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Abstract 

 

The stochastic volatility model usually incorporates asymmetric effects by introducing 

the negative correlation between the innovations in returns and volatility. In this paper, 

we propose a new asymmetric stochastic volatility model, based on the leverage and size 

effects. The model is a generalization of the exponential GARCH (EGARCH) model of 

Nelson (1991). We consider categories for asymmetric effects, which describes the 

difference among the asymmetric effect of the EGARCH model, the threshold effects 

indicator function of Glosten, Jagannathan and Runkle (1992), and the negative 

correlation between the innovations in returns and volatility. The new model is estimated 

by the efficient importance sampling method of Liesenfeld and Richard (2003), and the 

finite sample properties of the estimator are investigated using numerical simulations. 

Four financial time series are used to estimate the alternative asymmetric SV models, 

with empirical asymmetric effects found to be statistically significant in each case. The 

empirical results for S&P 500 and Yen/USD returns indicate that the leverage and size 

effects are significant, supporting the general model. For TOPIX and USD/AUD returns, 

the size effect is insignificant, favoring the negative correlation between the innovations 

in returns and volatility. We also consider standardized t distribution for capturing the tail 

behavior. The results for Yen/USD returns show that the model is correctly specified, 

while the results for three other data sets suggest there is scope for improvement. 

 

 

Key words: Stochastic volatility, asymmetric effects, leverage, threshold, indicator 

function, importance sampling, numerical simulations. 
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1  Introduction 
 

It has long been recognized that the returns of financial assets are negatively 

correlated with changes in the volatilities of returns (see Black (1976) and Christie 

(1982)) and, moreover, that such volatilities tend to change over time. In the class of 

autoregressive conditional heteroskedasticity (ARCH) models pioneered by Engle 

(1982), several authors have proposed extensions of the ARCH model and found 

evidence of such negative correlation. For instance, Nelson (1991) proposed the 

exponential generalized ARCH (EGARCH) model, while Glosten, Jagannathan and 

Runkle (1992) developed GJR, a threshold indicator function GARCH model. The 

threshold effect is typically called asymmetry when the threshold is set to zero. A 

common idea used in such asymmetric models is the ‘leverage’ effect, in which negative 

shocks to returns increase the predictable volatility to a greater extent than do positive 

shocks of a similar magnitude.  

 

On the other hand, stochastic volatility (SV) models are based on the direct 

correlation between the innovations in both returns and volatility. For a theoretical 

development in continuous time, Hull and White (1987) generalized the Black-Scholes 

option pricing formula to analyse stochastic volatility and the negative correlation 

between the innovations. In empirical research, extensions of a simple discrete time 

model due to Taylor (1986) have been analysed by Wiggins (1987), Chesney and Scott 

(1989), and Harvey and Shephard (1996) in order to accommodate the direct correlation. 

Although this extension has been called the asymmetric SV model, we will refer to the 

asymmetric behaviour based on the direct correlation between the innovations as the 

“leverage” SV (SV-L) model to distinguish it from an alternative model of asymmetry. A 

comparison of a variety of univariate and multivariate, conditional and stochastic, 

models is given in McAleer (2005). 

 

In addition to the leverage model, this paper considers a general asymmetric SV 

model based on the EGARCH specification of Nelson (1991). As the EGARCH model 

incorporates both leverage and size effects, we will refer to the asymmetric behaviour as 

the “leverage and size effects” SV (SV-LS) model. The SV-LS model nests the SV-L 

model. As another special case of the SV-LS model, we will also consider the “size 

effect” SV (SV-S) model, which is a symmetric model. The SV-LS model will be 

estimated and tested for an optimal and practical representation of asymmetry. The 

general model also permits the non-nested SV-L and SV-S models to be tested against 
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each other. Recently, So et al. (2002) considered a threshold effects model in which the 

breaks in the constant and autoregressive parameter in the SV equation depend on the 

signs of the previous returns. Their model will not be discussed in detail here as the 

empirical results in Asai and McAleer (2005) show that their model is generally inferior 

to the SV-L model given below in terms of the AIC and BIC criteria.  

 

The empirical analysis is concerned with both stock returns and exchange rate 

returns. Although Gallant, Hsieh and Tauchen (1991) found that the response of 

conditional volatility to negative and positive shocks was essentially symmetric for the 

British pound/US dollar exchange rate by using the seminonparametric technique of 

Gallant and Tauchen (1989), we observed asymmetries in the exchange rate data based 

on the SV-L and SV-S models, even though such asymmetries may not be captured 

adequately using the ARCH approach. In addition to providing more accurate estimates 

of volatility, these empirical results should assist in calculating optimal Value-at-Risk 

(VaR) forecasts and capital charges for purposes of portfolio and risk management. 

 

For estimation of the SV model, recent developments have been on the 

likelihood-oriented procedures (see Fridman and Harris (1998), Sandmann and 

Koopman (1998), Liesenfeld and Richard (2003)), and on the Bayesian Markov Chain 

Monte Carlo (MCMC) technique proposed by Jacquier, Polson and Rossi (1994) (see, 

among others, Chib, Nardari and Shephard (2002) and Shephard and Pitt (1998)). The 

Monte Carlo results conducted by Fridman and Harris (1998) and Sandmann and 

Koopman (1998) show that the properties of these methods are very similar to those of 

Jacquier, Polson and Rossi (1994). While the procedures proposed by Fridman and 

Harris (1998) are more computationally demanding than the MCMC technique of 

Jacquier, Polson and Rossi (1994), the simulated maximum likelihood approaches 

proposed by Sandmann and Koopman (1998) and Liesenfeld and Richard (2003) are 

much easier to implement computationally. Although the Monte Carlo likelihood 

method of Sandmann and Koopman (1998) is computationally faster, the efficient 

importance sampling (EIS) method of Liesenfeld and Richard (2003) is flexible to 

various kinds of SV models. With regard to the Bayesian approach, Asai (2005) 

compared several methods with regard to a numerical efficiency measure that was 

proposed by Geweke (1992). 

 

The remainder of the paper is organized as follows. Section 2 examines the SV-L, 

SV-S and SV-LS models, and investigates their relationships. A non-nested testing 
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procedure to discriminate between the SV-L and SV-S models is also discussed. Section 

3 compares a variety of leverage and asymmetric effects in the framework of both 

stochastic and conditional volatility models. Section 4 discusses some standard 

estimation techniques for SV models, and Section 5 presents the results of Monte Carlo 

experiments regarding the finite sample performance of the estimators of the alternative 

SV models. In Section 6, the two asymmetric SV models and the SV-LS model are 

estimated using S&P 500 Composite returns, the Tokyo stock price index (TOPIX) 

returns, and the exchange rates between the USA and Australia and between Japan and 

the USA. Section 7 gives some concluding remarks. 

 

2  Leverage and Asymmetry in SV Models 
 

In this paper we consider a new asymmetric SV model. Before going to the SV class, 

we review the typical models for the ARCH class. There are two standard methods of 

capturing asymmetric behaviour in ARCH-type models, one of which is the exponential 

generalized ARCH (EGARCH) model of Nelson (1991). Although the EGARCH model 

has been used quite frequently in empirical applications when asymmetric behaviour is 

observed, the presence of the absolute value of a standardized shock in the model poses 

a problem regarding the statistical properties of the model.  

 

The other frequently used model of asymmetric behaviour in ARCH-type models is 

the threshold indicator function ARCH model of Glosten, Jagannathan and Runkle 

(1992) (GJR). This effect is typically called asymmetry when the threshold is set to zero, 

in which case a distinction is made between the effects of positive and negative shocks on 

volatility. But, as shown in the next section, the GJR model is very limited to express 

various kinds of asymmetries. 

 

    The problem of EGARCH comes from the evaluation of the derivatives based on the 

absolute value of the standardized residuals. As shown in Hentschel (1995), we can 

avoid the problem by the two ways; one is to estimate the mean and variance equations 

separately, and the other is to approximate the absolute value function by using the 

rectangular hyperbola rotated counterclockwise by 45 degrees. As we can handle the 

problem of absolute values, the new asymmetric SV model will be based on the 

EGARCH model. 

 

In this paper we consider the new asymmetric SV model, as follows: 
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 exp( / 2), ~ (0,1), 1,..., ,t t t ty h N t T    (1) 

     2
1 1 21 , ~ (0, ),t t t t t t th h E N                    (2) 

 

where ( ) 0t sE     for any t and s, and 
t t ty R    is the mean-adjusted return on an 

asset. Since many financial time series exhibit little or no dynamic behaviour in the mean 

but pronounced serial dependence in the variance (see Bollerslev, Chou and Kroner 

(1992), Bollerslev, Engle and Nelson (1994), and McAleer (2005) for useful surveys), 

the estimation of t  is not the subject of interest in this paper. 

 

    The model can be considered as a stochastic version of the EGARCH model of 

Nelson (1991), and thus can express various kinds of asymmetries, which we will discuss 

in the next section. The model contains several special cases. The first model is 

EGARCH model, which is obtained by putting 0  . Secondly, when 1 2 0   , the 

model reduces to the basic SV model, in which the log-volatility, th , follows a simple 

AR(1) process. The third case is the asymmetric SV model of Harvey and Shephard 

(1996). By setting 2 0  , we have another representation of the model as follows: 

 

  1

2

exp( / 2),

1 ,

10
~ , ,

0

t t t

t t t
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y h

h h
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   

 
  






  



   

     
            

 (3) 

 

where 2 2 2
1       and 2 2

1 1     ; see also Harvey and Shephard (1996). We 

will refer to this type of asymmetry as the SV with Leverage (SV-L) model. Leverage 

captures asymmetry by the negative correlation between returns and volatility 

innovations, which is described by putting 1 0  . The fourth model is the case 1 0  , 

yielding the symmetric size effect. In the model, positive and negative shocks increase 

future volatility by the same amount, if 2 0  . We will refer to this model as the SV with 

size effects (SV-S) model. 
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    The general model  and , which we will refer to the SV with leverage 

and size effects (SV-LS) model, can be considered as an extension of Asai and McAleer 

(2005). While Asai and McAleer (2005) is based on the unstandardized error, ty , the 

SV-LS model is based on the standardized error, t . Hence, the SV-LS model capture 

standardized size effects. 

 

The first and second moments of the generalized error term,  

 

 1 2t t t t tE          , 

 

is given by   0tE    and    2 2 2 2 2
1 2 1 2tE           . The correlation 

coefficient between t  and t  is 1   . 

 

    In the class of SV, when 1 0   and 2 0   in, this yields our asymmetric SV model, 

which may be interpreted as either: (i) an asymmetric model which exhibits both 

leverage and thresholds; or (ii) an artifact which is used solely for purposes of testing the 

non-nested SV-L and SV-S models against each other. In the latter case, the four possible 

outcomes of the non-nested tests of the SV-L and SV-S models against each other are as 

follows: 

 

(i) 1 0   and 2 0  , which leads to rejection of both SV-L and SV-S;  

(ii) 1 0   and 2 0  , which leads to rejection of SV-S but not SV-L; 

(iii) 1 0   and 2 0  , which leads to rejection of SV-L but not SV-S; 

(iv) 1 0   and 2 0  , which leads to rejection of neither SV-L nor SV-S.  

 

    The reason why we consider the SV-S model in our analysis is to examine whether or 

not the exchange rate returns have symmetric effects on future volatilities, in the 

framework of SV. 

 

    Tests of non-nested conditional volatility models, specifically GARCH versus 

EGARCH, and GJR versus EGARCH, have been examined by Ling and McAleer (2000) 
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and McAleer, Chan and Marinova (2002), respectively. For further details regarding 

non-nested testing procedures in the context of econometric time series and regression 

models, see McAleer (2005). 

 

We may extend the SV-LS model  and  in order to incorporate the 

heavy-tailed return distributions. We consider the standardized t distribution for t , for 

which the density function is given by 

 

      
 

 1 22
1 2 1 2

2 1 , 2,
2 2

f
    

 

 
    

          
 

 

where   represents the degrees-of-freedom and  x  denotes the gamma function. 

For convenience, we call it as the SV model with t distribution, the leverage and size 

effects (SV-t-LS). As long as 4  , the kurtosis of the t distribution is 

     4 3 2 4E      , which is greater than 3 if    . Needless to say, the t 

distribution approaches the standard normal distribution when   . It should be 

noted that Asai (2008) introduced the t distribution in a different way. Asai (2008) 

decomposed the t distribution into the standard normal and chi-squared distributions, and 

assumed the negative correlation using the standard normal distribution. 

 
3  A Comparison of Stochastic and Conditional Volatility Models 
 

Although the terms “leverage” and “asymmetry” tend to have similar meanings in 

the ARCH literature, it is instructive to clarify any differences between them, as there is 

a greater range of asymmetric effects than is generally considered. Christie (1982, p. 

408) states: 

 

“Historically a variance/stock price relation is part of market folklore, the 

usual claim being that the relation is a negative one; in other words when the 

stock price increases the variance declines.” 

 

Originally, Black (1976) and Christie (1982) investigated the negative relation between 
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the ex-post volatility in the rate of returns on equity and the current value of the equity. 

We will refer to this phenomenon as the “leverage” effect. On the other hand, we define 

“asymmetry” as the differential impacts of positive and negative shocks on volatility. 

Given these definitions, the leverage effect implies asymmetry as a negative shock 

increases volatility, while a positive shock decreases volatility. On the other hand, an 

effect that is symmetric implies that positive and negative shocks have the same effect on 

volatility.  

 

After the development of the ARCH class of volatility models in Engle (1982), many 

authors, including French, Schwert and Stambaugh (1987), Pagan and Schwert (1990), 

Nelson (1991) and Glosten, Jagannathan and Runkle (1992), analyzed the relation 

between returns and volatility using variations of ARCH. Of the various ARCH models 

to capture asymmetric effects, the EGARCH model proposed by Nelson (1991) and the 

GJR model of Glosten, Jagannathan and Runkle (1992), are the most widely used. The 

GARCH, GJR and EGARCH models are defined as follows: 

 

 

 
 

1/ 2

2
1

2 2
1

1

, iid 0,1 ,

GARCH: ,

GJR: ,

EGARCH: exp ,

t t t t

t t t

t t t t t

t t t t

y h z z

h y h

h y y I z h

h h z z

  

   

  



 


 


 




  

   

  

 

 

where th  denotes conditional volatility to distinguish it from stochastic volatility, and 

( )I z  is an indicator function such that ( ) 1I z   if  0z   and ( ) 0I z   otherwise. 

 

Although the GJR and EGARCH models are more flexible than the GARCH model, 

it is helpful to check their flexibility with respect to both the leverage and asymmetric 

effects. In order to distinguish several asymmetric effects of a shock to returns, we 

consider the following five cases, conditional on a negative shock increasing volatility: 

 

Case I (Symmetry): Negative and positive shocks have identical effects in increasing 

volatility. 

Case II (General Asymmetry): A negative shock increases volatility, but the effect of a 

positive shock differs from that of a negative shock. 

Case III (Wide Asymmetry): Negative and positive shocks increase volatility 
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differently (as a subset of Case II). 

Case IV (Standard Asymmetry): The impact of a negative shock exceeds that of a 

positive shock (as a subset of Case III). 

Case V (Leverage): A negative shock increases volatility, whereas a positive shock 

decreases volatility.  

 

Case II provides the general asymmetric framework, and includes Cases III-V. 

Furthermore, Case III includes Case IV. The empirical results based on the GJR and 

EGARCH models typically fall into Case IV. 

 

Under the concepts of symmetry, asymmetry and leverage, Table 1 provides the 

parametric restrictions on the GJR, EGARCH, SV-L, SV-S and the general SV-LS 

models under Cases I-V. The results are summarized as follows: 

 

(i) In Case I, the GJR model reduces to GARCH. The GJR model cannot 

accommodate leverage as the parametric restrictions for leverage are 0   

and 0   , in which case volatility is not guaranteed to be positive.  

(ii) The EGARCH and our SV-LS models are entirely flexible with respect to 

symmetry, asymmetry and leverage.  

(iii) As SV-L and SV-S are special cases of SV-LS model, they cannot capture the 

specific asymmetric effects in Cases II, III and IV.  

 

Recently, Bollerslev and Zhou (2006) investigated not only asymmetric effects, but 

also the linear relationship between the contemporaneous returns and volatility, which 

they termed the “volatility feedback” effect. Their specification is similar to the 

GARCH-M and SV-M models, although their results are based on realized and implied 

volatility. As they reported that the empirical results are sensitive to the instrument 

choice of volatility, an examination of this effect requires further research. 

 
4  Model Estimation via EIS Method 
 

In this section, we examine the finite sample properties of the ML estimator for the 

SV-LS models, based on the efficient importance sampling (EIS) method, in which the 

likelihood function is evaluated through simulation. 

  

Before considering the SV-LS model, it will be useful to introduce several methods 
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for estimating the SV-L model. With respect to the SV-L model, it is straightforward to 

apply the Monte Carlo likelihood (MCL) method of Sandmann and Koopman (1998), as 

it is based on the state space form derived by Harvey and Shephard (1996) (see also Asai 

(2008)). For the Bayesian MCMC method, we can use the approach of Omori et al. 

(2007), which is based on the integration sampler of Chib, Nardari and Shephard (2002). 

It should be noted that Jacquier, Polson and Rossi (2004) proposed a Bayesian MCMC 

technique to estimate the SV-L model. However, this approach is based on Jacquier, 

Polson and Rossi (1994), which is less efficient numerically than the method of Chib, 

Nardari and Shephard (2002). Moreover, Yu (2005) showed that it was not clear how to 

ensure or interpret the leverage effect in the model of Jacquier, Polson and Rossi (2004). 

  

As there is no technique to estimate the general SV-LS model, we will apply the EIS 

method, and investigate the finite sample properties of the EIS estimator in the reminder 

of this section. The EIS is much easier to implement computationally, and is flexible for 

the models discussed in this paper (see Liesenfeld and Richard (2003) for a detailed 

explanation of evaluating SV models via the EIS method). 

 
Simulation experiments were conducted in order to assess the performance of the 

EIS estimator. The range of parameter values  1 2, , , ,        was selected as 

follows. First of all, the autoregressive parameter   and the mean of the log-volatility 

are set to 0.95 and 0, respectively. Secondly,  1 2, ,    is selected so that the variances 

of the generalized error t  are the same in the three models. Specifically, we set the 

parameter vector to be 

 

         1 2, , 0.222, 0.08,0 , 0.215,0,0.16 , 0.200, 0.08,0.16      , 

 

which represents the SV-L, SV-L and SV-LS models, respectively. Note that for each 

parameter set, the value of  2
tE   is 0.236. With respect to the SV-L model, the 

value of the correlation coefficient in  is given by -0.339. 

 

For each  , we generated a sample of size T=2000, and estimated the SV-L, SV-S 
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and SV-LS models using the EIS method. The number of replications is 500. 

 

  We consider a sample size of 2000T   with 500 replications. Table 2 shows the 

sample means, standard deviations and root mean squared errors of the MCL estimators. 

The sample means are close to the true values for all models, indicating little bias. 

Compared with the Monte Carlo results in Table 3 of Sandmann and Koopman (1998) for 

the MCL estimator, which is limited to the parameter values given by 1 2 0     , 

the standard deviations and root mean squared errors presented in Table 2 seem quite 

reasonable. Compared with Table 1 of Asai and McAleer (2005), which is also limited to 

the SV-L model, we have similar results. 

 

5  Empirical Results 
 

This section examines the MCL estimates of asymmetric behaviour in the SV, DL, 

AL, DAL and TSV models for four sets of empirical data, namely Standard and Poor's 

500 Composite Index (S&P 500), Tokyo stock price index (TOPIX), US 

Dollar/Australian Dollar exchange rate (USD/AUD), and Japanese Yen/US dollar 

exchange rate (YEN/USD). The sample period is 1/4/1999 to 8/2/2007. The sample size 

for S&P is T=2157, while those for TOPIX, USD/AUD and Yen/USD are T=2112. The 

returns, tR , are defined as 1logloglog  ttt PPP  times 100, where tP  is the 

closing price on day t . 

 

   The autocorrelation structure in the stock returns, t tR m , was removed by using the 

following threshold AR (TAR) model:  

 

1

,
t i t i

p

t s s t i
i

m c R
  



   

 

where ts  is zero if 0ty  , and one otherwise. As there was no evidence of serial 

correlation for exchange rate returns, we only subtracted mean from the return series. 

Hereafter, for convenience we will refer to the stock and exchange rate returns series as 

t t ty R m   and t ty R R  , respectively. 

 

For stock returns such as S&P 500 and TOPIX, a negative correlation would be 

expected between the innovations in returns and volatility. Table 3 shows the EIS 
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estimates for S&P 500 returns. Four kinds of SV model were estimated, namely the 

standard SV model with 1 2 0   , SV-L with 2 0  , SV-S with 1 0  , and SV-LS 

with no restrictions. The significance of the estimates of 1  and/or 2  in the various 

models leads to a strong rejection of the basic SV model, which neglects the leverage and 

size effects. The estimates of 1  in the SV-L and SV-LS model are negative and 

significant, indicating the existence of the leverage effects. The estimates of 2 are 

negative and significantin the SV-S and SV-LS models. AIC and BIC chose the SV-LS 

model. The likelihood ratio tests favored the SV-LS model. 

 

At this stage, we need to discuss the sign of 2 . While the estimates of 2 in the 

EGARCH models are always positive in the literature, that for the SV-LS was negative. 

Our estimates indicate that a negative shock increase volatility, while a positive shock 

decrease volatility with the different magnitude. This is Case V (Leverage). On the other 

hand, typical estimates for the EGARCH model imply the Case IV (Standard 

Asymmetry). As in the EGARCH estimates, it is reasonable that large positive and 

negative shocks will increase volatility. We need to pay attention to the effect of small 

positive shock. Recenlty, Chen and Ghysels (2007) found that small positive shock in 

S&P returns decrease volatility, by their semi-parametric method. This is Case II 

(General Asymmetry) in our category. However, as the direction of the effect of a small 

positive shock is different form that of a large positive shock, the SV-LS and EGARCH 

models are not flexible to capture such effects. If their finding is applicable to our data, 

the SV-LS model successfully describes the effect of small positive shock, while it fail to 

capture the effect of large positive shock, which may be absorbed by the innovation term, 

t . On the other hand, the EGARCH model may fail to capture the effects of small 

positive shocks, as it lacks the innovation term. 

 

Table 4 for TOPIX returns shows that the estimates of 1  are negative and 

significant in the SV-L and SV-LS models, but that the estimate of 2  is insignificant, 

indicating the rejection of the SV-S model. Both AIC and BIC suggest that SV-L is the 

best model. The likelihood ratio tests also selected the SV-L. As in the case of S&P 500 

returns, the standard SV model is clearly rejected in favour of the two SV models with 

leverage effects. The size effects may be small so that they are absorbed by the 

innovation term of volatility. 

 

    Tables 5 and 6 present the EIS estimates for the USD/AUD and Yen/USD returns, 

respectively. In Table 5, the results generally lead to similar implications as in the case of 
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the TOPIX returns. AIC, BIC and the likelihood ratio tests also prefer the SV-L model. 

The estimate of correlation coefficient between the innovations of return and volatility, 

2 2
1 1     , is -0.39 for USD/AUD. 

 

The results for the YEN/USD returns in Table 6 are similar to those for S&P returns 

in Table 3. In Tables 6, there is significant evidence of leverage and size effects in the 

SV-L, SV-S and SV-LS models. The likelihood ratio tests favor the SV-LS model. AIC 

suggests that the SV-LS is the best model, while BIC chose the SV-S.  

 

Overall, all four estimates indicate that the asymmetric effects for the four datasets 

are classified to Case V (Leverage). The slopes of negative and positive shocks are 

different from each other for the cases of the S&P and YEN/USD returns. 

 

For the diagnostic checking, we calculated filtered estimates of volatility, 

  1exp t tE h y    , t=1,2,…,T. Table 7 shows the diagnostic statistics for the standardized 

residuals. For all four series, we have the same results as follows. The Ljung-Box 

portmanteau tests based on twenty lags support no serial correlation. The Jarque-Bera 

tests reject the null of normal distribution. 

 

    In order to consider the heavy-tailed conditional distribution, we estimated the 

SV-t-LS model. Table 8(a) presents the parameter estimates of the SV-t-LS model for 

four series. For all series except for YEN/USD, the estimates of 1 v  are close to zero 

and insignificant, which may be caused by misspecification of the structure of 

asymmetry and/or tail-behavior. With respect to YEN/USD, the estimate of 1  is 

negative and significant while that of 2  is positive and significant. Compared to the 

estimates of SV-LS in Table 6, the sign of 2  is changed. The estimate of 1 v  is 

significant, and the estimate of v is 6.33. Table 8(b) shows the log-likelihood, AIC and 

BIC. For the case of YEN/USD, the likelihood ratio test shows that 1 v  is significant, 

while the model has the smallest AIC and BIC. For the other three series, AIC and BIC 

shows that there is no improvement form introducing the heavy-tailed conditional 

distribution. Table 8(c) shows the diagnostic statistics for the standardized residuals. The 

Ljung-Box portmanteau tests based on twenty lags support no serial correlation for all 

series. We employed the test proposed by Godfrey and Orme (1991) for asymmetry 

under heavy-tailed distributions. The test does not reject the null of symmetry except for 
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TOPIX. The test for excess kurtosis rejects the null for YEN/USD, as expected from the 

t distribution. 

 

6  Conclusion 
 
In this paper, we suggested a new asymmetric stochastic volatility model, based on the 

leverage and size effects, as an extension of the EGARCH model. We considered five 

categories for asymmetric effects, which describes the difference among the asymmetric 

effect of the EGARCH model, the threshold effects of GJR model, and the leverage 

effects of SV model. We consider the SV with leverage effects (SV-L), the SV with size 

effect (SV-S), and the general asymmetric SV model (SV-LS). These three models are 

estimated by the efficient importance sampling method of Liesenfeld and Richard (2003), 

and the finite sample properties of the estimator are investigated using Monte Carlo 

experiments.  

 

We used four financial time series are used to estimate the alternative asymmetric SV 

models. The empirical results for S&P 500 and Yen/USD returns preferred the SV-LS 

model, while TOPIX and USD/AUD returns favored the SV-L model. For the case of 

standardized t distribution, the results for Yen/USD returns show that the model is 

correctly specified, while the results for three other data sets suggested there was scope 

for improvement. In addition to providing more accurate estimates of volatility, these 

empirical results should assist in calculating optimal Value-at-Risk (VaR) forecasts and 

capital charges for purposes of portfolio and risk management. 

 
This paper has made certain contributions, but several extensions are still possible. 

First, we may work with multi-factors as in Chernov et al. (2003) and Asai (2008), in 

order to capture tail behavior. Secondly, we may consider more flexible specifications of 

asymmetry, which describe the results of Chen and Ghysels (2007). Thirdly, the paper 

focuses on leptokurtic distribution, but it is also worthwhile fitting skewed distributions, 

including the skewed t distribution (Fernández and Steel (1998)). 
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Table 1: Parametric Restrictions for Symmetry, Asymmetry and Leverage 

 

Model Case I 

Symmetry 

Case II 

General 

Asymmetry 

Case III 

Wide 

Asymmetry 

Case IV 

Standard 

Asymmetry 

Case V 

Leverage 

GJR 
0,

0






 NA 

0,

,

0


 



 


 
0,

0






 NA 

EGARCH 
0,

0






    
,

0

 





 

0,
 

 

 
0,

 


 
 

SV-L NA NA NA NA 1 0   

SV-S 2 0   NA NA NA NA 

SV-LS 
1

2

0,

0






 1 2   
1

1 2

0,
 



 1

2 1

0,
 

 

 
1

2 1

0,
 


 
 

Note: NA denotes not applicable. 
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Table 2: Finite Sample Performance of the EIS Estimator for T=2000 

 

Parameter SV-L SV-S SV-LS 
  0.0074 0.0168 0.0193 

 (0.1074) (0.1158) (0.1686)

 [0.1076] [0.1170] [0.1697]

  0.9477 0.9466 0.9467 

 (0.0112) (0.0126) (0.0125)

 [0.0115] [0.0131] [0.0129]

  0.2228 0.2117 0.1974 

 (0.0334) (0.0330) (0.0801)

 [0.0334] [0.0331] [0.0801]

1  -0.0802  -0.0817 

 (0.0380)  (0.0249)

 [0.0380]  [0.0249]

2   0.1655 0.1653 

  (0.0628) (0.0571)

  [0.0630] [0.0573]

Note: Standard errors are in parentheses and root mean squared errors are in brackets. 

True parameters are 0  , 0.95  , and  

        1 2, , 0.222, 0.08,0 , 0.215,0,0.16 , 0.200, 0.08,0.16      , 

corresponding to the SV-L, SV-L and SV-LS models, respectively. 
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Table 3: EIS Estimates for S&P 500 Returns 

 

Model       
1  2  LogLike AIC BIC 

SV 0.9914 0.1048 -0.0751   -2993.45 5992.90 6009.93

 (0.0035) (0.0153) (0.2536)      

SV-L 0.9842 0.0718 -0.1398 -0.1191  -2943.84 5895.69 5918.39

 (0.0031) (0.0115) (0.1048) (0.0133)     

SV-S 0.9943 0.0722 -0.1870  -0.1130 -2990.72 5989.43 6012.14

 (0.0032) (0.0360) (0.3257)  (0.0535)    

SV-LS 0.9901 0.0104 -0.1624 -0.1140 -0.1282 -2937.35 5884.79 5913.08

 (0.0020) (0.0032) (0.1324) (0.0116) (0.0197)    

Note: Standard errors are given in parentheses. 

 

 

 

Table 4: EIS Estimates for TOPIX Returns 

 

Model       
1  2  LogLike AIC BIC 

SV 0.9714 0.1463 0.2111   -3308.10 6622.20 6639.16

 (0.0084) (0.0203) (0.1146)      

SV-L 0.9492 0.1706 0.2051 -0.1108  -3288.38 6584.77 6607.39

 (0.0118) (0.0226) (0.0800) (0.0207)     

SV-S 0.9735 0.1436 0.1815  -0.0522 -3307.57 6623.13 6645.75

 (0.0082) (0.0214) (0.1197)  (0.0514)    

SV-LS 0.9522 0.1707 0.1817 -0.1127 -0.0748 -3287.36 6584.71 6612.99

 (0.0112) (0.0233) (0.0804) (0.0207) (0.0531)    

Note: Standard errors are given in parentheses. 
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Table 5: EIS Estimates for USD/AUD Returns 

 

Model       
1  2  LogLike AIC BIC 

SV 0.9699 0.1322 0.5144   -3609.77 7225.55 7242.52

 (0.0096) (0.0212) (0.0997)      

SV-L 0.9619 0.1431 0.5034 -0.0598  -3601.54 7211.09 7233.71

 (0.0108) (0.0213) (0.0875) (0.0161)     

SV-S 0.9717 0.1311 0.4986  -0.0417 -3609.40 7226.80 7249.42

 (0.0094) (0.0222) (0.1017)  (0.0486)    

SV-LS 0.9624 0.1462 0.4890 -0.0607 -0.0428 -3601.15 7212.30 7240.57

 (0.0110) (0.0224) (0.0871) (0.0163) (0.0493)    

Note: Standard errors are given in parentheses. 

 

 

 

Table 6: EIS Estimates for YEN/USD Returns 

 

Model       
1  2  LogLike AIC BIC 

SV 0.9667 0.1496 -1.1207   -1877.46 3760.93 3777.90

 (0.0121) (0.0282) (0.1027)      

SV-L 0.9636 0.1501 -1.1200 -0.0377  -1874.64 3757.28 3779.91

 (0.0124) (0.0281) (0.0954) (0.0165)     

SV-S 0.9684 0.1548 -1.2635  -0.1320 -1871.71 3751.42 3774.05

 (0.0115) (0.0311) (0.1164)  (0.0440)    

SV-LS 0.9675 0.1501 -1.2634 -0.0386 -0.1382 -1868.62 3747.24 3775.52

 (0.0113) (0.0309) (0.1118) (0.0158) (0.0447)    

Note: Standard errors are given in parentheses. 
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Table 7: Diagnostic Statistics for SV-LS Models 

 

Diagnostics S&P 500 TOPIX USD/AUD YEN/USD 

Skewness -0.2894 -0.1784 -0.0973 -0.1595 

 [0.000] [0.001] [0.068] [0.003] 

Kurtosis 3.8546 3.4363 3.4609 3.9472 

 [0.000] [0.000] [0.000] [0.000] 

LB(20) 19.630 16.122 19.893 13.259 

 [0.481] [0.709] [0.465] [0.866] 

Note: The p-values are in brackets. For skewness and kurtosis, we employ the 

Jarque-Bera tests. LB(20) denotes the Ljung-Box portmanteau test for serial correlation 

based on twenty lags.  
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Table 8: EIS Estimates for SV-t-LS Models 

 

(a) Paramter Estimates 

Model       
1  2  1 v  

0.9900 0.0162 -0.1628 -0.1141 -0.1263 2.52 510  S&P 500 

(0.0020) (0.0057) (0.1372) (0.0117) (0.0182) (0.0053) 

0.9522 0.1707 0.1820 -0.1126 -0.0748 3.93 510  TOPIX 

(0.0113) (0.0234) (0.0804) (0.0208) (0.0532) (0.0020) 

0.9635 0.1441 0.4888 -0.0600 -0.0434 5.38 510  USD/AUD 

(0.0107) (0.0222) (0.0884) (0.0162) (0.0500) (0.0066) 

0.9808 0.0695 -1.0129 -0.0304 0.0663 0.1580 YEN/USD 

(0.0073) (0.0190) (0.1456) (0.0149) (0.0275) (0.0362) 

Note: Standard errors are given in parentheses. 

 

(b) Log-Likelihood and Information Criterions 

Model LogLike AIC BIC 

S&P 500 -2937.35 5886.76 5920.78

TOPIX -3287.36 6586.72 6620.65

USD/AUD -3601.14 7214.28 7248.22

YEN/USD -1852.78 3717.55 3751.48

                                                    

 (c) Diagnostic Statistics 

Diagnostics S&P 500 TOPIX USD/AUD YEN/USD 

Skewness -0.2242 -0.2205 -0.1435 -0.1947 

 [0.075] [0.029] [0.121] [0.078] 

Kurtosis 4.2437 3.9706 3.7652 4.1848 

 [0.000] [0.000] [0.000] [0.000] 

LB(20) 22.753 16.219 20.573 13.029 

 [0.301] [0.703] [0.423] [0.876] 

Note: The p-values are in brackets. We employ the Jarque-Bera test for excess kurtosis. 

With respect to skewness, we use the test proposed by Godfrey and Orme (1991) for 

asymmetry under heavy-tailed distributions. LB(20) denotes the Ljung-Box 

portmanteau test for serial correlation based on twenty lags.  


