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Outline of the studies 

This thesis compiles the experimental studies on several drugs, which modulate drug 

dependence phenomena in rodents. The main part of the studies is related to the morphine 

withdrawal (chapters 3-7), while a minor part is dealing with cocaine psychic dependence 

(chapter 9). 

Part 1: Dnlg Depe/ldellce alld Harmflll Use of Drugs 

Chapter I 

In both men and animals, drug dependence phenomena have continuously been stu­

died over the past decades. However, much confusion and discussion was (and is still) 

going on about terms such as dependence, abuse, addiction, etc. Therefore, these and other 

terms are firstly defined, while in the second part of this chapter, several classes of 

dependence-producing drugs are described. The characteristics of these drugs are discus­

sed in respect to dependence, tolerance and withdrawal, and also some information related 

to their behavioral effects and mechanism of action is provided. 

Part 2: Opioid Depelldellce 

Chapter 2 

This chapter starts with a classification of opioids and their receptors and is followed 

by information related to morphine dependence phenomena, particularly tolerance and 

withdrawal syndrome. 

Part 3: Morphille Withdrawal SYlldrome - Experimelltal Studies 

Chapter 3 

It has been shown that during morphine withdrawal, an enhanced release of several 

neurotransmitters occurs, including L-glutamate. The excitatory amino acid (EAA) L­

glutamate, released presynaptically, activates the postsynaptically localized N-methyl-D­

aspartate (NMDA)-glutamate receptors (Fig. I). Since the opioid withdrawal syndrome is a 

reflection of neuronal and behavioral excitation, we studied the role of the excitatory 

glutamate system in the opioid withdrawal. We demonstrated that administration of 

NMDA receptor antagonists attenuated naloxone-precipitated withdrawal sYI\drome in 

morphine-dependent mice. 
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Chapter 4 alld 5 

Following the demonstration that NMDA receptor blocking agents attenuated mor­

phine withdrawal syndrome (chapter 3), we postulated that endogenous compounds 

synthesized in response to stimulation of NMDA receptors may also playa role in the 

expression of opioid withdrawal syndrome. Among these compounds is the "new" 
peripheral and central neurotransmitter nitric oxide (NO). NMDA receptor mediated Ca2

+ 

entry into the cell m~y stimulate Ca" dependent NO synthase (NOS) enzyme in some 

neurons, resulting in the formation of NO (Fig. I). In order to examine the effect of this 

neurotransmitter on naloxone-precipitated withdrawal syndrome. we blocked the NO syn­
thesis in both morphine-dependent mice (chapter 4) and rats (chapter 5) by NOS in­

hibitors. These two studies showed that the expression of the naloxone-precipitated 

withdrawal syndrome in morphine-dependent mice and rats can be affected by inhibition 
of NO synthesis. We suggest that these preclinical studies justify clinical trials of NOS 

inhibitors in drug-dependent subjects. 

Presynaptic 

Q@ 
Glu e V 

Glia cell 

~ (§lea" 
(1) \ mmA II!Om~m~AQ-__ -----'N~O~_ 

Postsynaptic ~ 
Ca2+ 

..... " .j.+ 
(2)'>10. 

NOS 

1 
NO 

Fig. 1. Nitric oxide (NO) is produced following N-methyl-D-aspartate (NMDA) receptor activation 
and subsequent increase in intracellular Ca2

+. NO diffuses to adjacent glia andior other neurons 
where it induces a wide variety of actions. 
Glu = glutamate; ~ = stimulation; ----.:......... = inhibitionlblockade. 
(1) Blockade of NMDA receptors by diverse NMDA receptor blocking agents. Results are 

described in chapter 3. 
(2) Blockade of NO synthesis by NO synthase (NOS) inhibitors. Results are described in 

chapters 4 and 5. 
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Oltflille of the studies 

Chapter 6 

There are indications that some peptides released in cerebrospinal fluid (CSF) may 

modulate opioid withdrawal. In this study, we showed that the CSF of spontaneous mor­

phine-abstinent donor rat precipitates in morphine-dependent recipient rat an opioid 

withdrawal syndrome. During this CSF-induced morphine withdrawal syndrome a decrea­

se of the peak latency of visual evoked potentials was registered, indicating an enhanced 

central excitability. The CSF-induced morphine withdrawal syndrome is behaviorally less 

severe and electrophysiologically less prominent, but qualitatively identical to the 

naloxone-induced abstinence. However, in contrast to naloxone, the CSF from spontaneous 

morphine-abstinent rat does not exert a contraction of isolated morphine-dependent guinea­

pig ileum. Chromatographic analysis of the CSF has shown that a putative "withdrawal 

substance" is present only in the CSF of spontaneous morphine-abstinent rats, but not in 

the CSF of naive or morphine-dependent rats, The "withdrawal substance" is a 

hydrophobic compound, without naloxone-like properties, However, further analysis of the 

biochemical structure and bioactivity are necessary, 

Chapter 7 

Studies, performed earlier at the Department of Pharmacology, Erasmus University 

Rotterdam, have shown that ibogaine may attenuate naloxone-precipitated withdrawal in 

morphine-dependent rats. It has been also claimed that ibogaine is an anti-addictive drug, 

presently undergoing a clinical trial in several countries, However, norharman is an 

endogenous physiological substance, with a biochemical structure related to ibogaine. Both 

drugs arc indole derivatives with psychotogenic properties, Therefore, we performed a 

comparative study with these drugs in relation to the expression of opioid withdrawal 

syndrome. We have shown that norharman (parenteral administration) had a more promi­

nent anti-withdrawal effect than ibogaine. It is known that norharman binds at the (X­

subunit of the gamma-amino butyric acid (GAB A) receptor-complex. This physiological 

substance and the GABA receptor-complex might be a target for further elucidation of 

drug dependence phenomena. 

Part 4: Drug Dependence induced by Psyc1lOsfimulallts 

Chapter 8 

This chapter gives a general description of psychostimulants, with recent data mainly 

related to the cocaine dependence. 

13 



Part 5: Cocaine Depelldellce - Experimelltal Shldy 

Chapler 9 

We examined the effect of ibogaine treatment on cocaine self-administration in rats, 

In this study ibogaine was selected for two reasons. OUf earlier experiments have shown 

that ibogaine attenuates morphine withdrawal in rats, In addition, the non-controlled 

observations in humans demonstrated that ibogaine interrupts drug dependence on alcohol, 

amphetamine and nicotine. We have shown that ibogaine is a long-lasting interruptor of 

cocaine self-administration in cocaine-dependent rats. These preclinical studies justify a 

clinical trial of ibogaine in drug-dependent subjects, which presently takes place in several 

countries. 

Concluding remarks and some suggestions for further research are given at the end of 

this thesis. 
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PART 1 

Drug Depe1lde1lce a1ld Harmful Use of Drugs 





1.1. Terminology 

Chapter 1 

Definition of terms and classification 
of dependence-producing drugs 

In 1967. the World Health Organization (WHO) raised several criteria for drug addic­

tion. The terms used in this thesis are in accordance with the definitions given by the 

WHO as proposed ill their 28 ili report (1992). which in its turn, is ill accordance with the 

International Classification Diseases (ICD-l 0) of mental and behavioral disorders 

(Hoffman, 1983). 

Drug dependence: 

replaced the term "drug addiction" and is defined as "a state, psychic and sometimes 
also physical, resulting from the interaction between a living organism and a dmg, 
characterized by behavioral and other responses that always include a compulsion to 
take the drug on a continuous or periodic basis in order to experience its psychic 
effects, and sometimes to avoid the discomfort of its absence. Tolerance mayor may 
'not be present. A person may be dependent on more than one drug". 

Harmflll lise: 
replaced the term "abuse" and is defined as "a pattern of psycho-active dnlg use that 
causes damage to health, either mental or physical. Harmful use of drugs by an 
individual often has adverse effects on the drug user's family, community and society, 
in general". 
The existence of a stale of drug dependence is not necessarily harmful in itself, but 
may lead to the use of the drug(s) at dosage levels that produce deleterious physical or 
behavioral changes, constituting public health and social problems. 

Tolerance: 
is defined as "a reduction in the sensItIvIty to a drug following its repeated ad­
ministration, in which increased doses are required to produce the same magnitude of 
effect previously produced by a smaller dose. This increase in dose may be necessitated 
by changes in the metabolism of the drug, or a cellular, physiological or behavioral 
adaptation to the effects of the dmg". 

Sensitizatioll ("reverse-tolerance "): 
describes the situation in which a constant drug dose elicits increasing effects (Nestler 
et aI., 1993). It differs from tolerance since less drug is required to reinstate the initial 
effect. 

Withdrawal sYIlJirome: 
is described as "after the repeated administration of certain dependence-producing 

17 



Definition of tenns and classification of depelldence*producing drugs 

drugs, e.g. opioids, barbiturates and alcohol, abstinence can increase the intensity of 
drug*seeking behavior, because of the need to avoid or relieve withdrawal discomfort 
and/or produce physiological changes of sufficient severity to require medical treat­
ment". 
The withdrawal syndrome following cessation of hypnosedatives (Roelofs, 1985) or 
opioids (Martin and Eades, 1963) has a mainly excitatory character, which may 
culminate in an epileptic convulsion. In contrast, dmg dependence induced by stimu­
lants (Gawin and -Kleber, 1986) or cannabinoids (Jones, 1983) give rise to a sedative 
withdrawal syndrome, which is less inconvenient and clinically less important. 

Craving: 
is defined as "the desire to experience the effect(s) of a previously used psycho*active 
substance". It has to be noted that not all drug craving is based on withdrawal, since 
craving can often occur in the absence of withdrawal (Markoll et al., 1993). 

Stimulus: 
is defined as "an environmental event that produces a change in the behavior of an 
organism". 

Response: 
is defined as "the behavioral consequence of presenting a stimulus to an organism". 

Positive reinforcer: 
is defined as "a stimulus that increases the frequency of behavior that leads to its 
presentation". For example, if a hungry rat, placed in a box, presses a bar and is then 
given food, the animal will have a "positive" experience. The probability of a particular 
response (the bar press) has been increased through the immediate delivery of the 
"positive reinforcer" (the food). Things such as food, water, sex, and the opportunity to 
explore are usually considered as positive reinforcers (Houston, 1986). Also many 
dependence*producing drugs, such as cocaine, morphine, phencyclidine (PCP), barbitu­
rates, ethanol and some volatile solvents serve as a positive reinforcer (Stolerman, 
1992), 

Negative reinforcer: 
is defined as "stimulus that increases the frequency of a behavior that prevents or 
terminates its presentation". Generally speaking, noxious stimuli, such as shock are con~ 
sidered to be negative reinforcers. 

Aversive stimulus: 
is defined as "stimulus causing an organism to behave so as to minimize exposure to it 
(as in negative reinforcement or punishment procedures)". 

COllditiOJling: 

18 
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Chapter J 

ClassicallPavloviall condition ing: 
is defined as "procedures that present different stimuli in temporal proximity (conti­
guity), but where resulting responses have no reinforcing or aversive consequences", 
Well-known are the experiments performed by Pavlov, in which dogs were conditioned 
to salivate at the sound of a tone. 
Instrumental/Operant condition ing: 
is defined as "procedures where responses have reinforcing or aversive consequences 
and are instrumental (for example pressing a bar) in attainment of a goal (getting food 
or dependence-producing drugs)", 

Reward: 
is often defined similarly as reinforcement, but with some positive affective colouring, 
such as pleasure (Stolerman, 1992), 

The most important animal models to study rewarding properties of drugs are: 
Intracranial electrical self-stimulation III specific brain regions. In this model elec­
trodes are implanted in brain regions, with physiologically active dopaminergic (DA­
ergic) systems (Fibiger and Phillips, 1988), The role of the DA-ergic system in respect 
to reinforcement is discussed in more detail (see chapter 2 and chapter 8). 

Place preferellce conditioning. The apparatus used in this model consists of two 
different compartments (differences could be of visual-, tactile- or odour origin). 
During conditioning sessions, animals are allowed to access to only one compartment at 
a time. One compartment is repeatedly paired with drug injections and the other 
compartment with vehicle injections. During test sessions, the animals have access to 
the whole apparatus and the amounts of time spent in each compartment are usual1y 
recorded by a system of light beams and photo cel1s. 

Self-ae/ministration model. In this model a drug serves as a reinforcer of behaviour. The 
drugs are mostly obtained by an indwelling intravenously catheter (see technical details 
in chapter 9). Dependence-producing drugs (with exception of lysergic acid 
diethylamide (LSD) and cannabinoids) can serve as positive reinforcers in the self­
administration model in rats and monkeys (Stolennan, 1992). 

1.2. Dependence-producing drugs 

lCD-to recognizes the following psycho-active drugs or substances, which may produce 

drug-dependence: 

• hypnosedatives 

• cannabinoids 

hallucinogens 

• tobacco 

• volatile solvents 

opioids 

19 



Definition of tenus and classification of dependence-producing drugs 

• psychostimulants 

In the following paragraphs of this chapter, recent experimental data relevant to the 

dependence-inducing properties of these drugs are briefly discussed. 

1.2,1. Hypnosedatives 

Drugs belonging to this group are ethanol (alcohol), benzodiazepines (BDZs) and 

barbiturates. In general, these compounds induce sleep and reduce anxiety. 

A, Alcohol 

Actioll 011 cellular level 

There are indications that the binding place of alcohol is on the a-subunit section 6 

(a6) of GABAA ('V-amino butyric acid) receptor-complex (Korpi and Seeburg, 1993). 

However, no substance is known, which might interfere with the binding place of alcohol. 

The importance of this subunit in respect to alcohol drug dependence has to be revealed 

in future. 

If labelled membranes from neurons are exposed to intoxicating concentrations of 

alcohol, an increased "motion" within the membrane was observed ("membrane fluidity 

IheOly": Goldstein, 1984). This disordering (fluidizing) effect of alcohol on the membrane 

may affect some receptors, such as the GABA orland the NMDA (N-methyl-D-aspartate) 

receptors of the excitatory amino acid (EAA) glutamate. Accordingly, chronic alcohol 

treatments reduces GABAA function (Buck and Harris, 1991). GABA receptor systems 

(together with serotonin and noradrenaline) seemed to be involved in the decreased 

compulsivity of alcohol intake (Deitrich et aI., 1989). During chronic alcohol use, there is 

an up-regulation of the NMDA receptors (probably due to NMDA receptor blockade) in 

the hippocampus, a brain area known to be associated with ethanol withdrawal seizure 

activity (Grant et aI., 1990). Removal of alcohol induces a state of excessive EAA 

activation which may contribute to the alcohol withdrawal excitability (Grant et ai., 1990; 

Michaelis et aI., 1993). Alcohol use inhibits the production of nitric oxide (NO, Persson 

and Gustafsson, 1992), which could be a result of NMDA receptor blockade. However, 

further research is necessary to reveal whether chronic alcohol intake could alter NO 

production and bring some clarification in alcohol-related pathology. 

Besides the GABA and EAA-NMDA receptor-complex, alcohol affects a variety of 

other neurotransmitter systems. Of particular importance is the fact that alcohol interferes 

with DA-ergic rewarding pathway, which is claimed to mediate positive reinforcement 

(Samson et aI., 1990). It has been found that both systemic and locally-infused alcohol 

stimulate the release of dopamine (DA) in the nucleus accumbens (part of the meso­

corticolimbic DA projection). Conversely, an alcohol withdrawal is associated with 

reduced release of DA in this pathway (Nutt and Peters, 1994). To some extent, it has 

20 



Chapter 1 

been demonstrated that DA receptor antagonists are able to block the reinforcing actions 

of alcohol (Nutt and Peters, 1994). 

Ethanol also interacts with the endogenous opioid system. Acute administration of 
ethanol increased plasma levels of B-endorphin in humans (Barret et aI., 1987) and met­

enkephalin in rat brain and pituitary (Seizinger et aI., 1983). These findings might be of 

relevance, since opioid receptor antagonists tend to reduce alcohol consumption 

(Goldstein, 1984). 

Tolerance 

Repeated administration of alcohol results in tolerance for most of the effects of this 

drug (hypothermia, sedation, anxiolytic and motoric effects) in both humans (Tabakoff and 

Hoffman, 1988) and animals (Holloway et aI., 1989). The acute tolerance for alcohol can 

be influenced by genetic selection, in a way that animals selected for higher ethanol 

preference demonstrate a greater acute tolerance than those selected for ethanol aversion 

(Waller et aI., 1983). 

Withdrawal syndrome 

The physical abstinence syndrome in man, in severe form, develops after about 8 h. In 
the first stage, the main symptoms are tremor, nausea, sweating, fever and sometimes 
hallucinations. These symptoms last for about 24 h. This phase may be followed by tonic­
clonic convulsions. Over the next 48 h, "delirium tremens" could develop, in which the 
patient becomes confused, agitated and often aggressive, and may suffer from severe 
hallucinations. However, not all components of withdrawal need to be present. The alcohol 
withdrawal (similarly to the diazepam withdrawal) is associated with anxiety (Roelofs, 
1985). 

Different treatments have been proposed in order to prevent the subject for the intake 
of alcohol or to attenuate a withdrawal syndrome after cessation of the alcohol usc. 
Besides compounds inducing an aversive reaction, such as disulfiram (Goldstein, 1994) 
and calcilll1lcyanide (Nagasawa et aI., 1990), the use of antagonists of opioid or NMDA 

receptors has been recently suggested. 
Opioid (Intagonists tended to reduce alcohol consumption (Goldstein, 1984). Adminis­
tration of naltrexone to alcohol addicts during detoxification process reduced craving 
and prevented single drinks from triggering binges (Volpicelli et aI., 1992). A binge is 

a period of several hours during which large amounts of drugs are being consumed. 
Generally, a binge is followed by emotional distress ("coming down" or "crashing. 
Jaffe, 1990). 

NMDA afltagolli.~ts. Some alcoholics become magnesium depleted, which accentuates 
the excessive NMDA stimulation during alcohol withdrawal (Mg2+-ion is known to 
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Definition of terms and classification of dependence-producing drugs 

block the NMDA-receptor). Therefore, many features of withdrawal can be blocked by 

magnesium sulphate infusions (Becker and Hale, 1993). 

B. Benzodiazepines (BDZs) 

Action all cellular level 

BDZs facilitate the inhibitory GABA neurotransmission by increasing the permeability 

of a chloride ion channel in the CNS of animals (Young and Kuhar, 1979) and humans 

(Schoch et aI., 1985). BDZs (like alcohol and barbiturates) interact with the GABAA 

receptor-complex. It is demonstrated that the o:-subunit of the GABAA receptor is 

responsible for the binding of BDZs, in association with the y-subunit. The functional 

importance of the 0- and the e-subunits of the GABAA receptor-complex in respect to the 

mechanism of action of the BDZs, is still unclear (Giusti and Arban, 1993). 

Tolerance 

The clinical consequences of sedative effects of BDZs are partly counterbalanced by 

the development of tolerance to these effects. In clinical terms this means that patients 

frequently report diminution or disappearance of sedative effects despite continued use of 

the BDZ. Tolerance to the sedative effects is not accompanied by tolerance to the anti­

anxiety effects of these drugs (Linnoila et aI., 1983). 

Withdrawal syndrome 

Discontinuation of chronic use of BDZ could induce withdrawal signs in both animals 

and humans (Woods et aI., 1987). The symptoms of thc withdrawal syndrome in BDZ­

dependent subjects are excessive sensitivity to light and sound, tremors, sweating, 

sleeplessness, abdominal discomfort, tachycardia, mild systolic hypertension and rarely 

seizures (Marks, 1978). After withdrawal, patients recover completely, but anxiety may 

occur (Shader and Greenblatt, 1993). The half-life of a BDZ is important in the expression 

and severity of the withdrawal syndrome. The abrupt cessation of various BOZs with short 

half-lives (Woods et aI., 1992) is associated with rapid onset of withdrawal syndrome. 

Therefore, the BDZs with short half-lives should be stopped gradually rather than abruptly. 

It has been shown that the serotonin 5-HTJ antagonist ondansetron attenuates the BDZ 

withdrawal in animals (Oakley et aI., 1988; Goudie and Leathley, 1990). However, this 

subject is controversial (Costa II et aI., 1988). 

C. Barbiturates 

Action Oil cel/ular level 

Similar to alcohol and BDZs, the barbiturates huve also binding site on the GABA" 

receptor-complex, which is claimed to be different from that of alcohol (Korpi and 
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Chapter 1 

See burg, 1993) and BDZs (Haefely, 1980), Recently, it was demonstrated that a bar­

biturate binding site is also present on the nicotinic acetylcholinergic receptors (nAChRs, 

De Armendi et a!., 1993), 

Tolerance 

Tolerance to barbiturates develops to a marked degree and it is partly of a phar­

macokinetic type, Repeated dosage of the drug is destroyed more rapidly (becomes 

somewhat less effective), because of the increased synthesis of hepatic cytochrome P450 

and conjugating enzymes, which facilitate the biotransformation of barbiturates (Priest, 

1980), 

Withdrawal syndrome 

A cessation of chronic use of barbiturates induces withdrawal syndromes sometimes 

accompanied with grand mal type convulsions or delirium tremens (Lockhart-Ewart and 

Priest, 1967). BDZs block the withdrawal seizures in subjects made dependent on bar­

biturates (Haefely, 1980), 

1.2.2. Cannabinoids 

(-)-""-Tetrahydrocannabinol (""-THC, also called ",I-THC according to different ring­

numbering system) has been recognized for a long time as the major psycho-active 

component of marijuana (Gaoni and Mechanlam, 1964), The mechanism by which 

cannabinoids exert their behavioral effects in humans and animals, has recently been 

partially clarified, 

Action 011 eelllllar level 

Cmmobilloid receptor. The cloning of central (Matsuda et al.. 1990) and peripheral 

(Munro et aI., 1993) cannabinoid receptors was performed recently. Autoradiographic 

studies showed a heterogenous distribution of the cannabinoid receptor in brain of a 

variety of mammalian species, including humans. Most of the cannabinoid receptors are 

located in the basal ganglia, hippocampus and cerebellum, but also in cerebral cortex and 

striatum (Herkenham et a!., 1990,1991), It could be speculated that some of these 

anatomical sites correlate with observed pharmacological effects of marijuana, for 

example. cognitive impairment (hippocampus and cortex), ataxia (basal ganglia and 

cerebellum) and low toxicity (lack of receptors in brainstem) (Howlett et aI., 1990; Martin 

et aI., 1991). ]n the substantia nigra of humans, cannabinoid receptors are located on 

striatonigral terminals, which degenerate in Huntington's disease (Glass ct aI., 1993), 

These findings indicate that cannabilloids could be involved in locomotion and 

hyperkinetic/dystonic disorders, occurring in both Huntington's and Parkinson's disease. 
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Definition of terms and classification of dependence-producing drugs 

Endogenous ligand. Devane et at (1992) demonstrated the existence of an endogenous 

cannabimimetic ligand, anandamide. The fact that an and amide could inhibit the N-type 

calcium channel current through the cannabinoid receptors (Mackie and Hille, 1992) could 

suggest a physiological role of this compound in the regulation of the release of other 

neurotransmitters (Mackie et a1., 1993). Anandamide has only been tested in vivo in 

rodents and it was shown that the effects of this compound (hypomotility, hypothermia 

and nociception) have a rapid onset but shorter duration than other cannabinoids (Pride 

and Mechoulam, 1993; Crawley et aI., 1993). Besides anandamide, other receptor selective 

agonists are: ""-THC, CP 55940, WIN 55,212-2, levonantradol and nabilone. The 

activation of cannabinoid receptors is associated with a decrease of cyclic adenosine 

monophosphate (cAMP). A selective receptor antagonist is not known yet (The RBI hand­

book of receptor classification, 1994). 

Tolerance 

Tolerance to repeated llse of marijuana has long been suspected, given the fact that 

experienced users are capable of consuming enormous quantities of the drug with few or 

no obvious ill effects (Cohen, 1976). Tolerance to cannabinoids in animals has also been 

reported (Carlini, 1968). Recently, it has been demonstrated that chronic administration of 

the selective cannabinoid receptor agonists ~9-THC and CP 55940, induced a receptor 

down-regulation. This indicates that tolerance to cannabinoids in vivo could occur (Oviedo 

et a!., 1993). 

lVithdnl'wal syndrome 

Discontinuation of cannabis after chronic heavy use induces a mild withdrawal 

syndrome in humans, characterized by irritability, restlessness, loss of appetite, 

sleeplessness, tremor, perspiration and sometimes nausea, vomiting and diarrhoea (Jones, 

1983; Goldstein, 1994). In animals, withdrawal symptoms did not occur following 

cessation of cannabinoid use (McMillan et aL, 1971). 

1.2.3. Hallucinogens 

The family of the hallucinogens is a very diverse one, with many naturally occurring 

and synthetic compounds with similar mind-altering effects. 

Natural occurring compounds: 
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psilocin is obtained from a fungus and is structurally related to i'ierotonin (5-HT, 

Wasson, 1980). 

mescaline is derived from a Mexican cactus (peyote). Its structure is almost identical to 

that of amphetamine, which in its turn is closely related to that of DA (Jaffe, 1990). 
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Synthetic compounds: 
LSD is chemically related to 5-HT and is considered as one of the most potent 

hallucinogenic drugs (Schultes and Hofmann, 1979). 

• MDMA (3,4-methylenedioxymethamphetamine, "ecstasy") belongs to the group of 

phenethylamines and is chemically related to amphetamines. In rats, MDMA causes 
massive destmction of 5-HT neurons (Rosecrans et aI., 1988). The neurotoxic effect 

may be due not to MDMA itself, but rather to a product of the metabolism of MDMA 

in the body. Although there are not yet hard evidences that MDMA could cause brain 

damage in humans, it is striking that relatively many people die after MDMA intake 
(Henry et a!., 1992). In the last years, a lot of phenethylamine derivatives are brought 

on the market. These derivatives, sold in the form of piBs are mostly used during 
house-parties and in com.bination with alcohol are causing severe side-effects (respir­

ation problems, hyperthermia) and could even lead to death, 
PCP (phencyclidine, "angel dust"), chemically resembling to ketamine, induces an 

increased locomotor activity, stereotyped movements and ataxia, although in animals 
depressant rather than stimulant effects predominate (Sanger and Jackson, 1989). 

Action on cellular level 
Many hallucinogens affect the serotonergic (5-HT~ergic) system in the brain, causing a 

massive discharge of 5~HT from the 5~HT~ergic neurons, followed by prolonged depletion 
of the neurotransmitter (Strassman, 1992). 

LSD acts as a 5-HT antagonist in peripheral tissue, but in CNS it is believed mainly to 
work as an agonist. Neurophysiological studies show that LSD directly inhibits the firing 
of 5-HT -containing neurons in the raphe nuclei, apparently by activation of inhibitory 
autoreceptors of these cells (Aghajanian, 1981). 

PCP interacts with NMDA receptors as a noncompetitive antagonist (Kemp et aI., 
1987). It was shown that foHowing chronic infusion of PCP a significant decrease of D2 
receptors in rat striatum occurred (Spain et a!., 1985). PCP and also MDMA are relatively 

selective neurotoxins, affecting mainly 5-HT neurons (Rosecrans et aI., 1988). 

Tolerance 
LSD. Tolerance to the effects of LSD develops quite quickly, and there is cross­

tolerance between this dmg and most other hallucinogens. Animals trained to discriminate 
LSD respond almost identical to the presentation of psilocybin (Carlton, 1983). 

PCP. Chronic PCP administration has been shown to produce tolerance to the beha­
vioral actions of PCP (Nabeshima et a!., 1985). 
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Withdrawal syndrome 

LSD induces psychic- but not physical dependence (Stalerman, 1992). 

PCP, in contrast to LSD, acts consistently as a primary reinforcer in animals ex­

periments, inducing drug dependence (CarHan, 1983; Stalerman, 1992). Withdrawal of 

PCP after infusion for 7 days resulted in an abstinence syndrome in rats, comparable to 

that of opioids (piloerection, increased susceptibility to audiogenic sounds, weight loss). 

The first withdrawal'signs occurred around 4 h after termination of infusion, and in the 

following 20 h, the abstinence syndrome subsides (Spain and Klingman, 1985). Buspirone 

is used for the treatment of PCP (and cocaine) withdrawal syndrome (Giannini et a1., 
1993). 

1.2.4. Tobacco 
Nicotine appears to be the only pharmacologically active substance in tobacco smoke, 

apart from carcinogenic tars. It is proved to be extreme difficult to induce animals to self­

administer nicotine. This has led to the incorrect idea that nicotine is not addictive. 

However, a recent study demonstrated that stimulation of the mesolimbic DA system could 

be considered of major importance for the rewarding and dependence producing properties 
of nicotine (Nisell et aI., 1994). 

Action on cellular level 

Nicotine affects several neurotransmitter systems, but its main effect is on central 

nAChRs. Several studies have revealed that nAChRs not only are present on cholinergic 

neurons (Clarke, 1993), but appear to be also located on a variety of pre- and postsynaptic 

sites of noncholinergic neurons (Rosecrans and Karan, 1993). This may indicate that 

several neuronal pathways are involved in the tobacco dependence phenomena. Recently, 

it has been shown that the presynaptic nicotinic binding site in mouse could be involved in 

the DA release (Grady et aI., 1994). Systematically administered nicotine increases 

frontocortical 5-HT release, probably due to the activation of the nicotinic receptors on 

raphe neurons (Ribeiro et aI., 1993). 

Tolerance 

An upregulation of brain nicotinic receptors during tolerance to nicotine was ascribed to 

receptor desensitization (Marks et aI., 1993). Cross-tolerance with nicotine has been shown 

for alcohol (De Fiebre and Collins, 1993). 

Withdrawal syndrome 

A withdrawal syndrome occurs in both humans and experimental animals following the 

cessation of regular nicotine administration. Its main features are increased irritability. 
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impaired performance of psychomotor tasks, aggressiveness and sleep disturbance 

(Griffiths and Henningfield, 1982; Goldstein, 1994). The physical withdrawal syndrome 

disappears in 2-3 weeks, though craving for cigarettes persists for much longer. The 

withdrawal syndrome is much less severe than that produced by opioids and it can be 

alleviated not only by nicotine but also by amphetamine. This latter point suggests that the 

effect of nicotine may be partly due to catecholamine release in the brain, an hypothesis 

advanced for other dependence-producing drugs (Koob and Bloom, 1988). 

Various therapeutic products have been developed in order to help the nicotine user to 

get rid of their addiction. This so called "nicotine replacement therapy" includes the 

followings: 

Clollidine is shown to decrease dose-dependently the tobacco withdrawal craving 

(Gourlay et ai., 1994), perhaps by reducing the sympathetic arousal (Hughes, 1993). 

Sertraline, a 5-HT reuptake inhibitor, counteracts the hyperphagia and rapid weight 

gain associated with nicotine withdrawal, and might be a useful adjunct to smoking 

cessation (Levin et ai., 1993). 

The skin patches are claimed to improve a smoking cessation both by reducing nicotine 

withdrawal effects and by reducing the reward of slips back to smoking (Levin et al., 

1994). 

Trallsdermaf nicotille is effective even given without psychotherapy, but does not 

consistently decrease postcessation weight gain, which is similar fo~ the nicotine gum 

(Hughes, 1993). However, controversial results on the effectiveness of both nicotine 

gum and patch were reported (Tang et ai., 1994). 

Until now, no uniform therapy for helping nicotine-addicts is available. Recently. treat­

ment with antidepressant drugs has started, but there are no results in respect to the 

treatment of nicotinic addiction come out yet. 

1.2.5. Volatile solvents 

Harmful use of volatile substances, also referred to as glue sniffing is defined as "the 

deliberate inhalation of a gas or of fumes given off from a substance at room temperature 

for its intoxicating effect" (cited by Chalmers, 1991). These category of drugs include a 

variety of chemical products such as petrol, anaesthetic gases, volatile nitrites, organic 

solvents, and are present in an array of household and commercial products, aerosols, fire 

extinguisher chemicals and natural gases (Chalmers, 1991). 

Epidemiological study of deaths from harmful use of volatile substances in people 

under 18 years showed that 605 people died in United Kingdom in the period 1981-1990, 

and nearly as four times as many deaths occurred in the sociHI lower class (Esmail et aI., 

1993). 

27 



Definition of tenus and classification of dependence-producing drugs 

Action all cellular level 

There are indications that these dmgs could act on GABA receptors in much the same 

way as alcohol does, however the precise mechanism of action is still unclear (Goldstein, 

1994). 

1.2.6. Opioids and Psychostimulants 

The opioids and psychostimu!ants were used in our experimental studies and therefore, 

are discussed in more details (see chapter 2 and chapter 8). 
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Chapter 2 

Opioids 

2.1. Opioids and opioid receptors 

The opioids includes four different groups of compounds: 
• "True opiates" natural alkaloids derived from the opium poppy (papaver sOllinijerum), 

such as morphine and codeine. 
• Semi-symhetic opioids, structurally related to morphine (heroine). 
• Synthetic opioids, structurally unrelated to morphine (fentanyl, methadone, pentazocine, 

etc). 

• Endogenolls opioid peptides (f3-endorphill, Mef- and Leu-enkephalill, dynorphill A and 
B) were identified (Li et al.. 1976; Hughes et al.. 1975; Goldstein et aI., 1979; Cone and 

Goldstein, 1982, respectively), following the discovery of stereospecific opioid binding 

site in the CNS (Pert and Snyder, 1973; Simon et aI., 1973; Terenius, 1973). 

Opioid receptors are distributed throughout the mammalian eNS (Atweh and Kuhar 
I 977a,b,c), but could also be found in periphery (Cox, 1988). Three main receptor types 

were identified ~, K, and ° (Martin et aI., 1976; Lord et aI., 1977; Chang et aI., 1979). 
Recent studies have demonstrated the existence of two 8-opioid receptor subtypes (o[ and 

0,) (Jiang et aI., 1991). Table 1. shows the proposed classification of opioid receptors with 
corresponding agonists and antagonists, 

2.2. Opioid dependence 

Neuronal pathways and neurotransmitters, It is claimed that psychic dependence to 
opioids and many other drugs is regulated by three main anatomically well-defined brain 
areas (Koob, 1992). These areas are the followings: I. velllmi tegmental area (VTA), in 

which the cell bodies of the mesocorticolimbic dopamine (DA) system originate, 2. 
nllcleus accumbens (NAc). which receives projections from the VTA, 3. velltral pallidum, 

which receives a major projection from the NAc, 
Experimental studies showed that rats will self-administer opioids into the VTA, while 

opioid peptides injected into this brain region produce place preference (Di Chiara and 
North, 1992). 

It has been shown that microinjection of the neurotoxin kainic acid, which destroys the 
cell bodies. but not fibres of passage, into the NAc markedly decreased an intravenous 
self-administration of both opioids and psychostimulants (Zito et aI., 1985). 

A similar effect was observed in the ventral pallidum following selective destmction of 
cell bodies by ibotenic acid (Hubner and Koob, 1987). 
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It was claimed that the DA neurons of the VTA are critical for opioid reinforcement 

(Bozarth and Wise, 1984). It seems that opioids excite DA neurons in the VTA, via ~. 

receptors located on GABA (,,(-amino butyric acid)-releasing neurons. Opioids can induce a 

hyperpolarization of these GABA· neurons, by increasing the K' efflux. As a result, 

GABA release onto the DA cells is reduced and the firing rate of DA neurons is increased 

(Johnson and North, 1992; Fig.l). It is proposed that ~. and a·receptors are implicated in 

mediating the reinforcing actions of opioids, while }('-receptors mediate their aversive 

actions (Di Chiara and Imperato, 1988; Spanagel et aI., 1990). 

Interneuron 

GABA ()~~~ DA Q~ (NAC 
H (+) 

i 
Opioids VTA 

Fig. 1. Schematic illustration of the way in which DA-containing neurons in the ventral tegmental 
area (VTA) are excited by opioids. GABA-containing intemeurons are hyperpolarized by opioids 
acting at fl-receptors. This results in decreased (-) GABA release and increased (+) firing and DA 
release of DA-containing neurons in the VTA towards the nucleus accumbens (NAc). 

The level of other neurotransmitters, besides DA, is also deranged during opioid 

dependence. Several studies have been demonstrated that the excitatory amino acid (EAA) 

receptor system is involved in the process of opioid dependence. Morphine is known to 

inhibit the enzymes producing aspartic acid and glutamic acids (Koyuncuoglu et aI., 1979, 
1986) from asparagine and glutamine, respectively (Bielarczyk et aI., 1986), resulting in 

the decreased level of EAAs. Accordingly, the chronic presence of opioid receptor 

agonists decreases a normal activation of NMDA receptors (Aanonsen and Wilcox, 1987; 
Tanganelli et aI., 1991). Therefore, morphine dependence is associatcd with NMDA 

receptor up·regulation and/or supersensitivity (Koyuncuoglu et aI., 1992a,b). 

2.3. Withdrawal syndrome 

Cessation of opioid agonist or administration of opioid receptor antagonist in opioid­

dependent subjects induces a withdrawal syndrome. Although physical dependence occurs 

mainly following chronic exposure to an opioid drug, a withdrawal syndrome can be 

precipitated in man (Bickel et aI., 1988) and various animals (Martin and Eades, 1961; 
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Way et aI., 1969; Meyer and Sparber, 1977; Krystal and Redmond, 1983), following an 

acute opioid treatment as well. 
Opioid physical dependence can be easily studied, since opioid withdrawal syndrome. 

induced by diverse opioid antagonists (Table 1.), can be abruptly abolished by opioid 

agonists (Wei et aI., I 973a,b). 

Table 1. Opioid receptor classification and corresponding drugs, which interfere with these 
receptors (adapted from The RBI handbook of receptor classification, by Kebahian and Neumeyer 
(eds.), 1994). 

OPIOID RECEPTORS 

Selective 
agonists 

Selective 
antagonists 

Endogenous 
opioid 
peptides 

Universal 
opioid an­
tagonists 

~ 

DAMGO 
Sufenlanyl 
PL 017 
Morphine 

3-FNA 
CTAP 
CTOP 

3·CNT 
Naloxone 
Naltrexone 
Cyprodime 

0, 

DPDPE 
DADLE 

BNTX 
DALCE 
Naltrindole 
ICI-174,864 

[Leu 5]-Enkephalin 
{Met5J-Enkephalin 

3-CNT 
Naloxone 
Naltrexone 
Cyprodime 

DAMGO: {D-Alal,N-Me-Phe·t,Gly-ol~J-Enkcphalin 
DPDPE: lD-Pcnl'~J-Enkcphalin 
DADLE: [D-Ala2,D-Leu5]-EnkcplJalin 
DSLET: [D-Ser,Leu5,Thr~]-Enkephalin 
DALCE: lD-Ala2,Lcu~,Cys6J-Enkephalin 

Ii 

0, K 

[D-Ala2,Glu4]-Deltorphin U-69593 
DSLET C1977 

U-50488 

Naltriben lIor-Dinal-
Naltrindole 5' -isothiocyanate torphimine 
Naltrindole 
ICI-174,864 

Dynorphin-A 

3-CNT 3·CNT 
Naloxone Naloxone 
Naltrexone Naltrexone 
Cyprodime Cyprodime 

I3-FNA: B-Funallrcxamine 
CT AP; D-Phe-Cys-Tyr-D-Trp-Arg-Th-Pen-Thr-NHI 
CTOP: D-Phe-Cys-Tyr-D-Trp-Om-111r-Pcn-Thr-NH1 

BNTX: (E)-7-Bcnzylidenenaltrexone 
I3-CNT: B-Chlornaltrcxamine 

Behaviour. Heroin or morphine have in men a short half-life (2 to 3 h). The onset of 
withdrawal symptoms occurs within 8 to 16 h after the last dose, and the peak effect is 
around 2-3 days. Methadone has a longer half-life (15-20 h) and the onset of withdrawal 

symptoms is within 2-3 days after the last use_ However, the peak effect is around 1-2 
weeks, and some symptoms persist for months before resolution occurs (Zweben and 
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Payte, 1990). It has been demonstrated a long time ago (Himmelsbach et aI., 1938, cited 

by Martin and Sloan, 1977) that the opioid withdrawal symptoms - nausea, vomiting, 

sweating, gooseflesh, diarrhoea, tremor, chills and fever - occurred predictably by discon­
tinuing morphine administration in a person who had been maintained on a regular 
schedule for morphine injections with escalating dosage. Himmelsbach et aI., (1938, cited 

by Martin and Sloan, 1977) developed a method of scoring the intensity of the withdrawal 

syndrome, placing emphasis on easily recognized objective disturbances rather than on 

subjective complaints. 
The withdrawal syndrome in morphine-dependent rats includes whole-body shakes 

("wet-dog" shakes), diarrhoea, escape jumps, teeth-chattering, salivation and irritability -

aggression (Martin et aI., 1963; Bliisig et aI., 1973; Wei et aI., 1973a). Later on, several 

other withdrawal signs have been specified, for example sniffing, grooming, rearing. 

gnawing, penile-licking, mastication, ptosis, writhing and rhinorrhoea (Acquas and Di 
Chiara, 1992; Maldonado and Koob, 1993; Gold et aI., 1994). 

In order to classify the severity of withdrawal syndrome, several scoring systems were 
proposed. Some researchers divided the withdrawal symptoms in counted and checked 
signs (Maldonado and Koob, 1993), or in dominant and recessive ones (Blasig et aI., 
1973), while others provided signs with a weighting factor (Neal and Sparber, 1986). In 

our studies, described in chapters 5-7, the scoring system of Neal and Sparber (1986) has 
been used. 

In table 2., are listed several withdrawal signs in morphine-dependent animals (rats and 
mice) in respect to their origin and involvement of specific neurotransmitters andlor 
receptor sites. 

Neuronal pathways and neurotransmitters. The locus coeruleus (LC) is the main brain 
region playing an important role in the opioid withdrawal syndrome, but less in the opioid 
reinforcement. In contrast, the mcsolimbic dopaminergic (DA-ergic) system mediates 
reinforcing properties of dmgs, but is not extensively involved in drug withdrawal (Wise 
and Bozarth, 1987). 

The LC is located on the floor of the fourth ventricle in the anterior pons. The small 
number of neurons provides widespread noradrenergic (NA-ergic) innervation to virtually 
all areas of the brain and spinal cord. Destruction of the LC decreased some opioid 
withdrawal signs, such as chewing and rearing in morphine-dependent rats (Maldonado 
and Koob, 1993). However, LC neurons recorded in slices from morphine-dependent rats 
do not exhibit a pronounced withdrawal hyperactivity (Christie et aI., 1987), indicating that 

most of the withdrawal-induced activation of these cells observed in vivo is likely to be 
mediated by afferents to the LC. Studies revealed that the rostral medullary nucleus 

paragigantocellularis is the major excitatory input to LC neurons, acting primarily via 
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EAAs (Ennis and Aston-Jones, 1988; Hong et aI., 1993). 

The LC contains a high density of opioid receptors and it receives substantial direct 
enkephalin inputs. B-Endorphin and dynorphin fibres are found in the LC area (Aston­

Jones et aI., 1993). Presynaptic opioid receptors located on tenninals of central )'IA-ergic 

neurons, are probably responsible for the decreased release of NA (Arbilla and Langer, 

1978) and the diminution of the LC tenninal excitability that follows opioids exposure 

(Nakamura et aI., 1982). III vitro studies revealed that opioids acting at ~ receptor may 

increase K+ efflux and inhibit Nat influx, which is followed by hyperpolarization of the 
LC neurons (Andrade et aI., 1983). 

Clonidine (<x,-agonist), a drug that decreases NA-ergic activity, blocks both opioid 

withdrawal symptoms and behaviour induced by electrical stimulation of the LC (Mal­
donado and Koob, 1993). It has been shown that c1onidine, similarly to opioids, elicit a 

hyperpolarization in LC neurons (Aghajanian, 1978). Coapplication of clonidine and 

opioid agonists shows a response similar to that evoked by either agonist alone 
(Aghajanian and Wang, 1987). This finding implicates that both the o:,-adrenoceptor 

agonist and opioid agonists may affect K+ efflux in the same way, 
Recently, it has been demonstrated that K+ -channel openers can mimic the effects of 

morphine on neuronal K+ currents, and as a consequence can act as substituents for mor­

phine during withdrawal process (Robles et al" 1994). 

Second messenger systems 

Acute opioid action (Fig. 2). Opioid-induced inhibition of LC neurons via increasing 
the conductance of a K+ channel and inhibition of a Na+-dependent inward current 
(Aghajanian and Wang, 1987) is mediated by the pertussis toxin-sensitive G-proteins 
(Blume, 1978). Administration of opioids leads to activation of the Kt channel by direct 
coupling of the opioid receptor to the Kt channel via a G-protein. In contrast, inhibition of 
the Na+-dependent current appears to be indirect. Namely, the Nat current is normally 
activated by a cAMP (cyclic adenosine monophosphate)-dependent protein kinase, either 
through direct phosphorylation of the Na' channel or by phosphorylation of some asso­

ciated proteins (Wang and Aghajanian, 1990). The opioid inhibition of the Na' current 

appears to be mediated via inhibition of adenyl ate cyclase (AC) and reduced levels of 

cAMP. Reduced levels of cAMP decrease cAMP-dependent protein kinase activity and 

phosphorylation of the responsible channel/pump or closely related associated proteins. In 

addition to reduced firing rates (due to hyperpolarization), inhibition of cAMP pathway 

decreases catecholamine synthesis via reduced phosphorylation of tyrosine hydroxylase. 
Biochemical studies have confirmed that opioids inhibit AC activity in the LC (Duman et 
ai., 1988) and cAMP-dependent protein phosphorylation (Guitart and Nestler, 1989). 
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Table 2. Some withdrawal signs observed in rats and/or mice in respect to their origin (central) and 

the involved neurotransmitterlreceptor sites. 

withdrawal sign 

"wet-dog" shakes 

jumping 

rearing 

locomotion 

teeth-chattering 

chewing 

grooming 

penile erection 

gaslro-intestinal 
activity 

irritability 011 touch 

brain arealbrain nucleus 

forebrain24
; lower diencephalon !brain stem6; area 

diencephalon Imesencephalon27
; anterior hypo­

thalamus 15; thalamus6; medial thalamus23.27
; nucleus 

raphe magnus6
; amygdala8

; globus pallidusB
; 

substantia nigraS
; locus coeruJeus17

; hippocampus6
; 

nucleus accumbens21 

medial thalamus23
; raphe nuclei IS; cenlraUdorsal 

amygdala8
.2J; globus pallidus23

; locus coerulcus l5; 
periaquaductal gray22 
locus coeruleus I5,17; periaquaductal grayl5; nucleus 
accumbens20 

area diencephalon/ mesencephalon27
; hypothalamus 

lateraI1,1! - mediaf7
; amygdala8

; substantia nigra4 ,15; 
locus coeruJeus 17

; periaquaductal gray?,15; nucleus 
accumbens7 

basal ganglia2~; substantia nigra - pars reticulata5,15; 
nucleus accumbens21 

amygdala - striatum8.23
; substantia nigra10; locus 

coeruleus l7; nucleus accumbens l5 

mediaUlateral hypothalamus1,13; nucleus accumbens20
; 

cerebellum3 

hypothalamus - hippocampus2
.
1l

; olfactory bulb ll
; 

hypothalamus paraventricular nuclcj2; amygdala8
; 

spinal cordI I 
medial thalamus23 ; amygdala anterodorsal! centro­
basolateraI8

.23; striatum8 
- caudaf3; substantia nigra5; 

nucleus accumbens21 

periaquaductal gray22; substantia nigra5 

neurotransmitter 
receptor-sites 

5-HT'; DA"; 
ACh27 

Il-receptor sites 

0'- and PCP­
receptor sitc28 

~l-receptor siteH
; 

DA20 

p-receptor sitcH; 
DA20.21;DA_AChll 

DA20.26 

Il-reccptor sitel6
; 

ACh l1 

1. Adams et aI., Ph),siol & Behav 53: 1127, 1993; 2. Argiolas et aI., Reg Pep! 45: 139, 1993; 3. 
Ball et aI., Physiol Behav 13: 123, 1974; 4. Baumeister et aI., Nellropharmacol28: 1151, 1989; 5. 
Baumeister et ai., NCliropharmacol 31: 835, 1992; 6. Bedard and Pycock, Neurophanllaco! 16: 
663, 1992; 7. Bozarth and Wise, Science 224: 516, 1984; 8. Calvina et ai., Braill Res 177: 19, 
1979; 9. Gunne et aI., PsyclwpJlllrmacol 134, 1972; 10. Jones et ai., Brain Res 560: 163, 1991; 11. 
Krane et aI., New Eng Med 321: 1648, 1989; 12. Lammers et aI., Braill Res 449: 294, 1988; 13. 
Lammers et aI., Brain Res 449: 311, 1988; 14. Levin et aI., Pharmacal Biochem Bellav 34: 43, 
1989; 15. Maldonado et aI., J Phan/wcol E,p Ther 261: 669, 1992; 16. Maldonado et aI., 
Nellropharmacal 31: 1231, 1992; 17. Maldonado and Koob, Brain Res 605: 128, 1993; 18. Neal 
and Sparber, J Pharmacol Exp Ther 236: 157, 1986; 19. Patrick ct aI., EliI' J Pharmacal 231: 243, 
1993; 20. Pei et aI., EftI' J Pharmacol230: 63, 1993; 21. Pathos et aI., Brain Res 566: 348, 1991; 
22. Stinus et aI., Ne/lrosci 37: 767, 1990; 23. Tremblay and Charton, Neurosci Lett 23: 137, 1981; 
24. Tseng et aI., NellropiJarmacol 14: 247, 1975; 25. Ukai et aI., Brain Res 557: 77, 1991; 26. Van 
Wimersma Grcidanus et aI., Ellr J Pharmacol 173: 227, 1989; 27.Wci et aI., J Phamlacol Exp 
Ther 185: 108, 1973; 28. Yukhananov et aI., INRC-abstract p41, 1994. 
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Chronic opioid action Following chronic opioid administration, the LC neurons 
develop tolerance to the prior described acute inhibitory actions as neuronal firing rates 

recover toward control levels (Aghajanian, 1978; Christie et aI., 1987). It was suggested 

that during chronic exposure to opioids, long term adaptations in intracellular messenger 
proteins could occur, which could be involved in the process of cellular tolerance, 
dependence and withdrawal. It has been shown that chronic administration of opioids 
increases the levels of G-proteins (Nestler et aI., 1989) and stimulates the AC (Duman et 
aI., 1988), cAMP-dependent protein kinase (Nestler and Tallman, 1988) in the neurons of 

the LC. Tyrosine hydroxylase is also activated (Guitart et aI., 1990), which is the rate­
limiting enzyme, involved in the biosynthesis of catecholamine neurotransmitters (Fig. 2), 

Cell membrane ----, 
Adenylate 
Cyclase Cytoplasma 

.0 c~~~~fc·. ~ 

cAMP 

"010· I 
Chronic + 'I 

cAMP 

Kinase 

Acule· 

Chronic:: + 

Acute· 
Chronic + 

",0\1.\0 • 

I· ' C",o(\ 

Altered electrical 
excitability 

Tyrosine Altered catecholamine 

Hydroxylase synthesis 

Fig. 2. Opioid actions in the locus coerulcus (LC). Acllte administration of opioids inhibited (-) 
both adenylate cyclase and cAMP-dependent protein phosphorylation. Chronic administration of 
opioids increased (+) the levels of G-proteins and stimulated (+) the activity of adenylate cyclase, 
cAMP-dependent protein kinase and tyrosine hydroxylase. 
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In the chronic opioid-dependent state, the combined presence of opioids and the up­

regulated cAMP pathway would return the LC firing rate to control levels. Removal of the 

opioids would leave the up-regulated cAMP pathway unopposed, leading to withdrawal 

excitation of neuronal activity. Excitation of the LC neurons during withdrawal is 
necessary for producing many of the behavioral signs of opioid abstinence (Rasmussen et 

aI., 1990; Maldonado and Koob, 1993). 

In conclusion, all 'these findings indicate that upregulation of the cAMP pathway is a 

likely mechanism of opioid dependence in the LC. It is probably not the only mechanism, 

but this up-regulated cAMP pathway represent one of the examples in which a behavioral 
component (physical opioid dependence) can be correlated with biochemical and electro­

physiological adaptations occurring in the neurons of the Le. 
Following the chronic exposure to opioids, alterations on for example the molecular 

level (gene expression) have demonstrated (Nestler et aI., 1993). However, these changes 

are not discussed in this thesis. 

Treatment of opioid withdrawal syndrome, The expression of the morphine withdrawal 
syndrome in men/animals could be inhibited by opioids and non-opioids. Some examples 

are the foBowings: 

• Opioids. High doses (30 fold higher) of opioids terminated the precipitated withdrawal 

stimulus in animals (Holtzman, 1985) and men (Zweben and Payte, 1990), while the 

administration of enkephalinase inhibitors attenuated the expression of morphine 

withdrawal behaviour in rats and mice (Dzoljic, 1986; Dzoljic et aJ., 1986). 

Non-opioids. 
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Clonidille is effective in the treatment of the opioid withdrawal in humans (Gold et al., 

1978; Kleber et aJ., 1980). In morphine-dependent rats, clonidine eliminated "wet-dog" 

shakes, diarrhoea and teeth~chattering and prevented the release of DA in the NAc 

(Romandini et aJ., 1984; Pothos et aJ., 1991). 

5-HT Reuptake blockers (d-fenfluramine) attenuated opioid withdrawal jumping in rats 

(Cervo et aI., 1981), a sign which is not influenced by clonidine. 

Kt -Cllmmel openers (cromakalim and diazoxide) can mimic the effects of morphine on 

neuronal Kt currents, and could act as substituents for morphine in the withdrawal 

syndrome (Robles et aJ., 1994). 

Ca2+-Clul1mel blockers (verapamil, nimodipine, flunarizine) reduced several signs of 

naloxone-precipitated withdrawal such as diarrhoea, ptosis and jumping in morphine­

dependent rats (Bongianni et aJ., 1986; Baeyens et aJ., 1987). 

EAA receptor antagonists (discussed in chapter 3). 

Nitric oxide symhase (NOS) illhibitors (discussed in chapters 4-5). 

Ibogaine alld llorhannall (discussed in chapter 7). 
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2.4. Tolerance 

Biochemical changes following tolerance 

Opioid receptor system. It has been suggested that chronic opioid treatment alters the 

opiate receptor density in CNS (Collier. 1965). However. this subject is controversial. 

Some authors have reported a decrease in the number of J.l binding sites in tolerant 

animals (Rogers and EI-Fakahany. 1986; Bhargava and Gulati. 1990; Abdelhamid and 

Takemori. 1991). while others showed no changes (Klee and Streaty. 1974; Nishino et al.. 

1990) or even an increase of ~-receptor binding sites (Pert and Snyder. 1976; Brady et al.. 

1989). 

Second messenger systems. There seemed to be some common mechanism underlying 

dependence (discussed on page 41) and tolerance. The up-regulated cAMP system likely 

contributes to tolerance by making it more difficult for opioids to inhibit cAMP system 

and corresponding increase of the Na+-dependent inward current. It is also possible that 

the upregulated cAMP system could result in greater levels of opioid receptor density 

through phosphorylation of the receptor. This hypothesis is based on observations that 

brief exposure to met-enkephalin desensitizes the 1-I-opioid receptor in the LC and the 

evidence that agents which activate the cAMP pathway promote this desensitization 

(Harris and Williams, 199J), By promoting desensitization, the upregulated cAMP system. 

in the tolerant state could lead to a reduced ability of opioids to activate acutely G­

proteins and the K+ channel. In rats chronically treated with morphine,_ 1-I-receptors couple 

less well to G-proteins (Christie et al.. 1987; Tao et al.. 1993). This uncoupling of 

receptors and G-proteins may also contribute to the occurrence of opioid tolerance, 

References 

Aanonsen LM and \Vilcox GL, Nociceptive action of excitatory amino acids in the mouse: Effects 
of spinally administered opioids, phencyclidine and sigma agonists, J Pharmacol E.\p Ther 
243: 9-19.1987. 

Abdelhamid EE and Takemori AE, Characteristics of mu and delta- opioid binding sites in striatal 
slices of morphine-tolerant and -dependent mice, Ellr J Pharmacol 198: 157-163, 1991, 

Acquas E and Di Chiara G, Depression of mesolimbic dopamine transmission and sensitization to 
morphine during opiate abstinence, J Nellrochem 58: 1620-1625, 1992, 

Aghajanian OK, Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal 
response by c1onidine, Nature 267: 186-188, 1978. 

Aghajanian GK and Wang YY, Common alpha 2- and opiate effector mechanisms in the locus 
coeruleus: intracellular studies in brain slices, Neuropharmacol26: 793-799, 1987. 

Andrade R, Vandennaelen CP and Aghajanian GK, Morphine tolerance and dependence in the 
locus coeruleus: single cell studies in brain slices, Eur J Phanllacol 91: 161-168, 1983. 

Arbilla S and Langer SZ, Morphine and beta-endorphin inhibit release of noradrenaline from 
cerebral cortex but not of dopamine from rat striatum, Nature 271: 559-564, 1978. 

ASian-Jones G, Shiekhattar R, Akaoka H, Rajkowski J and Kubiak P, Opiates influence locus 
coemleus neurons by potent indirect and direct actions, In: The neurobiology of opiates, RP 

43 



Opioids 

Hammer (ed.), CRC Press, USA, pp. 175-202, 1993. 
Atweh SF and Kuhar MJ, Autoradiographic localization of opiate receptors in rat brain. I. Spinal 

cord and lower medulla, Braill Res 124: 53-67, 1977a. 
Atweh SF and Kuhar MJ, Autoradiographic localization of opiate receptors in rat brain. II. The 

brainstem, i!rain Res 129: 1-12, I 977b. 
Atweh SF and Kuhar MJ, Autoradiographic localization of opiate receptors in rat brain. III. TIle 

telencephalon, Brain Res 134: 393-405, 1977c. 
Baeyens 1M, Esposito E, Ossowska G and Samanin R, Effects of peripheral and central adminis­

tration of calcium channel blockers in the naloxone-precipitated abstinence syndrome in 
morphine-dependent rats, EliI' J Pharmacol137: 9-13, 1987. 

Bhargava HN and Gulati A, Down-regulation of brain and spinal cord ~l-opiate receptors in 
morphine tolerant-dependent rats, Ellr J Pharmacal 199: 305-311, 1990. 

Bickel WK, Stitzer ML, Liebson IA and Bigelow OE. Acute physical dependence in man: effects 
of naloxone after brief morphine exposure, J PlwmJacol Exp Tiler 244: 126-132, 1988. 

Bielarczyk H, Lysiak Wand Szutowicz A, Synthesis of glutamate and aspartate in rat brain 
synaptosomes, Acta Biochim Pol 33: 239-251, 1986. 

Blasig J, Herz A, Reinhold K and Zieglgansberger S, Development of physical dependence on 
morphine in respect to time and dosage and quantification of the precipitated withdrawal 
syndrome in rats, PsycJlOpharmac%gia 33: 19-38, 1973. 

Blume AJ, Interaction of ligands with the opiate receptors of brain membranes: regulation by ions 
and nucleotides, Prot: Natl Acad Sci USA 75: 1713-1717, 1978. 

Bongianni F, Carla V, Moroni F and Pellegrini-Giampietro DE, Calcium channel inhibitors 
suppress the morphine withdrawal syndrome in rats, Br J Pharmacol88: 561-567, 1986. 

Bozarth MA and Wise RA, Anatomically distinct opiate receptor fields mediate reward and 
physical dependence, Science 224: 516-517, 1984. 

Brady LS, Herkenham M, Long JB and Rothman RB, Chronic morphine increases mu-opiate re­
ceptor binding in a rat brain: a quantitative autoradiographic study, Braill Res 477: 382-386, 
1989. 

Cervo L, Rochat C, Romandini Sand Samanin R, Evidence of a preferential role of brain serotonin 
in the mechanisms leading to naloxone-precipitated compulsive jumping in morphine-dependent 
rats, Psychopharmacology 74: 271-274, 1981. 

Chang K-J, Cooper BR, Hazum E and Cuatrecasas P, Multiple opiate receptors: different regional 
distribution in the brain and differential binding of opiates and opioid peptides, Mol Pharmacal 
16: 91-104, 1979. 

Christie MJ, Williams JT and North RA, Cellular mechanisms of opioid tolerance: studies in single 
brain neurons, Mol Pharmacol 32: 633-638, 1987. 

Collier HOJ, A general theory of the genesis of drug dependence by induction of receptors, Natllre 
205: 181-182, 1965. 

Cone RI and Goldstein A, A specific radioimmunoassay for the opioid peptide dynorphin B in 
neural tissues, Neuropeptides 3: 97-106, 1982. 

Cox BM, Peripheral actions mediated by opioid receptors, In: The Opiate Receptors, OW Pasternak 
(cd.), The Humana Press, Clifton New Jersey, pp. 357-380, 1988. 

Di Chiara ,0 and Imperato A, Drugs abu~ed by humans preferentially increase synaptic dopamine 
concentrations in the mesolimbic system of freely moving rats, Proc NaIl Acad Sci USA 85: 
5274-5278, 1988. 

Di Chiara 0 and North RA, Neurobiology of opiate abuse, Trends Pharmacol Sci 13: 185-193, 
1992. 

Duman RS, Tallman JF and Nestler EJ, Acute and chronic opiate-regulation of adenylate cyclase in 
brain: specific effects in locus coeruleus, J Pharmacal Exp Ther 246: 1033-1039, 1988. 

44 



Chapter 2 

Dzoljic MR, Enkephalinase inhibitors attenuate naloxone-precipitated withdrawal syndrome, NIDA 
Res MOllogr 75: 575-578, 1986, 

Dzoljic MR, Rademaker B, Poel-Heisterkamp AL vd, Upknownwan OE and Haffmans J, Enkepha­
linase inhibition suppresses naloxone-induced jumping in morphine-dependent mice, Arch lilt 
PharmacodYIl 283: 222-228, 1986, 

Ennis M and Aston-Jones G, Activation of locus coeruleus neurons from nucleus paragi­
gantocellularis: a new excitatory amino acid pathway in brain, J Neurosci 8: 3644-3657, 1988, 

Gold MS, Redmond DE Jr and Kleber HD, Clonidine in opiate withdrawal, Lancet 1: 929-933, 
1978, 

Gold LH, Stinus L, Inturrisi CE and Koob OF, Prolonged tolerance, dependence and abstinence 
following subcutaneous morphine pellet implantation in the rat, Ellr J Pharmacal 253: 45-51, 
1994, 

Goldstein A, Tachibana S, Lowney LI, Hunkapiller M and Hood L, Dynorphin-( 1-13), an 
extraordinarily potent opioid peptide, Proc Natl Acad Sci USA 76: 6666-6670, 1979. 

Guitart X and Nestler EJ, Identification of morphine- and cyclic AMP-regulated phosphoproteins 
(MARPPs) in the locus coeruleus and other regions of the rat brain: regulation by acute and 
chronic morphine, J NellrDsci 9: 4371-4387, 1989. 

Guitart X, Hayward M, Nisenbaum LK, Beitner-Johnson D, Haycock J\V and Nestler El, 
Identification of MARPP-58, a morphine- and cyclic AMP-regulated phosphoprotein of 58 
kDa, as tyrosine hydroxylase: evidence for regulation of its expression by chronic morphine in 
the rat locus coeruleus, J Neurosci 10: 2649-2659, 1990. 

Harris GC and Williams JT, Transient homologous Jl-opioid receptor desensitization in rat locus 
coeruleus neurons, J Nellrosci 11: 2574-2581, 1991. 

Hong, M, Milne Band lhamandas K. Evidence for the involvement of excitatory amino acid 
pathways in the development of precipitated withdrawal from acute and chronic morphine: an 
in vivo voltammetric study in the rat locus coeruleus, Brain Res 623: 131-141, 1993. 

Holtzman SG, Discriminative stimulus effects of morphine withdrawal in the dependent rat: 
suppression by opiate and nonopiate drugs, J Pharm Exp Ther 233: 80-86, 1985. 

Hubner CB and Koob GF, The ventral pallidum plays a role in mediating cocaine and heroin in 
self-administration in the rat, Brain Res 508: 20-29, 1987. 

Hughes J, Smith TW. KosterJitz HW, Fothergill LA, Morgan BA and Morris HR, Identification of 
two related penlapeptides from the brain with potent opiate agonist activity, Nallfre (Lolldon) 
258: 577-579, 1975, 

Jiang Q, Takemori AE. Sultana M, Portoghese PS, Bowen WD, Mosberg HI and Porreca F, 
Differential antagonism of opioid delta antinociception by [D-Ala1,LeuS,Cys6} enkephalin and 
naltrindole 5'-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257: 
1069-1075, 1991. 

Johnson SW and North RA, Opioids excite dopamine neurons by hyperpolarization of local 
intemeurons, J Ne/lrosci 12: 483-488, 1992. 

Kleber HD, Gold MS and Riordan eE, The use of c10nidine in detoxification from opiates, BlIlI 
Narc 32: 1-10, 1980, 

Klee \VA and Streaty RA, Narcotic receptor sites in morphine-dependent rats, Natllre 248: 61-63. 
1974, 

Koob GF, Drugs of abuse: anatomy, pharmacology and function of reward pathways, Trellds 
Pharmacol Sci 13: 177-184, 1992, 

Koyuncuoglu H, Keyer-Uysal M, Berkman K, GUngor M and Gene E, The relationship between 
morphine, aspartic acid and L-asparaginase in rats, EliI' J Pharmacol60: 369-372, 1979. 

Koyuncuoglu H, Gungor M, Enginar N, Hatipoglu I and Hizal A, brain asparaginase, AChE 
activity and plasma cortisol level in morphine dependent rats: Effect of aspartic acid and 

45 



Opioids 

naloxone, Pharmacol Biochem Behal' 25: 953-957, 1986. 
Koyuncuoglu H, Uresin Y, Esin Y and Aricioglu F, Morphine and naloxone act similarly on 

glutamate-caused guinea pig ileum contraction, Pharmacol Biochem Behav 43: 479-482, 1992a. 
Koyuncuoglu H, Dizdar Y, Aricioglu F and Sayin U, Effects of MK801 on morphine physical 

dependence: attenuation and intensification, Pharmacol Biochem Behav 43: 487-490, 1992b. 
Krystal JH and Redmond DE, A preliminary description of acute physical dependence on morphine 

in the vervet monkey, Phannacol Biochem Behav 18: 289-291, 1983. 
Li CH, Lemaine S, Yamashiro D and Doneen BA, The synthesis and opiate activity of beta­

endorphin, Biochem Biophys Res Commlll1 71: 19-25, 1976. 
Lord JH, Waterfield AA, Hughes J and Kosterlitz HW, Endogenous opioid peptides: Multiple 

agonists and receptors, Nature 267: 495-499, 1977. 
Maldonado Rand Koob OF, Destruction of the locus coeruleus decreases physical signs of opiate 

withdrawal, Brain Res 605: 128-138, 1993. 
Martin WR and Eades CO, Demonstration of tolerance and physical dependence in the dog 

following a short-term infusion of morphine, J Pharmacal Exp Ther 133: 262-270, 1961. 
Martin WR, Wikler A, Eades CO and Peskor Fr, Tolerance to and physical dependence on 

morphine in rats, PsycJzopharmacol4: 247-249, 1963. 
Martin WR, Eases CG, Thompson JA, Huppler RE, Gilbert PE, The effects of morphine- and 

nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog, J 
Pharmacol Exp Ther 197: 517-532, 1976. 

Martin WR and Sloan JW, Neurophannacology and neurochemistry of sUbjective effects, analgesia, 
tolerance and dependence produced by narcotic analgesics, In: Handb Exp Pharmacol, R 
Hoffmeister and G Stille (eds.), Springer-Verlag, Berlin, pp. 43-158,1977. 

Meyer DR and Sparber SB, Evidence of possible opiate dependence during the behavioral 
depressant action of a single dose of morphine, Life Sci 21: 1087-1094, 1977. 

Nakamura S, Tepper J, Young S, Ling N and Groves P, Noradrenergic terminal excitability: effects 
of opioids, Neurosci Lett 30: 57-62, 1982. 

Neal BS and Sparber SB, Mianserin attenuates naloxone-precipitated withdrawal signs in rats 
acutely Or chronically dependent upon morphine, J Plwrmaco/ Ex" Ther 236: 157-165, 1986. 

Nestler EJ and Tallman JF, Chronic morphine treatment increases cyclic AMP-dependent protein 
kinase activity in rat locus coeruleus, Mol Pharmacol 33: 127-132, 1988. 

Nestler EJ, Erdos JJ, Terwilliger RZ, Duman RS and Tallman JF, Regulation of G-protcins by 
chronic morphine treatment in the rat locus coeruleus, Brain Res 476: 230-239, 1989. 

Nestler EJ, Hope BT and Wid nell KL, Drug addiction: A model for the molecular basis of neural 
plasticity, Neltron 11: 995-1006, 1993. 

Nishino K, Su YF, Wong CS, Watkins WD and Chang KJ, Dissociation of mu opioid tolerance 
from receptor down-regulation in rat spinal cord, J PhamUicoi Exp Ther 253: 67-72, 1990. 

Pert CB and Snyder SH, Opiate receptor demonstration in nervous tissue, Science 179: 1011-1014, 
1973. 

Pert CB and Snyder SH, Opiate receptor binding - enhancement by opiate administration ill vivo, 
Biochem Plumnacol25: 847-853, 1976. 

Pothos E, Rada P, Mark OP and Hoehel BG, Dopamine microdialysis in the nucleus accumbens 
during acute and chronic morphine, naloxone-precipitated withdrawal and c10nidine treatment, 
Bmill Res 566: 348·350, 1991. 

Rasmussen K, Beitner-Johnson D, Krystal JH, Aghajanian GK and Nestler EJ, Opiate withdrawal 
and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates, J 
Nellrosci 10: 2308·2317,1990. 

Robles LI, Barrios M and Baeyens JM, ATP-sensitive K+ channel openers inhibit morphine 
withdrawal, Ellr J Plwrmacof 251: 113-115, 1994. 

46 



Chapter 2 

Rogers NF and EI-Fakahany EE, Morphine-induced opioid receptor down-regulation detected in 
intact adult rat brain cells, Ellr J Pharmacol124: 221-230, 1986. 

Romandini S, Cervo Land Samanin R, Evidence that drugs increasing 5-hydroxytryptamine 
transmission block jumping but not weI-dog shakes in morphine-abstinent rals: a comparison 
with clonidine, J Pharm Pharmacal 36: 68-70, 1984. 

Simon EI, Hiller JM and Edelman I, Stereospecific binding of the potent narcotic analgesic 
[3H]etorphine to rat-brain homogenate, Proc Nat! Acad Sci USA 70: 1947-1949, 1973. 

Spanagel R, Herz A and Shippen berg TS, The effects of opioid peptides on dopamine release in 
the nucleus accumbens: an ill vivo microdialysis study, J Neurochem 55: 1734-1740, 1990. 

Tanganelli S, Antonelli T, Morari M, Bianchi C and Beani L, Glutamate antagonists prevent 
morphine withdrawal in mice and guinea pigs, Nellrosci Lett 122: 270-272, 1991. 

Tao P-L, Lee C-R, Law P-Y and Loh HH, The interaction of the mu-opioid receptor and G protein 
is altered after chronic morphine treatment in rats, NmmYII Schmiedeberg's Arch Pharmacol 
348: 504-508, 1993. 

Terenius L, Characteristics of the 'receptor' for narcotic analgesics in synaptic plasma membrane 
fraction from rat brain, Acta Pharmacal Tw.:icoI33: 377-384, 1973. 

The RBI handbook of receptor classification, JW Kebanian and JL Neumeyer (cds.), Research 
Biochemical Inst, Natick, 1994. 

Wang YY and Aghajanian GK, Excitation of locus coeruleus neurons by vasoactive intestinal 
peptide: role of cAMP and protein kinase A, J Neurosci 10: 3335-3343, 1990. 

Way EL, Loh HH and Shen F, Simultaneous quantitative assessment of morphine tolerance and 
physical dependence, J Pharmacal Exp Ther 167: 1-8, 1969. 

Wei E, Loh HH and Way EL, Quantitative aspects of precipitated abstinence in morphine­
dependent rats, J Pharmacol Exp Ther 184: 398-403, 1973a. 

Wei E, Loh HH and \Vay EL, Brain sites of precipitated abstinence in morphine-dependent rats, J 
Pharmacol Exp Ther 185: 108-115, 1973b. 

Wise RA and Bozarth MA, A psychomotor stimulant theory of addiction, Psycho! Re\' 94: 469-
492, 1987. 

Zito KA, Vicker G and Roberts DC, Disruption of cocaine and heroin self-administration following 
kainic acid lesions of the nucleus accumbens, Pharmacol Biochem Behm' 23: 1029-1036, 1985. 

Zweben JE and Payte JT, Methadone maintenance in the treatment of opioid dependence. A 
current perspective, West J Med 152: 588-599, 1990. 

47 





PART 3 

Morphine Withdrawal Syndrome - Experimental Studies 





Chapter 3 

Excitatory amino acid receptor antagonists and naloxone­
precipitated withdrawal syndrome in morphine-dependent 

mice 

Abslract - The effects of excitatory amino acid (EAA) receptor antagonists MK-
801 (non-compelitive NMDA receptor antagonist), DNQX (competitive non­
NMDA receptor antagonist) and 5,7-DCKA (antagonist of glycine site ofNMDA 
receptor) have been examined on the naloxone (4 mg/kg, i.p.)-precipitated 
withdrawal jumping behaviour in morphine-dependent mice. The results indicate 
that withdrawal jumping behaviour in morphine-dependent mice was attenuated 
by all three EAA receptor antagonists, MK-801, DNQX and 5,7-DCKA. 
However, MK-801, DNQX and 5,7-DCKA inhibited the jumping behaviour in 
a relatively narrow dose range. 
Published in European NeuropsycllOpharmacology 3: 111-116, 1993. 

Central excitatory amino acids (BAAs) with corresponding receptors have been the focus of 

much attention in order to clarify neuronal development, long-term potentiation. kindling, 
epilepsy, learning or memory (Cotman and Iversen, 1987). In addition, there is evidence of 

the involvement of EAA in drug dependence phenomena. It has been shown that MK~801 
blocks alcohol withdrawal seizures in the rat (Morrisett et at, 1990). It seems that chronic 
alcohol treatment uregulates the number of N-methyl-D-aspartate (NMDA) receptors in the 

hippocampus (Grant et aI., 1990), which might explain both the seizures in alcohol withdrawal 

and anticonvulsant activity of NMDA receptor antagonists. 
Furthermore, recent data indicate that the non-selective antagonist of EAA receptors, 

kynurenic acid (Krystal et al., 1990) attenuated naloxone~precipitated withdrawal in rats. 
Similarly, the non-competitive (MK-801) and competitive (LY274614) NMDA antagonists 

suppressed the behavioural signs of withdrawal in morphine-dependent rats (Koyuncuoglu et 
aI., 1992; Rasmussen el aI., 1991; Trujillo and Akil, 1991). Evidently, the functional activity 

of NMDA receptors may have a modulatory effect on drug dependence phenomena in the rat. 
The role of other EAA receptors, besides the NMDA receptor, in morphine dependence 

remains unclarified. 
The aim of this study is to examine the role of various EAA receptor antagonists in 

naloxone~precipitated withdrawal in morphine-dependent mice. We used the non-competitive 
NMDA receptor antagonist MK-801 (Wong et aI., 1988), the non-NMDA receptor antagonist 

DNQX (Honore et aI., 1988) and 5,7-DCKA, a selective antagonist of NMDA receptor-
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associated strychnine-insensitive glycine binding site (Baron et al., 1991). An additional 

reason for using 5,7-DCKA was that glycine receptor antagonism may produce motor effects 

different from the competitive NMDA receptor antagonists (Koek and Colpaert, 1990). 

Materials and Methods 

Animals 
Male Swiss mice weighing 25-35 g were used in all experiments. The animals were 

housed singly in polyethylene cages with food and water ad libitum. Artificial light was 
supplied in a 12-h light-dark cycle. 

MOlpilille dependence 
In general, the experimental model for the opioid withdrawal in mice was followed (\Vay 

et a!., 1969; Kosersky et a!., 1974). Chronic morphine dependence in mice was induced by 
morphine pellets (25 mg morphine baselmouse, s.c.) implanted on the back of the animal 
under ether anaesthesia. The morphine withdrawal was precipitated by administration of 
naloxone (4 mgikg, i.p.), 72 h after the implantation of the pellet. The withdrawal severity 
was quantified by counting the frequency of jumping from a circular platform (30 cm high, 
12 em diameter). The general behaviour of dmg-treated naive and morphine-dependent mice 
was observed and registered. 

The animal was pretreated with vehicle or one EAA receptor antagonist, 30 min prior to 
naloxone. The pretreated animal was placed on the platform and observed for the following 
30 min (in time intervals of 5 min). At the end of the 3D-min period, the animal was given 
naloxone and placed again on the platform in order to be observed in a similar way, for the 
following 30 min. 

Experimental protocol 
Morphine-dependent mice were divided into five groups, pretreated intraperitoneally with 

vehicle (saline, 0.5 ml, n=5; DMSO, 0.5 ml, n=5), MK-SOI (I-SO ~g/kg, n=7S), DNQX (0.63-
10 mgikg, n=40) or 5,7-DCKA (5-160 mgikg, n=35). In all these animals, the withdrawal 
jumping behaviour was precipitated by administration of naloxone (4 mg/kg, i.p.), 30 min 
after dmg pretreatment. In order to observe the behavioural effect of EAA antagonist in 
morphine-dependent mice, naloxone was replaced by saline. These three additional groups 
(n=14-36) were pretreated (30 min before saline) with various doses of EAA receptor 
antagonists. Each animal was used only once. 

Drugs 
The following drugs were used: MK-SOI [(+)-5-methyl-IO,II-dihydro-5H-dibenzo[a,d] 

cyclohepten 5,IO-imine maleate, Research Biochemicals Inc. USA], DNQX (6,7-
dinitroquinoxaline 2,3-dione, Toeris Neuramin) and 5,7-DCKA (5,7-dichlorokynurenic acid, 
Brunschwig Chemie). Two compounds, MK-SOI and DNQX, were dissolved in distilled 
water. The pH of MK-SOI was adjusted to 7-S, while the pH of DNQX was adjusted to 9 in 
order to solubilise the compound completely. 5,7-DCKA was dissolved in 10% DMSO 
(dimethylsulfoxide) and adjusted to pH 7-S. In the control experiments the vehicle solutions 
were adjusted to the corresponding pH value of dntgs. All dmg solutions were administered 
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Lp. and given in an equal volume (0.5 mllinjection). 

Statistics 
Data are expressed as medians, The effects of drug and vehicle treatment were evaluated 

statistically using the non-parametric Kmskal-Wallis one-way analysis of variance, followed 
by the Mann-Whitney V-test, with a level of P<0.05 being considered significant (Glantz, 
1989). 

Results 

MK-801 

In our preliminary experiments we observed that administration of MK-80 I. in a dose 
range of 0.1-10 mglkg (i.p,), induced a pronounced locomotor dysfunction in both naive and 
morphine-dependent mice, consisting of wild running (hyperlocomotion), jumping, ataxia and 

convulsion. The incidence of these locomotor disturbances was dose related, while the higher 
doses of MK-801 (1-10 mglkg) induced mainly ataxia and convulsions. However, concen­
trations of MK-80 1 below 0.1 mg/kg did not affect a normal behaviour of naive or morphine­
dependent mice. 

In order to avoid the influence of disturbed locomotion on the withdrawal jumping in 
mice, we used MK-801 in a dose range of 1-80 f-lglkg (Lp.) which did not affect locomotion 
in naive or morphine-dependent mice. MK-801 significantly attenuated the naloxone 
precipitated jumping behaviour in a dose range of 5-20 ~glkg, i.p. (Fig. 1). The higher doses 

of MK-801 (40-80 ~glkg, Lp.) were without significant effect on withdrawal jumping 

behaviour of mice. 
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Fig. 1. Effect of MK-801 (f.lglkg, Lp., 30 min before naloxone) on jumping behaviour precipitated by 
naloxone (4 mglkg, i.p.) in morphine-dependent mice. Histograms represent medians and dots indicate 
individual animal scores (n=9-14 in MK-801-treated groups, control group = 36). 
* Significant difference (P<O.05) from the value in vehicle (saline)-pretreatcd animals. 
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DNQX 
DNQX (20-80 mgikg, Lp.) caused convulsions (observation period 60 min after drug 

administration) and/or death (observation period 72 h after drug administration) in morphine­

dependent mice. However, in naive mice neither convulsions nor death has been observed 

(Table 1). Therefore, in our further experiments we selected lower concentrations of DNQX 

(0.63-10 mgikg, i.p.), which did not induce convulsions in morphine-dependent or naive mice. 

DNQX reduced naloxone-precipitated withdrawal jumping in mice in a dose range of 1.25-5 

mgikg, Lp. Similarly to MK-801, the dose-response curve of DNQX was also V-shaped (Fig. 

2). 

DNQX Morphine-dependent Naive mice 
(mgikg, i.p.) mice (n~4) (n~4) 

Lethality Convulsions Lethality Convulsions 

20 2/4 1/4 0/4 0/4 
40 2/4 2/4 0/4 0/4 
80 4/4 3/4 0/4 0/4 

Table 1. Lethal (observation period 72 h after dmg administration) and convulsant (observation period 
60 min after drug administration) effect of DNQX (20-80 mglkg, i.p.) on morphine-dependent and 

* * * 

0.63 1.25 2.5 5 10 

DNQX, mg/kg, I.p. 

Fig. 2. Effect of DNQX (mg/kg. i.p., 30 min before naloxone) on jumping behaviour precipitated by 
naloxone (4 rnglkg, i.p.) in morphine-dependent mice. Histograms represent medians and dots indicate 
individual animal scores (n=6-8 in DNQX-treated groups, control group = 36). 
* Significant difference (P<0.05) from the value in the vehicle (saline)-pretreated animals. 
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5,7-DCKA 

Administration of 5,7-DCKA in a relatively wide dose range (5-160 mg/kg, Lp.) did not 

affect the usual behavioral pattern of either naive or morphine~dependent mice. However, 5,7-
DCKA in a dose range of 20-40 mg/kg, Lp. significantly attenuated the naloxone-precipitated 

jumping behaviour in morphine-dependent mice (Fig. 3). The maximal effect was seen after 

treatment with 40 mg/kg 5,7-DCKA, while higher doses (80-160 mg/kg) were ineffective. 
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Fig. 3. Effect of 5,7 DCKA (mg/kg, i.p., 30 min before naloxone) on jumping behaviour precipitated 
by naloxone (4 mglkg. Lp.) in morphine-dependent mice. Histograms represent medians and dots 
indicate individual animal scores (n=5-7 in 5,7-DCKA-treated groups, control group = 16). 
* Significant difference (P<O.05) from the value in vehicle (DMSO)-pretreated animals. 

Discussion 

OUf present findings demonstrate that antagonists of various glutamate receptors, such 
as MK-801 (non-competitive NMDA receptor antagonist), DNQX (competitive non-NMDA 

receptor antagonist) and 5,7-DCKA (antagonist of glycine site of NMDA receptors), 

attenuated the jumping withdrawal behaviour in morphine-dependent mice. These results are 

consistent with previous works showing that the non~selective EAA antagonist kynurenic acid 
(Krystal et ai., 1990) and selective non-competitive and competitive NMDA receptor 

antagonists MK-801 and LY274614, respectively, suppressed the withdrawal signs in 

morphine-dependent rats (Koyuncuoglu et ai., 1992; Rasmussen et ai., 1991; Trujillo and Akil, 

1991). However, in addition to NMDA receptors, this study indicates an involvement of the 
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glycine site of NMDA receptors and non-NMDA receptors in drug withdrawal as well. 

Each of these three substances has a V-shaped dose-effect curve. Although unusual, a V­

shaped dose-effect curve should not be considered as an exceptional phenomenon in the 

research of drug withdrawal. For example, buprenorphine in lower doses (0.01-0,5 mg/kg) 

precipitated abstention symptoms in morphine-dependent mice, while the higher doses (I-50 

mg/kg) were less active or completely inactive (Lizasoain et aI., 1991), The reason for the V­

shaped dose effect curve is not known, but it could be assumed that a new mechanism(s) 

activated by higher drug concentrations may induce effects that are different from those 

produced by administration of lower doses. As regards the substances used in this study, it 

is known that higher doses of EAA receptor antagonists (in contrast to the lower doses), 

exerted a prominent excitatory/proconvulsant effect in naive animals (Jurson and Freed, 1990; 

Schoepp et aI., 1990). 

An additional relevant point is that morphine withdrawal in humans and animals is 

associated with an increase of neuronal and behavioral excitation (\Vise and Bozarth, 1987). 

It seems that a further increase of central neuro-excitability induced by higher doses of drugs 

creates a new situation, which is presumably not favourable for an attenuation of morphine 

withdrawal. This might explain a failure of the higher doses of EAA receptor antagonists to 

attenuate morphine withdrawal and corresponding V-shaped doses-response curves. As a 

matter of fact, it should be expected that a further increase of neum-excitability, due to 

elevated concentrations of EAA receptor antagonists, might even aggravate a withdrawal 

syndrome. Recent experiments support this idea, since administration of 0.1 mglkg of MK-801 

attenuated naloxone-precipitated withdrawal in rats, while a higher dose (0.3 mglkg) increased 

the severity of the same abstention syndrome (Koyuncuoglu et ai., 1992). 

The mechanism of the suppressing effect of EAA antagonists on morphine withdrawal 

remains to be elucidated. There is evidence that the noradrenergic system plays an important 

role in opioid withdrawal. It has been reported that opioid withdrawal is associated with 

noradrenaline (NA) release (Laverty and Roth, 1980) and increased activity of noradrenergic 

cells in the locus coeruleus (Aghajanian, 1978; Valentino and Wehby, 1989), Several studies, 

in vitro and in vivo, indicate that NMDA antagonists may decrease NA release (Jones et aI., 

1987; Pittaluga and Raiteri, 1992) or activity (Burgard et aI., 1989; Dahl and Sarvey, 1990; 

Loscher et aI., 1991). In this respect, it is of importance that MK-801 significantly decreased 

the levels of NA and adrenaline in the amygdala of naive rats (Loscher et aI., 1991). This 

might be of relevance, since the amygdala was implicated in emotion-related behaviour 

(Coulombe and White, 1978) and fear response (Hitchcock and Davis, 1986). An anxiolytic 

activity of NMDA antagonists, observed in naive mice (Trullas et ai., 1989) and rats (Kehne 

et aI., 1991), might playa role in the attenuation of withdrawal jumping in mice, since 

anxiety is a symptom of opioid withdrawal in humans and animals (Lal and Emmett-Oglesby, 

1983). 
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An observation that relatively high doses of DNQX promote convulsions in morphine­

dependent mice, while the naive mice remained unaffected, deserves a comment. Recent data 

indicate that morphine dependence is associated with upregulation andlor superscnsitivity of 

NMDA receptors (Marek et a!., 1991). Other EAA receptors were not examined. A 

derangement of these, and possibly other EAA receptors, may explain a different reactivity 

to EAA receptor antagonists in morphine-dependent and naive mice. 

In conclusion, the attenuating effect of EAA receptor antagonists on opioid withdrawal 

in mice might be due to complex changes in the activity of neurotransmitters and 

corresponding behavioral alterations in the addicted subjects. For further study the role of the 

NMDA glycine site is of particular interest, since dmgs acting on this site are devoid of 

muscle-relaxant properties and possess significant anxiolytic effects. 
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Inhibitory effect of nitric oxide (NO) synthase inhibitors on 
naloxone-precipitated withdrawal syndrome in morphine­

dependent mice 

Abstract - The effect of intraperitoneally administered nitric oxide (NO) synthase 
inhibitors has been exam.ined on the naloxone-precipitated withdrawal syndrome 
in morphine-dependent mice. L-NAME (30-200 mg/kg) and L-NOARG (7.5-50 
mg/kg) induced a significant decrease of naloxone-precipitated withdrawal 
jumping and diarrhoea. However, L-NMMA (3.5-100 mg/kg), considered as a 
less potent NO synthase (NOS) inhibitor, did not significantly affect the 
withdrawal signs in mice. Although a specificity of NOS inhibitors is not fully 
established, these results indicate that inhibition of NO synthesis in the central 
nervous system and periphery may significantly affect the morphine withdrawal 
phenomena. Accordingly, this study suggests an involvement of NO in morphine 
withdrawal syndrome. 
Pliblished ill Nellrosciellce Letters 162: 97-/00, 1993. 

The cessation of chronic use of central depressant drugs is associated with excitatory 

withdrawal signs. This could suggest an involvement of excitatory neurotransmitters in dmg 

dependence phenomena. Accordingly, a recent study indicates that kynurenic acid, a non­

selective antagonist of excitatory amino acid (EAA) receptors, attenuated a naloxone­

precipitated withdrawal in rats (Rasmussen et aI., 1991a). Similarly, other studies 

demonstrated that the non-competitive N-methyl-D-aspartate (NMDA) antagonist, MK-801, 

and the competitive NMDA antagonist, LY274614, suppressed the behavioral signs of 

withdrawal in morphine-dependent rats (Koyullcuogiu et aI., 1992; Rasmussen et aI., 1991 b; 

Trujillo and Akil, 1991). We also observed that antagonists of various EAA receptors 

(NMDA-antagonist MK-80 I, non NMDA-antagonist DNQX and antagonist of glycine site of 

NMDA receptor 5,7-DCKA) attenuated the naloxone-precipitated withdrawal syndrome in 

morphine-dependent mice (Cappendijk et aI., 1993). 

Concerning nitric oxide (NO), it has been suggested that this compound is produced 

enzymatically in postsynaptic structures, in response to activation of central EAA receptors 

(Garthwaite et aI., 1989; Knowles et aI., 1989). Thus, there is a possibility that anti­

withdrawal effect of antagonists of NMDA receptors might be due to the decrease of NO 

synthesis. In order to explore the proposed mechanism of action of antagonists of EAA 

transmission on drug withdrawal, we studied the effect of several NOS inhibitors NG-nitro-L­

arginine methyl ester hydrochloride (L-NAME), NG-nitro-L-arginine (L-NOARG) and NG_ 
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monomethyl-L-arginine acetate (L-NMMA) on naloxone-precipitated withdrawal in morphine­
dependent mice. 

Materials and Methods 

Morphine dependence' 
Chronic morphine dependence was induced in male Swiss mice (25-35 g) by implantation 

of pellet (25 mg morphine base/mouse, according to the method of Kosersky et ai., 1974) 
under ether anaesthesia, The animals were housed individually in a room maintained on a 12-
h light-dark cycle (lights on 08.00 h) with food and water ad libitum. The morphine 
withdrawal was precipitated by administration of naloxone (4 mglkg, i.p.), 72 h after pellet 
implantation. The withdrawal severity was quantified by counting the frequency of jumping 
from a circular platform (30 cm high, 12 cm diameter), The presence of diarrhoea was 
checked. 

Experimental protocol 
The mice were divided into fOUf groups, pretreated intraperitoneally with vehicle (distilled 

water, n=21), L-NAME (7.5-400 mglkg, n=49), L-NOARG (3.5-100 mglkg, n=36), or L­
NMMA (3.5-100 mglkg, n=30) 30 min prior to naloxone. Based on our preliminary 
experiments and other studies (Moore et ai., 1991; Morgan et ai., 1992), we selected 
biologically active doses of these drugs, which do not alter the locomotor activity. Regarding 
the penetration of NOS inhibitors in CNS, it is known that these substances are lipophilic -
particularly L-NAME, and therefore, may pass easily through various lipid membranes, 
including blood-brain barrier (Gardiner et ai., 1990; Morgan et ai., 1992; Rees et ai., 1990). 

A drug pretreated animal was placed on a platform and observed for the following 30 
min, At the end of the 3D-min period, naloxone was administered and withdrawal jumping 
behaviour was counted and withdrawal diarrhoea was checked, for the following 30 min, The 
pH of drug solutions was adjusted to 7-8 and all drug solutions were given in an equal 
volume (0.5 ml/injection, Lp.). 

Statistics 
Data are expressed as mean ± SEM, while the control group (animals pretreated with 

vehicle) was taken as 100%, The effects of drug and vehicle treatment were evaluated 
statistically using the non~parametric Kruskall-Wallis one-way analysis of variance, followed 
by the Mann-Whitney U-test, with a level of P<0.05 being considered significant (Glantz, 
1989). 

Results 
Data in Fig, 1 A show a significant and dose-related decrease of the withdrawal jumps 

following administration of L-NAME (30-200 mglkg, Lp.). Similarly, L-NOARG (7.5-50 

mg/kg, Lp,) induced a significant decrease of naloxone-precipitated withdrawal jumps (Fig. 
IB). 
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However, further increase of concentrations ofL-NAME (400 mglkg, i.p.) and L-NOARG 

(100 mglkg) failed to decrease a withdrawal jumping behaviour (Figs. IA and IB). In 

contrast, L-NMMA (3.5- 100 mglkg) did not significantly decrease the naloxone-precipitated 

withdrawal jumping in mice (Fig. I C). 
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Fig. lA-C. Naloxone-precipitated withdrawal 
jumps in the morphine-dependent mice. Results are 
shown as mean jumps ± SEM during 30 min 
following naloxone (4 mgikg, i.p.) administration. 
The numbers of jumps in the control group (II) 
pretreated with vehicle (n=2 J) was expressed as 
100%. This group is the same in all three figures. 
Other animals were pretreated with L-NAME (0, 
Fig. 1 A, 7.5-400 mglkg, i.p., 30 min prior 
naloxone; n=7, each dose group), or with L­
NOARG (E!, Fig. IB, 3.5-100 mglkg, i.p., 30 min 
prior naloxone; n=6, each dose group), or with L­
NMMA (1m, Fig. Ie, 3.5-100 Illglkg, Lp., 30 min 
prior naloxone; 11=6, each dose group, Data in 
these figures were analyzed by the non-parametric 
Kmsk'lil-Wallis ANOVA, one-way followed by the 
Mann-Whitney U-test. 
* Significance at level of P<O.05. 

Withdrawal diarrhoea was present in 20 of the in total 21 tested control animals. L­
NAME and L-NOARG showed a dose-related inhibitory effect on the withdrawal diarrhoea. 

Sufficiently higher concentrations of L-NAME (50 mglkg) and L-NOARG (100 mg/kg) com­

pletely abolished the morphine withdrawal diarrhoea in mice. However, L-NMMA in a dose 
range of 3.5-100 mglkg had no significant effect on withdrawal diarrhoea (Table I). 
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Dose L-NAME L-NOARG L-NMMA 

(mg/kg, i.p.) n=7 n=6 n=6 

3.5 NT 5/6 5/6 

7.5 7/7 5/6 6/6 

15 617 2/6 4/6 

30 3/7 5/6 5/6 

50 017 2/6 5/6 

100 2/7 0/6 5/6 

200 I /7 NT NT 

400 0/7 NT NT 

Table 1. Naloxone-precipitated withdrawal diarrhoea in morphine-dependenlmice, pretreated with NO 
synthase (NOS) inhibitors. The results are presented as a number of animals with withdrawal diarrhoea 
versus total number of observed mice in the corresponding dose group. In the control group of 
morphine-dependent mice pretreated with vehicle (n:=21), the naloxone (4 mglkg, i.p.)-precipitated 
withdrawal diarrhoea was observed in 20 animals. NT := not tested dose; n := number of animals in 
each dose group. 

Discussion 

The results of this study indicate that the NOS inhibitors, L-NAME and L-NOARG, sig­

nificantly attenuated the naloxone-precipitated withdrawal jumping and diarthoea in morphine­

dependent mice. However, L-NMMA in the dose range used in this study had no effect on 

withdrawal jumping behavior or diarrhoea in mice. This might probably be due to the fact that 

L-NMMA compared to the other NOS inhibitors is a significantly less potent dmg 

(Garthwaite, 1991; Lambert et a!., 1991). 

In addition, we proposed that the anti-withdrawal effect of antagonists of EAA receptors 

is mediated by decreased activity of NO. This hypothesis was supported by results of this 

study, since the blockade of the NO synthesis attenuated the withdrawal syndrome in 

morphine-dependent mice. Administration or both single and continuous injection ofL-NAME 

(100 mg/kg, s.c.; 12 mg/rat/day, respectively) to morphine-dependent rats also showed an 

attenuation of the naloxone-induced withdrawal syndrome (Adams et aI., 1993). Accordingly, 

NO donor isosorbidc dinitrate induced a quasi morphine-abstinence syndrome and aggravated 

the opioid withdrawal symptoms (Adams et a!., 1993). 

It is of interest to note that the higher dose of L-NAME (400 mg/kg, i.p.) and L-NOARG 
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(100 mgikg, i.p.) failed to attenuate the naloxone-precipitated withdrawal jumping. A similar 

phenomenon has been observed with high doses of EAA receptor antagonists (Koyuncuoglu 

et ai., 1992; Cappendijk et ai., 1993). The reason for this effect is not known, but an 

involvement of additional mechanism(s) activated by higher dmg concentrations should be 

considered. For example, it is known that higher doses of EAA receptor antagonists exert a 

prominent excitatory/proconvu!sant effect in animals (Jursan and Freed, 1990; Schoepp et aI., 

1990). This may aggravate a morphine withdrawal syndrome, since it is composed of mainly 

excitatory psychomotoric symptoms. 

Pharmacological characteristics of NOS inhibitors are not yet fully clarified. The reason 

for decrease of withdrawal jumping in mice following NOS inhibitors is also not known. 

However, some reasonable possibilities could be suggested. NO has a substantial effect on 

presynaptic neurotransmitter release (Garthwaite, 1991). A derangement of this transmitter 

release, following administration of NOS inhibitors might significantly affect withdrawal 

syndrome. Noradrenaline could be one of the transmitters involved in the anti-withdrawal 

effect of NOS inhibitors. NO increases tyrosine hydroxylase and potentiates presynaptic 

catecholamine release (O'Sullivan and Burgoyne, 1990). A possible decrease of the central 

catecholamine release, following treatment with NOS inhibitors might have an attenuating 

effect on morphine withdrawal. Several studies provided evidence that the central 

noradrenergic system is hyperactive during opioid withdrawal syndrome (Tseng et aI., 1975; 

Aghajanian, 1978). In addition, it is indicated that serotonin is also involved in the 

mechanisms which lead to compulsive jumping during naloxone-precipitated withdrawal 

(Cervo et ai., 1981). However, the precise relationship between NO and serotonin release is 

not known. 

The diarrhoea associated with morphine withdrawal is of both central and peripheral 

origin (Burks et aI., 1988). A decrease in withdrawal diarrhoea following administration of 

NOS inhibitors L-NAME and L-NOARG might predominantly be due to decrease of periphe­

ral NO, since the muscle relaxation involved in the peristalsis is mediated by NO, synthesized 

in the neurons of the myenteric plexus (Snyder and Bredt, 1992). In addition, it has recently 

been demonstrated that alkyl esters of L-arginine (such as L-NAME) have anti-muscarinic 

properties (Buxton et ai., 1993). Thus, it could be suggested that at least a part of the decrease 

in withdrawal diarrhoea might due to peripheral atropine-like activity of NOS inhibitors. 

The NOS inhibitors used in this study are vasoconstrictors. However, there is no evidence 

that higher blood pressure attenuates opioid withdrawal. The blood pressure lowering agents -

clonidine and NO donor isosorbide dinitrate - had an opposite effect on the opioid 

abstinence. Clonidine attenuated (Dionyssopoulos et aI., 1992), while isosorbide dinitrate 

aggravated opioid withdrawal (Adams et ai., 1993). Evidently, an alteration in blood pressure 

does not account for the anti-withdrawal effects of NOS inhibitors. 

In conclusion, this study indicates an involvement of NO in the withdrawal syndrome. 
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since NOS inhibitors had a prominent attenuating effect on withdrawal jumping and diarrhoea. 

Furthermore, these results might support our hypothesis that the anti-withdrawal effect of 

EAA receptor-blocking drugs, observed by us and other authors, could be mediated by 

inhibition of NO synthesis. This could be further supported by the fact that the NO donor 

isosorbide dinitrate uggravates an opioid withdrawal (Adams et aI., 1993). Although the 

mechanism of anti-withdrawul action of NOS inhibitors remains unknown, the complex 

changes in the centml presynaptic neurotransmitter release, particularly decrease of 

noradrenaline, should be considered. In addition to the central NO, a decrease of peripheral 

NO synthesized in the myenteric plexus of gastro-intestinal tract and/or anti-muscarinic effect 

of NOS inhibitors might be of importance for attenuation of withdrawal diarrhoea. 
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Comparative study of normotensive and hypertensive nitric 
oxide synthase inhibitors on morphine withdrawal syndrome 

in rats 

Abstract - The effects of the normotensive, mainly centrally active nitric 
oxide synthase (NOS) inhibitor, 7-nitro indazole and the hypertensive com­
pound NG-nitro-L-arginine, which blocks both the endothelial and central 
NOS, have been examined for their effects on naloxone-precipitated with­
drawal syndrome in morphine-dependent rats. Both dmgs attenuated the same 
withdrawal signs (teeth-chattering, penile licking, diarrhoea, chewing. wet-dog 
shakes, grooming), while other signs remained unaffected (rearing, jumping, 
ptosis, rhinorrhoea, irritability on touch), These findings indicate that mainly 
central (but not endothelial) nitric oxide is involved in the expression of some 
opioid withdrawal symptoms. 
Published in Neuroscience Letters 183: 67-70, 1995. 

Activation of NMDA (N-methyl-D-aspartate) receptors stimulates synthesis of nitric oxide 
(NO, Garthwaite, 1991), while the blockade of these receptors attenuates naloxone­

precipitated withdrawal syndrome in morphine-dependent animals (Tmjillo and Akil, 1991; 
Cappendijk et aI., 1993a). This may implicate involvement of NO in the expression of 

morphine withdrawal syndrome. This idea received support from several experiments 
showing an attenuating effect of NO synthase (NOS) inhibitors on opioid withdrawal in 
mice (Kolesnikov et aI., 1993; Cappendijk et aI., 1993b; Majeed et aI., 1994) and rats 

(Adams et aI., 1993; Kimes et aI., 1993). In addition, it has been suggested that NOS 

inhibitors block the development of morphine tolerance and dependence (Kolesnikov et aI., 

1993; Majeed et aI., 1994). The NOS inhibitors used in all these studies inhibited the 

activity of both peripheral (endothelial) and central NOS. However, recently 7-nitro 
indazole (7-NI), which is a selective inhibitor for brain NOS, lacking effects on en­

dothelial NOS and blood pressure (Moore et aI., I 993a,b), has become available. 

H is known that opioid withdrawal signs are affected by both central and peripheral 
factors (Neal and Sparber, 1986; Maldonado et aI., 1992). In order to specify the role of 

central and peripheral NO in morphine-dependent rats, we compared the effects of 7-NI 
and NG-nitro-L-arginine (L-NOARG) on morphine withdrawal syndrome in rats. L­

NOARG inhibits both the central and the endothelial NOS and is a potent hypertensive 

agent. Hypertension is mainly due to the inhibition of endothelial synthesis and a 
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corresponding reduction of vasodilatory NO (Iwata et a!., 1992). This study shows that 

anti-withdrawal effect of NOS inhibitors is mainly due to a decrease in the activity of 

central NO. 

Materials and methods 

Animals 
Male Wi star rats (TNO Zeist), weighing 290-330 g were housed in groups and had 

free access to food and water. The room was maintained on a 12-h light/dark cycle (lights 
on 08.00 h), with constant temperature (21' C) and humidity (55%). 

Morphine dependence 
Drug dependence in a rat was induced by s.c. implantation of 3 pellets, containing 2S 

mg morphine base/pellet, on the back of the animal under ether anaesthesia. The with­
drawal syndrome was precipitated by administration of naloxone (4 mg/kg, i.p.) 72 h after 
pellet implantation (Cappendijk et a!., 1993a). The observer was "blind" to the dmg 
treatment procedure. The withdrawal symptoms were monitored for 30 min following 
injection of naloxone and scored according to the weighting factors described by Neal and 
Sparber (1986). In short, the signs observed during a mild withdrawal syndrome were 
assigned with I (chewing, diarrhoea, grooming, rearing, irritability on touch). Weighting 
factor 2 was given to the withdrawal signs, teeth-chattering, wet-dog shakes, penile 
licking, ptosis and jumping. The sign rhinorrhoea, observed during severe withdrawal was 
assigned a 3. 

Experimelltal protocol 
L-NOARG (7.5-100 mg/kg, i.p., n=35; Research Biochemical Incorporation, England) 

or vehicle (distilled water, i.p., n=12) were administered 30 min prior to naloxone. 7-NI 
(6.25-50 mglkg, i.p., n=28; Sigma) or vehicle (arachis oil, i.p., n=9) were given 5 min 
prior to naloxone. These doses of L-NOARG and 7-NI have an inhibitory effect on NOS 
(Klatt et a!., 1994; Moore et a!., 1993b) and biological effect, for example on nociception 
(Babbedge et a!., 1993; Moore et a!., 1993a). The time interval between the administration 
of 7-NI or L-NOARG and naloxone was chosen to ensure a maximal inhibitory effect of 
these dmgs on NOS (Klatt et a!., 1994; Moore et a!., 1993b) during observation of 
withdrawal signs. 

Solutions of L-NOARG and 7-NI were given i.p. in a volume of 2.2 ml/injection. 
Naloxone was given i.p. in a volume of 1 ml/kg animal. The pH of drug solutions and 
vehicles were adjusted to 7-8. Each animal was used only once. 

Statistics 
The data were evaluated by using the non-parametric Kmskal-Wallis one-way analysis of 

variance, followed by the Mann-Whitney U-test, with a level of P<0.05 being considered 
significant. 
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Results 

The results show that no differences were observed with respect to the frequency of 

the withdrawal signs, between the controls treated with distilled water or arachis oil. 
Therefore, both controls were considered as a single group. The results illustrated in Fig. 
IA show that both 7-NI (12.5-50 mglkg, Lp.) and L-NOARG (15-100 mg/kg, Lp.) 

attenuated significantly the severity of withdrawal syndrome (P=O.OOO I, P=O.OO03, res­

pectively) compared to the control group. Between 7-NI and L-NOARG treatment no dif­

ferences were observed in the expression of the withdrawal syndrome (P=0.37). The 
withdrawal signs, teeth-chattering, penile licking, diarrhoea, chewing, wet-dog shakes and 
grooming (Fig. I B-G) were significantly attenuated by both 7-NI and L-NOARG. 

However, the effect of 7-NI was predominantly dose-related, while L-NOARG induced a 

V-shape dose-response curve in three out of six withdrawal signs. Other withdrawal signs, 
rearing. jumping. ptosis, rhinorrhoea and irritability on touch were not significantly altered 
by any of the NOS inhibitors used in this study (Fig. I H-L). 

DisclIssion 

This study demonstrated that both NOS inhibitors, 7-NI and L-NOARG induced a 

significant decrease of severity of the naloxone-precipitated withdrawal syndrome. The fact 
that some withdrawal symptoms were attenuated by both NOS inhibitors, implicates that 
these signs are predominantly affected by decreased concentrations of central NO. 
However, this does not exclude an additional involvement of peripheral NO. 

The exact mechanism involved in the role of central NO in the withdrawal syndrome 
remains unknown. However, some possibilities related to the specific withdrawal signs 
may be considered: 

Activation of the NO system stimulates release of several neurotransmitters, such as 
acetylcholine (ACh, Lonart et aI., 1992; Prast and Philippu, 1992), noradrenaline (NA, 

Lonart et aI., 1992), and dopamine (DA, Lonart et aI., 1993). The occurrence of some 

withdrawal signs has been ascribed to the increased release of specific neurotransmitters. 
For example, wet-dog shakes were ascribed to activity of serotonin (5-HT) and NA. 
Accordingly, lesion of the locus coeruleus or administration of 5-HT blocking agents 
reduced wet-dog shakes (Bedard and Pycock, 1977; Maldonado and Koob, 1993); groo­

ming was related to stimulation of dopamine DI receptors (Van Wimersma Greidanus et 
aI., 1989), while the chewing response was elicited by stimulation of cholinergic system 

and reduced by anticholinergic drugs (Gunne et aI., 1982). Thus, an inhibition of the NO 

system by NOS inhibitors and the corresponding decrease of neurotransmitter release may 
contribute to the attenuation of morphine withdrawal syndrome. 
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Fig. 1. Effect of the nitric oxide synthase (NOS) inhibitors 7-nitro indazole (7-NI) and NG-nitro-L­
arginine (L-NOARG) on the severity of naloxone (4,0 mg/kg, i.p.)~precipitated withdrawal syn­
drome (A) and various withdrawal signs (B-L) in morphine-dependent rats. Animals were pre­
treated with 7-NI (t'iJ, 6.25-50 mg/kg, i.p., 5 min prior naloxone; n=7, each dose group) or with L­
NOARG (0, 7.5-100 mg/kg, Lp., 30 min prior naloxone; n=7, each dose group). TIle control 
animals, pretreated with vehicles (l1li, arachis oil, n=9, or distilled water, n=12) did not show differ­
ences in the severity of naloxone-precipitated withdrawal syndrome. Therefore, controls were 
considered as a single, vehicle-treated group (V, n=21). Data in fig. lA are expressed as composite 
score, detennined by counting the number of all observed withdrawal signs, during the 30-min 
period of abstinence. The withdrawal signs were scored according to the method described by Neal 
and Sparber (1986) and all data were expressed as median values. * Significance at level of P < 
0,05. Note that both NOS inhibitors attenuated the severity of the withdrawal syndrome and some 
of the withdrawal signs. 
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In this study, NOS inhibitors also attenuated penile licking. Spinal cholinergic and 

NO-generating systems are known to be involved in the sensory regulation of the 

sympathetic and parasympathetic outflow to the penis (Krane et aI., 1989; Zhuo et aI., 

1993). It seems that attenuation of the penile licking by 7-NI might be due to both a 

supraspinal insufficiency of the NO system (responsible for psychogenic erection) and 

decreased spinal release of ACh (responsible for the reflexogenic erection), In addition, the 

L-NOARG-induced attenuation of penile licking might be due to peripheral inhibition of 

NOS in non-adrenergic and non-cholinergic nerve tenninals, which innervate the corpus 

cavemosum (Rajfer et aI., 1992). The morphine withdrawal syndrome, therefore, could be 

used as an appropriate animal model to study the erectile mechanism. 

Diarrhoea occurring during morphine withdrawal was usually considered as a periph­
eral effect (Maldonado et aI., 1992), with some involvement of the CNS (Warhurst et aI., 

1984). The fact that both 7-NI and L-NOARG attenuated withdrawal diarrhoea favours the 

central component. However, an additional involvement of peripheral NO, following 

administration of L-NOARG could not be excluded, since the neurons of the myenteric 
plexus synthesize NO, which participates in the relaxation phase of peristalsis (Bred! et aI., 
1990). 

Several olher withdrawal symptoms Uumping, rearing, ptosis, rhinorrhoea and irrita­
bility on touch) were not altered by NOS inhibitors. This might indicate that NO is not 

involved in the expression of these signs. 
An additional point of interest is the fact that attenuation of morphine withdrawal 

induced by L-NOARG is limited to a certain dose range. For some of the signs, the 
highest dose of L-NOARG failed to attenuate the naloxone-precipitated withdrawal symp­

toms. A similar phenomenon has been observed with high doses of NMDA receptor 
blockers (Koyuncuoglu et aI., 1992; Cappendijk et aI., 1993a) and NOS inhibitors (Cap­

pendijk et aI., 1993b) used for attenuation of withdrawal behaviour in rats and mice. The 
reason for this U-shaped dose-response curve is not known, but involvement of some 
additional mechanism(s) activated by higher drug concentrations should be considered. For 
example, a conversion of L-NOARG to L-arginine (Hecker et aI., 1990) associated with 
accumulation of L-arginine and corresponding self-inhibition might be one of the 
explanations. The attenuating effect of 7-NI on withdrawal syndrome is predominantly 
dose-related. 

In conclusion, this study indicates that central NO is involved in the expression of 
some (but not all) opioid withdrawal signs. Accordingly, an attenuation of the withdrawal 
syndrome, induced by NOS inhibitors is unrelated to an inhibition of endothelial NOS and 

increased blood pressure. We suggest that the anti-withdrawal effect of NOS inhibitors is 

due to a decrease of central NO levels and related decrease of neurotransmitters. This 
neurotransmitter derangement may affect the corresponding withdrawal signs in morphine-
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dependent subject. 
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Chapter 6 

"Withdrawal substance" in cerebrospinal fluid of 
morphine-abstinent rats 

Abstract ~ The behavioral, electrophysiological (visual evoked potentials, 
YEP) and ill vitro effects of cerebrospinal fluid (CSF) taken from the donor 
rat have been investigated in the recipient rat and guinea-pig isolated ileum. 
The CSF of spontaneous morphine-abstinent donor rat precipitated in mor­
phine-dependent recipient rat an opioid withdrawal syndrome, which was 
characterized by a decrease in the YEP peak latency N3 and amplitudes N2-
P3 and P3-N3. The CSF-induced withdrawal syndrome was behaviorally less 
severe and eJectrophysiologically less prominent, but qualitatively' identical to 
the naloxone-induced abstinence, However, in contrast to naloxone, the CSF 
from spontaneous morphine-abstinent rat did not contract the morphine­
dependent isolated guinea-pig ileum. Chromatographic analysis of CSF 
samples from naive, morphine-dependent or morphine-abstinent rats reveal 
distinct fractions, containing an active component present only in eSF of 
morphine-abstinent rats. The estimated relative molecular mass of this active 
component was around 50 kDa and the short retention time on the reversed­
phase column suggests the high hydrophobicity. The resuils indicate that spon­
taneous morphine-abstinent donors synthesize and release certaih quantity of 
putative "withdrawal substance" in the eSF, which is without naloxone-like 
properties. This further suggests, that the CSF- and naloxone-precipitated 
withdrawal in the morphine-dependent recipients are mediated by activation of 
different neuronal mechanisms, 
Part of these data are published in Rl~gfllatOJ)' Peptides 1: 5227-S228, 1994. 

It was shown that cerebrospinal fluid (CSF) from morphine-abstinent donor rats, precipi­

tates an opiate withdrawal syndrome in morphine-dependent recipient rats (Malin et aI., 

1987). These authors found an increased level of octapcptidc F-8-F-NH, (Phe-Leu-Phe­

Gln-Pro-Gln-Arg-Phe-NH2}-like immunoreactivity in CSF of morphine-dependent rats 

(Malin et aI., I 990a). The octapeptide F-8-F-NH, precipitates withdrawal syndrome in 

morphine-dependent rats, but not in the naive ones (Malin et aI., I 990b). However, the 

role of this peptide in the CSF during morphine dependence and withdrawal remains 

unclear. 

Opioid withdrawal is 1.111 excitatory syndrome, characterized by psychomotor ac­

tivation, in both animals and men. The behavioral activation implicates an increase of 

neuronal excitability during morphine abstinence. This has been supported by finding of 
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increased cell firing during opioid withdrawal (Aghajanian, 1978). Accordingly, a similar 

behaviour and increase of neuronal excitability should be expected following admini­
stration of CSF from morphine-abstinent donor rat into morphine-dependent recipient rat. 

In order to test this hypothesis, we examined the electrophysiological effects of CSF 

withdrawn from abstinent rats, by monitoring the peak latencies and amplitudes of visual 
evoked potentials (YEP) during CSF-precipitated withdrawal syndrome in rats. The effect 

of CSF from spontaneous morphine-abstinent rats was also studied in naive rats, mor­
phine-dependent rats and morphine-dependent isolated guinea-pig ileum. In addition, we 
analyzed CSF samples from morphine-abstinent, morphine-dependent and naive rats by 
high-performance liquid chromatography (reversed-phase and gel-filtration techniques). 

Materials and methods 

Animals 
Male Wi star rats (TNO, Zeist), weighing 200-300 g were housed in groups and had a 

free access to food and water. The room was maintained on 12 h light-dark cycle (lights 
on 8.00 h), with constant temperature (21" C) and humidity (55%). 

Procedures 
Surgical procedure 

All animals were anaesthetized with pentobarbital (60 mgikg, i.p.). The donor rats 
were implanted with a chronic cannula, placed into the cisterna magna in order to 
withdraw CSF from conscious animals (Bouman and Van Wimersma Greidanus, 1979). In 
recipient rats, receiving CSF from donor rats, a cannula was placed into the lateral ven­
tricle (Paakkari, 1980). Rats, involved in the YEP experiments were all recipient rats and, 
in addition to the lateral ventricle cannula, they were implanted with stainless steel screw 
electrodes over the right and left visual cortex (7 mm posterior to the bregma and 3 mm 
lateral to the midline). A reference electrode was placed in the frontal sinus. The elec­
trodes were soldered to a miniature socket and attached to the skull with dental acrylate. 
In the recovery period (7 days), all operated animals were housed individually with food 
and water ad libitum. At the end of the experiments, the placement of lateral ventricle 
cannula was confirmed by injection of methylene blue. 

Morphine dependence and abstinence 
Morphine dependence was induced by treating animals with morphine for 8 days 

(twice daily, 9h and 17h). A starting dose of morphine was 10 mg/kglinjection, which 
increased daily to 20, 20, 40, reaching a final dose of 80 mglkg/injection on the 5'" day. 
Rats treated with distilled water (1.0 mllkg) for 8 days (twice daily, 9h and 17h), formed a 
group of naive animals. Morphine-dependent rats were considered as spontaneous 
morphine-abstinent, 6 h following the last morphine injection. 

The control experiments were performed in naive and morphine-dependent rats on the 
7th day of drug treatment. The behavioral signs similar to withdrawal symptoms occurred 
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sporadically following administration of vehicle or artificial CSF. On the next day (8ili day 
of drug treatment), the animals were treated with naloxone or CSF from naive, morphine­
dependent or morphine-abstinent donor rats. The behaviour of the animals on the 7th or 8th 

day of drug treatment was monitored for 30 min following dmg administration and scored 
by a person "blinded" to the experimental procedure. 

The withdrawal signs were scored according to the weighting factors described by 
Neal and Sparber (1986). In short, the signs observed during a mild withdrawal syndrome 
were assigned with I (chewing, diarrhoea, grooming, rearing, irritability on touch), The 
weighting factor 2 was given to the withdrawal signs, teeth-chattering. wet-dog shakes, 
penile licking, ptosis and jumping. The sign rhinorrhoea, observed during severe with­
drawal was assigned a 3.· 

Visual Evoked Potelltials (VEP) 
A postoperative recovery period of 7 days was [oHowed by habituation of the 

recipient to the recording procedure. The method used for recording of YEP is described 
in the previous study of Dzoljic et aI., (1994). Briefly, the animal was placed in a test 
chamber and after connecting the electrodes, a flash stimulus was induced at 1 per 7 s for 
10 min. The habituation period lasted 3 days. This approach was selected, since it has 
been shown that under these conditions YEP discharges stabilize after several days (Bigler, 
1975). The flash light was generated by a Grass S44 stimulator in a frequency of 0.14 Hz. 
Brain responses were amplified with a Grass model 79 B, connected to an analog-digital 
convertor (Lab Master, Scientific solutions Inc., Ohio, USA), triggered by the Grass S44 
stimulator after every flash light. A computer connected to the analog-digital convertor 
performed the averaging of 25 YEP over a 800 ms epoch after every flash light and 
printed the results. Stimulation was performed only in animals with open eyes. The YEP 
parameters (peak latency and amplitude) were recorded in a total of six sessions, namely 
5, 15 and 30 min before drug administration (self-control) and in the same time intervals 
after dmg administration. 

III vitro experiments 
Male guinea-pigs (n~5, 600-900 g) were killed by a blow on the head. A 40 cm long 

segment of the small intestine was rapidly removed and placed in Krebs solution (room 
temperature). The terminal section of the guinea-pig ileum was used after discarding the 
portion of to em closest to the ilea-caecal junction (Munro, 1953). The ileum was cut in 
eight 3-cm long segments. These segments were gently and thoroughly washed free of 
faecal matter by flushing Krebs solution through the lumen. Each streap of ileum was set 
up in a 8 1111 organ bath containing Krebs solution and bubbled with 95% 02 and 5% CO2, 

Every 15 min the bath wns perfused with fresh warm Krebs solution. The temperature and 
pH of the Krebs solution were maintained at 37°C and 7.4, respectively. The ileum was 
fixed at a resting tension of I g and allowed to equilibrate for 30 min. No dmg wns added 
in this time period. The spontaneous activity of the ileum was recorded isometrically. In 
order to induce morphine dependence, the ileum was exposed to morphine (I pM) for 2 h 
(Cruz et aI., 1991). The pieces of ileum not treated with morphine were considered as 
naive ileum. Exposure of ileum to CSF for 5 min was followed (after washing) by 
naloxone (0.1 pM). Naloxone remained in the bath also for 5 min. The CSF was made 
artificially or withdrawn from the donor rats (nnive, morphine-dependent or morphine-
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abstinent) on the S~ day of dmg treatment. 
The contraction of the ileum was defined as the peak tension observed within 1 min after 
dmg administration. In order to check the contractility of smooth muscle, each ileum was 
exposed to methacholine (0.1 ~M) at the end of experiment. Only experiments with 
morphine-dependent ileum responding to methacholine and naloxone were taken as valid. 

High-Peiformallce Liqllid Chromatography (HPLC) 
Pooled samples of CSF (approximately 240-300 ~I total volume) taken from naive, 

morphine-dependent or morphine-abstinent rats were analyzed using the SMART 
micropurification system (Pharmacia Biotech., Uppsala, Sweden). The system was 
operated as described in previous reports (Nyberg et a!., 1991; Renlund et aI., 1993). 
Briefly, a reversed-phase column ~RPC C2/CIS (2.1 x 10 mm) and a gel-filtration column 
Superdex 75 (3.2 x 300 mm) Were used in this study. The CSF samples were filtered 
through a nonsterile 45 ~m filter (Ultrafree-MC, Millipore, Bedford, MA, USA) and 
injected into the system. The reversed-phase column was eluted with a 30 min linear 
gradient from 0-60% acetonitrile, supplemented with 0.1 % trifluoroacetic acid. The flow­
rate was maintained at 50 J-tllmin and one-min fractions were collected. The size 
separations (100 J-tl sample injected) were conducted using 20 mM Tris-HCI buffer of pH 
7.4 as the eluent. The collected material was stored at _800 C until assayed. 

Drugs 
Morphine hydrochloride (OPO, Utrecht) and naloxone hydrochloride (Research 

Biochemical Incorporation, England) were dissolved in distilled water. The composition of 
solutions (expressed in mM) was as follows: Krebs buffer - NaCI lIS; KCI 4.7; CaCI, 2.5; 
NaHCO) 25; KH,P04 1.2; MgS04 1.2; glucose 5.55; Artificial cerebrospinal fluid - NaCI 
13S; KCI 3.3; CaC, 2.2; MgCI, 1.15; NaHCO) 2.1; NaH,P04 0.6; urea 2.16; glucose 3.3S. 
The volume of CSF administered i.c.v. was 80 ± 5 J-tl per recipient rat. 

Statistical analysis 
The data in relation to withdrawal behaviour and electrophysiological study were 

statistically evaluated by using the non-parametric Kruskal-Wallis one-way analysis of 
variance, followed by Mann-Whitney V-lest, with a level of P<0.05 being considered 
significant. 

Results 

Behaviour 

Naive rats - recipiellts of CSF (Fig. fA) 
Administration of artificial CSF (80 ± 5 J-tl, i.c.v.) into naive animals (n=15) treated with 
vehicle for 7 days, did not alter the normal behaviour, characterized with occasional 
appearance of grooming, digging, scratching and rearing. On the following day (8 lh day of 
the vehicle treatment) these animals, randomly divided into three groups, received the CSF 
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(80 ± 5 ~I, i,c.v.) taken from the naive rats (n=5), morphine-dependent (n=4) or sponta­

neous morphine-abstinent rats (n::::6). The behaviour of animals in all three groups 

receiving various samples of CSF remained unaltered. 
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Fig. 1. Effect of CSF (80 ± 5 ~Ii, j,e.v.) on the behaviour of naive (A) and morphine-dependent (B) 
rats. Both groups of animals were injected with artificial cerebrospinal fluid (0, Le.v.) on the 71h 

day of dmg (vehicle/morphine) treatment. The following day (81h day), the animals were treated 
with cerebrospinal fluid (CSF) taken from the naive (II), morphine-dependent (0) or spontaneolls 
morphine-abstinent rats «(ill), An additional group of morphine-dependent rats was treated with 
vehicle (IZI, 1.0 ml/kg, Lp., on the 7m day of morphine treatment) and naloxone (~, 4.0 mglkg. i.p. 
on the following day). Numbers beneath the bars represent the number of animals (n) and the day 
of treatment with vehicle or morphine, Data are expressed as composite score (mean ± SEM) by 
counting the number of all behavioral signs occurring in the naive and morphine-abstinent rats. 
The behaviour was monitored for 30 min. The behavioral signs were scored according to the 
method of Neal and Sparber (1986). * indicates significant differences (P<0,05) between the 
control and dmg treatments, Note that CSF from the spontaneous morphine-abstinent rats (illI) 
induced in morphine-dependent recipient rats (but not in the naive ones) a withdrawal syndrome, 
which is significantly less severe than the naloxone-induced withdrawal (§). 

MOIphifle-dependellt rats - recipfl>llts ofCSF or treated lVilh naloxone (Fig. 18) 

Administration of artificial CSF into dependent animals (n::::26, on the 7th day of morphine 

treatment) did not change the behaviour. On the following day (8'" day of morphine 

treatment) these animals, randomly divided into three groups. received CSF obtained from 

the naive (n=6), morphine-dependent (n=5) or sponlaneous morphine-abstinent (n=15) 
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donor rats. No behavioral changes were observed in the morphine-dependent rats, 

receiving CSF from the naive or morphine-dependent donors. However, Illorphine­

dependent recipients treated with CSF taken from spontaneous morphine-abstinent rats 

exhibited a significant increase in the expression of withdrawal syndrome. In order to 

compare the severity of CSF- and naloxone-precipitated withdrawals, an additional group 

of dependent rats (n=5) was treated with vehicle (1.0 mllkg, i.p., on the 7" day of 

morphine treatment) and naloxone (4.0 mgikg, i.p. on the following day). It was found that 

naloxone-precipitated withdrawal was significantly more severe than the withdrawal 

induced by eSF. 

Visual Evoked Potentials (VEP) 

Naive rats - recipients of CSF (Fig. 2) 

Artificial CSF or CSF taken from naive (n=5) or spontaneous morphine-abstinent donor 

rats (n=5) and administered into naive recipient rats (15 animals equally divided in three 

groups for each particular sample of eSF) did not change their peak latencies (Fig. 2A) or 

amplitude values (Fig. 2B). 
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Fig. 2. Effect of CSF (80 ± 5 111, i.c.v,) on the peak latencies (A) and amplitude values (B) of YEP 
in naive recipient rats. The artificial CSF (0) or CSF withdrawn From the naive (II, n=5) or 
spontaneous morphine-abstinent (0, 11=5) donor rats were administered into three groups of naive 
recipient rats (5 animals for each different sample of CSF). The O%-line, taken as selF-control 
indicates the average of peak latencies and amplitude values, measured in three sessions (5, 15 and 
30 min) before administration of CSF. Data are expressed as % ± SEM of altered peak latencies 
and amplitude values compared to selF-control. Note that none of the CSF samples altered YEP 
parameters (latency and amplitude) in naive recipient rats. 

80 



Chapter 6 

Morphine·dependent rats· recipients of CSF (Fig. 3) 

Artificial CSF or CSF taken from the naive donors (n=5) were administered to morphine­

dependent rats (10 animals equally divided into two groups for each particular sample of 

CSF). No significant changes in the peak latencies (Fig. 3A) or amplitudes (Fig. 3B) were 

observed. However, CSF taken from spontaneous morphine-abstinent donor rats (n;;;;6) 

significantly decreased the peak latency N3 (Fig. 3A), and amplitude values of N2-P3 and 

P3-N3 (Fig. 3B) in morphine-dependent recipients (n=6). 
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Fig. 3. Effect of CSF (80 ± 5 ~I, i.e. v.) on peak latencies (A) and amplitude values (B) of YEP in 
morphine-dependent recipient rats, CSF made artificially (0) or CSF withdrawn from the naive (II1II, 
0=:5) or spontaneous morphine-abstinent (illl, 0=6) donor rats were administered into morphine­
dependent recipient rats (5-6 animals for each different sample of CSF). The O%-line. taken as self­
control indicates the average of peak latencies and amplitude values, measured in three sessions (5, 
15 and 30 min) before administration of CSF. Data are expressed as % ± SEM of altered peak 
latencies and amplitude values compared to self-control. Significant changes of peak latencies and 
amplitude values versus self-control are indicated by * (P<O.05). Note that CSF from spontaneous 
morphine-abstinent donors (NJ) induced a significnnt decrease of peak latency N3 and amplitude 
values (N2-P3, P3-N3) of YEP in morphine-dependent rats. 

Morphine-dependent rats - treated with vehicle anti lIaloxone (Fig. 4) 

Morphine-dependent animals (n=9) treated with vehicle. did not show changes in peak 

latencies (Fig. 4A) or amplitude values (Fig. 4B). However, the administration of naloxone 

to the same animals (n=9) on the next day (8th day of the morphine treatment) induced a 

significant decrease of the peak latencies P3 and N3 (Fig. 4A) and the amplitude values 

N2-P3 and P3-N3 (Fig. 4B). 
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Fig. 4. Effect of vehicle (distilled water, 1.0 ml/kg, i.p.) and naloxone (4.0 mg/kg, i.p.) on the peak 
latencies (A) and amplitude values (B) of visual evoked potentials (VEP) in morphine-dependent 
rats (n=9). Vehicle ([0) or naloxone (§) were administered on the 7th and 8th day of morphine 
treatment, respectively. The OO/O-Hne, taken as self-control indicates the average of peak latencies 
and amplitude values, measured in three sessions (5, 15 and 30 min) before administration of CSF. 
Data are expressed as % ± SEM of altered peak latencies and amplitude values compared to self­
control. Significant changes of peak latencies and amplitude values versus self-control are indicated 
by * (P<0.05). Note that naloxone induced a significant decrease of peak latencies (P3 and N3) 
and amplitude values (N2-P3 and P3~N3) of YEP in morphine-dependent rats. 

In vitro experiments 
Guinea-pig ilelln! (Fig. 5) 

Administration of naloxone (0.1 ~M) to the bath with morphine-dependent ileum (n=5) 
was followed by clear contractions (Fig. 5B), while the tonus of the naive ileum (n=5) 

remained unaltered (Fig. 5A). However, the artificial CSF or CSF taken from the naive 
(n=3), morphine-dependent (n=3) or spontaneous morphine-abstinent rats (n=4) did not 

affect the basal tonus of isolated naive or morphine-dependent guinea-pig ileum (Fig. 5A 
and 5B). Methacholine (0.1 ~) induced a contraction of both, naive and morphine­

dependent ileum (Fig. 5A and 5B). 
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Fig. 5. Effect of CSF (80 ± 5 ~I, It, zt, 3t, 4t), naloxone (0.1 flM, 5t) and methacholine (0.1 
11M, 61) on naive and morphine-dependent guinea-pig ileum ill vitro. The CSF added into the bath 
was made artificially (t i) or withdrawn from the naive (21), morphine-dependent (31) or 
spontaneous morphine-abstinent (41) donor rals. Note that no any sample of CSF (I i. 21', 31, 41) 
had an effect on muscle tonus, while naloxone (51) induced a contraction only in the morphine­
dependent ileum. Methacholine (61) induced a contraction in both, naive and morphine-dependent 
ileuill. 

High.Performallce Liquid Chromatography (HPLC) 

Chromatographic analysis of CSF samples, both using reversed-phase and gel-filtration 

techniques reveal distinct fractions, containing a putative "withdrawal substance", which 

was present only in CSF from the morphine-abstinent animals. In general, distinct UV­

patterns (taken at 280, 254 and 214 nm) were observed in CSF from naive, morphine­

dependent and morphine-abstinent animals. The estimated relative molecular mass of the 

active component was around 50 kDa and its short retention time on the reversed-phase 

column suggests the high hydrophobicity. 
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Discussion 

Behaviour 

Administration of CSF samples taken from morphine-abstinent rats (donors) into the 

lateral ventricle of morphine-dependent rats (recipients), precipitated a withdrawal syn­

drome, which could not be observed in the naive recipient rats. The CSF-induced 

withdrawal syndrom~ was less severe, but qualitatively identical to the naloxone­

precipitated withdrawal syndrome. Artificial CSF or CSF from the naive or morphine­

dependent animals did not induce withdrawal syndrome in no any group of recipient 

animals. These results confirmed the earlier data (Malin et aI., 1987) related to the with­

drawal induced by CSF from morphine-abstinent rats. 

Visual Evoked Potentials (VEP) 

Peak latencies: The CSF taken from the spontaneous morphine-abstinent donor rat induced 

a decrease of peak latency N3 in morphine-dependent recipient, which indicates a 

stimulation of central neurotransmission. The CSF-induced decrease of peak latency was 

less prominent compared to the effect of naloxone. This is a good reflection of similar 

differences observed in respect to the severity between the withdrawal syndromes induced 

by CSF and naloxone. The development of N3 component is a result of massive discharge 

of lateral geniculate units (Bigler, 1975), while the components P2, N2 and P3 represent a 

diffuse activity between thalamus, midbrain and cortex (Creel et aI., 1974). The peaks N3 

and P3 reflect an arousal level in the brain (Joseph et aI., 1981). A decrease of peak 

latencies during naloxone- or CSF-precipitated withdrawal suggest an increase of neuronal 

excitability in the mentioned brain areas. 

YEP amplitude values: The CSF taken fronl the spontaneous morphine abstinent donor 

rats and naloxone induced a decrease of amplitude values of several peaks (N2-P3 and P3-

N3) in the morphine-dependent recipients. Decrease of amplitude values reJleets a 

neuronal depression, which is rather unexpected finding, since naloxone-precipitated 

withdrawal was described 'as a state of psychomotor stimulation (Wise and Bozarth, 1987). 

The naloxone-induced decrease of YEP amplitUdes contrasted also to the suggested epilep­

togenic properties of naloxone, since this opioid receptor antagonist induced an increase of 

photically evoked discharges in the naive conscious rats (Shearer et aI., 1984). However, 

the possibility that excitation of some inhibitory neurons may lead to depression of other 

neurons in the visual pathways of morphine-dependent rat, might explain these controver­

sies. Furthermore, an anticonvulsant effect of naloxone has also been demonstrated 

(Carter-Snead III and Bearden, 1982). 

In vitro experiments 

These experiments showed that CSF taken from the spontaneous morphine-abstinent rats 
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failed to induce a contraction of the isolated morphine-dependent guinea-pig ileum. This 

contrasted to the naloxone-induced contraction of the isolated morphine-dependent guinea­

pig ileum. It further indicales Ihal CSF laken from Ihe sponlaneous morphine-abslinenl ral 

does not interfere with opioid receptors. It is of importance to note that these negative 

resulls wilh CSF ;n vitro, support Ihe idea Ihat the putative CSF withdrawal-precipitating 

substance is without properties of a competitive opioid receptor antagonist. It seems that 

Ihe oclapeplide F-8-F-NH, is also wilhoul naloxone-like properties (Allard el a!., 1989). 

High-PeIformanee Liqu;d Chromatography (HPLC) study 

The bioactive component partially isolated in this study, seems to be different from the 

octapeptide F-8-F-NH2• due to the higher hydrophobicity and much lower molecular mass 

of the lalter (Kivipello el a!., 1989; Labrouche el a!., 1993). We can nol, however, exclude 

at this moment, that slIch a component might bound to a larger protein, affecting its 

chromatographic and spectral properties. Attempts to determine this factor in CSF of 

morphine-abstinent rats as weB as the examination of bioactivity of these fractions are in 

progress. 

Concluding, this study shows that a "withdrawal substance", not yet chemically de­

fined is synthesized and released in CSF during the development of spontaneolls morphine 

abstinence. This substance is formed in sufficiently high concentrations to induce a 

withdrawal in morphine-dependent recipient mts. Regarding to the fact that total CSF 

volume in a 300 g ral is aboul 580 pI (Lai el a!., 1983) and Ihal lola I CSF volume of rals 

is replaced completely within 10-25 min (Bouman and Van Wimersma Greidanus, 1979), 

the release of this substance during withdrawal has to be very abundant. The CSF taken 

from the spontaneous morphine-abstinent rats decreased the VEP peak latencies and 

amplitude values, which is identical to the corresponding effects of naloxone in the 

morphine-dependent rats. However, data from the in vitro study indicate that CSF from 

spontaneous morphine-abstinent rats does not exert a naloxone-like activity on morphine­

dependent guinea-pig ileum. More studies are necessary in order to clarify the chemical 

and bioactive properties of the "withdrawal substance", 
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The inhibitory effect of norharman on morphine withdrawal 
syndrome in rats: comparison with ibogaine 

Abstract· Norharman (20 mgikg, i.p.) and ibogaine (40 mgikg, i.p.) signifi· 
cantly attenuated naloxone (4 mgikg, i.p.)·precipitated withdrawal syndrome in 
morphine-dependent rats, Several withdrawal signs, such as teeth-chattering, 
chewing, penile licking and diarrhoea, were decreased by both norharman and 
ibogaine. In addition, norhannan reduced also the withdrawal grooming and 
rearing. It is concluded that both norhannan and ibogaine are inhibitors of 
withdrawal syndrome in morphine-dependent rats. 
Published ill Behavioural Braill Research 65: 117·119, 1994. 

Norharman (l3-carboline) is an endogenous substance in brain and other tissues in rats and 
humans (Honecker and Coper, 1978; Greiner and Rommelspacher, 1984). Recently, ele· 

vated plasma levels of norharman were detected in chronic alcoholics (Rommelspacher et 

a!., 1991) and heroin addicts (Stohler et a!., 1993). These data favour the involvement of 

norharrnan in drug dependence processes. A substance structurally related to norharman is 
ibogaine. Both, norharman and ibogaine are indole derivatives with psychotogenic/ halluci­
natory properties (Farnsworth, 1968; Airaksinen and Kari, 1981). It has been shown that 

ibogaine attenuates morphine withdrawal (Dzoljic et a!., 1988; Glick et a!., 1992) and 

intermpts drug dependence (Glick et a!., 1991; Cappendijk and Dzoljic, 1993). These facts 

justify a further elucidation of the effects of these two substances in drug dependence 
phenomena. In order to make a comparison between these two chemically and behavioral­
ly (psychotogenicihallucinatory) similar substances, we studied the effects of both drugs, 

norharman and ibogaine on naloxone-precipitated withdrawal in morphine-dependent rats. 

Materials and methods 

Animal.\' 
Male Wistar rats (TNO Zeist), weighing 290·330 g were housed in groups and had a 

free access to food and water. The room was maintained on a 12-h light/dark cycle (lights 
on 08.00 h), with constant temperature (21 0 C) and humidity (55%). 

Experimental protocol 
Morphine dependence was induced by implantation of a morphine base pellet (75 mg/rat, 

S.C., n=30) on the back of rats the animal under ether anaesthesia (Cappendijk et aI., 
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1993). The morphine-dependent animals were used only once. Morphine-dependent rats 
were divided into three groups, pretreated intraperitoneally with vehicle (distilled water, 
n= !O), norharman (20 mgikg, n= 1 0) or ibogaine (40 mglkg, n= !O). The selected doses of 
norharman and ibogaine are biologically active, shown by previous studies (Morin, 1984; 
Cappendijk and Dzoljic, 1993). 

Morphine withdrawal syndrome 
The withdrawal syndrome in morphine-dependent animals was precipitated by 

naloxone (4 mglkg, i.p.), given 30 min after vehicle, norhannan or ibogaine. The naloxone 
treatment occurred 72 h following pellet implantation. The observer was "blind" to the 
treatment order and registered the withdrawal symptoms during 30 min following injection 
of naloxone. The withdrawal signs were scored according to the weighting factors 
described by Neal and Sparber (1986). In sh0I1, the signs observed during a mild with­
drawal syndrome were assigned with 1 (diarrhoea, chewing, grooming, irritability on 
touch, rearing), whereas the sign rhinorrhoea, observed during severe withdrawal, was 
assigned a 3. All other withdrawal signs, teeth-chattering, wet-dog shakes, penile licking, 
ptosis and jumping were assigned by a weighting factor 2. 

Drugs 
Norhamnan (Sigma, England) and ibogaine (Sigma, England) were administered in 

volume of 2.2 mllinjection. Naloxone HCI (Sigma Chemical Co., St Louis, MO) was given 
in volume of 1 mllkg. The pH of drug solutions and vehicles were adjusted to 7-8. All 
drugs were dissolved in distilled water. 

Statistics 
Data were evaluated by using the non-parametric Kruskall-Wallis one-way analysis of 

variance, followed by the Mann-Whitney V-test, with a level of P<0.05 being considered 
significant (Glantz, 1989),. 

Results 

A decreased locomotion and exploratory behaviour was observed in norharman (20 
mglkg, i.p.)-treated naive (n=6) and morphine-dependent (n=IO) animals. This effect lasted 

5-20 min. In contrast, ibogaine (40 mg/kg, i.p.) induced within 4 min tremor and 
excitatory behaviour (jumping or violent locomotion on touch). The behavioral effects, 
induced by norharman or ibogaine disappeared within 30 min. 

Norharman and ibogaine significantly attenuated the naloxone-precipitated withdrawal 
syndrome in rats (Fig. I A). Related to the specific symptoms, hoth norharman and 
ibogaine attenuated teeth-chattering, chewing, penile licking and diarrhoea (Fig. In, D, F, 

G). Grooming and rearing response were reduced by norharman only (Fig. I C, E). 
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Fig. 1. Effect of norhannan and ibogaine on tbe severity of 
naloxone (4 mglkg, i.p.)-precipitated withdrawal syndrome (A) and 
specific withdrawal signs (B-G) in morphine-dependent rats, 
Animals were treated with vehicle (II, distilled water, I mllkg, i.p., 
n=IO), ibogaine (O, 40 mg/kg, Lp" n=lO) or norharman (0, 20 
mg/kg, i.p., n=IO), 72 h following pellet implantation, 30 min 
prior naloxone. Data in fig. I A are expressed as composite score, 
determined by counting the number of all observed withdrawal 
signs, during the 30-min period of abstinence. All data were 
expressed as mean ± SEM. * Significant decrease of withdrawal 
syndrome or signs (Mann-Whitney V-test, P<O.05) compared to 
the control group. Note that norhannan and ibogaine attenuated 
the severity of withdrawal syndrome and frequency of withdrawal 
signs. 

This study is the first demonstration that norharman significantly attenuated a 

naloxone-precipitated withdrawal syndrome in rats. Ibogaine, in accordance with previous 

data (Dzoljic ct 'II., 1988; Glick ct aI., 1992), also reduced naloxone-precipitated with­

drawal syndrome (Fig. I A). However, the data indicate that norharman and ibogaine 

induced a similar (but not identical) decrease of opioid withdrawal symptoms. 

Although the mechanism of action of norharman and ibogaine is not known, an 

involvement of the opioid system may be considered, since both dmgs have an agonist 

action on opioid receptors. Norharman acts as a partial J.I-agonist (Airaksinen and Kari, 

1981), while ibogaine is an agonist at K-receptors (Deecher et aI., 1992), The binding ac­

tivity of both dnlgs to central opioid receptors with possible displacement or preventing 

the binding of naloxone to opioid receptors may lead to an antiwithdrawal effect. In 
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periphery, 11 and K-agonists can depress acetylcholine release from the cholinergic neurons 

of myenteric plexus (Burks et a!., 1988). This effect may contribute to the decreased 

intensity of withdrawal diarrhoea, induced by norharman and ibogaine. 

The other neurotransmitter system which could be involved in the decreased 

expression of the opioid withdrawal is the glutaminergic system. Glutamate antagonists 

may prevent morphine abstinence in mice and guinea pigs (Tanganelli et a!., 1991; 

Cappendijk et a!., 1993). Consistent with this finding, morphine is able to block the 

glutamate-mediated excitation in the monkey (Willcockson et al., 1986) and in the mouse 

(Aanonsen and Wilcox, 1987). The fact that both norharman and ibogaine also have 

morphine-like properties (Airaksinen and Kari, 1981; Deecher et a!., 1992) favour the 

hypothesis that blockade of the glutamate-mediated transmission could contribute to the at­

tenuation of the excitatory character of withdrawal syndrome. This idea has been sup­

ported by Dowson et a!. (1975), showing that harmala alkaloids inhibit the transmission at 

the glutamate-mediated neurons. 

In conclusion, the present experiments show that norharman and ibogaine attenuate 

the opioid withdrawal syndrome and favour an idea of an inhibitory role of both drugs in 

the expression of morphine abstinence. Although an involvement of the opioid- and or 

glutamate-neurotransmitter system could be considered as a main underlying mechanism 

for the attenuation of withdrawal syndrome, the precise mechanisms of action of norhar­

man and ibogaine remain unclear. However, of particular importance would be a further 

clarification of the role of norharman as a physiological modulator of morphine 

withdrawal phenomena. 
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Drug Dependence induced by Psychostimulants 





Chapter 8 

Psychostimulants 

Compounds, producing excitement, euphoria, reduced sensItivity of fatigue and 

increased motor activity, belong generally to the psychostimulants. These drugs could be 

divided into three categories: amphetamines, methylxanthines and cocaine. 

8.1. Amphetamines and methylxanthines 

• Amphetamines. Repeatedly taken amphetamine may induce, over the course of a few 

days, a state of "amphetamine psychosis" in men (Capiehom, 1990) and animals 

(Balfour, 1990; Lillrank et aI., 1991). Human amphetamine users report visual and 

auditory hallucinations, accompanied by paranoid symptoms. In both men and animals, 

aggressive behaviour may occur, and at the same time repetitive stereotyped behaviour 

could develop. When the intake of dnJgs is stopped there is usually, after a few days, a 

period of deep sleep and on awakening, the subject feels extremely lethargic, depres­

sed, anxious, and is often hungry (Swerdlow et aI., 1991). 

Tolerance develops rapidly to the sympathomimetic and anorectic effects of am­

phetamine, but much more slowly to the other effects, such as locomotor stimulation 

and stereotyped behaviour (Lillrank et aI., 1991). 

Repeated administration of amphetamine to experimental animals may lead to behavi­

oral sensitization, a process in which the dopaminergic (DA-ergic) system seems to be 

involved (Segal and Kuczenski, 1992). 

• Mdhy/xallthilles nre constituents of various beverages (tea. coffee, cocoa etc.). The 

main components are caffeine and theophylline, both having common stimulant effects 

on the eNS. Compared to the amphetamines, the methylxanthines produce less 

locomotor stimulation, and do not induce euphoria, stereotyped behaviour, or a 

psychotic state (Swerdlow et aI., 1986). Tolerance develops to a small extent, but much 

less than with amphetamines (Denaro et ai., 1991). 

Cocaine was used in our experimental study and therefore, more extensively data will 

be discussed. 

8.2. Cocaine 

Administration rOllte and metabolism. Cocaine is an alkaloid, derived from the plant 

elylhroxy/on coca. Two chemical forms of cocaine exist, hydrochloride salt and free base. 

The salt ("snow" or "coke") dissolved in water, can be taken by vein or in the nose. The 
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free base ("crack") is smoked (Siegel, 1985). In the earlier days coca leaves Were chewed, 

but it appeared that the effects of cocaine occurred later and were less intense compared to 

the intranasally route. The route of administration determines the rate and peak of blood 

levels achieved. It takes for cocaine 5-10 seconds by smoking, 30-120 seconds intra­

venously, and 1-3 minutes intranasally to reach and produce the onset of effects in the 

brain. Unlike heroin, which tends to be used on daily basis, cocaine (and amphetamine), is 

characterized by dmg consumption in heavy binges (Bozarth and Wise, 1985). 

Cocaine is detoxified by liver and plasma esterase enzyme system. Two water soluble 

metabolites, benzoylecgonine and ecgonine methyl ester, are excreted in the urine (Stewart 

et aI., 1979) and are useful markers of cocaine use. Benzoylecgonine could be detected in 

the urine for as many as 22 days after the last cocaine intake (Weiss and Gawin, 1988). 

The plasma half-life of cocaine varies from 30-80 min (Prakash and Das, 1993). 

Transporter molecules lind neurotransmitters. It has been shown that cocaine primarily 

acts on monoaminergic systems, by blocking the reuptake of dopamine (DA), noradre­

naline (NA) and 5-hydroxytryptamine (5-HT, Taylor and Ho, 1978). Recently, it has been 

demonstrated that cocaine inhibits several monoamine transpOlier molecules in the 

mammalian brain, but particular attcntion was paid to the inhibition of the DA transporter 

(Hitri et aI., 1994). The neurotransmitter transporters terminate synaptic transmission by 

rapid sodium-dependent reaccumulation of released neurotransmitter in the presynaptic 

terminal. Not only cocaine is acting by this type of mechanism, also antidepressants and 

neurotoxins that induce Parkinsonism are shown to act in this way (Meister, 1993). 

DA-ergic system. The inhibition of DA reuptake has been demonstrated in several brain 

nuclei, such as nucleus accumbens (NAc, Bradberry and Roth, 1989; Kalivas and Duffy, 

1990), medial prefrontal cortex (Maisonneuve et aI., 1990), ventral tegmental area (VTA, 

Bradberry and Roth, 1989) and striatum (Church ct aI., 1987). Recently, it has been shown 

that stereotypy induced by cocaine is mediated by a DA-ergic activation of a glutaminer­

gic system within the striatum (Karler et aI., 1994). In general, the DA-ergic seems to be 

involved in the behavioral effects of cocaine. DI reccptor antagonists block cocaine­

induced increase of locomotor activity, stereotypy, and decrease of food intake (Spealman, 

1990). However, the cocaine/amphetamine induced increase of locomotor activity in mice 

was blocked by the NA antagonist prazosin, which implies that the underlying mechanism 

is 1110re complex (Snoddy and Tessel, 1985). 

NA-erRic lind 5-HT-ergic system. It was demonstrated, that cocaine blocks the uptake of 

5-HT and NA in the dorsal raphe (Cunningham and Lakoski, 1990) and in loclls coeruleus 

(Hadfield and Nugent, 1983; Reith et aI., 1986; Lacey et aI., 1990). The inhibited firing of 

these neurons is probably mediated by activation of presynaptic O:2-adrenoccptors 

(Suprenant and Williams, 19X7) and 5-HT'A receptors (Cunningham and Lakoski, 1990). 
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8.3. Cocaine dependence 

Similarly to the opioids, the mesocorticolimbic DA-ergic pathway seems to play a 

major role in the 'process of reinforcement of cocaine (Woolverton and Johnson, 1992). 

The 5-HT- and/or NA-ergic pathways seemed not to be involved in reinforcing process 

(Fibiger et a!.. 1992). Lesions of the mesocorticolimbic DA-ergic system, induced by 6-

hydroxydopamine, produced a selective termination of cocaine self-administration in rats 

(Caine and Koob, 1994), while the administration of 5-HT and NA receptor antagonists 

was without any effect on the cocaine intake in rats (Fibiger et a!., 1992). Microdialysis 

studies in rats during cocaine self-administration have shown an increased release of DA 

within the NAc (Hurd et a!., 1989) and in the amygdala (McGregor et aI., 1994), while the 

NA and 5-HT levels remained unaffected (McGregor et a!., 1994). The involvement of the 

D2-receptors in cocaine reinforcement was demonstrated by D2-agonists bromocriptine 

(Hubner and Koob, 1990) and lisuride (Pulvirenti and Koob, 1994), which reduced the 

intravenous cocaine self-administration intake in rats. 

8.4. Withdrawal syndrome 

Human and animal studies have shown that there are behavioral consequences of 

termination of exposure to cocaine (Woolverton and Johnson, 1992). The initial phase of 

the withdrawal (hours-days) is termed the "crash". During the crash an intense depression, 

fatigue, hypersomnia, hyperphagia, and drive for repeated cocaine use are present. The 

later phase (weeks to months) is characterized by mood lability, depression, anhedonia, 

low energy, sleep disturbances, suspiciousness and anxiety (Gold, 1983; Gawin and 

Kleber, 1986). 

Neurochemically, it appears that a functional reduction of DA neurotransmission may 

be one important component of cocaine withdrawal. A significant reduction in DA over­

flow in the NAc of rats withdrawing from unlimited access to cocaine self-administration 

has been shown (Weiss et a!., 1992). 

Treatment of cocaine dependence. Having in mind a role of DA in cocaine dependence, 

several DA receptor agonists in the treatment of cocaine dependence have been used: 

• Bromocriptille, agonist at D2 receptor, was shown to reduce the intake of i.v. cocaine 

self-administration in rats (Hubner and Koob, 1990). In humans, the results are 

controversial. Some studies showed that bromocriptine reduced symptoms of cocaine 

withdrawal, such as dysphoria (Giannini et a!., 1987), while others reported no effect of 

bromocriptine on craving and no alterations of the subjective effects of cocaine, such as 

"rush" or "good feeling" (Kumor et aI., 1989). 

• Lisuride, agonist at D2 receptor, reduced cocaine intake in rats (Pulvirenti and Koob, 

1994). In Infmans, lisuride is involved in the normalization of the disturbed sleep 
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pattern occurring during cocaine withdrawal, however, it did not modify subjective 

ratings of craving and mood (Gillin et aI., 1994) . 

• Amalltadine (Weddington et aI., 1991) and pergolide (Malcolm et aI., 1991) have been 

used with some success in treatment of cocaine human addicts. 

Besides the DA agonists as adjuncts for the treatment of cocaine dependence two other 

categories of drugs have been suggested: 

• Opioid antagonists. Animal and human studies have revealed that naltrexone, but also 

the partial opioid agonist/antagonist buprenorphine may have therapeutic value in 

cocaine addiction (Kosten et aI., 1989; Mello et aI., 1993). 

Catalytic antibodies have been developed and these compounds combine with cocaine 

and in the same time destroy the molecules. The antibodies are injected into the 

bloodstream and could protect a person (at least partially) from the effects of cocaine 

by destroying the drug more rapidly than do the enzymes already present in the blood. 

However, these antibodies are not effective by oral administration (Tramontano et aI., 
1986). 

8.5. Tolerance and sensitization 
Both tolerance and sensitization to the behavioral effects of chronic administration of 

cocaine have been demonstrated in man and animal (Post and Contel, 1983), \Vhether 

sensitization or tolerance would occur, seems to depend on the method of drug ad­

ministration (dose, duration and interval). For example, tolerance was induced following 

continuous infusion of cocaine (Reith et aI., 1987), whereas sensitization was observed 

after intermittent injection of cocaine (King et aI., 1994). 

It has been suggested, that tolerance induced by continuous cocaine administration is 

associated with supersensitivity of D2 autoreceptor and 5~HTIA receptors, but not by 

changes in 5-HT ID receptor sensitivity (King et aI., 1994). 

One of the most interesting aspects of sensitization to cocaine is, that it is a relatively 

long lasting process (Post et aI., 1987), like the process of kindling and long-term 

potentiation. Such long lasting changes imply that cocaine "experience" can induce 

structural modifications in synaptic architecture that are responsible for the strengthened 

synaptic circuitry that may underlie behavioral sensitization to cocaine. It seems that 

glutaminergic neurotransmission, particularly that mediated by the NMDA receptor 

subtype, is thought to play an important role. Accordingly, the NMDA channel blocker 

MK-801 blocks the sensitization to cocaine and amphetamine (Karler et aI., 1989), 

indicating a role of the NMDA (glutamate) system in cocaine abuse. 

98 



Chapter 8 

References 
Balfour DJ, A comparison of the effects of nicotine and (+)-amphetamine on rat behaviour in an 

un signalled Sidman avoidance schedule, J Pharm Pharmacal 42: 257-260, 1990. 
Bozarth MA and \Vise RA, Toxicity associated with long-tenn intravenous heroin and cocaine self­

administration in the rat, JAm Med Assoc 254: 81-83, 1985. 
Bradberry CW and Roth RH, Cocaine increases extracellular dopamine in rat nucleus accumbens 

and ventral tegmental area as shown by in vivo microdialysis, Neurosci Lett 103: 97-102. 1989, 
Caine SB and Koob GF, Effects of meso limbic dopamine depletion on responding maintained by 

cocaine and food, J E.,p Anal Behav 61: 213-221, 1994. 
Caplehorn JR, Amphetamine psychosis, Br J Addict 85: 1505-1506, 1990. 
Church WH, Justice JB Jr and Byrd LD, Extracellular dopamine in rat striatum following uptake 

inhibition by cocaine, nomifensine and benztropine, Ellr J Pharmacol 139: 345-348, 1987. 
Cunningham KA and Lakoski JM, The interaction of cocaine with serotonin dorsal raphe neurons. 

Single-unit extracellular recording studies, Neuropsychopharmacol 3: 41-50, 1990. 
Denaro CP, Brown CR, Jacob P and Benowitz NL, Effects of caffeine with repeated dosing, Ellr J 

eli" Pharlll 40: 273-278, 1991. 
Fibiger HC, Phillips AG and Brown EE, The neurobiology of cocaine induced reinforcement, Ciba 

FOllnd S)'IIIP 166: 96-124, 1992. 
Gawin FH and Kleber HD, Abstinence symptomatology and psychiatric diagnosis in cocaine 

abusers, Clinical observations, Arch Gell PsychiatJ)' 43: 107-113, 1986. 
Giannini AJ, Baumgartel P and DiMarzio LR, Bromocriptine therapy in cocaine withdrawal, J CUll 

Plwrmacol27: 267-270, 1987. 
Gillin JC, Pulvirenti L, Withers N, Golshan Sand Koob GF, The effects of lisuride on mood and 

sleep during acute withdrawal in stimulant abusers: a preliminary report, Bioi PsycMatl)' 35: 
843-849, 1994. 

Gold MS, Pottash AC, Annitto WJ, Verbebey K and Sweeney DR, Cocaine withdrawal: efficacy of 
tyrosine, Soc NClIrosci Abstr 9: 157, 1983. 

Hadfield MG and Nugent EA, Cocaine: Comparative effect on dopamine uptake in extrapyramidal 
and limbic systems, Biochem Pharmacol 32: 774-776, 1983. 

Hitri A, Hurd YL, Wyatt RJ, Deutsch SI, Molecular, functional and biochemical characteristics of 
the dopamine transporter: regional differences and clinical relevance, Clin Neurophannacol 17: 
1-22, 1994. 

Hubner CB and Koob GF, Bromocriptine produces decreases in cocaine self-administration in the 
rat, Nellropsychoplwrmacology 3: 101-108, 1990. 

Hurd YL, Weiss F, Koob GF, And NE and Ungerstedt U, Cocaine reinforcement and extracellular 
dopamine overflow in rat nucleus accumbens: an in vivo microdialysis study, Brain Res 498: 
199-203, 1989. 

Kalivas PW and Duffy P, Effect of acute and daily cocaine treatment on extracellular dopamine in 
the nucleus accumbcns, Syuapse 5: 48-58, 1990. 

Karler R, Calder LD, Chaudhry IA and Turkanis SA, Blockade of 'reverse tolerance' to cocaine 
and amphetamine by MK-801, Life Sci 45: 599-606,1989. 

Karler R, Calder LD, Thai LH and Bedingfield JB, A dopaminergic-glutamincrgic basis for the 
action of amphetamine and cocaine, Brain Res 658: 8-14, 1994, 

King GR, Ellinwood EH Jr, Silvia C, Joyner CM, Xue Z, Caron MG and Lee TH, Withdrawal 
from continuous or intermittent cocaine administration: changes in D2 receptor function, J 
Pharlll Exp Ther 269: 743-749, 1994. 

Kosten TR, Kleber HD and Morgan C, Role of opioid antagonists in treating intravenous cocaine 
abuse, Life Sci 44: 887-892, 1989. 

Kumor KM, Sherer MA, Gomez J, Cone E and Jaffe JH, Subjective response during continuous 

99 



Ps),clioslimulallls 

infusion of cocaine, Pharmacol Biochem Behav 33: 443~452, 1989. 
Lacey MG, Mercuri NB and North RA, Actions of cocaine on rat dopaminergic neurones in vitro, 

Br J Pharmaeol99: 731-735, 1990. 
Lillrank SM, Oja SS, Saransaari P and Seppala T, Animal models of amphetamine psychosis: 

neurotransmitter release from rat brain slices, lilt J Neltrosci 60: 1~15, 1991. 
Malcolm R, Hutto BR, Philips lD and Ballenger lC, Pergolide mesylate treatment of cocaine 

withdrawal, J elill Pryehiatr), 52: 39-40, 1991. 
McGregor A, Baker G'and Roberts DC, Effect of 6~hydroxydopamine lesions of the amygdala on 

intravenous cocaine self~administration under a progressive ratio schedule of reinforcement, 
Braill Res 646: 273-278, 1994. 

Maisonneuve 1M, Keller RW Jr and Glick SD, Similar effects of D~amphetamine and cocaine on 
extracellular dopamine levels in medial prefrontal cortex ofrats, Brain Res 535: 221 ~ 226, 1990. 

Meister B, Transporters for neurotransmitters. A new gene family with characteristic features, 
Lakartidllillgell 90: 1255-1259, 1993. 

Mello NK, Lukas SE, Mendelson JH and Drieze 1, Naltrexone~buprenorphine interactions: effects 
on cocaine,self~administration, NeuropsycllOpharmacology 9: 211-224, 1993. 

Post RM and Contel NR, Human and animal studies of cocaine: implications for development of 
behavioral pathology, In: Stimulants: Neurochemical, behavioral and clinical perspective, I 
Creese (ed.), Raven Press, New York, pp. 163-203, 1983. 

Post RM, Weiss SRB, Pert A and Uhde TW, Chronic cocaine administration: sensitization and 
kindling effects, In: 'Cocaine: Clinical and biobehavioral aspects, S Fisher, A Raskin and EH 
Uhlenhuth (eds.), Oxford University Press, New York, pp. 109-173, 1987. 

Prakash A and Das G, Cocaine and the nervous system, lnt J Clill Phamwco! 31: 575-581, 1993. 
Pulvirenti Land Koob GF, Lisuride reduces intravenous cocaine self-administration in rats, 

PJwrmacol Biochem Behav 47: 819-822, 1994. 
Reith ME, Meisler BE, Sershen Hand Lajtha A, Structural requirements for cocaine congeners to 

interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped 
behaviour, Biochem Pharmacol35: 1123·1129, 1986. 

Reith ME, Benuck M and Lajtha A, Cocaine disposition in the brain after continuous or intennit· 
tent treatment and locomotor stimulation in mice, J Pharmaco! £.\p Tiler 243: 281-287, 1987. 

Segal DS and Kuczenski R, In vivo microdialysis reveals a diminished amphetamine-induced 
dopamine response corresponding to behavioral sensitization produced by repeated amphetamine 
treatment, Braill Res 571: 330-337, 1992. 

Siegel RK, New patterns of cocaine use: changing doses and routes, NIDA Res MOllogr Ser 61: 
204-220, 1985. 

Snoddy AM and Tessel RE, Prazocin: effect on psychomotor-stimulant cues and locomotor activity 
in mice, Eur J Phannacol116: 221-228, 1985. 

Spealman RD, Antagonism of behavioral effects of cocaine by selective dopamine receptor 
blockers, Ps)'cJlOpharmaeol (Berl) 101: 142-145, 1990. 

Stewart Dl, Inada T, Lucassen M and Kalow W, Cocaine metabolism: cocaine and norcocaine 
hydrolysis by liver and serum esterases, C/in Pharmacol Ther 25: 464-468, 1979. 

Suprenant A and Williams JT, Inhibitory synaptic potentials recorded from mammalian neurones 
prolonged by blockade of noradrenaline uptake, J Ph),siol (Lalld) 382: 87-103, 1987. 

Swerdlow NR, Vaccarino Fl, Amalric M and Koob GF, The neural substances for the motor­
activating properties of psychostimulants: a review of recent findings, Pharmacol Biochem 
Behav 25: 233-248, 1986. 

Swerdlow NR, Hauger R, Irwin M, Koob GP, Britton KT and Pulvirenti 
and neurochemical changes in rats during withdrawal from 
Neuropsychopharmacology 5: 23-31, 1991. 

100 

L, Endocrine, immune 
chronic intoxication, 



Chapter 8 

Taylor D and Ho BT, Comparison of monoamine uptake by cocaine, methylphenidate and 
amphetamine, Res Commull Chem Pallial Phannacol21: 67-75,1978. 

Tramontano At landa KD and Lerner RA, Catalytic antibodies, Science 234: 1566-1570, 1986. 
Weddington WW Jr, Brown BS, Haertzen CA, Hess JM, Mahaftey JR, Kolar AF and Jaffe JR, 

Comparison of amantadine and desimipramine combined with psychotherapy for treatment of 
cocaine dependence, Am J Dmg A/co/wi Abuse 17: 137-152, 1991. 

Weiss RD and Gawin FH, Protracted elimination of cocaine metabolites in long-term high-dose 
cocaine abusers, Am J Med 85: 879-880, 1988. 

Weiss F, Paulus MP, Lorang MT, Koob OF, Increases in extracellular dopamine in the nucleus 
accumbens by cocaine arc inversely related to basal levels: effects of acute and repeated 
administration, J Nelll'osci 12: 4372-4380, 1992. 

Woolverton WL and Johnson KM, Neurobiology of cocaine abuse, Trends Pharmacol Sci 13: 193-
200, 1992. 

101 





PARTS 

Cocaine Dependence - Experimental Study 





Chapter 9 

Inhibitory effects of ibogaine on cocaine self-administmtion 
in rats 

Abstract - In order to determine the potential anti-addictive properties of 
ibogaine, we used the cocaine self-administration model in rats. The results 
indicate that a single injection of ibogaine (40 mg/kg Lp.) produced a significant 
decrease of cocaine intake, which remained unaltered for more than 48 h. Since 
the half-life time of ibogaine is short, this might suggest the involvement of one 
or several active metabolites of ibogaine in cocaine intake. Repetitive 
administration of ibogaine on three consecutive days also induced a pronounced 
decrease of cocaine intake. However, a more prominent inhibitory effect on 
cocaine intake was observed in animals treated repeatedly with ibogaine (40 
mglkg Lp.), once each week for 3 consecutive weeks. These results indicate that 
ibogaine or its metabolite(s) is a long-lasting interruptor of cocaine dependence, 
which supports similar observations from uncontrolled clinical studies. 
Pliblished ill Ellropea/i JOllmal of Pharmacology 241: 261-265, 1993. 

Ibogaine, an indole alkaloid found in the root bark of the African shrub Tabemanthe iboga, 
has been used in Gabon (West Central Africa) in low doses as a stimulant (combat fatigue, 

hunger and thirst) and in high doses for its hallucinogenic properties (religious rituals). 

Recent animal studies and non-controlled observations in humans indicate that ibogaine 

may significantly affect drug dependence phenomena such as drug withdrawal and intake of 

addictive drugs. Accordingly, it has been demonstrated that ibogaine (i.c.v.) attenuated many 

(but not all) symptoms of naloxone-precipitated withdrawal in morphine-dependent rats 

(Dzoljic et aI., 1988). A similar anti-withdrawal effect of ibogaine has been observed in 

morphine-dependent monkeys (Aceto et a!., 1989) and rats (Glick et a!., 1992). 

Related to the intake of addictive drugs, it has been shown that ibogaine pretreatment 

decreases intravenous morphine self-administration in rats for several days (Glick et al., 

1991). These results of animal experiments are in accordance with the long-lasting 

interruption of heroin abuse by ibogaine in humans (Lotsof, 1985). Ibogaine is also claimed 

to interrupt cocaine and amphetamine abuse and it was suggested that series of four 

treatments may be effective for several years (Lotsof, 1986). Other claims are that ibogaine 

attenuates alcohol and nicotine/tobacco dependency syndromes (Lotsof, 1989, 1991). 

The aim of the present experiments was to determine whether an interrupting effect of 
• 

ibogaine on cocaine intake could be demonstrated in cocaine-dependent animals. We 

105 



Ibogaine and cocaine self-administration 

examined the effects of single and repeated injections of ibogaine on the cocaine self­

administration model in rats. 

Materials and methods 

Animals 
Male wi star rats. (TNO Zeist) were used, weighing 200-250 g at the start of the 

experiments. The animals were housed in groups with water and food ad libitum. Artificial 
light was supplied on a 12-h light/dark cycle. 

Operation procedure 
All animals were anaesthetized with sodium pentobarbital (60 mglkg Lp.) and surgically 

implanted with a chronic Lv. jugular catheter (0.5 mm. inside diameter, 1.0 mm outside 
diameter, polyethylene tubing). The catheter was passed subcutaneously to a small incision 
at the back of the neck. After the operation the animals were housed individuaUy with food 
and water ad libitum. Two days before the start of the experiments (Le. 5-6 days after 
operation), the animals were brought to the test room and were deprived of food in order to 
obtain a weight reduction of about 20%. Weight reduction was introduced in order to facilitate 
acquisition of self-administration (Takahashi et aI., 1978). A reversed 12-h light/dark cycle 
(lights out 8.00 - 20.00 h) was maintained during the whole experiment. 

Apparatus 
The experiments were performed in operant conditioning chambers. Cocaine infusions 

(1.2 mglkg), consisting of 0.25 ml fluid (pH 7.30-7.35) delivered in 20 s, occurred when the 
reinforcement lever was depressed. During the infusion, the stimulus light was turned off and 
pressing the same lever had no programmed consequences. 

Test-procedure 
Following 5-6 days of postoperative recovery, the rats were connected to an infusion 

pump (Braun Perfusor Secura MRD) by polyethylene tubing and a fluid swivel, which 
permitted unlimited movement of the animal during the session. Session length was 3 h each 
day (during the dark period of the cycle), 5 days per week with 2 days of no testing (during 
weekends, between each 5-day block of testing). The study of the effect of ibogaine began 
when the baseline rate of cocaine self-administration stabilized « 10% variation between 3 
consecutive sessions) after 12-16 days (sessions). These animals were randomly divided into 
vehicle and ibogaine-treated groups. The experiments lasted about 6 weeks (including the first 
2 weeks used for stabilization of cocaine intake). 

Experimental groups 
Vehicle (1.0 mllkg Lp.) or ibogaine was given 30 min prior to self-administration testing 

and the behaviour of animals was monitored for the subsequent 3 h. 
Single administration of ibogaine (10-40 lUg/kg i.p., 11= 6-7 per dose). Our preliminary 

experiments showed that administration of 80 rnglkg ibogaine caused severe locomotor 
disturbances (ataxia, jumping when touched and tremor for about 60 min). Therefore, in 
further experiments, this dose was omitted and 40 mg/kg ibogaine was constantly used. This 
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dose had less prominent and shorter lasting behavioral effects than the higher dose (see 
Results). 

Repetitive administration of ibogaine (40 mg/kg i.p.), In one group of animals (n=5) 
ibogaine Was administered once on each of 3 consecutive days, while the other group (n=5) 
received ibogaine once at the beginning of each of 3 consecutive weeks. 

Drugs 
Cocaine hydrochloride (OPG, Utrecht, Netherlands) was dissolved in saline and the pH 

was adjusted to 7.30-7.35. Ibogaine hydrochloride (kindly donated by H. Lotsof, NDA, New 
York) was dissolved in distilled water. 

Data analysis 
Responses were summed over the 3-h test period and subjected to two-way analysis of 

variance CANOVA) with repeated measurements on days. Individual comparisons of means 
were made with Student's (-test (between baseline and treated groups and between vehicle and 
ibogaine-treated groups) with significance at P<0.05 level. 

Results 

Single administration of ibogaine (10-40 mgllrg i.p. n= 6·7 per dose) 
Behaviour. Administration of ibogaine in cocaine-dependent rats induced within 4 min 
stiffness of the hind legs, tremor, ataxia and hypersensitivity Gumping or violent locomotion 
when touched). The severity of this behavioral syndrome was dose dependent and, in the case 
of the highest dose of ibogaine (40 mglkg), the effect lasted for a maximum of 30 min. 

Thereafter, animals showed normal behaviour and were used for the self-administration 
procedure. 

Cocaine intake. The baseline cocaine intake was 5.0 ± 0.5 mglkg (Fig. t). A single injection 
of 40 mglkg ibogaine produced a significant depression of cocaine intake, while 10 and 20 
mglkg were ineffective (Fig. 1). The inhibitory effect of a single administration of ibogaine 

on cocaine intake became more prominent on the next day and remained below the control 
level for the 24 h following (48 h after dmg administration, Fig. I). Further studies were 

performed with the 40 mglkg dose of ibogaine. 

Repeated (three) administration of ibogaine (40 mg/kg i.p.) 

Ibogaine administered 011 each of 3 consecutive days. Compared to the baseline (5.3 ± 0.4), 

administration of vehicle (1.0 mllkg i.p. 11=5) on each of 3 consecutive days did not induce 

significant changes in cocaine intake (Fig. 2). However, a significant decrease of the cocaine 
intake (n=5) occurred on the second day of ibogaine treatment. After the third injection of 

ibogaine, the inhibitory effect on cocaine intake lasted for the next 24 h (Fig. 2). This effect 

on cocaine intake was not significantly different from that of a single injection of ibogaine, 

107 



Ibogaine and cocaine selFadministratiOll 

but was shorter (24 h versus 48 h). 
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Fig. 1. Effect of a single dose of ibogaine (10-
40 mglkg i.p. n= 6~7 per dose) on cocaine 
intake in rats. The baseline cocaine intake (II 
5.0±0.5 mglkg) was calculated as the average 
rate of three consecutive sessions (<10% 
variation) preceding treatment with vehicle 
(distilled water 1.0 mllkg Lp. n=7) or ibogaine. 
Vehicle (I) or ibogaine (i) were administered 
30 min before the session started. The data are 
expressed as means of cocaine intake per 
session. * Indicates a significant decrease of 
cocaine intake (ANDV A and Hest P<O.05) 
compared to baseline intake and vehicle-treated 
group. Note that a single injection of ibogaine 
(40 mglkg) exerted a long-lasting (48 h) 
inhibition of cocaine intake. 

Fig.2. Effect of repeated administration of 
ibogaine (40 mg/kg Lp. n=5, given once on each 
of three consecutive sessions) on cocaine intake 
in rats. The baseline cocaine intake (B 5.3±OA 
mglkg) was calculated as the average rate of 
three consecutive sessions (<10% variation) 
preceding treatment with vehicle (distilled water 
1.0 mllkg i.p. n=5) or ibogaine. Vehicle (I) or 
ibogaine (I) was administered 30 min before 
the session started. The data are expressed as 
means ± SEM cocaine intake per session. * 
Indicates a significant decrease of cocaine intake 
(ANOYA and I-test P<0.05) compared to 
baseline intake and vehicle-treated group. Note 
that each injection of ibogaine significantly 
decreased cocaine intake. 

Ibogaine administered at the beginning of each of 3 consecutive weeks. The baseline cocaine 

intake (4.9 ± 0.5) was not significantly affected by vehicle (1.0 mllkg Lp. n~5) administered 

at the beginning of each of 3 consecutive weeks (Fig. 3). However, a significant decrease of 
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cocaine intake was observed following each ibogaine injection. Compared to that after the 

first injection of ibogaine, the decrease of cocaine intake was more sustained after the second 

and third administration of ibogaine (Fig. 3). 
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Fig. 3. Effect of repeated administration of ibogaine (40 mg/kg i.p. 0=5, given once at the beginning 
of each of 3 consecutive weeks) on cocaine intake in rats. The baseline cocaine intake (a, 4.9±O.5 
mglkg) was calculated as the average rale of 3 consecutive sessions «10% variation) preceding treat­
ment with vehicle (distilled water 1,0 mllkg i.p. n=5) or ibogaine. Vehicle (i) or ibogaine (1') was 
admi.nistered 30 min before the session started. The data are expressed as means ± SEM cocaine inta~ 
ke per session. The animals were not tested during weekends. * Indicates a significant decrease of 
cocaine intake (ANOV A and t~test P<O.05) compared to the baseline intake and the vehicle~treated 
group. Note a gradual and long-lasting decrease of cocaine intake following second and third injection 
of ibogaine. 

Discussion 

A single dose or repeated doses (on each of 3 consecutive days) of ibogaine (40 mglkg 

i.p.) in rats induced a decrease of cocaine intake lasting 1-2 days. This effect could be 

potentiated and prolonged by three injections of ibogaine, given once each week (but not once 

each day). This was rather surprising, as the half-life time of ibogaine in rodents is about I 

h, and a day after administration, the ibogaine levels in the body were undetectable (Dhahir, 

109 



Ibogaine and cocaine self-administration 

1971, cited by Glick et aI., 1991). This might indicate that the depression of cocaine intake 

could be ascribed to an active and long-lasting metabolite(s) of ibogaine or to irreversible 

interruption of the biological mechanism of cocaine dependence. 

Related to the mechanism of anti-addictive properties of ibogaine several possibilities 

could be considered: 

Disturbed locomoti01l 

Ibogaine enhanced the amphetamine-induced increase of motor activity (Maisonneuve and 

Glick, 1992). Additional disturbances of motility, such as tremor and ataxia observed in this 

and other studies (Glick et aI., 1991), might further affect the self-administration of cocaine. 

However, this possibility is unlikely, since in our experiments the ibogaine-induced locomo­

tor disturbances such as ataxia and tremor lasted about 30 min, while the anti-addictive effect 

of single dose of this drug remained for at least 2 days. A long-lasting effect of ibogaine 

(several days) on morphine intake in rats was also observed in other studies (Glick et aL, 

1991). Ibogaine pretreatment of rats (40 mglkg i.p. 19 h prior) had no effect on the increased 

locomotion induced by various doses of cocaine (5, 10 and 40 mglkg), while the locomotion 

after administration of 20 mglkg cocaine was potentiated for only I hour (Maisonneuve ct aI., 

1992). Evidently, an effect of ibogaine on motor activity in rats is of marginal importance for 

understanding the long lasting anti-addictive properties of ihogaine. 

Dopamhzergic system 

The rewarding effccts of drugs of abuse have been associated with their ability to 

increase dopamine release, particularly in the nucleus accumbens (Di Chiara and Imperato, 

1988). It is of importance to note that ibogaine reduced the cocaine-induced dopamine release 

in the nucleus accumbens (Broderick et ai., 1992). Thus, an anti-addictive effect of ibogainc 

might be explained by its inhibitory effect on dopaminergic neurotransmission, which seems 

of importance for rewarding processes. However, the intcraction between ibogaine and 

dopamine neurotransmission has not been shown conclusively, mainly due to controvcrsial 

data. For example, a rccent study indicated that ibogaine (40 mg/kg i.p.) potentiates the 

cocnine-induced increa.o;;e in extracellular dopamine levels in striatum and nucleus accumbens 

(Maisonneuve et aI., 1992). Thus, in contrast to the previous data, this might indicate a 

stimulatory effect of ibogaine on the reinforcing properties of cocaine. 

Serotonergic system 

Stimulation of the serotonergic system by the 5-HT uptake inhibitor, Ouoxetine, attenuates 

cocaine self-administration in animals (Richardson and Roberts, 1991). It has been shown that 

ibogaine inhibits the enzymic oxidation of 5-HT in the periphery (Barrass and Coult, 1972). 

However, it is not known whether such a relationship exists in the CNS. There seems to be 
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no direct evidence that an ibogaine-induced derangement of 5-HT systems might affect the 

rewarding properties of cocaine. This possibility remains to be examined. 

Centrallleuronal excitability 

Ibogaine increases arousability (Schneider and Sigg, 1957), which might affect behaviour. 

The procollvulsant effect of ibogaine (40 mg/kg Lp.) lasting several hours that we observed 

ill our EEG study (unpublished data), supports the idea that ibogaine significantly affects the 

responsiveness of central neurons. A proconvu!sant state is probably incompatible with self­

administration behaviour. However, it is less clear why cocaine intake is decreased in the 

absence of a proconvulsant EEG pattern, more than 48 h after ibogaine administration. 

In conclusion, these experiments indicate that ibogaine inhibits cocaine intake in rats. 

This effect could be potentiated by repeated injections of ibogaine, once each week. Although 

the mechanism of action of ibogaine remains to be established, the present results suggest the 

presence of an anti-addictive and long-lasting metabolite(s) of ibogaine or its irreversiblellong­

lasting derangement of an addictive mechanism in cocaine-dependent animals. 
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Concluding remarks 

The role of several modulators was examined on morphine and cocaine dependence 

phenomena in rodents. The results of these studies were presented in the experimental 

parts of this thesis. The conclusions of these studies with possible clinical relevance were 

briefly pointed out. Finally, some suggestions for further research were given. 

• Antagonists of excitatory amino acid receptors (NMDA-type) and inhibitors of NO 

synthesis attenuated the expression of 11I01philie withdrawal syndrome ill bOlh rats and 

mice. 

We concluded that NO is an important neurotransmitter in respect to several withdrawal 

signs. This might be due to a facilitatory effect of NO on the release of various brain 

neurotransmitters and corresponding changes in the transmitter balance and functional 

activity of central neurons. We are suggesting that these preclinical studies of NO synthase 

inhibitors justify clinical trials of NO synthase inhibitors in drug-dependent subjects. 

A plt/ative "withdrawal substance" released in the cerebrospinal fluid (CSF) of 

spontaneous mOlphille-abstillew dOllar rats induces a withdrawal syndrome in mor­

phine-dependent recipient rats. 17lls putative "withdrawal substance" is hydrophobic 

and has no nato.rolle-like properties. 

The presence of a "withdrawal factor" is a challenge for the further biochemical charac­

terization of this substance and CSF of dmg-dependent subjects. The question arises 

whether a "withdrawal substance" is a consequence or causally related to dmg withdrawal 

phenomena. 

• Norhamul1I pl'l~vellted the expressioll of the naloxone-induced 'withdrawal syndrome. A 

somewhat similar (although less prominent) effect Was observed ill ibogaine treated 

morphine-dependent rats. 

Ibogaine treatment of cocaine-dependent rats significantly decreased the cocaine-in­

take. 

It is of importance to note that norharman as a physiological substance exerts anti­

withdrawal properties. Although the chemical structure of ibogaine is similar to 

norharman, these two substances may have a different mechanism of action. lbogaine acts 

as a competitive NMDA antagonist, which might be an underlying mechanism of action of 

this alkaloid. The mechanism of action of norharman might be more related to the GAB A 

receptor-comple~ on which this physiological substance has a binding place. 
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Suggestions for further research 

The biochemical analysis of the CSF of drug-dependent subjects and further study of 

bioactive properties of the "withdrawal substance" found in the CSF of spontaneous 

morphine~abstinent rats is one of the forthcoming aims to study. 

• It is of importance to examine the synthesis and release of central NO and other 

neurotransmitters during morphine dependence and withdrawal syndrome, in the 
absence and presence of NOS inhibitors, in order to elucidate the role of NO in 

corresponding behavioral changes, occurring during opioid withdrawal. 

• There arc indications that eicosanoids, the metabolic products of arachidonic acid may 

contribute to the mechanism of opioid withdrawal diarrhoea. Therefore, the interac­

tions between disturbed production of arachidonic acid metabolites Hnd the severity of 

naloxone-precipitated withdrawal diarrhoea in morphine-dependent animals is one of 

the subjects which' deserves an attention to be studied, 
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The glutamate-NMDA-NO system has a profound influence on many neurotrans­

mitters, including the endogenous opioid peptides, We have already demonstrated that 

the glutamate-NMDA-NO system is involved in the expression of morphine with­

dmwal signs. The dopamine release induced by enkephalins, depends on involvement 

of glutamatergic transmission via NMDA receptors. Therefore, the interaction between 

the endogenous opioid peptides or exogenous opioids and EAA-glutamate system 

deserves to be studied. 

It has been demonstrated that in the plasma of alcoholics and heroin addicts the level 

of norharman is increased, Further research in respect to the mechanism of action of 

norharman (the role of the GABA receptor-complex) and its effects in other types of 

drug dependence (alcohol, benzodiazepines, etc.) is worthwhile to study. 

The ability of ibogaine to modify dmg seeking behaviour in the self-administration 

animal model, suggests a possible use of ibogaine in the treatment of human drug 

dependence and thereby warranting further study on its mechHnism(s) of action, 

The impression could be raised that dmg dependence phenomena could be totally 

explained as pharmacological processes. However, the social interactions arc very 

important factors, which play a prominent role in human drug dependence pheno­

mena. However, in most of the performed animal studies, social interactions have not 



Modulators of drug dependence phenomena 

been included. To my opinion, it is worthwhile to study drug dependence phenomena 

in animals housed in groups versus solitary housed animals. 
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Samenvatting 

Dit proefschrift beschrijft de effecten van verschillende factoren op drug-afuanke­

lijkheidsverschijnselen bij muizen en ratten. Er is met name gekekcn naar factoren die het 

morfine-onthoudingssyndroom (hooJdsfukkcll 3-7) en het cocaYne-innamepatroon <hoofdstuk 

9) kunnen beYnvloeden. 

Deel 1: Dmg-aJ!zallke/ijkheid ell schade/ijk druggebrllik 

Hoofdstuk 1 

Ondanks het feit dat drug-afuankelijkheidsverschijnselen al sinds jaren bestudeerd 

worden, is het moeilijk gebleken om goede omschrijvingen te geven van begrippen die 

met deze verschijnselen te maken hebben. Tennell zoals afhankelijkheid ("dependence"), 

schadelijk druggebruik ("abuse - harmful use"), onthoudingssyndroom, drug-zoekend 

gedrag (zllchtigheid, "craving") en beloning ("reinforcement") etc., worden dan oak in het 

eerste gedeclte van dit hoofdstuk gedefinieerd, De term drug-afhankelijkheid wordl 

voornamelijk geassocieerd met drugs en gedefinieerd als de behoefte aan continue inname 

van een of meer stoffen. Drugs die afuankelijkheid kunnen veroorzaken behoren tot de 

zogenoemde psycllO-actieve stoffen. In het tweede gedeelte van dit hoofdstuk worden 

verschillende klassen van psycho-actieve stoffen behandeld. Recentelijk uit experimenten 

verkregen gegevens worden besproken. De eigenschappen van verschillende klassen van 

psycho-actieve drugs worden benadrukt, voor wat betreft gedragseffecten en het werkings­

rnechanisrne op cellulair niveau tijdens drug-afhankelijkheid en drug-onthouding. 

Deel 2: Opioid-aJ!wllke/ijkheid 

Hoofdstllk 2 

In dit hoofdstuk worden allereerst de opioiden en hun receptoren geclassificccrd, 

gevolgd door specifiekc informatie voor wat betfeft morfine-afhankelijkheidsverschijnse­

len, waaronder tolerantie en onthoudingssyndroom. 

Dee) 3: Morjille-olltlioudillgss),lldroom - dierexperimellteei ollderzoek 

Hoofdstllk 3 

Het is aangetoond dat tijdens het rnorfine onthoudingssyndroom een verhoogde afgiftc 

van verschillende neurotransmitters, waaronder het excilatoire aminozuur L-glutamaat, 

piaatsvindt. L-Glutamaat, presynaptisch vrijgemaakt, acliveert de postsynaptisch geiegen 

N-methyl-D-aspartaat (NMDA) glutamaatreceptoren (zie Figuur I, Olltlille of the stlldies). 
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We hebben de rol van het excitatoire glutamaat-systeem bestudeerd tijdens het opioid­

onthoudingsproces. Specifieke NMDA-receptorantagonisten zijn aan morfine-atnankelijke 

muizen toegediend, voordat, door middel van naloxon, onthoudingsgedrag gei'nducecrd 

werd. In deze studie is aangctoond dat toediening van verschillende NMDA-receptorblok­

kers een verlaagde expressiviteit van het opioid-onthoudingsgedrag in muizen induceert. 

Hoofds/uk 4 el/ 5 

Nadat een verlaagde expressie van opioid-onthoudingsgedrag aangetoond was door 

blokkade van NMDA-receptoren ("oofds/uk 3), is door ons gepostuleerd dot stoffen die 

postsynaptisch gesynthetiseerd worden na stimulatie van de NMDA-receptoren ook een rei 

zouden kunnen spelcn in de expressie van het morfine-onthoudingssyndroom. Ben van de 

mogelijke steffen is de relatief "nieuwe" perifere en centrale neurotransmitter stikstof­

monoxide ("nitric oxide" - NO). De door NMDA-receptoren gereguleerde calciuminflux in 

het postsynaptische gedeeJte van het neuron zou het ca1cium-afhankelijkc NO-synthase 

(NOS) enzym stimuleren, wat resulteert in de synthese van NO (zie Fig. I, Outline of tile 

studies). Om het effect van deze neurotransmitter op het naloxon-geYnduceerde morfine-on­

thoudingsgedrag te onderzoekcn, hcbbcn we de NO-synthese geblokkeerd met bchulp van 

NOS-blokkers, Dit is gedaan bij zowel morfine-afhankelijke Illuizcn (lloo/dstuk 4) als 

morfine-afhankelijke ratten (hoo/dstuk 5), Uil beide studies bleek dat een significante 

verJaging van de expressie van het morfine-onthoudingsgedrag optrad. Er mag gecon­

c1udecrd worden dat NO een rol speclt bij de expressie van het opioid-onthoudings­

syndroom. Veri aging van de NO-synthese zou bij kunncn dragen aan een verstoorde 

centrale en perifere transmissie van andere neurotransmitters, wat op zichzelf conse­

qucnties zou kunnen hebben voar gedragskenmcrkcn tijdcns het optreden van het onthou­

dingssyndroom. 

Deze resultaten, uit preklinischc cxpcrimenten met de NOS-remmers, rechtvaardigen 

klinische proeven met stikstofmonoxide blokkers in dmg-afhankelijke mensen. 

Hoofi/s/uk 6 

Er zijn aanwijzingen dat peptidcn die opioid-onthouding zouden kunnen moduleren, 

vrijkomen in de hersenvloeistaf ("cerebrospinal fluid" - CSF) van ratten. Wij hebben 

aangetoond dat toediening van CSF, verkregen van spontane morfine-abstinente donorrat­

ten, een opioid-onthoudingssyndroom inducccrt in morfine-afhankelijke ontvangerratten, 

Tijdens dit CSF-gei'nduceerde onthoudingssyndroom is cen vcrlaging van de pieklatentie 

bij visueel opgewekte potentialen geregistreerd, wat wijst op een stijging van centrale 

zcnuwexcitabiliteit. Dit CSF-gc'lnduceerde onthoudingssyndroom is gedragsmatig en 

electrofysiolagisch minder uitgesprokcn dan de naloxon-gdnducccrde abstinentie, maar 

kwalitatief zijn bcidc verschijnselen identiek. In tegenstelling tot naloxon vcroorzaakt de 
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CSF van spontane morfine-abstinente dieren echter geen contractie van het ge'isoieerde 

morfine-afhankelijke cavia ileum, Chromatografische analyse van de CSF van spontane 

Illorfine-abstinente ratten wees uit dat een mogeJijke "onthoudingssubstantie", aileen 

aanwezig in CSF vall spontane morfine-abstinente ratten, hydrofobe eigenschappen bezit. 

Het is echter duidelijk geworden dat verdere biochemische analyse en karakterisering 

van deze "onthoudingssubstantie" noodzakelijk zijn, 

HooJdsfllk 7 

Ecrder onderzoek, uitgevoerd op de afdeling Farmacologie, Erasmus Universiteit 

Rotterdam, heeft anngetoond dnt intracerebroventriculaire toediening van het alkalo'ide 

ibogaIne de expressic van het naloxon-ge'induceerde onthoudingsgedrag in morfine­

afbankeJijkc ratten vermindert, Er worden aan ibogai'ne anti-vcrslavende eigenschappen 

toegeschreven, In niet-gecontroleerde humane studies is namelijk aangetoond dat iboga'ine 

afhankelijkheid van alcohol, amfetamine en nicotine kan onderbreken. Norharman is een 

endogene fysiologische stof, die qua structuur sterk met iboga'ine overeenkomt. Beide 

stoffen zijn indol-derivaten met psychotogcne eigenschappen, We hebben om deze redenen 

een vergelijkende studie uitgevocrd, tcneinde het effect van beide stoffen op de expressie 

van het opioid-onthoudingsgedrag tc bestuderen, \Vij concludeerden dat parenterale 

toediening van norharman een mecr prominent anti-onthoudingseffect heeft in vergelijking 

tot iboga'ine. 

Recent onderzoek heeft aangetoond dut een van de bindingsplaatsen van norharrnan 

zich op het garnrna-mninoboterzuUf (GABA) receptorcomplex bevindt. Het is dan ook 

belangrijk om norharman en het GABA-reccptorcomplex nader te bestuderen om een beter 

inzicht in 1110geJijke therapeutische eigcnschappen en werkingsmechanisme van deze 

fysiologische anti-onthoudingsstof te verkrijgen, 

Deel 4: Drllg~afhallkelijklteid ge;ilduceerd door psycJlOstilllulalltia 

HooJd,'llIk 8 

Oit hoofdstuk geeft een algcmenc en kone omschrijving van psychostimulantia. 

gevolgd door mecr specificke en recente gegevens gerelateerd <Ian cocttlnc-nfhnnkclijkhcid, 

Deet 5: Coca'ille-a}7wllkelijklteid - dierexperlmellfeel ollderzoek 

HOildslllk 9 

\Ve hcbbcn het effect van iboga'ine op de cocaIne-innamc bij ratten onderzocht met 

behulp van het zogenaamde zclf-injectiemodel. De keuze van iboga'ine was geb<lseerd op 

ecrder gedane experimenten waarin aangetoond is dat iboga'lne de expressie van morfine-
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onthoudingsgedrag in ratten vermindert, In dit experimentele onderzoek is aangetoond dat 

ibogaIne een langdurig inhiberend effect op de cocaine-inname bij ratten heeft, 

Deze preklinische studie rechtvaardigt een kJinische proef met mensen als proefper­

soon, die op dit moment in verschiHende landen uitgevoerd worde 

Samenvattend leiden de uitgevoerde studies tot de volgende conclusies en commentaren. 

AJltagollistell van e;rcitatoire aminozuurreceptorell (NMDA type) ell blokkers wm het 

NO-synthase (NOS) ellzym verlagell de expressie Wlf/ het mOljille-oll/houdillgsgedrag 

zowel bij nIulzen als raflen. , 
Wij suggereren dat NO een beJangrijke neurotransmitter is voor wat bctreft de ontwik-

keling van een aantal specifieke onthoudingsverschijnselen. Dit zou te maken kunnen 

hebben met het feit dat NO de afgiftc van verscheidene centrale neurotransmitters 

vergemakkelijkt, waardoor hiermee samenhangende veranderingcn in de transmitterbalans 

en de functionele activiteit van centrale neuroncn optreden. Deze preklinische studies met 

de NOS-blokkers rechtvaardigen de klinische proeven met deze blokkers in dl1lg-afhanke­

lijke mensen. 

• Eell mogelijke "onthoudingssubs/alltie" die vrijkomt ill de hersellvloeistof van spon/all" 

1ll00jine-abstillente ratten illduceert in m01jille-ajhallkelijke rat/en eell ontllOudillKSSYIl­

droonl en versterkt centrale zenuwe:rcitabiliteit. Deze substantie heeft geen Ilaloxoll­

achtige eigellschappell en is hydrojoob. 

Dc aanwezigheid van cen "onthoudingsfactor" is ccn uitduging om dc verdere bioche­

mische karakterisering van hersenvloeistof van verslaafde subjecten (zowel dierexperimen­

tee) als humaan) uit te voeren. De vraag rijst of deze "onthoudingssubstalltie" een factor is 

die modulerende effecten op onthoudingsverschijnselen heeft, of cen gevolg is van dnlg­

afhankeJijkheid zonder invloed te hcbben op het onthoudingssyndroom. 

• Norharman voorko11l1 de e.rpressie vall het naloxoll-Keiilllucel!rde ontllOudiligsgedrag 

ill mOlfine-ajhallkelijke mlten. Eell ietwat ge/ijksoortig (maar mindel' prominent) effect 

werd geobserveerd ill nlOlfine-afJlll1lkelijke mlten, die voorbelllmdeld warlm met 

ibogailte, 

• IhoKaii'le-voorbehandelillg verlllagt significant de cocaiizc-illllame van cocai'fle-

ajhllllkelijke ml/ell ill het ze/f-injecliel1lodel. 

Het is belangrijk te vermelden dat de chemische structuur van ibogaIne vergelijkbaar is 

met die van de endogene fysiologische stof norharman, Hoewcl deze twee stoncn een 

chemischc overeenkolllst bezitlen, zouden ze cen verschillcnd werkingslllcchanisme kun-
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nen hebben. Het is aangetoond dat ibogaIne zich gedraagt als een competitieve NMDA­

antagonist, een gegeven dat verder onderzocht dient te worden. Het werkingsmechanisme 

van norharman zou waarschijnlijk meer gerelateerd kunnen te worden aan het GABA­

receptorcomplex, daar norharman hier een bindingsplaats op heeft. Het is van beJang om 

norharman en het GABA-receptorcomplex nader te bestuderen teneinde een beter inzicht 

in het werkingsmechanisme en mogeJijke therapeutische eigensehappen van deze fysiologi­

sehe stof te verkrijgen. 
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