Subsequently, a set
of coronary centerlines extracted at multiple cardiac phases within the RR interval
were used to determine the unknown MVF. The performance of the method was vali-
dated on three patients, showing the improved sharpness of cardiac motion-corrected
gated iterative reconstructions compared to the results achieved by a classical gated
iterative method. The results were also compared to the manual coronary artery
motion estimation method introduced in chapter 3 showing improved image quality.
Since the MVF was determined from the extracted multiphase coronary centerline,
the proposed method yielded only local improvements in the regions surroundings the
coronary artery.

Chapter 5: In this chapter a novel method for motion-corrected iterative CT
reconstruction of a cardiac region of interest was proposed. Given a precomputed
(non-motion compensated) ECG-gated 4D ROI image data set, a fast and fully auto-
matic elastic image registration was applied to determine a dense cardiac MVF from
a chosen cardiac reference phase to a number of phases within the RR interval. Ex-
periments on phantom and patient data sets showed that in terms of image quality
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MC iterative reconstructions outperformed standard gated iterative reconstructions
at phases of fast cardiac motion. Furthermore, a qualitative and quantitative accu-
racy analysis of the estimated cardiac motion field showed that for 90% of the voxels
a subvoxel precision was achieved for the cumulative MVF components, and for 95%
of them the MVF inconsistency never exceeded two times the voxel size. Finally, for
the first time a blob-volume adaptation was applied on clinical data. In the case of
divergence in the LV motion field, it yielded improved image quality. Though the
image quality of MC reconstructions at cardiac phases of fast motion was increased
significantly, ECG-gated reconstruction in the cardiac resting phase remained supe-
rior in image quality at moderate heart rate.

The reconstruction techniques proposed in this thesis can be applied in cases
where the current ECG-gated or -triggered coronary CT reconstructions at rest phases
are strongly degraded by motion artifacts. An MC approach can reduce the residual
motion artifacts present in the coronary reconstructed images, and since wider gating
window can be applied, also image SNR can be increased. Another potential appli-
cation is in the field of cardiac functional CT imaging. Here, images of cardiac valves
and chambers are needed within the whole RR interval. ECG-gated reconstructions
yield excellent images at quiescent motion phases, but fail to produce good images in
the phases of strong motion (e.g. at systole). The proposed MC iterative reconstruc-
tion and motion estimation methodologies can be applied to yield sharp images even
at these phases of fast heart motion.
The proposed MC reconstruction methods have also potential in other anatomies.

The thoracic aorta is known to cause many diagnostic difficulties and pitfalls
in CT imaging, especially in patients with suspected aortic dissection [80]. When
streak artifacts and aortic wall motion may simulate or alter aortic dissection, MC
reconstruction can be applied to reduce these artifacts and to allow improved diagnosis
and treatment planning of the disease.

Detectability of lung tumors in CT images is severely compromised by respiratory
motion. A method like the one proposed in chapter 5 can be applied to perform MC
reconstruction of the lung. Hereto, a 4D data set consisting of volumes reconstructed
at different breathing motion phases should be elastically registered to determine the
unknown lung motion.

The work presented in this thesis still has a number of limitations. First, im-
proved image quality has been shown on a limited number of cases only. A further
extensive clinical validation of the proposed approaches is still required. In such a
study, also parameter settings should be optimized to increase accuracy and robust-
ness of the method. Second, the proposed MC iterative methods consist of two passes.
Initially, the unknown cardiac MVF is determined by applying suitable motion esti-
mation techniques, subsequently, this motion information is used to perform an MC
iterative reconstruction. To increase the methods’s speed and accuracy, single-pass
methodologies should be investigated which may permit the determination of the
MVF during the reconstruction process [114].

In conclusion, a method for motion compensated iterative reconstruction for
cardiac CT has been proposed. A significant improvement in image quality can be
achieved at phases of significant cardiac motion. The method therefore has potential
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for evaluating segments which contain suspicious structures and in which standard
ECG-gated MSCT reconstruction results yield limited image quality. In coronary
segments with hardly visible soft plaques, the parallel SNR improvement and motion
artifact reduction can be used to reduce ambiguous diagnosis without performing a
second examination.
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Samenvatting

Although nature commences with reason and ends in experience

it is necessary for us to do the opposite, that is to commence with

experience and from this to proceed to investigate the reason.

— Leonardo Da Vinci (1452 – 1519)

I
teratieve CT reconstructie is een voortreffelijk alternatief voor de klassieke me-
thode die gebruik maakt van terugprojectie. Met name blijkt de signaal - ruisver-
houding die bereikt kan worden met iteratieve CT reconstructie hoger te zijn dan

voor beelden die gereconstrueerd zijn met analytische methodes. Een nadeel van itera-
tieve reconstructie methode zijn de hoge eisen die gesteld worden aan de rekenkracht.
Door enkel een deelvolume van het hart, zoals een segment van de kransslagaders of
een deel van de linker hartkamer, iteratief te reconstrueren kan de rekentijd echter
aanzienlijk worden teruggebracht.

Bestaande reconstructie technieken voor cardiale röntgen-CT sturen de beeld-
vorming prospectief aan op basis van het elektrocardiogram (ECG) of gebruiken het
ECG signaal om retrospectief een reconstructie te maken voor een bepaalde fase van
de hartslag. Hierdoor hangt de beeldkwaliteit sterk af van het gekozen tijdsinterval
waarin het röntgen-CT beeld gemaakt wordt. Wanneer dit interval wordt vergroot
neemt de signaal-ruisverhouding toe, omdat een grotere hoeveelheid van de geme-
ten projectie data wordt gebruikt. Daarentegen is het risico op bewegingsartefacten
bij een breder reconstructie interval groter. Bovendien neemt bij deze technieken de
beeldkwaliteit aanzienlijk af in fases waarin het hart erg snel beweegt.

Reconstructie methodes die gebruik maken van bewegingscorrectie geven de mo-
gelijkheid om te corrigeren voor artefacten veroorzaakt door beweging van de anato-
mie tijdens de beeldvorming. Om gebruik te kunnen maken van deze methodes zijn
efficiënte algoritmes nodig die deze beweging af kunnen schatten. Daarnaast moeten
deze reconstructie methodes om kunnen gaan met de divergerende beweging die het
gevolg is van de pompende beweging van het hart. Wanneer men geen rekening houdt
met dit effect kunnen sterke streep artefacten of donkere vlekken in de gereconstru-
eerde beelden de visualisatie van de kransslagaders en hart kamers bemoeilijken.

Het doel van dit onderzoek was het ontwikkelen van nieuwe technieken voor
cardiale diagnostische beeldvorming die een oplossing bieden voor bovengenoemde
problemen. In het eerste gedeelte van dit proefschrift werd een nieuwe methode voor
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iteratieve reconstructie met bewegingscorrectie voorgesteld die rekening houdt met
de divergerende beweging van het hart tijdens het berekenen van de lijn integralen
(Hoofdstuk 2). Omdat deze reconstructie methode ervan uitgaat dat de beweging
van de objecten in het beeld bekend is in de vorm van een vector veld, werden in de
daaropvolgende hoofdstukken drie methodes voorgesteld voor het bepalen van deze
vector velden: een handmatige, semiautomatische en volledig automatische methode
(respectievelijk Hoofdstuk 3 tot en met 5). Alle drie de methodes maken gebruik van
een initieel 4D multi-fase beeld dat is gereconstrueerd op basis van het ECG-signaal.
Hieronder volgt een meer gedetailleerde beschrijving van de afzonderlijke hoofdstuk-
ken:

Hoofdstuk 2: In dit hoofdstuk werd een nieuwe methode gepresenteerd voor
de driedimensionale reconstructie van bewegende objecten op basis van kegelvormige
röntgen projectiedata. Om gebruik te kunnen maken van de methode moet de bewe-
ging van de objecten in het beeld bekend zijn in de vorm van een vector veld. Voor de
berekening van de lijnintegralen wordt een efficinte methode voorgesteld waarbij het
volume van de basis functies wordt aangepast. De methode is geëvalueerd op simulatie
beelden en vergeleken met de klassieke terugprojectie methode en een iteratieve recon-
structie methode die niet voor beweging corrigeert. Resultaten voor drie verschillende
bewegingspatronen in twee gesimuleerde data sets lieten zien dat de methode effectief
bewegings- en streepartefacten voorkomt en voor een hogere robuustheid tegen ruis
zorgt.

Hoofdstuk 3: In dit hoofdstuk werd een nieuwe methode gepresenteerd voor het
iteratief reconstrueren van röntgen-CT beelden van een deelgebied van het hart, waar-
bij voor beweging wordt gecorrigeerd. De reconstructie methode die als basis dient is
gebaseerd op het op een iteratieve manier afschatten van het meest waarschijnlijke 3D
beeld. Een vector veld van de beweging van het te reconstrueren deelgebied werd afge-
schat door de beweging van handmatig aangegeven herkenningspunten te interpoleren
met ’thin plate splines’. Inspectie toonde aan dat de fout in deze handmatig aangeven
herkenningspunten op mag lopen tot 7.5 mm. Grotere fouten leiden tot vervaging van
de beelden van de kransslagaders. Voor twee klinische beelden werden de resultaten
voor een hartfase met de meeste beweging vergeleken met standaard ECG gestuurde
iteratieve reconstructie. Dit toonde aan dat de kwaliteit van de beelden door de voor-
gestelde bewegingscorrectie aanzienlijk verbetert. De signaal-ruisverhouding van de
resulterende beelden is bovendien hoger dan die van beelden gemaakt met terugpro-
jectie methodes die gebruik maken van bewegingscorrectie. Ondanks de eenvoud en
efficiëntie van de methode is er ook een beperking te noemen. De bruikbaarheid van
de methode hangt namelijk af van de inbreng van een deskundige voor het aange-
ven van de herkenningspunten. Dit zorgt voor een hogere werklast en variatie in de
resultaten door de variatie in het aangeven van de herkenningspunten door experts.

Hoofdstuk 4: In dit hoofdstuk wordt een iteratieve reconstructie methode voor-
gesteld om bewegingvrije beelden van de kransslagaders te reconstrueren door bewe-
gingscorrectie op basis van geëxtraheerde vaatassen toe te passen. Zowel het start-
als eindpunt van het te reconstrueren segment van de kransslagader moet handmatig
worden aangegeven in één tijdpunt van de hart cyclus. Vervolgens wordt het vector
veld van de beweging afgeschat op basis van een set centrale vaatassen die in meerder
fases van de hartslag geëxtraheerd worden met behulp van minimale kosten paden.
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De effectiviteit van de methode werd aangetoond in röntgen-CT beelden van drie
patiënten. De methode leverde scherpere beelden op dan een klassieke iteratieve re-
constructie methode. Ook werden de resultaten vergeleken met de resultaten van de
methode gepresenteerd in hoofdstuk 3, waarin de beweging op basis van herkennings-
punten wordt afgeschat. Verbeteringen werden vooral lokaal waargenomen, doordat
het vector veld alleen gebaseerd is op de centrale as van de kransslagaders.

Hoofdstuk 5: In dit hoofdstuk werd een nieuwe methode gepresenteerd voor
het bewegingsvrij reconstrueren van röntgen-CT beelden van een deelgebied van het
hart. Een vector veld van de beweging van het hart wordt afgeschat met een snelle en
volledige automatische elastische registratie methode. Deze methode wordt gebruikt
om beelden uit verschillende fases van een niet voor beweging gecorrigeerd beeld met
elkaar te registreren. Experimenten op klinische en simulatiedata lieten een aanzien-
lijke verbetering van de beeldkwaliteit in fases met veel beweging zien ten opzichte
van standaard ECG gestuurde iteratieve reconstructie methodes. Een kwalitatieve
en kwantitatieve analyse van de nauwkeurigheid van het afgeschatte vector veld liet
bovendien zien dat voor 90% van de voxels de fout in de gesommeerde elementen van
de bewegingsvectoren kleiner is dan de voxelgrootte, en dat voor 95% van de voxels
geldt dat deze fout niet groter was dan twee keer de voxelgrootte. In dit hoofdstuk
werd ook voor het eerst de volume aanpassing van de basis functies toegepast op
klinische data. Dit leverde vooral verbeteringen op voor de divergerende delen van
het vector veld nabij de linker hart kamer. Alhoewel de beeldkwaliteit door iteratieve
reconstructie met bewegingscorrectie aanzienlijk verbeterde in fases van de hartslag
met snelle beweging blijft de beeldkwaliteit van ECG gestuurde reconstructie voor
patiënten met een gemiddelde hartslag het beste.

De in dit proefschrift voorgestelde reconstructie technieken kunnen toegepast
worden wanneer de huidige ECG gestuurde technieken ook in de rustfases van het
hart ernstig verstoord worden door beweging. Een benadering waarin tijdens de re-
constructie gecorrigeerd wordt voor deze beweging kan in dit geval de resulterende ar-
tefacten in het beeld aanzienlijk verminderen. Bovendien kan door deze nieuwe metho-
des het reconstructie interval vergroot worden wat een betere signaal-ruisverhouding
tot gevolg heeft. Andere potentiële toepassingen liggen op het terrein van functi-
onele beeldvorming van het hart. Voor deze toepassingen is beeldinformatie van
bijvoorbeeld de hartkleppen of kamers over de hele hartslag nodig. ECG gestuurde
reconstructie levert dan uitstekende beeldkwaliteit voor bewegingsloze fases op, maar
de kwaliteit voor fases met veel beweging (bijvoorbeeld tijdens systole) is aanzienlijk
lager. De hier voorgestelde methodes kunnen toegepast worden om beelden van hoge
kwaliteit voor alle fases van de hartslag te reconstrueren.
De hier beschreven technieken kunnen mogelijk ook voor andere anatomische struc-
turen gebruikt worden.

Een goed voorbeeld is de diagnose van patinten met een vermoedelijke dissectie
van de thoracale aorta. In deze gevallen kunnen streep- en bewegingsartefacten in
de röntgen-CT beelden ervoor zorgen dat een niet bestaande dissectie wordt waar-
genomen of dat een bestaande dissectie wordt gemist. Iteratieve reconstructie met
bewegingscorrectie kan hier toegepast worden om deze artefacten te verminderen,
waardoor de diagnosticeerbaarheid en de toepasbaarheid van de beelden voor het
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plannen van de behandeling verhoogd worden.
Een ander voorbeeld is de door ademhalingsartefacten slechte herkenbaarheid

van long tumoren in röntgen-CT. De methode uit hoofdstuk 5 zou toegepast kunnen
worden om in deze gevallen een bewegingsvrije reconstructie van de longen te maken.
De ademhalingsbeweging kan dan afgeschat worden door de verschillenden beelden
uit een 4D long sequentie elastisch op elkaar te registreren.

Het hier gepresenteerde onderzoek heeft ook een aantal beperkingen. Ten eer-
ste, de verbetering van de beeldkwaliteit is maar voor een beperkt aantal gevallen
geëvalueerd. Een uitgebreide klinische evaluatie van de voorgestelde methodes kan
daarom niet uitblijven. In een dergelijke studie moet ook gekeken worden naar het op-
timaliseren van de parameters van de methode om de nauwkeurigheid en robuustheid
van de methode te verbeteren. Ten tweede bestaat de voorgestelde reconstructieme-
thode uit twee stappen. Eerst wordt een afschatting van de beweging gemaakt op
basis van een niet voor beweging gecompenseerde reconstructie. Daarna wordt deze
informatie gebruikt om een iteratieve reconstructie te maken waarin de beweging
wordt gecompenseerd. Om de snelheid en nauwkeurigheid van de methode te verbe-
teren zou onderzoek gedaan moeten worden naar éénstapsmethodes die het mogelijk
maken de beweging af te schatten tijdens het reconstructie proces [114].

Samenvattend, is in dit proefschrift een methode voorgesteld voor iteratieve re-
constructie van cardiale röntgen-CT beelden, waarbij gecompenseerd wordt voor de
beweging van de anatomie tijdens de beeldvorming. Een significante verbetering van
de beeldkwaliteit kan bereikt worden voor fases waarin het hart snel beweegt. De
toepassing van de methode is daarom mogelijk interessant voor de evaluatie van vaat-
segmenten met verdachte structuren waarbij standaard ECG gestuurde reconstructie
methodes een beperkte beeldkwaliteit tot gevolg hebben. Een voorbeeld is de evaluatie
van segmenten van de kransslagaders waarin de zachte plak nauwelijks waarneembaar
is. De gepresenteerde methodes kunnen zowel de signaal-ruisverhouding verbeteren
als ook de bewegingsartefacten beperken om de ambiguteit van de diagnose te verlagen
zonder dat een nieuwe scan gemaakt hoeft te worden.
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