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Abstract 

 

In this paper, we develop a modified maximum likelihood (MML) estimator for the multiple 

linear regression model with underlying student t distribution. We obtain the closed form of the 

estimators, derive the asymptotic properties, and demonstrate that the MML estimator is more 

appropriate for estimating the parameters of the Capital Asset Pricing Model by comparing its 

performance with least squares estimators (LSE) on the monthly returns of US portfolios. The 

empirical results reveal that the MML estimators are more efficient than LSE in terms of the 

relative efficiency of one-step-ahead forecast mean square error in small samples. 

 

JEL classifications: C1, C2, G1. 

Keywords: Maximum likelihood estimators, Modified maximum likelihood estimators, 

Student t family, Capital asset pricing model, Robustness.  
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1. Introduction  

 

The estimation of parameters in a linear regression model has received significant attention in 

the statistics and econometrics literature. Much of the work reported is based on the 

assumption of normality (Lawrence and Arthur, 1990). In recent years, however, it has been 

recognized that the underlying distribution is, in most situations, basically not normal, 

especially in economics and finance (Huber, 1981; Tiku et al., 1986). The solution, therefore, 

is to develop efficient estimators of the parameters in the multiple regression model when the 

underlying distribution is non-normal. It would be preferred to have closed-form estimators 

that are fully efficient, and would also be robust to plausible deviations from the assumed 

model. In this paper, the underlying distribution is assumed to be symmetric and student t, and 

the method of modified maximum likelihood (MML) estimation (Tiku, 1968; Tiku et al., 1999, 

2000, 2001) is used.   

 

This paper extends the results given in Bian and Tiku (1997), Tiku et al. (1999, 2000, 

2001), Wong and Bian (2005), and Islam and Tiku (2005, 2010). Tiku et al. (1999) develop 

MML estimators for the simple linear regression model with symmetric innovations, Tiku et al. 

(2000) derive MML estimators for the first-order autoregressive model with symmetric 

innovations, Tiku et al. (2001) refine the MML estimator for the simple linear regression 

model with t distribution innovations, and Bian and Tiku (1997) adopt the Bayesian approach 

to examine a standard multiple regression model with independently and identically distributed 

(iid) errors.  

 

This paper extends previous research to derive MML estimators for the multiple 

regression model with t distribution errors. The likelihood equations have no explicit solutions 

and have to be solved by an iterative method, which can be a formidable task. As maximum 

likelihood (ML) estimators are not readily available, following Tiku et al. (1999, 2000, 2001), 

we derive MML estimators. These estimators are explicit functions of sample observations, 

and hence are straightforward to compute. Moreover, they are as efficient as ML estimators 

(Tiku et al., 1999, 2000, 2001; Wong and Bian, 2005). We also derive the asymptotic 

properties of the MML estimators. 
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We note that MML estimators have been extensively demonstrated in simulation 

studies to be robust, remarkably efficient, and clearly superior to the traditional estimators 

under normality in all the models examined, including the autoregressive model (Tiku et al., 

2000), simple linear regression model (Tiku et al., 2001), and simple linear regression model 

with autoregressive innovations (Tiku et al., 1999; Wong and Bian, 2005). As the multiple 

linear regression model is a straightforward extension of the above models, the properties of 

robustness and efficiency for the estimators will be similar to that of the simple linear 

regression model. As such, the resulting estimators developed here are explicit functions of the 

sample observations, and are asymptotically fully efficient. We note that Tiku et al. (1999, 

2000, 2001) and Islam and Tiku (2005, 2010) have conducted extensive simulation studies for 

MML estimators of both the simple and multiple linear regression models. They observed that 

MML estimators are robust and remarkably efficient, and are clearly superior to the traditional 

estimators under normality. 

 

We examine the applicability of MML estimators in finance and economics by 

demonstrating that MML estimators are more appropriate for estimating the parameters in the 

Capital Asset Pricing Model (CAPM), one of the most prominent models in finance, by 

comparing its performance with that of least squares estimators (LSE) on the monthly returns 

of US portfolios. The distributions of stock market returns have been widely analyzed by 

financial economists and econometricians. Fama (1963, 1965a, b) and many others have 

analyzed the empirical data. They have concluded that the normality assumption of a security 

or portfolio return is violated, such that the distribution is ‘flat-tailed’, and have suggested the 

family of stable Paretian distributions between the normal and Cauchy distributions for stock 

returns. On the other hand, Blattberg and Gonedes (1974) have examined security returns and 

suggested the student t as an alternative ‘flat-tail’ distribution for returns. Clark (1973), Kon 

(1984) and Tse (1991) suggested a mixture of normal distributions for stock returns. However, 

Fielitz and Rozelle (1983) suggested that a mixture of non-normal stable distributions would 

be a better representation of the returns distribution. 

 

Harvey and Zhou (1993) showed that the distributional structure of returns may carry 

over into the structure of the disturbance in the Capital Asset Pricing Model (CAPM). In this 
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situation, the mixture of normal distributions, or mixture of normal and Cauchy distributions 

or t distributions, may give a better description of the distribution of the disturbances in CAPM. 

As MML estimators for simple linear regression with t innovations has been demonstrated to 

be robust, and based on the ‘flat-tail’ characteristic on the distributions of the security or 

portfolio returns and their corresponding disturbances in the CAPM, we recommend using the 

MML estimators developed in this paper for estimating the parameters of CAPM for stock 

returns. 

 

In order to illustrate the superiority of the proposed MML estimators, we use one-step 

ahead forecasting to compare MML estimators with the traditional least squares estimators 

(LSE) in estimating the parameters of CAPM for US monthly stock returns. One-step ahead 

forecasting is commonly used to compare the performance of different models (Clements and 

Hendry, 1997; Chiang et al., 2009). The empirical analysis given below reveals that MML 

estimators are more efficient than LSE in terms of the relative efficiency of one-step-ahead 

forecast mean square errors in small samples.  

 

This paper is organized as follows. We derive MML estimators in Section 2, and show 

their asymptotic properties in Section 3. Section 4 reviews the theory of the standard CAPM 

and the ‘flat-tail’ distribution of security returns, and demonstrates the superiority of MML 

estimators in CAPM. Section 5 gives some concluding remarks. 

  

2. Modified Maximum Likelihood Estimators  

 

Consider the multiple linear regression model: 

 

  y = Xβ + e         (1)  

 

where y is an nx1 vector of the observations of the endogenous variable regressed on the 

exogenous variables, X, an nxq (n>q) matrix of rank q, β=(β1, ..., βq)' is a qx1 vector of 

regression coefficients, and e is a nx1 vector of random errors. 
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It is assumed that the innovations, ie , are iid errors. The linear model (1) has many 

applications, for example, in the estimation of CAPM in the prediction of future stock prices. 

Numerous other applications of the above model, besides business and economics, are in 

agricultural, biological, and biomedical problems (see, for example, Lawrence and Arthur 

(1990) for further details).  

 

Assume that the common distribution of ie   is symmetric and is, for illustrative 

purposes, given by 
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where k = 2p-3, 2p , and B(.,.) is the beta function. We note that E(ei) = 0, V(ei) = σ2, and 

kevT /  has the student t distribution, with v=2p-1 degrees of freedom. For 21  p , 

the constant k in (2) is equal to 1, in which σ is simply the scale parameter. For p ,  (2) is 

reduced to a normal distribution, N(0, σ2). 

 

    The likelihood function for the model in (1) is given by: 
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where g(z) is the nonlinear part of the derivative of  lnf(z), f(z) is the standard distribution of the 

error term with f(z) = c(1+z2/k)-p, we obtain the likelihood equations, 0/),(ln  jL   

and 0/),(ln  L , which are given in terms of the function g(zi), and hence are 

intractable. Solving them by iterative methods is a formidable task, and can be problematic, 

especially for small values of  p , in which one may encounter multiple roots, slow convergence, 

convergence to wrong values, or even divergence (Barnett, 1966a; Lee et al., 1980; Tiku and 

Suresh, 1992). Pearson and Hartley (1972, p. 89) give examples where the iterations involved 

in determining ML estimates do not converge sufficiently rapidly. In addition, the solutions 

provided by different iterative methods are not necessarily identical (Barnett, 1966a). 

 

In order to obtain efficient closed-formed estimators, we invoke Tiku’s modified 

likelihood estimation approach, which is well established (Smith et al., 1973; Lee et al., 1980; 

Tan, 1985; Tiku et al., 1986, 1999, 2000, 2001; Schneider, 1986; Vaughan, 1992; Wong and 

Bian, 2005). Let )()2()1( nzzz   (arranged in ascending order) be the order statistics of 

)1( nizi  , and denote [i] as the concomitant index of the ith observation corresponding to 

the order statistic, z([I]). Clearly, 

 

  [i] = j    if   zi = z(j)        (5) 

 

In order to linearize the intractable term g(z(i)), we use the first two terms of a Taylor series 

expansion, such that: 
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where z(i) and t(i)  are the percentiles of the empirical distribution, Fn(x), and theoretical 

distribution F(x), respectively. As g(z) is almost linear in any small interval (Tiku, 1968; Tiku 

and Suresh, 1992), under some general regularity conditions, z(i)  converges to t(i)  as the sample 

size becomes large. If p>3, then bi >0 for i = 1,2, ...,n. On the other hand, if p  (normal 

distribution), then ai =0 and bi =1. The expected values, variances, and covariances of 

standardized order statistics are available (Barnett, 1966b; Vaughan, 1992, 1994; Tiku et al., 

1999, 2000, 2001; Wong and Bian, 2005). Using (6), the following modified likelihood 

equations are obtained: 
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Solving the estimating equations (7), we obtain the MML estimators:  
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It is clear that all of the above MML estimators have closed-formed algebraic 

expressions and are, therefore, easy to compute. From (8), the MML estimator of β is found to 

consist of two components, with the main component w̂ being an LSE of β, and is unbiased for 

β. For p  (normally distributed errors), ai = 0, bi = 1 and 2p/k =1. Consequently, the MML 

estimators (8) are reduced to the LSE. For computation, we first calculate the usual LS 

estimates of β and σ, which are used as initial estimates to compute zi . We then order 

)1( nizi  , and compute the MML estimators of β and σ from (8). Replacing the LSE by their 

MML counterparts, we repeat the computation for further iterations until convergence. In all 

our computations, some of which are presented in this paper, no more than three iterations were 

needed for the estimates to converge.  

 

3. Asymptotic Properties of MML Estimators  

 

The asymptotic properties of the MML estimators are summarized in the following two 

lemmas: 

 

Lemma 1. The MML estimators ̂ and ̂ are asymptotically unbiased for β and σ, 

respectively. 

 

Lemma 2.   The asymptotic variances and  covariance of β and σ are given by: 
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The proofs of Lemmas 1 and 2 are given in the Appendix. 

 

Solving the differential equations (7), we obtain the modified likelihood function: 
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where G(y) is an analytical function free of β and σ; and 

 

h = p/(p-3/2)E(b[1])   p(p-1/2)/[(p+1)(p-3/2)].                (11) 

 

As the likelihood function-like L* in (10) is asymptotically equivalent to the 

corresponding likelihood function L in (3) (Tan, 1985), the asymptotic properties of ̂  and ̂  

follow immediately, as shown in the following lemma: 

 

Lemma 3. 

    (i) The vector ̂  has a q-variate normal distribution, with mean vector β and covariance 

matrix given in Lemma 2; 

    (ii) 22 /ˆ)( qn   is distributed as  chi-square, with n-q degrees of freedom; and 

    (iii) ̂  and ̂  are independent. 

 

In addition, following the argument of Vaughan (1992), a close approximation of the 

joint distribution of ̂  and ̂   is given by  
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where h1 is an adjusted value of h in (11) given by 
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(see Bian and Tiku (1997) for further details). We note that, for large n, h1 = h. 
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4. Application in Finance   

 

In this section, we examine the perfoemance of applying MML estimators in finance, with an 

illustration of the Capital Asset Pricing Model (CAPM) on monthly returns of US portfolios. 

We hypothesize that MML estimators are more appropriate for CAPM, a parsimonious general 

equilibrium model (Sharpe, 1963; Lintner, 1965) whose excess returns, R, on a security from 

the risk-free rate, Rf , is formulated by: 

 

Ri  = ai + bi Rm + ei ,                 (14) 

 

where Ri (Rm) is the excess returns of portfolio i (market portfolio) from the risk-free rate, Rf  , 

ai measures the abnormal performance of the portfolio i, bi measures the portfolio’s level of 

systematic risk in relation to the market portfolio, and ei is the random error term, with zero 

expectation. 

 

We choose CAPM for MML as it is one of the simplest models in finance, yet 

sufficiently complicated that LSE does not perform well. If MML outperforms LSE for this 

simple model, MML would be expected to outperform more complicated models in finance 

and economics, such as Arbitrary Pricing Theory. Although CAPM may appear simple, as 

shown in (14), it is complicated as the measure of beta is empirically nonstationary over time 

(Leavy, 1971; Blume, 1975). Moreover, the distributions of both the security or portfolio 

returns and the disturbance are ‘flat-tailed’, and hence violate the normality assumption (Fama, 

1963, 1965a, b; Pettit and Westerfield, 1974). 

 

In order to handle the non-stationarity of beta, one may estimate the model for a 

reasonably short period in order to capture stationary beta (Wong and Bian, 2000). Thus, to 

handle the ‘flat-tailed’ distribution for both returns and disturbance, Fama (1963, 1965a, b) 

suggested the family of stable Paretian distributions between normal and Cauchy distributions 

for stock returns, while Blattberg and Gonedes (1974) examined security returns and suggested 

the student t as an alternative ‘flat-tailed’ distribution. Clark (1973), Kon (1984), and Tse 

(1991) recommended a mixture of normal distributions for stock returns, while Fielitz and 

Rozelle (1983) argued that a mixture of non-normal stable distributions would be a better 
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representation of the distribution of security or portfolio returns. In this paper, we demonstrate 

that MML with t distribution innovations will be a good approach to handle non-normality as 

MML has been studied extensively (see, for example, Tiku et al., 1999, 2000, 2001)  to be 

sufficiently robust to represent many different distributions, including a family of t 

distributions, a mixture of normal distributions, and a mixture of non-normal stable 

distributions.  

 

For comparison, we use the same dataset as in Harvey and Zhou (1993) and Wong and 

Bian (2000), in which twelve industrial portfolios of US monthly data are examined. The 

industry classifications conform to Sharpe (1982), Breeden et al. (1989) and Gibbons et al. 

(1989). The portfolios are value weighted, the market return is the weighted NYSE return, and 

monthly returns for the period 1926-1987 are in excess of the 30-day Treasury Bill rate. The 

portfolio returns are available from the Center for Research in Security Prices (CRSP) at the 

University of Chicago, while the 30-day Treasury Bill rate is available from Ibbotson 

Associates.  

 

In this paper, we hypothesize that MML estimators are more appropriate to estimate the 

parameters of CAPM and to forecast using CAPM as it is more efficient than LSE. As an 

illustration, we use the robust MML with the student t distribution and 7 degrees of freedom to 

analyze CAPM for US monthly stock returns. Twelve industrial portfolios of US data are used. 

We adopt the one-step-ahead forecast bias and MSE as the basis to evaluate the performance 

of LSE and MML for CAPM. In the computations, we choose a small sample size n of 12, 

namely for a one-year period) to capture a stationary b parameter. 

 

We compute the skewness and kurtosis coefficients and the Jarque-Bera statistic for the 

returns and the corresponding residuals in the CAPM to test the normality hypothesis for both 

excess returns, R, and their corresponding disturbances, e, in (14). The results are shown in 

Table 1. Several other statistics can be used to test normality, such as the modified 

Shapiro-Wilk statistic, Anderson-Darling test and Kolmogorov-Smirnov test. However, as the 

Jarque-Bera statistic is one of the most powerful tests of normality, and the results of the other 

statistics are similar, we report only the results of the Jarque-Bera statistic and its 

corresponding skewness and kurtosis coefficients. The 1% level of significance shown in the 
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table leads to rejection of the null hypothesis of normality for the monthly excess returns, as 

well as their corresponding disturbances. These findings support the hypothesis that the 

non-normality in the returns will carry over into the non-normality of the disturbances in the 

CAPM (Harvey and Zhou, 1993). We note that the returns depart from normality, which may 

be attributed to ARCH or GARCH effects (Qiao et al., 2008a, b, c). However, temporal 

aggregation will reduce any ARCH or GARCH effects (see, for example, Drost and Nijman, 

1995).  

 

[Table 1 goes here] 

 

We use the one-step-ahead forecast MSE (see, for example, Clements and Hendry, 

1997; Wong and Bian, 2000; Chiang et al., 2009) for further details) as a basis for comparison 

between LSE and MML for the US monthly data. For the given sample size n=12, the estimates 

of both LSE and MML are computed for each of the 12 industrial portfolios for t = n,..., T-1. 

Then we compute their one-step-ahead forecasts by applying both LSE and MMLE to each 

portfolio for t = n+1,... ,T. After that, the one-step-ahead forecast bias and MSE for each 

portfolio are calculated. Their relative efficiency (REF), the ratio of average one-step-ahead of 

forecast MSE for both LSE and MML, is computed and displayed in Table 2. We note that the 

values of the bias and MSE in the table are 1000 times the original values.  

 

[Table 2 goes here] 

 

From Table 2, we find that MML has both smaller one-step-ahead forecast bias and 

smaller MSE, and is more efficient than LSE in all industries, except Finance and Real Estate 

and Transportation. The average values also show that MML attains a smaller average 

one-step-ahead forecast bias (-0.000717) and smaller one-step-ahead forecast MSE 

(0.0007087) than those of LSE, -0.0009641 and 0.0007140, respectively, with average relative 

efficiency of 1.0082. This implies that the MML estimators are far more efficient and robust 

than their LSE counterparts.  

 

5. Concluding Remarks   
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It is generally recognized that nonnormal samples occur frequently in practice. In this paper, 

we extended the results of Bian and Tiku (1997), Tiku et al. (1999, 2000, 2001), and Wong and 

Bian (2005) to the linear model by assuming the innovations to be asymmetric and from a 

student t distribution. The likelihood equations are intractable. Solving them by iterative 

methods is tedious and time consuming, and the results obtained may be unreliable. Therefore, 

we used modified likelihood estimation.  

 

In the context of iid random sampling and survey sampling, this method is known to 

yield asymptotically fully efficient estimators (Tiku, 1970; Bhattacharyya, 1985), and almost 

as efficient as maximum likelihood estimators for small n (Smith et al., 1973; Tan, 1985; 

Schneider, 1986; Tiku and Suresh, 1992; Vaughan, 1992). An attractive feature of the method 

is that it yields MML estimators which can be expressed explicitly as functions of sample 

observations and are, therefore, easy to compute and can be studied analytically. We derived 

the MML estimators here in the context of linear models. These estimators are as attractive as 

in the classical framework of iid random observations. We demonstrated their very high 

efficiency that is not shared by their Gaussian counterparts.  

 

One might consider incorporating the Bayesian approach (Matsumura, et al., 1990; 

Bian and Tiku, 1997; Wong and Bian, 2000) into MML estimation. We note that the 

distribution of the stock returns in our illustration is not only heavy-tailed, but is also strongly 

skewed. Hence, it is possible to improve forecasting by using skewed error distributions or 

other distributions (see, for example, Fong and Wong, 2006). The MML with asymmetric 

innovations would be an interesting issue as an extension. Further extensions include the 

applicability of the MML for linear models to other prominent economics or finance models 

(as in, for example, Fong et al., 2005, 2008). Another possible area for further research is to 

compare the beta coefficients estimated above with the equity cost of capital for each portfolio 

(Thompson and Wong, 1991, 1996; Wong and Chan, 2004). 

 

There are many other approaches in the analysis of linear models, for example, no 

distributional assumptions on the measurement errors (Wong and Miller 1990), and other 

models such as nonlinear regression models (Amemiya, 1985; Hsiao, 1989; Hausman et al., 

1998, Honore and Hu, 2004). Nevertheless, it is well known that if the distribution of the 
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disturbances is known to be from a student t distribution, parametric approaches yield 

estimators which outperform estimators without distributional assumptions (Li and Hsiao, 

2004). As such, our approach performs better when the distribution is known.  In addition, the 

MML approach could be incorporated to improve estimation in other models, such as nonlinear 

regression models.  

 

Applying our approach to estimate the parameters in the Capital Asset Pricing Model 

or other financial models could enable investors to obtain better estimates, thereby leading to 

better decision in investments. In order to provide more helpful information for decision 

making, investors could incorporate our approach with other theories, as in behaviourial 

finance (Lam et al., 2010a, b), technical analysis (Wong et al., 2001, 2003; Kung and Wong, 

2009; Wong and McAleer, 2009), stochastic dominance theory (Wong and Li, 1999; Wong, 

2007; Wong and Ma, 2008; Sriboonchita et al., 2009), portfolio optimization (Bai et al, 2009a, 

b; Egozcue and Wong, 2010). They may obtain more information from markets, as in 

information company performance (Thompson and Wong, 1991, 1996; Wong and Chan, 2004), 

other measurement techniques (Leung and Wong, 2008; Qiao et al, 2009; Ma and Wong, 2010; 

Bai et al., 2010), information of some economic/financial phenomena (Broll et al., 2006; 

Gasbarro et al., 2007; Wong et al., 2008), and incorporate the behaviour of other investors (Li 

and Wong, 1999; Wong and Chan, 2008; Broll et al., 2010) to lead to better decision making.  
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Table 1. Tests for Departure from Normality of Monthly Excess Portfolio Returns and 
the Corresponding Residuals in CAPM by Industrial Classifications 

 

 Returns Residuals 

Portfolio Skewness kurtosis 
Jarque-Bera

statistic Skewness kurtosis 
Jarque-Bera

statistic 
NYSE 
value-weighted 0.3059** 10.6030** 1803.58** --- --- 

 

Petroleum 0.3103** 7.4277** 619.68** 0.2477** 4.1315** 47.30** 
Finance & Real 
Estate 0.2257** 10.6255** 1808.91** 0.006 4.7600** 96.03** 
Consumer 
Durables 1.0134** 15.3646** 4866.73** 0.6193** 10.7926** 1930.02** 
BasicIndustries 0.8691** 13.6209** 3590.57** 0.6333** 9.6177** 1407.35** 
Food 
&Tobacco 0.0178 10.1611** 1589.76** -0.1866* 4.9496** 122.15** 
Construction 0.8995** 11.5376** 2359.94** 0.5306** 6.6211** 441.39** 
Capital Goods 0.2375** 9.0959** 1158.95** 0.1785* 4.7571** 99.66** 
Transportation 1.1614** 15.2275** 4802.12** 1.1199** 8.7320** 1174.05** 
Utilities 0.1446 10.7665** 1872.47** -0.0405 5.0824** 134.63** 
Textile & 
Trade 0.1218 8.6145** 979.04** -0.094 4.8637** 108.77** 
Services 0.0349 7.0560** 510.14** 0.3336** 11.8533** 2443.61** 

Note: * p < 5%, ** p < 1% 
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Table 2. One-step Ahead Forecast Bias and MSE of MML and LS for  

US Monthly Stock Returns 

 
 
    LS Method 

 
    MML method 

 
 

 Portfolio  
 Bias 

 
  MSE 

 
  Bias 

 
  MSE 

 
 

 REF 

 
Petroleum 

Finance & Real Estate 

Consumer Durables 

Basic Industries 

Food & Tobacco 

Construction 

Capital Goods 

Transportation 

Utilities 

Textile & Trade 

Services 

Recreation 

 
-1.614 

-0.296 

-0.980 

-0.827 

-0.313 

-1.139 

-0.463 

-0.709 

-0.667 

-1.365 

-1.774 

-1.423 

 
1.1228 

0.3525 

0.4021 

0.2482 

0.5971 

0.6678 

0.3329 

0.8608 

0.8865 

0.7954 

1.5085 

0.7940 

 
-1.588 

-0.275 

-0.611 

-0.644 

-0.121 

-1.034 

-0.376 

-0.853 

-0.380 

-0.570 

-1.604 

-0.554 

 
1.1173 

0.3555 

0.3939 

0.2476 

0.5917 

0.6542 

0.3318 

0.8511 

0.8858 

0.7767 

1.5187 

0.7806 

 
1.005 

0.992 

1.021 

1.002 

1.009 

1.021 

1.003 

1.011 

1.001 

1.024 

0.993 

1.017 
  Average 

-0.9641 0.7140 -0.7175 0.70874 1.0082 

Note: The bias and MSE in the table are 1000 times the original values.  
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Appendix

 

Proof of Lemma 1: 

 

The result follows immediately from the first two terms of the Taylor series expansions of 

jL  /ln *  (j=1,2,...,q) and  /ln *L , and the fact that |/ln/ln|/1 *
jj LLn   and 

|/ln/ln|/1 *   LLn  tend to zero as n tends to infinity (Kendall and Stuart, 1979, 

Chapter 18). 

 

 

Proof of Lemma 2: 

 

From the symmetry of the student t distribution, it follows immediately that  

 

E(ai  b[1],  b[2], ..., b[n]) = 0, for all I = 1, 2, ..., n 

and     

  E(e  b[1],  b[2], ..., b[n]) = 0,  (15) 

 

where e = y - Xβ. Thus, 
 

     ),,,|()()ˆ( ][]2[]1[
1

nw bbbeWEXWXXEE  

and   
    ),,,|()())( ][]2[]1[

11
nbbbaEXWXXEaXWXXE  . 

 
Therefore, the MML estimator ̂  is unbiased for β as σ is known. 
 
The asymptotic covariance matrix of the MML estimators is given by the inverse of  
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Similarly, 












  

 

n

i

n

i
iiijiji

j

zbxx
k

pL

1 1
][][2

*2

2
2),( 



 

 
and 

  0)(2)(
2),(

2

*2












 WzEXaEX

k

pL
E




 . 

 
This follows immediately from (15) and the fact that E(a[i]) = (1/n) ai = 0. Moreover, 
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which gives (see, for example, Bian and Tiku, 1997): 
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