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General introduction 

Over the past 20 years, quality of care has become a major topic in health care. Only 

two decades ago, physicians could be confident that they alone had a social mandate 

to judge and manage the quality of care.1 In contrast, in the current era of evidence-

based medicine, medical practice is continuously critically evaluated by different stake-

holders. 

Doctors and hospitals review their own practice with the aim to improve quality of 

care. They use quality of care information internally, e.g. by internal audits. Or exter-

nally, e.g. by comparing different health care providers and learning from best practic-

es. Other stakeholders mostly use quality of care information externally. Governments 

monitor quality of care to ensure good quality health care. Health care financers try 

to distinguish good from poor performance to offer good care to their insured. Also 

patients (or ‘consumers’) try to compare hospitals and search for the best hospital for 

their health problem. 

All these attempts to evaluate quality of care require that quality of care can actually 

be measured. This poses numerous difficulties. First there is no uniform definition of 

quality of care. Experts have struggled for decades to formulate a concise, meaningful, 

and generally applicable definition of the quality of health care. One of the most widely 

cited recent definitions, formulated by the Institute of Medicine in 19902, 3 holds that 

quality consists of the ‘degree to which health services for individuals and populations 

increase the likelihood of desired health outcomes and are consistent with current pro-

fessional knowledge.’ The complexity and variability of these and many other defini-

tions of quality is confusing and shows that formulations are dependent on where we 

are located in the system of care.4 Different perspectives on and definitions of quality 

will logically call for different approaches to its measurement and management. 

Moreover health care is very complex and many factors determine the outcome of 

a patient. The care of one specific health care provider is only one of these factors. So 

far there has been no generally accepted approach or method to measure quality of 

health care. 

Measuring quality of care 

Research on quality of care measurement started in the United States of America in the 

1970s, followed by Europe, especially the United Kingdom. The current paradigm in 

quality of care research was established by Donabedian in 1988.4 He stated that quality 

of care comprises structure, process and outcome. 

Structure relates to organisation of care, such as number of beds in a hospital. 

Process relates to actual actions of care, such as whether the patient receives medica-

tion within a certain time frame. Outcome includes patient outcome measures such as 

mortality. Part of the discussion on quality of care measurement has focused on which 
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of these components of quality to measure. Outcome measures are often used, since 

they are most relevant to the final aim of measuring quality of care; improvement of 

patient outcomes, including mortality, morbidity, and poor health. If an outcome mea-

sure represents quality of care, it would be expected to be related to relevant process 

measures. 

Outcome measures 

Outcome measures for quality of care are surrounded by methodological problems.5 

The two most important challenges are dealing with statistical uncertainty and with 

differences in case-mix (Figure 1.1). Case-mix is the type or mix of patients treated by  

a hospital.6

Figure 1.1  Possible sources of observed between-hospital differences in outcome 

Statistical uncertainty 

When using outcome measures, there will always be some variation in outcome  

between hospitals, caused just by chance. E.g. when the mortality rate in a hospital 

with 20 patients is 10%, we expect 2 deaths. Due to pure chance however also 0 or 6 

or even more deaths can be observed. The amount of statistical uncertainty is depen-

dent on the number of patients treated in a hospital. When the number of patients in-

creases to 50 or to 200, the role of statistical uncertainty decreases (Figure 1.2).

If statistical uncertainty is ignored, this may lead to overinterpretation of differences in 

outcome between hospitals.
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Figure 1.2  Estimated mortality in relation to number of patients per hospital (n) 

A specific form of comparing hospitals is ranking them according to their quality of 

care. This was already done in 1995 for physician-specific mortality after coronary-

artery bypass grafting surgery in New York State.7 Ranking has the problem that one 

hospital has to be first and one has to be last, even if the differences are small and the 

statistical uncertainty is large. Rankings can hence be misleading. Nevertheless rank-

ings are very popular in the press.8 

Case-mix adjustment

The largest criticism on outcome indicators is that they may more reflect a hospitals’ 

patient population (‘case-mix’) than quality of care. When hospitals have a different pa-

tient population in terms of e.g. age and disease severity, the mortality rates will differ 

regardless of quality of care. 

As an example we compared the case-mix of stroke patients of two Dutch hospitals 

that participated in the same study (Table 1.1). Since older age, severe stroke and low-

ered consciousness level are strong predictors of mortality, hospital A is expected to 

have a higher mortality rate. Thus, ignoring the differences in case-mix will lead to an 

unfair comparison of the outcomes of the two hospitals. 

!

Estimated mortality, true mortality 10%

0%

0%

10%

10%

20%

20%

30%

30%

p
ro

b
ab

ili
ty

 d
en

si
ty

n=20

n=50

n=200



pa r t  I   Introduction12

Table 1.1  Stroke population of two Dutch hospitals 

Hospital A Hospital B

Mean age (years) 77 65

Severe stroke (%) 28 8

Lowered consciousness at hospital arrival (%) 21 4

To account for patient characteristics that will influence outcome a prognostic model 

can be used. Prognostic models combine a number of patient characteristics to predict 

the outcome of interest, most often with regression models.9 Instead of unadjusted, 

crude comparisons between hospitals, adjusted outcomes estimated with a prognostic 

model are preferable.  

For appropriate case-mix adjustment it is essential that the prognostic models used 

for case-mix adjustment consider all relevant prognostic factors that may differ  

between the hospitals. 

Prognostic models have numerous applications besides case-mix adjustment, with 

direct and indirect applications for quality of care. In this thesis some of these are dis-

cussed including the use of models to target treatment, and to adjust for patient char-

acteristics for the estimation of a treatment effect.

The differences between hospitals in outcome that remain after taking into account 

statistical uncertainty and after case-mix adjustment may be caused by registration 

bias, residual confounding or real differences in quality of care. The latter can be re-

duced by quality of care improvement. 

Between-hospital differences in outcome are not only of interest from the perspec-

tive of quality improvement. Another relevant area is study design. Currently most 

randomized trials are multi-centre trials, and are conducted in multiple countries. The 

presence of differences in outcome between the centres may influence the chances of 

demonstrating a treatment effect in RCTs.

Acute neurological diseases 

The methods for measuring quality of care that will be studied in this thesis are applied 

to acute neurological diseases, including traumatic brain injury, stroke, Guilllain-Barré 

syndrome and subarachnoid haemorrhage. 

Traumatic brain injury 

Traumatic brain injury (TBI) is an important public health problem worldwide.10, 11 It is 

one of the most important causes of death and disability among young adults in the 

Western world. TBI is generally defined as an injury to the brain induced by external 

force. 
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Falls and motor vehicle traffic incidents are the leading cause of TBI. Falls are more 

prevalent in the Western world, traffic incidents are more prevalent in the developing 

world. These are followed by events (including sports and recreational injuries) and 

assaults (Figure 1.3).12 The age groups at highest risk for TBI are children and young 

adults. Adults older than 75 years of age have the highest rates of hospitalization and 

death. 

Figure 1.3  Causes of TBI

TBI can be classified according to different aspects, such as injury mechanism, clinical 

severity, or by assessment of structural abnormalities.11 Mechanistically, TBI is classi-

cally classified as closed, penetrating, crash or blast injury. For classification by clinical 

severity, the level of consciousness is graded by the Glasgow Coma Scale, using three 

parameters: eye opening, motor response and verbal response.13 According to the total 

GCS, TBI patients are subdivided in three severity classes: mild (GCS 13-15), moder-

ate (GCS 9-12) and severe TBI (GCS < 8). Structural abnormalities can be identified by 

different imaging techniques, such as CT and MRI scanning. Various classification sys-

tems are available for CT abnormalities, of which the Marshall CT classification is most 

widely used.14

The most common outcome measure in TBI is the Glasgow Outcome Scale (GOS), al-

though other scales are available. The GOS is an ordinal 5-point scale, which assesses 

the overall outcome after TBI (Table 1.1).15 Often, the scale is dichotomized in favour-

able versus unfavourable. Final outcome is usually determined at six months after TBI, 

when clinical recovery is more or less stabilized. 
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Table 1.1  Glasgow Outcome Scale 

Category Label Definition

1 Dead Mortality from any cause 

2 Vegetative Unable to interact with environment, unresponsive 

3 Severe Disability Conscious but dependent 

4 Moderate Disability Independent but disabled 

5 Good Recovery Return to normal occupation and social activities, may have 
minor  residual deficits 

Stroke 

Stroke ranks second as a cause of death worldwide and is the main cause of disability 

in high-income countries. In the Netherlands alone, more than 37.000 patients are ad-

mitted to hospital for acute stroke each year.16 

Strokes are either ischemic or hemorrhagic. Ischemic stroke accounts for about 80% 

of all strokes and results from a transient or permanent reduction of cerebral blood 

flow caused by occlusion of a cerebral artery or arteriole. The most common causes are 

atherothrombosis and embolism from the heart.17 

Different treatment options exist for stroke. Stroke unit care has been proven effec-

tive for all stroke patients.18 In patients with ischemic stroke, treatment with recombi-

nant tissue-plasminogen activator  reduces the number of patients with poor outcome 

at three months by about 9%19, 20, but the short time window for administration (4.5 

hours) and the associated bleeding risk restrict treatment with recombinant tissue-

plasminogen activator to a minority of patients. Aspirin, started within 48 hours of 

symptom onset, is probably effective across the entire range of patients with ischemic 

stroke, but the benefit is small.21 

Most phase III stroke trials have used the degree of dependency or death as their 

main outcome measures. The most commonly used outcome scale for assessing depen-

dency is the modified Rankin Scale22 This scale quantifies dependency using an ordinal 

hierarchical grading from 0 (no symptoms) to 5 (severe disability) Sometimes 6 (death) 

is added to facilitate statistical analysis and interpretation (Table 1.2). 
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Table 1.2  Modified Rankin Scale 

Category Definition

0 No remaining symptoms  

1 No significant disability despite symptoms; able to carry out all usual activities

2 Slight disability; unable to carry out all previous activities, but independent 

3 Moderate disability; requiring some help, but able to walk without assistance

4 Moderately severe disability; unable to walk without assistance and unable to attend to 
own bodily needs without assistance

5 Severe disability; bedridden, incontinent and requiring constant nursing care and atten-
tion

6 Dead 

Guillain-Barré syndrome 

The Guillain-Barré syndrome (GBS) is the most common cause of acute neuro-muscular 

paralysis in the western world. The incidence is 1.2-2.3 per 100.000 per year.23, 24 GBS is a 

post-infectious disorder which occurs in otherwise healthy people. People of all ages can 

be affected, but incidence increases linearly with age.23-25 

GBS is characterized by a rapidly progressive bilateral weakness of the extremities, 

sensory deficits and tendon reflex loss. Cranial nerves and respiratory muscles can 

also be affected and 20-30% of the patients need mechanical ventilation. GBS is a very 

heterogeneous disease regarding clinical severity and outcome. Some patients develop 

mild limb paresis, whereas others develop oculomotor, bulbar, respiratory muscle and 

limb paralysis and remain bedbound for several months. 

Intravenous immunoglobulin and plasma exchange are shown to be effective in pa-

tients with GBS.23, 26, 27 Nowadays, intravenous immunoglobulin (2 g/kg in 2-5 days) has 

become standard treatment for patients with GBS who are unable to walk unaided and 

still within the first 2 weeks from onset of weakness 26, 28 29 

The outcome of GBS after 6 or 12 months however has only marginally been im-

proved.23, 30 Approximately 20% are still disabled after 6 months and a serious long-

term impact on the patients’ work and private life and that of their partners has been 

shown.31 

Subarachnoid haemorrhage 

Subarachnoid haemorrhage (SAH) is bleeding into the subarachnoid space – the area 

between the arachnoid membrane and the pia mater surrounding the brain. SAH origi-

nates from arteries localised on the brain’s surface. Aneurysmal subarachnoid haemor-

rhage (aSAH) is an haemorrhage which is caused by rupture of an intracranial aneu-

rysm.32 

The overall incidence of aSAH is between 5 and 10 per 100,000 person years. The inci-

dence increases with age; and from midlife onwards incidence is higher in women than 
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in men.33 The reasons for this higher incidence in women are not clear, but hormonal 

factors (including hormonal medication) have been suggested as a possible explana-

tion.34, 35

Sudden headache is the most characteristic symptom of aSAH; in approximately 75 

percent of patients, the onset is within seconds.36 Often, the headache is accompanied 

by nausea and vomiting. On admission two-thirds of all patients have depressed con-

sciousness, of whom half are in coma.37 The patient might regain alertness and orienta-

tion or might remain with various degrees of lethargy, confusion, or agitation. 

Case-fatality after aSAH has been estimated between 20 and 50 percent.38, 39 The per-

centage of persons dying before they reach a hospital has been estimated between 

10 and 15 percent.40, 41 Those who survive the first episode of aSAH, are at risk of re-

bleeds, delayed ischemia or hydrocephalus. After discharge, approximately 5% of the 

patients develops epilepsy.42, 43 Cognitive deficits and psychosocial dysfunction in the 

first year after SAH are common, even in patients who make a good recovery in terms 

of self care. 44, 45, 46 Although improvement can be expected up to one and a half year 

after aSAH, many former patients and their partners experience deficits and reduced 

quality of life 1 to 2 years after SAH.47 

Aims and contents  

The aim of this thesis is to study methods to measure quality of care with outcome 
measures, and to apply these methods to different acute neurological diseases. 
Specific questions include:

1. � What is the role of statistical uncertainty in measuring quality of care with outcome 

measures? 

1a.�	�How large is the effect of statistical uncertainty on between-hospital comparisons?

1b.	�How should statistical uncertainty be incorporated in outcome measures? 

2.	� What is the role of case-mix variation in measuring quality of care with outcome 

measures? 

2a.	How large is the effect of case-mix on between-hospital comparisons?

2b.	How can case-mix variation be captured for between-hospital comparisons? 

3.	 How do outcome measures relate to processes of care? 

The next parts of this thesis consist of studies on the main methodological issues re-

lated to quality of care measurement; statistical uncertainty and case-mix adjustment. 

In part II, Chapter 2 shows what the effect of statistical uncertainty could be and how 

it can be incorporated in rankings. Chapter 3 shows how much statistical uncertainty is 

present in outcome measures that are currently used by the Dutch Healthcare Inspec-

torate to assess the quality of hospital care. In chapter 4 different statistical software 

packages that could be used to take into account statistical uncertainty are compared. 
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Part III is about the development of prognostic models that can be used for case-mix 

adjustment. Chapter 5 gives an overview of the prognostic models available to predict 

outcome in TBI patients and some general considerations about prognostic model de-

velopment. Chapter 6 is about potential improvement of adjustment models in TBI by 

including extracranial injury as a predictor. Chapter 7 presents a prognostic model that 

can be used to identify GBS patients that will require artificial ventilation. In chapter 8 a 

prognostic model to predict outcome in GBS patients is developed. In chapter 9 a prog-

nostic model to predict outcome in aSAH patients is developed. 

In the fourth part the methods and models presented in part II and III are applied 

to TBI and stroke. Chapter 10 studies between-hospital differences in outcome in TBI. 

Chapter 11 investigates whether these between-hospital differences affect the estima-

tion of the treatment effect in clinical trials. 

In chapter 12 between-hospital differences in outcome after stroke are studied and 

it is assessed whether these differences are more related to patient characteristics or 

to process measures. Chapter 13 assesses the relation between a process measure in 

stroke, treatment with statins, and outcome. 

The results of the studies in this thesis are further discussed in chapter 14, together 

with their implications. 
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Abstract
Background

Measuring quality of care and ranking hospitals with outcome measures 

poses two major methodological challenges: case-mix adjustment and 

variation that exists by chance. 

Aim

To compare methods for comparing and ranking hospitals that take these 

into account.   

Methods

The Netherlands Stroke Survey was conducted in 10 hospitals in the 

Netherlands, between October 2002 and May 2003, with prospective and 

consecutive enrolment of patients with acute brain ischemia. Poor outcome 

was defined as death or disability after 1 year (modified Rankin scale 3 or 

higher). We calculated fixed and random hospital effects on poor outcome, 

unadjusted and adjusted for patient characteristics. We compared the 

hospitals using the expected rank, a novel statistical measure incorporating 

the magnitude and the uncertainty of differences in outcome.  

Results

At 1 year after stroke, 268 of the total 505 patients (53%) had a poor 

outcome. There where substantial differences in outcome between hospitals 

in unadjusted analysis (χ2 statistic=48, 9 df, p<0.0001). Adjustment for 

12 confounders led to halving of the χ2 (χ2 = 24). The same pattern was 

observed in random effects analysis. Estimated performance of individual 

hospitals changed considerably between unadjusted and adjusted analysis. 

Further changes were seen with random effect estimation, especially for 

smaller hospitals. Ordering by Expected Rank led to shrinkage of the original 

ranks of 1 to 10 towards the median rank of 5.5 and to a different order of 

the hospitals, compared to ranking based on fixed effects.

Conclusion

In comparing and ranking hospitals, case-mix adjusted random effect 

estimates and the Expected Ranks are more robust alternatives to traditional 

fixed effect estimates and simple rankings. 
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Introduction

Measuring quality of care receives increasing attention. Specifically, ranking of hos-

pitals may be attempted to compare their quality of care. Such ranking on outcome 

was already done in 1995 for physician-specific mortality after coronary-artery bypass 

grafting surgery in New York State.1 Ranking is currently very popular, especially in the 

lay press.2 

Measuring quality of care and ranking hospitals has the potential to enable health 

care financers to identify poor performance. Also patients (or ‘consumers’) might 

choose the best hospital for their health problem, and hospitals may learn from best 

practices. All these applications can have huge consequences for hospitals on for 

example their budget and reputation, which makes reliability of results extremely 

important. 

Quality of care is often measured with outcomes such as mortality, an approach that 

is surrounded by many methodological problems.3 The first major issue is case-mix ad-

justment.4 Case-mix adjustment should appropriately capture differences between hos-

pitals in patient characteristics that are outside the influence of actions in the hospital. 

The second issue is drawing proper conclusions from the hospital-specific case-mix 

adjusted outcomes. There will always be some variation in outcome between hospitals, 

caused just by chance. Disregarding this chance variation may lead to over-interpre-

tation of differences between hospitals since especially smaller hospitals can have an 

extreme outcome, caused more by chance than by their underlying quality. 

Variation between hospitals in binary outcomes is traditionally modelled as fixed ef-

fects in a logistic regression model. We can also use a random effect logistic regression 

model which accounts for variation by chance at the hospital level.3, 5-10  

Ranking hospitals according to their outcome causes the problem that one hospital 

has to be first and one has to be last. Simple ranking disregards both the magnitude of 

the relative differences between the hospitals and the variation that exists by chance, 

and can hence put hospitals in needless jeopardy. 

In this study we use data from the Netherlands Stroke Survey to compare methods 

for assessment of quality of care that takes into account case-mix and variation by 

chance.   
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Methods

The Netherlands Stroke Survey 

The Netherlands Stroke survey was conducted in 10 hospitals in The Netherlands: 2 in 

the north, 4 in the middle, and 4 in the southern regions. The participating hospitals 

comprised 1 small (<400 beds), 4 intermediate (400 to 800 beds) and 5 large hospitals 

(>800 beds). Two hospitals were university hospitals. 

All patients who were admitted to the neurology department with suspected acute 

brain ischemia between October 2002 and May 2003 were screened. Patients were en-

rolled consecutively and prospectively if the initial diagnosis of first or recurrent acute 

brain ischemia was confirmed by the neurologist’s assessment. Trained research assis-

tants collected data from the patients’ hospital charts, within 5 days after discharge. At 

1 year, survival status was obtained through the Civil Registries. A telephone interview 

was conducted, based on a structured questionnaire which was sent in advance. Fol-

low up was complete in 96% of the patients. More details on the study population and 

methods of data collection were reported previously.11, 12 

Case-mix adjustment  

The primary outcome was whether patients were dead or disabled at 1 year after 

admission, i.e. a score on the modified Rankin scale of 3 or higher. We used a logistic 

regression model to adjust for case-mix, because we consider case-mix as a confound-

ers since it may be related to the setting and to the outcome and is outside the influ-

ence of actions in the hospital. The model we used included 12 patient characteristics: 

age, sex, stroke subtype (Transient Ischemic Attack (TIA) or ischemic stroke), stroke 

severity, lowered consciousness level at hospital arrival, Barthel Index 24 hours from 

admission, previous stroke, atrial fibrillation, ischemic heart disease, diabetes mellitus, 

hypertension and hyperlipidemia. These variables were selected in previous work on 

the same dataset with stepwise logistic regression analysis with backward elimina-

tion of possible confounders with the Akaike Information Criterion (AIC) for inclusion 

(equivalent to P<0.157 for confounders with 1 degree of freedom).13 In the first step 

age, sex and stroke subtype were entered, in the second step the other patient charac-

teristics were added. The model is described in more detail elsewhere.12 

Hospital effects

We estimated the variation between the hospitals with two different models. The first 

was a standard fixed effect logistic regression model, with hospital as a categorical 

variable. We estimated the coefficient for each hospital, compared to the average using 

an offset variable. We also calculated the χ2 for the model as the difference in –2 log 

likelihood for a model with and without hospital, to indicate the total variation between 

the hospitals. Both the individual coefficients and the variation were calculated with 
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and without adjustment for case-mix. We refer to the results of the fixed effect models 

as fixed effect estimates. 

Since the fixed effect estimates do not account for variation by chance, we also fitted 

a random effect logistic regression model. Random effect models account for the fact 

that part of the variation between hospitals is just chance. They estimate the hospital 

effects and the total variation ‘beyond chance’. This total variation is indicated by the 

model parameter τ2. We refer to the results of the random effect models as random ef-

fect estimates and these were also fitted with or without adjustment for case mix.  

Ranking and rankability

To also account for the variation by chance in rankings, we calculated the expected 

rank (ER), this is the probability that the performance of a hospital is worse than 

another randomly selected hospital. The ER incorporates both the magnitude and the 

uncertainty of the difference of a particular hospital with other hospitals. We can scale 

the expected ranks ER between 0 and 100% with percentiles based on expected rank 

(PCER) for easy interpretation and to make the ranks independent of the number of 

hospitals. The PCER can be interpreted as the probability (as a percentage) that a hos-

pital is worse than a randomly selected hospital, including itself.

To see whether it makes sense to rank the hospitals, we calculated the ‘rankability’. 

The rankability relates the total variation from the random effect models (How large 

are the differences between the hospitals?) to the uncertainty of the individual hospital 

differences from the fixed effect model (How certain are the differences?). The rank-

ability can be interpreted as the part of variation between the hospitals that is not due 

to chance.  

More details on the statistical analysis and formulas can be found in appendix 1 and 

in previous, more detailed work on this topic.14  

The statistical analysis was performed with R (version 2.5, R foundation for statistical 

computing, Vienna). The random effect analysis was repeated in SAS (version 9, SAS Inc, 

Cary, NC) with compatible results. R programming code can be found in appendix 2. 
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Results

Study population

The study population consisted of 579 patients who were admitted to the hospital be-

cause of acute ischemic stroke or TIA. Of these, 505 patients (87%) with complete data 

on potential confounders and outcome were used in the analysis. The lowest numbers 

enrolled were 22 and 24 patients in hospitals 5 and 6, and the highest numbers 92 and 

99 in hospitals 2 and 7 respectively (Table 2.1).

Table 2.1  Patient characteristics and poor outcome (modified Rankin Scale ≥3), and multivariable odds 
ratios of patient characteristics in the adjustment model on poor outcome.  

Hospital 1 2 3 4 5 6 7 8 9 10 Total OR (p-value)

N 39 92 31 40 22 24 99 36 50 70 505

Mean age (years) 77 73 69 65 74 65 68 70 71 72 71 1.5 (<0.001)4

Male sex (%) 46 54 61 59 55 67 65 41 56 47 55 0.7 (0.092)

Stroke subtype (% stroke 
vs TIA)

97 95 97 80 91 63 94 92 88 81 90 1.1 (0.853)

Severe stroke1 (%) 28 17 16 13 9 8 15 17 14 10 15 3.5 (<0.001)

Lowered consciousness 
level2 (%)

21 21 10 15 18 4 2 17 12 11 13 3.5 (0.001)

ADL dependent2,3 (%) 90 92 100 85 82 54 64 100 84 64 80 2.8 (0.001)

Previous stroke (%) 26 18 26 33 27 33 21 28 26 17 24 1.9 (0.012)

Atrial fibrillation (%) 23 21 16 15 27 8 17 11 22 14 18 1.7 (0.072)

Ischemic heart disease (%) 13 23 29 18 36 21 13 31 26 21 21 2.0 (0.012)

Diabetes mellitus (%) 15 30 23 20 9 21 17 17 16 20 20 2.1 (0.008)

Hypertension (%) 56 47 58 58 59 75 81 50 58 50 59 0.6 (0.018)

Hyperlipedimia (%) 54 46 68 53 73 50 58 44 70 79 59 0.6 (0.040)

Poor outcome (%) 59 72 35 44 73 29 39 78 54 46 53

1. Paresis of arm, leg and face, homonymous hemianopia and aphasia or other cortical function disorder.
2. At hospital arrival.
3. Barthel Index=20.
4. Odds ratio per decade.
ADL, activities of daily living; TIA, transient ischemic attack

Mean age was 71 (sd=13 years), 278 patients (55%) were male, and the majority (450, 

90%) was diagnosed with cerebral infarction (Table 2.1).

At 1 year, 143 patients (28%) had died and 125 of the remaining 362 patients (35%) 

were disabled (modified Rankin scale score 3, 4 or 5). Thus, the total number of pa-

tients with poor outcome at 1 year after stroke was 268 (53%). This percentage varied 

substantially between hospitals, from 29% poor outcome in hospital 6 to 78% poor 

outcome in hospital 8 (Table 2.1).
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Case-mix adjustment 

The strongest predictors of poor outcome were indicators of stroke severity (severe 

stroke: OR=3.5, p=<0.001; lowered consciousness level: OR=3.5, p=0.001; Activities 

of Daily Living (ADL) dependency: OR=2.8, p=0.001) and age (OR=1.5 per decade, 

p=0.001) (Table 2.1). 

The Area Under the Curve (AUC) of the total model was 0.804. Sex and stroke sub-

type were not significant anymore after adding all the confounders in the second step 

of the model development. 

Although the differences in outcome between hospitals were highly significant in 

unadjusted fixed effects analysis (χ2 = 48, 9 df, p<0.0001, Table 2.2), they were partly 

explained by confounders. For example, hospital 2, 5, and 8 had over 70% poor out-

come, but mean ages of 73, 74, and 70 years. On the other hand, hospitals with mostly 

good outcomes had younger patients (e.g. hospital 6, mean age 65 years, 29% poor 

outcome, Table 2.1). Adjusting the fixed effect analysis for all 12 potential confounders 

led to halving of the χ2 seen in unadjusted analysis (χ2 = 24 instead of 48, Table 2.2). 

This pattern was also seen in the random effects analysis (τ2=0.18 versus 0.38, Table 

2.2). 

Table 2.2  Heterogeneity between hospitals in fixed and random effect logistic regression analysis

Fixed effect Random effect

Unadjusted

12 confounders

χ2 = 48, 9 df, p<0.0001

χ2 = 24, 9 df, p=0.0042

τ2=0.38, χ2=24, 1 df, p<0.0001

τ2=0.18, χ2=4, 1 df, p=0.0275

χ2: Difference on –2 log likelihood scale of model with and without hospital. 
τ2: Variance of the random effects on log odds scale  

Estimation of differences between hospitals

The apparent performance of the individual hospitals changed considerably between 

unadjusted and adjusted fixed analysis (Table 2.3, Figure 2.1).

Hospital 1 seemed to perform relatively poorly in unadjusted analysis (positive coef-

ficient), while adjusted analysis indicated that the hospital performed relatively well 

(negative coefficient). This suggests that the positive coefficient was attributable to the 

unfavourable case-mix of the hospital. Changes for other hospitals were only quantita-

tive, without change of sign, with adjusted differences generally closer to zero. 
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Table 2.3  Fixed and random effect estimates for differences between hospitals. Values are logistic 
regression coefficients, compared to the overall average outcome. A positive number means a higher 
probability on poor outcome.

Hospital n Fixed effect

unadjusted

Random effect 

unadjusted

Fixed effect

adjusted

Random effect

adjusted

1

2

3

4

5

6

7

8

9

10

39

92

31

40

22

24

99

36

50

70

0.24

0.81

–0.72

–0.43

0.86

–1.01

–0.55

1.39

0.04

–0.29

0.18

0.70

–0.54

–0.35

0.53

–0.68

–0.51

0.90

0.02

–0.27

–0.36

0.45

–1.04

–0.44

0.91

–0.47

–0.15

1.23

0.00

–0.09

–0.18

0.35

–0.50

–0.24

0.34

–0.21

–0.13

0.60

0.01

–0.05

Figure 2.1  Differences between centers with unadjusted fixed effect estimates, unadjusted random 
effect estimates, adjusted fixed effects estimates and adjusted random effect estimates. A positive num-
bers means a higher probability on poor outcome. Dot size indicates sample size per center.
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Further changes were seen after accounting for variation by chance with adjusted 

random effect models (Table 2.3, Figure 2.1). As expected random effect estimation 

did not affect estimates for the larger hospitals, such as 2 and 7. But for the smaller 

hospitals, such as hospitals 5, 6, and 8, the point estimates were shrunken consider-

ably. None of the hospitals had a deviation significantly different from the average in 

the random effect model, but the overall heterogeneity was still statistically significant 

(Table 2.2).

Ranking and rankability 

We first ranked hospitals based on unadjusted and adjusted fixed effect estimates and 

adjusted random effect estimates. Figure 2.2 shows that some hospitals such as 1, 3 

and 4 change rank after adjustment for patient characteristics, and some small hospi-

tals such as 5 and 6 again change rank after accounting for variation by chance with 

random effect estimation. 

Figure 2.2  Ranks (left y axis) of 10 centers in fixed effect unadjusted, fixed effect adjusted, and ran-
dom effects adjusted analyses, and Expected Rank. Dot size indicates sample size per center. 

Subsequently, we calculated the Expected Rank (ER) and Percentile based on Expected 

Rank (PCER). Figure 2.2 shows that the ER led to shrinkage of the ranks towards the 

median rank of 5.5, with 6 hospitals having an ER close to this median. Hospital 6 

seemed to do best with rank 1 in unadjusted analysis, shifted to rank 2 in adjusted 

analysis, to rank 3 in random effects analysis, and had an ER around 4, meaning that at 

most 4 out of 10 hospitals are expected to do better than this hospital. 
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With the PCER we can express the ERs on a 0 to 100% scale. Hospital 8 had a PCER of 

86%, meaning there is a 86% probability that a randomly selected hospital does better 

than hospital 8. Hospital 3 had the best PCER (17%), meaning that there was only a 17% 

probability that a randomly selected hospital does better than hospital 3. 

The rankability was 55%. This means that of the total variation between hospitals 

after adjustment, 55% was not due to chance.  

Discussion

In this study we found large differences in the proportion of patients with poor outcome 

after stroke between hospitals. Adjusting for 12 potential confounders led to halving of 

the chi-square seen in unadjusted analysis, and considerable changes in performance 

estimates for individual hospitals. Further changes were seen after accounting for un-

certainty in the random effect estimation, especially for smaller hospitals.  Ordering the 

hospitals by means of the Expected Rank led to shrinkage of the simple ranks of 1 to 10 

towards the median rank of 5.5 and to a different order of the hospitals. 

A limitation of our study is we not able to do power calculations because we did not 

define a formal hypothesis on the difference between the hospitals. Our results should 

be considered as part of a larger debate on measuring quality of care. Measuring qual-

ity of care can have multiple purposes. A first broad distinction can be made between 

internal and external purposes. The first can for example be an internal quality system, 

or ‘benchmarking’, with the initiative at the side of the hospital. The second includes 

increasing accountability to governments, patients and insurance companies. These 

purposes are related, since a relatively poor performance might be an incentive for a 

hospital to stimulate improvements. Such feedback can lead to a continuous quality 

improvement. The results of this study apply more to external than to internal quality 

measurement.

If we want to compare hospitals, we can debate what to measure and how to mea-

sure it. In this study we focused on outcome (in this case the combination of mortal-

ity and disability), but quality of care measures may also include for example patient 

satisfaction, and organizational issues such as procedures and processes of delivering 

care.15, 16 It is known that outcome is not always a valid indicator of quality of care.12 

Therefore some argue that we should concentrate on direct measurement of adherence 

to clinical and managerial standards.6 Moreover, measuring adherence to guidelines 

provides clear directions for improvement of care in all hospitals, not only in those 

with poor outcome. Examples of such an approach in stroke are the ‘Get With The 

Guidelines’ program in the USA and the Scottish Stroke Care Audit.17, 18 Those in favor 

of outcome assessment, however, advocate that quality assessment on process level 

requests a too detailed data collection, and conclusions on quality depend largely on 

the selection of process measures.19
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In debates around measuring quality of care based with outcome the issue of case-mix 

adjustment has received substantial attention.20, 21 Our study shows that this is indeed 

very important for stroke outcomes, since half of the differences, in terms of chi-

square, between hospitals was explained by differences in case-mix. One hospital even 

seemed to perform poorly but appeared to perform well after adjustment for their un-

favourable case-mix. We used a relatively simple model without any interaction terms 

for adjustment. In previous work we showed that age, sex and stroke subtype alone 

have only a moderate predictive strength (AUC: 0.690; AUC of total model: 0.804)12 

The choice for an adjustment model should be a trade-off between the performance of 

the model and available data. It was surprising that in our model hypertension and hy-

perlipidemia were protective for poor outcome (OR=0.6). Both were scored if noted in 

medical history or if diagnosed during hospitalization. Most patients with one of these 

conditions were already diagnosed before their stroke and thus treated with antihyper-

tensive drugs or statins, this may cause the protective effect.  

A second issue in comparing hospitals is variation that exists just by chance. If 

there are hospitals involved with small samples sizes, using fixed effect models that 

disregard the variation by chance could lead to exploding estimates of the hospital ef-

fects, and over-interpretation of the differences. Random effect models do account for 

variation by chance; they allow imprecisely estimated outcomes from small hospitals to 

‘borrow’ information from other hospitals, causing their estimates to be shrunk toward 

the overall mean. Random effect models are thus more robust.3, 5-10, 20 Our study shows 

that the random effect estimates are indeed more conservative. In random effect analy-

ses, none of the hospitals had an effect that was significantly different from zero, while 

some had in the fixed effect analyses. The variation by chance had a large impact on 

the conclusions drawn about the hospitals. Individual hospitals are often too small to 

reliably determine whether they are an outlier. Small hospitals are more likely to suffer 

more from variation just by chance than large hospitals.23 

We derived the random effect estimates directly from the fitted model since it is eas-

ily available now in statistical packages (such as R) and since we were able to repro-

duce our results with other fitting methods and with other software. The random effect 

estimates can also be calculated in two steps.24

Although random effect analyses are preferable for estimation of differences 

between hospitals, simple integer ranking based on these random effect estimates 

disregards uncertainty, and may lead to over-interpretation again. With the expected 

rank, uncertainty of the hospital effect estimates is also incorporated in the ranking. 

E.g., we found that 6 of the 10 hospitals were close to the median rank. ERs are a bet-

ter representation of the random effect estimates. Approaches similar to the ER have 

been proposed by others.4, 5, 25-27  For ease of interpretation we calculated the percentile 

based on expected rank, which is independent from the number of hospitals in the 

sample and indicates the probability that a hospital is worse than a randomly selected 

hospital, including itself. 
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A practical approach to ranking based on risk standardized mortality rates with 95% 

confidence intervals, estimated with hierarchical (random effects) modelling, was 

recently been proposed by Krumholz et al.28  However, interpreting the magnitude and 

clinical significance of differences between hospitals with overlapping 95% confidence 

intervals is difficult.29 The PCER consists of only one number. Although there is an 

almost universal agreement that a confidence interval is more informative than just an 

estimate, we believe that for lay people (patients who want to choose between hospi-

tals) it is easier to interpret one number compared to an estimate and its confidence 

interval. On the other hand, the PCER does not show directly the degree of variation by 

chance, although it is included in the calculation of the single number. In our perspec-

tive the PCER approach could be a useful extension to reporting of provider perfor-

mance, since it combines the attractiveness of a ranking, provides a single number and 

is easy to interpret. 

Some guidelines have recently been published with respect to statistical methods 

for public reporting of health outcomes, which suggest 7 preferred attributes of statis-

tical modelling for provider profiling: (1) clear and explicit definition of patient sample, 

(2) clinical coherence of model variables, (3) sufficiently high-quality and timely data, 

(4) designation of a reference time before which covariates are derived and after which 

outcomes are measured, (5) use of an appropriate outcome and a standardized pe-

riod of outcome assessment, (6) application of an analytical approach that takes into 

account the multilevel organization of data, and (7) disclosure of the methods used to 

compare outcomes, including disclosure of performance of risk-adjustment methodol-

ogy in derivation and validation samples.30 In this study we have focused mainly on 

attribute 6. We have also adjusted for case-mix (attribute 7) but the model we used was 

quite simple and not externally validated. We suggest adding an attribute: consider a 

measure of rankability to judge what part of the observed differences is not due by 

chance. It remains however a value judgment when ranking is appropriate. We would 

suggest that any ranking is meaningless when rankability is low (<50%), that the ER 

should be used when rankability is moderate (>50% and <75%) and that simple integer 

ranks are appropriate when rankabilty is high (>75%). ERs and integer ranks will then 

be very similar. 

We label remaining between hospital differences ‘unexplained’, since there can be 

many explanations to differences in outcome, including process of care, hospital char-

acteristics, and more (unknown) patient characteristics. We will probably never know 

how large the ‘true’ differences are, or be able to completely explain them.18  

To conclude, this study shows that adjustment for case-mix is crucial in measuring 

quality of care and ranking hospitals. Case-mix adjusted random effect estimates and 

the Expected Ranks are more robust alternatives to traditional traditional fixed effect 

estimates and simple rankings and may assist to prevent over-interpretation. 
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Appendix 1: Formulas

Fixed effect logistic regression: 

Logit(P(Yij = 1|Xij)) = ßXij + θi

with 

Xij	� the covariates (in this case the confounders) describing the patients 

characteristics of patient j in hospital i, including the constant term,

ß	� the regression coefficients describing the effect of the covariates and 

the intercept,

θi 	� the effect of hospital i, that is the coefficient with respect to some 

overall mean.

Random effect logistic regression: 

Logit(P(Yij = 1|Xij)) = ßXij + θi

with 

Xij 	� the covariates (in this case the confounders) describing the patients 

characteristics of patient j in hospital i, including the constant term,

ß 	� the regression coefficients describing the effect of the covariates and 

the intercept,

θi 	� the effect of hospital i, that is the coefficient with respect to some 

overall mean, drawn from a normal distribution with mean and variance

Expected rank: 

ERi = 1 = Σi≠k((F(θi – θk))/√(var(θi) + var (θk)))

with

F	 the normal distribution function,

θi – θk 	� magnitude of the difference of a particular hospital with other hospitals 

and,

var(θi) + var (θk) 	the uncertainty in this difference. 

Percentiles based on expected ranks: 

PCERi = 100*(ERi – 0.5)/N

with 

ERi	 the expected rank of a particular hospital and, 

N 	 the number of hospitals.

Rankability:

ρ = τ2/(τ2 + median(si
2))

with:

τ2 	 the variance of the random effects,

si
2 	 the variance of the fixed effect individual hospital effect estimates.
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Appendix 2: R code

# Load required packages

library(Design)

library(lme4) #fits random effect logistic regression models

library(foreign) #can import foreign data files 

# Import 

cva <–– as.data.frame(read.spss(‘D:/My Documents/.........sav’))

# Test differences between hospitals with fixed and random effects (Table 2.2)

# Hospital in fixed effect analysis(‘CENTER’)for poor outcome(‘RANKIN6’)

unadjusted.ZH <–– lrm(RANKIN6~as.factor(CENTER),data=cva)

deviance(unadjusted.ZH)[1] – deviance(unadjusted.ZH)[2]

pchisq(q=deviance(unadjusted.ZH)[1] – deviance(unadjusted.ZH)[2], df=9, 0, F)

# Result: chi2=49.7, df=9, p=1.24e – 7

# Random effects model

unadj.ZH.Laplace <–– lmer(RANKIN6~1+(1|CENTER), family=binomial, 

method=‘Laplace’, data=cva)

deviance(unadjusted.ZH)[1] – deviance(unadj.ZH.Laplace)

pchisq(q=deviance(unadjusted.ZH)[1] – deviance(unadj.ZH.Laplace), df=1,

lower.tail=F) /2 # divide p-value by 2

# Result: chi2=23, df=1, p= 6.23e – 7

# Full model 12 confounders  

full <–– lrm(RANKIN6~AGE+SEX+DIAGNOSE+BARTDEP+PRECVA+SEVERESTR+GCSLOW+

AF+IHD+DIAB+HYPTEN+HYPERCH, data=cva, x=T, y=T)

full.ZH <–– lrm(RANKIN6~AGE+SEX+DIAGNOSE+BARTDEP+PRECVA+SEVERESTR 

+GCSLOW+AF+IHD+DIAB+HYPTEN+HYPERCH+as.factor(CENTER),data=cva)

fullr.ZH.Laplace <–– lmer(RANKIN6~AGE+SEX+DIAGNOSE+BARTDEP+PRECVA

+SEVERESTR+GCSLOW+AF+IHD+DIAB+HYPTEN+HYPERCH+(1|CENTER), 

family=binomial, method=‘Laplace’, data=cva, x=T,  model=T)

deviance(full)[2] – deviance(full.ZH)[2]

pchisq(q=deviance(full)[2] – deviance(full.ZH)[2], df=9, lower.tail=F)

# Result: chi2=24, df=9, p= 0.00415

deviance(full)[2] – deviance(fullr.ZH.Laplace)

pchisq(q=deviance(full)[2] – deviance(fullr.ZH.Laplace), df=1,lower.tail=F)/2

# Result: chi2=4 df=1 p=0.0275
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# Estimate differences between hospitals (Tables 2.3 and 2.4, figure 2.1)

# make center.effects function for individual hospital effects, 

# a matrix with differences against the average

# function for individual hospital effects

center.effects <–– function(outcome,center,lp=F) {

Ncenter <–– table(center)

ncenters <–– length(Ncenter)

resultsR <–– matrix(nrow=ncenters,ncol=8)

dimnames(resultsR) <–– list(1:ncenters, c(‘Label’, ‘GROUP’,’n’, ‘p’,’pmean’, ‘Coef’, ‘SE’, 

‘Var’))

# compare to average if no lp is given

if (lp[1]==F) lp <–– rep(log(mean(outcome)/

(1–mean(outcome))),length(outcome))#logit function

for (i in 1:ncenters) { # go through all hospitals

f <–– lrm.fit(y=outcome[center==i], offset=as.vector(lp[center==i]))

resultsR[i,] <–– c(1,i,f$stats[1],sum(outcome[center==i])/f$stats[1], 

mean(outcome), f$coef, sqrt(f$var), f$var)

resultsR

} # End loop over hospitals

} # end function for hospital effects

# linear predictors unadjusted and adjusted fixed effects

lpuni <–– rep(log(mean(cva$RANKIN6)/(1–mean(cva$RANKIN6))),

length(cva$RANKIN6))+rnorm(length(cva$RANKIN6), mean=0, sd=.001) #logit func-

tion 

lp.cva <–– full$x  %*% full$coef[2:13] + full$coef[1]

adj.ZH <–– center.effects(cva$RANKIN6,center=cva$CENTER,lp=lp.cva)

adj.ZH

unadj.ZH <–– center.effects(outcome=cva$RANKIN6, center=cva$CENTER, lp=lpuni)

unadj.ZH

# Adjusted with random effect estimation

rZH <–– ranef(fullr.ZH.Laplace, postVar=T) #random effect estimates and variance

RA.ZH <–– cbind(as.vector(rZH[[1]]), as.vector(sqrt(rZH[[1]]@postVar)))

names(RA.ZH) <–– c(‘Coef’, ‘SE’)

RA.ZH #Results



c h ap  t e r  2   Comparing and ranking hospitals based on outcome after stroke 3 9

# Rankings

ER <–– rep(NA,10)

tau2 <–– as.numeric(VarCorr(fullr.ZH.Laplace)[[1]])

for (i in 1:10) {

ER[i] <–– 1+ sum(pnorm((RA.ZH [i,1] – RA.ZH [–i,1])/

sqrt(RA.ZH [i,2]^2 + RA.ZH [–i,2]^2)))

} # end loop

PCER <–– 100*(ER – 0.5)/10

cbind(rank(unadj.ZH[,‘Coef’]), rank(adj.ZH[,‘Coef’]),

rank(RA.ZH[,‘Coef’]), ER, PCER)	

# rankibility rho:

sigma2 <–– adj.ZH[,8] # variance of fixed effect estimates

rho <–– tau2/(tau2+median(sigma2))



3  Rankability of hospitals  
using outcome indicators 

van Dishoeck AM, Lingsma HF, Mackenbach JP, Steyerberg EW.  

Random variation and rankability of hospitals using performance  

indicators. Submitted. 



Abstract
Objective

There is a growing focus on quality and safety in health care. Outcome 

indicators are increasingly used to rank hospital performance, but the 

reliability of ranking is under debate. We aim to quantify the rankability of 

several outcome indicators of hospital performance currently used by the 

Dutch government. 

Methods

From 52 indicators used by the Netherlands Inspectorate, we selected nine 

outcome indicators presenting a fraction and absolute numbers. Of these 

indicators, four were combined into two, resulting in seven indicators for 

analysis. We used the official data of 97 Dutch hospitals of the year 2007. We 

estimated uncertainty of the observed outcome within the hospitals (within 

center variance, σ2) with fixed effect logistic regression models. We measured 

heterogeneity (between center variance, τ2) with random effect logistic 

regression models. Subsequently, we calculated the rankability by relating 

heterogeneity to uncertainty within and between centers (τ2 / (τ2 +median 

σ2)).

Results

Sample sizes varied typically around 200 per center (range of median 90-

277) with median 2-21 cases, causing a substantial uncertainty of outcomes 

per center. Although 4-8 fold differences between hospitals were noted, 

the uncertainty within the centers caused a poor (< 50%) rankability in 3 

indicators and moderate rankability (50-75%) in the other 4 indicators. 

Conclusion

The currently used Dutch outcome indicators are not suitable for ranking 

hospitals. When judging hospital quality the influence of random variation 

must be accounted for to avoid overinterpretation of the numbers in the 

quest for more transparency in health care. Adequate sample size is a 

prerequisite in attempting reliable ranking.
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Introduction

There is a growing focus on quality and safety in health care. Increasingly indicators 

are used to assess hospital performance. In different countries nationwide systems 

have been set up to monitor the performance of health care institutions using a frame-

work of structure, process and outcome indicators.1, 2 Public disclosure of the results 

of hospital performance leads to several inconsistent rankings and there is a growing 

concern among professionals about the value and reliability of these ranks.3-10

Two core components determine the reliability of ranking; within center uncertainty 

and between center heterogeneity. The amount of uncertainty in the analysis of hospi-

tal performance is higher than intuition might have suggested.11 For low-incidence sur-

geries and for smaller subgroups in the population uncertainty was large. The smallest 

hospitals would likely experience five to seven times more uncertainty concerning 

their ranks.12 For instance, to assess the influence of uncertainty of revision rates in 

orthopedic surgery, fixed and random effect models have been used.13 In contrast to 

the random-effects model, uncertainty can easily cause overly optimistic or pessimistic 

outcomes in the fixed-effects model. 

Secondly there is heterogeneity between centers.14 Heterogeneity relates to the true 

differences beyond chance between centers and can be estimated with random effect 

models. Both components determine ‘rankability’ of an outcome indicator. 

Lingsma et al used rankability to assess ranking of a small numbers of IVF clinics.15 

They found considerable heterogeneity, while uncertainty per clinic was small because 

of large numbers. This resulted in a substantial rankability with only 10% of the ob-

served differences between the clinics attributed to chance. There are no minimal sam-

ple size requirements for the indicators used by the Dutch government. The numbers 

may be much smaller, making ranking attempts less reliable. We aim to quantify the 

rankability of several outcome indicators of hospital performance in the Netherlands.
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Methods

Data

We obtained the data from the Netherlands Inspectorate’s indicator set. The inspec-

torate uses this set to assess possible flaws in the quality of care in Dutch hospitals. 

This obligatory set includes 21 areas with 52 performance indicators (PIs), of which 14 

are outcome indicators presenting actual numbers (nominator and denominator) and 

corresponding percentages. Five indicators were excluded because of clear evidence of 

registration bias, such as extrapolation of a limited sample in time or patient groups, 

leaving 9 outcome indicators (Table 3.1). We used the data of 2007, which are publicly 

available at www.ziekenhuizentransparant.nl. For acute myocardial infarction (AMI), 

the majority of hospitals reported the in-hospital mortality instead of the 30-day mor-

tality. Several hospitals report both. Using these data, we multiplied 0.74 to the 30-day 

mortality to include data for the five hospitals that only reported 30-day mortality. 

Uncertainty

We used nominator and denominator data for each hospital to create a patient level data-

set. We estimated a coefficient for unfavorable outcome for each hospital and compared 

it to the overall average, using a fixed effect logistic regression model with an offset vari-

able and center as a categorical variable. The standard error of the estimated coefficient, 

representing the mean outcome (σ2) indicated the uncertainty within the hospital. 

Heterogeneity

We fitted a random effect logistic regression model to estimate unexplained heteroge-

neity, indicated by τ2 (the between center variance). Unlike the fixed effect model, the 

random effect model accounts for the fact that the observed outcomes for smaller hos-

pitals can take on extreme values because of random variation. The variance indicates 

the differences between hospitals beyond chance.16

For the interpretation of τ2 we calculated a 95% range of odds ratios for the centers 

compared to the average as exp(–1,96* τ2);exp(1,96* τ2).17 

Rankability

To estimate rankability, we use the following formula:

ρ = τ2 / (τ2 +median σ2)

Rankability relates the heterogeneity τ2 from the random effect logistic regression 

model (differences between the hospitals) to the standard error σ2 of the individual 

hospitals from the fixed effect logistic regression model. Rankability can be interpreted 

as the part of heterogeneity between hospitals that is due to unexplained differences, 

and the rest is due to natural variation or chance. Therefore, rankability describes the 

reliability of ranking. 
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Table 3.1  Outcome indicators and their description

Indicator Numerator Denominator 

Nosocomial Pressure Ulcer (PU) 
prevalence among hospitalized 
patients

Number of patients with a pres-
sure ulcer grade 2–4

All hospitalized patients who 
were examined for the presence 
of PU

Pressure Ulcer (PU) incidence 
after total hip replacement

Number of patients with a pres-
sure ulcer grade 2–4

All total hip replacement patients

Bile duct leakage within 30 days 
after cholecystectomy

Number of patients with bile 
duct leakage within 30 days after 
cholecystectomy

All patients with a cholecystec-
tomy

Unintended reoperation after 
colorectal surgery

Number of unintended reopera-
tion after colorectal surgery

All colorectal operations exclud-
ing appendix

In hospital mortality after acute 
myocardial infarction (AMI) for 
patients younger than 65 years

Number of patients younger than 
65 years deceased during hospi-
talization because of AMI

All patients younger than 65 
years hospitalized because of 
AMI

In hospital mortality after acute 
myocardial infarction (AMI) for 
patients of 65 year and older

Number of patients 65 years and 
older deceased during hospital-
ization because of AMI

All patients 65 years and older 
hospitalized because of AMI

Readmission after heart failure 
for patients younger than 75 year

Number of readmissions after 
heart failure within 12 weeks af-
ter hospital discharge in patients 
younger than 75 years 

All patients younger than 75 
years admitted for heart failure.

Readmission after heart failure 
for patients 75 year and older

Number of readmissions after 
heart failure within 12 weeks af-
ter hospital discharge in patients 
75 years and older 

All patients younger 75 years and 
older admitted for heart failure.

Remaining cancer tissue after 
breast-conserving lumpectomy 

Number of patients in whom 
cancer tissue is left after an initial 
local excision of a malignant 
breast tumour

All  patients treated with a local 
excision of a malignant breast 
tumour

Case-mix adjustment

The data on performance indicators did not include patient characteristics, except for 

two outcomes; AMI mortality and heart failure re-admission. The original indicators are 

stratified by age. We combined the indicators AMI <65 years + ≥65 years, and heart 

failure <75 years + ≥75 years in two datasets and applied a limited age adjustment by 

putting age group in the fixed part of the random effect model.

The statistical analysis was performed with R statistical software (version 2.7.1, R 

Foundation for Statistical Computing, Vienna, Austria), using the lme4 library to fit 

random effect logistic regression models.
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Results

We studied nine outcome indicators of which four were combined in two (Table 3.1).

Within center uncertainty

The number of cases with unfavorable outcome, as well as the total number of patients 

per center varied widely for the different indicators (Table 3.2). For instance, pressure 

ulcer prevalence varied from 0–39 cases, while the number of patients ranged from 

59–548. For cholecystectomy, the number of cases with bile duct leakage was very 

small (median 2). A considerable number of hospitals reported zero cases (29 out of 

97), resulting in a median incidence of leakage of the bile duct of 0,5%. The within 

center uncertainty was largest among cholecystectomy patients (σ 1.01), and pressure 

ulcer incidence (σ 0.85), due to small number of cases (Table 3.3). 

Table 3.2  Descriptive statistics

Indicator n center Median Cases 
(range)

Median N  
(range)

Median outcome 
% (range)

Nosocomial Pressure Ulcer prevalence 93 10 (0–39) 233 (59–548) 3.7 (0–11.1)

Nosocomial Pressure Ulcer incidence 
total hip replacement

90 2 (0–23) 197 (26–1131) 1.1 (0–8.9)

Leakage of the bile duct within 30  
days after cholecystectomy

95 2 (0–7) 255 (109–625) 0.5 (0–3.63)

Unintended reoperation after  
colorectal surgery

94 15 (0–47) 209 (57–557) 6.9 (0–18.4)

In hospital mortality after AMI age  
<65 years

88 1 (0–17) 85.5 (4–720) 1.1 (0–6.8)

In hospital mortality after AMI age  
≥65 years

88 10 (0–46) 117.5 (28–541) 8.6 (0–20.8)

Readmission after heart failure age  
<75 years

93 6 (0–30) 77 (13–389) 7.9 (0–22.6)

Readmission after heart failure age  
≥75 years

93 10 (0–50) 133 (13–376) 8.0 (0–23.1)

Remaining cancer tissue after breast-
saving lumpectomy

94 7 (1–46) 76 (14–300) 10.5 (1.2–35.7)
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Table 3.3  Rankability

Indicator sigma2 tau2 95% range OR rankability

– +

Nosocomial Pressure Ulcer prevalence 0.19 0.11 0.52 1.91 37%

Nosocomial Pressure Ulcer incidence 
total hip replacement

0.85 0.16 0.46 2.17 38%

Leakage of the bile duct within 
30 days after cholecystectomy

1.01 0.00 1 1 0%

Unintended reoperation after 
colorectal surgery

0.12 0.29 0.35 2.86 71%

In hospital mortality after AMI age 
groups combined# 0.19 0.27 0.36 2.76 58%

Readmission after heart failure age 
groups combined# 0.14 0.15 0.47 2.11 51%

Remaining cancer tissue after 
breast-saving lumpectomy

0.25 0.28 0.35 2.82 53%

# results for the combined age groups are adjusted for age

Between center heterogeneity

Heterogeneity between the centers varied from none (τ2 0) for cholecystectomy, to τ2 

0.29 for colorectal surgery. The corresponding 95% range of the odds ratios was 0.35 

and 2.86 for colorectal surgery, meaning that hospitals at the higher end of the distri-

bution had a 2.86 higher chance of re-operation than in the average hospital. Similar at 

the lower end of the distribution patients had a 0.35 lower chance of reoperation. This 

was equivalent to an eight-fold difference between the hospitals for this indicator. 

Rankability

Due to the large between center differences, rankability was the highest (71%) for 

colorectal surgery and the lowest (<50%) for the indicators pressure ulcer prevalence, 

pressure ulcer incidence, and cholecystectomy. For pressure ulcer the rankability was 

relatively low despite a σ2 of 0.19 related to the small between center differences τ2. 

Rankability was moderate (50%-75%) for the indicators colorectal surgery, AMI, heart 

failure readmission, and breast saving lumpectomy. 

Adjustment for case-mix revealed that a part of the heterogeneity in the AMI indica-

tor could be explained by age. For heart failure readmission, age was borderline signifi-

cant. Rankability for the combined indicator AMI was 58% and for heart failure 51%.
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Discussion

We tested several outcome indicators on their reliability for ranking hospitals using the 

concept of rankability. Combining fixed effect logistic regression models and random 

effect logistic regression models, we could estimate uncertainty within the individual 

hospitals and the unexplained heterogeneity between hospitals. We found considerable 

variability due to chance alone within the hospitals. On the other hand, the unex-

plained differences between the hospitals were small for some indicators. Both lead to 

low rankability.

The indicators in our research showed substantial uncertainty that influenced rank-

ability. For cholecystectomy, there were no differences other than those by chance 

alone between the hospitals. Using this indicator for ranking hospitals is useless. This 

adds to the criticism by de Reuver et al about this indicator.18 Substantial heterogeneity 

led to high rankability in the colorectal surgery indicator (71%). Nevertheless, for this 

indicator it remains unclear how much of these differences are caused by case mix. It 

is plausible that the indication for surgery such as traumatic injury or colorectal cancer 

may play a role in reoperation rate. Case mix correction should be performed before 

using this indicator for ranking hospitals. 

The lack of heterogeneity influences the rankability of the pressure ulcer prevalence. 

For cholecystectomy the between hospital differences did not exceed chance variabil-

ity. For AMI and heart failure, we were able to perform a simple stratification for two 

age groups. Combining both age groups resulted in a larger number of cases and total 

numbers. While rankability of the group of patients younger than 65 was low due to the 

limited number of cases, the pooled data stratified for age had a moderate rankability 

(51%). 

The measurement of rankability provides a way of assessing reliability of ranking. 

The rankability can be seen the ratio between signal and (statistical) noise. A rank-

ability of 50% then indicates 50% signal on quality of care and 50% statistical noise. 

A categorization for rankability is yet still arbitrary. Lingsma et al suggested that > 

70% rankability should be fair to rank hospitals.15 Higgins et al assigned adjectives of 

low, moderate and high to the I2 values of 25%, 50% and 75%.19 I2 is used to measure 

heterogeneity in meta-analyses20 and is similar in nature to our rankability measure. I2 

can be interpreted as the percentage of the total variability in a set of effect sizes due 

to heterogeneity, that is, to between study variability. Adopting this categorization, we 

found that none of the outcome indicators had a high rankability. It could be argued 

that in case of moderate rankability, ‘expected ranks’ should be used that take into ac-

count random variability.12-14 This requires statistical knowledge and access to advanced 

statistical programs. No ranking attempt should be made with low rankability. 
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Compared to previous research of IVF patients, rankability in our data was much low-

er.15 Only 10% of the differences between IVF centers were explained by chance, which 

is explained by the large sample size of the IVF centers studied (median 654 cycles). In 

the Dutch outcome indicators, not only the total numbers were sometimes small (me-

dian between 90 and 277) but also the outcome was frequently low. Simple rankings 

based on fixed effects of hospital performance disregards both the magnitude and the 

uncertainty of the differences between hospitals.21 An illustrative example is the chole-

cystectomy indicator, where the number of cases was too low to detect any differences 

between hospitals. Small samples and low event rates limit the statistical power of the 

comparison between hospitals.22 

This raises questions about minimal power calculations or combining indicators to 

provide sufficient sample size. Classical power calculation or estimating minimal cases 

and total numbers might be performed using Cohen’s D. D is defined as the difference 

between two means divided by the standard deviation. Effect sizes are commonly 

defined as small, d =0.2, medium, d =0.5, and large, d =0.8. We might use a variant of 

Cohen’s D for event rate. The population size for d=0.5 than is at least 200 and at least 

800 for d= 0,2 for indicators with sufficient event rates.23 These numbers can be used 

as ‘a rule of thumb’ for the assessment of the reliability of ranking hospitals. Looking 

at the sample sizes for the pressure ulcer indicator (59-548) in the Dutch hospitals, it 

is questionable if this indicator will ever be suitable for ranking hospitals. The maxi-

mal sample size is limited by the number of beds in a hospital. In case of inadequate 

numbers the presentation the results of a specific indicator could be done using funnel 

plots, since this presentation visualizes the differences between hospitals in relation 

to random variation.24 Realistic presentation is important to avoid gaming and truly 

encourage actions to improve the quality of care.25 

Reliability of ratings depends on sample size and heterogeneity, but also on biases. 

We can draw a conceptual framework to summarize the elements of between center dif-

ferences (Figure 3.1).15 The observed differences can be divided in unexplained differ-

ences and chance. By using random effect models chance can be corrected for, leaving 

patients characteristics, registration bias, quality of care and residual confounding as 

elements of the unexplained differences. In our research, the uncertainty is accounted 

for in calculating rankability. Consequently, ranking reflects the total of unexplained 

differences between hospitals and not true differences in the quality of care. This is a 

limitation of this study, but the data as publicly reported does not provide any addi-

tional information.
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Figure 3.1  Conceptual framework of between-center differences. Observed differences can be divided 
in random variation and unexplained differences, which can be further attributed to patient charac-
teristics that were not adjusted for, residual confounding because of imperfect case-mix correction, 
registration bias. Differences in quality of care remain as explanation for a final part of between-center 
differences.

We conclude that none of the currently used Dutch outcome indicators is suitable for 

ranking hospitals. When judging hospital quality the influence of random variation 

must be accounted for to avoid overinterpretation of the numbers in the quest for more 

transparency in health care. Adequate sample size is a prerequisite in attempting reli-

able ranking.
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Abstract
Background

Logistic random effects models are popular to analyze multilevel data with 

a binary or ordinal outcome. Here, we aim to compare different statistical 

software implementations of these models. 

Methods

We used individual patient data from 8509 patients in 231 centers with 

moderate and severe Traumatic Brain Injury (TBI) enrolled in eight 

Randomized Controlled Trials (RCTs) and three observational studies. We 

fitted logistic random effects regression models, with the 5-point Glasgow 

Outcome Scale (GOS) as outcome, both dichotomized as well as ordinal 

with center as a random effect, and as covariates age, motor score, pupil 

reactivity and study. We then compared estimates of the fixed and random 

effects from different statistical packages. Bayesian approaches included 

MLwiN, WinBUGS and the SAS experimental procedure MCMC, frequentist 

approaches included R (lmer), MIXOR, SAS (GLIMMIX and NLMIXED), and also 

MLwiN. 

Results 

The packages gave similar parameter estimates for both the fixed effects 

and random effects, for both the binary and ordinal models. The software 

implementations differed however considerably in flexibility, computation 

time, and usability. There were also differences in the availability of 

additional tools for model evaluation, such as diagnostic plots. The 

experimental SAS procedure MCMC appeared to be inefficient. 

Conclusion

All studied software implementations of logistic random effects regression 

models produce similar results. If there is no explicit preference for a 

frequentist or Bayesian approach, the choice for a particular implementation 

may solely depend on the desired flexibility, and the usability. 
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Introduction

Hierarchical, multilevel, or clustered data structures are often seen in medical, psycho-

logical and social research. Examples are: (1) individuals in households and households 

nested in geographical areas, (2) surfaces on teeth, teeth within the mouth, (3) children 

in classes, classes in schools, (4) multicenter clinical trials, in which individuals are 

treated in centers, (5) meta-analyses with individuals nested in studies. Multilevel data 

structures also arise in longitudinal studies where measurements are clustered within 

individuals. 

The multilevel structure induces correlation among observations within a cluster, 

e.g. between patients from the same center. An approach to analyze clustered data is 

the use of multilevel or random effects regression analysis. There are several reasons 

to use a random effects model instead of a traditional fixed effects regression model.1 

First, we may want to estimate the effect of covariates at the group level, e.g. type of 

center (university versus peripheral center). Using a fixed effects model it is not pos-

sible to separate out group effects and effect of covariates on the group level. Sec-

ondly, random effects models treat the groups as a random sample from a population 

of groups. Using a fixed effects model, inferences cannot be made beyond the groups 

in the sample. Thirdly, statistical inference may be wrong. Using traditional regression 

techniques that not recognize the multilevel structures will cause the standard errors of 

regression coefficients to be wrongly estimated, leading to an overstatement or under-

statement of statistical significance for the coefficients of the higher-level covariates. 

All this is common knowledge in the statistical literature,2 but in the medical litera-

ture still multilevel data are often analyzed using fixed effects models.3 

In this paper we use a multilevel dataset with an ordinal outcome, which we analy-

sed as such, and dichotomized as a binary outcome. Relating patient and cluster char-

acteristics to the outcome requires the use of a logistic random effects model. Such 

models are implemented in many different statistical packages, all with different fea-

tures and using different computational approaches. Thus, it is possible that different 

packages give different parameter estimates. In this study we aim to compare different 

statistical software implementations, with regard to the results they give, the methods 

they use and their usability. The implementations include both frequentist and Bayes-

ian approaches. 
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Methods

Data

The dataset we used for this study is the IMPACT (International Mission on Prognosis 

and Clinical Trial design in TBI) database. This dataset contains individual patient data 

from 9,205 patients with moderate and severe Traumatic Brain Injury (TBI) enrolled in 

eight Randomized Controlled Trials (RCTs) and three observational studies. The pa-

tients were treated in different centers, giving the data a multilevel structure. For more 

details on this study, we refer to Marmarou et al.4, and Maas et al.5. 

Outcome

The outcome in our analyses is the Glasgow Outcome Scale (GOS), the commonly used 

outcome scale in TBI studies. GOS is an ordinal five point scale, with categories dead, 

vegetative state, severe disability, moderate disability and good recovery. We analyzed 

the GOS as a binary outcome, dichotomized into ‘unfavourable’ (dead, vegetative and 

severe disability) versus ‘favourable’ (good recovery and moderate disability), and as 

the original ordinal scale. 

Covariates

At patient level, we included age, pupil reactivity and motor score at admission as 

predictors in the model, based on previous studies.6 Age was treated as a continuous 

variable. Motor score and pupil reactivity were included as categorical variables (mo-

tor score: 1=none or extension, 2=abnormal flexion, 3=normal flexion, 4=localises or 

obeys, 5=untestable, and pupil reactivity: 1=both sides positive, 2=one side positive, 

3=both sides negative).

We also included the variable ‘study’ since 11 studies were involved and the out-

come may vary systematically among studies. In the random effects model, ‘study’ 

was turned into 11 dummy variables. The 231 centers were treated as a random effect 

(intercept) with variance σ2.

Random effects models 

In random effects models, the residual variance is split up in components that pertain 

to the different levels in the data.7 In our study, a two-level model with grouping of 

patients within centers would include residuals at the patient and center level. Thus the 

residual variance is partitioned into a between-center component (the variance of the 

center-level residuals) and a within-center component (the variance of the patient-level 

residuals). The center residuals, often called ‘center effects’, represent unobserved cen-

ter characteristics that affect patients’ outcomes. Unique for binary response random 

effects models is that only the level-2 residuals are meaningful and no level-1 residuals 

are specified.  
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A dichotomous logistic random effects model has a binary outcome (Y=0 or 1) and 

models the log odds of the outcome probability as a function of various predictors 

to estimate the probability that Y=1 happens, given the random effects. The simplest 

dichotomous 2-level model is given by

	 (1)

uj ~ N (0,σ2)	 j = 1, 2, …, J	 i = 1, 2, …, nj

With πij = Prob(Yij = 1 | covariates, uj) whereby Yij is here the dichotomized GOS (with 

Yij = 1 if GOS = 1,2,3) of the i th subject in j th center. Further, xkij represent the (first 

and second level) predictors, α1 is the intercept and βk the kth regression coefficient. 

Furthermore, uj is the random effect representing the effect of j th center. It is assumed 

that uj follows a normal distribution with mean 0 and variance σ2. In our research, xkij 

represents the covariates age, motor score, pupil reactivity and study. The coefficients 

βk can be interpreted as the log odds ratio of the predictor xkij when increasing with 

one unit and controlling for the other predictors and for the random effects in the  

model. In other words, the odds ratio (exp(βk) = ORk), is defined given uj. 

For an ordinal logistic multilevel model, we adopt the proportional odds assumption 

and hence we assume that:

	 (2)

uj ~ N (0,σ2)	 j = 1, 2, …, J	 i = 1, 2, …, nj

In model (2), Yij is the GOS of i th subject in j th center. The difference of the four equa-

tions in model (2) is only in the intercept, the effect of the covariates is assumed to 

be the same for all outcome levels (proportional odds assumption). So the coefficient 

βk can be interpreted as the log odds ratio of a higher GOS versus a lower GOS when 

Logit (πij) = α1 + ∑βkxkij + uj

K

k=1

K

k=1
Ln

 P(Yij=1)      
= α1 + ∑βkxkij + ujP(Yij=2,3,4,5)

K
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K
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the predictor xkij increases with one unit controlling for the other predictors and the 

random effects in the model. 

Both for the binary and the ordinal analysis we assume a logit link function and a 

normal distribution for the random effects, but we will also consider different link func-

tions and other random effects distributions below.

Software packages

We compared eight different programs and functions that have implemented logistic 

random effects regression models. The software packages can be divided according to 

the statistical approach upon which they are based: frequentist or Bayesian. 

The frequentist approaches are included in the program MIXOR (the first program 

launched for the analysis of a logistic random effects model), the R-function lmer in the 

lme4 package, the SAS procedures GLIMMIX and NLMIXED (here we used SAS version 

9.2), and the package MLwiN (version 2.13). 

The frequentist approaches differ in the way the integral is approximated to estab-

lish the (restricted) maximum likelihood estimate (MLE) integrated over the random 

effects. Further, they differ in the optimization technique to arrive at the MLE. 

With regard to the integral approximation, in MIXOR, only Gauss-Hermite quadrature 

is available and one can specify the number of quadrature points Q, depending on 

the desired accuracy.8 The Gauss-Hermite method is also referred to as non-adaptive 

Gaussian quadrature. The R-function lmer is based on the Laplace technique, which is 

an Adaptive Gaussian Quadrature (AGQ) technique where the integral is numerically 

calculated over the whole support of the likelihood using Q quadrature points adapted 

to the data.9 The SAS procedure NLMIXED allows for several integration approaches, we 

used AGQ as a default in this research.10 The same holds for the SAS procedure GLIM-

MIX.11 Finally, the package MLwiN adopts Marginal Quasi-Likelihood (MQL) or Penalised 

quasi-Likelihood (PQL) to achieve the approximation. Both of these two methods can be 

computed up to the 2nd order,12 here we chose the 2nd order PQL procedure. 

With regard to the optimization technique resulting in the MLE, a variety of tech-

niques has been developed. In MIXOR, the Fisher-scoring algorithm is used. R function 

lmer uses NLMINB method which is a local minimiser for the smooth nonlinear func-

tion subject to bound-constrained parameters. SAS procedures NLMIXED and GLIMMIX 

both have a large number of optimization. We chose the Newton-Raphson algorithm 

for NLMIXED and the default Quasi-Newton approach for GLIMMIX. Finally, the pack-

age MLwiN adopts iterative generalised least squares (IGLS) or reweighted IGLS (RIGLS) 

optimization methods and we used the default IGLS.

The other three programs we studied are based on a Bayesian approach, for a 

general introduction to Bayesian analysis, see Lee.13 The program most often used for 

Bayesian analysis is WinBUGS (latest version is 1.4.3). WinBUGS is based on the Gibbs 

Sampler, which is one of the Markov Chain Monte Carlo (MCMC) approaches.14 The 
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package MLwiN allows for a multilevel analysis in the Bayesian way, it is based on a 

combination of Gibbs sampling and Metropolis-Hastings sampling. Finally, recently an 

experimental SAS procedure, called PROC MCMC, was launched in version 9.2 which 

uses the Metropolis-Hastings approach.15 

In all Bayesian packages we used non-informative priors for all the regression coef-

ficients, i.e. a normal distribution with mean 0 and a large variance (104). The random 

effect is assumed to follow a normal distribution and the variance of the random ef-

fects is given a uniform prior distribution between 0.01 and 100. The total number of 

iterations for the binary outcome was 10,000 with a burn-in part 3,000. For the ordinal 

model, the total number of iterations was 100,000 and the size of the burn-in part was 

10,000.

For the Bayesian approaches, we checked convergence with the Brooks-Gelman-Ru-

bin (BGR) method.16 This method compares within-chain and between-chain variability 

for multiple chains starting at over-dispersed initial values. Convergence of the chain is 

indicated by a ratio close to 1.14

Analysis 

We fitted binary and ordinal logistic random effects regression models to the IMPACT 

data, using the different statistical packages. All packages are able to deal with the bi-

nary logistic random effects model; MIXOR, MLwiN, NLMIXED, WinBUGS and SAS MCMC 

are able to analyze ordinal multilevel data. Syntax codes are provided in appendix 1. 

We compared the packages with respect to the estimates of the parameters and the 

time needed to arrive at the final estimates. Further, we compared what extra facilities 

the software offers, what output is shown and how easy to use the program is. Finally, 

we looked at the flexibility of the software, whether it was possible to vary the model 

assumptions made in (1) and (2) such as replacing the logit link by other link functions, 

i.e. probit and log(-log) link functions or relaxing the assumption of normality for the 

random effects. 
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Table 4.1   IMPACT study: Descriptive statistics of the study population

TINT TIUS SLIN SAP PEG HIT I UK4 TCDB SKB EBIC HIT II Total

Year of study 1992–1994 1991–1994 1994–1996 1995–1997 1993–1995 1987–1989 1986–1988 1984–1987 1996 1995 1989–1991

No. of patients 1131 1155 409 924 1574 351 988 667 139 1005 852 8509

No. of centers 50 36 50 57 29 6 4 4 31 67 21 231

Outcome(GOS)

Dead 278(25%) 225(22%) 94(23%) 212(23%) 362(24%) 99(28%) 359(45%) 264(44%) 34(27%) 281(34%) 188(23%) 2396(28%)

Vegetative 44(4%) 42(4%) 14(3%) 24(3%) 114(8%) 10(3%) 13(2%) 34(6%) 6(5%) 18(2%) 32(4%) 351(4%)

Severe disability 134(12%) 128(12%) 69(17%) 142(16%) 298(20%) 62(18%) 146(19%) 95(16%) 30(24%) 123(15%) 108(13%) 1335(16%)

Moderate disab. 171(15%) 180(17%) 84(21%) 174(19%) 374(25%) 64(18%) 130(16%) 104(17%) 27(21%) 159(19%) 199(24%) 1666(20%)

Good recovery 491(44%) 466(45%) 148(36%) 367(40%) 362(24%) 115(33%) 143(18%) 107(18%) 29(23%) 241(29%) 292(36%) 2761(32%)

Predictor(age)

Median(IQ range) 30(21–45) 30(23–41) 28(21–43) 32(23–47) 27(20–38) 34(21–47) 36(22–55) 26(21–40) 27(20–39) 37.5(24–59) 33(22–49) 30(21–45)

Predictor(motor)

None 5(0%) 9(1%) 0(0%) 141(15%) 475(32%) 122(35%) 113(14%) 136(23%) 34(27%) 150(18%) 210(26%) 1395(16%)

Extension 136(12%) 143(14%) 55(13%) 123(13%) 180(12%) 41(12%) 85(11%) 107(18%) 22(18%) 80(10%) 70(9%) 1042(12%)

Abnormal flexion 237(21%) 132(13%) 91(22%) 143(16%) 165(11%) 45(13%) 37(5%) 74(12%) 14(11%) 55(7%) 92(11%) 1085(13%)

Normal flexion 327(29%) 300(29%) 127(31%) 223(24%) 334(22%) 56(16%) 141(18%) 122(20%) 16(13%) 113(14%) 181(22%) 1940(23%)

Localises 384(34%) 406(39%) 134(33%) 286(31%) 309(21%) 77(22%) 191(24%) 113(19%) 21(17%) 182(22%) 199(24%) 2302(27%)

Obeys command 29(3%) 51(5%) 2(1%) 0(0%) 47(3%) 0(0%) 30(4%) 21(4%) 2(2%) 99(12%) 8(1%) 289(3%)

Untestable 0(0%) 0(0%) 0(0%) 3(0%) 0(0%) 9(3%) 194(25%) 31(6%) 17(14%) 143(18%) 59(7%) 456(5%)

Predictor(pupil)

Both side positive 806(72%) 703(68%) 315(77%) 619(67%) 784(52%) 232(66%) 427(54%) 300(50%) 70(56%) 535(65%) 585(71%) 5376(63%)

One side positive 177(16%) 118(11%) 79(19%) 178(19%) 156(10%) 53(15%) 115(15%) 55(9%) 35(28%) 79(10%) 99(12%) 1144(13%)

Both side negative 135(12%) 220(21%) 15(4%) 122(13%) 570(38%) 65(19%) 249(32%) 249(41%) 21(17%) 208(25%) 135(17%) 1989(23%)

TINT = Tirilizad International (RCT), TIUS = Tirilizad US (RCT), SLIN = International Selfotel trial (RCT), SAP (RCT),            PEG (RCT), HIT I = HIT I Nimodipine (RCT), UK4 = UK Four Center Study (observational study), TCDB = Traumatic 
Coma Data Bank (observational study), SKB = Bradycor SKB (RCT), EBIC = European Brain Injury Consortium Core             data study (observational study), HIT II = HIT II Nimodipine (RCT).

Results 

Descriptive statistics

From the 9,205 patients in the original database, we excluded patients with missing 6 

months GOS (n=484), only partial information on the GOS (n=35), missing age (n=2) or 

younger than 14 (n=175). This resulted in 8,509 patients in 231 centers in the analysis, 

of whom 2,396 (28%) died and 4,082 (48%) had an unfavourable outcome six months 

after injury (Table 4.1). The median age was 30 (interquartile range 21–45) years, 3522 

patients (41%) had a motor score of 3 or lower (none, extension or abnormal flexion), 

and 1,989 patients (23%) had bilateral non-reactive pupils. The median number of pa-

tients per center was 19, ranging from 1 to 425. 
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Table 4.1   IMPACT study: Descriptive statistics of the study population

TINT TIUS SLIN SAP PEG HIT I UK4 TCDB SKB EBIC HIT II Total

Year of study 1992–1994 1991–1994 1994–1996 1995–1997 1993–1995 1987–1989 1986–1988 1984–1987 1996 1995 1989–1991

No. of patients 1131 1155 409 924 1574 351 988 667 139 1005 852 8509

No. of centers 50 36 50 57 29 6 4 4 31 67 21 231

Outcome(GOS)

Dead 278(25%) 225(22%) 94(23%) 212(23%) 362(24%) 99(28%) 359(45%) 264(44%) 34(27%) 281(34%) 188(23%) 2396(28%)

Vegetative 44(4%) 42(4%) 14(3%) 24(3%) 114(8%) 10(3%) 13(2%) 34(6%) 6(5%) 18(2%) 32(4%) 351(4%)

Severe disability 134(12%) 128(12%) 69(17%) 142(16%) 298(20%) 62(18%) 146(19%) 95(16%) 30(24%) 123(15%) 108(13%) 1335(16%)

Moderate disab. 171(15%) 180(17%) 84(21%) 174(19%) 374(25%) 64(18%) 130(16%) 104(17%) 27(21%) 159(19%) 199(24%) 1666(20%)

Good recovery 491(44%) 466(45%) 148(36%) 367(40%) 362(24%) 115(33%) 143(18%) 107(18%) 29(23%) 241(29%) 292(36%) 2761(32%)

Predictor(age)

Median(IQ range) 30(21–45) 30(23–41) 28(21–43) 32(23–47) 27(20–38) 34(21–47) 36(22–55) 26(21–40) 27(20–39) 37.5(24–59) 33(22–49) 30(21–45)

Predictor(motor)

None 5(0%) 9(1%) 0(0%) 141(15%) 475(32%) 122(35%) 113(14%) 136(23%) 34(27%) 150(18%) 210(26%) 1395(16%)

Extension 136(12%) 143(14%) 55(13%) 123(13%) 180(12%) 41(12%) 85(11%) 107(18%) 22(18%) 80(10%) 70(9%) 1042(12%)

Abnormal flexion 237(21%) 132(13%) 91(22%) 143(16%) 165(11%) 45(13%) 37(5%) 74(12%) 14(11%) 55(7%) 92(11%) 1085(13%)

Normal flexion 327(29%) 300(29%) 127(31%) 223(24%) 334(22%) 56(16%) 141(18%) 122(20%) 16(13%) 113(14%) 181(22%) 1940(23%)

Localises 384(34%) 406(39%) 134(33%) 286(31%) 309(21%) 77(22%) 191(24%) 113(19%) 21(17%) 182(22%) 199(24%) 2302(27%)

Obeys command 29(3%) 51(5%) 2(1%) 0(0%) 47(3%) 0(0%) 30(4%) 21(4%) 2(2%) 99(12%) 8(1%) 289(3%)

Untestable 0(0%) 0(0%) 0(0%) 3(0%) 0(0%) 9(3%) 194(25%) 31(6%) 17(14%) 143(18%) 59(7%) 456(5%)

Predictor(pupil)

Both side positive 806(72%) 703(68%) 315(77%) 619(67%) 784(52%) 232(66%) 427(54%) 300(50%) 70(56%) 535(65%) 585(71%) 5376(63%)

One side positive 177(16%) 118(11%) 79(19%) 178(19%) 156(10%) 53(15%) 115(15%) 55(9%) 35(28%) 79(10%) 99(12%) 1144(13%)

Both side negative 135(12%) 220(21%) 15(4%) 122(13%) 570(38%) 65(19%) 249(32%) 249(41%) 21(17%) 208(25%) 135(17%) 1989(23%)

TINT = Tirilizad International (RCT), TIUS = Tirilizad US (RCT), SLIN = International Selfotel trial (RCT), SAP (RCT),            PEG (RCT), HIT I = HIT I Nimodipine (RCT), UK4 = UK Four Center Study (observational study), TCDB = Traumatic 
Coma Data Bank (observational study), SKB = Bradycor SKB (RCT), EBIC = European Brain Injury Consortium Core             data study (observational study), HIT II = HIT II Nimodipine (RCT).

Binary model

Fitting the dichotomous model in the different packages gave similar results (Table 

4.2). For the frequentist approaches the R-function lmer, the SAS procedures GLIMMIX 

and NLMIXED, and the programs MLwiN and MIXOR provided almost the same results 

for the variance of the random effects and fixed effects. One example is age, with esti-

mated coefficients of 0.623, 0.618, 0.623, 0.611 and 0.625 respectively in the different 

programs and all estimated SDs being close to 0.028. Also the variance of the random 

effects was estimated similar: 0.101, 0.107, 0.102, 0.095 and 0.105, respectively. 

The Bayesian programs WinBUGS MLwiN and SAS procedure MCMC gave similar 

posterior means and these were also close to the MLEs obtained from the frequentist 

software. For example, the posterior mean (SD) of the regression coefficient of age was 

0.625 (0.029) 0.626 (0.028) and 0.630 (0.025) for MLwiN, WinBUGS and SAS procedure 

MCMC respectively. The posterior mean of the variance of the random effects was esti-
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mated as 0.113 0.119 and 0.160 respectively with the standard deviation being close to 

0.30. Hence, for the Bayesian methods the standard deviations for the posterior mean 

were somewhat higher than the frequentist standard errors. This is due to the fact that 

the Bayesian method acknowledges all uncertainty in the model by averaging over a 

prior distribution, while frequentist methods consider the parameters fixed values. 

The random effects estimates of the 231 centers could easily be derived from R, SAS 

NLMIXED, GLIMMIX, MLwiN, and WinBUGS. The estimates from all packages were quite 

similar, for example the Pearson correlation for the estimated random effects from 

WinBUGS and R was 0.9999. 

Table 4.2  Results from the binary models 

R(lme4) GLIMMIX NLMIXED MLwiN-Freq MIXOR MLwiN-Bayesian MCMC WinBUGS

computing time 8s 3s 24min 2s 5s 15min 37h 53min

Random 
Effects*

Variance: 
0.101

Variance:
0.107(0.027)

Variance:
0.102(0.027)

Variance:
0.095(0.024)

Variance:
0.105(0.051)

Variance:
0.113(0.030)

Variance:
0.160(0.034)

Variance:
0.119(0.030)

F
ix


e

d
 

Eff



e

c
t

s

Covar. Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE

Inter 0.014 0.114 0.014 0.114 0.014 0.114 0.013 0.113 0.006 0.127 0.003 0.110 0.103 0.099 0.026 0.115

Pupil2 0.656 0.074 0.650 0.074 0.656 0.075 0.643 0.074 0.657 0.089 0.656 0.075 0.666 0.071 0.659 0.075

Pupil3 1.404 0.069 1.392 0.069 1.404 0.070 1.376 0.068 1.401 0.074 1.406 0.068 1.424 0.069 1.410 0.069

Age 0.623 0.028 0.618 0.028 0.623 0.028 0.611 0.028 0.625 0.029 0.625 0.029 0.630 0.029 0.626 0.028

Motor2 0.618 0.106 0.612 0.105 0.618 0.106 0.608 0.104 0.622 0.125 0.617 0.104 0.654 0.103 0.623 0.106

Motor3 0.154 0.097 0.153 0.097 0.154 0.097 0.150 0.096 0.150 0.101 0.158 0.096 0.131 0.096 0.152 0.098

Motor4 0.782 0.086 0.775 0.086 0.782 0.087 0.764 0.085 0.781 0.105 0.786 0.084 0.757 0.076 0.781 0.088

Motor5 1.404 0.088 1.394 0.088 1.404 0.089 1.376 0.087 1.403 0.106 1.412 0.086 1.394 0.070 1.409 0.090

Motor6 1.591 0.166 1.577 0.166 1.591 0.167 1.559 0.165 1.595 0.188 1.602 0.168 1.593 0.166 1.598 0.168

Motor9 0.534 0.136 0.529 0.136 0.534 0.136 0.523 0.134 0.541 0.152 0.536 0.136 0.533 0.129 0.535 0.136

Trial2 0.073 0.125 0.071 0.126 0.073 0.126 0.075 0.124 0.105 0.135 0.081 0.121 0.007 0.115 0.061 0.129

Trial3 0.218 0.139 0.216 0.139 0.218 0.139 0.214 0.138 0.202 0.135 0.210 0.136 0.240 0.139 0.222 0.140

Trial4 0.192 0.116 0.189 0.117 0.192 0.117 0.189 0.115 0.173 0.100 0.195 0.115 0.116 0.128 0.184 0.117

Trial5 0.107 0.114 0.107 0.115 0.107 0.115 0.103 0.113 0.091 0.127 0.099 0.114 0.184 0.112 0.119 0.117

Trial6 0.039 0.173 0.039 0.174 0.039 0.174 0.038 0.172 0.016 0.216 0.046 0.172 0.049 0.188 0.034 0.175

Trial7 0.686 0.170 0.680 0.171 0.686 0.170 0.678 0.168 0.727 0.148 0.680 0.172 0.755 0.182 0.693 0.172

Trial8 0.672 0.176 0.665 0.177 0.672 0.176 0.658 0.173 0.539 0.140 0.652 0.172 0.744 0.198 0.682 0.181

Trial9 0.373 0.231 0.368 0.231 0.373 0.232 0.366 0.229 0.361 0.229 0.368 0.232 0.408 0.223 0.382 0.234

Trial10 0.090 0.123 0.090 0.123 0.090 0.123 0.089 0.122 0.097 0.113 0.083 0.118 0.149 0.125 0.099 0.124

Trial11 0.239 0.125 0.233 0.126 0.238 0.127 0.236 0.125 0.217 0.147 0.239 0.123 0.128 0.121 0.225 0.127

* The variance of the random effects with its standard error is given.
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Ordinal model

Fitting the ordinal model in the different packages also gave similar results (Table 

4.3). For the frequentist approach, the two SAS procedures GLIMMIX and NLMIXED, the 

packages MLwiN and MIXOR gave very similar estimates for the fixed effects param-

eters and the variance of the random effects. The estimate (SD) of e.g. the regression 

coefficient of age was 0.588 (0.023), 0.591(0.023), 0.581 (0.022) and 0.591 (0.027), re-

spectively. The estimate of the variance (SD) of the random effects were 0.090 (0.021), 

0.085 (0.020), 0.079 (0.018), and 0.098 (0.045), respectively.

Table 4.2  Results from the binary models 

R(lme4) GLIMMIX NLMIXED MLwiN-Freq MIXOR MLwiN-Bayesian MCMC WinBUGS

computing time 8s 3s 24min 2s 5s 15min 37h 53min

Random 
Effects*

Variance: 
0.101

Variance:
0.107(0.027)

Variance:
0.102(0.027)

Variance:
0.095(0.024)

Variance:
0.105(0.051)

Variance:
0.113(0.030)

Variance:
0.160(0.034)

Variance:
0.119(0.030)

F
ix


e

d
 

Eff



e

c
t

s

Covar. Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE

Inter 0.014 0.114 0.014 0.114 0.014 0.114 0.013 0.113 0.006 0.127 0.003 0.110 0.103 0.099 0.026 0.115

Pupil2 0.656 0.074 0.650 0.074 0.656 0.075 0.643 0.074 0.657 0.089 0.656 0.075 0.666 0.071 0.659 0.075

Pupil3 1.404 0.069 1.392 0.069 1.404 0.070 1.376 0.068 1.401 0.074 1.406 0.068 1.424 0.069 1.410 0.069

Age 0.623 0.028 0.618 0.028 0.623 0.028 0.611 0.028 0.625 0.029 0.625 0.029 0.630 0.029 0.626 0.028

Motor2 0.618 0.106 0.612 0.105 0.618 0.106 0.608 0.104 0.622 0.125 0.617 0.104 0.654 0.103 0.623 0.106

Motor3 0.154 0.097 0.153 0.097 0.154 0.097 0.150 0.096 0.150 0.101 0.158 0.096 0.131 0.096 0.152 0.098

Motor4 0.782 0.086 0.775 0.086 0.782 0.087 0.764 0.085 0.781 0.105 0.786 0.084 0.757 0.076 0.781 0.088

Motor5 1.404 0.088 1.394 0.088 1.404 0.089 1.376 0.087 1.403 0.106 1.412 0.086 1.394 0.070 1.409 0.090

Motor6 1.591 0.166 1.577 0.166 1.591 0.167 1.559 0.165 1.595 0.188 1.602 0.168 1.593 0.166 1.598 0.168

Motor9 0.534 0.136 0.529 0.136 0.534 0.136 0.523 0.134 0.541 0.152 0.536 0.136 0.533 0.129 0.535 0.136

Trial2 0.073 0.125 0.071 0.126 0.073 0.126 0.075 0.124 0.105 0.135 0.081 0.121 0.007 0.115 0.061 0.129

Trial3 0.218 0.139 0.216 0.139 0.218 0.139 0.214 0.138 0.202 0.135 0.210 0.136 0.240 0.139 0.222 0.140

Trial4 0.192 0.116 0.189 0.117 0.192 0.117 0.189 0.115 0.173 0.100 0.195 0.115 0.116 0.128 0.184 0.117

Trial5 0.107 0.114 0.107 0.115 0.107 0.115 0.103 0.113 0.091 0.127 0.099 0.114 0.184 0.112 0.119 0.117

Trial6 0.039 0.173 0.039 0.174 0.039 0.174 0.038 0.172 0.016 0.216 0.046 0.172 0.049 0.188 0.034 0.175

Trial7 0.686 0.170 0.680 0.171 0.686 0.170 0.678 0.168 0.727 0.148 0.680 0.172 0.755 0.182 0.693 0.172

Trial8 0.672 0.176 0.665 0.177 0.672 0.176 0.658 0.173 0.539 0.140 0.652 0.172 0.744 0.198 0.682 0.181

Trial9 0.373 0.231 0.368 0.231 0.373 0.232 0.366 0.229 0.361 0.229 0.368 0.232 0.408 0.223 0.382 0.234

Trial10 0.090 0.123 0.090 0.123 0.090 0.123 0.089 0.122 0.097 0.113 0.083 0.118 0.149 0.125 0.099 0.124

Trial11 0.239 0.125 0.233 0.126 0.238 0.127 0.236 0.125 0.217 0.147 0.239 0.123 0.128 0.121 0.225 0.127

* The variance of the random effects with its standard error is given.
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Table 4.3  Results from the ordinal models 

GLIMMIX NLMIXED MLwiN-Freq MIXOR MLwiN-Bayesian WinBUGS

Computing 
time

6s 38min 1min 8s 60min 32h

Random
Effects*

Variance: 0.090
(0.021)

Variance: 0.085
(0.020)

Variance: 0.079
(0.018)

Variance: 0.098
(0.045)

Variance: 0.093
(0.022)

Variance: 0.096
(0.022)

F
ix


e

d
 

Eff



e

c
t

s

covar. Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE

Pupil2 0.702 0.062 0.705 0.062 0.692 0.062 0.707 0.082 0.708 0.063 0.703 0.062

Pupil3 1.396 0.057 1.401 0.057 1.378 0.056 1.403 0.062 1.406 0.057 1.405 0.057

Age 0.588 0.023 0.591 0.023 0.581 0.022 0.591 0.027 0.592 0.023 0.551 0.023

Motor2 0.275 0.083 0.277 0.083 0.274 0.083 0.281 0.092 0.282 0.086 0.276 0.082

Motor3 0.295 0.081 0.296 0.081 0.288 0.081 0.293 0.078 0.292 0.084 0.305 0.080

Motor4 0.843 0.072 0.846 0.072 0.833 0.072 0.842 0.074 0.843 0.074 0.847 0.072

Motor5 1.365 0.073 1.369 0.073 1.347 0.072 1.369 0.080 1.367 0.076 1.368 0.073

Motor6 1.565 0.133 1.572 0.137 1.557 0.133 1.578 0.161 1.574 0.138 1.567 0.137

Motor9 0.628 0.112 0.630 0.111 0.622 0.111 0.630 0.115 0.629 0.112 0.640 0.112

Trial2 0.066 0.106 0.067 0.107 0.067 0.104 0.054 0.114 0.054 0.113 0.075 0.109

Trial3 0.251 0.116 0.252 0.117 0.248 0.116 0.240 0.115 0.260 0.120 0.245 0.117

Trial4 0.120 0.098 0.122 0.099 0.128 0.097 0.107 0.083 0.111 0.103 0.121 0.099

Trial5 0.190 0.097 0.189 0.097 0.185 0.095 0.200 0.107 0.204 0.103 0.177 0.098

Trial6 0.051 0.147 0.051 0.146 0.045 0.145 0.074 0.143 0.062 0.149 0.083 0.147

Trial7 0.768 0.144 0.772 0.142 0.770 0.142 0.780 0.161 0.781 0.145 0.783 0.144

Trial8 0.900 0.149 0.901 0.148 0.885 0.146 0.993 0.179 0.917 0.151 0.888 0.150

Trial9 0.339 0.193 0.341 0.190 0.338 0.192 0.337 0.185 0.352 0.195 0.343 0.192

Trial10 0.264 0.102 0.265 0.102 0.263 0.101 0.269 0.090 0.275 0.105 0.302 0.102

Trial11 0.044 0.105 0.047 0.106 0.042 0.104 0.029 0.093 0.033 0.111 0.030 0.106

Inter1 1.188 0.098 1.190 0.098 1.169 0.097 1.186 0.096 1.208 0.111 1.186 0.098

Inter2 0.930 0.097 0.931 0.098 0.914 0.096 0.927 0.096 0.949 0.111 0.928 0.098

Inter3 0.040 0.097 0.040 0.098 0.036 0.096 0.035 0.098 0.056 0.109 0.042 0.100

Inter4 1.025 0.097 1.026 0.098 1.012 0.096 1.032 0.099 1.012 0.109 1.007 0.103

* The variance of the random effects with its standard error 

w

For the Bayesian approaches, WinBUGS and MLwiN produced similar results as the 

frequentist approaches. The posterior mean of the regression coefficient of age with 

WinBUGS was 0.551 and 0.592 in MLwiN, with SD = 0.023 in both cases. (same as the 

SAS frequentist result). The posterior mean of the variance of the random effects was 

0.096 in WinBUGS and 0.093 in MLwiN and for both SD = 0.022, very close to the fre-

quentist estimates. We stopped running the SAS MCMC procedure after 2,000 iterations 

because this already took 19 hours and the results of the last 1,000 iterations were far 

from having converged. 
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The random effects for the 231 centers from the SAS procedure NLMIXED, MLwiN (both 

frequentist and Bayesian) and WinBUGS were again quite similar with correlation again 

virtually 1. 

Usability, flexibility and speed

The packages greatly differed in their usability. For instance, SAS is based on proce-

dures for which certain options can be turned on and off. Understanding the differ-

ent options in the statistical SAS procedures often requires a great deal of statistical 

Table 4.3  Results from the ordinal models 

GLIMMIX NLMIXED MLwiN-Freq MIXOR MLwiN-Bayesian WinBUGS

Computing 
time

6s 38min 1min 8s 60min 32h

Random
Effects*

Variance: 0.090
(0.021)

Variance: 0.085
(0.020)

Variance: 0.079
(0.018)

Variance: 0.098
(0.045)

Variance: 0.093
(0.022)

Variance: 0.096
(0.022)

F
ix


e

d
 

Eff



e

c
t

s

covar. Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE

Pupil2 0.702 0.062 0.705 0.062 0.692 0.062 0.707 0.082 0.708 0.063 0.703 0.062

Pupil3 1.396 0.057 1.401 0.057 1.378 0.056 1.403 0.062 1.406 0.057 1.405 0.057

Age 0.588 0.023 0.591 0.023 0.581 0.022 0.591 0.027 0.592 0.023 0.551 0.023

Motor2 0.275 0.083 0.277 0.083 0.274 0.083 0.281 0.092 0.282 0.086 0.276 0.082

Motor3 0.295 0.081 0.296 0.081 0.288 0.081 0.293 0.078 0.292 0.084 0.305 0.080

Motor4 0.843 0.072 0.846 0.072 0.833 0.072 0.842 0.074 0.843 0.074 0.847 0.072

Motor5 1.365 0.073 1.369 0.073 1.347 0.072 1.369 0.080 1.367 0.076 1.368 0.073

Motor6 1.565 0.133 1.572 0.137 1.557 0.133 1.578 0.161 1.574 0.138 1.567 0.137

Motor9 0.628 0.112 0.630 0.111 0.622 0.111 0.630 0.115 0.629 0.112 0.640 0.112

Trial2 0.066 0.106 0.067 0.107 0.067 0.104 0.054 0.114 0.054 0.113 0.075 0.109

Trial3 0.251 0.116 0.252 0.117 0.248 0.116 0.240 0.115 0.260 0.120 0.245 0.117

Trial4 0.120 0.098 0.122 0.099 0.128 0.097 0.107 0.083 0.111 0.103 0.121 0.099

Trial5 0.190 0.097 0.189 0.097 0.185 0.095 0.200 0.107 0.204 0.103 0.177 0.098

Trial6 0.051 0.147 0.051 0.146 0.045 0.145 0.074 0.143 0.062 0.149 0.083 0.147

Trial7 0.768 0.144 0.772 0.142 0.770 0.142 0.780 0.161 0.781 0.145 0.783 0.144

Trial8 0.900 0.149 0.901 0.148 0.885 0.146 0.993 0.179 0.917 0.151 0.888 0.150

Trial9 0.339 0.193 0.341 0.190 0.338 0.192 0.337 0.185 0.352 0.195 0.343 0.192

Trial10 0.264 0.102 0.265 0.102 0.263 0.101 0.269 0.090 0.275 0.105 0.302 0.102

Trial11 0.044 0.105 0.047 0.106 0.042 0.104 0.029 0.093 0.033 0.111 0.030 0.106

Inter1 1.188 0.098 1.190 0.098 1.169 0.097 1.186 0.096 1.208 0.111 1.186 0.098

Inter2 0.930 0.097 0.931 0.098 0.914 0.096 0.927 0.096 0.949 0.111 0.928 0.098

Inter3 0.040 0.097 0.040 0.098 0.036 0.096 0.035 0.098 0.056 0.109 0.042 0.100

Inter4 1.025 0.097 1.026 0.098 1.012 0.096 1.032 0.099 1.012 0.109 1.007 0.103

* The variance of the random effects with its standard error 

w
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background since the procedures are often based on the most advanced and compu-

tationally powerful methods. Also SAS data management is quite powerful but is also 

associated with a steep learning curve. The SAS procedures NLMIXED and MCMC offer 

some programming facilities. The package R has gained a lot of attention in the last 

decade and is becoming increasingly popular among statisticians and non-statisticians. 

It requires programming but has many basic functions, and also the graphics are nicely 

incorporated. WinBUGS is the most popular general purpose package for Bayesian anal-

yses. It is extremely popular with now more than 30,000 registered users. The package 

allows for a great variety of analyses using a programming language that resembles 

that of R. WinBUGS requires about the same programming skills as R. MIXOR needs no 

programming but provides very limited output. MLwiN has a clear and intuitive inter-

face to specify a random effects model, but lacks a simple syntax file structure. 

All packages require a good statistical background of the multilevel approach in 

order to analyze such data in a reliable manner.   

The packages also differ in what they offer as standard output besides the parame-

ter estimates. WinBUGS allows for the most extensive output, including diagnostic plots 

for model evaluation and plots of the individual random center effects. All packages 

except MIXOR can provide estimates of the random effects. In Figure 4.1 we show the 

box plots of the sampled random effects in WinBUGS for the first 10 centers of the bina-

ry logistic random effects model applied to the IMPACT data. Of course with packages 

Figure 4.1  Box plot of a sample of the random effects (for center 1 to 10), that can be directly derived 
from WinBUGS. Each box represents a center with its random effects estimate and confidence interval. 
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like SAS and R the output of the statistical procedures can be saved and then processed 

by some other procedure or function to deliver the required graph or additional diag-

nostic analysis. For example, Figure 4.2 is produced with R and shows the histogram of 

the random effects of the binary IMPACT logistic random effects model. 

Flexibility differs somewhat in the packages. All packages could handle a probit 

model and a log(-log) model except lme4 in R. But, only WinBUGS allows changing the 

distribution of the random effects into a t distribution or uniform distribution. Table 4.4 

shows that WinBUGS has the largest flexibility in changing the model assumptions. 

Figure 4.2  Histogram of the random effects in the binary model in R

Table 4.4  Extra abilities of different packages

Package Program/function Link function Obtaining the  
random effects 

Other than normal 
random effects 

Probit 
model

Log(-log) 
model

R LME4 X

MIXOR MIXOR X X

SAS NLMIXED X X X

GLIMMIX X X X

MCMC X X X

MLwiN MLwiN X X X

WinBUGS WinBUGS X X X X

Random effects
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The speed of the computations varied widely. The computations were done on IBM t61 

laptop with an Intel Core(TM) 2 Duo T7250 2.0 GHz CPU and 2 GB internal memory. 

For the binary logistic random effects models all frequentist approaches took only 

seconds, except for SAS NLMIXED which needed 24 minutes. The MLwiN procedure was 

the fasted, but GLIMMIX and MIXOR were almost as fast. The Bayesian approaches were 

considerably slower, which is known. MCMC sampling is time consuming, but also the 

checking for convergence in a Bayesian sense is far more difficult than in a frequen-

tist sense. MLwiN was again the winner, but we considered all computation times as 

acceptable, except for the SAS MCMC procedure which took 37 hours for the binary 

model. Similar findings were obtained for the ordinal logistic random effects model, 

but the time to converge compared to the binary case increased considerably for some 

software. Now the winner in the frequentist software was GLIMMIX closely followed up 

by MIXOR. For the Bayesian software, MLwiN was again the winner, much faster than 

WinBUGS. The SAS procedure MCMC never got to convergence (we stopped it).

Discussion

In this study we compared different software implementations of logistic random ef-

fects regression models. We found that although results were very similar between the 

eight implementations, there are considerable variations in flexibility, computing time 

and usability. 

Parameter estimates (both coefficients and standard errors of the fixed effects, and 

the random effects variance and estimates) were similar in all packages, for both the bi-

nary and ordinal logistic random effects models. In general the standard deviations of 

the posterior mean from a Bayesian approach were somewhat larger than the standard 

errors estimated from the frequentist approaches. 

Frequentist and Bayesian approach

In the frequentist approach, probability is defined as a limiting relative frequency. That 

is, the probability of an event is the limit of the relative frequency of that event in a 

large number of studies. Further, in frequentist statistics one estimates the unknown 

but fixed model parameter θ. The estimate of θ is obtained by maximizing the likeli-

hood. Prediction is done given the estimated θ and the uncertainty of the prediction is 

based on the sampling property of the estimated value of θ.17

In the Bayesian approach the parameter θ is given a probability distribution which 

expresses our prior knowledge about that parameter. There is still a true value for 

the parameter, but the parameter becomes stochastic because of our uncertainty. The 

Bayesian paradigm is based on Bayes’ Theorem which combines a prior belief or prob-

ability with the actual observed data to arrive at an updated posterior probability.18 

The probability calculations heavily involve integration. Because the integrals are high 
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dimensional, the Bayesian approach was for about two centuries impossible to be used 

for real-life problems.

As can be deduced from above, the two approaches differ in their numerical ap-

proach: the frequentist involving maximization routines and the Bayesian involving 

numerical techniques that perform integration. Since 1989 a powerful class of numeri-

cal procedures, called Markov Chain Monte Carlo (MCMC) techniques,19 were launched 

which revolutionalized the Bayesian approach. The MCMC approach is based on a 

sampling approach, i.e. the integral is approximated by Monte-Carlo sampling.20 In 

fact there are two major classes of MCMC techniques: Gibbs sampling and Metropolis-

Hastings sampling. 

The Bayesian approach involves a prior distribution on the parameters and a likeli-

hood. The posterior estimates depend on these two components. With the same data 

(likelihood), the posterior estimates may change heavily if different informative priors 

are used. On the other hand, if the prior is non-informative, such as flat or a normal 

distribution with large variance, the posterior estimates only depend on the likelihood. 

In this situation, the posterior modes are quite similar to the classic maximum likeli-

hood estimates. This happened in our study as we used non-informative prior distribu-

tions of all the parameters. This is one of the reasons why the results from frequentist 

and Bayesian approaches are very similar. 

It should be realized that logistic random effects models involve integration with 

both the frequentist and the Bayesian approach. In fact, models (1) and (2) yield con-

ditional likelihoods, conditional on the values of the random effects. Since the random 

effects are not known, the marginal likelihood is determined which is the likelihood 

integrated over the distribution of the random effects. Random effects estimates from 

frequentist methods are often referred to as Empirical Bayes estimates. 

Performance of each package

Although the parameter estimates were very similar between the eight implementa-

tions, we found considerable variations in computation time, usability and flexibility. 

The frequentist approaches were all very fast, taking only seconds, with the SAS 

NLMIXED procedure as a major exception. Overall, the SAS procedure GLIMMIX, the 

program MIXOR and the package MLwiN were the winners. The fact that the SAS proce-

dure NLMIXED took a much longer time likely has to do with the fact that is a general 

purpose program suitable for fitting a variety of complicated random effects models. 

The Bayesian approaches were invariably slower than the frequentist approaches, 

which is due to the computational intensive MCMC approach and that convergence 

on chains is much harder to show than in a classical frequentist sense. However, we 

believe that the slowness of the Bayesian procedures here has also much to do with 

the size of the study and that the data management of the Bayesian procedures is not 

yet optimal. Nevertheless, the time to get convergence in WinBUGS for both the binary 
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(53 min) and the ordinal model (37 hours) will definitely prevent the user to do much 

on exploratory statistical research. MLwiN is for sure the winner for fitting binary and 

ordinal Bayesian logistic random effects models, taking only 15 minutes for the binary 

model and 60 minutes for the ordinal model. It is our software of choice from a compu-

tational point of view, if we focus on multilevel modeling only.

The SAS procedure MCMC is an experimental procedure available from version 9.2 

onwards. It is a general purpose Markov Chain Monte Carlo simulation procedure that 

is designed to fit Bayesian models.15 In our experience, however, this procedure was 

inefficient in dealing with mixed models. It was far too time consuming and difficult to 

converge to get stable estimates for both the regression coefficients and the variance 

of the random effects. At this moment, we cannot recommend this SAS procedure for 

fitting logistic random effects regression models.

The packages differ much in nature, with e.g. based on procedures with options to 

switch on and off and other software such as WinBUGS which is in fact a programming 

language. Which package to prefer  from the aspect of usability is difficult to say since 

it very much depends on the nature of the user but also whether the logistic random 

effects model fitting is a stand-alone exercise. We know that in practice this is often 

not the case since we would like to process output of such an analysis to produce e.g. 

nice graphs. From this viewpoint MIXOR and WinBUGS score lower since they need 

the user to switch to other software, such as R, to produce additional output or better 

quality graphs. However, in the recent years other versions of WinBUGS have been cre-

ated providing links to R, such as R2WinBUS. We did not consider these new software 

developments, however. 

Regarding flexibility in statistical modelling, WinBUGS scores highest.  Different 

distributions for the random effects (e.g. gamma, uniform, t-distribution) and different 

link functions such as probit and log(-log) model are possible. Different link functions 

are also possible in the SAS procedures GLIMMIX and NLMIXED, but none of these two 

packages allow other than normal distributions for the random effects. Note that the 

binary logistic random effect model was superior to the probit and log(-log) models 

according to Akaike Information Criterion (using GLIMMIX).

Other considerations

In this study we considered models with only a random intercept. Also random slopes 

(allowing the effect of the covariates to vary between the centers) or a cross-classified 

random effects structure such as patients in centers and in studies could be consid-

ered. The purpose of using the simplest random effects model was to show the dif-

ferent performances of packages quickly and effectively. The packages may act more 

differently dealing with more complex mixed models, but we consider that beyond the 

scope of this study.
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Conclusion

We conclude that in our study the parameter estimates from logistic random effects 

regression models were not influenced by the choice of the statistical package. There-

fore the choice for a certain statistical implementation should be determined by other 

factors, such as speed and desired flexibility. Based on our study, if there is no prior 

acquaintance with a certain package and preference is given to a frequentist approach, 

we can recommend MLwiN, the function lmer in R and the SAS procedure GLIMMIX. For 

a Bayesian implementation, we would recommend first MLwiN because of its efficiency; 

if the user is also interested in more comprehensive analyses than only multilevel mod-

elling then he/she could choose WinBUGS.



pa r t  I I   Statistical uncertainty7 2

References

1. Rasbash J: What are multilevel models and why should I use them? [http://www.cmm.bristol.ac.uk/

learning-training/multilevel-models/what-why.shtml]

2. Molenberghs G: and Verbeke G. Models for Discrete Longitudinal Data. Berlin: Springer; 2005

3. Peter C, Jack V, David A: Comparing hierarchical modeling with traditional logistic regression analysis 

among patients hospitalized with acute myocardial infarction: should we be analyzing cardiovascular 

outcomes data differently? Am Heart J 2003, 145:27-35.

4. Marmarou A, Lu J, Butcher I, McHugh GS, Mushkudiani NA, Murray GD, Steyerberg EW: IMPACT Data-

base of Traumatic Brain Injury: Design and Description. J  Neurotrauma 2007, 24:239-250.

5. Maas AI, Marmarou A, Murray GD, Teasdale SG, Steyerberg EW: Prognosis and Clinical Trial Design in 

Traumatic Brain Injury: The IMPACT Study. J  Neurotrauma 2007, 24:232-238

6. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS: Predicting outcome after traumatic 

brain injury: development and international validation of prognostic scores based on admission char-

acteristics. PLoS Medicine 2008, 5:1251-1261

7. Goldstein H: Multilevel Statistical Models, 2nd Edition. London: Edward Arnold; 1995

8. Donald  H, Robert DG: MIXOR: a computer program for mixed-effects ordinal regression analysis. 

Comput Meth Programs Biomed 1996, 49:157-176

9. Bates D, Maechler M: Package ‘lme4’. [http://lme4.r-forge.r-project.org/]. 2009

10. The NLMIXED procedure. SAS/STAT User’s Guide, Version 9.2. 2009

11. The GLIMMIX procedure. SAS/STAT User’s Guide, Version 9.2. 2009

12. Rasbash J, Steele F, Browne WJ, Goldstein H: A User’s Guide to MLwiN (version 2.10). 2004

13. Lee PM: Bayesian Statistics: An Introduction. New York:Oxford University Press; 1989

14. Spiegelhalter D, Thomas A, Best N, Lunn D: WinBUGS User Manual (version 1.4.3). 2007

15. The MCMC procedure. SAS/STAT User’s Guide, Version 9.2. 2009

16. Brooks SP and Gelman A: Alternative methods for monitoring convergence of iterative simulations. 

Journal of Computational and Graphical Statistics 1998, 7:434-455 

17. Feller W: An introduction to Probability Theory and its Applications. New York: Wiley; 1957

18. Bernardo JM. Smith AFM: Bayesian Theory. London: Wiley; 1994

19. Gelfand A, Smith A: Sampling based approaches to calculating marginal densities. J American Statist 

Assoc 1990, 85:398–409.

20. Ripley B: Stochastic Simulation. New York: Wiley; 1987



c h ap  t e r  4   Comparing software packages for random effect models 7 3

Appendix 1

Note: programs for MIXOR and MLwiN are not listed because they do not provide 

straightforward syntax.

Variable coding
 
Variable label variable name coding

Age Age Continuous

Motor score Motor 1=’none’
2=’extension’
3=’abnormal flexion’
4=’normal flexion’
5=’localises’
6=’obeys command’
9=’untestable’

Pupil reactivity Pupil 1=’both side positive’
2=’one side positive’
3=’both side negative’

Unfavorable outcome D_unfav 0=’favorable’
1=’unfavorable’

Glasgow Outcome Scale GOS 1=’dead’  
2=’vegetative status’
3=’severe disability’
4=’moderate disability’
5=’good recovery’

Study Trial Using dummy variables

Binary logistic random effects model

SAS procedure nlmixed

proc nlmixed data=aa_std tech=newrap qpoints=5;

parms beta0=0, beta1=0, beta2=–2, beta3=–1, beta4=1, beta5=1, beta6=1, beta7=1,

beta8=1, beta9=1, beta10=1, beta11=1, beta12=1, beta13=1, beta14=1, beta15=1,  

beta16=1, beta17=1, beta18=1, beta19=1, s2b=1;

eta=beta0+beta2*pupil2+beta3*pupil3+beta1*age+beta4*motor2+beta5*motor3+beta6

*motor4+beta7*motor5+beta8*motor6+beta9*motor9+beta10*trial2+beta11*trial3+bet

a12*trial4+beta13*trial5+beta14*trial6+beta15*trial7+beta16*trial8+beta17*trial9+beta1

8*trial10+beta19*trial11+b0;

mu=exp(eta)/(1+exp(eta));

model d_unfav ~ binary(mu);

random b0 ~ normal(0,s2b) subject=center_num out=bin;

run;
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SAS procedure glimmix

proc glimmix data=aa_std;

class center_num;

model d_unfav(event=last)=pupil2–pupil3 age motor2–motor6 motor9 trial2–trial11/

dist=binary solution;

random intercept/ subject=center_num;

output out=i1 pred=p resid=r pred(NOBLUP)=p1;

run;

SAS procedure mcmc

proc mcmc data=aa_std outpost=postout seed=332786 nmc=10000 nbi=3000

monitor=(beta0–beta19 s2b);

array delta[231];

parms beta0 0 beta1 0  beta2 –2  beta3 –1 beta4 1 beta5 1 beta6 1 beta7 1 beta8 1 

beta9 1 beta10 1;

parms beta11 1 beta12 1 beta13 1 beta14 1 beta15 1 beta16 1 beta17 1 beta18 1 beta19 

1;

parms s2b 1;

%group_parms(delta,231, 20, 1);

prior beta:~normal(0,var=10000);

prior delta:~normal(beta0,var=s2b);

prior s2b~uniform(0.01,100);

w=beta1*age+beta2*pupil2+beta3*pupil3+beta4*motor2+beta5*motor3+beta6*motor4

+beta7*motor5+beta8*motor6+beta9*motor9+beta10*trial2+beta11*trial3+beta12* 

trial4+beta13*trial5+beta14*trial6+beta15*trial7+beta16*trial8+beta17*trial9+beta18* 

trial10+beta19*trial11;

pi=logistic(w+delta[center_num]);

model d_unfav ~ binary(pi);

run;

R fuction lmer

glmer(d_unfav~pupil2+pupil3+age+motor2+motor3+motor4+motor5+motor6+motor

9+trial2+trial3+trial4+trial5+trial6+trial7+trial8+trial9+trial10+trial11+(1|center_num), 

nAGQ=1, family=binomial, data=total)



c h ap  t e r  4   Comparing software packages for random effect models 75

WinBUGS

model{

for (i in 1:N) {

agec[i]<––(age[i]–mean(age[]))/sd(age[]) #center age

logit(mu[i])<––beta[1]*pupil2[i]+beta[2]*pupil3[i]+beta[3]*agec[i]+beta[4]*motor2[i]+ 

beta[5]*motor3[i]+beta[6]*motor4[i]+beta[7]*motor5[i]+beta[8]*motor6[i]+beta[9]* 

motor9[i]+beta[10]*trial2[i]+beta[11]*trial3[i]+beta[12]*trial4[i]+beta[13]*trial5[i]+ 

beta[14]*trial6[i]+beta[15]*trial7[i]+beta[16]*trial8[i]+beta[17]*trial9[i]+beta[18]* 

trial10[i]+beta[19]*trial11[i]+b[center[i]]

d_unfav[i]~dbin(mu[i],1)

}

for (i in 1:Ncenter){

b[i]~dnorm(beta0,tau)

}

#the following prior distributions were chosen

beta0~dnorm(0,0.0001)

for (j in 1: 19){

beta[j]~dnorm(0,0.0001)

}

sigma~dunif(0.01,100)

tau <–– pow(sigma,-1)

 }

Ordinal logistic random effects model

SAS procedure nlmixed

proc nlmixed data=aa_std tech=newrap qpoints=5;

parms beta1=0, beta2=–2, beta3=–1, beta4=1, beta5=1, beta6=1, beta7=1, beta8=1, 

beta9=1, beta10=1, beta11=1, beta12=1, beta13=1, beta14=1, beta15=1, beta16=1, 

beta17=1, beta18=1, beta19=1, s2b=1 i1=1 i2=1 i3=1, i4=1;

bounds i2>0,i3>0,i4>0;

eta=beta2*pupil2+beta3*pupil3+beta1*age+beta4*motor2+beta5*motor3+beta6* 

motor4+beta7*motor5+beta8*motor6+beta9*motor9+beta10*trial2+beta11*trial3+ 

beta12*trial4+beta13*trial5+beta14*trial6+beta15*trial7+beta16*trial8+beta17*trial9+ 

beta18*trial10+beta19*trial11+b0;

if (gos=1) then p=1/(1+exp(–(i1+eta)));

else if (gos=2) then p=(1/(1+exp(–(i1+i2+eta))))–(1/(1+exp(–(i1+eta))));

else if (gos=3) then p=(1/(1+exp(–(i1+i2+i3+eta))))–(1/(1+exp(–(i1+i2+eta))));
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else if (gos=4) then p=(1/(1+exp(–(i1+i2+i3+i4+eta))))–(1/(1+exp(–(i1+i2+i3+eta))));

else p=1–(1/(1+exp(–(i1+i2+i3+i4+eta))));

if (p > 1e–8) then ll = log(p); 

else ll = –1e100; 

model gos ~ general(ll);

random b0 ~ normal(0,s2b) subject=center_num out=ord;

estimate ‘thresh1’ i1;

estimate ‘thresh2’ i1+i2;

estimate ‘thresh3’ i1+i2+i3;

estimate ‘thresh4’ i1+i2+i3+i4;

run;

SAS procedure glimmix

proc glimmix data=aa_std;

class center_num;

model gos=pupil2–pupil3 age motor2–motor6 motor9 trial2–trial11/DIST=MULT 

LINK=CLOGIT solution;

random intercept/ subject=center_num;

NLOPTIONS MAXIT=100;

output out=i1 pred=p resid=r pred(NOBLUP)=p1;

run;

WinBUGS

model{

for (i in 1:N) {

agec[i]<––(age[i]-mean(age[]))/sd(age[]) #center age

covc[i]<––beta[1]*pupil2[i]+beta[2]*pupil3[i]+beta[3]*agec[i]+beta[4]*motor2[i]+beta[5]

*motor3[i]+beta[6]*motor4[i]+beta[7]*motor5[i]+beta[8]*motor6[i]+beta[9]*motor9[i]

+beta[10]*trial2[i]+beta[11]*trial3[i]+beta[12]*trial4[i]+beta[13]*trial5[i]+beta[14]* 

trial6[i]+beta[15]*trial7[i]+beta[16]*trial8[i]+beta[17]*trial9[i]+beta[18]*trial10[i]+ 

beta[19]*trial11[i]+b[center[i]]

for (j in 1:4){logit(f[i,j])<––a[j]+covc[i]} 

#cumulative probability of response<=cutpoint

p[i,1]<––f[i,1];p[i,2]<––f[i,2]–f[i,1];p[i,3]<––f[i,3]–f[i,2];p[i,4]<––f[i,4]–f[i,3];p[i,5]<––1–f[i,4];

gos[i]~dcat(p[i,1:5])

}

for (i in 1:Ncenter){

b[i]~dnorm(a[1],tau)

}
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a[1] ~ dnorm(0, 1.0E–06)I(,a[2])

a[2] ~ dnorm(0, 1.0E–06)I(a[1],a[3])

a[3] ~ dnorm(0, 1.0E–06)I(a[2],a[4]) 

a[4] ~ dnorm(0, 1.0E–06)I(a[3],) 

for (j in 1: 19){

beta[j]~dnorm(0,0.0001)

}

sigma~dunif(0.01,100)

tau <–– pow(sigma,–1)
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5  Prognostic models in  
traumatic brain injury

Lingsma HF, Roozenbeek B, Steyerberg EW, Murray GD, Maas AIR. 

Early prognosis in traumatic brain injury: from prophecies to predictions. 

Lancet Neurology 2010; 9:543-554.



‘No head injury is too severe to despair of, nor too trivial to ignore’

[Hippocrates]

Abstract
Traumatic Brain Injury (TBI) constitutes a heterogeneous disease, 

encompassing a broad spectrum of pathologies. Outcome can be highly 

variable, particularly in more severely injured patients. Despite the 

association of many variables with outcome, predictions are notoriously 

difficult. Multivariable analysis has identified age, clinical severity, 

Computerized Tomography abnormalities, systemic insults (hypoxia and 

hypotension) and laboratory parameters as relevant building blocks for 

combining variables into models to predict outcome in individual patients. 

A systematic literature search identified 16 studies reporting on prognostic 

models based upon admission characteristics; many of these showed 

shortcomings, which may partly explain the limited use of these models 

in clinical practice. Advances in statistical modelling and the availability 

of large datasets have facilitated the development of prognostic models 

with greater performance and generalizibility. Two prediction models are 

currently available, that have been developed on large datasets with state 

of the art methods, offering new opportunities. We see a great potential for 

use in clinical practice, in research, towards policy making and assessment 

of the quality of health care delivery. Continued development, refinement 

and validation is advocated together with assessment of the clinical impact 

of prediction models. Future directions should include the development of 

models to predict treatment response. 
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Introduction

Prognosis is the cornerstone of clinical medicine, since all diagnostic and therapeutic 

actions eventually aim to improve a subject’s prognosis and outcome. Advances in 

statistical modelling and the availability of large databases have made it possible to 

consider diagnosis and prognosis nowadays in terms of probabilities rather than vague 

prophecies. Probability estimates can be applied towards clinical decision making, re-

search and assessment of the quality of health care. Such quantitative estimates are of 

particular relevance to heterogeneous diseases such as Traumatic Brain Injury (TBI). 

TBI poses a major public health problem with an estimated annual incidence of up to 

500/100.000 and over 200 hospital admissions per 100.000 in Europe each year.1,2 TBI 

is a heterogeneous disease in terms of cause, pathology, severity and prognosis. It 

poses diagnostic challenges and the heterogeneity makes it difficult to compare results 

between studies since case-mix and treatments may vary considerably. 

Various outcomes can be considered in prediction research. A diagnostic perspective 

is taken in TBI studies assessing the probability of structural brain damage, the prob-

ability for developing an intracranial hematoma, or underpin recommendations for CT 

scanning.3-5 A recent study identified a subset of children at such low risk for intrac-

ranial pathology that protection from unnecessary radiation exposure motivated not 

performing a CT scan.6 These types of diagnostic outcomes are particularly relevant 

for patients with mild TBI. Predicting response to treatment would be highly relevant to 

patients in the intensive care setting, in whom intracranial pressure is monitored, but 

these have not (yet) been performed. 

For patients with moderate and severe TBI, predicting clinical outcome is highly rel-

evant. Typically, most studies performed have used mortality or functional outcome 

assessed with the Glasgow Outcome Scale (GOS)7 as endpoint. 

In this review, we focus on prediction of outcome in terms of mortality and functional 

outcome in patients with moderate and severe TBI. 

We aim to:

– Describe the basics of prognostic analysis

– �Review the current knowledge about traditional and newly recognized predictors for 

outcome in TBI

– Discuss prognostic modelling as a novel instrument in medicine

– Critically review prediction models in TBI

– Describe the applications for prognostic models in TBI

– �Provide suggestions for the further development and improvement of prediction 

research in TBI.
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Predictors of outcome

Much research has been conducted to identify early predictors of mortality and func-

tional outcome as assessed by the Glasgow Outcome Scale (GOS) on admission after 

moderate or severe TBI. The GOS is usually dichotomized into good recovery and mild 

disability versus severe disability, vegetative state and mortality. This is a limitation 

since we cannot assume that predictors differentiate death from survival equally well 

as good recovery from worse outcomes. In this review we summarize findings from 

different studies using mortality and GOS by referring to ‘outcome’. 

For some predictors a large body of evidence exists, for others the relationship with 

outcome is less well established. Information obtained during the subsequent clini-

cal course may further contribute to outcome prediction. An overview of the various 

components, or building blocks, of prognostic analysis is presented in Figure 5.1. This 

figure illustrates the complex relations between potential predictors, and highlights 

gaps in our knowledge (genomics, biomarkers).  

Figure 5.1  Overview of building blocks of prognosis in Traumatic Brain Injury
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Some basics of prediction research

Several steps in prediction research can be identified (panel 5.1).8 First, the association 

between a single predictor and outcome can be studied in univariate analysis, relat-

ing a single predictor to the outcome of interest. Such an analysis is of limited value 

because it does not take the role of other confounding factors that may explain (part 

of) the observed association into account. Statistical analyses, such as logistic regres-

sion, are therefore required to adjust for confounders in the assessment of relative 

risks. Other statistical approaches to prognostic analysis include recursive partitioning 

(prediction trees) and neural network analysis. Odds Ratios (ORs) are commonly used 

to express the strength of prognostic effects. The relationship is statistically significant 

if the 95% confidence interval for the OR does not include the value 1. The OR does not 

Panel 5.1  Steps in prognostic analysis in traumatic brain injury8

Univariate analysis Multivariable analysis Prediction models

Aim To estimate the relationship 
between a single predictor 
and outcome

To determine the prognos-
tic value of a predictor, 
adjusting for confounding 
effects of other predictors.

To combine predictors 
into a model with the aim 
to estimate the risk of an 
outcome for individual 
patients

Limitations Does not take the role of 
confounding factors into 
account that may explain 
(part of) the observed as-
sociation

In individual patients 
predictors may influence 
outcome in opposite direc-
tions; does not take interac-
tions or differential effects 
for specific subpopulations 
into account.

External validation essen-
tial to prove generalizibility 
outside of the development 
setting.

Performance 
measures

Sensitivity, specificity
Positive predictive value, 
negative predictive value
Odds ratio*

Odds ratio
Relative Risk**
R2***

Discrimination: area under 
the receiver operating char-
acteristic (AUC)
Calibration: graphical  
representation
Hosmer-Lemeshow good-
ness of fit test

Presentation Tabular
Graphical representation

Tabular
Graphical representation

Web-based calculator 
Score chart

* Sensitivity: proportion of patients with the outcome that have the predictor (true positive) Specificity: 
proportion of patients without the outcome that do not have the predictor (true egative) Positive predic-
tive value (PPV): proportion of patients with the predictor that have the outcome Negative predictive 
value (NPV): proportion of patients without the predictor that do not have the outcome Odds ratio (OR): 
ratio of the odds for better versus poorer outcome in the presence of the parameter, compared to the 
odds in the absence of the parameter. 

** Relative risk (RR): risk of outcome in group with the predictor versus group without the predictor 

*** R2: percentage of variability in outcome that is explained by the predictor. R2 reflects predictive value 
better than OR, since also prevalence is taken into account.
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account for the prevalence of a predictor. A predictor with a high OR but a very low 

prevalence is of limited predictive value. Predictive value is better reflected in mea-

sures such as explained variation (R2).9 

Admission characteristics

The prognostic strength of the main predictors in TBI is summarized in table 5.1. The 

prognostic value of the different building blocks for prognosis was quantified in the 

IMPACT data (N=8686)10 (Figure 5.2). Clinical severity has the highest prognostic value 

(highest R2), followed by CT characteristics, both separately and when these building 

blocks are added in the order of availability in clinical practice. The cumulative R2 of 

the full model is 0.35. 

Figure 5.2  Prognostic value of different building blocks of prognosis, expressed in univariate (white) 
and multivariate (grey) R2, in the IMPACT dataset (n=8686)10
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Table 5.1  Strength of the association between predictors and outcome (full ordinal GOS) in TBI in the 
IMPACT database (n=8686)10 

Predictor Reference category Univariate OR Multivariate OR 
(adjusted for Age/
Motorscore/Pupils)

Demographics

  Age 25-75% i.q.r. 2.14 (2.00–2.28) –

  Gender Male 1.01 (0.92–1.11) 0.94 (0.85–1.04)

  Race – Black Caucasian 1.30 (1.09–1.56) 1.44 (1.08–1.93)

– Asian 1.09 (0.78–1.51) 1.22 (0.84–1.78)

Clinical Severity

Motor score Localising/

  Absent Obey commands 5.30 (3.49–8.04) –

  Abnormal extension 7.48 (5.6–9.98) –

  Abnormal Flexion 3.58 (2.71–4.73) –

  Flexion 1.74 (1.44–2.41) –

Pupillary reactivity

  1 reacting Both reacting 2.70 (2.07–3.53)

  Both non-reacting 4.77 (3.46–6.57)

Secondary insults Absent

  Hypotension Absent 2.67 (2.09–3.41) 2.06 (1.64–2.59)

  Hypoxia 2.08 (1.69–2.56) 1.65 (1.37–2.00)

  Hypothermia Absent 2.21 (1.56–3.15) 1.63 (1.11–2.40)

Structural abnormalities

CT Classification CT Class II

  CT Class I 0.45 (0.35–0.67) 0.47 (0.32–0.70)

  CT Class III/IV 2.62 (2.13–3.21) 2.23 (1.83–2.72)

Mass lesion 2.18 (1.83–2.61) 1.48 (1.27–1.71)

tSAH present* Absent 2.64 (2.42–2.89) 2.01 (1.83–2.21)

Type of intracranial lesion

  No epidural No epidural 0.64 (0.56–0.72) 0.63 (0.55–072)

Laboratory parameters

Glucose 25–75% i.q.r. 1.68 (1.54–1.83) 1.45 (1.36–1.55)

pH 0.80 (0.74–0.88) 0.84 (0.67–0.92)

Prothrombine time 1.41 (0.99–1.99) 1.63 (1.40–1.89)

Hb 0.69 (0.60–0.78) 0.76 (0.66–0.88)

Sodium < 137mmol/L ≥ 137 mmol/L 1.40 (1.22–1.60) 1.14 (0.91–1.43)

i.q.r. = interquartile range, tSAH = Traumatic Subarachnoid Hemorrhage, OR = Odds ratios from propor-
tional odds analysis
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outcome in a continuous way, reporting both a ‘change point’ around the age of 30-40, 

above which outcome becomes increasingly poorer, and a more or less continuous 

relation across all ages, which may be approximated by a linear function.17-21  

Other demographic factors studied for their association with outcome include gen-

der and race. Males are more prone to suffer from TBI due to higher risk for road traffic 

accidents and assaults. Although many studies did not find a relationship between 

gender and outcome after adjustment,17, 20, 22, 23 a meta-analysis by Farace and Alves 

found poorer quality of life and functional outcomes in females surviving severe TBI 

compared to males.24

The association between race and outcome after TBI was controversial until a meta-

analysis combining evidence from a substantial number of patients, showed that black 

patients have a poorer outcome. This association is confirmed in some recent  

studies20, 25-27 The underlying reasons for this association can only be speculated upon, 

but may include differences in genetic constitution, causing a different response to 

injury and differences in access to acute and post-acute care. We consider this a priority 

for further research.

Clinical severity

Clinical severity relates both to extracranial and intracranial injuries. The overall sever-

ity of extracranial injuries is commonly assessed with the Abbreviated Injury Score 

(AIS)28 or the Injury Severity Score (ISS).29 Most studies about TBI and extracranial 

injury have studied patients with traumatic extracranial injury with or without TBI. The 

conclusion is that the coexistence of moderate traumatic brain injury with extracranial 

injury is associated with mortality and morbidity.30-32

In contrast, there is no consensus about the prognostic value of major extracranial 

injury in TBI patients. Some studies demonstrate that outcome mainly depends on 

the severity of the primary cerebral damage and is not worsened by the presence of 

extracranial injuries33, but others show that the presence of major extracranial injuries 

is associated with a poorer outcome.21, 37 

Recently we performed a meta analysis of individual patient data, and found that 

the conflicting results from previous studies may be explained by an interaction with 

the severity of brain injury. For patients with more severe brain injuries, the effect of 

extracranial injury on functional outcome was small, whereas in those with milder 

brain injuries, extracranial injuries had a more pronounced effect. This indicates that 

it is relevant to test for clinically plausible interaction effects. We also found that 

extracranial injuries mainly increase the chance of early mortality. Thus, the effect of 

extracranial injury found in registries that include patients who die early, will be larger 

than the effect found in trials that exclude these patients [van Leeuwen et al, submit-

ted].
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The clinical severity of intracranial injuries is reflected by the level of consciousness, 

assessed by the Glasgow Coma Scale (GCS).7 Many studies have demonstrated an as-

sociation between lower levels of the GCS and poorer outcome. 

In patients with more severe injuries, the motor component of the GCS has the 

greatest predictive value, as in these patients eye and verbal response is commonly 

absent.34 The prognostic value of the eye and verbal components of the GCS become 

more relevant in patients with less severe injuries who obey commands. It should be 

recognized that the GCS may fluctuate early after injury with some patients deterio-

rating, and others improving.35 From a perspective of prognosis, assessment of the 

GCS should therefore be related to a given time period, commonly on admission after 

primary respiratory and hemodynamic stabilisation. Reliable assessment of the GCS 

however may be obscured in the acute setting by medical sedation, paralysis or intoxi-

cation.36, 37 

Abnormalities in pupillary reactivity reflect brainstem damage or compression and 

are strongly associated with poorer outcome.38 Pupillary reactivity is a more stable 

parameter in the early phase after injury than the GCS, being less prone to influences 

of sedation and paralysis. 

Second insults

The injured brain is more vulnerable for systemic second insults, such as hypoxia and 

hypotension than a normal, healthy brain. Second insults are frequent after TBI, espe-

cially in the pre-hospital setting39, 40 and can increase the degree of secondary damage. 

The association of second insults, in the pre-hospital setting or during acute care, with 

poorer outcome has been well established and various studies have shown that the 

combination of hypoxia and hypotension has a greater adverse effect on outcome than 

can be explained by either insult alone.40-44

Most studies have used a cutoff value for early hypotensive and hypoxic events (e.g. 

any episode with a systolic blood pressure < 90 mm/Hg). Detailed analysis of the as-

sociation between the measured blood pressure on admission and outcome, however, 

showed that this relation is continuous: low blood pressure and high blood pressure 

are both associated with poorer outcome with a U-shaped relationship. Following 

adjustment for age, motor score and pupillary reactivity, the effects of higher blood 

pressure however largely disappear, suggesting that higher blood pressure values are 

merely reflective of more severe injuries and may possibly be caused by raised ICP 

(Cushing response).43
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Structural abnormalities

The prognostic value of CT characteristics has been well documented, including the 

status of basal cisterns, midline shift, the presence and type of intracranial lesions and 

traumatic subarachnoid hemorrhage (tSAH). Obliteration of the basal cisterns and the 

presence of tSAH are the strongest CT predictors (BTF prognosis guidelines, available 

from http://www.braintrauma.org). In 1991 Marshall et al introduced a descriptive 

system of CT classification, which focuses on the presence or absence of a mass lesion 

and differentiates diffuse injuries by signs of increased intracranial pressure (compres-

sion of basal cisterns, midline shift).

Although the Marshall CT classification has prognostic value, combining individual 

CT characteristics in a model, such as in the Rotterdam CT score, provides better dis-

crimination between patients with better versus poorer outcome than the descriptive 

Marshall classification (Panel 5.2).44-46

Panel 5.2  Marshall CT Classification45 	 Rotterdam Prognostic CT Score46

Predictor value Score

Basal Cisterns
– Normal
– Compressed
– Absent

Midline shift
– No shift or shift ≤ 5 mm
– Shift > 5 mm

Epidural mass lesion
– Present
– Absent

Intraventricular blood or 
tSAH
– Absent
– Present
 
Sum score

0
1
2

0
1

0
1

0
1

+1

 

Category Definition

Diffuse injury I (no visible 
pathology)

Diffuse injury II

Diffuse injury III (swelling)

Diffuse injury IV (shift)

Evacuated mass lesion

Non-evacuated mass lesion

No visible intracranial pathology 
seen on CT scan 

Cisterns are present with midline 
shift of 0–5 mm and/or lesions 
densities present; no high or mixed 
density lesion >25 cm3 may include 
bone fragments and foreign bodies

Cisterns compressed or absent with 
midline shift of 0–5mm; no high or 
mixed density lesion >25 mm 

Midline shift >5 mm; no high or 
mixed density lesion >25 cm3 

Any lesion surgically evacuated 

High or mixed density lesion  
>25 cm3; not surgically evacuated

Prognostic studies have mainly focused on CT abnormalities and employed relatively 

broad categorizations. In tSAH for example, one of the strongest CT predictors, most 

studies have concentrated on presence or absence without differentiating as to the 

location (basal cisterns versus cortical) or extent. More detailed analysis and the use of 

advanced MRI imaging may yield additional prognostic information. 
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Laboratory values and biomarkers

Recently, interest in biomarkers, including laboratory parameters, is increasing. Bio-

markers may be used to detect and track pathophysiological phenomena, as marker of 

injury severity, and to aid in prognosis assessment. In mild TBI, a biomarker that could 

establish the diagnosis, or predict the likelihood of secondary damage would have 

great clinical utility. In more severe injuries, the use of a biomarker to assess injury 

severity may avoid problems with unreliable GCS assessments in patients who are 

intoxicated or intubated. A number of putative serum, cerebrospinal fluid (CSF), and 

microdialysate biomarkers have been evaluated in clinical studies of TBI, with S100 and 

neuron-specific enolase (NSE) being among the most widely investigated.47-52 

Although an association between several biomarkers and outcome has been es-

tablished, the prognostic value is unclear due to relatively small numbers analyzed in 

univariate rather than multivariable analyses.53 Levels of biomarkers may correlate with 

other clinical indicators such as GCS54, and offer limited additional prognostic value 

over other predictors. The predictive value of biomarkers over and above other predic-

tors has to be established in multivariable analysis.55

The prognostic value of laboratory parameters that are routinely measured has been 

investigated in larger numbers. High glucose values, low hemoglobin, low platelets as 

well as coagulation disturbances are the strongest predictors, independently related to 

poorer outcome.56-59

Laboratory values are potentially modifiable. The question of causality is relevant when 

attempts are made to correct abnormal values in the expectation to improve outcome. 

Based on the observed association between higher glucose levels and poorer outcome, 

two randomized trials were recently conducted to assess the effect of intensive insulin 

therapy to lower glucose levels. Both studies were however small (<150 patients) and 

results conflicting. 60-61 The risks of tight glucose control in TBI have been illustrated in 

microdialysis studies in the brain showing that normalization of blood glucose could 

lead to a depletion of glucose in the extracellular fluid of the brain, thus compromis-

ing cerebral metabolism. 62-64 Although an association between abnormal values and 

poorer outcome may exist, this does not by definition mean that correcting these 

abnormal values will indeed improve outcome. The observed abnormality may simply 

be an expression or surrogate marker of the severity of injury. Randomized controlled 

trials, are required to prove whether correcting abnormal values is of benefit. 
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Clinical course 

Changes in admission parameters 

A deterioration in neurologic function is a dire prognostic sign that generally indicates 

progressive brain damage. Early prognosis studies showed that the worst GCS over a 

given time period is especially predictive of poorer outcome. Deterioration in neuro-

logical function has been defined more objectively by Morris et al as neuroworsening 

(Panel 5.3)65 and is highly predictive for poor outcome. In addition to the initial CT 

scan, follow-up scans also contain prognostic information. A survey among patients 

with moderate and severe TBI organized by the European Brain Injury Consortium 

(EBIC) showed that a substantial number of patients with diffuse injury (no mass le-

sions) at the first CT, demonstrated progressive intracranial pathologies on subsequent 

CT examinations.66 The worst CT was more strongly correlated to outcome. Many other 

studies have confirmed the frequent occurrence of ‘CT progression’, but relatively few 

have addressed the prognostic significance. This is complex, as CT progression may 

often lead to therapeutic intervention. 

Panel 5.3  Criteria for neuroworsening65 

Criteria	

• �Spontaneous decrease GCS motor score >=2 points 
(compared with previous examination)

• New loss of pupillary reactivity

• Development of pupillary asymmetry of >=2 mm

• �Other deterioration in neurological status sufficient to warrant immediate 
medical or surgical intervention

Second insults may occur in the clinical setting, despite all attempts to avoid them. 

Patients are particularly at risk for second insults during intra- and interhospital trans-

port.67 The depth, duration and number of second insults cumulate towards poorer 

outcome.43, 44, 68

As on admission, the strongest evidence for the prognostic value of laboratory 

parameters during the clinical course exists for glucose, platelets and coagulation 

disturbances Persistently high glucose levels are associated with poorer outcomes, also 

after adjustment for other important predictors.56, 69, 70  

The lowest platelet count in the first 24 hours after admission is an independent 

predictor of outcome after six months.56 A recent meta analysis showed that the preva-

lence of coagulopathy after TBI was 33% and that coagulopathy was related both to 

mortality and unfavourable outcome.71 
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Clinical monitoring

In more severely injured patients invasive and non-invasive monitoring in the ICU situ-

ation provides a wealth of information. Approaches to analysis have however remained 

relatively crude. It is difficult to draw clear conclusions on the predictive value of 

monitored parameters as the time of initiation and duration of monitoring vary greatly 

between and within studies. Summary measures, such as for ICP monitoring, include 

the highest, lowest and mean values overall or per day and the number of episodes 

or percentage of time that values are above a predefined threshold. This variability in 

analysis and reporting confounds comparisons between studies. Further, in repeated 

measurements predictive information may be better captured in patterns than in single 

values. Modern statistical approaches are available to analyze repeated measurements 

per patient, but have seldom been used in TBI studies and hence pose a challenge for 

future research.

Many studies have confirmed an association of high ICP, low CPP and decreased 

brain oxygen tension levels with poorer outcome.56, 72-77 These associations, in combina-

tion with our understanding of pathophysiologic consequences form the rationale for 

guideline recommendations to avoid high intracranial pressure (ICP) and low cerebral 

perfusion pressure (CPP) (available from http://www.braintrauma.org). 

It also has been suggested that outcome may be more dependent on ICP variability 

and on response to treatment of raised ICP than on absolute mean ICP values.76, 78 

Electroencephalography and evoked potentials

In the past decades, there has been interest in electroencephalography (EEG) and evoked 

potentials or event-related potentials as predictors of outcome.79, 80 A review, published 

in 2004, stated that the predictive ability of EEG is limited.81 It was suggested that this 

may be because the TBI has greater impact on subcortical axonal fibers than on the corti-

cal gray matter that generates most of the EEG signal. In the postacute phase the bispec-

tral index has a higher correlation with behavioral scales than the EEG and may help in 

differentiating between a vegetative and minimally conscious state, also after TBI.82

Multiple studies have shown that somatosensory evoked potentials are useful 

predictors of outcome after TBI.83-85 Lew et al (2003) reported that bilateral absence of 

cortically recorded median nerve SEPs within 8 days of severe TBI was strongly predic-

tive of death or persistent vegetative state.85  A meta-analysis showed that bilaterally 

negative SEPs had a 98.5% positive likelihood ratio for unfavourable outcome.86 The 

false-positive rate for bilaterally negative SEPs may however be high in patients with fo-

cal lesions, subdural effusions and after recent decompressive craniectomies. 

Although the results of research in this field are promising, the evidence regarding 

the prognostic effects of these clinical neurophysiological modalities is limited, and the 

added value over other clinical predictors is uncertain. 
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Prognostic models 

Estimation of prognosis is by definition a multivariable challenge. Predictors should 

be considered jointly rather than on their own and can be combined in a multivariable 

prognostic model to quantify the risk for a particular outcome in individual patients.

Combining individual predictors into a model will increase the performance and gener-

alizibility and is all the more important, as patients may have characteristics that affect 

the outcome in opposite directions. For example, for a 24-year old patient with fixed 

pupils, we would expect a favourable outcome based on age, but an unfavourable out-

come based on pupil reactivity. 

In an updated literature search to January 2010, we identified 27 prognostic models in 

16 studies, meeting the following criteria: presenting a prognostic model for mortality 

>2 weeks post discharge or 6 month GOS in English language, with predictors mea-

sured within 24 hours after injury, and including over 200 patients with age>14 years, 

presenting with GCS<14 or motor score<6, and non-penetrating injury. Many of these 

models showed shortcomings, in particular a high risk of overfitting, e.g. that predic-

tive performance is much poorer in new patients than expected from the development 

phase, and lack of external validation (Table 5.2).11,17, 87-101 The risk of overfitting was 

high in 10 of the 16 studies identified in this review. The number of considered pre-

dictors was mostly higher than the number included in the final model, and often too 

high in relation to the available sample size. As a rule of thumb, the maximum number 

of candidate predictors can be approximated by dividing the number of events (e.g. 

number of patients with poor outcome) by a factor 10, e.g. at most 10 predictors for 

100 events.102 Also overfitting is caused by using statistical techniques for predictors 

selection that are too much data driven, such as backward selection in a small data-

set. Overfitting can be assessed by internal validation techniques, such as bootstrap 

resampling.103 More important is external validation, i.e. testing model performance in 

another setting that differs in time or place.104,105 
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Table 5.2  Overview of prognostic models in moderate and severe TBI published between 1976 and 2009

Reference Year N 
(developm.)

N  
Predictors 
included

Severity Outcome Risk of 
overfitting 

External 
validation

Jennett et al.87 1976 600 4 In coma for  
at least 6h

GOS
6 months

High No

Braakman  
et al.88

1980 305 3 In coma for  
at least 6h

GOS
6 months

High No

Choi et al.89 1983 264 4 Severe head 
injury and 
GMS ≤5

GOS 
6 months

Intermediate No

Lokkenberg  
and Grimes90

1984 254 2 GCS ≤8 GOS
6 months

Low No

Braakman 
et al.91

1986 306 3 Severe head 
injury

GOS
6 months

Intermediate No

Choi et al.92 1988 523 3 Severe head 
injury

GOS
6 months

High No 

Choi et al.93 1991 555 4 GCS ≤8 GOS
12 months

High No

Fearnside et 
al.(2 models)94

1993 315/218 5 GCS ≤8 Mortality/
GOS

Intermediate No

Marmelak  
et al.95

1996 672 3 GCS ≤8 GOS
6 months

Low No

Quigley et al.96 1997 380 2 GCS 3-5 GOS
6 months

Low No

Lang et al.97 1997 799 4 GCS ≤8 Mortality
6 months

High No

Signorini et al.11 1999 372 5 GCS ≤12 and 
GCS >12 if 
ISS >15 

Mortality
12 months

Intermediate Yes

Ratanalert 
et al.98

2002 337 3 GCS ≤8 GOS
6 months

Intermediate No

Hukkelhoven et 
al.(2 models)99

2005 2269 7 GCS ≤12 Mortality/
GOS
6 months

Low Yes

Cremer et al.100 2006 304 5 GCS ≤8 and  
in coma for  
at least 24h

GOSE
12 months

Low Yes

Perel et al.
(4 models)17

2008 10008 4-9 GCS ≤14 Mortality/
GOS
14 days/
6 months

Low Yes

Steyerberg et 
al.(6 models)101

2009 8509 3-10 GCS ≤12 Mortality/
GOS
6 months

Low Yes
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External validation was only reported in 5 studies. These findings are consistent with 

reviews published by Perel and Mushkudiani.106,107

The models reported by the CRASH trial investigators and by the IMPACT study 

group are the most recent and developed on the largest patient numbers (10,008 

and 8,509 respectively).17, 101 Different sets of prediction models were developed with 

logistic regression analysis and cross-validated on each other. Models are available in 

score chart format and in a web based application (CRASH: http://www.crash2.lshtm.

ac.uk/risk%20calculator/index.html; IMPACT: http://www.tbi-impact.org). Both studies 

showed that the largest amount of prognostic information is contained in a core set of 

three predictors (age, GCS or motor score, and pupillary reactivity) (Panel 5.4). 

The CRASH models included also patients with milder injuries in the development, 

and are consequently also applicable to these. The IMPACT models focussed on moder-

ate and severe TBI. Both models can be considered to represent the current state of 

the art in prognostic modelling in TBI as they were developed on large numbers and 

conformed to accepted quality criteria for model development, including external vali-

dation.

Panel 5.4  CRASH and IMPACT prediction models17, 101

IMPACT CRASH

Predicted outcome

Core model

CT model  

Lab model  

Available at 

6 month mortality 
6 month unfavourable outcome 

Age
Motor score
Pupil reactivity 

Core model + 
Hypoxia
Hypotension
CT Classification 
tSAH on CT
Epidural mass on CT 

CT model +
Glucose
Hb

http://www.tbi-impact.org

14 day mortality 
6 month unfavourable outcome 

Age
GCS
Pupil reactivity 
Major extracranial injury 

Core model + 
petechial haemorrhages
Obliteration of the third ventricle or basal cisterns
Subarachnoid bleeding
Midline shift
Non-evacuated haematoma

http://www.crash2.lshtm.ac.uk/risk%20calcula-
tor/index.html
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Applications of prognostic models in TBI

Clinical Practice

Some estimation of prognosis is consciously or subconsciously employed by physi-

cians, when informing relatives, making treatment decisions or allocating resources. 

Estimates derived from large datasets are preferable to relying on the subjective opin-

ion of a physician whose experience, no matter how vast, can never match the infor-

mation contained in the data of thousands of patients. The Canadian CT rule and the 

CHIP prediction rule for CT scanning in mild TBI are clear examples of how prediction 

models can provide evidence to better inform clinical decisions.3,5 Caution is advo-

cated when outcome prediction models are applied in individual patients. Prognostic 

estimates are necessarily only probabilities and cannot provide certainty on an actual 

outcome. 

Research

The main research applications of prognostic models for outcome in TBI include clas-

sification and clinical trials. Prognostic risk estimation on admission provides a tool 

for classification of populations by their prognostic risk distribution (Figure 5.3).108 We 

hence obtain insight into differences in the case-mix of different studies. 

In the design and analysis of randomized controlled trials, prognostic models offer 

opportunities both in the enrolment and analysis phase. Traditionally, clinical trials 

employ relatively strict enrolment criteria. Some of these are motivated by safety and 

ethical considerations, but most criteria (e.g. age and disease severity) aim to exclude 

patients with a very good or very poor prognosis. Patients at these extremes are not 

likely to demonstrate benefit from the treatment under investigation. It is statistically 

more efficient to combine these criteria in a prognostic model.109-112 The prognostic 

estimate can first be used to determine eligibility and next for the analysis.  

In the analysis phase, prognostic models can adjust for baseline characteristics. This 

substantially increases statistical power, or equivalently, allows for a reduction in the 

required sample size (by more than 25%).113 Prognostic analysis is further essential to 

the use of the sliding dichotomy, where the point of dichotomy of the GOS is differenti-

ated according to the baseline prognostic risk.114 For a patient with a very severe injury, 

survival may be relevant whilst for patients with less severe injuries any outcome 

worse than good recovery might be considered unfavourable. The sliding dichotomy 

approach has been adopted for the primary analysis of a number of phase III trials in 

TBI, stroke and intracerebral hemorrhage.115-117 
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Figure 5.3  Distribution of predicted probabilities on 6 month unfavourable outcome from the IMPACT 
Core model in a Randomized Controlled Trial (‘Tirilizad International’, solid points, solid line) and an ob-
servational study (‘UK4’, open points, dashed line). This figure shows the comparison of an observational 
study to a randomized controlled trial among TBI patients. The proportion of patients with a relative 
poor prognosis was smaller in the randomized controlled trial than in the observational study.108 

Most prognostic studies in TBI have however analyzed the GOS arbitrarily dichoto-

mized into unfavourable versus favourable outcome. As a result we cannot assume that 

predictors differentiating death very well from survival will perform similarly when 

asked to predict good recovery versus worse outcomes. To overcome this limitation, 

a proportional odds model can be used, as was done in the IMPACT studies. This ap-

proach uses the full GOS as outcome instead of a dichotomized GOS, assuming that the 

predictors differentiate equally well over each possible dichotomization (proportional 

odds assumption). A proportional odds model may be more relevant for all patients 

since it differentiates between death/survival in poor prognosis patients, but also 

between good recovery and anything worse in good prognosis patients. Moreover both 

the sliding dichotomy and proportional odds models substantially increase statistical 

power.118  The proportional odds assumption may not be valid for all predictors. For 

example, the presence of severe extracranial injury discriminates between death and 

survival, but less well between good recovery and moderate disability. [van Leeuwen et 

al, in preparation].
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Quality assessment of health care delivery

Comparison of observed and expected outcomes may give an indication of the qual-

ity of care delivered in a specific hospital or in a specific country. An example is the 

standardized mortality ratio (observed deaths/expected deaths, adjusted for baseline 

characteristics), which is used as a quality score in intensive care medicine. The ex-

pected mortality is commonly derived from scoring systems, such as Apache II, TRISS 

or SAPS II/III. These systems were however developed for a general ICU population, 

and their applicability to the indication TBI is doubtful. Prognostic models specific to 

TBI can better set baselines for clinical audits and benchmarking. These models are of 

great potential relevance for assessing the quality of health care delivery, as they have 

been developed not only for mortality, but also for functional outcome, as assessed 

by the GOS. It should be noted however that the cumulative R2 of the IMPACT model is 

0.35. This indicates that a great deal of unexplained variation still exists, so case-mix 

adjustment is incomplete by definition. 

Discussion

This review illustrates that prognostic analysis and prognostic modelling have a great 

potential in TBI, both for diagnosis and prognosis. At the same time some of the gaps 

in our knowledge are identified, highlighting issues for further investigation.

Validated prognostic models have been based mainly on admission characteristics. 

Although, considerable insight has been gained into the prognostic value of variables 

obtained during the subsequent clinical course, these have not yet been widely in-

cluded in prognostic models. Further research should focus on the quantification of the 

additional benefit that might be obtained for outcome prediction. 

The epidemiology of TBI is changing and approaches to pre-hospital care, diagnostic 

capabilities and intensive care monitoring and treatment are continuously improving. 

Consequently, prognostic analysis should be seen as a continuing process requiring 

ongoing updating and validation in contemporary series.119

In the analyses of continuous variables such as age, blood pressure or laboratory 

parameters, many studies used threshold values, creating a dichotomy or categori-

zation of continuous predictors, e.g. age <=50 vs. >50 years. Threshold values are 

increasingly used in clinical medicine towards goal-directed therapy. Threshold values 

are, however, not natural to biological systems. Collapsing continuous variables has 

many disadvantages.120 It is recommended that future prediction studies analyze con-

tinuous predictors in a continuous way, possibly as a non-linear variable.53  

A major gap in our knowledge concerns uncertainty how individuals may possibly 

respond differently to similar injuries. Such differences may in part be genetically deter-

mined and much research will be required in the fields of genomics and metabolomics 

to elucidate variability in response. An indication how relevant this may be, is given by 
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the observation that recovery is poorer in patients with stroke or TBI in the presence 

of APOEε4 genotype.121 Other genes for which evidence exists for an association with 

poorer outcome are P53, COMT, DND2 and Cacna1a genes.122 Also response to treat-

ment varies between individuals. In oncology, one refers to characteristics that predict 

response to treatment as predictive factors, whilst prognostic factors more generally 

predict outcome (REMARK guidelines). Research on predictive factors in TBI is starting, 

including various biomarkers and imaging modalities. Predictive factors may lead to 

targeted therapies, considering individual mechanisms of disease.123

Further research is also required into more sensitive outcome measures, particularly 

in milder TBI. 

Directly relevant to prognostic research in TBI is better standardization of data 

collection and coding to facilitate sharing of results and to permit meta-analysis of indi-

vidual patient data across studies.124 This will give the opportunity to improve, validate, 

and update prognostic models on larger numbers of patients. 

The challenge for the immediate future is the implementation of prediction models 

in clinical practice. The tools are now provided by the availability of reliable and ex-

ternally validated models, and it is up to clinicians and researchers to adopt these for 

general clinical and research applications, either to improve quality of care, or to beat 

the prognostic estimate.
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Abstract
Objective

Major extracranial injury (MEI) is common in Traumatic Brain Injury (TBI) 

patients. The aim of this study is to assess the prognostic value of MEI on 

mortality after TBI.  

Design and setting

Individual patient data meta-analysis 

Patients: Individual patients from three observational TBI studies (IMPACT), a 

randomized controlled trial (CRASH), and a trauma registry (TARN). 

Methods

MEI was defined as extracranial injury with an Abbreviated Injury Score ≥ 3 

or ‘requiring hospital admission on its own’. We related MEI to mortality with 

logistic regression analysis, adjusted for age, GCS motor score and pupil 

reactivity and stratified by brain injury severity. We pooled odds ratios (ORs) 

with random effects meta-analysis methods. 

Results

We included 39,274 patients in total, 17,136 with severe, 7,229 with 

moderate, and 14,909 with mild TBI. Mortality was 25% and 32% had MEI. MEI 

was a strong prognostic factor for mortality in TARN, with adjusted ORs and 

95% confidence intervals (95%CI) of 2.81 (2.44-3.23) in mild, 2.18 (1.80-2.65) 

in moderate and 2.14 (1.95-2.35) in severe TBI patients. The prognostic effect 

was smaller in IMPACT and CRASH with pooled adjusted ORs and 95%CIs of 

2.14 (0.93-4.91) in mild, 1.46 (1.14-1.85) in moderate and 1.18 (1.03-1.55) in 

severe TBI patients. When patients who died within 6 hours after injury were 

excluded from TARN, the effects of MEI were comparable to those observed 

in IMPACT and CRASH. 

Conclusions

MEI is an important prognostic factor for mortality in patients with TBI. 

However, the strength of the effect is smaller in patients with more severe 

brain injury. Also the strength of the effect decreases when only considering 

patients who survive the early phase after injury, instead of considering all 

patients, starting from the time of injury. 
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Introduction

Major extracranial injury (MEI) is frequently present in patients with traumatic brain 

injury (TBI). Relatively few studies have however focused on the effect of MEI on mor-

tality after TBI. Most studies concerning TBI and MEI have investigated patients with 

extracranial trauma, with or without TBI. These studies show that the coexistence of 

traumatic brain injury with extracranial injury is associated with both increased mortal-

ity and morbidity.1-4

In contrast, there is no consensus on the degree to which the presence of MEI wors-

ens outcome in TBI patients. Some studies demonstrate that outcome mainly depends 

on the severity of the primary cerebral damage and is not worsened by the presence 

of extracranial injuries.5,6 Other studies suggest that the presence of MEI does predict a 

poorer outcome in TBI patients.7-10 Differences between studies might be due to patient 

population, setting and study design. Determining the importance of MEI in outcome 

after TBI has relevance for understanding and potentially improving the patient path-

way, and for improving prognostic models that might be used to benchmark care,4 or 

to inform relatives and medical decisions.

We report a collaborative analysis on a large number TBI patients with and with-

out documented MEI, including data from the International Mission on Prognosis and 

Clinical Trial design in TBI (IMPACT) study, the Medical Research Council Corticosteroid 

Randomization after Significant Head Injury (MRC CRASH) trial, and the Trauma Audit 

& Research Network (TARN) registry. Our aim was to determine the role of MEI as a 

prognostic factor for mortality after TBI. We hypothesize that the presence of MEI is as-

sociated with higher mortality in patients with TBI.

Methods

Patient population and data collection

We included individual patient data from the International Mission on Prognosis and 

Clinical Trail design in TBI (IMPACT) study, the Medical Research Council Corticosteroid 

Randomization after Significant Head Injury (MRC CRASH) trial, and the Trauma Audit & 

Research Network (TARN). 

IMPACT combines individual patient data from randomized controlled trials (RCTs) 

and three observational studies in moderate and severe TBI, mainly from the US and 

Europe. Here we focused on the three observational studies (the European Brain Injury 

Consortium study (EBIC), the UK four center study (UK4), and the Traumatic Coma Data-

bank (TCDB)), as the presence of MEI was not an exclusion criterium for these studies. 

Patients were enrolled in these studies between 1984 and 1995. 

The CRASH trial is a trial with broad inclusion criteria studying the effect of corticoster-

oids on death and disability after head injury. CRASH was conducted in both high and 



c h ap  t e r  6    Prognostic value of extracranial injury in traumatic brain injury 111

low/middle income countries. In CRASH we analyzed low/middle income countries and 

high income countries separately, as trauma organizations may be different.7 CRASH 

enrolled patients between 1999 and 2005.

TARN is a hospital based trauma registry in England and Wales including all patients 

with trauma resulting in immediate admission to hospital for three days or longer or 

death. From these, we selected TBI patients defined as having an Abbreviated Injury 

Scale for the Head Region of 3 or higher, which was not resulting from scalp laceration, 

scalp avulsion or penetrating injury. The patients from TARN included in this study 

were enrolled between 1990 and 2009.

Detailed descriptions of all the studies and data collection and management can be 

found in previous publications.11-13

Outcome and major extracranial injury 

The primary outcome examined in this analysis was mortality at six months in IMPACT 

and CRASH and discharge mortality in TARN. Where 6 month outcome was missing or 

systematically not recorded in IMPACT, the mortality at three months was substituted 

instead. CRASH had also 14 day mortality available. 

Major Extracranial Injury (MEI) was defined as ‘Abbreviated Injury Scale (AIS) ≥ 3’ or 

‘an injury requiring hospital admission on its own’.

Statistical analyses

The strength of the association between MEI and mortality was analyzed univariably 

and multivariably using binary logistic regression models. We adjusted for core prog-

nostic parameters: age, GCS motor score (1=makes no movements, 2=extension to 

painful stimuli, 3=abnormal flexion to painful stimuli, 4 =flexion/withdrawal to painful 

stimuli, 5=localizes painful stimuli, 6=obeys commands) and pupil reactivity (1= both 

responsive, 2=one responsive, 3=both unresponsive) at admission. We also adjusted 

for hypotension to better understand the pathway of the prognostic effect of MEI. In 

IMPACT we additionally adjusted for study since it consists of three studies. In CRASH 

we also adjusted for treatment since there was a significant treatment effect.  

Results were expressed as odds ratio for mortality with MEI compared to absent MEI, 

with 95% confidence intervals. An overall summary measure was derived using random 

effects meta-analysis (Der Simonian-Laird pooling). TARN was not included in the pooled 

analysis because of the different nature of the study and the different time point of the 

outcome. Tests of heterogeneity were performed to assess consistency of effects across 

studies. Forest plots were used to display consistency of findings across the datasets.

We calculated partial R2 statistics to indicate the amount of variance explained by 

MEI, both univariable and multivariable. In CRASH and IMPACT we corrected the uni-

variable and multivariable R2s for the variance explained by study and treatment. 

Absolute risks of patients with and without MEI were calculated from the models 
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by taking the mean of the probabilities predicted by the multivariable models, again 

stratified for brain injury severity. 

Missing data were imputed for the motor score of the Glasgow Coma Scale (GCS), 

pupil reactivity and MEI with multiple imputation using all relevant prognostic factors 

and outcome. Imputations were done separately for TARN, CRASH and IMPACT. 

Analyses were performed with R statistical software 2.7.1 (R Foundation for Statisti-

cal Computation, Vienna) using packages Rmeta and Design, and SPSS 15.0 (SPSS Inc, 

Chicago).

Sensitivity analyses 

In preliminary analysis we found a large difference between IMPACT and CRASH versus 

TARN in terms of the effect of MEI on outcome. We hypothesized that this might be due 

to the different setting (TBI studies versus a trauma registry), the different distribution 

of TBI severity across the studies (only moderate and severe TBI in IMPACT, many mild 

TBI patients in TARN), or the different time point of outcome assessment (discharge 

versus 6 month). We tested these hypotheses by three approaches. 

1. �We tested for interaction between MEI and brain injury severity (GCS), by adding 

an interaction term between MEI and GCS to the binary logistic regression model 

containing age, GCS motor score, pupil reactivity, MEI and GCS as main effects. We 

assed the p-value of the interaction term and consequently stratified the analyses for 

brain injury severity, defining mild TBI as Glasgow Coma Scale (GCS) 13-15, moderate 

TBI as GCS 9-12 and severe traumatic brain injury as GCS 3-8. 

2. �We excluded the patients from TARN who died within 6 hours after injury since the 

majority of these patients is not likely to be included in IMPACT or CRASH. 

3. We analyzed in CRASH both 14 day and 6 month mortality. 
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Results

Patient population  

We included 2,218 patients from IMPACT (791 from UK4, 603 from TCDB, and 824 from 

EBIC), 9,554 from CRASH (7,205 from low/middle income countries, and 2,349 from 

high income countries), and 27,504 from TARN. This resulted in 39,274 patients for the 

analysis. For all variables missing was less than 10%, except for TARN where 90% of 

the pupil reactivity data was missing since this variable was only recorded from 2005 

onwards. 

Patient characteristics

The majority of the patients (17,132, 44%) had severe TBI. A total of 7,229 (18%) had 

moderate and 14,909 (38%) had mild TBI. The IMPACT study included mainly severe 

TBI patients (81%) and TARN mainly mild (43%) and severe (42%) TBI patients. In CRASH 

the distribution of brain injury severity was more equal (30% mild, 30% moderate, 40% 

severe). In IMPACT mortality was 41%, compared to 24% in CRASH and 28% in TARN. In 

IMPACT 41% of the patients had MEI, in CRASH this was 23% and in TARN and 34%. MEI 

was observed more frequently in patients with severe TBI (30-46%), than in those with 

mild TBI (14-41%). (Table 6.1). 

Major Extracranial Injury and mortality

We found a moderate prognostic effect of MEI in IMPACT and CRASH with pooled 

adjusted ORs and 95% confidence intervals (95%CIs) of 2.14 (0.93-4.91) in mild, 1.46 

(1.14-1.85) in moderate and 1.18 (1.03-1.55) in severe TBI patients. In TARN MEI was a 

strong prognostic factor for mortality, with adjusted odds ratios (OR) and 95%CIs of 

2.81 (2.44-3.23) in mild, 2.18 (1.80-2.65) in moderate and 2.14 (1.95-2.35) in severe TBI 

patients (Figure 6.1 and Table 6.2). The unadjusted ORs were all smaller than adjusted 

ORs, indicating that the effect of MEI on mortality was independent of other predictors 

of mortality.  
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Table 6.1   Patient characteristics of 3 studies from the IMPACT study, the CRASH trial and the TARN 
registry.

Age GCS score Motor score Pupillary  
reactivity*

Major ex-
tracranial 
injury

Mortality

Median 
(25th–75th 
percentile)

Mild 
(GCS 13–15)
Moderate  
(GCS 9–12)
Severe 
(GCS 3–8)

None
Extension
Abnormal 
Flexion
Normal flexion
Localize/obeys
Untestable/
missing

Both responsive
One responsive
Both unrespon-
sive

Yes Dead

UK4
(n=791)

36 (22–55) 24 (3%)
83 (11%)
684 (87%)

113 (14%)
85 (11%)
37 (5%)
141 (18%)
221 (28%)
194 (26%)

434 (55%)
113 (14%)
244 (31%)

303 (38%) 359 (45%)

TCDB
(n=603)

26 (21–40) 22 (4%)
45 (8%)
536 (89%)

136 (23%)
107 (18%)
74 (12%)
121 (20%)
134 (22%)
31 (5%)

299 (50%)
55 (9%)
249 (41%)

280 (46%) 264 (44%)

EBIC
(n=822)

37 (24–59) 73 (9%)
168 (20%)
581 (71%)

150 (18%)
80 (10%)
55 (7%)
113 (14%)
281 (34%)
143 (17%)

532 (65%)
80 (10%)
210 (26%)

316 (38%) 281 (34%)

CRASH LOW/
MIDDLE 
INCOME 
(n=7,205)

32 (24–45) 2108 (29%)
2331 (32%)
2766 (38%)

356 (5%)
403 (6%)
531 (7%)
891 (12%)
5024 (70%)
0 (0%)

6135 (85%)
450 (6%)
620 (9%)

1694 (23%) 1854 (26%)

CRASH HIGH 
INCOME 
(n=2,349)

37 (24–54) 760 (32%)
551 (24%)
1038 (44%)

429 (18%)
112 (5%)
128 (5%)
290 (12%)
1390 (59%)
0 (0%)

1965 (84%)
147 (6%)
237 (10%)

522 (23%) 469 (20%)

TARN 
(n=27,504)

39 (24–60) 11922 (43%)
4051 (15%)
11531 (42%)

4117 (15%)
838 (3%)
973 (4%)
1449 (5%)
11892 (43%)
8235 (30%)

21548 (78%)
1630 (6%)
4326 (16%)

9452 (34%) 7673 (28%)

*Pupil reactivity in TARN was imputed for 90% of the patients
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Figure 6.1  Forest plots showing the strength of the adjusted association between major extracranial 
injury and mortality in mild (upper), moderate (middle) and severe (lower) TBI patients
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Table 6.2  Associations between major extracranial injury (versus no and minor extracranial injury) 
and mortality 

Mild TBI (GCS 13–15)1 Moderate TBI (GCS 9–12) Severe TBI (GCS 3–8)

N Mortality 
(%)

N Major 
extra-
cranial injury 
(%)

Unadjusted 
OR
(95% CI)2

Adjusted 
OR3

(95% CI)

N Mortality 
(%)

N Major 
extra-
cranial 
injury (%)

Unadjusted OR
(95% CI)

Adjusted 
OR
(95% CI)

N Mortality 
(%)

N Major 
extra-
cranial injury 
(%)

Unadjusted 
OR
(95% CI)

Adjusted 
OR
(95% CI)

UK4 10 
(42)

9 
(38)

1.14
(0.46–2.86)

1.75
(0.56–5.46)

34
(41)

33 
(40)

0.70
(0.39–1.26)

1.15
(0.55–2.41)

315
(46)

261
(38)

0.90
(0.66–1.23)

1.21
(0.81–1.80)

TCDB 6 
(27)

9
(41)

9
(20)

24
(53)

249
(47)

247
(46)

0.98
(0.70–1.38)

1.13
(0.74–1.73)

EBIC 11 
(15)

19
(26)

26
(16)

51
(30)

244
(42)

246
(42)

0.79
(0.56–1.10)

1.12
(0.73–1.71)

CRASH L-M 
income

112
(5)

309
(14)

3.96 
(2.64–5.94)

3.86 
(2.52–5.91)

348
(15)

530
(22)

1.48
(1.15–1.92)

1.43 
(1.09–1.88)

1393
(50)

852
(30)

1.16
(0.99–1.37)

1.24
(1.03–1.49)

CRASH High 
income

64
(8)

115
(15)

1.39
(0.73–2.64)

1.21
(0.58–2.52)

81
(15)

111
(20)

1.16
(0.66–2.04)

2.04
(1.01–4.12)

324
(31)

296
(30)

0.98
(0.73–1.31)

1.04
(0.75–1.44)

Pooled CRASH 
& IMPACT

203
(7)

453
(15)

1.96
(0.84–4.59)

2.14
(0.93–4.91)

498
(16)

737
(23)

1.13
(0.73–1.75)

1.46
(1.14–1.85)

2525
(45)

1904
(34)

1.00
(0.86–1.15)

1.18
(1.03–1.55)

TARN 1132 
(10)

3147 
(26)

2.24
(1.98–2.54)

2.81
(2.44–3.23)

764
(19)

1178
(29)

1.68
(1.42–1.80)

2.18
(1.80–2.65)

5777
(50)

5127 
(45)

1.92
(1.78–2.07)

2.14
(1.95–2.35)

Adjusting the effect of extracranial injury for hypotension led to a small decrease of 

the prognostic effect (ORs decreasing by 0.1-0.4) of MEI, indicating that hypotension 

indeed explains part of the relationship between extracranial injury and outcome. 

Hypotension itself was a strong prognostic factor for mortality, independent of MEI 

(adjusted ORs 2.9 to 3.6).  

The prognostic value of MEI in terms of univariable R2 (Figure 6.2) varied from 0.0% 

(in severe patients in IMPACT and CRASH) to 3.4% (in severe patients in TARN), and was 

considerably smaller than the prognostic value of core predictors as age, GCS motor 

score and pupil reactivity. 

1. GCS = Glasgow Coma Scale
2. OR (95% CI) = Odds ratio (95% confidence interval)
3. Adjusted analyses – adjusted for age, pupil reactivity and GCS motor score. In IMPACT and CRASH also 
adjusted for respectively study and treatment.
In mild and moderate TBI the logistic regression analyses were done together for UK4, TCDB and EBIC 
because of low numbers of patients
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Mild TBI (GCS 13–15)1 Moderate TBI (GCS 9–12) Severe TBI (GCS 3–8)

N Mortality 
(%)

N Major 
extra-
cranial injury 
(%)

Unadjusted 
OR
(95% CI)2

Adjusted 
OR3

(95% CI)

N Mortality 
(%)

N Major 
extra-
cranial 
injury (%)

Unadjusted OR
(95% CI)

Adjusted 
OR
(95% CI)

N Mortality 
(%)

N Major 
extra-
cranial injury 
(%)

Unadjusted 
OR
(95% CI)

Adjusted 
OR
(95% CI)

UK4 10 
(42)

9 
(38)

1.14
(0.46–2.86)

1.75
(0.56–5.46)

34
(41)

33 
(40)

0.70
(0.39–1.26)

1.15
(0.55–2.41)

315
(46)

261
(38)

0.90
(0.66–1.23)

1.21
(0.81–1.80)

TCDB 6 
(27)

9
(41)

9
(20)

24
(53)

249
(47)

247
(46)

0.98
(0.70–1.38)

1.13
(0.74–1.73)

EBIC 11 
(15)

19
(26)

26
(16)

51
(30)

244
(42)

246
(42)

0.79
(0.56–1.10)

1.12
(0.73–1.71)

CRASH L-M 
income

112
(5)

309
(14)

3.96 
(2.64–5.94)

3.86 
(2.52–5.91)

348
(15)

530
(22)

1.48
(1.15–1.92)

1.43 
(1.09–1.88)

1393
(50)

852
(30)

1.16
(0.99–1.37)

1.24
(1.03–1.49)

CRASH High 
income

64
(8)

115
(15)

1.39
(0.73–2.64)

1.21
(0.58–2.52)

81
(15)

111
(20)

1.16
(0.66–2.04)

2.04
(1.01–4.12)

324
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296
(30)
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1.04
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Pooled CRASH 
& IMPACT

203
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(0.84–4.59)
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737
(23)

1.13
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1.46
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Figure 6.2  The prognostic value of major extracranial injury (MEI), univariable and in combination 
with age and brain injury severity (GCS motor score and pupil reactivity), expressed in percentage ex-
plained variance (R2)
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Absolute risks 

In CRASH and IMPACT, the increase in absolute risk on mortality associated with MEI 

was 8% (6% vs. 14%) in mild, 4% (15% vs. 19%) in moderate and 1% (45% vs. 46%) in 

severe TBI patients. The prevalence of MEI in TBI patients was larger in TARN for all 

brain injury severities than in IMPACT and CRASH, as was the increase in absolute risks 

on mortality. The increase in absolute risk on mortality associated with MEI was 8% 

(7% vs. 15%) in mild, 9% (16% vs. 25%) in moderate and 16% (43% vs. 59%) in severe TBI 

patients in TARN (Table 6.3). 

Table 6.3  Absolute risks on mortality stratified for MEI vs. no MEI and for TBI severity groups in  
IMPACT & CRASH vs. TARN.

Mild TBI patients Moderate TBI  
patients

Severe TBI patients

IMPACT & 
CRASH

No major extra-
cranial injury

5.5% (5.2–5.8) 14.8% (0.142–0.153) 44.8% (44.1–45.6)

Major extracranial 
injury

13.9% (12.6–15.2) 18.7% (0.177–0.198) 45.5% (44.5–46.6)

TARN No major extra-
cranial injury

7.4% (7.2–7.4) 16.4% (15.8–17.1) 42.9% (42.2–43.6)

Major extra-
cranial injury

15.3% (14.7–1.58) 24.8% (23.5–26.0) 59.1% (58.3–59.8)

Differences between CRASH, IMPACT and TARN 

There was a significant interaction between MEI and brain injury severity in CRASH 

(p<0.001) and TARN (p=0.029) but not in IMPACT. 

Since we found, also after stratification, a considerable difference in the prognostic 

effect of MEI between IMPACT-CRASH and TARN across all TBI severities, we excluded 

912 patients from TARN who died within 6 hours after injury since the majority of these 

patients would not have been included in IMPACT or CRASH. This resulted in decreased 

ORs of MEI for mortality: 2.4 in mild, 1.8 in moderate and 1.6 in severe TBI (IMPACT 

and CRASH: 2.1 in mild, 1.6 in moderate and 1.2 in severe TBI). 

To assess the difference between IMPACT-CRASH and TARN further, we analyzed 14 

day mortality in CRASH. In low/middle income countries MEI was less strongly related 

to 14 day mortality than to 6 month mortality (ORs 0.1-1 point lower for 14 day mortal-

ity). In high income countries however, effects were opposite (ORs 0.1 to 0.4 points 

higher for 14 day mortality). 
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Discussion

Our study shows that MEI is a prognostic factor in patients with TBI. However the 

strength of the effect interacts with brain injury severity and varies by the popula-

tion studied, and by study design. In TBI patients included in a registry (TARN) MEI is 

strongly associated with mortality after adjustment for age, GCS motor score and pupil 

reactivity. In patients included in TBI studies (broadly selected RCTs or observational 

studies) the incremental prognostic value of MEI compared to known predictors of mor-

tality is limited, particularly in more severe TBI. 

We found a large difference in prognostic effect between TARN and IMPACT and 

CRASH. The larger effect in TARN was largely explained by inclusion of patients who 

died before or shortly after admission. The ORs in IMPACT and CRASH thus could be 

interpreted as the effect of MEI when a TBI patient survives the early stage (first hours) 

after trauma. The effect in TARN could  be interpreted as the effect of MEI in the unse-

lected TBI population. For example: a victim of a road traffic accident with severe TBI 

and MEI has an odds for mortality 2.14 fold that of a similar patient without MEI. When 

this patient survives the early stage, the prognostic effect of MEI is reduced to a 1.18 

fold increased risk. 

Our study shows that the magnitude of the effect of MEI on mortality depends on 

the study design. This is also explanation for the disagreement in the literature about 

the prognostic effect of MEI. Studies demonstrating that outcome is not worsened by 

MEI only included (often severe) patients admitted to an intensive-care unit.5,6 These 

studies are mostly comparable to IMPACT and CRASH with regard to study population 

and results. The studies showing an effect of MEI in TBI patients, obtained the data 

from a Trauma Registry like TARN.8-10

The prognostic effect of MEI thus depends on the population studied. This means 

that it is also dependent on the application of a prognosis in a clinical setting. For coun-

seling of relatives of severe TBI patients in the hospital for example, MEI is more likely 

to be a highly relevant prognostic factor in the Emergency Department than a few 

hours later if the patient has survived the immediate risk of death from haemorrhage 

caused by major extracranial injury and has been admitted to intensive care. Thus, this 

study demonstrates that it is important not only to formulate a clear research question 

but also to define the specific patient population, which is often not done in prognostic 

research. To interpret results of a prognostic study and to determine applicability to a 

particular setting it is important to be aware of the study population and design. 

We reported absolute risks in the different studies and the different strata of pa-

tients, which further provide some relevant clinical insights. For example patients with 

mild TBI & MEI have a similar risk on mortality to one with moderate TBI and no MEI. 

Absolute risks on mortality were higher in TARN than in IMPACT and CRASH across all 

TBI severities. This is probably partly due to the previously mentioned difference in pa-



pa r t  I I I   Prognostic models12 0

tient population. Further, differences in mortality between the studies might be caused 

by differences in health care system and resources (low/middle income countries in 

CRASH ) and by the time of data collection (varying between 1984 for TCDB and 2009 

for the most recent patients in TARN).   

It might be expected that MEI is more associated with early mortality than with 

late mortality. This is supported by our finding that ORs decrease when excluding 

early deaths in TARN. In CRASH we analyzed both 14 day and 6 month mortality, with 

inconsistent results. In high income countries the ORs for 14 day mortality were indeed 

higher than those for 6 month mortality, in low/middle income countries it was the oth-

er way round. An explanation might be that within high income countries trauma deaths 

after 14 days are rare, while lack of resources and also a greater level of underlying 

comorbidity make late trauma deaths more prevalent in low/middle income countries. 

MEI will have an impact there because it will often cause immobility, resulting from 

e.g. limb and pelvic fractures, which may cause mortality in less resourced settings. In 

general, the prognostic effect of MEI was larger in low/middle income countries, which 

might be partly explained by structure and processes of care (e.g. longer times to ad-

missions, less resources). These findings illustrate the necessity to take resources and 

post acute facilities into account when including patients in TBI studies from regions 

where resources may be more limited. This is particularly important as a tendency has 

been noted for pharmaceutical companies and researchers to involve centers from other 

regions of the world in TBI studies, because of higher patient potential and lower cost.14

The unadjusted ORs were all smaller than adjusted ORs. This means that the effect 

of MEI on mortality was not explained by other predictors of mortality. Adjusting only 

for brain injury severity lead to a small decrease in the effect of MEI since patients with 

MEI have more severe brain injury, which is also related to mortality. Adjusting for age 

lead to an increase of the effect of MEI since patients with MEI are younger on average, 

which is related to less mortality.  

Hypotension explained a small part of the association between MEI and mortality. 

This was expected since systemic injuries can cause major bleedings and thus hypoten-

sion. The finding that the ORs of MEI change only very little after adjustment for hy-

potension and that hypotension is also a strong predictor of mortality independent of 

MEI suggests that the threshold values for defining hypotension may be too restrictive, 

or that other mechanisms, such as inflammatory response to multiple injuries, play a 

role in the relationship between extracranial injury and mortality.

Previous studies have shown that TBI increases the risk of both mortality and mor-

bidity in the general trauma population.1-3 We find that the presence of MEI is also asso-

ciated with increased mortality in patients with TBI. Whether this effect may be greater 

or smaller than in the general trauma population can not be answered from our study, 

since we only included patients with TBI. Within the TARN registry work is currently 

ongoing to analyse the effect of TBI in the general trauma population. It is however an 
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artificial distinction between patients with TBI and patients with MEI. In clinical practice 

there are patients with trauma and they have often multiple injuries, both extracranial 

and intracranial. Based on our results and findings from previous studies we would 

provisionally conclude that both MEI and TBI carry a high risk of mortality, and that a 

combination of both further increases this risk. The relation is however multidimen-

sional and interaction effects exist with the severity of brain injury. 

We used a very simple definition of MEI, since extracranial injury severity was 

reported differently in each dataset. Analysis of the prognostic value of the full AIS or 

Injury Severity Scale (ISS) in TBI patients may provide additional insights in the mecha-

nism of effect. On the other hand the definition of AIS ≥ 3 we use is quite common, 

easy to use in practice and showed to discriminate well.

A limitation of our study is the imputation of missing variables, although imputa-

tion is better than deleting missing variables.15 For TARN, where pupil reactivity was 

imputed in the majority of patients, we compared the results in complete cases with 

the results in the imputed data, which gave similar results.

It could be argued that another limitation is the heterogeneity between the three 

studies used in the meta-analysis, in timing of outcome, setting and patient population. 

However this heterogeneity allowed us to disentangle the effects of MEI on mortality 

and to explain to some extent the conflicting results in the current literature. 

The strength of this study is obviously the many patients included in the study. 

Also, the meta-analysis is based on individual patient data. 

In conclusion, this meta-analysis demonstrates that MEI is a prognostic factor for in-

creasing mortality in patients with TBI. However, the strength of the effect is smaller in 

patients with more severe brain injury. Also the strength of the effect decreases when 

only considering patients who survive the early phase after injury, instead of consider-

ing all patients, starting from the time of injury. 
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Abstract
Objective

Respiratory insufficiency is a frequent and serious complication of the 

Guillain-Barré syndrome (GBS). We aimed to develop a simple but accurate 

model to predict the chance of respiratory insufficiency in the acute stage of 

disease based on clinical characteristics available at hospital admission. 

Methods

Mechanical ventilation (MV) in the first week of admission was used as an 

indicator of acute stage respiratory insufficiency. Prospectively collected 

data from a derivation cohort of 397 GBS patients were used to identify 

predictors of MV. A multivariable logistic regression model was validated in 

a separate cohort of 191 GBS patients. Model performance criteria comprised 

discrimination (area under receiver operating curve, AUC) and calibration 

(graphically). A scoring system for clinical practise was constructed from the 

regression coefficients of the model in the combined cohorts. 

Results

In the derivation cohort 22% needed MV in the first week of admission. 

Days between onset of weakness and admission, MRC sumscore and 

presence of facial and/or bulbar weakness were the main predictors of MV. 

The prognostic model had a good discriminative ability (AUC 0.84). In the 

validation cohort 14% needed MV in the first week of admission and both 

calibration and discriminative ability of the model were good (AUC 0.82).  

The scoring system ranged from zero to seven with corresponding chances 

of respiratory insufficiency from 1 to 91%. 

Interpretation

This model accurately predicts development of respiratory insufficiency 

within one week in patients with GBS, using clinical characteristics available 

at admission. After further validation, the model may assist in clinical 

decision-making, e.g. on patient transfer to an ICU. 
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Introduction

Respiratory insufficiency is a life threatening manifestation of the Guillain-Barré syn-

drome (GBS) that occurs in 20-30% of patients and is associated with poor functional 

outcome.1-4 Respiratory insufficiency often develops insidiously in GBS. This may 

explain the relatively high frequency of nocturnal and emergency intubations.5,6 More-

over, 60% of intubated patients develop major complications including pneumonia, sep-

sis, and pulmonary embolism.7 Delaying intubation may increase the risk of pneumonia 

due to aspiration and worsens outcome.8, 9 Specific treatments for GBS may not have 

reduced mortality and length of hospital stay among ventilated GBS patients.10 Predic-

tion of respiratory insufficiency is important to triage patients to the appropriate unit 

(general ward or ICU) and avoid respiratory distress. 

Previous studies identified various risk factors for respiratory insufficiency in GBS, 

including cranial nerve deficits,5, 11-13 disability grade on admission,8, 11, 14 rapid pro-

gressive motor weakness,5, 14 areflexia,8 descending weakness,15 dysautonomia,5 EMG 

features of nerve conduction block,11, 16 positive CMV serology,17 anti-GQ1b antibodies,12 

and increased liver enzymes.11, 14 Only one validated model for the prediction of respira-

tory insufficiency in clinical practice is available, based on information about the vital 

capacity and the ratio of the proximal to distal peroneal nerve compound muscular 

amplitude potential.11 In this study electrophysiological testing generally was done 

within six days after admission, while most intubations in GBS occur in the first week of 

admission. Prediction models for respiratory insufficiency should be available as early 

as possible, preferably at hospital admission, and based on readily available informa-

tion. Previous studies showed that clinical parameters in the progressive phase are 

highly predictive of the clinical course of GBS.18, 19 

The aim of the current study was to develop a simple and accurate model using clinical 

features available at hospital admission to predict the occurrence of respiratory insuf-

ficiency in the acute stage of GBS. Model performance was validated in an independent 

cohort of patients with GBS. 
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Methods

Patients

Prospectively collected data from a cohort of 397 patients with GBS were used to 

identify risk factors for respiratory insufficiency in the acute stage. This derivation 

cohort consisted of patients included in two treatment trials and one pilot study. The 

first study was a multicenter, double-blind randomized controlled trial that compared 

plasma exchange (PE) with intravenous immunoglobulin (IVIg) for which 147 patients 

were included between 1985 and 1991.20 The second study was a pilot study in 25 

Dutch patients to determine the additional therapeutic effect of methylprednisolone 

with IVIg.21 In the third study this combination was tested in a multicenter, double-blind 

randomized controlled trial including 225 patients between 1994 and 2000.22 Most pa-

tients were randomized in Dutch hospitals, the others in two German and two Belgium 

hospitals. Same inclusion and exclusion criteria were used in these three studies. Inclu-

sion criteria were fulfilment of the NINDS diagnostic criteria for GBS23, being unable 

to walk unaided ten metres across an open space (GBS disability score three or more) 

and onset of weakness within two weeks before randomization. Exclusion criteria were 

age below six years, previous GBS, known severe allergic reaction to properly matched 

blood products, pregnancy, known selective IgA deficiency, previous steroid therapy, 

severe concurrent disease, inability to attend follow-up, or contraindications for corti-

costeroid treatment (not in first trial). 

To validate the model we used prospectively collected data from a cohort of 191 

patients enrolled in one pilot study24 and one observational study. The pilot study 

determined the additional therapeutic effect of mycophenolate mofetil to IVIg and MP 

and for this study 27 patients were included between 2002 and 2005. The same in- and 

exclusion criteria were used as in the derivation cohort. Regarding the observational 

study, 168 GBS patients were included between 2005 and 2008 to assess pain and 

autonomic dysfunction. This study also included patients with a milder course (able 

to walk throughout the course of the disease) (n=33) or the Miller Fisher syndrome 

(n=18). Patients with additional central nervous system involvement (n=4) were ex-

cluded. All patients in the validation cohort were included in Dutch hospitals. Patients 

who were intubated before the day of admission in the participating hospital were 

excluded from the derivation and validation set. 

Data collection

Baseline characteristics (age, gender, pre-existing chronic pulmonary disease), pre-

ceding diarrhoea or symptoms of an upper respiratory tract infection, day of onset 

of weakness, cranial nerve dysfunction, MRC sumscore, GBS disability score, and 

sensory deficit at study entry were collected prospectively. Most patients entered the 

study within one day of hospital admission (interquartile range 0-1 days). The Medical 
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Research Council (MRC) sumscore is defined as the sum of MRC scores of six different 

muscles measured bilaterally, resulting in a score ranging from 0 (tetraplegic) to 60 

(normal).25 The GBS disability score is a widely accepted scale to assess functional sta-

tus of GBS patients, ranging from zero (normal) to six (death; Supplementary Text).26 

Additional serological screening was performed to determine recent infections with 

Campylobacter jejuni, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and Mycoplas-

ma pneumonia and antibodies to the gangliosides GM1, GD1a, and GQ1b. The serum 

samples used were obtained within four weeks from onset of weakness and before 

start of treatment. Liver enzymes (ASAT, ALAT) were considered abnormal when the 

ratio between measured values and the upper limit of normal was > 1.5. 

Endpoint

The main endpoint in our study was mechanical ventilation (MV) in the first week of 

hospital admission, as an indicator of acute stage respiratory insufficiency. The deci-

sion to intubate was based on the discretion of the treating physician.

Statistical analysis

Potential predictors of MV within one week were first considered in logistic regression 

models in the derivation cohort. Predictors that were statistically significant in uni-

variable analysis and available at admission were further analysed in a multivariable 

logistic regression model. A backward stepwise selection procedure was done with a 

p value of 0.1 as selection criterion. Variables with more than 15% missing data were 

omitted from analysis. Missing values in other variables were imputed using a multiple 

imputation method.27 Odds ratios of univariable analysis were compared between the 

imputed dataset and the unimputed dataset. Model performance was quantified with 

respect to discrimination (area under the receiver operating curve, AUC). The AUC 

ranges from 0.5 to 1.0 for sensible models. Internal validity of the model was assessed 

using bootstrapping techniques, and included the selection of predictors. The model 

was applied to the validation dataset for external validation. Model performance in 

the validation set was quantified with respect to discrimination (AUC) and calibration. 

Calibration was assessed graphically by plotting observed frequencies against pre-

dicted probabilities. A final scoring system was constructed based on the regression 

coefficients of the multivariable model in a dataset where the derivation and validation 

sets were combined for larger reliability. Statistical analyses were done with SPSS for 

Windows, and R statistical software. 
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Results

In the derivation cohort, 20 (5%) of the 397 patients were intubated before referral to 

one of the participating hospitals and excluded from the current study. Eighty three 

(22%) of the remaining 377 patients required MV in the first week of hospital admis-

sion and 16 (4%) after the first week. In the validation cohort three (2%) of the 191 GBS 

patients were excluded because of intubation before referral to a trial hospital. Twenty 

seven (14%) of the remaining 188 patients required MV in the first week of hospital 

admission and two (1%) after the first week. 

 

Strong associations with MV in the first week from admission were found for the fol-

lowing clinical parameters available at hospital admission: MRC sumscore, GBS disabil-

ity score, rate of initial disease progression (indicated by the number of days between 

onset of weakness and hospital entry), facial weakness, bulbar weakness, and areflexia 

of arms and legs (Table 7.1). 

Facial weakness and bulbar weakness elaborately overlapped in these GBS patients 

and were combined as a single predictor for multivariable analysis. Areflexia was 

left out of the multivariable logistic regression analysis because data were missing in 

30% of patients. For the remaining parameters data were missing in less than 3% and 

were imputed using multiple imputation. In multivariable logistic regression analysis 

strong predictors of MV in the first week of hospital admission were MRC sumscore at 

admission (p<0.001), days between onset of weakness and admission (p<0.001), and 

facial and/or bulbar weakness at admission (p<0.001). GBS disability score was not 

associated with respiratory insufficiency in multivariable analysis. A model to predict 

respiratory insufficiency was constructed using these three statistically significant clini-

cal parameters and showed a very good discriminative ability (AUC = 0.84) and good 

calibration (Figure 7.1). After excluding the 18 patients intubated within 24 hours from 

hospital admission, the discriminative ability remains very good (AUC = 0.83).

The model developed in the derivation cohort was further tested in the independent 

validation cohort and showed an equally good discriminative ability (AUC = 0.82) and 

calibration (Figure 7.1). 
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Table 7.1  Characteristics of the derivation set of 377 patients with GBS in relation to mechanical venti-
lation in the first week of hospital admission.

N MV (%) 
within 
1 week

Univariable
OR (95% CI)

P value Multi-
variable OR 
(95% CI)

P value

Demographic features
Total 377 83(22%)
Age (years) 0.3

≤ 40 131/377 24(18%) 1
40–60 109/377 29(27%) 1.6(0.9–3.0)
> 60 137/377 30(22%) 1.3(0.7–2.3)

Gender (male) 209/377 49(23%) 1.2(0.7–2.0) 0.5
Chronic pulmonary disease 11/243 1(9%) 0.5(0.1–4.1) 0.5

Neurological deficits at entry
Onset weakness – entry (days) <0.001 <0.001

> 7 96/376 7(7%) 1 1
4–7 147/376 28(19%) 3.0(1.3–7.2) 3.5(1.3–9.3)
≤ 3 133/376 47(35%) 6.9(3.0–16) 9.2(3.4–25)

Cranial nerve involvement
Facial and/or bulbar weakness 119/377 39(33%) 2.4(1.4–3.9) 0.001 3.9(2.1–7.3) <0.001
Bulbar weakness 37/377 18(49%) 4.0(2.0–8.1) <0.001
Facial weakness 112/377 8(32%) 1.7(0.7–4.2) 0.002
Ophthalmoplegia 25/377 36(32%) 2.2(1.3–3.6) 0.2

MRC sumscore <0.001 <0.001
60–51 48/375 1(2%) 1 1
50–41 180/375 26(14%) 8.1(1.1–61) 6.3(0.8–50)
40–31 77/375 16(21%) 12(1.6–97) 9.8(1.2–81)
30–21 46/375 22(48%) 44(5.6–346) 29(3.4–246)
≤ 20 24/375 18(75%) 144(16–1281) 87(9.1–830)

GBS disability score <0.001 0.2
3 92/377 6(7%) 1 1
4 or 5 285/377 77(27%) 5.3(2.2–13) 1.9(0.7-5)

Sensory deficits 244/371 53(22%) 1.1(0.6–1.8) 0.8
Pain 181/375 37(20%) 0.8(0.5–1.4) 0.5
Areflexia (both arms and legs) 149/265 47(32%) 2.9(1.5–5.4) 0.001

Infection and serology
Symptoms of preceding infection*

Diarrhea 85/375 18(21%) 0.9(0.5–1.7) 0.8
Upper respiratory tract infection 137/369 28(20%) 0.9(0.5–1.5) 0.5

Infection serology†

Campylobacter jejuni 97/333 24(25%) 1.3(0.7–2.2) 0.4
Cytomegalovirus 42/332 14(33%) 2.0(1.0–4.0) 0.06
Epstein-Barr virus 42/332 10(24%) 1.1(0.5–2.4) 0.8
Mycoplasma pneumoniae 17/332 3(18%) 0.8(0.2–2.7) 0.7

Anti-ganglioside IgM/IgG antibodies†

GM1 72/333 11(15%) 0.6(0.3–1.2) 0.1
GD1a 16/333 6(38%) 2.2(0.8–6.4) 0.1
GQ1b 21/333 6(29%) 1.5(0.6–3.9) 0.5

Liver dysfunction†

ALAT 55/357 17(31%) 1.7(0.9-3.1) 0.1
ASAT 37/357 12(32%) 1.7(0.8-3.7) 0.1

MV(%) = mechanical ventilated in the first week after hospital admission. MRC = Medical Research  
Counsel. Ig = immunoglobulin. ALAT = alanine aminotransferase. ASAT = aspartate aminotransferase.
* Symptoms of infection in the four weeks preceding the onset of weakness. 
† Using pre-treatment serum samples obtained at entry.  
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Figure 7.1  Calibration plots for the developed model in the derivation (a) and validation (b) cohort. 
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Figure 7.2  Predicted probability of respiratory insufficiency and observed percentage of mechanical 
ventilation (MV) in derivation and validation cohorts according to the EGRIS. 

The black line reflects the predicted probability of respiratory insufficiency derived from the combined 
cohorts. Size of bullets in the graph reflects size of patient group with corresponding EGRIS score in the 
combined cohorts (N=565). Above x-axis are the numbers of patients requiring MV of patients with a 
defined EGRIS in each cohort.    

The Erasmus GBS Respiratory Insufficiency Score (EGRIS) was based on the regression 

coefficients of the three predictors in the multivariable model in the combined cohorts 

(n=565). Scores ranged from zero to seven, with five categories for the MRC sumscore 

at admission, three categories for days between onset of weakness and hospital entry, 

and two categories for facial and/or bulbar weakness at admission, with corresponding 

chances for respiratory insufficiency within one week ranging from 1 to 91% (Table 7.2 

and Figure 7.2). Median duration of MV was 27 days (interquartile range 12-53 days). 

The duration of MV was not associated with the EGRIS (data not shown). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0/11
1/23

1/49
1/48

4/92
3/45

21/112
8/44

21/56
5/16

19/34
6/8

13/19
2/3

4/4
1/1

0 1 2 3 4 5 6 7

Pr
ed

ic
te

d
 p

ro
b
ab

ili
ty

 r
es

p
ir

at
o
ry

 i
n
su

ff
ic

ie
n
cy

EGRIS

Score plot EGRIS



pa r t  I I I   Prognostic models13 2

Table 7.2  Erasmus GBS Respiratory Insufficiency Score (EGRIS). 

Categories Score

Days between onset of weakness and  
hospital admission

> 7 days 0

4–7 days 1

≤ 3 days 2

Facial and/or bulbar weakness at hospital  
admission

Absence 0

Presence 1

MRC sumscore at hospital admission 60–51 0

50–41 1

40–31 2

30–21 3

≤ 20 4

EGRIS 0–7 

As an example we consider two hypothetical patients at the emergency department 

with a MRC sumscore of 25 (3 points). The first patient had weakness since 1 day (2 

points) and facial weakness (1 point), while the second patient had weakness since 

10 days (0 points) and no facial or bulbar weakness (0 points). The EGRIS for the first 

patient is 6 points, corresponding to a risk of respiratory insufficiency in the first week 

of admission of 77% (95% CI 61-89%; Fig). The EGRIS for the second patient is 3, corre-

sponding to a much lower risk of respiratory insufficiency of 17% (95% CI 10-27%; Fig). 

For further illustration, patients were divided into three clinically relevant risk groups 

(Table 7.3). Only 10 (4%) of 268 patients with a low EGRIS (0-2) had respiratory insuffi-

ciency in the first week, compared to 45 (65%) of 69 patients with a high EGRIS (5-7). 

Table 7.3  Risk categories for respiratory insufficiency according to EGRIS. 
Probability of respiratory insufficiency in the first week of hospital admission in the derivation, vali-
dation, and combined sets stratified for EGRIS and expressed as number of mechanically ventilated 
patients/total number of patients (%). 95% CI: 95% confidence interval for combined sets.

Derivation set Validation set Combined sets

Low risk (EGRIS 0–2) 5 / 152 (3%) 5 / 116 (4%) 10 / 268 (4%, 95% CI 1–6%)

Intermediate risk (EGRIS 3–4) 42 / 168 (25%) 13 / 60 (22%) 55 / 228 (24%, 95% CI 19–30%)

High risk (EGRIS 5–7) 36 / 57 (63%) 9 / 12 (75%) 45 / 69 (65%, 95% CI 54–76%)

Total 83 / 377 (22%) 27 / 188 (14%) 110 / 565 (19%, 95% CI 16–23%)
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Discussion

In the current study a prognostic model was developed that accurately predicts respira-

tory insufficiency in the early stage of GBS using three clinical characteristics read-

ily available at hospital admission. The most important predictors of MV in the first 

week of admission were the rate of disease progression, indicated by the number of 

days between onset of weakness and hospital admission, the MRC sumscore, and the 

presence of facial or bulbar weakness. A multivariable prediction model proved valid 

in an independent cohort of GBS patients. The proposed eight point EGRIS accurately 

predicts the probability of respiratory insufficiency in the first week of hospital admis-

sion in individual GBS patients, ranging from 1 to almost 90%. 

Our study confirms findings by others that respiratory insufficiency in GBS is as-

sociated with a high GBS disability score at hospital admission8, 11, 14, a rapid disease 

progression5, 14, presence of cranial nerve deficit5, 11-13, and areflexia8. In our cohort no 

data were available on dysautonomia5 and descending weakness15, both previously 

reported to be predictors of respiratory insufficiency. Also very limited information was 

available regarding vital capacity or electrophysiology at admission, so we were unable 

to validate the model of Durand et al.11 Vital capacity and electrophysiological measure-

ments at hospital admission may further improve the EGRIS. Measurement of vital ca-

pacity may be confounded by bilateral facial weakness, occurring in more than half of 

GBS patients, and a low vital capacity may reflect impending or established respiratory 

insufficiency rather than an increased risk of future respiratory insufficiency. Moreover, 

electrophysiology may not be available at admission, and the results may be highly 

variable in the first week of GBS.28 

The clinical risk factors for acute stage respiratory insufficiency partly differ from 

those for a poor long-term outcome. In a previous study, using the same derivation 

cohort of patients, the ability to walk unaided after six months depended on age, pres-

ence of preceding diarrhoea, and GBS disability score at two weeks after admission.19 

A low GBS disability score was associated with respiratory insufficiency, however lost 

significance in the multivariable regression analysis together with MRC sumscore. In ad-

dition, MV is incorporated in the GBS disability score rendering this score less suitable to 

predict respiratory insufficiency. Age and preceding diarrhoea were not associated with 

respiratory insufficiency in the current and previous studies. Probably, age influences 

the capacity to recover more than the disease severity in the acute phase. Preceding 

diarrhoea in GBS is frequently caused by infections with C. jejuni, and associated with a 

severe, pure motor, and axonal variant.29, 30 In this form of GBS the proximal muscles and 

cranial nerves are relatively spared, which may explain why this phenotype is not predis-

posing to respiratory insufficiency. The frequency of respiratory insufficiency in GBS pa-

tients may be lower in Japan, where the C. jejuni or axonal form of GBS is predominant,31 

in contrast to Western countries, where the demyelinating forms are predominant. In a 
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Japanese cohort of patients with severe GBS only 10% needed MV,15 compared to 19% in 

the combined cohorts from the current study. This may support the hypothesis that in 

GBS severe demyelination is associated with respiratory insufficiency.11, 16 

The EGRIS has some limitations. First, the derivation and validation cohorts differed 

with respect to the proportion of patients requiring MV (22% versus 14%). The lower 

frequency of MV in the validation cohort is explained by different inclusion criteria 

which allowed inclusion of patients with mild forms of GBS. However, the EGRIS model 

developed in the derivation cohort performed equally well in the validation cohort, 

demonstrating its wide clinical applicability. Second, the endpoint in our study was MV 

which is only an indirect indicator of respiratory insufficiency. In fact, the decision to 

intubate is relatively arbitrary and based on the discretion of the treating physician, 

supported by previously published general criteria for intubation in GBS.32 Our results 

could be biased by the long time span of data acquisition, during which the practice 

of intubation may have changed. However, no trend was found in our dataset regard-

ing the frequency of MV and the performance of EGRIS. More detailed information is 

required in future studies regarding respiratory parameters, especially at the time of 

intubation. Third, model development focussed on the prediction of MV in the first 

week after admission. The first week of the disease reflects probably the most unpre-

dictable period of GBS with the highest frequency of acute respiratory insufficiency. In 

our cohorts 3% of the patients were intubated after the first week of admission. The 

EGRIS predicted the need of MV, irrespective of the time point during clinical course, 

accurately with an AUC of 0.80. Fourth, time from onset of weakness to hospital admis-

sion is probably influenced by social factors. The time from onset of weakness to loss 

of ambulation is possibly less arbitrary but was not documented in our cohorts. Since 

most patients were included in the trials shortly after losing ambulation, the moment 

of study entry usually equals that of losing ambulation. Lastly, most patients included 

in our studies were Dutch Caucasians and the EGRIS may not be applicable in patients 

from other geographical areas or ethnic origin. Prospective studies in more diverse 

populations of patients are required to determine the general validity of the EGRIS. 

How to apply the EGRIS in clinical practice? Based on the model, respiratory insuf-

ficiency in the first week of admission cannot be excluded in an individual patient with 

GBS. Even in the low-risk subgroup, with an EGRIS score of 2 or less, 4% (95% CI of 1 

to 6%) of the patients developed respiratory insufficiency, which required MV. This 

underlines that the clinical course in individual GBS patients can by highly variable and 

stresses the importance of regular pulmonary function monitoring (VC, respiratory 

frequency), initially every 2-6 hours in the progressive phase and every 6-12 hours in 

the plateau phase.30 Nonetheless, the EGRIS model holds great promise to be used as 

a practical tool to inform patients and their families and assist physicians in decision-

making. For examples, patients with an increased risk of respiratory insufficiency may 

be transferred to an ICU, or be considered for early elective intubation. 
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Abstract
Background

Guillain-Barré syndrome (GBS) has a highly diverse clinical course and 

outcome, yet patients are treated with standard therapy. Patients with 

poor prognosis may benefit from additional treatment, provided they can 

be identified early, when nerve degeneration is potentially reversible and 

treatment is most effective. We developed a clinical prognostic model for 

early prediction of outcome in GBS applicable for clinical practice and future 

therapeutic trials.

Methods

Data collected prospectively from a derivation cohort of 397 GBS patients 

were used to identify risk factors of being unable to walk at 4 weeks, 3 

months and 6 months. Potential predictors of poor outcome (unable to walk 

unaided) were considered in univariable and multivariable logistic regression 

models. The clinical model was based on the multivariable logistic 

regression coefficients of selected predictors and externally validated in an 

independent cohort of 158 GBS patients. 

Results

High age, preceding diarrhea and low MRC sum score at hospital admission 

and at one week were independently associated with being unable to walk at 

4 weeks, 3 months and 6 months (all P 0.05-0.001). The model can be used 

at admission and at day 7 of admission, the latter having a better predictive 

ability for the 3 endpoints; the area under the receiver operating curve (AUC) 

is 0.84-0.87 and at admission the AUC is 0.73-0.77. The model proved to be 

valid in the validation cohort. 

Conclusions

A clinical prediction model applicable early in the course of the disease 

accurately predicts outcome in GBS.   



pa r t  I I I   Prognostic models14 0

Introduction

Guillain-Barré syndrome (GBS) is a monophasic polyradiculoneuropathy with a highly 

variable clinical severity and outcome. Intravenous immunoglobulin (IVIg) and plasma 

exchange are beneficial in patients who are severely affected, however one-third recov-

ers incompletely.1 These patients need more effective treatment, but the clinical diver-

sity and the rarity of the disease hamper good and well-powered RCTs in this patient 

group. To early identify patients with a poor outcome, who are eligible for additional 

treatment, prognostic models are needed. Prognostic models can also increase the 

power of therapeutic studies by adjusting for prognostic factors.2 Ultimately, such pre-

diction models can be used to individualize therapy in accordance with the expected 

outcome.  

Previous studies have identified patient characteristics associated with poor out-

come in GBS.3-9 The Erasmus GBS Outcome Score (EGOS) is a prognostic model based 

on age, diarrhea and GBS disability score at two weeks after hospital admission that 

accurately predicts the chance of being able to walk independently at 6 months.7  

However, prognostic models to optimize treatment in GBS should be applicable in the 

earliest phase of the disease, when treatment is considered to be most effective. Such 

models should also be designed to predict the primary endpoints used in most treat-

ment trials in GBS; i.e. the clinical recovery on the GBS disability score at 4 weeks.10-14 

The aim of the current study was to develop readily applicable prognostic models for 

accurate selection of patients with a poor prognosis, based on clinical information 

available in the first week of hospital admission.  



c h ap  t e r  8   Prediction of outcome in Guillain-Barré syndrome 141

Methods

Patients

Data collected prospectively from a cohort of 397 GBS patients were used to identify 

predictors for outcome. This derivation cohort consisted of patients, who had been 

included in two treatment trials and one pilot study. The first study was a multicentre 

double-blind randomized controlled trial; this included 147 patients between 1985 and 

1991, that compared plasma exchange (PE) with intravenous immunoglobulin (IVIg).11 

The second study was a pilot study in 25 Dutch patients to determine the additional 

therapeutic effect of methylprednisolone (MP) to IVIg.15 This combination was tested in 

the third study: a multicentre double-blind randomized controlled trial in 225 patients 

included between 1994 and 2000.14 Most patients were included in Dutch hospitals, 

the others in two German and two Belgian hospitals. All three studies used the same 

inclusion and exclusion criteria. Inclusion criteria were fulfillment of the NINDS diag-

nostic criteria for GBS,16 inability to walk unaided ten meters across an open space 

(GBS disability score three or more) and onset of weakness within two weeks before 

randomization. Exclusion criteria were age below 6 years, pregnancy, previous GBS, 

known severe allergic reaction to properly matched blood products, known selective 

IgA deficiency, previous steroid therapy, severe concurrent disease, inability to attend 

follow-up, or contraindications for corticosteroid treatment (not in first trial). 

To validate the model we used data collected prospectively from a cohort of 191 pa-

tients enrolled in a pilot study17 and an observational study18 in GBS patients, both per-

formed in the Netherlands. The pilot study evaluated the additional therapeutic effect of 

mycophenolate mofetil to IVIg and MP in 27 patients included between 2002 and 2005. 

The same inclusion and exclusion criteria were used as in the derivation cohort. Be-

tween 2005 and 2008 164 GBS patients were included in the observational study, which 

assessed pain and autonomic dysfunction (GRAPH study).18 Patients with a mild form of 

GBS (able to walk throughout the course of the disease) (N=33) were also included in 

this study, but not used for validation. Approval was received by an ethical standards 

committee on human experimentation for all the studies mentioned above. Written 

informed consent to participate in one of the studies was obtained from all patients. 

Data collection

Data were collected prospectively at hospital admission on the following: age, gender, 

diarrhea or symptoms of an upper respiratory tract infection in the 4 weeks preced-

ing onset of weakness, day of onset of weakness, cranial nerve dysfunction, Medical 

Research Counsel (MRC) sum score19, GBS disability score20, and sensory deficit. In addi-

tion, data on the MRC sum score and GBS disability score were collected prospectively 

at day 7 of hospital admission. The MRC sum score is defined as the sum of MRC scores 

of 6 different muscles measured bilaterally, which results in a score ranging from 0 
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(tetraplegic) to 60 (normal; appendix e-1)19. The GBS disability score is a widely accept-

ed scale for assessing the functional status of GBS patients; it ranges from 0 (normal) 

to 6 (death; appendix e-1)20. Serological screening was performed to identify recent 

infections with Campylobacter jejuni, cytomegalovirus (CMV). The serum samples were 

obtained within 4 weeks of onset of weakness and before start of treatment. 

Outcome measures

This study used walking ability as outcome measure. Poor outcome was defined as the 

inability to walk unaided 10 meters across an open space (GBS disability score of 3 or 

higher). Outcome was assessed at 4 weeks, 3 months and 6 months after inclusion in 

one of the studies. An additional outcome measure in this study was the improvement 

of one or more points on the GBS disability score in the first 4 weeks after inclusion. 

No improvement was considered as poor outcome. Both outcome measures have been 

used as primary endpoint in previous treatment trials in GBS. 

Model development 

Potential prognostic factors of outcome at 4 weeks, 3 months and 6 months after 

inclusion were first analyzed in the derivation cohort by univariable logistic regression 

analysis. Statistically significant predictors for poor outcome at all time points were 

further analyzed for their independent predictive value using multivariable logistic 

modeling.  

Missing values were imputed using a multiple imputation method.21 Odds ratios (OR) 

were used to express the strength of prognostic effects and were compared between 

the imputed and the complete case analyses. Predictive value was also measured using 

the likelihood ratio chi square test (LR chi2), to account for the prevalence of the predic-

tor. Variables which added significant predictive information were selected for use in a 

multivariable model.

The model was fitted using the ability to walk unaided at 4 weeks after hospital 

admission as outcome measure. The model was constructed based on the multivariable 

logistic regression coefficients in the derivation dataset.

Predictive performance of the model was quantified with respect to discrimina-

tion (area under the receiver operating curve, AUC). The AUC ranges from 0.5–1.0 for 

sensible models. The internal validity of the model was assessed by bootstrapping 

techniques, including both the selection of predictors and estimation of the coeffi-

cients21. The model was applied to the validation dataset for external validation. Model 

performance in the validation set was quantified with respect to discrimination (AUC) 

and calibration. Calibration was assessed graphically by plotting observed frequencies 

against predicted probabilities. 

Statistical analyses used SPSS version 15.0 for Windows, Stata version 11, and R sta-

tistical software (version 2.7, using the Design library). 
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Results

Three (<1%) of the 397 patients in the derivation cohort died in the first week after 

hospital admission and were excluded from the current study. In this cohort the pri-

mary endpoint was missing at 3 months for 3 (<1%) patients and at 6 months for 12 

(3%) patients. Fifty-five percent had a poor outcome at 4 weeks, 30% at 3 months and 

19% at 6 months after hospital admission. In the validation cohort, none of the patients 

died in the first 4 weeks of follow-up. Due to the slightly different follow-up structure 

of the observational study, outcome was unavailable for 38 (24%) patients at 4 weeks, 

14 (9%) patients at 3 months and 7 (4%) patients at 6 months after hospital admission. 

These patients were excluded from the study. Of the remaining patients in the valida-

tion cohort 54% had poor outcome at 4 weeks, 29% at 3 months and 15% at 6 months 

after hospital admission. 

In univariate analysis 6 predictors of outcome  – at 4 weeks, 3 months and 6 

months- were identified: age, disease progression (expressed as number of days 

between onset of weakness and hospital entry), MRC sum score and GBS disability 

score, diarrhea in the 4 weeks preceding GBS, and C. jejuni serology (all P<0.05-0.001) 

(table 8.1). C. jejuni serology was excluded for multivariable analysis because in clini-

cal practice serology results will be difficult to obtain shortly after hospital admission. 

For further modeling, the MRC sum score was selected over the GBS disability score, 

because the model using the MRC sum score had a substantially better performance 

(LR statistic 69.75 versus 46.49 at admission and 195.27 versus 154.35 at one week). 

Disease progression lost its predictive ability when analyzed in a multivariable model 

with age, diarrhea, and MRC sum score. The results of the multivariable analyses of the 

remaining prognostic factors are shown in table 8.2. 
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Table 8.1  Risk of poor outcome, defined as inability to walk unaided at 4 weeks, 3 months and 6 
months after entry to the hospital, according to potential predictors in the derivation set of 394 GBS 
patients based on univariable regression analysis. 

Inability to walk unaided at 4 weeks  3 months  6 months

N OR (95% CI) P Value OR (95% CI) P Value OR (95% CI) P Value

Total 394

Demographic features

Age (years) 0.003 0.01 <0.001

≤ 40 138 1 (ref) 1 (ref) 1 (ref)

40–60 114 1.9 (1.2–3.2) 1.6 (0.9–2.8) 2.2 (1.0–4.6)

> 60 142 2.2 (1.4–3.5) 2.3 (1.3–3.9) 4.0 (2.1–7.9)

Gender (male) 215 0.9 (0.6–1.3) NS 1.2 (0.8–1.9) NS 1.2 (0.7–2.0) NS

Clinical severity at admission

Onset weakness-admission 
(per day increase)

0.9 (0.9–1.0) 0.02 0.9 (0.8–1.0) 0.003 0.9 (0.8–1.0) 0.006

Bulbar weakness 43 1.4 (0.7–2.7) NS 1.1 (0.5–2.2) NS 0.6 (0.3–1.0) 0.05

Facial weakness 125 1.2 (0.8–1.9) NS 0.6 (0.4–1.0) 0.06 1.1 (0.5–2.5) NS

MRC sum score <0.001 <0.001 <0.001

60–51 47 1 (ref) 1 (ref) 1 (ref)

50–41 180 2.8 (1.3–5.8) 5.9 (1.4–25) 6.1 (0.8–46)

40–31 83 6.8 (3.0–15) 14 (3.3–64) 19 (2.4–144)

≤ 30 83 14 (5.8–32) 23 (5.2–101) 26 (3.4–198)

GBS disability score <0.001 <0.001 0.002

0,1 or 2 0 0 0 0

3 91 1 (ref) 1 (ref) 1 (ref)

4 265 3.6 (2.1–6) 3.9 (1.9–7.9) 2.7 (1.2–5.8)

5 38 10.5 (4.1–27) 7.3 (2.9–18) 6.1 (2.3–16)

Sensory deficits 258 1.1 (0.7–1.7) NS 1.0 (0.6–1.6) NS 1.1 (0.6–1.9) NS

Pain 187 1.0 (0.7–1.6) NS 1.2 (0.7–1.8) NS 0.9 (0.6–1.5) NS

Clinical severity 7 days after admission

MRC sum score <0.001 <0.001 <0.001

60–51 95 1 (ref) 1 (ref) 1 (ref)

50–41 119 5.0 (2.5–10) 3.6 (1.2–11) 2.5 (0.7–9.5)

40–31 76 19 (8.8–43) 11 (3.5–32) 6.3 (1.7–23)

≤ 30 104 137 (46–405) 47 (16–139) 30 (8.8–99)

GBS disability score <0.001 <0.001 <0.001

0,1 or 2 33 0 0 0

3 79 1 (ref) 1 (ref) 1 (ref)

4 186 10.6 (5.4–21) 8.5 (3.0–24) 8.6 (2.0–37)

5 96 36 (15–83) 21.3 (7.2–63) 25 (5.8–109)

Infection and serology

Symptoms of preceding 
infection*

Diarrhea 89 1.6 (1.0–2.6) 0.05 1.8 (1.1–3.0) 0.02 2.3 (1.3–3.9) 0.003

Upper respiratory 
tract infection 

147 0.5 (0.4–0.8) 0.003 0.7 (0.5–1.2) NS 0.5 (0.3–0.8) 0.006

Infection serology†

Campylobacter jejuni 114 1.7 (1.1–2.6) 0.02 2.2 (1.4–3.4) 0.001 2.6 (1.5–4.3) <0.001

Cytomegalovirus 45 2.2 (1.1–4.3) 0.02 2.4 (1.3–4.6) 0.006 0.9 (0.4–2.0) NS

OR = odds ratio; CI = confidence interval; NS = non significant; MRC = Medical Research Council; GBS = 
Guillain-Barré syndrome. 
* Symptoms of an infection in the 4 weeks preceding the onset of weakness. 
† Using pre-treatment serum samples obtained at entry.
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Table 8.2  Multivariable analysis of main predictors of poor outcome, defined as being unable to walk 
at 4 weeks after hospital admission and as no improvement on the GBS disability score in the first 4 
weeks after admission. 

Unable to walk unaided at 4 
weeks after hospital admission

No improvement on GBS  
disability score 4 weeks after 
hospital admission

OR (95% CI) P value AUC OR (95% CI) P value AUC

At admission 0.73 0.71

Age (years) 0.006 0.001

≤ 40 1 (ref) 1 (ref)

40-60 1.9 (1.1–3.3) 1.9 (1.1–3.3)

> 60 2.3 (1.3–3.8) 2.7 (1.6–4.5)

MRC sum score <0.001 <0.001

60-51 1 (ref) 1 (ref)

50-41 2.8 (1.3–6.2) 5.0 (2.0–13)

40-31 6.1 (2.5–14) 11 (4.0–29)

≤ 30 9.6 (3.8–24) 13 (4.7–34)

Preceding diarrhea* 1.7 (1.0–2.9) 0.07 1.8 (1.1–3.1) 0.02

Seven days after admission 0.87 0.87

Age (years) 0.008 0.001

≤ 40 1 (ref) 1 (ref)

40-60 2.1 (1.0–4.2) 2.0 (1.0–3.8)

> 60 2.8 (1.4–5.4) 3.2 (1.7–5.9)

MRC sum score <0.001 <0.001

60–51 1 (ref) 1 (ref)

50–41 3.8 (1.7–8.4) 8.0 (2.9–22)

40-31 10 (4.2–26) 35 (12–99)

≤ 30 58 (18–188) 110 (38–320)

Preceding diarrhea* 2.1 (1.0–4.4) 0.04 1.9 (1.0–3.5) 0.05

Abbreviations: OR = odds ratio; AUC = Area Under the Receiver Operating Characteristic (ROC) Curve; 
MRC = Medical Research Council. 
* Diarrhea in the 4 weeks preceding the onset of weakness. 

Age, diarrhea and MRC sum score were used to develop the model for clinical practice. 

The model can be applied already at hospital admission and at day 7 of hospital admis-

sion. When used at admission, the model scores ranged from 0-9 with 4 categories 

for the MRC sum score, 3 categories for age and 2 categories for preceding diarrhea 

(modified EGOS; Table 8.3 and Figure 8.1A) The predictive ability of the model was 

better when it is used at day 7 of admission, because the MRC sum score at this time 

point predicts outcome more accurately. Therefore, the MRC sum score was weighted 

stronger in the model when used at one week and the scores range from 0-12 (modi-

fied EGOS; Table 8.3 and Figure 8.1B). 
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Table 8.3  The modified Erasmus GBS Outcome Scores.

Prognostic factors Categories Score Prognostic factors Categories Score

Age at onset (years) ≤ 40 0 Age at onset (years) ≤ 40 0

41–60 1 41–60 1

> 60 2 > 60 2

Preceding diarrhea* Absence
Presence

0
1

Preceding diarrhea* Absence
Presence

0
1

MRC sum score 
(at hospital admission)

51–60
41–50
31–40
0–30

0
2
4
6

MRC sum score 
(at day 7 of admission)

51–60
41–50
31–40
0–30

0
3
6
9

mEGOS 0–9 mEGOS 0–12

MRC = Medical Research Council; mEGOS = modified Erasmus GBS Outcome Score.  
* Diarrhea in the 4 weeks preceding the onset of weakness. 

Figure 8.1  Predicted fraction of patients unable to walk independently according to mEGOS at 4 weeks 
(black), 3 months (light grey) and 6 months (dark grey) on the basis of the mEGOS at hospital admission 
(A) and at day 7 of admission (B). The grey areas around the coloured lines represent 90% confidence 
intervals.

A	 B

The performance of mEGOS when used at admission was good for prediction of out-

come at 4 weeks (AUC 0.73), at 3 months (AUC 0.73) and at 6 months (AUC 0.77) and 

was excellent when used at day 7 of admission, with AUCs for predicting outcome at 

these three time points of 0.87, 0.84 and 0.84 respectively. The model was validated 

in an independent cohort and showed a good calibration in the independent validation 

cohort (figure 8.2A and 8.2B), and a good discriminative ability for predicting outcome 

at all three time points (admission: AUC = 0.75, 0.73 and 0.75, one week: AUC = 0.81, 

0.70 and 0.77). 
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Figure 8.2  Calibration plots for external validation of mEGOS at admission (A) and at day 7 of  

admission (B) 

A	 B

Age, preceding diarrhea and MRC sum score in multivariable analysis were also inde-

pendently associated with another endpoint which is frequently used in therapeutic 

trials in GBS: the improvement of one or more points on the GBS disability score at 4 

weeks after hospital admission (Table 8.2). In addition, the mEGOS model predicted the 

failure to improve on the GBS disability score at 4 weeks with high accuracy (AUC of 

0.71 and 0.87). 

The current model can also be used to compare populations of patients included in 

various therapeutic trials and for covariate adjustments. To illustrate this, we com-

pared 3 study populations11, 14, 18 with respect to the distribution of the patients over 

the mEGOS categories (Figure 8.3). The figure shows that the GBS populations in the 

two clinical trials were comparable with respect to prognosis at hospital admission 

and before start of treatment. However, patients included in the observational study 

overall had a better prognosis than the patients in the two trial populations, most likely 

explained by the different inclusion criteria. Also relatively mildly-affected patients 

(able to walk through out the disease) were included in the observational study; those 

patients were excluded for validation of the models. 
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Figure 8.3  Comparing three therapeutic study populations with respect to prognostic factors at base-
line using mEGOS, at admission. Points represent the percentages of patients with a specific mEGOS in a 
therapeutic trial comparing PE versus IVIg (light grey), a therapeutic trial comparing IVIg/placebo versus 
IVIg/methylprednisolone (dark grey) and an observational study (black). Smoothed lines represent the 
distribution of the study population over the total mEGOS.  

Discussion

The diversity in clinical severity and outcome in GBS patients hampers optimizing of 

treatment, because RCT populations will always have a large variability in baseline risk 

for outcome. To avoid large problems with statistical power, we should deal with this 

diversity properly. Slow inclusion rates are inherent in this rare disease, which is an ad-

ditional challenge in conducting RCTs in GBS. New therapies and treatment modalities 

for GBS may not further improve outcome in patients who already recover sufficiently 

after standard treatment. Therefore selective treatment trials should focus on a more 

homogeneous subgroup of patients with poor recovery despite current standard treat-

ment. In this study a prognostic model is presented which early identifies patients with 

poor outcome and can be used for future therapeutic trials. The main predictors of be-

ing unable to walk independently at 4 weeks, 3 months and 6 months were MRC sum 

score, age and preceding diarrhea in our study. Based on these predictors a model was 

constructed which proved to be valid in an independent cohort of GBS patients. The 

model is applicable at hospital admission as well as at day 7 of hospital admission and 

is therefore suitable to study treatments which should be started immediately as well 

as after standard treatment in patients with poor prognosis. The model may provide a 

first step towards individualized treatment in GBS. 

This prognostic model originates from the EGOS, which can be used in clinical prac-
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tice at two weeks after hospital admission to predict outcome at 6 months and is based 

on the predictors age, preceding diarrhea and GBS disability score7. The EGOS is a 

simple, accurate and validated prognostic model, but less suited for treatment develop-

ment because of the delay of two weeks and the predicted outcome measure. The new 

prognostic model (mEGOS) was primarily designed for trials in GBS and for this pur-

pose has important advantages. First, the mEGOS model can be applied already in the 

first week of admission, when treatment is considered to be most effective. Second, the 

mEGOS predicts reaching independent walking or improving on the GBS disability score 

at 4 weeks, which are the two primary endpoints most frequently used in therapeu-

tic trials in GBS.  Thirdly, the mEGOS also accurately predicts long-term GBS disability 

scores, which were important secondary endpoints in previous trials. Because of these 

features the mEGOS model can be used to early identify patients with poor prognosis 

for future selective therapeutic studies. In addition, this model can be used for cova-

riate adjustment, which is a powerful tool in heterogeneous patient populations to 

estimate the effect of treatment in individuals and to increases the statistical power 

of therapeutic trials.2, 22-23 For example, adjustment for the effect of age on outcome 

results in an estimated treatment effect for a patient of a given age instead of an aver-

age age. If these selective trial results in patients with poor prognosis are positive, the 

mEGOS may also be used to individualize treatment of GBS patients in routine clinical 

practice. 

Our study confirms that poor outcome is associated with older age,4-5, 7-8 rapid dis-

ease progression,8 severe disease indicated by GBS disability score or MRC sum score, 
3-4,7 preceding diarrhea, positive C. jejuni serology,3, 5, 7 positive CMV serology,9 and 

no symptoms of a preceding respiratory tract infection.3-4 Two of these studies used 

partly the same data as in this study.7, 9 For the purpose of this study, we selected age, 

preceding diarrhea, and MRC sum score which are readily available at hospital admis-

sion of the patient. Prognostic biomarkers may further improve those models in the 

future. Promising candidates are infection serology, anti-ganglioside antibodies and 

serum IgG-level increase after IVIg treatment, which were all related to outcome.3,5-7,9 

The need of accurate prediction models for outcome has also been acknowledged for 

traumatic brain injury patients24 and for stroke patients.25-26 Those neurological condi-

tions resemble GBS in the sense that they are acute and monophasic and have a highly 

variable clinical course.

Our study had several limitations. First, the prognostic model was derived from 

cohorts of Dutch Caucasians, which may restrict the application to those patients. 

Second, information on outcome at 4 weeks was not available in 24% of patients from 

the validation cohort. For this cohort data were used from an observational study, in 

which 4 weeks was not a standardized evaluation time point. However, percentages of 

patients with a poor outcome at 4 weeks in the derivation and validation cohort were 

comparable (55% and 54%), so it is unlikely that this caused bias. A third limitation is 
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that the model only predicts the ability to walk independently, and not the full ordinal 

GBS disability scores, as this would have provided maximum statistical power.27 How-

ever, this specific outcome measure we used is highly relevant for patients and was 

previously used by most therapeutic trials in GBS. 

In conclusion, mEGOS is an accurate and validated model for prediction of outcome 

at several time points in the first 6 months after onset of GBS. An important advantage 

above existing models is that the mEGOS can be used in the early phase of disease 

when the process of nerve damage is ongoing and possibly reversible. This model 

predicts commonly-used trial endpoints in GBS and can be used to conduct new tri-

als selectively in patients with poor outcome. In addition the model can be used to 

compare patient populations with respect to prognostic factors and expected outcome. 

This model may hold great promise to assist clinicians in optimizing individual treat-

ment for GBS patients. 
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Abstract
Introduction

Background and Purpose

Aneurysmal subarachnoid haemorrhage (aSAH) is a devastating event with 

substantial case-fatality. Our purpose was to examine which clinical and 

neuro-imaging characteristics, available on admission, predict 60-day case-

fatality in aSAH and to evaluate performance of our prediction model.

Methods

We performed  a secondary analysis of patients enrolled in the International 

Subarachnoid Aneurysm Trial (ISAT), a randomised multicenter trial to 

compare coiling with clipping in aSAH patients. Multivariable logistic 

regression analysis was used to develop a prognostic model to estimate the 

risk of dying within 60 days from aSAH based on clinical and neuro-imaging 

characteristics. The model was internally validated with bootstrapping 

techniques. 

Results

The study population comprised of 2,128 patients who had been randomised 

to either endovascular coiling or neurosurgical clipping. In this population 

153 patients (7.2%) died within 60 days. World Federation of Neurosurgical 

Societies (WFNS) grade was the most important predictor of case-fatality, 

followed by age, lumen size of the aneurysm and Fisher grade. The model 

discriminated reasonably between those who died within 60 days and 

those who survived (c statistic = 0.73), with minor optimism according to 

bootstrap re-sampling (optimism corrected c statistic = 0.70).

Conclusion

Several strong predictors are available to predict 60 day case-fatality in 

aSAH patients who survived the early stage up till a treatment decision; 

after external validation these predictors could eventually be used in clinical 

decision making. 
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Introduction

Subarachnoid haemorrhage (SAH) is a devastating event, which is marked by sudden 

onset of severe headache, causing substantial case-fatality. In 85% of the patients, the 

SAH is caused by rupture of an aneurysm (aSAH).1,2 From those who survive the first 

month, approximately one third remains dependent with respect to daily activities dur-

ing their remaining lifetime.1 Amongst patients who regain independency, quality of life 

remains reduced.3

Early prediction of short term outcome in terms of case-fatality may support clinical 

decision making and may provide realistic and evidence based expectations to patients 

and relatives. Predictions may also be used to classify patients according to prognos-

tic risk, which may be useful to compare outcome between different patient series, to 

study treatment results over time, or to stratify patients for randomised clinical trials 

(RCT).

Several other prognostic studies on outcome after aSAH have been performed, but 

most included relatively small numbers. Two included substantial numbers allowing 

analysis of the effects of multiple independent factors.4,5 However, these studies did 

not examine case-fatality, but arbitrarily dichotomized ordinal outcome scales (modi-

fied Rankin Scale or Glasgow Outcome Scale). Moreover, due to their design, these 

studies were unable to examine the effect of treatment on prediction of outcome.

Our aim was to develop a prognostic model for 60-day case-fatality, based on clini-

cal features and neuro-imaging, regularly readily available on admission to a neuro-

logical or neurosurgical unit. These data were obtained from a large RCT conducted in 

mainly European countries. 

Methods 

Patients

Data were collected prospectively by the Medical Research Council funded International 

Subarachnoid Aneurysm Trial (ISAT) (International Standard Randomised Controlled 

Trial, number ISRCTN49866681). Full details of the ISAT study are available elsewhere.6 

The aim of the trial was to determine whether treatment using endovascular coiling 

reduced the risk of patients being dependent or dead at one year by 25 percent when 

compared with neurosurgical treatment (clipping). 
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Predictors and outcome

We considered all patient characteristics that can be collected easily and reliably within 

the first hours after hospital admission and that were also present in the ISAT data-

base. These included age, gender, previous occurrence of SAH, CT scan Fisher grad-

ing, lumbar puncture, World Federation of Neurosurgical Societies (WFNS) grading, 

number of intracranial aneurysms, location of the aneurysm, maximum lumen size of 

the aneurysm, vasospasm on angiography, and intended treatment by randomization. 

Fisher grading of blood visible on a plain CT scan runs from grade 1 (‘no blood visible’) 

up to grade 4 (‘intraventricular or intraparenchymal blood’). Lumbar puncture was not 

performed in all participants. If it was performed it was graded 1 (‘no blood in cerebro-

spinal fluid’) or 2 (‘xanthochromia or blood’); 0 otherwise (‘no lumbar puncture’). WFNS 

scale runs from grade 1 (‘Glasgow Coma Scale (GCS) 15 and no motor deficit’) to grade 

5 (‘GCS 3-6 with or without motor deficit’). One category additional to the standard 

WFNS scale was created in ISAT for those in whom WFNS could not be assessed; ‘grade 

6’. The number of aneurysms was categorized in 1, 2, and 3 or more intracranial aneu-

rysms. We discerned four aneurysm locations: Anterior Cerebral Artery (ACA), Internal 

Carotid Artery (ICA), Middle Cerebral Artery (MCA), and Posterior Circulation (PC). The 

maximum lumen size of the aneurysm was expressed in millimetres. Vasospasm was 

examined on angiography and categorized as ‘none’, ‘mild’, ‘moderate’, or ‘severe’. 

Treatment was either neurosurgical clipping or endovascular coiling; we used treat-

ment as allocated by the randomization procedure. We developed the model based on 

cases with a complete set of data. The outcome was 60-day case-fatality. 

Model 

We used univariate logistic regression analysis to estimate the association between 

single predictors and outcome, expressed as an odds ratio (OR). Predictors have a 

statistically significant effect if the 95 percent confidence interval (95% CI) does not 

include the value one. The prediction model was developed with multivariable logistic 

regression with backward stepwise selection. All potential predictors were entered 

into the model and those that met Akaike’s Information Criterion (AIC) were selected 

into the model. AIC compares models based on how well they fit the data, but penal-

izes for the complexity of the model. AIC requires that the increase in model χ2 when 

entering a new predictor has to be larger than two times the degrees of freedom: χ2 > 

2 df. When considering a predictor with 1 df, such as gender, this implies that χ2 has 

to exceed 2, equivalent to p<0.157. When considering a predictor with 2 df, χ2 > 4, or 

p<0.135; and in case of 4 df, χ2 > 8, or p<0.092.7

Performance 

The performance of the model was assessed with respect to calibration and discrimi-

nation. Calibration is the ability of the model to produce unbiased estimates of the 
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probability of the outcome. Calibration was examined with a goodness of fit test, 

which assesses agreement between predicted and observed risks over the full range of 

predicted probabilities.8

Discrimination is the model’s ability to separate patients with different outcomes. To 

quantify the discrimination, we used the concordance (c) statistic. For binary outcomes, 

c is identical to the area under the receiver operating characteristic curve.7 The c sta-

tistic evaluates whether those with higher predicted risk are more likely to die within 

60 days among all possible pairs of patients with different outcomes. A model with a c 

statistic of 0.5 has no discriminative power at all, for example a coin flip. A c statistic of 

1.0 reflects perfect discrimination.

Model validation

The performance of a prediction model is generally worse in new patients than initially 

expected. This ‘optimism’ can be studied with internal validation techniques.7 Inter-

nal validity of our model was assessed with standard bootstrapping procedures.7 

Bootstrapping involves drawing samples of patients with replacement from the study 

population. Each sample can be considered as if one is repeating the data collection 

with the same number of patients and under identical circumstances as the original. 

The multivariable logistic regression coefficients were re-estimated in 300 bootstrap 

samples. Each of these 300 models was evaluated on the original sample. The aver-

age difference in the c statistic was determined to indicate the optimism in the initially 

estimated discriminative ability.7 A shrinkage factor was estimated from the bootstrap 

validation procedure and we shrunk the regression coefficients to provide better pre-

dictions for future patients.7 

All statistical analyses were performed using R software, version 2.8.1 (R Founda-

tion for Statistical Computing, Vienna, Austria).

Results

A total of 2,143 patients were recruited into the ISAT trial by 43 neurosurgical centers, 

mainly in Europe. CT scans of 14 patients were not performed or available, and in one 

patient no information on vasospasm was available. We excluded these cases from our 

analysis. Data on the outcome were available for all patients. Thus, we performed com-

plete case analysis on 2,128 patients (99.3%) of whom 153 (7.2%) died within 60 days.

The distribution of patient characteristics of the study population is presented in 

table 9.1. For reasons of small numbers in the ‘severe’ category of vasospasm, we ag-

gregated data from the ‘moderate’ and ‘severe’ categories into one category. Univariate 

analysis showed a statistically significant relation with 60-day case-fatality for age, 

lumen size, Fisher grade, lumbar puncture, WFNS grade, and vasospasm. Sex, loca-

tion and number of aneurysms and intended treatment were not significantly associ-



pa r t  1 I I   Prognostic models15 8

ated with 60-day case-fatality (Table 9.1). In the multivariable model with stepwise 

backward selection age, lumen size, Fisher grade, and WFNS grade met AIC and were 

included in the final model. In table 9.2 the chi square statistics with corresponding p-

values are presented as well as the point estimate of the OR. Age and WFNS grade were 

the most important predictors.

The goodness of fit test yielded a p-value of 0.86, suggesting that the model fitted 

the data in which it was developed well. The c statistic of the original model was 0.73, 

meaning that the model discriminates reasonably between patients who die within 60 

days from onset of the SAH and those who survive this period.

Validation by means of 300 bootstrap samples resulted in a shrinkage factor of 0.85, 

which was applied to the betas of the model. The c statistic of the internally validated 

model was 0.70. Details of the final prognostic model for 60-day case-fatality are de-

scribed in the appendix. 
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Table 9.1  Population characteristics and univariate association with 60-day case fatality

Predictor Alive Death

n=1975 n=153

median IQR median IQR beta SE OR CImin CImax

Age [10years] 5.2 4.3–5.9 5.6 5.0–6.5 0.36 0.08 1.43 1.23 1.66
Lumensize [mm] 5 4–7 6 4–8 0.10 0.02 1.10 1.05 1.15

n % n %

Sex
female 1236 63 103 67 1
male 739 37 50 33 –0.21 0.18 0.81 0.57 1.15
Previous SAH
yes 129 7 6 4 –0.54 0.43 0.58 0.25 1.35
no 1846 93 147 96 1
Fisher’s grade
1 112 6 2 1 1
2 350 18 10 7 0.47 0.78 1.60 0.35 7.41
3 840 43 62 41 1.42 0.73 4.13 1.00 17.13
4 673 34 79 52 1.88 0.72 6.57 1.59 27.13
Lumbar puncture 
xantochromia or blood 217 11 7 5 –0.95 0.39 0.39 0.18 0.84
no blood 5 0 0 0 –5.19 20.8 0.01 0.00 ∞
no puncture 1753 89 146 95 1
WFNS grade
1 1270 64 54 35 1
2 495 25 51 33 0.89 0.20 2.42 1.63 3.60
3 120 6 13 8 0.94 0.32 2.55 1.35 4.80
4 55 3 19 12 2.09 0.30 8.12 4.51 14.63
5 13 1 7 5 2.54 0.49 12.66 4.86 33.02
6 (not assessable) 22 1 9 6 2.26 0.42 9.62 4.23 21.89
n of aneurysms  
detected
1 1555 79 116 76 1
2 314 16 29 19 0.21 0.22 1.24 0.81 1.89
>=3 106 5 8 5 0.10 0.38 1.10 0.52 2.32
Location
ACA 1008 51 71 46 –0.16 0.19 0.85 0.59 1.23
ICA 638 32 53 35 1
MCA 277 14 23 15 0.00 0.26 1.00 0.60 1.66
PC 52 3 6 4 0.33 0.45 1.39 0.57 3.38
Vasospasm 
none 1575 80 109 71 1
mild 218 11 24 16 0.46 0.24 1.59 1.00 2.53
moderate/severe 182 9 20 13 0.77 0.26 2.15 1.30 3.55
Intended treatment
clip 983 50 83 54 1
coil 992 50 70 46 –0.18 0.17 0.84 0.60 1.16

IQR = inter quartile range; beta = regression coefficient in the logistic regression model; SE = standard 
error; OR = odds ratio; CI

min = lower limit of the 95% confidence interval; CImax = upper limit of the 95% 
confidence interval.
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Table 9.2  Statistical parameters of the final model

Factor X2 df p-value OR 95% CI

WFNS grade   51 5 <0.001 grade 1 = ref.

2 1.87 1.23–2.83

3 1.70 0.87–3.32

4 4.87 2.60–9.14

5 7.00 2.54–19.28

6 5.75 2.41–13.73

Age [10 yrs] 17 1 <0.001 1.32 1.13–1.55

Lumen size [mm] 12 1 <0.001 1.08 1.03–1.13

Fisher grade     8 3 0.04 grade 1 = ref.

2 1.43 0.27–7.65

3 2.67 0.53–13.51

4 2.76 0.54–14.14

X2 is the chi square test statistic for the predictor in the final model; df = degrees of  
freedom; 95% CI was calculated based on the S.E. of the estimates of the coefficients in the full model  
to avoid underestimation of uncertainty.

Discussion

We developed a prognostic model to predict the risk of 60 day case-fatality in indi-

vidual patients after aSAH. Predictions were based on characteristics that are regularly 

readily available on admission to a neurological or neurosurgical unit and which were 

collected in a large clinical trial. The full model yielded a c statistic of 0.73. 

Previously, several models to estimate the probability of unfavourable outcome after 

aSAH have been developed. Our model was similar to those; we included roughly the 

same predictors: age, clinical status, and lumen size.4,5,9 However, our study is of added 

value because of the substantial size and the inclusion of both clipped and coiled pa-

tients. The studies by Hoh et al.4 (n=515) and Mocco et al.9 (n=148) contained relatively 

few patients. The small numbers of coiled patients (79 and 35, respectively) and the 

design of the study did not allow for taking the effect of treatment in consideration. 

The study of Rosengart et al.5 (n=3667) was not able to do that either, since patients 

treated with Guglielmi or other detachable coils were excluded. All three studies used 

a dichotomized ordinal scale as an outcome, for which the cut off can be (arbitrarily) 

chosen in different studies. In a sense, examining case-fatality is also a dichotomiza-

tion of an ordinal scale, though less arbitrary. Therefore, we are convinced that logistic 

regression is well suited for an outcome that is by its nature dichotomous, whereas for 

an ordinal outcome we would prefer specific modelling techniques.
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Several limitations of this study should be acknowledged. This study used data from 

one large trial on a selected population of patients who survived the early stage up till 

a treatment decision and who were in equipoise regarding that decision on treatment 

with either endovascular coiling or neurosurgical clipping, which may limit external 

validity. The model may perform well in this development sample, but worse when ap-

plied to other groups of patients, for example, a less strictly selected population. None-

theless, according to a recently published paper, the ISAT population proved to be quite 

similar to the population admitted with an aSAH to neurosurgical units in the United 

Kingdom.10 Although in ISAT, a lower proportion of poor grade patients were enrolled. 

Validation of a prognostic model in independent patient series is therefore considered 

an essential next step.11 However, since large samples of systematically collected data 

on aSAH are sparse, assessment of external validity is difficult. For now the external 

validity of our model remains to be established. This will be a topic of future research.    

Although our model represents knowledge obtained from 2,128 SAH patients in 

equipoise regarding treatment, statistical models can never replace the clinician with 

regard to decision making; they can only assist with this task. A prediction for an indi-

vidual aSAH patient a particular situation is always subject to uncertainty. 

The model makes certain structural assumptions and statistical interaction terms 

were not included. It is hence possible that specific patterns of risk factors are inad-

equately reflected in the model predictions. Therefore, predictions should be regarded 

with care and not directly be applied for treatment limiting decisions. 

Although the performance of the presented model was satisfactory, it might po-

tentially be improved by including neuro-imaging biomarkers other than lumen size, 

location, Fisher grade on plain CT scan, and vasospasm on angiography. Biomarkers 

regarding anatomy and morphology might be considered, as well as aneurysm charac-

teristics obtained from three and four dimensional angiography.12,13 Performance may 

also be improved by inclusion of subsequent information obtained after admission, 

including temporal course, neuro-imaging at later time points, eventual rebleeding of 

the aneurysm, delayed ischemic deficit, and other parameters such as hydrocephalus. 

The objective of the present study, however, was to investigate prognostic models that 

predict 60-day case-fatality with predictors available on admission.

Statistical testing for calibration has a number of drawbacks. First, the null hypoth-

esis is of good calibration. Hence, if we test calibration in a small study, we have low 

power and will not reject the null hypothesis unless miscalibration is very severe. On 

the other hand, even a model with very good, though not perfect, calibration will fail 

the test in case of a sufficiently large sample. Moreover, reported goodness-of-fit tests 

are usually non-significant if they reflect apparent validation on the data that were also 

used to construct the model. Such non-significant results may contribute to the face 

validity of a model, but have no real scientific meaning.7
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In conclusion, we presented a prognostic model for predicting 60-day case-fatality after 

aneurysmal SAH. Our model contained age, lumen size, Fisher grade, and WFNS grade 

as predictors. After calibration and internal validation, our model showed reasonable 

performance, although external validity of our model remains to be established.
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Appendix

Details of the Prognostic Model

The probability of dying within 60 days is calculated according to the logistic formula: 

1/(1 + exp-LP). The linear predictor (LP) takes the form of LP = intercept + regression 

coefficients × predictor values. 

LP for 60-day case-fatality = –5.812 + 0.2762 × age + 0.3572 × [Fisher grade II] + 

0.9756 × [Fisher grade III] + 1.008 × [Fisher grade IV] + 0.6216 × [WFNS grade 2] + 

0.5261 × [WFNS grade 3] + 1.574 × [WFNS grade 4] + 1.934 × [WFNS grade 5] + 1.738 × 

[WFNS grade not assessable] + 0.07662 × lumen size of aneurysm.

Coding of the predictors was as follows: age in decades, lumen size in millimetres; all 

other predictors, 1 if true and 0 if false.
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Abstract 
Introduction

Differences between centers in patient outcome after traumatic brain injury 

(TBI) are of importance for multicenter studies, and have seldom been 

studied. We aimed to quantify these differences in centers enrolling patients 

in randomized clinical trials (RCTs) and surveys.

Methods

We analyzed individual patient data from 9578 patients with moderate 

and severe TBI enrolled in ten RCTs and three observational studies. We 

used random effects logistic regression models to estimate the between-

center differences in unfavourable outcome (dead, vegetative state or 

severe disability measured with the Glasgow Outcome Scale) at six months, 

adjusted for differences in patient characteristics. We calculated the 

difference in odds of unfavourable outcome between the centers at the 

higher end versus those at the lower end of the outcome distribution. We 

analyzed the total database, Europe and the US separately, and four of the 

larger RCTs. 

Results 

The 9578 patients were enrolled at 265 centers, and 4629 (48%) had an 

unfavourable outcome. After adjustment for patient characteristics, there 

was a 3.3 fold difference in the odds of unfavourable outcome between 

the centers at the lower end of the outcome distribution (2.5th percentile) 

versus those at the higher end of the outcome distribution (97.5th percentile) 

(p<0.001). In the four larger RCTs, the differences between centers were 

similar. However, differences were smaller between centers in the US (2.4 

fold) than between centers in Europe (3.8 fold).  

Conclusion

Outcome after TBI differs substantially between centers, particularly 

in Europe. Further research is needed to study explanations for these 

differences to suggest where quality of care might be improved. 
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Introduction

Interest in differences in quality of care between health care providers is increas-

ing throughout the medical world.1-3 Such differences may be studied by comparing 

patient outcomes between centers, for example the number of patients dying within 

30 days after a myocardial infarction or surgical procedure. Observed between-center 

differences in outcome can be caused by various reasons, such as a different patient 

population (e.g. a different age distribution of the patients) or simply by random varia-

tion. Remaining differences may be explained by bias; eg registration bias or residual 

confounding but also by structural differences (e.g. referral system in a country) and by 

differences in process (e.g. adherence to guidelines). Both aspects relate to quality of 

care. In randomized clinical trials (RCTs) large between-center differences may adverse-

ly affect the chances of detecting a treatment effect. More insight in the magnitude 

of the between-center differences might hence help to improve quality of care and to 

improve the design of RCTs.      

Considerable between-center differences in outcome have been reported in various 

diseases and disciplines.4-6 Few studies have reported on such differences in traumatic 

brain injury (TBI), and these were usually based on single studies. For example, consid-

erable between-center differences in six month unfavourable outcome were found in 

the NABIS hypothermia trial.7 Further thorough study however is necessary in moderate 

and severe TBI, which is a major problem worldwide and leads to high mortality and 

permanent disability in predominantly young patients, causing high costs to society.8  

We aim to quantify differences in outcome between centers enrolling patients in 

randomized clinical trials (RCTs) and surveys.

Methods 

Patients and data collection

We used the IMPACT database (International Mission on Prognosis and Clinical Trial 

design in TBI), which currently contains data on over 11,989 individual patients with 

moderate and severe TBI, both from randomized controlled trials (RCTs) and observa-

tional studies. 

We excluded patients with missing outcome (n=601), missing age (n=6), younger 

than 14 (n=359) and with missing center (n=172). We excluded patients from one 

single-center study (n= 756) since it could not contribute information to estimate 

between-center differences. Ultimately 9,578 patients were analyzed, and from one 

study (n=517) for which we did not know the treating center. 

Details of the development of the IMPACT database and the constituent studies have 

been previously reported.9 Also a more extensive description of the data used in this 

study can be found in table 10.1. 
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Outcome and measures

The primary endpoint was an unfavourable outcome after six months, measured with 

the  Glasgow Outcome Scale (GOS), which was dichotomized as favourable (good 

recovery or moderate disability) versus unfavourable outcome (severe disability, veg-

etative state or death).10 We adjusted analyses for the main predictors of outcome in 

TBI: age, pupillary reactivity and Glasgow Coma Scale motor score.11, 12, 13, 14 GCS motor 

untestable was included in the model as a  separate category to deal with patients be-

ing sedated at admission. Missing values for pupillary reactivity were imputed with a 

multiple imputation procedure in 13.9% of the patients. The imputation was based on 

15 relevant covariates and the outcome, as described before.14, 15 

We developed a common center code over all studies in the database, so when a 

center participated in multiple studies, it had one unique code. 

Statistical analyses

In the quantification of between-center differences we need to account for random 

variation caused by low numbers and for differences in patient characteristics. This 

was achieved using a random effects logistic regression model, which estimates ‘fixed’ 

coefficients β for covariates at the patient level i in center j (Xij) and ‘random’ coeffi-

cients for the centers j(θj). The parameter θj is assumed to be normally distributed with 

mean μ and variance τ2: 

Logit (P(Yij=1|Xij)) = βXij + θj with θj ~ N (μ, τ2).

The variance (τ2) estimated in the random effects model is a measure of the between-

center differences, and indicates the spread of the estimated proportions of unfavour-

able outcome of the individual centers. In a random effects model, outcomes for small 

centers are drawn towards the mean to avoid too extreme estimates. Therefore τ2 can 

be interpreted as the unexplained between-center differences, beyond what would be 

expected based on random variation.16, 17 

We aimed to illustrate the concept of between-center differences and random varia-

tion graphically, by calculating the distribution of unfavourable outcome that would be 

expected based on just random variation. We therefore simulated outcome per center 

without any between-center differences, i.e. a constant risk of unfavourable outcome of 

48%, which was the average percentage unfavourable outcome over all centers. Histo-

grams were created 1000 times and averaged to obtain a stable estimate of what might 

be expected given random variation only.  

To facilitate interpretation of the estimated between-center differences, we com-

pared the centers at the higher end of the outcome distribution (the 97.5th percentile) 

with the centers at the lower end (the 2.5th percentile) of the outcome distribution. The 

relative difference in odds on unfavourable outcome in these two groups of centers can 
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be calculated from the parameter τ2: 95% OR range = exp (3.92*τ). The value 3.92 is 

the Z value corresponding to the width of the 95% confidence interval in a normal dis-

tribution (2*1.96). For example, a τ2 of 0.09 means that centers at the higher end of the 

outcome distribution (the ‘worst’ centers)  have a 3.2 times higher odds of unfavour-

able outcome than centers at the lower end of the outcome distribution (the ‘best’ cen-

ters): exp (3.92*√0.09) = 3.2. This calculation is derived from Spiegelhalter et al who 

proposed a similar interpretation.18 If there would be no unexplained between-center 

differences beyond random variation, τ2 would be 0 and the 95% OR range would be 1. 

All analyses in the total database were stratified by study to adjust for any system-

atic study effects, such as calendar time and inclusion criteria. We first considered ran-

dom effects logistic regression models for crude between-center differences, and sub-

sequently adjusted for any differences in patient characteristics between the centers by 

extending the regression model with three patient characteristics: age (as a continuous 

linear variable), pupillary reactivity (3 categories: none, one, both reacting), and GCS 

motor score (6 categories: none, extension, abnormal flexion, withdrawal, localizing/

obeying commands, or untestable.11

We analyzed centers from Europe and the US separately, motivated by a previous 

analysis that found that patient outcomes were better in the US.19 We further analyzed 

four of the larger RCTs separately, arbitrarily defined as having at least 20 centers and 

at least 20 patients per center on average since between-center effects can be more 

reliably estimated with larger numbers of centers and larger numbers of patients per 

center. As a sensitivity analysis we excluded centers with 3 patients or less, centers 

with 10 patients or less, and centers with 50 patients or less. We fitted the models in 

the total database with adaptive Gaussian quadrature with ten q points as an alterna-

tive to our default ‘Laplace’ method, leading to a better goodness of fit, but very similar 

estimates of the between-center variance. Analyses were performed with R statistical 

software 2.7.2 (R Foundation for Statistical Computation, Vienna) and SPSS 15.0 (SPSS 

Inc, Chicago). 
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Results

Patients and centers

Of the total 9,578 patients included in the study, 2,603 (27%) died and 4,629 (48%) had 

an unfavourable outcome six months after injury. The median age was 30 (interquartile 

range 21-45) years, 3900 patients (41%) had a GCS motor of 3 or lower (none, exten-

sion or abnormal flexion), and 1,914 patients (20%) had bilateral non-reactive pupils on 

admission (Table 10.1). The majority of patients were from Europe (n=5,705) and the 

US (n=3,325). The other patients were from Israel (n=225), Canada (n=152), Australia 

(n=147), Turkey (n=12), Argentina (n=8), Hong Kong (n=3) and South Korea (n=1). 

There were 265 unique centers, with greatly varying patient numbers. The smallest 

centers treated only one patient and the largest center 453 patients (Figure 10.1). 

Figure 10.1  Observed number of patients per center in 265 centers. Numbers vary from 1 to 453 with 

median 17 and interquartile range 6-45. 
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Table 10.1  Descriptive statistics of the studies in the IMPACT database used for analyses of  
between-center differences. 

TCDB* UK4 EBIC TIUS TINT SLIN SAPHIR PEGSOD HIT I HIT II SKB NABIS Pharmos Total 

Study period 1984–87 1986–88 1995 1991–94 1992–94 1999 1995–97 1993–95 1987–89 1989–91 1996 1994–98 2000–04

Original publication Foulkes et al 
1991

Murray et al 
1999

Murray at al 
1999

Marshall et al 
1998

Morris et al  
1999

Young et al 
1996

Bailey et al 
1991

Eur Study 
Group 1994

Marmarou et 
al 1999

Clifton et al 
2001

Maas et al 
2006

n patients 604 791 822 1041 1118 409 919 1510 350 819 126 213 856 9578

N centers 4 4 64 34 39 50 51 72 6 21 26 6 86 265

Age 
Median (IQ range) 26(21–40) 36(22–55) 38(24–59) 30(23–41) 30(21–45) 28(21–43) 32(20–38) 27(20–38) 34(21–47) 33(22–49) 27(20–39) 30(22–40) 33(23–45) 30(21–45)

Motor 
1–2
3
4
5–6
Untestable

243 (40%)
 74 (12%)
122 (20%)
134 (22%)
31 (5%)

198 (25%)
37 (5%)
141 (18%)
221 (28%)
194 (25%)

230 (28%)
55 (7%)
113 (14%)
281 (34%)
143 (17%)

152 (15%)
132 (13%)
300 (29%)
457 (44%)
0 (0%)

141(12%)
237(21%)
317(29%)
413 (37%)
0 (0%)

55 (13%)
91 (22%)
127 (31%)
136 (33%) 
0 (0%)

264 (29%)
143 (16%)
223 (24%)
286 (31%)
3 (0%)

655 (43%)
165 (11%)
334 (22%)
356 (24%)
0 (0%)

163(47%)
45(13%)
56(16%)
77(22%)
9(3%)

280 (34%)
92 (11%)
181 (22%)
207 (25%)
59 (7%)

56(43%)
14(11%)
16(13%)
23(19%)
17(13%)

85(39%)
23(11%)
43(20%)
58(27%)
4(2%)

134(16%)
136(16%)
225(26%)
235(27%)
126(15%)

2656(28%)
1244(13%)
2208(23%)
2884(31%)
586(6%)

Pupils 
Both reactive
One reactive
None reactive

300(50%)
55(9%)
249(41%)

434(55%)
113(14%)
244(31%)

532(65%)
80(10%)
210(26%)

708(68%)
119(11%)
214(21%)

807(72%)
174(16%)
137(12%)

314(77%)
80(20%)
15(4%)

655(71%)
264(29%)
0(0%)

792(52%)
156(10%)
562(37%)

232(66%)
50(14%)
68(19%)

579(71%)
102(12%)
138(17%)

76(60%)
50(40%)
0(0%)

141(66%)
31(15%)
41(19%)

666(78%)
154(18%)
36(4%)

6236(65%)
1428(15%)
1914(20%)

Outome
Unfavorable
Mortality 

393(65%)
264(44%)

518(65%)
359(45%)

422(51%)
281(34%)

395(38%)
225(22%)

456(41%)
278(25%)

177(43%)
94(23%)

378(41%)
212(23%)

774(51%)
362(24%)

171(48%)
99(28%)

328(40%)
188(23%)

70(56%)
34(27%)

110(52%)
62(29%)

437(51%)
145(17%)

4629(48%)
2603(27%)

*TCDB = Traumatic Coma Data Bank (observational study), UK4 = UK Four Center Study (observational 
study), EBIC = European Brain Injury Consortium Core data study (observational study), TINT = Tirilizad 
International (RCT), TIUS = Tirilizad US (RCT), SLIN = International Selfotel trial (RCT), Saphir (RCT), 
PEGSOD (RCT), HIT I = HIT I Nimodipine (RCT), HIT II = HIT II Nimodipine (RCT), SKB = Bradycor SKB 
(RCT), NABIS = NABIS Hypothermia (RCT), Pharmos = Pharmos Dexanabinol (RCT)  

Between-center differences

We found a large variation in outcome (from 0% to 100%), represented by the bars in 

figure 10.2. Part of this variation is explained by random variation between the centers 

caused by low numbers of patients in some centers. The points in figure 10.2 reflect 

the distribution of the 265 centers around the average proportion of unfavourable 

outcome of 48% that would be expected based on only random variation, given the 

sample sizes.  We note that some centers are expected to have 0% or 100% unfavour-

able outcome due to random variation. But in the observed distribution (the bars), 

more centers are at the extremes of the distribution and fewer are in the center, reflect-

ing between-center differences not explained by random variation (τ2). 
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Figure 10.2  Observed proportion of patients with unfavourable outcome per center (bars). Points 
represent what would be expected if there were only random differences between the 265 centers, i.e. 
if they all had a constant risk of unfavourable outcome of 48%. This distribution was created by drawing 
1000 samples from a binomial distribution with probability of 48%. The points at the extremes of the 
distribution are higher since there are centers with only 1 or 2 patients that are expected to have a 0% or 
100% unfavourable outcome
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n patients 604 791 822 1041 1118 409 919 1510 350 819 126 213 856 9578

N centers 4 4 64 34 39 50 51 72 6 21 26 6 86 265

Age 
Median (IQ range) 26(21–40) 36(22–55) 38(24–59) 30(23–41) 30(21–45) 28(21–43) 32(20–38) 27(20–38) 34(21–47) 33(22–49) 27(20–39) 30(22–40) 33(23–45) 30(21–45)

Motor 
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5–6
Untestable

243 (40%)
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122 (20%)
134 (22%)
31 (5%)

198 (25%)
37 (5%)
141 (18%)
221 (28%)
194 (25%)

230 (28%)
55 (7%)
113 (14%)
281 (34%)
143 (17%)

152 (15%)
132 (13%)
300 (29%)
457 (44%)
0 (0%)

141(12%)
237(21%)
317(29%)
413 (37%)
0 (0%)

55 (13%)
91 (22%)
127 (31%)
136 (33%) 
0 (0%)

264 (29%)
143 (16%)
223 (24%)
286 (31%)
3 (0%)

655 (43%)
165 (11%)
334 (22%)
356 (24%)
0 (0%)

163(47%)
45(13%)
56(16%)
77(22%)
9(3%)

280 (34%)
92 (11%)
181 (22%)
207 (25%)
59 (7%)

56(43%)
14(11%)
16(13%)
23(19%)
17(13%)

85(39%)
23(11%)
43(20%)
58(27%)
4(2%)

134(16%)
136(16%)
225(26%)
235(27%)
126(15%)

2656(28%)
1244(13%)
2208(23%)
2884(31%)
586(6%)

Pupils 
Both reactive
One reactive
None reactive

300(50%)
55(9%)
249(41%)

434(55%)
113(14%)
244(31%)

532(65%)
80(10%)
210(26%)

708(68%)
119(11%)
214(21%)

807(72%)
174(16%)
137(12%)

314(77%)
80(20%)
15(4%)

655(71%)
264(29%)
0(0%)

792(52%)
156(10%)
562(37%)

232(66%)
50(14%)
68(19%)

579(71%)
102(12%)
138(17%)

76(60%)
50(40%)
0(0%)

141(66%)
31(15%)
41(19%)

666(78%)
154(18%)
36(4%)

6236(65%)
1428(15%)
1914(20%)

Outome
Unfavorable
Mortality 

393(65%)
264(44%)

518(65%)
359(45%)

422(51%)
281(34%)

395(38%)
225(22%)

456(41%)
278(25%)

177(43%)
94(23%)

378(41%)
212(23%)

774(51%)
362(24%)

171(48%)
99(28%)

328(40%)
188(23%)

70(56%)
34(27%)

110(52%)
62(29%)

437(51%)
145(17%)

4629(48%)
2603(27%)
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Table 10.2  Effects on unfavourable outcome of predictors in the adjustment model 

OR 95% CI P value 

Age (per decade) 1.43 1.39–1.49 <0.001

GCS motorscore
None
Extension
Abnormal flexion
Withdrawal
Localizing/obeying commands
Untestable 

1.0 (ref)
1.90
0.95
0.51
0.28
0.61

1.57–2.31
0.79–1.14
0.44–0.60
0.16–0.31
0.48–0.77

<0.001

Pupil reactivity
Both reactive
One reactive
None reactive

1.0 (ref)
2.13
4.09

1.87–2.43
3.57–4.70

<0.001

Stratified for study, the between-center differences in outcome were 2.4 fold, meaning 

that the odds on unfavourable outcome in centers at the higher end of the outcome 

distribution was 2.4 times higher than in centers at the lower end. Patient characteris-

tics were highly predictive for outcome (Table 10.2). 

Patients who were localizing or obeying commands had an odds of unfavourable 

outcome 0.28 times the odds of patients with an absent motor response. Patients with 

extension had almost twice the odds of having unfavourable outcome compared to 

patients with an absent motor response. Patients with non reactive pupils had 4.09 

times the odds of having unfavourable outcome compared to patients with two reac-

tive pupils.

Patient characteristics varied largely between the centers. The mean predicted prob-

ability of unfavourable outcome based on age, motor and pupils ranged from 13% to 

93%. After adjustment for these three patient characteristics, the between-center differ-

ences increased to a 3.3 fold difference in the odds of unfavourable outcome between 

the ‘best’ and the ‘worst’ centers. The adjusted between-center differences for patient 

characteristics were smaller in the US (2.4 fold difference in odds) than in Europe (3.8 

fold difference in odds). There was a small difference in outcome between the USA and 

Europe. In Europe the percentage unfavourable outcome was 48%, in the USA it was 

50%. After adjustment for patient characteristics and study there was no significant dif-

ference in outcome between the USA and Europe.  

The adjusted between-center differences for patient characteristics were smaller in 

the RCTs (3.3 fold difference in odds) than in the observational studies (13.1 fold differ-

ence in odds).

The TIUS, TINT, PEGSOD and HIT II studies had at least 20 centers and at least 20 pa-

tients per center. In TIUS and TINT, there was a 3.1 fold adjusted difference in the odds 
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of unfavourable outcome between the ‘best’ and the ‘worst’ centers. The between-cen-

ter differences were larger in HIT II (4.7 fold) and smaller in PEGSOD (1.8 fold). (Table 

10.3)

The sensitivity analysis excluding centers with low numbers of patients resulted in only 

slightly smaller between-center differences, indicating robustness of the results. 

Table 10.3  Between center differences in total database and within studies.

Unadjusted Adjusted for age + motor + pupils

Tau2 Difference in the odds on unfavour-
able outcome between centers at   
the 97.5th and the 2.5th percentile of 
the outcome distribution

Tau2 Difference in the odds on unfavour-
able outcome between centers at  the  
97.5th and the 2.5th percentile of the 
outcome distribution

Total*
(n=9578)

0.052 2.4 fold 0.095 3.3 fold

USA
(n=3325)

0.033 2.0 fold 0.046 2.4 fold

Europe
(n=5706)

0.052 2.4 fold 0.115 3.8 fold

Obs. studies
(n=2217)

0.309 8.8 fold 0.431 13.1 fold

RCTs
(n=7361)

0.045 2.3 fold 0.093 3.3 fold

HIT II 
(n=819)

0.074 2.9 fold 0.157 4.7 fold

TIUS
(n=1041)

0.071 2.9 fold 0.080 3.1 fold

TINT
(n=1118)

0.045 2.3 fold 0.083 3.1 fold

PEGSOD
(n=1510)

0.000 1.0 fold 0.02 1.8 fold

*Models in the total database were adjusted for study
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Observed 
differences
in outcome

 

Random variation/ 
chance  

Unexplained 
differences
unadjusted τ2) Unexplained 

differences
adjusted τ2)

 

Case-mix 
 

Residual 
confounding 

Registration 
bias 

Quality of care 
(structure/ process)  

Discussion

In this study we quantified the differences in patient outcome after severe and moder-

ate traumatic brain injury between centers enrolling patients in randomized controlled 

trials (RCTs) and surveys. After adjustment for patient characteristics and taking ac-

count of random variation, there was a 3.3 fold difference in the odds of unfavourable 

outcome after six months between the centers at the lower end and those at the higher 

end of the outcome distribution. 

Limitations of the study include that our data consist of multiple individual studies, 

including RCTs, with varying inclusion criteria and varying in calendar time. However 

all analyses were adjusted for study and a substantial number of centers participated in 

multiple studies. None of the included trials showed a significant treatment effect, so it 

is not likely that differences in study treatment have influenced the results. Although it 

has been suggested that outcomes have improved over time, we did not detect a time 

effect in this dataset after adjustment for patient characteristics (odds ratio 0.99 per 

year after adjustment for patient characteristics, p=0.34). Another limitation is that 

even with the large number of patients and centers in the current analysis, estimation 

of τ2 is associated with some uncertainty, which we did not calculate. 

Conceptually, the observed between-center differences consist partly of random 

variation, which we accounted for with the random effect models (Figure 10.3).

 

Figure 10.3  Schematic partitioning of between-center differences. Observed differences consist partly 
of chance (2nd bar). Remaining differences consist partly of patient characteristics (3rd bar). The then 
remaining differences, as quantified in this study might be due to residual confounding, registration bias 
or differences in quality of care. Magnitude of the bars does not represent real numbers. 
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Contrary to our expectations the between-center differences did not decrease, but 

even increased after adjustment for patient characteristics. This implies that some 

centers with patients with good prognoses have unexpectedly unfavourable outcomes 

and some centers with patients with unfavourable prognosis have unexpectedly good 

outcomes. A likely explanation for for these differences – at least in part – is quality of 

care (Figure 10.3).

Another explanation might be that the model we used included too few patient 

characteristics to adequately adjust for confounding. We therefore also used a more 

extended model (10 predictors including secondary insults, CT characteristics and lab 

values) in the Tirilizad trials (TIUS and TINT), which had more data available. This led 

only to a small change in between-center differences, compared to adjustment for only 

age, motor score and pupils.  

Between-centers differences in other medical fields are reported in numerous ways: 

observed percentages of unfavourable o utcome or p-values for the overall between 

center-differences.4, 5 Therefore it is difficult to compare our results to these other stud-

ies. Steyerberg et al reported a 95% OR range for the regional differences in 30 day 

mortality after myocardial infarction in the GUSTO I trial. They found a 95% OR range 

from 0.93 to 1.07, which corresponds to a 1.2 fold difference between the ‘best’ and the 

‘worst’ regions, so much smaller than we found in our study.20

The IMPACT database consists only of experienced centers participating in large 

RCTs and observational studies. Moreover trials have strict protocols with regard to pa-

tient inclusion and treatment, which reduces heterogeneity. Consequently our findings 

may underestimate ‘real world’ between-center differences across all centers treating 

patients with TBI.      

In this study we adjusted the between-center differences for patient characteristics 

and we accounted for random variation. The question remains of what causes the re-

maining unexplained differences. There might be residual confounding, but there also 

might be differences in registration between centers causing apparent differences in 

outcome (figure 2). The only between-center differences that are potentially avoidable 

are those caused by differences in quality of care. These differences can occur in two 

domains: structure and process. Structure concerns for example volume (the number 

of patients treated) and the referral pattern in a region. Process concerns actions in 

individual patients, such as surgical and medical management.  

We found that between-center differences in the US were smaller than in Europe. 

This might be due to the fact that in Europe differences between countries exist in 

the organization of neurosurgical care or that more variation exists in the approaches 

to treatment. Geographic region or country may therefore indirectly explain part of 

the between-center differences, and should be further investigated. The percentage 

unfavourable outcome was similar in the US and Europe after adjustment for patient 

characteristics in contrast to previous analysis of only the Tirilizad trials.19 
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We found that between-center differences were much larger in the observational stud-

ies than in RCTs. We do not know however whether this is the result of less (unob-

served) patient variation, more uniform registration, or less treatment variation in 

RCTS. The substantial differences in the between-center differences between the trials 

we analysed separately (e.g. 4.7 fold differences in HIT II, 1.8 fold differences in PEG-

SOD) confirm that there are RCTs with less variation but again it is unknown whether 

this is the results of less variation in treatment.

Previous studies in traumatic brain injury also give directions for possible causes of 

between-center differences in outcome. One study found an 18% larger discharge mortal-

ity in centers with a non-aggressive approach to treatment compared to centers with 

an aggressive approach, suggesting an effect of different treatment policies.21 A study 

from the United Kingdom found that patients with severe head injury who were treated 

in a non-neurosurgical center had case-mix adjusted odds of death of 2.15 times that of 

patients treated in a neurosurgical center, pointing to the possible relevance of structural 

indicators such as of trauma organization and infrastructure.22 In the NABIS Hypothermia 

trial it was found that both treatment and outcome varied significantly between centers, 

particularly between small and large centers.7 In our study, the different sensitivity analy-

ses excluding centers with few patients might be interpreted as an indication of volume-

effects. However, the number of patients enrolled in a study is largely determined by the 

inclusion criteria and the duration of the study, and does not reflect the actual volume of 

a center. Detailed analysis is complex and we consider this a topic for future research. 

In the NABIS Hypothermia trial the relevance of between-center differences for trial 

design was addressed. The large between-center differences observed in our study 

emphasize this important issue and raise the question whether the current practice 

of increasing the number of participating centers to reduce recruitment time is desir-

able. It is important to achieve balance in the randomization within each center, and to 

standardize treatment across centers as much as possible, to avoid that the treatment 

effect is confounded by the large between-center differences.  

The large between-center differences furthermore implicate that there is consider-

able room for improvement of quality of care and reduction of unfavourable outcome. 

It is essential to understand possible causes of the observed differences and thus 

research into this should be prioritized. 
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Abstract
Introduction

Large between-center differences in outcome exist in Traumatic Brain Injury 

(TBI). The aim of this study was to assess the influence of such differences 

on the estimated treatment effect in a large randomized controlled trial 

(RCT). 

Methods

We used data from the MRC CRASH trial on the efficacy of corticosteroid 

infusion in patients with TBI. We analyzed the effect of the treatment on 14 

day mortality with fixed effect logistic regression. Next we used random 

effects logistic regression with a random intercept to estimate the treatment 

effect taking into account between-center differences in outcome. Between-

center differences in outcome were expressed with a 95% range of odds 

ratios for centers compared to the average, based on the variance of the 

random effects (tau2). A random effects logistic regression model with 

random slopes was used to allow the treatment effect to vary by center.  

The variation in treatment effect between the centers was expressed in a 95% 

range of the estimated treatment ORs.

Results

In 9978 patients from 237 centers, 14-day mortality was 19.5%. Mortality 

was higher in the treatment group (OR=1.22, p=0.00010). Using a random 

effects model showed large between-center differences in outcome (95% 

range of center effects: 0.27- 3.71), but did not substantially change the 

estimated treatment effect (OR=1.24, p=0.00003). There was limited 

between-center variation in the treatment effect (OR=1.22, 95% treatment OR 

range: 1.17-1.26). 

Conclusion

 Large between-center differences in outcome do not necessarily affect the 

estimated treatment effect in RCTs.  
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Introduction 

Traumatic brain injury (TBI) is a major health and socio-economic problem throughout 

the world. It is the field with one of the greatest unmet needs in medicine and public 

health.1 Not only is TBI a major cause of death and disability, incurring great personal 

suffering to victims and relatives, but it also leads to huge direct and indirect costs to 

society.2  

Many randomized controlled trials (RCTs) have been performed to investigate the 

effectiveness of new therapies in TBI, but very few have convincingly demonstrated 

benefit.3  Multiple factors may have contributed to this disappointing picture, includ-

ing RCTs in TBI being too small to detect or refute reliably moderate but clinically 

important benefits or hazards of treatment.4 To design trials of sufficient size to detect 

moderate treatment effects, participation of multiple centers is required. 

Considerable between-center differences in patient outcome have been reported in 

TBI.5-7 Recently it was shown that a 3.3-fold difference between centers in the odds of 

having an unfavourable outcome exist (p<0.001), which was not explained by random 

variation or patient characteristics.8

It has been hypothesised that such between-center differences in outcome influence 

the chances of demonstrating a treatment effect in RCTs.7,9 The aim of this study is to 

assess the effect of between-center differences on estimates of the treatment effect in a 

large RCT in TBI. 

Methods 

Data

We used the individual patient data of the MRC CRASH trial. The CRASH trial (corticos-

teroid randomisation after significant head injury) is a large, international, randomised 

placebo-controlled trial of the effect of early administration of 48 h infusion of corticos-

teroids (methylprednisolone) on risk of death and disability after head injury.  Patients 

from 239 centers in 48 countries were enrolled between April 1999 and May 2004, 

when the steering committee stopped recruitment because of a higher 14 day mortality 

rate in the treatment group.10

Analysis

We first assessed whether there were differences in outcome between the centers in 

the CRASH trial, using a random effect logistic regression model (Appendix 1). In this 

model the outcome of a patient is only determined by the center that treats the patient. 

Since some centers only treat a small number of patients, part of the between-center 

differences are caused by random variation. The random effect model estimates the 

between-center differences beyond random variation. The between-center differences 
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are expressed as τ2, which is the variance of the random effects. 

Part of the differences between centers may be caused by the fact that centers are 

from a particular country. To separate between-center differences from between-coun-

try differences we extended the random effect model with a country level. 

Because part of the between-center effect may be explained by differences in pa-

tient characteristics, we adjusted the between-center differences in outcome for age, 

Glasgow Coma Scale (GCS) and pupil reactivity at admission. These are the three main 

generally accepted prognostic factors in TBI.11, 12 Age and GCS (a scale from 1-15) where 

treated as continuous variables and pupil reactivity as a binary variable (both pupils 

reactive versus one or both unreactive). So now the outcome of a patient is determined 

by patient characteristics and center.

The differences between centers in outcome were expressed in a 95% range of odds 

ratios for centers compared to the average. To avoid confusion with the odds ratio of 

the treatment effect we refer to this range as the 95% center effect range.  

Next we estimated the treatment effect with and without taking the between-center 

differences into account. We first analyzed the univariate effect of the treatment on 14 

day mortality with usual fixed effect logistic regression. Center effects were ignored, 

which is a common approach also in multicenter trials. We considered this as the refer-

ence strategy.  

We furthermore use a random effect model to estimate the treatment effect. The 

outcome is also determined by the center, so the treatment effect is adjusted for 

between center-differences. This approach assumes a uniform treatment effect across 

centers. This means we expect the treatment to have equal effects in each center. As 

a second approach we used a random effect logistic regression model with interaction 

between center and treatment to asses whether the treatment effect varied between 

the centers. The variation in estimated treatment effect was expressed in a 95% range 

of the estimated treatment effect across centers. We compared the estimates of the 

treatment effect and the p-values in the two approaches with the reference strategy. 

The random effect estimates of the individual centers for both outcome and treat-

ment effect were plotted with 95% posterior intervals. 

Statistical analysis where performed in R statistical software 2.7.2 using the Design 

and lme4 libraries (R Foundation for Statistical Computation, Vienna). Random effect 

models were fitted with Adaptive Gaussian Quadrature with 10 qpoints.
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Results

Descriptives 

In total 10,008 patients were included in the RCT. We excluded 30 patients with mis-

sing 14 day outcome, leaving 9978 patients from 237 centers for the analyses. After 

14 days 1,948 (19.5%) of the patients had died, with higher mortality in the treatment 

group. (Table 11.1)

Table 11.1  Baseline characteristics and 14 day mortality of patients enrolled in the CRASH trial with 
mortality data available (n=9978).

Corticosteroid 
(n=4991)

Placebo 
(n=4987)

Age (median, interquartile range) 33, 23–47 32, 23–47

Gender

Male 4060 (81.3%) 4016 (80.5%)

Glasgow Coma Scale

Severe (3–8) 1966 (39.4%) 1966 (39.4%)

Moderate (9–12) 1554 (31.1%) 1479 (29.7%)

Mild (13–14) 1471 (29.5%) 1542 (30.9%)

Pupillary reactivity

Both reactive to light 4272 (85.6%) 4016 (80.5%)

14 day mortality  

Dead 1053 (21.1%) 895 (17.9%)

Between-center differences

There was a large difference between centers in outcome (τ2
outcome, centre = 0.447, 

p<0.00001).The corresponding 95% range of center effects was 0.27- 3.71 (Table 11.2). 

This means that in centers with the lowest mortality (2.5th percentile) the odds of dying 

was 0.27 times the average, while in the centers the highest mortality (97.5th per-

centile) the odds of dying was 3.71 times the average. After adjustment for age, GCS 

and pupil reactivity the between-center in outcome increased to τ2
outcome, centre =0.620 

(p<0.00001) with a corresponding 95% range of center effects of 0.21- 4.68. Figure 11.1 

shows the estimated adjusted odds ratios for mortality for each center, compared to 

the average, with 95% posterior intervals.
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Figure 11.1  Differences between centers in mortality, adjusted for age, GCS, pupil reactivity and treat-
ment in a random effects model. A center with average mortality has log odds 0, a positive log odds 
indicates higher mortality. Lines indicate 95% posterior interval. 

Table 11.2  Between-center and between-country variation in 14 day mortality, unadjusted and ad-
justed for treatment, age, GCS, and pupillary reactivity. 

Unadjusted Adjusted (Conditional)

Tau2 95% range Tau2 95% range

Between-centers 0.447  
(p<0.00001)

0.27–3.71 0.620
(p<0.00001)

0.21–4.68

Between-counties 0.385
(p<0.00001)

0.30–3.37 0.642
(p<0.00001)

0.21–4.81

Combined:
Between-centers

Between-counties

0.331
(p<0.00001)
0.142
(p<0.00001)

0.32–3.09

0.48–2.09

0.235
(p<0.00001)
0.470
(p<0.00001)

0.39–2.58

0.26–3.88

Part of the differences in outcome between centers were actually differences between 

countries. When taking into account that centers are from a particular country, the 

range of between-center differences decreased to 0.39-2.58 (τ2
outcome, centre | country =0.235, 

p<0.00001). The range of between-country differences was 0.26 to 3.88  

(τ2
outcome, centre | country =0.470, p<0.00001). 

Between-centre differences in outcome

Log odds

C
en

tr
es

−2 −1 0 1 2
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Treatment effect

In the reference strategy, the univariate fixed effect logistic regression odds ratio (OR) 

for treatment was 1.22 (p=0.0001, Table 11.3).  

Table 11.3  Estimated unadjusted treatment effects (odds ratio (OR) and p value) on 14 day mortality 
with different approaches taking into account between-center differences. 

Approach Model OR unadjusted P value  
tx effect

– Uniform treatment effect over centers
– �No adjustment for between-center  

differences 

Fixed effect logistic  
regression 

1.22 0.00010

– Uniform treatment effect over centers
– �Adjustment for between-center  

differences

Random effect logistic 
regression with random 
intercept 

1.24 0.00003

– Varying treatment effect over centers
– �Adjustment for between-center  

differences

Random effect logistic  
regression with random 
slope

1.22
(95% range:  
1.17–1.26)

0.00029

Our first approach of adjusting for the between-center heterogeneity resulted in an OR 

for the treatment effect of 1.24 (p=0.00003). With our second approach we estimated 

a varying treatment effect between the centers. The mean OR was 1.22 (p= 0.00029). 

The treatment effect heterogeneity was small, but statistically significant (τ2
treatment effect 

=0.02, p<0.00001). The corresponding 95% range of the estimated treatment effects 

across centers was 1.17–1.26 (Figure 11.2)

Figure 11.2  Between-center differences in treatment effect, in a random effect model. The overall treat-
ment effect is log odds=0.20 (OR=1.22). Lines indicate 95% posterior interval.  

Between-centre differences in treatment effect
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Discussion

Although we found large between-center differences in outcome in the CRASH trial, 

taking these into account did not substantially change the estimated treatment effect. 

Neither did we see major differences in treatment effect by center. This study provides 

no support for the hypothesis that between-center differences in outcome affect the 

chances of demonstrating a treatment effect in RCTs, in contrast to current beliefs in 

this clinical area.7, 9

Considering differences between centers in outcome and in estimated treatment 

effect could be of importance from two perspectives. First, between-center hetero-

geneity in the treatment effect between may indicate limited generalizability, which 

is of importance for example when registering a drug in a particular country. In our 

study there was no meaningful heterogeneity in overall treatment effect. Although the 

between-center differences in the treatment effect were statistically significant, the 95% 

range was small (1.17-1.26).  Clearly, determining generalizability is not solely a statisti-

cal issue but requires a clinical judgement to the extent to which the trial results might 

apply to another population.  

Some trials have estimated the heterogeneity of the treatment effect between 

centers or countries or regions, but did not use random effect modelling. The PLATO 

study (The Study of Platelet Inhibition and Patient Outcomes) compared two platelet 

inhibitors (Ticagrelor versus Clopidogrel) for prevention of cardiovascular events in 

patients with acute coronary syndrome. The overall treatment effect was a hazard ratio 

(HR) of 0.84 in favour of Ticagrelor. The treatment effect was also tested in four dif-

ferent geographic regions separately; Asia-Australia (N=1714), Central-South America 

(N=1237), Europe-Middle East-Africa (N=13859), and North America (N=1814). In Eu-

rope the estimated HR was 0.80 (95% CI: 0.72-0.90). The HRs in Asia-Australia, Central-

South America were 0.80 and 0.86, both non statistically significant. The estimated 

HR in North America was however 1.25 (95% CI: 0.93-1.67). The authors state that ‘the 

difference in results between patients enrolled in North America and those enrolled 

elsewhere raises the questions of whether geographic differences between populations 

of patients or practice patterns influenced the effects of the randomized treatments, 

although no apparent explanations have been found.’ 

This interpretation shows the importance to distinct statistical from clinical reason-

ing. Although the statistical analysis showed significant differences between geograph-

ic regions in the PLATO trial, which could be an indication of limited generalizability, 

the authors have no biological or mechanistic explanation for the heterogeneity of the 

treatment effect and no heterogeneity was expected on beforehand. It thus might have 

been a better choice to use a random effect model to estimate the between-region dif-

ferences in treatment effect. 

Second, it is thought that heterogeneity between centers might reduce statistical 
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power to detect the treatment effect.9 Providing that a trial is large enough, random-

ization will ensure that the intervention and control group are similar with regard to 

known and unknown confounders.10 As expected, our study showed that taking into 

account between-center differences did not affect statistical significance. 

Several explanations can be given for our findings. First, differences in outcome 

between centers in RCTs may be caused by patient characteristics, which we adjusted 

for in this analysis. We may not expect that patient characteristics result in differences 

in treatment effect between centers if the treatment is assumed to work for all patients 

included in the trial. Secondly there may be differences in care. If these only affect 

the baseline event rate (e.g. fewer ICU capacity) the treatment effect is not likely to be 

influenced. In contrast there could be differences in care interacting with the treatment, 

e.g. if time to hospital arrival is structurally longer in some places, an acute treatment 

may be less effective. If such an interaction is expected, it would usually be captured 

in inclusion criteria, such as inclusion within a certain time after injury. In our study we 

found large differences in outcome between the centers but limited variability in the 

treatment effect. In other words, there was no substantial interaction between cen-

ter and treatment, although such an interaction might have been expected since the 

CRASH trial comprised an acute treatment and was conducted in low- to high- income 

countries. This is also an important finding from the perspective of standardisation of 

care in trials, which some consider very important.9 Our study suggests that if non-

standardized care only influences the absolute risk and does not interact with the treat-

ment, there is no reason to put much effort in standardizing care. 

We consider our results to be applicable to drug interventions, which work on  

physiological mechanisms. Trials investigating a more complex intervention such as 

surgery or a complex treatment strategy may be more sensitive to differences in  

quality of care. We recognize that further studies are required to confirm or refute 

these findings for other types of interventions and for other diseases. Moreover it is 

crucial to think in advance on the mechanism of the treatment, and whether heteroge-

neity or homogeneity of the treatment effect by center is expected.   

In this study we have assessed heterogeneity of the treatment effects on a relative 

scale, but we can also use an absolute scale (risk difference). We found that there is 

no heterogeneity on the relative scale, despite heterogeneity in the absolute risks per 

center. This combination implies that there is heterogeneity in treatment effects on an 

absolute scale, which is important to realize when considering treatment for individu-

als.13 

The demonstration of hetero- or homogeneity in treatment effects by country or 

center in the single study is conceptually the same as demonstration hetero- or ho-

mogeneity is a meta-analysis. The CRASH trial could be seen as a prospective meta-

analysis of 40 trials in 40 different countries. A simple way showing the heterogeneity 

in treatment effects would be to present the results of a forest plot meta-analysis and 
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test for heterogeneity. This was done for the CRASH trial (data not shown), also not 

indicating heterogeneity.   

Part of the between-center differences were actually between-county differences. 

This could be an indication of center-differences being caused by structural differences 

between countries such as availability of resources and organisation of trauma care. 

Our study has some limitations. First, we did not consider differences in data qual-

ity between the centers, which might affect the treatment effect.7 Second, the CRASH 

might be considered an exception in the sense that the treatment was harmful.  

However, it is unlikely that our results would depend on the direction of the treatment 

effect. 

Summarizing, our study shows that there were large between center differences in 

the CRASH trial, which did not affect the estimated treatment effect. Between-center 

differences do not affect the chances of demonstrating a treatment effect, which sup-

ports the conduct of large, multi-center trials. 
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Appendix 1

Random effect logistic regression with random intercept for center

Logit (p(Yij=1)) = β0 + (u0j + e0ij)	 (1)

with Yij the outcome for patient j in center i, β0 the intercept, u0j the random intercept 

for the center, and e0ij the residuals. The random intercepts are assumed to be normally 

distributed with τ2
0j = var(u0j).

Random effect logistic regression with random intercepts for center and country

Logit (p(Yij=1)) = β0 + (u0j + u0k + e0ijk)	 (2)

with u0k the random intercept for the country, and e0ijk the residuals. The random inter-

cepts are assumed to be normally distributed with τ2
0j = var(u0j) and τ2

0kj = var(u0k).

Random effect logistic regression with random intercept for center, including patient 

characteristics

Logit (p(Yij=1)) = β0 + β1xij + (u0j + e0ij)	 (3)

with patient characteristics xij

Range of the center effects

95% center effect range = exp(1.96*τ2
0j) ; exp(1.96* – τ2

0j)	 (4)

Fixed effect logistic regression 

Logit (p(Yij=1)) = β0 + β1xij + eij	 (5)

with xij the treatment and β1 the treatment effect.

Random effect logistic regression with random intercept for center, including treatment 

Logit (p(Yij=1)) = β0 + β1xij + (u0j + e0ij)	 (6)

with xij the treatment and β1 the treatment effect, and random intercept u0j

Random effect logistic regression with random slope of the treatment effect per center

Logit (p(Yij=1)) = β0 + β1xij + (u1j + e1ij)	 (7)

with u1j as the random slope. The random slopes are assumed to be normally  

distributed with τ2
1j = var(u1j) 

Range of the estimated treatment effect across centers

95% treatment effect range = exp(β1 + 1.96*τ2
1j) ; exp(β1 + 1.96* – τ2

1j)	 (8)
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Abstract
Background and purpose

Patient outcome is often used as an indicator of quality of hospital care. 

The aim of this study is to investigate whether there is a straightforward 

relationship between quality of care and outcome and whether outcome 

measures could be used to assess quality of care after stroke. 

Methods

In 10 centers in the Netherlands, 579 patients with acute stroke were 

prospectively and consecutively enrolled. Poor outcome was defined as a 

score on the modified Rankin scale ≥3 at 1 year. Quality of the care was 

assessed by relating diagnostic, therapeutic and preventive procedures 

to indication. Multiple logistic regression models were used to compare 

observed proportions of patients with poor outcome with expected 

proportions, after adjustment for patient characteristics and quality of care 

parameters.

Results

271 (47%) patients were dead or disabled at 1 year. Poor outcome varied 

across the centers  from 29% to 78%. Large differences between centers were 

also observed in clinical characteristics, prognostic factors and quality of 

care. For example, between hospital quartiles based on outcome, age ≥70 

varied from 50% to 65%, presence of vascular risk factors from 88% to 96%, 

intravenous fluids when indicated from 35% to 81%, and antihypertensive 

therapy when indicated from 60% to 85%. The largest part of variation in 

patient outcome between centers was explained by differences in patient 

characteristics 

(Akaike’s Information Criterion (AIC) = 134.0). Quality of care parameters 

explained a small part of the variation in patient outcome (AIC = 5.5). 

Conclusions

Patient outcome after stroke varies largely between centers and is for a 

substantial part explained by differences in patient characteristics at time 

of hospital admission. Only a small part of the hospital variation in patient 

outcome is related to differences in quality of care. Unadjusted proportions 

of poor outcome after stroke are not valid as indicators of quality of care.
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Introduction

Assessment of quality of care is becoming more and more important in medical prac-

tice. Donabedian has argued that quality in health care can be viewed as a function of 

three components: structure, process and outcome.1 The first scientific forum of the 

American Heart Association and the American College of Cardiology on assessment of 

health care quality in cardiovascular disease and stroke has elaborated this framework 

for stroke care.2 They proposed series of possible performance measures in the three 

different domains, based on the existing guidelines for stroke. 

Despite this suggestion, quality of care in stroke is still often evaluated by use of 

outcome measures, usually (standardized) mortality rates on hospital level.3 

Outcome assessment is generally easier than assessment of process measures, and 

it is often assumed that outcome measures reflect the relative importance of the differ-

ent aspects of the care process, which makes them most relevant for patients. Those in 

favour of process indicators often express doubt about whether outcome really reflects 

quality of care since outcome largely depends on patient characteristics. Furthermore, 

flaws in care and well-performed care may cancel each other, and may not be reflected 

in overall outcome. This problem of outweighing good and bad performance becomes 

even larger in analyses on hospital level, as these also averages quality scores of indi-

vidual patients.3, 4   

Several studies have investigated the validity and feasibility of outcome data as indica-

tors of quality of stroke care, with diverging results and conclusions, mostly due to 

limited information on the quality of care process.5-8 For this study, data were derived 

from the Netherlands Stroke Survey, in which detailed data on both patient character-

istics and process of care are available. Therefore this survey offers a unique opportu-

nity to investigate whether there is a straightforward relationship between quality of 

care and outcome and whether outcome measures could be used to assess quality of 

care after stroke. 

Methods

Study Population

The Netherlands Stroke survey was conducted in 10 centers in The Netherlands: 2 in 

the North, 4 in the Middle, and 4 in the Southern regions. The participating sites com-

prised 1 small (<400 beds), 4 intermediate (400 to 800 beds) and 5 large centers (>800 

beds). Two centers were University hospitals. All centers had a neurology department, 

a neurologist with expertise in stroke, and a multidisciplinary stroke team. All but one 

hospital had a stroke unit, 8 were participating in a regional stroke service, and 9 were 

equipped for thrombolytic therapy. These institutions deliver care to approximately 

10% of all acute stroke patients in The Netherlands, and their size and stroke expertise 
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can be considered representative of hospital-based stroke care in the Netherlands.9 

All patients who were admitted to the neurology department with suspected acute 

stroke between October 2002 and May 2003 were screened. Patients were enrolled 

consecutively and prospectively if the initial diagnosis of first or recurrent acute brain 

ischemia was confirmed by the neurologist’s assessment and if symptom onset was 

less then 6 months ago. All patients were admitted to the neurology department and 

were followed throughout their hospital stay. All patients or their proxies provided 

informed consent and the Medical Ethics Committees and Review Boards of the partici-

pating hospitals approved the study. 

Data Collection

Trained research assistants collected data from the patients’ hospital charts, within 5 

days after discharge. At 1 year, survival status was obtained through the Civil Regis-

tries. In all survivors a telephonic interview was conducted based on a structured ques-

tionnaire, which was sent in advance. Follow up was complete in 96% of the patients. 

More details on the study population and methods of data collection can be found in 

an earlier publication on this survey.9*

 

Clinical characteristics and prognostic factors

Stroke subtype (brain infarction, hemorrhagic brain infarction, transient ischemic at-

tack or amaurosis fugax) was defined by the treating neurologist based on clinical fea-

tures and brain imaging (computed tomography (CT) or magnetic resonance imaging 

(MRI)) data. Previous stroke was defined present if ischemia of brain or eye or cerebral 

haemorrhage was noted in the medical history. Level of consciousness was assessed 

with the Glasgow Coma Scale10, and disability in activities of daily living with the Bar-

thel Index.11 Atrial fibrillation and ischemic heart disease were marked if diagnosed by 

physical examination or if detected on ECG or if noted in the patient’s medical history. 

Also peripheral vascular disease, diabetes mellitus, and hypertension were based on 

patient’s medical history, or scored if diagnosed during hospitalization. Hyperlipidemia 

was defined present if total serum cholesterol exceeded 5 mmol/L, or if low-density li-

poprotein exceeded 3.2 mmol/L or if hyperlipidemia was noted in the patient’s medical 

history. The presence of carotid stenosis ≥70% was assessed by carotid imaging. 

Quality of care 

To measure quality, we distinguished between acute stroke treatment, sub-acute stroke 

care, and prevention. Quality of care parameters in acute stroke treatment involved the 

use of CT or MRI, electrocardiogram (ECG), appropriate laboratory tests, the adminis-

tration of acetylsalicylic acid within 48 hours and thrombolytic therapy within 3 hours. 

* This previous paper presented by mistake 11 centers (16 hospitals) instead of 10 centers (16 hospitals).
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Sub-acute care included the administration of intravenous fluids, swallowing test, 

percutaneous endoscopic gastrostomy tube (PEG tube) insertion when indicated, early 

mobilisation, and early physiotherapy. Prevention included assessment of risk factors, 

measurement of serum cholesterol, carotid endarterectomy within 6 months, antiplate-

let therapy, oral anticoagulants, antihypertensive therapy and cholesterol lowering 

therapy. These quality of care parameters and their indications  were selected from na-

tional guidelines and most of them are also mentioned in the report from the American 

Heart Association/American College of Cardiology on assessment of healthcare quality 

in cardiovascular disease and stroke.2  Each parameter was considered present in a 

certain patient when the diagnostic or therapeutic procedure was carried out and was 

indicated, or was not carried out and was not indicated. Otherwise, the indicator was 

considered absent. The quality of care parameters have been described more exten-

sively in an earlier publication of this survey.9

Outcome measures

Poor outcome was defined as dead or disabled at 1 year, i.e. a score on the modified 

Rankin scale ≥3.12 Additional outcome measures were dead or disabled at discharge, 

30-day mortality and 1-year mortality.   

Statistical analyses

To assess differences between centers in clinical characteristics, prognostic factors, 

quality of care parameters and outcome measures, centers were grouped in quartiles 

based on the percentage of patients dead or disabled after 1 year. These quartiles were 

fixed for all further analyses. P-values were derived from chi square tests for differ-

ences between the 10 centers. 

We performed stepwise logistic regression analysis with backward elimination of 

predictors to construct prediction models for poor outcome. The selection criterion for 

inclusion was P < 0.157.13 In step 1 only clinical characteristics (age, sex and duration 

of symptoms) were entered into the model. In step 2, patient-related prognostic factors 

were added: stroke severity, consciousness level at hospital arrival, Barthel Index at 

hospital arrival, previous stroke, atrial fibrillation, history of ischemic heart disease, 

peripheral vascular disease, diabetes mellitus, hypertension, hyperlipidemia, admis-

sion glucose ≥ 11 mmol/L, and independent pre-stroke living arrangement. In step 3, 

the mentioned quality of care parameters were added to the model. The main interest 

was not on the relationship of individual predictors with outcome but on the predic-

tive strength of the different steps (clinical characteristics, other patient related factors 

and quality of care). The contribution of each step was expressed by Akaike’s Informa-

tion Criterion (AIC), which corresponds to the χ2 of the step (or the difference in –2 log 

likelihood between the model with and without that step) minus 2 times the degrees of 

freedom.13 
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The discriminative ability of the model was expressed by the area under the receiver 

operating characteristic (ROC) curve. This area represents the probability that, within 

pairs of one patient with and one without the outcome, the patient with the higher 

prediction actually had the outcome.14  

We calculated w scores to estimate the absolute differences in the number of pa-

tients with poor outcome between centers, before and after adjustment for clinical 

patient characteristics, prognostic factors, and quality of care parameters.5 The w score 

of a hospital expresses the difference between the observed and predicted number 

with poor outcome per 100 patients and is calculated by the formula [(o-p)/n]*100, 

where o is the observed number of patients with poor outcome, p the predicted num-

ber of patients with poor outcome and n is the number of patients. For the unadjusted 

w scores, we derived p at each hospital by multiplying the number of patients (n) by 

the proportion patients with poor outcome in the total population. For the adjusted w 

scores, we derived p at each hospital by summing the individual predicted probabilities 

generated by the logistic regression models.6 95% CI’s for the w scores were calculated 

using the method described by Parry et al.15 The total variation between centers was 

also expressed as the percentage of patients with a different outcome then expected. 

We performed all analyses using SPSS 13.0 for Windows and Microsoft Excel.  

Sensitivity analyses

We repeated the logistic regression analysis for three alternative outcome measures: 

dead or disabled at discharge, 30-day mortality and 1 year mortality. Furthermore we 

repeated the logistic regression analysis by modeling the three steps (clinical character-

istics, prognostic factors and quality of care parameters) in different orders.   

Results

Outcome

 The study population consisted of 579 patients who were admitted to the hospital 

because of stroke. Of all patients, 59 (10%) died during hospital stay. Of the remaining 

520 patients, 206 (39%) were disabled at discharge. At 1 year, 143 patients (25%) were 

dead and 128 of the remaining 436 patients (29%) were disabled (modified Rankin scale 

3, 4 or 5). So, the total number of patients with poor outcome at 1 year after stroke 

was 271 (47%). This percentage increased from 37% in hospital quartile 1 to 75% in 

hospital quartile 4. (Figure 12.1) For all outcome measures (mortality, disability and 

composite), both short term (discharge and 30 days) and 1-year, we observed the same 

trend across the hospital quartiles. 
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Figure 12.1  Outcome after ischemic stroke by hospital and quartile division (N=579)

Clinical characteristics and prognostic factors

Of all patients (n=579), 90% was admitted within 48 hours after symptom onset, and 

95% within 1 week. Mean age was 70.4 (±13.2), 311 patients (54%) were male, the 

majority of patients (510, 88%) was diagnosed with brain infarction and 536 patients 

(93%) had one or more vascular risk factors. Regarding the symptoms of stroke, 13% of 

the patients had a lowered consciousness level and 89% were ADL (Activities of Daily 

Living) dependent at hospital admission (Table 12.1). 

A number of differences in relative frequency of patient characteristics between the 

hospital quartiles was observed. Some were moderate, for example the presence of 

vascular risk factors, and some were large, for example age ≥70, lowered conscious-

ness level and ADL dependency at hospital admission (Table 12.1). 
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Table 12.1 V ariation in clinical characteristics and prognostic factors by hospital.

Hospital quartiles based on patient outcome (% Rankin Scale ≥ 3 at 1 year)*

Total  
(N%)

1 (Lowest) 
(N%)

2 
(N%)

3 
(N%)

4 (Highest)
(N%)

P Value 
(χ2)†

Number of patients 579 179 127 101 172

Number of centers 10 3 2 2 3

Age ≥ 70 334 (58) 90 (50) 68 (54) 65 (64) 111 (65) <0.001

Male gender 311 (54) 110 (62) 65 (51) 53 (53) 83 (48) 0.336

Vascular risk factors 536 (93) 131 (93) 121 (95) 97 (96) 152 (88) 0.049

Atrial fibrillation 99 (17) 21 (15) 18 (14) 21 (21) 33 (19) 0.619

Ischemic heart 
disease

116 (20) 31 (17) 24 (19) 20 (20) 41 (24) 0.430

Peripheral vascular 
disease

57 (10) 15 (8) 13 (10) 11 (11) 18 (11) 0.460

Diabetes Mellitus 119 (21) 36 (20) 26 (21) 17 (17) 40 (23) 0.198

Hypertension 346 (60) 132 (74) 65 (51) 62 (61) 87 (51) <0.001

Hyperlipidemia 335 (58) 99 (53) 88 (69) 65 (64) 83 (48) <0.001

Previous stroke / TIA 144 (25) 43 (24) 31 (24) 28 (28) 42 (24) 0.873

Independent prestroke  
living arrangement	

513 (89) 163 (92) 112 (88) 89 (88) 149 (87) 0.493

Hospital arrival <48 
hours after symptom 
onset

518 (90) 158 (88) 112 (88) 89 (88) 159 (92) 0.936

Stroke subtype

Brain infarction 510 (88) 160 (90) 100 (79) 92 (91) 158 (92) <0.001

TIA 60 (10) 17 (10) 25 (20) 7 (7) 11 (6)

Amaurosis fugax 3 (1) 1 (1) 1 (1) 1 (1) 0 (0)

Hemorrhagic 
infarction

6 (1) 1 (1) 1 (1) 1 (1) 3 (2)

Severe stroke‡ 92 (16) 27 (15) 15 (12) 21 (21) 29 (17) 0.309

Lowered consciousness 
level°

75 (13) 9 (5) 17 (13) 16 (16) 33 (19) 0.010

ADL independent°
(Barthel Index=20)

119 (21) 54 (30) 37 (29) 15 (15) 13 (8) <0.001

Incontinent° 169 (30) 48 (28) 28 (23) 29 (29) 64 (38) 0.123

Glucose ≥ 11 mmol/L 57 (10) 19 (11) 12 (10) 4 (4) 22 (14) 0.207

* Centers were divided into quartiles based on the percentage of patients that were dead or disabled 
(Rankin Scale ≥ 3) at 1 year;
† χ2 for differences between 10 centers;
‡ Paresis of arm, leg and face, homonymous hemianopia and aphasia or other cortical function disorder; 
° At hospital arrival. 
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Quality of care 

The majority of the patients received the recommended diagnostic investigations and 

medical treatment in the acute phase, with the exception of thrombolytic therapy. 

Performance of a 12-lead ECG, provision of acetylsalicylic acid within 48 hours and 

thrombolytic therapy differed between the centers (P= 0.045, P<0.001 and P<0.001 re-

spectively), performance of CT/MRI and laboratory tests did not (P=0.494 and P=0.624 

respectively) (Table 12.2).

Table 12.2 V ariation in acute management of ischemic stroke by hospital

Hospital quartiles based on patient outcome (% Rankin Scale ≥ 3 at 1 year)*

Total
(N%)

1 (Lowest)
(N%)

2
(N%)

3
(N%)

4 (Highest)
(N%)

P Value
(χ2)†

Number of patients 579 179 127 101 172

Number of centers 10 3 2 2 3

Diagnostic Investigations

CT/MRI	 567 (98) 178 (99) 124 (98) 99 (98) 166 (97) 0.494

12-lead ECG 555 (97) 166 (97) 120 (95) 100 (99) 169 (98) 0.045

Laboratory tests	 564 (97) 175 (98) 124 (98) 100 (99) 165 (96) 0.624

Medical treatment

Acetylsalicylic acid 
<48 hours

479 (83) 156 (87) 99 (78) 83 (82) 141 (82) <0.001

In patients with-
out OAC that ar-
rived <48 hours‡  

393/431 (91) 123/130 (95) 77/86 (90) 72/79 (91) 121/136 (89) <0.001

Thrombolytic therapy 40 (7) 9 (5) 9 (7) 4 (4) 18 (11) <0.001

Sub-acute care

Intravenous fluids°§	 198 (48) 48 (35) 56 (81) 30 (38) 64 (50) <0.001

Swallowing test°	 203 (40) 68 (43) 48 (48) 31 (34) 55 (35) <0.001

PEG tube insertion°# 7 (21) 0 (0) 3 (25) 3 (38) 1 (25) 0.516

Mobilisation on day 1° 121 (24) 42 (26) 38 (38) 30 (33) 11 (7) <0.001

Physiotherapy on 
day 1°

106 (21) 51 (32) 28 (28) 13 (14) 14 (9) <0.001

*  Centers were divided into quartiles based on the percentage of patients that were dead or disabled 
(Rankin Scale ≥ 3) at 1 year; 
†  χ2 for differences between 10 centers;
‡  Oral anticoagulation; 
° I n patients with brain infarction; 
§ I n patients without parenteral feeding; 
# I n patients with swallow problems for more then 2 weeks.  
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Sub-acute care was less often performed in adherence to national guidelines. Of all 510 

patients with a brain infarction 203 (40%) underwent a swallowing test, 121 (24%) were 

mobilised on the first day and 106 (21%) had physiotherapy during the first day. Of the 

413 patients with brain infarction and no parenteral feeding, 198 (48%) received intra-

venous fluids. For all sub-acute process measures differences between centers were 

observed (P values <0.001), with the exception of PEG tube insertion. 

Performance of secondary prevention varied also considerably between centers. 

The proportion of patients that underwent carotid imaging when indicated varied be-

tween 33% and 92% across the centers quartiles (P<0.001). Only 9 of 52 patients (17%) 

with carotid stenosis ≥70% underwent carotid endarterectomy within 6 months. The 

number of patients without atrial fibrillation that received antiplatelet therapy was high 

(93%), but there was still a significant difference between the centers (P<0.001). The 

proportion of patients that received oral anticoagulants and antihypertensive therapy 

when indicated also differed across centers (P=0.048 and P=0.029), while laboratory 

tests and cholesterol lowering therapy in patients with indication did not (P=0.304 and 

P=0.085 respectively) (Table 12.3).

Relation between clinical characteristics, prognostic factors, quality of care and outcome 

Predictive factors in the model were age, sex, duration of symptoms, severe stroke, 

lowered consciousness level at hospital arrival, Barthel Index at hospital arrival, previ-

ous stroke, atrial fibrillation, ischemic heart disease, diabetes mellitus, hypertension, 

hyperlipidemia,  ECG performed, mobilisation on day 1, antiplatelet therapy and oral 

anticoagulation. 

Age, sex and duration of symptoms explained a large part of the variation 

(AIC=54.7, P<0.001) and another substantial part was explained by prognostic factors 

(AIC=79.3, P<0.001). Quality of care explained a relatively small part of the variation 

(AIC=5.5, P=0.009). The area under the curve of the model with only patient character-

istics was 0.80 and that of the complete model 0.82, indicating a reasonable predictive 

performance (Table 12.4).  
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Table 12.3 V ariation in secondary prevention after ischemic stroke by hospital

Hospital quartiles based on patient outcome (% Rankin Scale ≥ 3 at 1 year)*

Total
N(%)

1 (Lowest)
(N%)

2
(N%)

3
(N%)

4 (Highest)
(N%)

P Value
(χ2)†

Number of patients 579 179 127 101 172

Number of centers 10 3 2 2 3

Diagnostic Investigations

Carotid Imaging	 363 (63) 143 (80) 94 (74) 54 (54) 72 (42) <0.001

In patients with  
indication‡

89/115 (77) 45/49 (92) 25/33 (76) 14/18 (78) 5/15 (33) <0.001

Laboratory tests 560 (97) 174 (97) 123 (97) 82 (81) 163 (95) 0.304

Total cholesterol 430 (78) 135 (86) 114 (93) 5 (82) 99 (58) <0.001

LDL cholesterol 323 (61) 101 (70) 104 (91) 22 (22) 96 (57) <0.001

Glucose 545 (97) 167 (98) 119 (98) 99 (99) 160 (94) <0.001

Treatment

Carotid endarterectomy 
within 6 months

12 (2) 2 (1) 6 (5) 1 (1) 3 (2) 0.124

In patients with carotid 
stenosis ≥ 70%

9/52 (17) 2/20 (10) 3/13 (23) 1/10 (10) 3/9 (33) 0.012

Antiplatelet therapy 512 (88) 161 (90) 112 (88) 91 (90) 148 (86) 0.004

In patients without AF˚ ┃448/480 (93) 146/152 (96) 101/109 (93) 76/80 (95) 125/139 (90) <0.001

Oral anticoagulants 94 (16) 31 (18) 25 (20) 14 (14) 24 (14) 0.349

In patients with AF˚ 59/99 (60) 19/27 (70) 13/18 (72) 10/21 (48) 17 (52) 0.048

Antihypertensive 
therapy

330 (57) 114 (65) 51 (42) 68 (67) 97 (57) <0.001

In hypertensive patients 258/340 (76) 101/130 (78 37/62 (60) 47/62 (76) 73/86 (85) 0.029

Cholesterol lowering 
therapy

220 (39) 79 (44) 61 (50) 27 (27) 53 (31) <0.001

In patients with  
indication§

134/187 (72) 46/59 (78) 43/53 (81) 16/33 (55) 27/42 (64) 0.085

*  Centers were divided into quartiles based on the percentage of patients that were dead or disabled 
(Rankin Scale ≥ 3) at 1 year; 
†  χ2 for differences between 10 centers;
‡  Barthel Index >18 and no brainstem or cerebellar  symptoms or isolated hemianopia;
˚  Atrial fibrillation;
§  Hyperlipidemic patients <75 years (females) or <70 years (males) with a history of ischemic heart 
disease, carotid stenosis, peripheral vascular disease, or high cardiovascular risk profile.
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Table 12.4  Multivariate analysis: Predictors of outcome (dead or disabled at 1 year) after ischemic 
stroke

AIC (χ2-2*df)*

Step Model P value AUC†

Step 1: Age, sex and duration of 
symptoms

54.68 54.68 <0.001 69.0

Step 2: Stroke severity and risk 
factors

79.33	 134.01 <0.001 80.4

Step 3: Quality of care 5.46 139.47 0.009 81.5

*  Akaike’s Information Criterion; 
†  Area under the ROC curve.

W scores

The differences in outcome between centers were also expressed in w scores. Before 

any adjustment the sum of the absolute w scores across the ten centers was 142, 

indicating that over all centers 14.2% of the patients had a different outcome (better 

or worse) then expected. After adjustment for age, sex and duration of symptoms this 

percentage was reduced to 11.2%. After further adjustment for prognostic factors the 

total variation declined further to 9.5%. After adjustment for quality of care, 8.8% of 

the patients still had a different outcome then expected, which could not be explained 

by the variables taken into account in this study (Figure 12.2). 

Sensitivity analyses

Results were not affected by changing the dependent variable of the logistic regression 

into dead or disabled at discharge, 30-day mortality or 1-year mortality. The back-

ward elimination of predictors resulted in slightly different predictors remaining in the 

model, but the different steps had approximately the same predictive power as in the 

initial model. Changing the order of the steps did not affect the results; the predictive 

strength of patient characteristics remained much larger than that of quality of care 

parameters. 
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Figure 12.2  Differences in observed number of patients with poor outcome and predicted number  
(W score) per hospital
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Discussion 

We explored the validity of patient outcome as an indicator of differences in quality of 

care between centers. We compared observed with expected outcome in 10 represen-

tative centers and we investigated whether differences in patient characteristics and 

quality of care could explain differences in outcome between the centers. We found 

that clinical characteristics and prognostic factors explain a relatively large part of the 

variation in outcome while quality of care parameters explain a much smaller part. 

Also previous studies observed considerable variation between centers in outcome 

after stroke and were unable to explain this variation with differences in quality of 

care.5-8, 16 The strength of our study is the detailed data on quality of care parameters 

that have been considered important in evidence based guidelines. Despite this we 

were also not able to demonstrate a clear and consistent relationship between quality 

of care and outcome on top of patient characteristics. Our sample size was small how-

ever and we may have had insufficient power to detect small effects. 

Data were collected in 2002 and 2003. Improvements in the process of care might 

have lead to a stronger relationship with outcome. However, since the time of the 

study, no major changes in he care process have taken place. 

An explanation for our results that evidence and consensus based measurements 

of the process of care appear to have such little impact on outcome, could be that 

treatment effects are generally modest. This is reflected in the fact that large RCTs are 

needed to identify a benefit of treatment. In quality of care studies, however, we are 

looking for differential use of established treatments and the resulting differences in 

outcome will therefore be even smaller. Also, not all items of care or treatments apply 

to all patients and so cannot be expected to have a large impact on aggregated out-

comes made up of all patients.

It should be noted, that we defined poor patient outcome as Rankin scale ≥3 and 

one could question whether it is justified to put patients with Rankin scale 3 and 

patients who died into the same category. On the other hand, sensitivity analysis with 

1-year mortality as outcome did not change the results. Furthermore, pre-stroke modi-

fied Rankin scale could have explained part of the variation in outcome but we could 

not adjust for it since it was not available in our dataset. We did however adjust for pre-

vious stroke and  independent pre-stroke living arrangement, as a proxy for pre-stroke 

functional status.   

Variation in stroke patients’ outcome between centers was determined more by clini-

cal characteristics and prognostic factors, than by hospital variation in quality of care. 

It would therefore make more sense to monitor the process of care directly in order to 

assess quality of care. There are several examples were this is being done, for example 

the RIKS stroke register from Sweden,17 the National Sentinel Audit from England, Wales 

and Northern Ireland,18  the Scottish Stroke Care Audit.19 In the Netherlands however, 
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unadjusted 7-day day mortality rates were published on the internet until 2006.20  

A clear advantage of measuring process parameters instead of outcome is that it di-

rectly identifies opportunities for improvement in all hospitals, not only in those with 

poor outcome. This approach has successfully been applied in England and Wales in 

the form of regular national audits of stroke care using the Intercollegiate Stroke Audit 

Package.21 

Those in favour of outcome assessment, advocate that quality assessment on pro-

cess level requests a too detailed data collection, and conclusions on quality depend 

largely on the selection of process measures.3 Our study shows, on the other hand, 

that using outcome assessment for quality measurement, is only valid after adjustment 

for patient characteristics. This approach is increasingly adopted, e.g. in the United 

Kingdom, where total hospital mortality rates are adjusted for some key patient charac-

teristics22 and in the United States where adjusted mortality rates after acute myocar-

dial infarction and heart failure are used to compare centers.23, 24 However, even if com-

plete adjustment for patient characteristics is possible, this may not be sufficient for a 

for a meaningful comparison of outcomes between centers. Centers with patients with 

a good prognosis, small deficits and less co morbidity may still be more likely to de-

liver good quality of care compared to centers with more complex patients. The former 

ones have fewer patients with an indication for certain interventions, and hence they 

are less likely to withhold these interventions. For example, a patient without swallow-

ing problems does not need a PEG tube, so it cannot be withheld unjustly. There are 

simply less opportunities to deliver substandard care. This implies that adjustment for 

patient characteristics may also be necessary when process measures are used. 

Recently, attention is given to the development of prognostic models for outcome 

after stroke, which may be useful for quality assessment through proper outcome 

adjustment.25-30 These models should be validated, however, in databases from the con-

cerning country and they should be updated regularly. An important question is also 

whether a model is feasible in the sense that it can be fed by routinely collected data. 

Besides the discussion on which patient characteristics should be included in models 

for adjustment, also the feasibility and validity of different methodological and statisti-

cal approaches should be investigated and discussed.  

Part of the variation in outcome remained unexplained. It might be so that we failed 

to measure important aspects of care e.g. how well complications are identified and 

treated. However, it seems implausible that such aspects of care are likely to have a 

huge impact on outcome. Another explanation is that there might be differences in 

patient characteristics that we cannot quantify. It remains unexplained how quite large 

residual variation in outcomes remains after adjusting for all known factors. More 

research is needed to clarify this phenomenon.  

We conclude that patient outcome largely varies between centers and is for a 

substantial part explained by differences in patient characteristics at time of hospital 
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admission. Only a small part of the hospital variety in patient outcome is related to dif-

ferences in quality of the care process. Unadjusted proportions of poor outcome after 

stroke are not valid as indicators of quality of care.
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Abstract
Aim and background 

The benefit of statin treatment in patients with a previous ischemic stroke 

or TIA has been demonstrated in randomized clinical trials (RCT). However, 

the effectiveness in everyday clinical practice may be decreased because of 

a different patient population and less controlled setting. We aim to describe 

statin use in an unselected cohort of patients, identify factors related to 

statin use and test whether the effect of statins on recurrent vascular events 

and mortality observed in RCTs , is also observed in everyday clinical 

practise. 

Methods

In 10 centers in the Netherlands, patients admitted to the hospital or visiting 

the outpatient clinic with a recent Transient Ischemic Attack (TIA) or ischemic 

stroke were prospectively and consecutively enrolled between October 2002 

and May 2003. Statin use was determined at discharge and during follow up.  

We used logistic regression models to estimate the effect of statins on the 

occurrence of vascular events (stroke or myocardial infarction) and mortality 

within 3 years. We adjusted for confounders with a propensity score, that 

relates patient characteristics to the probability of using statins.  

Results

Of the 751 patients in the study, 252 (34%) experienced a vascular event 

within 3 years. Age, elevated cholesterol levels and other cardiovascular risk 

factors were associated with statin use at discharge. After 3 years, 109 of 

280 (39%) of the users at discharge had stopped using statins. Propensity 

score adjusted analyses a beneficial effect of statins on the occurrence of the 

primary outcome (OR 0.8, 95%CI: 0.6–1.2). 

Conclusion

In our study we found poor treatment adherence to statins. Nevertheless, 

after adjustment for the differences between statin users and non-statin 

users, the observed beneficial effect of statins on the occurrence of vascular 

events within 3 years, although not statistically significant, is compatible 

with the effect observed in clinical trials.



c h ap  t e r  13   Effectiveness of statin treatment after a recent TIA or stroke in everyday clinical practice 213

Introduction

The benefit of the use of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors 

(statins) in patients with coronary heart disease and in those with an increased risk 

for cardiovascular disease is already firmly established. Statin use reduces mortality 

and the risk of strokes and cardiovascular events.1-5 Until recently, limited data were 

available on the impact of statin therapy in patients with symptomatic cerebrovas-

cular disease but no known coronary heart disease.6,7 However, the Heart Protection 

Study (HPS) and the Stroke Prevention by Aggressive Reduction in Cholesterol Levels 

(SPARCL) trial addressed the clinical question whether patients with stroke or Transient 

Ischemic Attack (TIA) without coronary heart disease would benefit from treatment 

with a statin.8,9 These trials revealed that statin treatment is beneficial in patients with 

a recent stroke or TIA or with pre-exsiting cerebrovascular disease without known 

coronary disease. 

An important question however, is whether the results of the trials can also be ob-

served in everyday clinical practice.10 This is not self-evident, for a number of reasons. 

First the patient population in clinical trials is different from the population in daily 

practice. Second a trial takes place in a controlled setting with strict control of therapy 

adherence while in every day clinical practice, reported adherence rates for statins vary 

between 25% and 40% after 2 years and 26% after 5 years.11,12

It is difficult to test the effectiveness of a therapy in daily practice because patients 

are not randomized. Patient with and without the treatment may be different in many 

respects and this can cause confounding. Therefore, in an observational study, the 

effect of a therapy can only be tested after adjustment for confounding, e.g. by a pro-

pensity score.13  

The aim of our study is to describe statin use, to identify factors related to statin 

use and to assess the effect of statins on outcome in an unselected cohort of patients, 

in order to find out whether the effect observed in randomized clinical trials holds true 

in circumstances that reflect daily practice.
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Methods 

Study Population

The Netherlands Stroke survey was conducted in 10 hospitals in The Netherlands: 2 

in the North, 4 in the Middle, and 4 in the Southern regions. The participating sites 

comprised 1 small (<400 beds), 4 intermediate (400 to 800 beds) and 5 large centers 

(>800 beds). Two centers were University hospitals and all centers had a neurology 

department. All but one hospital had a stroke unit. These institutions deliver care to 

approximately 10% of all acute stroke patients in The Netherlands, and their size and 

stroke expertise can be considered representative of hospital-based stroke care in the 

Netherlands.14

All patients who were admitted to the neurology department or visited the neuro-

logical outpatient clinic with suspected ischemia of the brain between October 2002 

and May 2003 were screened. Screening per hospital could be discontinued when at 

least 30 admitted patients and 30 outpatients were enrolled. Patients with ischemic 

stroke or TIA and symptom onset within the last 6 months were enrolled consecutively 

and prospectively if the initial diagnosis of first or recurrent ischemia of the brain or 

eye was confirmed by the neurologist’s assessment. All patients or their proxies pro-

vided informed consent. The Medical Ethics Committees of the participating hospitals 

approved the study. We excluded patients with missing outcome data and patients who 

died during hospital admission. 

Data Collection

Trained research assistants collected data from the patients’ hospital charts, within 5 

days after discharge. At 1 year, survival status was obtained through the Civil Regis-

tries. In all survivors or their relatives a telephonic interview was conducted based on 

a structured questionnaire, which was sent in advance. At 3 years the procedure was 

repeated. More details on the study population and methods of data collection can be 

found in earlier publications on this survey.15,16 

Measures

The diagnosis of ischemic stroke or TIA by the treating neurologist was based on clini-

cal features and brain imaging data (computed tomography (CT) or magnetic reso-

nance investigation (MRI). Previous stroke was defined present if cerebral ischemia of 

or cerebral haemorrhage was noted in the medical history. Disability in activities of 

daily living (ADL) was measured with the Barthel Index.17 Atrial fibrillation and ischemic 

heart disease were marked if diagnosed by physical examination, if detected on 12-lead 

electrocardiogram (ECG) or if noted in the patient’s medical history. Also peripheral 

vascular disease, diabetes mellitus, and chronic hypertension were based on patient’s 

medical history or scored if diagnosed during hospitalization. Hyperlipidemia was 
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defined present if total serum cholesterol exceeded 5 mmol/L, or if low-density lipo-

protein exceeded 3.2 mmol/L or if hyperlipidemia was noted in the patient’s medical 

history. 

Statin use was defined as statin use at discharge, as noted in the hospital chart. It 

was also assessed pre-stroke from the medical history, and at 1 and 3 years through 

the follow-up interviews.  

The primary outcome in this study was the occurrence of death, non-fatal stroke or 

myocardial infarction (MI). Secondary outcome was mortality alone. Both outcomes 

were assessed after 1 year and after 3 years follow up. Mortality was obtained through 

the Civil Registries, non-fatal stroke and MI were assessed through the follow-up inter-

views. 

Statistical analysis

Continuous variables were compared by Student’s t-tests and categorical variables 

by chi-square tests. Logistic regression analysis was performed to study the effect of 

statin use on outcome. 

We used a propensity score to adjust for potential confounders.9 The propensity 

score of a patient is the probability of that patient being treated with statins at dis-

charge given baseline characteristics (confounders). To calculate the propensity score 

we used a logistic regression model with statin use yes/no as outcome and potential 

confounders as explaining variables. Variables included in the model were: age, sex, 

hospital, admission, previous stroke, stroke subtype, stroke severity, lowered con-

sciousness level at admission, current smoking, body mass index>25, peripheral vas-

cular disease, ischemic heart disease, diabetes mellitus, hypertension, hyperlipidemia, 

cholesterol measured during hospital admission, LDL cholesterol>3.2 during hospital 

admission, total cholesterol>5 during hospital admission, pregnant or breastfeeding, 

severe renal dysfunction, atrial fibrillation, prosthetic heart valves and ADL depen-

dency at discharge. We subsequently added the propensity score to the initial logistic 

regression model. This adjusts for confounding by conditioning on the individual prob-

ability of being treated with statins. 

We performed all analyses using SPSS 15.0 for Windows. A two-sided p-value of p<0.05 

was considered statistically significant.   
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Results

Study population

In total 972 patients who were admitted to hospital or visited outpatient clinic because 

of stroke were included in the study. Of these patients 62 (6%) were excluded because 

they died in the hospital, so the study population consisted of 910 patients (Figure 

13.1). Regarding mortality, 1 year follow up was complete in 880 patients, 3 year fol-

low up was complete in 780 patients. With regard to vascular events, 1 year follow-up 

was complete in 880 patients, 3 year follow-up was complete in 751 patients. We ob-

served no significant differences between patients with and without missing outcome 

data with regard to baseline characteristics and statin use at discharge. 

Figure 13.1  Status of the study population.

Outcome 

At 1 year, 102 patients (12%) had died and 41 (5%) had a new stroke or MI. The total 

number of patients with the composite primary outcome event within 1 year amounted 

to 143 (18%). After 3 years 196 patients (25%) had died and 56 (7%) had suffered from 

new stroke or MI. So the total number of patients with the primary outcome event 

within 3 years was 252 (34%). 

Patient characteristics 

Patients with statins at discharge were on average younger (mean age 65 vs 71, 

p<0.01), more often male (62% vs. 53%, p<0.01), had more ischemic heart disease (24% 

vs. 16%, p<0.01), hypertension (66% vs. 54%, p<0.01) and hyperlipedimia (91% vs. 48%, 

p<0.01), had less severe strokes (4 vs. 7% with lowered consciousness level, p=0.02), 

were more often smoking (32% vs. 23%, p<0.01) and overweight (18% vs. 8%, p<0.01) 

and had less often atrial fibrillation (7% vs. 15%, p<0.01) (Table 13.1).

Alive 
total  

910  

1 year 

3 years 

Alive with 
event  

Dead  Event 
unknown  

Discharge 0 0 0 

778  41  102  130  

584  56  196  159  

Status   
unknown

 

0 

30  

130  
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Tabel 13.1  Patient characteristics in statin users and non users.

N (%)
Total 
910 (100%)

Statins  
354 (39%)

No statins  
556 (61%)

P value

Age (mean) 68 65 71 <0.01

Male gender 514 (57%) 219 (62%) 295 (53%) <0.01

Hospital admission 515 (57%) 208  (59%) 307 (55%) 0.29

Brain infarction 569 (63%) 225 (64%) 344 (62%) 0.61

Previous stroke 197 (22%) 78 (22%) 119 (21%) 0.82

Ischemic heart disease 172 (19%) 86 (24%) 86 (16%) <0.01

Peripheral vascular disease 93 (10%) 43 (12%) 50 (9%) 0.13

Diabetes 158 (18%) 71 (20%) 87 (16%) 0.09

Hypertension 534 (59%) 233 (66%) 301 (54%) <0.01

Hyperlipidemia 587 (65%) 322 (91%) 265 (48%) <0.01

Current smoking 238 (26%) 112 (32%) 126 (23%) <0.01

Lowered consciousness level 52 (6%) 12 (4%) 40 (7%) 0.02

Severe stroke 80 (9%) 27 (8%) 53 (10%) 0.32

Body Mass Index>25 103 (11%) 62 (18%) 41 (8%) <0.01

Atrial fibrillation 105 (12%) 23 (7%) 82 (15%) <0.01

1 year mortality (n=880) 102 (11%) 26 (8%) 76 (14%) <0.01

1 year mortality, non-fatal stroke or 
myocardial infarction (n=880)

143 (16%) 43 (13%) 100 (19%) 0.02

3 year mortality (n=780) 196 (25%) 56 (20%) 140 (28%) 0.01

3 year mortality, non-fatal stroke or 
myocardial infarction (n=751)

252 (34%) 83 (27%) 169 (38%) <0.01

Figure 13.2  Statin use in the study population.

Statin use

Many patients stopped using statins during follow up. Figure 13.2 shows 280 patients 

who were using statins at discharge 500 patients who were not. Note that we show 

only the 780 patients with complete follow up in this figure. During the first year, 57 

patients stopped using statins and in the second and third year, again 52 patients 

Discharge 280 

3 years 127 

Statin users 

57 stopped 

26 died 

1 year 197 52 stopped 

18 died 

500 

247 

Non users
 

76 died 

 424 101 started 

76 died 
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stopped. So after 3 years 109 of 280 (39%) of the users at discharge had stopped using 

statins. There were also 101 patients who started using statins during follow up. 

Propensity score

Table 13.2 shows that older patients had a lower probability of using statins at dis-

charge (OR: 0.7 per 10 years, 95%CI: 0.6 to 0.8). Other important factors were hyper-

lipidemia (OR= 6.6, 95%CI = 4.7–9.4), admission to the hospital (OR=1.7, 95%CI = 1.1–

2.5), ischemic heart disease (OR=1.7, 95%CI = 1.1–2.6), hypertension (OR=1.5, 95%CI 

= 1.1–2.1), body mass index>25 (OR=1.9, 95%CI = 1.1–3.1) and LDL cholesterol>3.2 in 

the hospital (OR=1.9, 95%CI = 1.3–2.9). These factors gave an increased probability of 

using statins at discharge. 

Tabel 13.2  Propensity score, odds ration (OR) for having statins at discharge (N=910).

OR 95% CI

Age per 10 year increase 0.7 0.6 to 0.8

Sex 1.3 0.9 to 1.8

Hospital admission 1.7 1.1 to 2.5

Acute ischemic stroke 1.1 0.7 to 1.7

Previous stroke 1.1 0.7 to 1.6

Peripheral vascular disease 1.6 1.0 to 2.8

Ischemic heart disease 1.7 1.1 to 2.6

Diabetes 1.5 1.0 to 2.3

Hypertension 1.5 1.1 to 2.1

Current smoking 1.1 0.8 to 1.6

ADL dependent at discharge 0.6 0.3 to 1.4

Lowered consciousness level 0.5 0.2 to 1.0

Severe stroke 0.8 0.4 to 1.4

Body Mass Index>25 1.9 1.1 to 3.1

Cholesterol measured during hospital stay 1.0 0.6 to 1.6

Total cholesterol above 5 mmol/l in hospital 1.1 0.7 to 1.7

LDL cholesterol above 3.2 mmol/l in hospital 1.9 1.3 to 2.9

Hyperlipidemia 6.6 4.7 to 9.4

Pregnant or breastfeeding 0.2 0.0 to 1.1

Atrial fibrillation 0.8 0.4 to 1.6

Prosthetic heart valves 0.7 0.2 to 2.1

Severe renal dysfunction 0.6 0.2 to 1.7
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Relationship between statins and outcome

In the unadjusted analysis, statin use had a beneficial effect on all outcomes stud-

ied, with significant odds ratios around 0.6. Propensity score adjusted analyses also 

showed a beneficial effect of statins on the primary outcome, however less pro-

nounced, and not significant (OR=0.8,  95%CI = 0.6–1.2, Table 13.3). 

Tabel 13.3  Unadjusted and adjusted effect of statins on outcome.

OR 95% CI

1 year mortality (n=880)
Unadjusted
Adjusted

0.5
0.9

0.3 to 0.8
0.5 to 1.5

1 year mortality, non-fatal stroke or  
myocardial infarction (n=880)
Unadjusted
Adjusted

0.6
0.9

0.4 to 0.9
0.6 to 1.4

3 year mortality (n=780)
Unadjusted
Adjusted

0.6
1.1

0.5 to 0.9
0.7 to 1.7

3 year mortality, non-fatal stroke or  
myocardial infarction (n=751)
Unadjusted
Adjusted

0.6
0.8

0.4 to 0.8
0.6 to 1.2

 



pa r t  1V   Applications2 2 0 c h ap  t e r  13   Effectiveness of statin treatment after a recent TIA or stroke in everyday clinical practice

Discussion

In this study we observed a beneficial effect of statins on the occurrence of vascular 

events within 3 years compatible with the effect found in clinical trials, despite poor 

treatment adherence. 

The number of patients that started statins after stroke was low (39%), but  the na-

tional guidelines in the Netherlands recommended statins at the time of data collection 

only for patients who had a high risk of cardiovascular events and a serum cholesterol 

exceeding 5.0 mmol/L, or a previous MI. Statin use was indeed associated with age, 

hospital admission, elevated cholesterol levels and other cardiovascular risk factors. 

The association with elevated cholesterol and cardiovascular risk factors can be ex-

pected, since the guidelines specifically target high risk patients. With regard to age, 

Simpson et al also found that older patients were less likely to receive statins after a 

stroke.18 They also reported that females were less likely to receive statins but after 

adjustment for other patient characteristics this was not the observed in our study. Our 

results again suggest that older patients need to be targeted for secondary prevention 

therapy with statins, since there is no reason to assume that they will benefit less from 

therapy.19

Patients admitted to the hospital got more often statins than patients visiting the 

outpatient clinic and reasons for withholding were unclear in the majority of outpa-

tients.16 It is however important to get more insight in the reasons for differing man-

agement in age groups and between settings. Also since Ovbiagele et al. showed that 

unless statin therapy is started at or before hospital discharge, secondary prevention is 

poor.20

The low adherence rate we found is in line with previous studies.11,12 Also the SPARCL 

trial and HPS study reported varying compliance to treatment, although to a lesser 

extent than in our study.8,9 It is of paramount importance to study ways to improve 

adherence so that a higher effectiveness of statins in everyday clinical practice can 

be obtained. Unfortunately we did not have any information on why patients stopped 

using statins. It is however important to get insight in the reasons for discontinuing 

treatment (costs, side effects, other treatment, normalization of cholesterol levels) to 

distinguish ‘good’ reasons from ‘bad’ reasons. Besides, as different medications may 

have different adherence rates, the real dividend in clinical practice can vary and this 

may even influence funding. 

The propensity score adjusted odds ratio (OR) of 0.8 for the effect of statins on 

the occurrence of vascular events and mortality within 3 years is compatible with the 

estimated hazard ratio (HR) of 0.75 to 0.8 in RCTs.8,9 Although with the same under-

lying treatment effect, estimated ORs will be different from HRs and the RCTs had a 

mean follow-up of around 5 years. Our results are also compatible with a systematic 

review by Law et al.21 They pooled a large number of trials and observational studies 
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and calculated both the effect of LDL cholesterol reduction on stroke and the effect of 

statins on LDL cholesterol. Combining these two, they found an odds ratio of 0.85 for 

the effect of statin use on the occurrence of stroke. 

Logistic regression was performed where Cox regression might have been prefer-

able, but in some cases we did not have the exact time of recurrent events. We did per-

form Cox regression with mortality as outcome and found hazard ratios very similar to 

the odds ratios from the logistic regression with 3 year mortality as outcome.   

In our study we found only a very small effect of statin use at 1 year. This finding 

is in line with findings from RCTs, which also found no effect at 1 year.8,9,22 Our results 

again provide evidence that statins are becoming more effective after long term use; 

this stresses even more the need to increase adherence rates. 

We analyzed our data according the intention-to-treat approach that is also followed 

in the majority of randomised clinical trials and is also advised in the CONSORT guide-

lines.23 To take into account treatment change during follow up (‘starters and stop-

pers’) it is also suggested to use ‘per protocol’ analysis, which only includes patients 

who complete study therapy in the final analysis.24 Another possibility is to calculate a 

‘compliance factor’ based on the percentage starters and stoppers and apply this factor 

to the odds ratio. This approach was demonstrated in the HPS, were an adherence rate 

of 85% was observed.  

Besides lower treatment adherence, effectiveness can be influenced by different 

patient populations in RCTs and clinical practice. Although SPARCL and HPS included 

relatively broad patient selections, we observed some differences between the trials 

with our patients, who were for example older, more often smoking, and had more 

often hypertension. But we did not study this phenomenon in detail.

We adjusted for confounding with the propensity score. We included an extensive 

number of patient characteristics in the propensity score, but there might be more 

unknown or unmeasured confounders that we were unable to adjust for.  

Other possible limitations of the study are that the vascular events were patient-

reported, we did not consider the dose or the type of statins and we had missing 

outcomes.

In conclusion, this study showed the effectiveness of statins in patients with a recent 

stroke or TIA in everyday clinical practice. To further increase effectiveness, specific 

subgroups (older patients, outpatients) should be targeted and ways to improve adher-

ence should be studied. 
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General discussion  

The aim of this thesis was to study methods to measure quality of care with outcome 

measures, and to apply these methods to different acute neurological diseases. Three 

specific questions were addressed: 

1. � What is the role of statistical uncertainty in measuring quality of care with outcome 

measures? 

1a. How large is the effect of statistical uncertainty on between-hospital comparisons? 

1b. How should statistical uncertainty be incorporated in outcome measures? 

2. � What is the role of case-mix variation in measuring quality of care with outcome 

measures? 

2a. How large is the effect of case-mix on between-hospital comparisons? 

2b. How can case-mix variation be captured for between-hospital comparisons? 

3.  How do outcome measures relate to processes of care? 

First we found that statistical uncertainty is often large when measuring quality of care 

with outcome measures. Different methods were proposed to account for statistical un-

certainty and to quantify statistical uncertainty. Traditional integer rankings disregard 

statistical uncertainty and should be avoided. Rankings should incorporate statistical 

uncertainty, e.g. using the ‘expected rank’. 

Second, case-mix often varies between hospitals and has a large effect on between-

hospital comparisons. Case-mix adjustment is crucial in measuring quality of care with 

outcome measures. We developed several prognostic models that could be used for 

case-mix adjustment.   

Thirdly, we found that process measures and outcome in acute neurological diseas-

es were only moderately related.

We conclude that outcome measures for quality of care should be case-mix adjusted 

random effect estimates, which are related to processes of care. 

In this final chapter the results and interpretation are discussed and summarized 

per research question. And we discuss the implications of the results for policy and 

research.   

Statistical uncertainty  

When comparing hospitals based on outcome, some variation always exists just by 

chance, because of statistical uncertainty. The first research question addressed the 

role of statistical uncertainty.
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Random effects models

Variation between hospitals in binary outcomes is traditionally modelled in a fixed ef-

fects logistic regression model. In such a model the estimates are based solely on the 

observed outcome and statistical uncertainty is ignored. In chapter 2 we presented an 

alternative approach which does account for statistical uncertainty; random effects re-

gression models.1-3 In a random effects model the estimates for each hospital are based 

on its observed outcome, the uncertainty, and the average outcome. 

The amount of statistical uncertainty is mainly determined by the number of out-

comes per hospital, which is determined by the number of patients and the frequency 

of the outcome. When the number of outcomes per hospital is small, the estimates are 

very uncertain. Fixed effect estimates disregard this uncertainty, which leads to over-

interpretation of the differences in outcome. Particularly smaller hospitals can have an 

extreme outcome caused rather by chance than by quality of care. On the other hand, 

it is unlikely that a small hospital will be identified as a good or bad performer when 

using random effects models. When the numbers of patient per hospital are large, the 

estimates from the random and the fixed effects models will be similar. 

The overall between-hospital differences are also more conservatively estimated 

with random effects models. The estimator of between-hospital differences is the 

variance of the random effects, and is labelled tau2. Tau2 can be interpreted as the 

between-hospital differences beyond chance. Because it is difficult to interpret, we pro-

posed in chapter 10 to express tau2 in a 95% range of odds ratios for the odds of poor 

outcome in each hospital, compared to the average odds of poor outcome. The 95% OR 

range is an attractive way to express the magnitude of between-hospital differences, 

beyond random variation (Figure 14.1). It can also be translated in an X fold difference 

in outcome between the hospitals on the lower end of the distribution and the hospi-

tals on the higher end, were we propose to use the 2.5th and 97.5th percentiles of the 

distribution. 

Others propose to express tau2 in an odds ratio for the odds of poor outcome if 

treated at a hospital 1 standard deviation above the average relative to that if treated 

at a hospital 1 standard deviation below the average.4 This corresponds to the 34th 

versus 66th percentiles. Another possibility is to present the overall range, the inter-

quartile range, or top and bottom deciles of the random effects, or the proportions of 

poor outcome estimated by the random effects model.5

A limitation of our work is that we have not explored the uncertainty of tau2. A stan-

dard deviation of tau2 is however estimated in the model. A confidence interval could 

also be created with bootstrapping. 
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Figure 14.1  Schematic representation of variance of the random effects (tau2) and the 95% range of 
odds ratios

In chapter 4 it was shown that logistic random effects model can nowadays be fit with 

all commonly available statistical available software packages. Even with many small 

hospitals in the dataset, the results were very stable over the different packages. Only 

the additional features and the usability differed between the packages. We therefore 

do not consider technical or computational difficulties a limitation for using random 

effect models.  

Rankability 

The concept of rankability quantifies the amount of uncertainty in relation to the 

magnitude of the differences in outcome (chapter 2). We defined it as the percentage 

of the observed differences between hospitals not due to statistical uncertainty. When 

the differences are large but the uncertainty too, rankability will be low. Only the 

combination of large differences and limited uncertainty gives a high rankability, which 

indicates that the hospitals can be distinguished from each other in terms of outcome. 

When rankability is low, it is meaningless to compare hospitals based on outcome; the 

differences will only represent random variation. Attempts to compare hospitals based 

on outcome should present the rankability. In chapter 3 and 12 it was shown that rank-

ability is actually low in many practical examples, typically around 50%. The rankabil-

ity can also be seen as the ratio between signal and (statistical) noise. E.g. a rankability 

of 50% then indicates 50% signal and 50% noise. 

0 

Tau2

Random effects   
Centres with highest 
poor outcome  

Centres with lowest 
poor outcome 

95% range 
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Expected Rank

A particular form of comparing hospital based on outcome is ranking them. Rankings 

disregard the magnitude of the relative differences between the hospitals. One hospital 

has to be first and one has to be last, even if the differences are small. Similarly, rank-

ings disregard variation that exists by chance, also if the between-hospital differences 

are estimated with a random effects model. 

In chapter 2 we followed van Houwelingen and others with a method to incorporate 

both the magnitude and the uncertainty in rankings: the expected rank (ER). ERs have 

theoretically the same range as the integer rakings (1 to the number of hospitals), but 

in practice the ERs will be shrunken towards the median rank. The amount of shrink-

age is dependent on the number of patients and outcome events (which determines the 

uncertainty) and magnitude of the differences, and directly relates to the rankability. A 

high rankability is associated with little shrinkage; a low rankability is associated with 

large shrinkage. 

We can scale the expected ranks ER between 0 and 100% with percentiles based on 

expected rank (PCER) for easy interpretation and to make the ranks independent of the 

number of clinics. 

The PCER can be interpreted as the probability (as a percentage) that a hospital is 

worse than a randomly selected other hospital. 

It remains a value judgment whether ranking is appropriate. We would suggest that 

any ranking is meaningless when rankability is low (<50%), that the ER should be used 

when rankability is moderate (>50% and <75%) and that simple integer ranks are only 

appropriate when rankability is high (>75%). ERs and integer ranks will then be very 

similar.

Between-hospital differences in acute neurological diseases

We estimated the between-hospital variation in outcome in TBI in chapter 10 and 11. 

We found that the variation between hospitals in observed proportion unfavourable 

outcome was very extreme, i.e. between 0 and 100%. Because of the small number 

of patients per hospital, a large part of these differences was attributable to random 

variation. However, substantial differences in outcome between the hospitals remained 

beyond random variation.  

In chapter 13 we showed that considerable between-hospital differences existed 

in the observed proportion poor outcome among stroke patients (between 29 and 

78%). Again a large part of these differences was attributable to random variation. The 

random effects model showed that the between-hospital differences beyond random 

variation were rather small. 
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Rankability of the hospitals was low to moderate in stroke (55%), which was due to a 

combination of limited difference in outcome and low numbers. This was also reflected 

in the expected ranks: 6 of the 10 centers were shrunken very close to the median 

rank of 5.5. While integer ranks would have suggested that one of these hospitals was 

ranked second, and one was ranked seventh.  

Summary on statistical uncertainty 

Statistical uncertainty is often large when comparing hospitals with outcome measures. 

Ignoring statistical uncertainty leads to overestimation of the overall differences in 

outcome and to too extreme estimates of individual hospital performance, especially 

for smaller hospitals. In both stroke and TBI apparent large differences in outcome are 

partly attributable to statistical uncertainty. Random effects models take into account 

statistical uncertainty and are therefore the preferred approach for analysis of be-

tween-hospital differences in outcome. Technically random effect models are currently 

perfectly feasible. Rankability indicates the amount of uncertainty in hospital compari-

sons and should be reported. 

The ER or PCER can be used to incorporate both the magnitude and the uncertainty 

in rankings, which is ignored by integer rankings. When rankability is lower then 50%, 

no ranking should be attempt at all. When rankability is between 50% and 75% ERs 

might be reported. When rankability is over 75%, ERs will be similar to interger ranks. 

Case-mix adjustment 

Between-hospital differences in outcome may reflect differences in case-mix, i.e. the 

type or mix of patients treated by a hospital.6 Since patient characteristics, such as de-

mographics and disease severity may be strong predictors of outcome, even small dif-

ferences in case-mix may be important to consider when comparing outcomes between 

hospitals. The third research question addressed the role of case-mix variation.  

Prognostic models

Taking into account case-mix differences in hospital comparisons (‘case-mix adjust-

ment’) can be done with a prognostic model. Prognostic models combine a number of 

patient characteristics to predict an outcome of interest, most often using regression 

models.7 

Although it has been argued that case-mix adjustment models have to be context-

specific,6 a model from the literature might be used. For several diseases commonly 

accepted case-mix adjustment models are available. A well known example is the TRISS 

model to evaluate trauma care.8 When a published model is used it is important to as-

sess whether the model can be expected to be applicable to the setting in which it will 

be used. Such an assessment is ideally a combination of a qualitative comparison with 



pa r t  V   Discussion23 2

the development setting and a quantitative model validation. If results are unsatis-

factory, the model can be adapted to the current setting. Possible methods include, 

ordered from less to more adaptation to the new setting, re-calibration, model revision 

or model extension.7 The most extreme variant of adapting is developing a new model 

on the available data. 

Development of a valid prognostic model generally includes seven logically distinct 

steps: data inspection, coding of the predictors, model specification, model estimation, 

assessment of the performance, internal and/or external validation and presentation.7 

When developing a prognostic model for case mix adjustment the last step is less 

relevant. 

Once a prognostic model is chosen or developed, the actual case-mix adjustment 

can be done in several ways. The first approach is to include it in the (random effects) 

regression model that estimates the between-hospital differences in outcome, either 

all predictors separate, or the linear predictor of the complete model. The (random ef-

fects) estimates are the estimates of the outcome in the different hospitals. 

Another approach is to use the prognostic model to estimate a probability on poor 

outcome for each patient and to sum these up per hospital. This will give the expected 

number of unfavourable outcomes in a hospital. The expected number can be com-

pared with the observed number, and can be presented as a ratio or as an absolute 

difference. The Hospital Standardized Mortality Rate (HSMR) is an example of a ratio, 

the W score is an example of an absolute difference.9  

The two approaches will give the same results when the same model is used, 

although they differ in practical aspects. The main difference is that the first approach 

requires all individual hospital-effects to be estimated at once, and thus all the indi-

vidual data to be available together. With the second approach this does not have to be 

the case. Given the availability of a commonly accepted prognostic model, an individu-

al hospital can calculate its expected number of poor outcome and compare that with 

the observed number. 

Pitfalls in case-mix adjustment 

The approaches above require patient level data on predictors. If only aggregated data 

are available, one might consider using these. But aggregated data may introduce eco-

logical bias.10 Ecological bias can arise from the assumption that relationships observed 

for groups hold for individuals. This is not necessarily the case since, since not all 

patients within a group have exactly the mean value. 

To assess the influence of ecological bias we calculated the standardized mortality 

ratio’s in the stroke data in two ways. First, the individual patient characteristics age, 

sex and stroke severity were included in the adjustment model. Second, each patient 

was given the mean hospital value of the linear predictor of the same model. 
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Figure 14.2 shows that the results of the two approaches differ considerably, with an 

R2 of only 0.34. Thus, individual level patient data are needed for case-mix adjustment 

rather than aggregated data. 

Another possible problem in case-mix adjustment the ‘constant risk fallacy’, which 

arises when the risk associated with the variable on which adjustment is made varies 

across the units being compared.11, 12

It is important to realize that although with a valid prognostic model it is possible 

to adjust for patient characteristics to some extent, even the best models can never 

explain 100% variation in outcome. That means that a great deal of variance in out-

come remains unexplained. The error of attributing differences in case-mix adjusted 

outcomes to quality of care is called ‘the case-mix adjustment fallacy’.13  

Figure 14.2  Standardized rates of poor outcome after stroke for 10 hospitals calculated with individual 
patient data (x-axis) and aggregated data (y-axis)

Prognostic models in acute neurological diseases

As described in chapter 5, in TBI two good quality prognostic models are available. 

Both are developed in large numbers of patients. External validation showed good 

performance. These models were used for case-mix adjustment of the between-center 

differences in outcome in chapter 10 and 11. In chapter 6 we found that TBI models 

could be slightly improved by including information on extracranial injury, dependent 

on the patient population. 

In chapter 8 we developed a model that predicts poor outcome on 4 weeks,  

6 months and 12 months in Guillain-Barré syndrome. The model showed very good 

performance and could be used for case-mix adjustment when comparing hospitals 

treating GBS patients.  
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For aneurysmal subarachnoid haemorrhage we developed a model to predict mortality 

that could be used for case-mix adjustment (chapter 9). The model showed moderate 

performance after internal validation, which indicates that case mix adjustment pos-

sibilities are limited when comparing hospitals on outcome after aneurysmal subarach-

noid haemorrhage. 

Importance of case-mix adjustment 

In chapter 12 and 13 we found that in stroke there were large differences between the 

hospitals in case-mix, and that not adjusting for these would have led to a very dif-

ferent result of the hospital comparisons. One hospital (hospital 1) even appeared to 

perform less then average, due to its unfavourable case-mix (Figure 14.3).  

Figure 14.3  Unadjusted and adjusted random effect estimates for unfavourable outcome after stroke 
of 10 hospitals 

In TBI there were also large differences between the hospitals in patient characteristics. 

Adjusting for these led however in both TBI studies (chapter 10 and 11) to an unex-

pected increase in the estimated between-hospital differences in outcome. This raises 

the idea that there are hospitals with poor prognosis patients who have actually better 

outcomes than some hospitals with good prognosis patients. 
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Other applications of prognostic models 

Besides case-mix adjustment, there are numerous other applications of prognostic 

models. Another application that has relevance for quality of care is the use of prog-

nostic models to identify patients that are likely to benefit from a particular treatment, 

and to predict whether a patient may require a certain treatment. This application fits 

into the framework of personalized medicine and was shown in this thesis for GBS in 

chapter 7 and 8. 

An application of models with more indirect relevance for quality of care is the use 

of prognostic models for design and analysis of studies that aim to assess the effective-

ness of a certain treatment. In randomized clinical trials prognostic models can be used 

for covariate adjustment or prognostic targeting to increase statistical power. The use 

of the TBI model for this purpose was already shown.14 

The GBS model developed in chapter 8 will be used for covariate adjustment in an 

currently ongoing trial for the effectiveness of a Second IVIg Dose in Guillain-Barré 

syndrome patients with poor prognosis (SID-GBS trial).

In observational studies prognostic models can be used to adjust the treatment ef-

fect for differences in prognosis between the treatment groups, either through stan-

dard confounder adjustment or through a propensity score, as was shown in chapter 

14 for stroke. Furthermore prognostic models can be used for specification of study 

populations. Such comparisons were shown in chapter 5 for TBI and chapter 8 for GBS. 

Summary on case-mix adjustment  

The prognostic models described in this thesis show that patient characteristics are 

highly predictive of outcome. Case-mix may vary between hospitals, and influence 

between-hospital comparisons on outcome. Case-mix adjustment is therefore abso-

lutely essential when measuring quality of care with outcomes. Prognostic models can 

be used for case-mix adjustment. For TBI and GBS we reviewed and developed well 

performing prognostic models. For aSAH the performance of the models was poorer. 

Besides case-mix adjustment, prognostic models have numerous other applications 

relevant for quality of care.
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Relationship between process and outcome

Outcomes are one aspect of quality of care, processes of care such as certain treatment 

and interventions are another aspect. When both represent quality of care outcome and 

process measures are expected to be related. The third research question was whether 

outcome measures are related to processes of care. 

Process and outcome in acute neurological diseases

We found that in stroke, process measures such as thrombolytic therapy were only 

moderately related to outcome (chapter 12). Since we used generally excepted and 

evidence-based treatments and interventions, it is unlikely that we have selected the 

wrong process measures. 

Part of the explanation for evidence and consensus based measurements of the 

process of care having such little impact on outcome, could be that treatment effects 

are generally modest. Large randomized controlled trials (RCTs) are usually needed 

to identify a benefit of treatment. In clinical practice, treatment effects may be even 

smaller, as was shown for statin use in chapter 14. This might be due to lower adher-

ence rates, and different patient populations in RCTs than in clinical practice. Moreover, 

in quality of care studies we are looking for differential use of established treatments 

and the resulting differences in outcome will therefore be even smaller. 

A second explanation might be that process measures are measured on hospital 

level, e.g. percentage of patients receiving thrombolytic therapy. Not all items of care 

or treatment apply to all patients. The average of the hospital can not be expected to 

have a large impact on an individual patient’s outcome. This can be seen as ecological 

bias; the failure of group level associations to properly reflect individual-level associa-

tions.10  

In TBI we did not find strong relationships between process measures and outcome 

neither, which again may be explained by the effect of treatment being small of even 

absent, or by methodological problems. One particular example that shows the meth-

odological difficulties in relating process to outcome on a hospital level is the analysis 

of the effect of time to hospital admission in TBI. We hereto performed analyses in one 

study in the IMPACT database, the European Brain Injury Consortium study (EBIC)15 

We related time to hospital admission to unfavourable outcome, adjusted for patient 

characteristics. We found that a long time to admission in individual patients is related 

to poor outcome (OR 1.02 per hour, p=0.07), as expected. But a long mean time to hos-

pital admission of the particular hospital was related to good outcome (OR=0.94 per 

hour, p=0.04). This is probably explained by hospitals with longer times to admissions 

being more specialized in brain injury. 
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Other explanations for differences in outcome

It might not be very surprising that outcome and process measures are not strongly 

related. After taking into account statistical uncertainty and case-mix, the remaining 

unexplained differences in outcome do not solely represent processes of care (Figure 

14.4). 

Figure 14.4  Schematic partitioning of observed between-hospital differences in outcome 

First their may be registration bias. When hospitals measure parameters of interest 

different, either the outcome or predictors in the case-mix adjustment model, artificial 

differences are created. Such differences can strongly influence the estimated outcome 

for an individual centers. High quality, uniformly collected data are therefore a prereq-

uisite for every attempt to compare hospitals. 

Further differences in outcome could be caused by residual confounding. As men-

tioned before, no case-mix adjustment model is perfect, and there will always be 

unmeasured confounders. 

Altogether, observed differences in outcome may consist of a relatively small signal 

of quality of care differences and a large amount of noise from statistical uncertainty, 

measured and unmeasured confounders, and registration bias.   

These considerations also come back in guidelines with respect to statistical model-

ling for comparing health care providers based on outcome. These present 7 attributes 

to take into account: (1) clear and explicit definition of patient sample, (2) clinical co-

herence of model variables, (3) sufficiently high-quality and timely data, (4) designation 

of a reference time before which covariates are derived and after which outcomes are 

measured, (5) use of an appropriate outcome and a standardized period of outcome as-

sessment, (6) application of an analytical approach that takes into account the 
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multilevel organization of data, and (7) disclosure of the methods used to compare out-

comes, including disclosure of performance of risk-adjustment methodology in deriva-

tion and validation samples.16, 17

 

Process or outcome? 

A potential solution for the poor correlation between outcome and process is measur-

ing process of care directly.  This is the topic of a more general debate on whether 

outcome or process measures should be used to measure quality of care. Outcome 

assessment is generally easier than assessment of process measures, and requires less 

detailed data collection. Furthermore outcome measures reflect the relative impor-

tance of the different aspects of the care process, which makes them most relevant for 

patients. 

A disadvantage of outcome measures is that flaws in care and well-performed care 

may cancel each other out, and may not be reflected in overall outcome. It would there-

fore make more sense to monitor the process of care directly in order to assess quality 

of care. Another clear advantage of measuring process parameters instead of outcome 

is that it may directly identify opportunities for improvement in all hospitals, not only 

in those with poor outcome. Also process measures lack stigma. The message is ‘im-

prove X’, not ‘you are a poor performer’. For this reason they are less likely to prompt 

perverse solutions. A disadvantage of process measures is that conclusions on quality 

depend largely on the selection of processes monitored (Table 14.1).18, 19, 20, 21, 13

Table 14.1  (Dis)advantages of process and outcome measures for quality of care 

Process measures Outcome measures

+ directly identifies possible improvements + easy to collect

+ no stigma + relevant for patients 

– sensitive for choice of process measures – flaws could be cancelled out 

– sensitive for case-mix differences

Summary on relationship between process and outcome

It is difficult to clearly relate outcome to processes of care in acute neurological dis-

eases, even when these processes are evidence-based, as in stroke. This implies that 

even after reasonable case-mix adjustment, low proportions of poor outcome do not 

necessarily represent high quality processes of care. Neither do high proportions of 

poor outcome represent poor quality. Observed differences in outcome may be largely 

attributable to noise from statistical uncertainty, measured and unmeasured confound-

ers, and registration bias, and only for a small part to differences in process. An alter-

native approach might be to measure process directly, which also has disadvantages. 
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Implications for policy  

The final aim of measuring quality of care is improvement of outcomes, including 

mortality, morbidity, and general health status. This aim can be achieved through three 

potential pathways. 

1. �I n the change pathway, quality of care information helps providers to identify areas 

in which they underperform and improve their quality of care.22, 23 

2. �I n the selection pathway patients or their intermediaries use quality of care infor-

mation to identify better performing hospitals and reward these by ‘selecting’ the 

provider. 

3. �I n the reputation pathway, providers attempt to improve quality because they are 

concerned about their reputation.24

For the change pathway, process measures might be more feasible then outcome 

measures. First it does not require public availability of quality of care in information. 

This makes the advantage of outcome measures, patient relevance, less important. 

Also process measures directly identify opportunities for improvement in all hospitals, 

not only in those with poor outcome. Research has shown however that the change 

pathway is relatively weak.24 Moreover this thesis has shown that in acute neurologi-

cal diseases, process measures are difficult to relate to outcomes which are relevant to 

patients. 

The selection and reputation pathways require public availability of quality informa-

tion. Studies on public reporting generally find that patients do consider it important to 

have access to comparative information between hospitals25-27 but they do not actu-

ally compare the information of different hospitals before choosing one. So quality of 

care will also not be very effectively improved through the selection pathway.24 For 

the reputation pathway, patients do not have to use quality information in their choice 

for a hospital. They only need to form an opinion about the good and poor perform-

ing hospitals and discuss it with others. Nevertheless the reputation pathway requires 

quality information, so patients can form their opinion. The reputation pathway is 

considered the most promising.24 

One of the reasons patients do not actually use quality of care information to base 

choices on is that they have problems processing a large volume of information into a 

choice.24 Outcome measures are attractive for their simplicity. But we have shown in 

this thesis that outcome measures cannot easily be assumed to represent quality of 

care. 

In the reputation pathway quality of care information is only used roughly, and in 

combination with other input. It could be argued that outcome measures do not have 

to be perfect as long as they distinguish the best hospitals from the worst. 
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Quality of care measurement in the Netherlands 

In the Netherlands there are several ongoing projects aiming to measure quality of 

care and making the information publically available. The largest national projects are 

the performance indicators from the Health Care Inspectorate, the program ‘Zichtbare 

Zorg’ (‘Visible Care’) and the Hospital Standardized Mortality ratio (HSMR). The Health 

Care Inspectorate and  ‘Zichtbare Zorg’ collect large numbers of quality measures, on 

structure, process and outcome for specific diseases, and (plan to) make their data 

publically available on the internet. 

A combination of different indicators per diseases might give a reasonable impres-

sion of the quality of care for a particular hospital for a particular disease. However the 

large body of information makes interpretation difficult and process and outcome mea-

sures do not necessarily correlate, as was shown in this thesis. For some diseases the 

number of patients might be too small to draw any conclusions, as shown in chapter 3 

of this thesis for the current performance indicators of the Health Care Inspectorate.  

The HSMR is an outcome measure, reflecting the ratio between the observed mor-

tality in a hospital and the expected mortality based on patient characteristics. It is 

attractive for its simplicity, but it is questioned whether it represents quality of care. 

First, case-mix adjustment might not be sufficient while this thesis has shown that suf-

ficient case-mix adjustment is crucial. A second problem is the high aggregation level. 

A high level of aggregation is attractive because of the large numbers and hence lim-

ited statistical uncertainty, but it complicates interpretation. One department may have 

good outcomes, while another has poor outcomes. Such differences level out when 

only overall mortality is measured at the hospital level.

Preceding the public release of the HSMR in 2011, unadjusted mortality rates of all 

Dutch hospitals were published by the Dutch hospital associations NVZ and NFU in 

2010. As this thesis has shown such unadjusted outcome measures for sure do not 

represent quality of care. 

Lay press rankings

Another form of comparing hospitals is publishing rankings, which is popular in the lay 

press.28 In the Netherlands one magazine (Elsevier, Figure 14.5) and one daily news-

paper (Algemeen Dagblad, AD) present a yearly ‘Hospital top 100’. In other countries 

there are also plenty of examples of lay press rankings. 

Elsevier bases its ranking on expert opinion from doctors, nurses, quality manag-

ers, and board members, who are asked what they consider poor and good performing 

hospitals in their specialty. AD bases its ranking on quality indicators from the Health-

care Inspectorate combined with patient satisfaction measurements. Both claim to 

present quality of care information. We assessed the content validity (do they measure 

what they aim to?) and the construct validity (do the results represent what they aim to 

measure?) of these two lay press rankings in the years 2005-2008. 
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Content validity was assessed by testing consistency between the successive years of 

each ranking by predicting the rank of a hospital in 2008 based on its rank in the pre-

vious years in multivariable regression analyses. We found that only the ranks in 2007 

were a significant predictor of the ranks in 2008, for both Elsevier and AD. 

Figure 14.5  Cover of Elsevier 2007 

Construct validity was assessed by testing the consistency between the Elsevier and 

AD rankings by computing correlation coefficients. We found that there was only minor 

correlation between AD and Elsevier rankings (Spearman correlation coefficients <0.4, 

Figure 14.6).

So both content and construct validity were at best moderate, which makes it un-

likely that these lay press ranking represent the quality of the hospital. 
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Figure 14.6  Correlation between rakings AD en Elsevier 

Thus, currently the Dutch general public has the access to different process and out-

come measures from different sources, of which none represent quality of care. They 

are either not interpretable or methodologically invalid. Publishing such measures is 

useless since they have no potential to improve quality of care. While a large amount of 

money is spent to produce the figures, they only lead to unfair comparisons. Publishing 

outcome measures without sufficient case-mix adjustment might even lead to hospitals 

trying to avoid high risk patients. 

Summary on implications for policy 

Ideally, quality measures have the potential to improve quality of care though all three 

quality improvement pathways. This requires specific, comprehensive, detailed process 

measures for clinicians for the change pathway. And simple outcome measures to make 

publically available for the selection and reputation pathway. This thesis has shown 

that when such outcome measures are estimated with a random effects model, suf-

ficiently adjusted for case-mix, and have a moderate to high rankability, they can be 

considered to at least partly represent quality of care. Since none of the currently avail-

able quality of care measures in the Netherlands fulfils these requirements, they should 

not be made publically available. 
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Implications for research

Research is an ongoing process. This thesis has provided some answers, but many 

questions are still open, and new questions are generated. 

Statistical uncertainty 

We have demonstrated the importance of taking into account statistical uncertainty 

when comparing hospitals based on outcome. The only way to decrease statistical 

uncertainty is to increase statistical power. This can be done by either increasing the 

number of patients, or by using more efficient statistical techniques. Patient numbers 

can be increased by presenting figures at a higher level of aggregation. This is not the 

preferred approach since it reduces interpretability. Another approach is to increase 

time period to measure more patients. E.g. combing multiple years when outcomes 

are continuously measured for a certain set of hospitals. The disadvantage of this ap-

proach is that changes over time become invisible. Also statistical power might be in-

creased by combining multiple outcome measures in one model, by creating composite 

endpoints, or by using a multivariate model. With a composite endpoint, the outcomes 

are combined in advance, e.g. by taking any cardiovascular event as outcome instead 

of only strokes or myocardial infarctions. That composite endpoint is then analysed 

with a standard regression model. In a (random effects) multivariate model multiple 

outcomes can be specified, and then both the differences in the outcomes between the 

hospitals and the correlation between the outcomes can be estimated. 

Which of these alternative approaches is preferable is a topic for future research. 

Such research should include an overview of the practical advantages and disadvan-

tages of the approaches and an assessment of possible statistical methods. 

The calculation of the actual sample sizes required is challenging in quality of care 

research, since this an assumption needs to be made on the magnitude of the differ-

ences. In RCTs the assumption is often halving the outcome incidence. Deciding on the 

magnitude of differences between hospitals that should be detectable is less straight-

forward. They could be based on the 95% range of odds ratios, e.g a two fold differ-

ence corresponds to a range of 0.7 to 1.4. Some studies exist on the actual calculation 

of the sample sizes required for random effects models.29 More theoretical work and 

implementation of the findings to studies comparing hospitals is required in this area. 

One specific research question is what the effect is of the number of patients per hospi-

tal and the number of hospitals on statistical power in a random effects model. 

Case-mix adjustment 

We have shown the importance of case-mix adjustment when comparing hospitals 

based on outcome, using prognostic models. There is a strong believe that biomarkers 

will be able to further improve prognostic models. But since biomarkers will in most 
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cases be related to disease severity, which is already included in current models with 

different severity scales, expectations should not be too optimistic. Probably the larg-

est amount of currently unexplained variation in outcome can be attributed to events 

in the post-acute period, such as secondary or recurrent events. However since quality 

of care might influence the occurrence of such events, we would not include them in a 

case-mix adjustment model.

Some different technical aspects of case-mix adjustment still have to be explored in 

future research, such a fitting one model in the total dataset or stratified per hospital, 

or different categorisations of variables, or using direct versus indirect standardization. 

But this will probably lead only to minor improvements. 

In the United States case-mix adjustment models are often based on administrative 

claim data, e.g. from Medicare. This gives the possibility to analyze very large numbers 

of patients.5, 17 Models developed on administrative data need to be validated against 

models based on medical record data. Assessing the possibilities of developing prog-

nostic models on Dutch insurance data and compare these to models based on clinical 

data is a research topic of high interest.  

Process measures

We have shown that even evidence based treatments are at most moderately related 

to outcome measures when measured at hospital level in clinical practice. This finding 

implicates that the effects of quality of care on outcomes are small. Good outcomes do 

not assure good processes. It is unknown to what extent the currently publically avail-

able quality measures in the Netherlands, such as the morality rates and the perfor-

mance indicators from the Health Care Inspectorate correlate. Future research should 

address this question. 

Collecting process measures is however found to be time consuming. This might 

change with more possibilities for automated data collection, e.g. from electronic pa-

tient files, becoming available in the future. Automated data collection will greatly en-

hance the possibilities for quality of care research, since larger amounts of high-quality 

data could be made available with fewer resources. Modern possibilities of database 

linkage, e.g. linking in-hospital data to late outcome data from the civil registry, offer 

large opportunities. 

Specific research steps towards hospital comparisons with automated data include; 

validation of process measures and patient characteristics from electronic patient files 

against clinical (study) data, exploring the practical possibilities of linking clinical data 

to external data sources, and validation of outcome data from external sources against 

clinical (study) data. 



c h ap  t e r  14   General discussion 2 45

Data quality 

A remaining challenge in quality of care research is reducing the noise from regis-

tration bias. When data form different hospitals are incomparable, comparisons are 

useless. A Dutch study showed that large differences existed between hospitals in the 

coding of data that are used to calculate the Dutch Hospital Standardized Mortality 

Ratio (HSMR). E.g. the percentage of patients coded as acute admission, which was a 

predictor in the adjustment model, varied between 29% and 51%, caused by different 

interpretations by the coding teams.30 No study has structurally explored the effects of 

misclassification of patient characteristics, misclassification of outcome, and including 

different patient groups. 

Another source of bias is residual confounding, which could be due to too little 

adjustment for patient characteristics. Future research should study what the added 

value is of including more patient characteristics in an adjustment model. Not in terms 

of model performance, but in differences in results of the hospital comparisons.  

Residual confounding could also be due to hospital or region specific policies such 

as referral patterns or termination of treatment in terminal patients. Another research 

question is what the magnitude of the effect of such differences on hospital compari-

sons is. 

Level of aggregation  

A final topic for future quality of care research is the level of aggregation on which 

figures should be calculated and presented. High levels of aggregation are attractive 

because of larger numbers and simplicity, but complicate interpretability. 

A single number for a hospital levels out possible differences in quality of care 

between different departments. A specific research question is to what extent the out-

comes e.g. mortality rates of different departments in a hospital differ and contribute 

the overall mortality rate. 

For clinicians, a high level of aggregation does not provide directions to improve 

their quality of care. Therefore it is important to develop disease specific quality mea-

sures that do directly relate to processes of care that might be improved.  This could 

be either specific outcome measures such as disease specific mortality, re-admissions, 

and disease recurrence, or process measures. Relevant process measures that are easy 

to obtain and correlated to properly adjusted outcome measures may be good indica-

tors of quality of care. 

A challenge for all clinical fields is to develop such disease specific quality of care 

measures, in collaboration between clinicians and quality of care experts.   
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Study design 

Between-hospital differences in outcome are not only of interest from the perspective 

of quality improvement. Another relevant area is study design. Currently most random-

ized trials are multi-center trials, and are conducted in multiple countries. The presence 

of differences in outcome between the centers may influence the chances of demon-

strating a treatment effect in randomized controlled trials (RCTs). In chapter 12 we 

found that the large between-hospital differences in TBI did not influence the estimate 

of the treatment effect in a randomized controlled trial. Also the treatment effect did 

not vary very much between the centers. These findings suggest that between hospi-

tals differences in outcome are not very important for clinical trial design. While in TBI 

there is a strong belief that between-hospital differences are one of the causes of the 

many the negative RCTs in the field. We studied only one RCT, so future research has to 

confirm our results. 

Traumatic brain injury 

The failure of RCTs to advance the field of TBI has lead to a focus on new approaches, 

including comparative effectiveness research.

Although many studies are conducted to indicate that a treatment is efficacious 

relative to a placebo, there are few that directly compare the different available alterna-

tives or that have examined their impacts in populations of the same age, gender/sex, 

and ethnicity or with the same comorbidities as the patient. Comparative effectiveness 

research is designed to fill this knowledge gap.31 

Randomized controlled trials – generally considered to be the gold standard – ad-

dress efficacy rather than effectiveness. Efficacy reflects the degree to which an inter-

vention produces the expected result under carefully controlled conditions chosen to 

maximize the likelihood of observing an effect if it exists. The study population and 

setting of efficacy studies may differ in important ways from those settings in which 

the interventions are likely to be used. In contrast, comparative effectiveness research 

intends to measure the benefits and harms of an intervention in ordinary settings and 

broader populations, and therefore can often be more relevant to policy evaluation and 

the health care decisions of providers and patients.

Comparative effectiveness research can employ many different methods including 

database studies, pragmatic randomized trials, health technology assessments, and 

observational studies. The large between-hospital differences in TBI in outcome pre-

sented in chapter 10 and 11 could be considered worrying. From the perspective of CER 

however, they provide a major opportunity to compare alternative interventions and 

treatment strategies that all are possible best practices, in every day clinical practice. 

But as all hospital comparisons, CER studies require uniformly collected, prospective, 

high quality data, which are currently lacking in TBI. With such data CER may have the 

ability to answer questions in TBI that will not be answered with RCTs, but are impor-
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tant for decision making in clinical practice. A specific challenge for the field of TBI is 

to perform a well conducted methodologically sound CER study in the coming years. 

Summary on implications for research

This thesis has provided methods to account for statistical uncertainty and differences 

in case-mix. Future research on methods to measure quality of care should mainly aim 

at reducing statistical uncertainty and at exploring possibilities for automated data col-

lection of patient characteristics, processes and outcomes. Another important research 

aim is the development of diseases specific quality measures. In prognostic models for 

case-mix adjustment some methodological improvement might be possible.
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Summary

I Introduction 

Over the past 20 years, quality of care has become a major topic in health care. Only 

two decades ago, physicians could be confident that they alone had a social mandate 

to judge and manage the quality of care. In contrast, in the current era of evidence-

based medicine, medical practice is continuously and critically evaluated by different 

stakeholders. 

But measuring quality of care is complex, since no uniform definition exists and 

many factors determine the outcome of a patient. The care provided by one specific 

health care provider is only one of these factors. So far there has been no generally 

accepted approach or method to measure quality of health care, and to compare health 

care providers. 

Quality of care comprises structure, process and outcome. Structure relates to 

organisation of care, such as number of beds in a hospital. Process relates to actual 

actions of care, such as whether the patient receives medication within a certain time 

frame. Outcome includes patient outcome measures such as mortality. Outcome mea-

sures are attractive since they are most relevant to the final aim of measuring quality 

of care; improvement of patient outcomes. Measuring quality of care with outcomes 

poses two major methodological problems: statistical uncertainty and differences in 

the type of patients (‘case-mix’) between hospitals.

With regard to statistical uncertainty, there will always be some variation in out-

come between hospitals caused by chance (statistical uncertainty). Ignoring this may 

lead to overinterpretation of differences in outcome between hospitals, especially if the 

numbers are small.

With regard to case-mix, outcomes will differ regardless of quality of care when 

hospitals have a different patient population e.g. in terms of age and disease sever-

ity. To account for patient characteristics that influence outcome, a prognostic model 

can be used. Prognostic models combine a number of patient characteristics to predict 

the outcome of interest, most often using regression models. Comparisons between 

providers could then be done with adjustment for each patient’s risk as estimated by 

the prognostic model.
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The aim of this thesis was to develop methods to measure quality of care with outcome 

measures. Specific questions included:

1.	� What is the role of statistical uncertainty in measuring quality of care with outcome 

measures? 

1a.	How large is the effect of statistical uncertainty on between-hospital comparisons?

1b.	How should statistical uncertainty be incorporated in outcome measures? 

2.	� What is the role of case-mix variation in measuring quality of care with outcome 

measures? 

2a.	How large is the effect of case-mix on between-hospital comparisons?

2b.	How can case-mix variation be captured for between-hospital comparisons? 

3.	 How do outcome measures relate to processes of care? 

The methods studied in this thesis are applied to acute neurological diseases, includ-

ing traumatic brain injury (TBI), stroke, Guilllain-Barré syndrome (GBS) and aneurysmal 

subarachnoid haemorrhage (aSAH). 

II Statistical uncertainty

In part II of the thesis methods to take into account statistical uncertainty when mea-

suring quality of care with outcome measures are presented. 

In chapter 2 it was shown how statistical uncertainty can be incorporated in rankings. 

Rankings based on outcome are often used to present hospital performance. These 

rankings do however not reflect that part of the variation in outcome between provid-

ers is caused by statistical uncertainty or by differences in case-mix, and not by any 

differences in quality of care. 

We compared percentages of poor outcome after stroke (mortality and disability at 

1 year) between 10 hospitals in the Netherlands. There where substantial differences 

in outcome between hospitals in unadjusted analysis, but adjustment for case mix dif-

ferences led to halving of these differences. Further changes were seen when statistical 

uncertainty was taken into account, especially for smaller hospitals. We calculated the 

Expected Rank (ER), an estimate of the rank of a provider beyond statistical uncertain-

ty, and a measure for rankability ρ, which is the part of variation between providers 

that is due to true differences (as opposed to statistical uncertainty). 

Using the Expected Rank led to shrinkage of the original ranks of 1 to 10 towards 

the median rank of 5.5 and to a different order of the hospitals. The rankability was 

55%, which we interpret as approximately half of the differences between hospitals be-

ing due to noise rather than signal. 

In comparing and ranking hospitals, case-mix adjusted random effect estimates and 

the Expected Ranks are more robust alternatives to traditional estimates and simple 

rankings. The Expected Rank provides a way to combine the attractiveness of a rank-
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ing, namely a single number and easy interpretation, with reliable analyses that does 

justice to the providers. 

Rankability was also used in chapter 3, to show how much statistical uncertainty is 

present in outcome measures that are currently used by the Dutch Healthcare Inspec-

torate to assess the quality of hospital care. 

With the official data on seven outcome indicators of 97 Dutch hospitals of the year 

2007, it was shown that sample sizes were typically small (median 2-21 cases per hos-

pital). This caused substantial uncertainty and only poor (< 50%) to moderate (50-75%) 

rankability. 

Thus the currently used Dutch outcome indicators are not suitable for ranking 

hospitals. When judging hospital quality the influence of statistical uncertainty must be 

accounted for to avoid overinterpretation of the numbers in the quest for more trans-

parency in health care. Adequate sample size is a prerequisite in attempting reliable 

ranking.

Statistical uncertainty can be taken into account by estimating the hospital outcomes 

with random effects logistic regression models. In chapter 4 different statistical soft-

ware packages fitting such models are compared.

The data of 8509 patients with traumatic brain injury from 231 centers were used 

to fit dichotomized and ordinal logistic random effects regression models in different 

statistical packages.

The studied software packages produced similar results, but differed somewhat 

in usability and flexibility. The choice for a particular implementation may therefore 

solely depend on the desired flexibility, and the usability. 

III Prognostic models 

In part III, I address the problem of case-mix differences between hospitals when mea-

suring outcomes. Several prognostic models that could be used for case-mix adjust-

ment in hospital comparisons are developed and described (Table 1). 
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Table 1  Overview of the prognostic models described and developed in this thesis

Chapter Model Disease Outcome Predictors 

5 IMPACT 
(basic model) 

TBI 6 month unfavorable outcome – Age
– GCS motor score
– Pupil reactivity 

5 CRASH 
(basic model) 

TBI 6 month unfavorable outcome 
and 14 day mortality 

– Age
– GCS 
– Pupil reactivity 
– Extracranial injury 

7 EGRIS GBS Mechanical ventilation – �Days between onset of weakness 
and admission

– MRC sumscore 
– �Presence of facial and/or bulbar 

weakness 

8 mEGOS GBS Ability to walk after 4 weeks, 
3 months and 6 months

– MRC sum score
– Age
– Preceding diarrhea

9 – aSAH 60-day mortality – WFNS grade
– Age
– Lumen size of the aneurysm 
– Fisher grade

TBI=Traumatic brain injury, GCS= Glasgow Coma Scale, GBS=Guillain-Barré syndrome, 
aSAH=Aneurysmal subarachnoid, haemorrhage, MRC=Medical research Council, WFNS=World Federation 
of Neurosurgical Societies

Chapter 5 gives an overview of the prognostic models available to predict outcome 

in TBI patients and some general considerations about prognostic model develop-

ment. Despite the association of many variables with outcome, making predictions for 

individuals is notoriously difficult. A systematic literature search identified 16 studies 

reporting on prognostic models based upon admission characteristics; many of these 

showed shortcomings, which may partly explain the limited use of these models in 

clinical practice. Two high quality prediction models are currently available, that have 

been developed on large datasets with state of the art methods. There is great poten-

tial for use in clinical practice, in research, towards policy making and assessment of 

the quality of health care delivery. 

In chapter 6 the potential improvement of case-mix adjustment models in TBI by in-

cluding extracranial injury as a predictor is assessed. Major extracranial injury is com-

mon in TBI patients, but its prognostic value is not well known. 

In pooled data of five studies major extracranial injury was related to mortality with 

logistic regression analysis, adjusted for known important predictors. 

It was found that major extracranial injury is an important prognostic factor for 

mortality in patients with TBI. However, the strength of the effect was smaller in 
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patients with more severe brain injury. Also the strength of the effect decreases when 

only considering patients who survive the early phase after injury, instead of consider-

ing all patients, starting from the time of injury. 

Chapter 7 presents a prognostic model that can be used to identify GBS patients that 

will require mechanical ventilation. Respiratory insufficiency is a frequent and serious 

complication of GBS, and prediction of respiratory insufficiency is important to triage 

patients to the appropriate unit and avoid respiratory distress. 

In this study a prognostic model to predict the chance of respiratory insufficiency in 

the acute stage of disease was developed, which showed good performance at external 

validation in an independent cohort. After further validation, the model may assist in 

clinical decision-making, e.g. on patient transfer to an ICU. 

A second prognostic model for GBS is presented in chapter 8, predicting ability to walk. 

GBS is a heterogeneous disease, yet patients are treated with standard therapy. This 

is insufficient for some patients. These patients may benefit from additional therapy 

but this requires early identification. A prognostic model to predict walking ability at 

4 weeks, 3 months and 6 months after hospital admission was developed.  Discrimi-

native ability was good, as well as calibration in an independent external validation 

cohort. 

With this model poor outcome can be accurately predicted in an early phase of the 

disease and it can therefore be used to select patients for additional therapy, and to 

improve quality of care.  

In chapter 9 a prognostic model to predict outcome in aSAH patients is developed. 

Aneurysmal subarachnoid haemorrhage is a devastating event with substantial case-

fatality. In this study a model to predict 60-day case-fatality using clinical and neuro-

imaging characteristics, available on admission was developed and evaluated. The 

model was internally validated with bootstrapping techniques, showing reasonably 

discriminative ability. 

After external validation these predictors could eventually be used in clinical deci-

sion making. 

IV Applications  

In the fourth part of the thesis the methods and models presented in part II and III are 

applied to traumatic brain injury (TBI) and stroke.

Chapter 10 studies between-hospital differences in outcome in TBI. In this study 

we analyzed patients with moderate and severe TBI from 265 centres. Using random 

effects logistic regression models, the between-centre differences in outcome were 
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estimated, adjusted for differences in patient characteristics. Taking into account statis-

tical uncertainty, there was a 3.3 fold difference in the odds of unfavourable outcome 

between the centers at the lower end of the outcome distribution (2.5th percentile) 

versus those at the higher end of the outcome distribution (97.5th percentile). 

Further research is needed to study explanations for these differences and to sug-

gest where quality of care might be improved. 

Chapter 11 investigates whether the between-hospital differences in outcome after TBI 

affect the estimation of the treatment effect in clinical trials. We hereto analyzed a large 

randomized controlled trial (the CRASH trial). 

We studied the effect of the treatment on 14 day mortality in patients from 237 cen-

ters, using different statistical approaches taking into account between-center differ-

ences in outcome and between-center differences in treatment effect. The 14-day mor-

tality was higher in the treatment group. If center differences were ignored, the odds 

ratio was 1.22. (p=0.00010). Although there were large between-center differences in 

outcome, these did not substantially change the estimated treatment effect (OR=1.24, 

p=0.00003). The between-center variation in the treatment effect was limited. 

Thus large between-center differences in outcome do not necessarily affect the esti-

mated treatment effect in RCTs.  

In chapter 12 it is assessed whether the between-hospital differences in outcome after 

stroke are more related to patient characteristics or to process measures. 

In patients with acute stroke from 10 centers in the Netherlands, poor outcome was 

related to patient characteristics and quality of the care (diagnostic, therapeutic and 

preventive procedures in patients with indication) with logistic regression models. The 

proportion of patients with poor outcome varied across the centers from 29% to 78%. 

The largest part of variation in patient outcome between centers was explained by dif-

ferences in patient characteristics. Quality of care parameters explained a small part of 

the variation in patient outcome. 

Hence, unadjusted proportions of poor outcome after stroke are not valid as indica-

tors of quality of care.

Chapter 13 studied the relation between one particular process measure in stroke, 

treatment with statins, and outcome. The benefit of statin treatment in patients with a 

previous ischemic stroke or TIA has been demonstrated in RCTs. However, the effec-

tiveness in everyday clinical practice may be decreased because of a different patient 

population and less controlled setting. 

In this study we described statin use in an unselected cohort, identified factors 

related to statin use, and tested whether the effect of statins on outcome observed in 

RCTs, is also observed in everyday clinical practice. 
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Age, elevated cholesterol levels and other cardiovascular risk factors were associated 

with statin use at discharge. After 3 years, 39% of the users at discharge had stopped 

using statins. After adjustment for the differences between statin users and non-statin 

users, statins had a small but beneficial effect of on the occurrence of recurrent vascu-

lar events and mortality (OR 0.8, 95% CI: 0.6–1.2). 

Despite the poor treatment adherence to statins, the observed beneficial effect of 

statins in this study is compatible with the effect observed in clinical trials.

V Discussion 

The aim of this thesis was to study methods to measure quality of care with outcome 

measures, and to apply these methods to different acute neurological diseases. In the 

first half of the thesis I described and developed methods to face the two major  

methodological challenges in measuring quality of care with outcome measures; sta-

tistical uncertainty and case-mix adjustment. In the second half these methods were 

applied to different acute neurological diseases.

We found that statistical uncertainty is often large when comparing hospitals with out-

come measures. Ignoring statistical uncertainty leads to overestimation of the overall 

differences in outcome and to too extreme estimates of individual hospital perfor-

mance, especially for smaller hospitals. Different methods were proposed to account 

for statistical uncertainty and to quantify statistical uncertainty, including the use 

of random effect models, and calculation of rankability and the Expected Rank (ER). 

Random effects models take into account statistical uncertainty and are therefore the 

preferred approach for analysis of between-hospital differences in outcome. Techni-

cally random effect models are currently perfectly feasible. Rankability indicates the 

amount of uncertainty in hospital comparisons and should become a standard element 

in reporting. The Expected Rank can be used to incorporate both the magnitude and 

the uncertainty in rankings, which is ignored by integer rankings. When rankability is 

lower then 50%, no ranking should be attempted at all. When rankability is between 

50% and 75% ERs might be reported. When rankability is over 75%, ERs will be similar 

to interger ranks. 

In both stroke and TBI we found that apparent large differences in outcome are 

partly attributable to statistical uncertainty. 

With regard to case-mix, the prognostic models described in this thesis show that 

patient characteristics are highly predictive of outcome. Case-mix may vary between 

hospitals, and influence between-hospital comparisons based on outcome. Case-mix 

adjustment is therefore absolutely essential when measuring quality of care with 

outcomes. Prognostic models can be used for case-mix adjustment, although they will 
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never be perfect. For TBI and GBS we reviewed and developed well performing prog-

nostic models. For aSAH the performance of the models was poorer. Note that prog-

nostic models have numerous applications relevant for quality of care, besides case-

mix adjustment in between provider comparisons. 

In stroke a large part of the between-hospital differences was attributable to case-

mix differences. 

We further found that it is difficult to clearly relate outcome to processes of care in 

acute neurological diseases, even when these processes are evidence-based, as in 

stroke. This implies that even after reasonable case-mix adjustment, low proportions 

of poor outcome do not necessarily represent high quality processes of care. Neither 

do high proportions of poor outcome represent poor quality. 

Summarizing, given reliable data, observed differences in outcome may be largely 

attributable to noise from statistical uncertainty, and measured and unmeasured dif-

ferences in case-mix, and only for a small part to differences in process. We conclude 

that outcome measures for quality of care should be case-mix adjusted random effect 

estimates, which are related to processes of care. 

The findings in this thesis have implications for both policy and research. From a 

policy perspective, good quality measures have the potential to improve quality of 

care though three different quality improvement pathways (the change, selection and 

reputation pathway). This requires specific, comprehensive, detailed process measures 

for clinicians for the change pathway, and simple outcome measures to make publically 

available for the selection and reputation pathway. This thesis has shown that when 

such outcome measures are estimated with a random effects model, sufficiently ad-

justed for case-mix, and have a moderate to high rankability, they can be considered to 

at least partly represent quality of care. Since none of the currently available quality of 

care measures in the Netherlands fulfils these requirements, they should not be made 

publically available. 

From a research perspective, this thesis has provided methods to account for statis-

tical uncertainty and differences in case-mix. An important research aim for the future 

is the development of diseases specific quality measures. In prognostic modelling for 

case-mix adjustment some methodological improvement might be possible. But future 

research on methods to measure quality of care should mainly aim at reducing statisti-

cal uncertainty and at exploring possibilities for automated data collection on patient 

characteristics, processes and outcomes. 
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Samenvatting 

I Introductie 

In de laatste 20 jaar is kwaliteit van zorg een steeds belangrijker onderwerp geworden 

binnen de gezondheidszorg. Vóór die tijd werd het bewaken en verbeteren van kwali-

teit van zorg volledig aan artsen overgelaten. Tegenwoordig is er echter veel behoefte 

aan transparantie en proberen verschillende belanghebbenden inzicht te krijgen in 

kwaliteit van zorg. Dat blijkt ondermeer uit de ziekenhuisranglijsten die worden ge-

publiceerd door Elsevier en het Algemeen Dagblad. Ook de Inspectie voor de Gezond-

heidszorg publiceert kwaliteit van zorg informatie. 

Het meten van kwaliteit van zorg is lastig. Ten eerste bestaat er geen eenduidige 

definitie van kwaliteit en ten twee is gezondheidszorg complex. Vele factoren bepalen 

hoe het uiteindelijk gaat met een patiënt. Dat is dus niet alleen toe te schrijven aan de 

kwaliteit van zorg van één specifieke zorgaanbieder, zoals het ziekenhuis. Tot nu toe is 

er geen algemeen geaccepteerde methode om kwaliteit van zorg te meten en zorgaan-

bieders te vergelijken. 

Kwaliteit van zorg kan verdeeld worden in 3 domeinen: structuur, proces en uit-

komst. Een structuurmaat is bijvoorbeeld het aantal bedden dat een ziekenhuis heeft, 

of de aanwezigheid van een spoedeisende hulp. Procesmaten zijn de daadwerkelijke 

zorgactiviteiten, bijvoorbeeld het zo snel mogelijk geven van bloedverdunners aan 

patiënten met een herseninfarct, of het maken van een CT scan. Uitkomstmaten zijn 

uitkomsten van patiënten, zoals sterftecijfer of het percentage patiënten dat weer 

zelfstandig kan wonen na een herseninfarct. Om kwaliteit te meten zijn uitkomstmaten 

aantrekkelijk; ze zijn gemakkelijk te meten, en relevant voor patiënten. Bovendien is 

het uiteindelijke doel van meten en verbeteren van kwaliteit van zorg het verbeteren 

van uitkomsten. Het voorschrijven van bloedverdunners is immers geen doel op zich, 

maar een middel om sterfte te reduceren. 

Maar het meten van kwaliteit van zorg met uitkomstmaten brengt twee problemen 

met zich mee. Ten eerste kunnen uitkomsten beïnvloed worden door toeval. Als de 

kans op sterfte in een bepaald ziekenhuis 50% is, kan het toch voorkomen dat bij-

voorbeeld 14 van de 20 patiënten (70%) overlijden. Dat is het gevolg van statistische 

onzekerheid en vergelijkbaar met het opgooien van een munt. Hoewel we weten dan 

de kans op kop 50% is, kan het voorkomen dat in 20 worpen de uikomst 14 keer kop is. 

Hoe kleiner het aantal worpen, en dus het aantal patiënten, hoe groter de statistische 

onzekerheid. Als er geen rekening wordt gehouden met statistische onzekerheid lijken 

verschillen in uitkomst tussen zorgaanbieders groter dan ze zijn. 
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Ten tweede kunnen verschillen in uitkomst veroorzaakt worden door verschillen in de 

patiëntenpopulaties. Als een ziekenhuis bijvoorbeeld veel oudere patiënten behandelt, 

of patiënten die ernstig ziek zijn, zal het sterftecijfer hoger zijn dan in een ziekenhuis 

met een jongere patiëntenpopulatie, ongeacht de kwaliteit van zorg. Om rekening te 

houden met verschillen in patiëntenpopulatie kan een prognostisch model worden ge-

bruikt. In een prognostisch model wordt de kans op overlijden (of een andere uitkomst-

maat) van een patiënt geschat op basis van de patiëntkarakteristieken zoals leeftijd, 

geslacht, ernst van de ziekte etc. De gemiddelde kans op overlijden van alle patiënten 

in een bepaald ziekenhuis kan dan vergeleken worden met de daadwerkelijke sterfte. 

In dit proefschrift worden methoden voor het meten van kwaliteit van zorg met 

uitkomstmaten onderzocht. Daarbij gaat het specifiek om de rol van statistische onze-

kerheid, van verschillen in patiëntenpopulatie en om de relatie tussen uitkomstmaten 

en procesmaten. De methoden die worden besproken zijn toegepast op verschillende 

acute neurologische aandoeningen: traumatisch hersenletsel, herseninfarct, aneury-

smale hersenbloeding en Guillain-Barré syndroom. Traumatisch hersenletsel is her-

senletsel door een externe oorzaak, bijvoorbeeld een val of een verkeersongeluk. Een 

herseninfarct is een verstopping van een bloedvat waardoor een deel van de hersenen 

geen zuurstof meer krijgt. Een aneurysmale hersenbloeding is een bloeding in de her-

senen die wordt veroorzaakt door een uitstulping in een bloedvat, een aneurysma, dat 

knapt. Guillain-Barré syndroom is een acute aandoening van de zenuwen die de spieren 

aansturen, die kan leiden tot spierzwakte of verlamming. 

II Statistische onzekerheid

Dit deel van het proefschrift beschrijft de rol van toeval als gevolg van statistische 

onzekerheid bij het meten van kwaliteit van zorg met uitkomstmaten. 

Eerst is onderzocht hoe rekening kan worden gehouden met statistische onzeker-

heid in uitkomstmaten. Hiertoe zijn tien Nederlandse ziekenhuizen vergeleken op basis 

van het aantal patiënten dat 1 jaar na een herseninfarct overleden of gehandicapt was. 

Er bleken grote verschillen te zijn tussen de ziekenhuizen. Het grootste deel van die 

verschillen werd echter veroorzaakt door statistische onzekerheid. Vooral de sterfte-

percentages van kleine ziekenhuizen werden sterk beïnvloed door statistische onzeker-

heid. Slechts 55% van de oorspronkelijke verschillen in uitkomst was toe te schrijven 

aan daadwerkelijke verschillen, de rest aan statistische onzekerheid. 

De Inspectie voor de Gezondheidszorg gebruikt ook uitkomstmaten om kwaliteit 

van ziekenhuiszorg te meten. In het volgende hoofdstuk is onderzocht hoe groot de rol 

van statistische onzekerheid hierin is. Het bleek dat de uitkomsten berekend worden 

op vaak kleine patiëntenaantallen per ziekenhuis (tientallen), wat de invloed van sta-

tistische onzekerheid vergrootte. Van de verschillen in uitkomsten tussen ziekenhuizen 

was in alle gevallen minder dan 75% veroorzaakt door echte verschillen, de rest door 

statistische onzekerheid. 
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Als geen rekening wordt gehouden met statistische onzekerheid leidt dat tot een te 

hoge schatting van verschillen in uitkomst tussen ziekenhuizen. Er zijn statistische 

methoden beschikbaar om rekening te houden met statistische onzekerheid. 

III Prognostische modellen 

In het volgende deel van het proefschrift is onderzocht wat de rol is van verschillen in 

patiëntenpopulatie bij het meten van kwaliteit van zorg met uitkomstmaten. 

Eerst is een overzicht gegeven van de prognostische modellen die beschikbaar zijn 

om uitkomst bij patiënten met traumatisch hersenletsel te voorspellen. Uit dit overzicht 

bleek dat er twee goede prognostische modellen ontwikkeld zijn die op basis van leef-

tijd en ernst van het hersenletsel kunnen voorspellen of een patiënt overlijdt of gehan-

dicapt blijft na traumatisch hersenletsel. Verder bleek dat de prognostische modellen 

nog licht verbeterd kunnen worden door ook het al dan niet hebben van letsel aan de 

rest van het lichaam als voorspeller mee te nemen. 

Voor patiënten met Guillain-Barré syndroom zijn twee prognostische modellen 

ontwikkeld. Patiënten met Guillain-Barré kunnen last krijgen van ademhalingspro-

blemen. Zij moeten in dat geval beademend worden op de intensive care. Er is een 

prognostisch model ontwikkeld dat op basis van spierkracht en de mate van progressie 

van de ziekte voorspelt welke patiënten een grote kans hebben op ademhalingspro-

blemen. Deze patiënten kunnen eventueel uit voorzorg naar de intensive care worden 

gebracht. Ook is een prognostisch model gemaakt dat op basis van leeftijd, spierkracht 

en aanwezigheid van diaree (wat een indicatie is voor aanwezigheid van een bepaalde 

bacterie) voorspelt of patiënten 4 weken, 3 maanden en 6 maanden na het ontstaan 

van de ziekte weer kunnen lopen. 

In het volgende hoofdstuk is een prognostisch model gemaakt dat voorspelt of 

patiënten met een hersenbloeding na twee maanden zijn overleden. De ernst van de 

bloeding, leeftijd, de grootte van het aneurysma en of de bloeding zichtbaar is op een 

CT scan waren de sterkste voorspellers voor het overlijden van een patiënt. 

Verschillen in patiëntenpopulatie beïnvloeden uitkomstmaten, ongeacht kwaliteit 

van zorg. Het is daarom cruciaal dat bij het vergelijken van ziekenhuizen op basis van 

uitkomst rekening wordt gehouden met patiëntenpopulatie. De prognostische model-

len voor traumatisch hersenletsel en Guillain-Barré kunnen daarvoor gebruikt worden. 

Omdat het model voor hersenbloedingen slechts redelijk voorspelde, kan het slechts 

met enig voorbehoud worden gebruikt bij het meten van kwaliteit van zorg.
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IV Toepassingen 

In het vierde deel van het proefschrift zijn met behulp van de methoden uit de voor-

gaande delen ziekenhuizen vergeleken op basis van uitkomstmaten. 

Er zijn 265 ziekenhuizen uit de hele wereld vergeleken die patiënten met middel-

zwaar tot ernstig traumatisch hersenletsel behandelden. Er bleken grote verschillen 

(meer dan factor 3) tussen de ziekenhuizen te bestaan in het percentage patiënten dat 

zes maanden na het hersenletsel overleden of gehandicapt was, ook als rekening werd 

gehouden met statistische onzekerheid. Deze verschillen werden niet veroorzaakt door 

verschillen in patiëntenpopulatie. Een deel ervan wordt dus mogelijk veroorzaakt door 

verschillen in kwaliteit van zorg, hoewel altijd rekening moet worden gehouden met de 

(on)betrouwbaarheid van de dataverzameling. 

Verder zijn tien Nederlandse ziekenhuizen vergeleken op basis van het percentage 

patiënten met een herseninfarct dat na 6 maanden overleden of gehandicapt was. 

Naast deze uitkomstmaat werden ook procesmaten gemeten, bijvoorbeeld het per-

centage patiënten waarbij op tijd een CT scan werd gemaakt en het percentage dat 

de juiste medicatie kreeg voorgeschreven. Er bleken grote verschillen in uitkomst te 

bestaan; het percentage patiënten dat na 6 maanden overleden of gehandicapt was 

varieerde van 29% tot 78%. De verschillen werden grotendeels veroorzaakt door ver-

schillen in patiëntenpopulatie. Slechts een klein deel werd veroorzaakt door verschillen 

in zorgprocessen. Dus zelfs als rekening is gehouden met verschillen in patiëntenpo-

pulatie betekenen goede uitkomsten niet per definitie kwalitatief goede zorgprocessen. 

Evenmin als slechte uitkomsten slechte zorgprocessen betekenen. 

V Discussie 

Het doel van dit proefschrift was om methoden voor het meten van kwaliteit van zorg 

met uitkomstmaten te onderzoeken. Eerst zijn methoden onderzocht die gebruikt 

kunnen worden om rekening te houden met statistische onzekerheid en verschillen in 

patiëntenpopulatie. Vervolgens zijn deze toegepast op acute neurologische ziekten. 

De conclusie is dat alleen van uitkomstmaten die rekening houden met statistische 

onzekerheid en verschillen in patiëntenpopulatie en die samen hangen met relevante 

procesmaten kan worden aangenomen dat ze – tenminste gedeeltelijk – kwaliteit van 

zorg meten. 

Deze bevindingen hebben ten eerste implicaties voor onderzoek. In dit proefschrift 

zijn methoden beschreven om rekening te houden met statistische onzekerheid en 

verschillen in patiëntenpopulatie. Toekomstig onderzoek zou zich voornamelijk moeten 

richten op het verkleinen van statistische onzekerheid, bijvoorbeeld door verschillende 

uitkomstmaten te combineren of door het meten van uitkomsten over langere periodes.

Ten tweede zijn er implicaties voor beleid. Geen van de huidige uitkomstmaten voor 
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kwaliteit van zorg die momenteel beschikbaar is voor het Nederlandse publiek, houdt 

namelijk rekening met statistische onzekerheid en verschillen in patiëntenpopulatie. 

Het heeft dan ook geen zin om deze uitkomstmaten openbaar te maken, ze leveren 

geen informatie over kwaliteit van zorg en zijn enkel misleidend. 
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jullie papers heb mogen gebruiken voor mijn proefschrift, en vooral bedankt voor de 
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Ook de leuke (ex) collega’s op MGZ dragen bij aan het feit dat ik dagelijks met ple-
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