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Abstract 
 

A risk management strategy that is designed to be robust to the Global Financial Crisis 

(GFC), in the sense of selecting a Value-at-Risk (VaR) forecast that combines the 

forecasts of different VaR models, was proposed in McAleer et al. (2010c). The robust 

forecast is based on the median of the point VaR forecasts of a set of conditional 

volatility models. Such a risk management strategy is robust to the GFC in the sense 

that, while maintaining the same risk management strategy before, during and after a 

financial crisis, it will lead to comparatively low daily capital charges and violation 

penalties for the entire period. This paper presents evidence to support the claim that the 

median point forecast of VaR is generally GFC-robust. We investigate the performance 

of a variety of single and combined VaR forecasts in terms of daily capital requirements 

and violation penalties under the Basel II Accord, as well as other criteria. In the 

empirical analysis, we choose several major indexes, namely French CAC, German 

DAX, US Dow Jones, UK FTSE100, Hong Kong Hang Seng, Spanish Ibex35, Japanese 

Nikkei, Swiss SMI and US S&P500. The GARCH, EGARCH, GJR and Riskmetrics 

models, as well as several other strategies, are used in the comparison. Backtesting is 

performed on each of these indexes using the Basel II Accord regulations for 2008-10 to 

examine the performance of the Median strategy in terms of the number of violations 

and daily capital charges, among other criteria. The Median is shown to be a profitable 

and safe strategy for risk management, both in calm and turbulent periods, as it provides 

a reasonable number of violations and daily capital charges. The Median also performs 

well when both total losses and the asymmetric linear tick loss function are considered  

 

Key words and phrases: Median strategy, Value-at-Risk (VaR), daily capital charges, 
robust forecasts, violation penalties, optimizing strategy, aggressive risk management, 
conservative risk management, Basel II Accord, global financial crisis (GFC). 
 
JEL Classifications: G32, G11, G17, C53, C22. 
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1. Introduction 

 

The Global Financial Crisis (GFC) of 2008-09 has left an indelible mark on economic 

and financial structures worldwide, and caused a generation of investors to wonder how 

things could have become so bad (see, for example, Borio (2008)). There have been 

many questions asked about whether appropriate regulations were in place, especially in 

the USA, to ensure the appropriate monitoring and encouragement of (possibly 

excessive) risk taking.  

 

The Basel II Accord1 was designed to monitor and encourage sensible risk taking, using 

appropriate models of risk to calculate Value-at-Risk (VaR) and subsequent daily 

capital charges. VaR is defined as an estimate of the probability and size of the potential 

loss to be expected over a given period, and is now a standard tool in risk management. 

It has become especially important following the 1995 amendment to the Basel Accord, 

whereby banks and other Authorized Deposit-taking Institutions (ADIs) were permitted 

(and encouraged) to use internal models to forecast daily VaR (see Jorion (2000) for a 

detailed discussion). The last decade has witnessed a growing academic and 

professional literature comparing alternative modelling approaches to determine how to 

measure and forecast VaR, especially for large to very large portfolios of financial 

assets.  

 

The amendment to the initial Basel Accord was designed to encourage and reward 

institutions with superior risk management systems. A back-testing procedure, whereby 

actual returns are compared with the corresponding VaR forecasts, was introduced to 

assess the quality of the internal models used by ADIs. In cases where internal models 

led to a greater number of violations than could reasonably be expected, given the 

                                                            
1 When the Basel I Accord was concluded in 1988, no capital requirements were defined for market risk. 
However, regulators soon recognized the risks to a banking system if insufficient capital were held to 
absorb the large sudden losses from huge exposures in capital markets. During the mid-90’s, proposals 
were tabled for an amendment to the 1988 Accord, requiring additional capital over and above the 
minimum required for credit risk. Finally, a market risk capital adequacy framework was adopted in 1995 
for implementation in 1998. The 1995 Basel I Accord amendment provides a menu of approaches for 
determining market risk capital requirements, ranging from a simple to intermediate and advanced 
approaches. Under the advanced approach (that is, the internal model approach), banks are allowed to 
calculate the capital requirement for market risk using their internal models. The use of internal models 
was introduced in 1998 in the European Union. The 26 June 2004 Basel II framework, implemented in 
many countries in 2008 (though not yet in the USA), enhanced the requirements for market risk 
management by including, for example, oversight rules, disclosure, management of counterparty risk in 
trading portfolios. 
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confidence level, the ADI is required to hold a higher level of capital (see Table 1 for 

the penalties imposed under the Basel II Accord). Penalties imposed on ADIs affect 

profitability directly through higher capital charges, and indirectly through the 

imposition of a more stringent external model to forecast VaR.2  This is one reason why 

financial managers may prefer risk management strategies that are passive and 

conservative rather than active and aggressive (this issue will be discussed in greater 

detail below). 

 

Excessive conservatism can have a negative impact on the profitability of ADIs as 

higher capital charges are subsequently required. Therefore, ADIs should perhaps 

consider a strategy that allows an endogenous decision as to how often ADIs should 

violate, and hence incur violation penalties, in any financial year (for further details, see 

McAleer and da Veiga (2008a, 2008b), McAleer (2009), Caporin and McAleer (2010a), 

and McAleer et al. (2010a, 2010b)).  

 

Furthermore, ADIs need not restrict themselves to using only a single risk model. 

McAleer et al. (2010a) propose a risk management strategy that consists of choosing 

from among different combinations of alternative risk models to forecast VaR. They 

discuss a combination of forecasts that may be characterized as an aggressive strategy, 

and another that may be regarded as a conservative strategy.3  

 

Following such an approach, McAleer et al. (2010c) suggest using a combination of 

VaR forecasts to obtain a crisis robust risk management strategy. That paper defines a 

crisis robust strategy as an optimal risk management strategy that remains unchanged 

regardless of whether it is used before, during or after a significant financial crisis. 

Parametric methods for forecasting VaR are typically fitted to historical returns, 

assuming specific conditional distributions of returns, such as Gaussian, Student-t, or 

Generalized Normal distributions. The VaR forecast depends on the parametric model 

and the conditional distribution, and can be heavily affected by a few large 

                                                            
2 In the 1995 amendment (p. 16), a similar capital requirement system was recommended, but the specific 
penalties were left to each national supervisor. We consider that the penalty structure contained in Table 1 
of this paper belongs only to Basel II, and was not part of Basel I or its 1995 amendment. 
 
3 This is a novel possibility. Technically, a combination of forecast models is also a forecast model. In 
principle, the adoption of a combination of forecast models by a bank is not forbidden by the Basel 
Accords, although it is subject to regulatory approval. 
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observations. Some models provide many violations, but can also lead to low daily 

capital charges. Additionally, these results can change drastically from tranquil to 

turbulent periods. Using the S&P 500 index, the authors provided evidence that the 

Median of the point VaR forecasts of a set of univariate conditional volatility models is 

a risk management strategy that is superior to strategies based on single and composite 

model alternatives.   

 

In this paper we present cross-country evidence to support the claim that the Median 

point forecast of VaR is generally GFC-robust. We choose several major indexes, 

namely French CAC, German DAX, US Dow Jones, UK FTSE100, Hong Kong Hang 

Seng, Spanish Ibex35, Japanese Nikkei, Swiss SMI and US S&P 500. For each index, 

as in McAleer et al. (2010c), we estimate 10 univariate conditional volatility models to 

forecast VaR, assuming different returns distributions (specifically, Gaussian, Student-t 

and Generalized Normal). Additionally, we present  strategies based on combinations of 

standard VaR model forecasts, namely: lowerbound, upperbound (as defined in 

McAleer et al. (2010a)), average, and Median.  

 

A total of 14 models and combinations of models are compared over three different time 

periods to investigate whether we can find a risk management strategy that is invariant 

over time (namely, a strategy that is crisis-robust). We find that the Median of the point 

VaR forecasts of a set of forecast models is a risk management strategy that settles in 

the green zone before the crisis and in the yellow zone during and after the crisis. While 

some competing strategies perform better before the crisis, they tend to have too many 

violations during and after the crisis. The analysis of well-known complementary 

criteria, such as the accumulated losses and asymmetric loss tick functions, reinforce 

these conclusions.  

 

The remainder of the paper is organized as follows. In Section 2 we present the main 

ideas of the Basel II Accord Amendment as it relates to forecasting VaR and daily 

capital charges. Section 3 reviews some of the most well-known models of conditional 

volatility that are used to forecast VaR. In Section 4 the data used for estimation and 

forecasting are presented. Section 5 analyses the VaR forecasts before, during and after 

the 2008-09 GFC. Section 6 presents some conclusions. 
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2. Forecasting Value-at-Risk and Daily Capital Charges   

  

The Basel II Accord stipulates that daily capital charges (DCC) must be set at the higher 

of the previous day’s VaR or the average VaR over the last 60 business days, multiplied 

by a factor (3+k) for a violation penalty, wherein a violation involves the actual negative 

returns exceeding the VaR forecast negative returns for a given day:4 

  

   ______

60t t-1DCC = sup - 3 + k VaR ,  - VaR  (1) 

 

where  
 

DCCt = daily capital charges, which is the higher of   60

______

t-1- 3+ k VaR  and  - VaR , 

 

tVaR  = Value-at-Risk for day t, 

 

tttt zYVaR ̂ˆ  , 

 

60

______

VaR  = mean VaR over the previous 60 working days, 
 

tŶ = estimated return at time t, 

 

tz = 1% critical value of the distribution of returns at time t,  

 

t̂ = estimated risk (or square root of volatility) at time t, 

 
0 k 1    is the Basel II violation penalty (see Table 1). 
 
 

[Insert Table 1 here] 

 

The multiplication factor5 (or penalty), k, depends on the central authority’s assessment 

of the ADI’s risk management practices and the results of a simple backtest. It is 

                                                            
4 Our aim is to investigate the likely performance of the Basel II regulations. In this section, we carry out 
our analysis applying the Basel II formulae to a period that includes the 2008-09 GFC, during which the 
Basel II Accord regulations were not fully implemented. 
 
5 The formula in equation (1) is contained in the 1995 amendment to Basel I, while Table 1 appears for 
the first time in the Basel II Accord in 2004.  
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determined by the number of times actual losses exceed a particular day’s VaR forecast 

(Basel Committee on Banking Supervision (1996, 2006)). The minimum multiplication 

factor of 3 is intended to compensate for various errors that can arise in model 

implementation, such as simplifying assumptions, analytical approximations, small 

sample biases and numerical errors that tend to reduce the true risk coverage of the 

model (see Stahl (1997)). Increases in the multiplication factor are designed to increase 

the confidence level that is implied by the observed number of violations to the 99 per 

cent confidence level, as required by regulators (for a detailed discussion of VaR, as 

well as exogenous and endogenous violations, see McAleer (2009), Jiménez-Martin et 

al. (2009), and McAleer et al. (2010a)). 

 

In calculating the number of violations, ADIs are required to compare the forecasts of 

VaR with realised profit and loss figures for the previous 250 trading days. In 1995, the 

1988 Basel Accord (Basel Committee on Banking Supervision (1988)) was amended to 

allow ADIs to use internal models to determine their VaR thresholds (Basel Committee 

on Banking Supervision (1995)). However, ADIs that propose using internal models are 

required to demonstrate that their models are sound. Movement from the green zone to 

the red zone arises through an excessive number of violations. Although this will lead to 

a higher value of k, and hence a higher penalty, violations will also tend to be associated 

with lower daily capital charges.6 

 

Value-at-Risk refers to the lower bound of a confidence interval for a (conditional) 

mean, that is, a “worst case scenario on a typical day”. If interest lies in modelling the 

random variable,  Yt
, it could be decomposed as follows: 

 

 1( | )t t t tY E Y F   . (2) 

 

This decomposition states that Y
t
 comprises a predictable component, E(Y

t
| F

t1
) , which 

is the conditional mean, and a random component, 
t
. The variability of  Yt

, and hence 

                                                            
6 The number of violations in a given period is an important (though not the only) guide for regulators to 
approve a given VaR model. 
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its distribution, is determined by the variability of 
t
. If it is assumed that  t

 follows a 

conditional distribution, such that: 

 
),(~ 2

ttt D                                                         

 

where  t
 and   t

 are the conditional mean and standard deviation of  t
, respectively, 

these can be estimated using a variety of parametric, semi-parametric or non-parametric 

methods.  

 

The VaR threshold for  Yt
 can be calculated as: 

 

 1( | )t t t tVaR E Y F   , (3) 

 

where   is the critical value from the distribution of 
t

 to obtain the appropriate 

confidence level. It is possible for 
t
 to be replaced by alternative estimates of the 

conditional standard deviation in order to obtain an appropriate VaR (for useful reviews 

of theoretical results for conditional volatility models, see Li et al. (2002) and McAleer 

(2005), who discusses a variety of univariate and multivariate, conditional, stochastic 

and realized volatility models).  

 

Some recent empirical studies (see, for example, Berkowitz and O'Brien (2001), 

Gizycki and Hereford (1998), and Pérignon et al. (2008)) have indicated that some 

financial institutions overestimate their market risks in disclosures to the appropriate 

regulatory authorities, which can imply a costly restriction to the banks trading activity. 

ADIs may prefer to report high VaR numbers to avoid the possibility of regulatory 

intrusion. This conservative risk reporting suggests that efficiency gains may be 

feasible. In particular, as ADIs have effective tools for the measurement of market risk, 

while satisfying the qualitative requirements, ADIs could conceivably reduce daily 

capital charges by implementing a context-dependent market risk disclosure policy. 
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McAleer (2009) and McAleer et al. (2010a) discuss alternative approaches to optimize 

VaR and daily capital charges. 

 

The next section describes several volatility models that are widely used to forecast the 

1-day ahead conditional variances and VaR thresholds.  

 

3. Models for Forecasting VaR 

 

ADIs can use internal models to determine their VaR thresholds. There are alternative 

time series models for estimating conditional volatility. In what follows, we present 

several conditional volatility models to evaluate strategic market risk disclosure, namely 

GARCH, GJR and EGARCH, with Gaussian, Student-t and Generalized Normal 

distribution errors, where the parameters are estimated.  

 

These models are chosen as they are well known and widely used in the literature. For 

an extensive discussion of the theoretical properties of several of these models, see Ling 

and McAleer (2002a, 2002b, 2003a) and Caporin and McAleer (2010b). As an 

alternative to estimating the parameters, we also consider the exponential weighted 

moving average (EWMA) method by Riskmetrics (1996) and Zumbauch, (2007) that 

calibrates the unknown parameters. We include a section on these models to present 

them in a unified framework and notation, and to make explicit the specific versions we 

are using. Apart from EWMA, the models are presented in increasing order of 

complexity.  

 

3.1 GARCH 

 

For a wide range of financial data series, time-varying conditional variances can be 

explained empirically through the autoregressive conditional heteroskedasticity 

(ARCH) model, which was proposed by Engle (1982). When the time-varying 

conditional variance has both autoregressive and moving average components, this 

leads to the generalized ARCH(p,q), or GARCH(p,q), model of Bollerslev (1986). It is 

very common to impose the widely estimated GARCH(1,1) specification in advance.  
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Consider the stationary AR(1)-GARCH(1,1) model for daily returns, ty :   

 

 t 1 2 t-1 t 2y = φ +φ y + ε , φ < 1  (4) 

 

for nt ,...,1 , where the shocks to returns are given by:  

 

 t t t t

2
t t -1 t-1

ε = η h , η ~ iid(0,1)

h =ω+αε + βh ,
 (5) 

 

and 0, 0, 0      are sufficient conditions to ensure that the conditional variance 

0th . The stationary AR(1)-GARCH(1,1) model can be modified to incorporate a non-

stationary ARMA(p,q) conditional mean and a stationary GARCH(r,s) conditional 

variance, as in Ling and McAleer (2003b). 

 

3.2 GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward movements 

in daily returns) on the conditional variance, th , are assumed to be the same as the 

effect of negative shocks (or downward movements in daily returns) of equal 

magnitude. In order to accommodate asymmetric behaviour, Glosten, Jagannathan and 

Runkle (1992) proposed a model (hereafter GJR), for which GJR(1,1) is defined as 

follows:  

 

 2
t t-1 t-1 t-1h =ω+(α+ γI(η ))ε + βh ,  (6) 

 

where 0,0,0,0    are sufficient conditions for ,0th  and )( tI   is 

an indicator variable defined by: 

 

  
1, 0

0, 0
t

t
t

I






  
 (7) 
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 as t  has the same sign as t . The indicator variable differentiates between positive 

and negative shocks, so that asymmetric effects in the data are captured by the 

coefficient  . For financial data, it is expected that 0  because negative shocks 

have a greater impact on risk than do positive shocks of similar magnitude. The 

asymmetric effect, ,  measures the contribution of shocks to both short run persistence, 

2  , and to long run persistence, 2    . Although GJR permits asymmetric 

effects of positive and negative shocks of equal magnitude on conditional volatility, the 

special case of leverage, whereby negative shocks increase volatility while positive 

shocks decrease volatility (see Black (1976) for an argument using the debt/equity 

ratio), cannot be accommodated (for further details on asymmetry versus leverage in the 

GJR model, see Caporin and McAleer (2010b)). 

 

3.3 EGARCH 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH, or EGARCH(1,1), model of Nelson (1991), namely:  

 

 t -1 t-1
t t-1

t-1 t-1

ε ε
logh =ω+α + γ + βlogh , | β |< 1

h h
 (8) 

 

where the parameters ,    and   have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models.  

 

EGARCH captures asymmetries differently from GJR. The parameters   and   in 

EGARCH(1,1) represent the magnitude (or size) and sign effects of the standardized 

residuals, respectively, on the conditional variance, whereas   and    represent the 

effects of positive and negative shocks, respectively, on the conditional variance in 

GJR(1,1). Unlike GJR, EGARCH can accommodate leverage, depending on the 

restrictions imposed on the size and sign parameters. 

 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 
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logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0th ; (ii) moment conditions are required for the 

GARCH and GJR models as they are dependent on lagged unconditional shocks, 

whereas EGARCH does not require moment conditions to be established as it depends 

on lagged conditional shocks (or standardized residuals); (iii) Shephard (1996) observed 

that 1||   is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the standardized residuals appear in equation (7), 1||   would 

seem to be a sufficient condition for the existence of moments; and (v) in addition to 

being a sufficient condition for consistency, 1||   is also likely to be sufficient for 

asymptotic normality of the QMLE of EGARCH(1,1).   

The three conditional volatility models given above are estimated under the following 

distributional assumptions on the conditional shocks: (1) Gaussian, (2) Student-t, with 

estimated degrees of freedom, and (3) Generalized Normal. As the models that 

incorporate the t distributed errors are estimated by QMLE, the resulting estimators are 

consistent and asymptotically normal, so they can be used for estimation, inference and 

forecasting. 

 

3.4 Exponentially Weighted Moving Average (EWMA) 

 

As an alternative to estimating the parameters of the appropriate conditional volatility 

models, Riskmetrics (1996) developed a model which estimates the conditional 

variances and covariances based on the exponentially weighted moving average 

(EWMA) method, which is, in effect, a restricted version of the ARCH( ) model. This 

approach forecasts the conditional variance at time t as a linear combination of the 

lagged conditional variance and the squared unconditional shock at time 1t  . The 

EWMA model calibrates the conditional variance as: 

 

 2
t t-1 t-1h = λh +(1- λ)ε  (9) 

 



13 

where   is a decay parameter. Riskmetrics (1996) suggests that   should be set at 0.94 

for purposes of analysing daily data. As no parameters are estimated, there are no 

moment or log-moment conditions. 

 

4. Data  

 

The data used in estimation and forecasting are the closing daily prices for French CAC 

40 (CAC), German DAX 30 (DAX), US Dow Jones 100 (DJ), UK FTSE100 (FTSE), 

Hong Kong Hang Seng 45 (HSI), Spanish IBEX 35 (IBEX), Japanese Nikkei 225 

(Nikkei), Swiss SMI 50 (SMI) and US S&P500(S&P500). They were obtained from the 

Thomson Reuters-Ecowin Financial Database for the period 3 January 2000 to 14 

October 2010.  

 

If tP  denotes the market price, the returns at time t ( )tR  are defined as: 

  1log / t t tR P P . (10) 

 

[Insert Figures 1-2 and Tables 2-3 here] 

 

In Figure 1 we show the daily returns of the 9 indices, for which the descriptive 

statistics are given in Table 2. Extremely high positive and negative returns are evident 

from September 2008 onward, and have continued well into 2009. The mean is close to 

zero, and the range is between -13.6% (for HSI) and +13.5% (for IBEX). Indices 

display high kurtosis and heavy tails, which is not surprising for daily financial returns 

data. In Table 2, the Jarque-Bera Lagrange Multiplier test rejects the null hypothesis of 

normally distributed returns for every index. Figure 3 shows the histograms for each 

index, together with the theoretical Gaussian and Student-t probability density 

functions. It seems that the Student-t, density fits the returns distributions better than the 

Gaussian.  

 

Additionally, it is interesting to examine the returns distributions for the three periods 

relating to the GFC, namely: before (January-August 2008), during (August 2008-

March 2009) and after (March 2009- October 2010). As can be seen in Figure 4, there 

are changes in the shapes of the underlying probability density functions. We graph the 

empirical distributions, together with the Normal, Student-t and a kernel density 
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estimator for the three periods. Clearly, the shape of the densities changes from one 

period to another for each index.  

 

Apparently, stock returns have similar patterns of variability over time. However, a 

closer examination of the correlations in Table 3 reveals that: (1) S&P500 has a very 

high correlation with DJ (0.97), which are two indices in similar markets; (2) European 

indices (CAC, DAX, FTSE, IBEX and SMI) have high correlations among themselves, 

and (3) the correlation between Nikkei and HSI (0.63) is higher than its correlations 

with European and American indices, and has an especially low correlation with DJ and 

SP500; in some cases, as low as 0.12. This suggests that the returns behave somewhat 

differently in the three geographical areas contained in the sample (namely, USA, 

Europe and Asia). 

 

As for returns volatility, several measures of volatility are available in the literature. In 

order to gain some intuition, we adopt the measure proposed in Franses and van Dijk 

(1999), wherein the true volatility of returns is defined as: 

 

   2

1|  t t t tV R E R F , (11) 

 

where 1tF  is the information set at time t-1. Figure 2 presents the square root of Vt in 

equation (11) as “volatilities”. The series exhibit clusterings that needs to be captured 

by an appropriate time series model. The volatility of the series appears to be high 

during the early 2000s, followed by a quiet period from 2003 to the beginning of 2007. 

Volatility increases dramatically after August 2008, due in large part to the worsening 

global credit environment. This increase in volatility is even higher in October 2008. 

For example, in less than four weeks in October 2008, the S&P500 index plummeted by 

27.1%. In less than three weeks in November 2008, starting the morning after the US 

elections, the SP500 index plunged a further 25.2%. Overall, from late August 2008, US 

stocks fell by a scarcely believable 42.2% to reach a low on 20 November 2008. Similar 

highly volatile behaviour is observed in several of the remaining indices. 

 

Table 4 displays the correlation between the volatilities of returns for the period January 

2008 to November 2010. The correlation between DJ and S&P500 is high (at 0.98), 
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which is hardly surprising since they both refer to the US market. The linear 

relationship in the volatility between the remainder of the indexes is not uniform, with a 

maximum of 0.90 between CAC and FTSE and a minimum of 0.29 between HSI and 

Nikkei. Correlations between the volatilities of returns in European markets are higher 

than the correlations between these indices and those in other markets. From the above 

we can conclude that there is a noticeable heterogeneity among the indices, so it is 

possible to benefit from such diversity. 

 

5. Robust Forecasting of VaR and Evaluation Framework 

 

As discussed in McAleer et al. (2010c), the GFC has affected the best risk management 

strategies by changing the optimal model for minimizing daily capital charges. The 

objective in this section is to provide a robust risk management strategy, namely one 

that does not change over time, even in the presence of a GFC. This robust risk 

management strategy also has to lead to daily capital charges that are not excessive, and 

to violation frequencies that are compatible with the Basel II Accord penalty structure.  

 

ADIs need not restrict themselves to using only a single risk model. We propose a risk 

management strategy that consists in choosing a forecast from among different 

combinations of alternative univariate risk models for VaR. McAleer et al. (2010c) 

developed a risk management strategy that used combinations of several models for 

forecasting VaR. It was found that an aggressive risk management strategy (namely, 

choosing the Supremum of VaR forecasts, or an upperbound) yielded the lowest mean 

capital charges and largest number of violations. On the other hand, a conservative risk 

management strategy (namely, by choosing the Infinum, or lowerbound) had far fewer 

violations, and correspondingly higher mean daily capital charges.  

 

In this paper, we forecast VaR using combinations of the forecasts of individual VaR 

models, namely the rth percentile of the VaR forecasts of a set of univariate conditional 

volatility models. Alternative single models with different error distributions and 

several different combinations of models are compared over three different time periods 

to investigate which, if any, of the risk management strategies may be robust.  
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We conduct an exercise to analyze the performance of existing VaR forecasting models, 

as permitted under the Basel II framework, when applied to the French CAC, German 

DAX, US Dow Jones, UK FTSE, Hong Kong Hang Seng, Spanish IBEX, Japanese 

Nikkei, Swiss SMI and US S&P500. 

 

For each index we use four different models, ARCH, EGARCH, GJR and Riskmetrics, 

and for each of the first three conditional volatility models, we use three distribution 

errors, namely Gaussian, Student-t and Generalized Normal.  

 

In addition, we analyze twelve new strategies based on combinations of the previous 

standard single-model forecasts of VaR, namely: the Average, Infinum (0th percentile), 

Supremum (100th percentile), and nine additional strategies based on the 10th through to 

the 90th percentiles, which includes the Median (50th percentile).7 

 

We will examine whether it is possible to select a robust VaR forecast irrespective of 

the time period, while providing reasonable daily capital charges and numbers of 

violations. 

 

5.1 Evaluating Crisis-Robust Risk Management Strategies 

 

In Tables 5 and 6, the performance of the different VaR forecasting models is evaluated 

using several standard criteria that are relevant for the risk manager, namely: daily 

capital charges (DCC), number of violations (NoV), accumulated losses8 (AcLoss), and 

the value of the asymmetric linear tick loss function9 (AlTick) that allows a comparison 

of model performance.  

 

                                                            
7 Analysis has been done for nine percentiles (available upon request). In the paper, only the results for 
the Median strategy are shown. 
8 López (1999) suggested measuring the accuracy of the VaR forecast on the basis of the distance 
between the observed returns and the forecasted VaR values if a violation occurs:  

      




01 1 11 1
1

0

R VaR if R and R VaRt t tt t t t
t

otherwise
 , a preferred VaR model is the one that minimizes 

the total loss value, 1 1t
T

tt    . 

9 The tick loss function of order α defined as     1 01 1 1L e e et t t      , where 1 1 1e R VaRt t t    . 
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The performance criteria are calculated for each model and error distribution, and for 

each of the three sub-samples, before, during, and after the 2008-09 GFC, where, for 

most indices10, before is from 2 January 2008 to 11 August 2008, during is from 11 

August 2008 to 9  March 2009, and after is from 9 March 2009 to 14 October  2010. 

 

No risk model is found to be superior to its competitors in all situations as there is no 

strategy that optimizes every evaluation statistic for the three sub-periods. Nonetheless, 

the Median is found to be robust as it produces adequate VaR forecasts that exhibit 

stable and, very often, superior results across different periods relative to other risk 

models.  

 

[Insert Tables 5-6 here] 

 

In Table 5, we have the ranking of the strategies for each index according to the daily 

capital charges (DCC). Table 5a contains the information relative to the before the GFC, 

Table 5b corresponds to the GFC, and Table 5c is after the GFC.  Additionally, each 

cell shows the number of violations (NoV) as the middle number, together with the 

accumulated losses for each model (bottom). We comment on the rankings for the cases 

in which the number of violations is less than or equal to 8, which is the upper threshold 

beyond which it might be perceived as being too close to the red zone.  

 

(i) Daily capital charges and number of violations: 

 

1. Before the GFC, the best strategy for minimizing DCC and staying below 8 

violations is the Supremum, for 6 of 9 indices. The second best strategy is 

EGARCH for 3 of 9 indices.  Riskmetrics is also superior to the Median for 8 of 

9 indices. However, the best strategy for staying in the green zone (up to 4 

violations) is the Median (for 8 of 9 indices). 

2. During the GFC, the Supremum violates more than 8 times in 7 of 9 indices, 

while Riskmetrics violates more than 8 times for 5 of 9 indices. However, the 

                                                            
10 The precise dates for the beginning and ending of the GFC for each index, based on the peaks and 
troughs of the respective indexes, are as follows: CAC from 2/9/2008 to 9/3/2009; DAX from 11/8/2008 
to 6/3/2009; DJ from 11/9/2008 to 9/3/2009; FTSE from 29/8/2008 to 3/3/2009; HSHK from 1/1/2008 to 
9/3/2009; IBEX from 11/8/2008 to 9/3/2009; Nikkei from 11/8/2008 to 10/3/2009; SMI from 11/8/2008 
to 9/3/2009; S&P500 from 11/8/2008 to 9/3/2009. 
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Median is superior to Riskmetrics for 5 indices, while it maintains fewer than 8 

violations for 8 of 9 indices.  

3. After the GFC, the Supremum is best for 5 of 9 indices, but violates heavily for 

the remaining 4 indices. In second place, for 2 of 9 cases, is EGARCH, but it 

also tends to violate more frequently. The Median is a strategy in the green zone 

or with fewer than 8 violations for all indices, while it is superior to Riskmetrics 

in terms of DCC for 5 of 9 indices.  

 

In summary, the Median is a risk management strategy that is in the green zone before 

the GFC, and has fewer than 8 violations during and after the GFC. While some 

competing strategies perform better before the crisis, they tend to violate too often 

during and after the crisis. 

 

(ii) Accumulated losses. An additional criterion that is complementary to the daily 

capital charges is the accumulated losses, namely the sum of the total losses implied by 

each strategy for a given index.  

 

1. Before the GFC, the Median implies accumulated losses that are lower than its 

leading competitors, namely, Supremum, EGARCH and Riskmetrics for 23 of 

27 cases. The 27 cases arise from 9 indices for three total outcomes, namely 

whether it is or is not superior to the Median strategy when compared with the 

other three strategies. 

2. During the GFC, the Median implies accumulated losses that are lower than its 

leading competitors, that is, Supremum, EGARCH and Riskmetrics for 26 of 27 

cases. 

3. After the GFC, the Median implies accumulated losses that are lower than its 

leading competitors, that is, Supremum, EGARCH and Riskmetrics for 23 of 27 

cases. 

 

The accumulated losses (AcLoss) are an important complementary criterion to those of 

daily capital charges (DCC) and the number of violations (NoV). The accumulated 

losses are related to the size (and number) of violations, and both are considered by 

regulators in order to decide whether an internal risk forecasting model is acceptable for 

a given ADI. 
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(iii) Asymmetric linear tick loss function: 

 

Another complementary criterion is the asymmetric linear tick loss function. This 

criterion is the objective function used to estimate quantiles. As we are proposing to use 

strategies based on quantiles of the individual forecasts, this is a relevant criterion. In 

Tables 6a-6c, we present the rankings of the strategies for each index according to the 

asymmetric linear tick loss function. Table 6a contains the information relative to before 

the GFC, Table 6b corresponds to the GFC, and Table 6c refers to after the GFC. 

 

In what follows, we analyse the performance of the Median relative to its leading 

competitors:  

 

1. Before the GFC, the Median has values of the asymmetric linear  tick loss 

function that are always superior, for all indices, to its leading competitors, 

namely, Supremum and Riskmetrics. In addition, EGARCH has lower 

(better) values than the Median for 6 of 9 indices, and would be preferred 

before the GFC according to this criterion.  

2. During the GFC, the Median implies values of the asymmetric linear tick 

loss function that are better than those of Supremum, EGARCH and 

Riskmetrics for 26 of 27 cases. This suggests that the Median would again be 

a sensible strategy for managing risk during the GFC.  

3. After the GFC, the Median implies values of the asymmetric linear  tick 

loss function that are better (lower) than its leading competitors, namely, 

Supremum, EGARCH and Riskmetrics for 23 of 27 cases, which reinforces 

the previous conclusions that are favourable to the Median.  

 

 6. Conclusion 

 

In this paper we proposed a strategy for obtaining robust risk forecasts that use 

combinations of several conditional volatility models to forecast VaR. Different 

strategies for combining models were compared over three different time periods, using 

a variety of international indices that included French CAC, German DAX, US Dow 
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Jones, UK FTSE100, Hong Kong Hang Seng, Spanish Ibex35, Japanese Nikkei, Swiss 

SMI and US S&P500.  

 

A set of 14 models and combinations of models were used for each index. We started 

with 4 different univariate models, namely ARCH, EGARCH, GJR and Riskmetrics, 

and for each of the first 3 conditional volatility models we considered three distributions 

for the errors, namely Gaussian, Student-t and Generalized Normal. Additionally, we 

presented 4 new strategies based on combinations of standard univariate VaR model 

forecasts, namely Infinum and Supremum (as developed in McAleer et al. (2010a)), 

Average and Median. 

 

We investigated whether it was possible to determine a GFC-robust risk management 

strategy. Backtesting provided evidence that a risk management strategy based on VaR 

forecasts corresponding to the 50th percentile (or Median) of the VaR forecasts of a set 

of univariate conditional volatility models was robust, in that it yielded reasonable daily 

capital charges, numbers of violations that did not jeopardize institutions that might 

consider using such a strategy and, more importantly, was invariant before, during and 

after the 2008-09 GFC.  

 

The principle findings can be summarized as follows: 

 

1. Before the GFC, the best strategy for minimizing DCC and remaining below 8 

violations is the Supremum for 6 of 9 indices. The second best strategy is 

EGARCH for 3 of 9 indices.  Riskmetrics is also superior to the Median for 8 of 

9 indices. However, the best strategy for remaining in the green zone (namely, 

up to 4 violations), which is typically desired by ADIs, is the Median (for 8 of 9 

indices). 

2. During the GFC, the Supremum violates more than 8 times for 7 of 9 indices, 

while Riskmetrics violates more than 8 times for 5 of 9 indices. However, the 

Median is superior to Riskmetrics for 5 indices, while it maintains fewer than 8 

violations for 8 of 9 indices. 

3. After the GFC, the Supremum is the best strategy for 5 of 9 indices, but violates 

heavily for the remaining indices. In second place, for 2 of 9 cases, is EGARCH, 

but it also tends to violate heavily for the other indices. The Median strategy 
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remains in the green zone, or has fewer than 8 violations, for all indices, while it 

is superior to Riskmetrics for 5 of 9 indices.  

 

In summary, the Median is a risk management strategy that remains in the green zone 

before the GFC, and with fewer than 8 violations during and after the GFC. While some 

competing strategies perform better before the GFC, they tend to violate too often 

during and after the GFC. The analysis of complementary criteria, such as the 

accumulated losses and asymmetric linear tick loss function, reinforce the previous 

conclusions regarding overall forecasting performance.  

 

The attraction for risk managers in using the Median strategy is that they do not need to 

keep changing the rules for generating daily VaR forecasts. The Median is a prudent 

and profitable rule for calculating VaR forecasts, both in tranquil and turbulent times.  

 

The idea of combining different VaR forecasting models is entirely within the spirit of 

the Basel Accord, although its use would require approval by the regulatory authorities, 

as for any forecasting model. This approach is not computationally demanding, even 

though several models need to be specified and estimated over time. Further research is 

needed to compute the standard errors of the forecasts of the combined models, 

including the Median forecast strategy. 
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Figure 1. Daily Returns 
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Figure 2. Volatility of Daily Returns 

3 January 2000 - 14 October 2010 
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Figure 3. Histograms and theoretical Normal and Student-t distributions 

3 January 2000 - 14 October 2010 
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Figure 4. Histograms, Normal, Student-t and Pareto distributions   
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Figure 4 (continued). Histograms, Normal, Student-t and Pareto distributions   
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Table 1. Basel Accord Penalty Zones 

 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. The 
penalty structure under the Basel II Accord is specified for the number 
of violations and not their magnitude, either individually or 
cumulatively.   
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Table 2. Descriptive Statistics  
3 January 2000 - 14 October 2010 

 
 CAC DAX DJI FTSE HSI IBEX NIKKEI SMI S&P500 

Mean -0.014 -0.001 0.000 -0.005 0.012 -0.001 -0.024 0.004 -0.006 

Median 0.000 0.034 0.011 0.000 0.000 0.037 0.000 0.013 0.008 

Max. 10.60 10.80 10.50 9.40 13.40 13.50 13.20 10.80 10.90 

Min. -9.50 -8.90 -8.20 -9.30 -13.60 -9.60 -12.10 -8.10 -9.50 

Std. Dev. 1.56 1.63 1.28 1.31 1.63 1.51 1.57 1.28 1.36 

Skew. 0.06 0.04 0.01 -0.13 -0.05 0.14 -0.31 0.02 -0.11 

Kurt. 8.17 7.48 10.82 9.29 11.22 9.35 9.60 9.46 10.84 

J-B 3134.3 2352.1 7163.6 4637.4 7919.3 4737.4 5135.9 4882.0 7202.2 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 3. Correlations between Index Returns 
3 January 2000 - 14 October 2010 

 
Index CAC DAX DJI FTSE HSI IBEX NIKKEI SMI S&P500 

CAC 1         

DAX 0.87 1        

DJI 0.52 0.57 1       

FTSE 0.89 0.80 0.50 1      

HSI 0.36 0.32 0.20 0.36 1     

IBEX 0.88 0.79 0.49 0.81 0.35 1    

NIKKEI 0.30 0.26 0.12 0.30 0.58 0.28 1   

SMI 0.83 0.78 0.48 0.81 0.32 0.77 0.30 1  

S&P500 0.54 0.58 0.97 0.51 0.21 0.50 0.12 0.48 1 
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Table 4. Correlations between Index Standard Deviations 
3 January 2008 - 14 October 2010 

 
Index CAC DAX DJI FTSE HSI IBEX NIKKEI SMI S&P500 

CAC 1         

DAX 0.86 1.00        

DJI 0.57 0.62 1.00       

FTSE 0.90 0.80 0.54 1.00      

HSI 0.40 0.44 0.37 0.41 1.00     

IBEX 0.85 0.76 0.50 0.78 0.36 1.00    

NIKKEI 0.41 0.43 0.54 0.40 0.29 0.40 1.00   

SMI 0.81 0.73 0.53 0.81 0.41 0.74 0.43 1.00  

S&P500 0.57 0.62 0.98 0.54 0.36 0.50 0.54 0.53 1.00 
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  Table 5. Daily Capital Charges Rankings  - Before GFC 

CAC DAX DJ100 FTSE HSHK IBEX NIKKEI SMI SP500 

SUP 
-7.2- 

(5.55 %) 

SUP 
-6.4- 

(6.9 %) 

SUP 
-6.4 - 

(2.0 %) 

SUP 
- 7.3- 

(6.6 %) 

EGARCH
- 6.6- 

(5.6 %) 

EGARCH
- 4.8- 

(6.6 %) 

SUP 
- 8.0- 

(4.6 %) 

SUP 
- 8.0- 

(5.1 %) 

SUP 
- 9.6- 

(2.1 %) 

GARCH 
-5.8- 

(5.22 %) 

EGARCH 
- 3.2- 

(4.2 %) 

GARCH 
- 6.4- 

(2.0 %) 

EGARCH
-5.8 - 

(4.0 %) 

SUP 
- 1.7- 

(0.5 %) 

SUP 
-8.0 - 

(8.2 %) 

EGARCH
- 8.0 

(4.5%) 

EGARCH 
-3.2 - 

(2.7 %) 

EGARCH
-6.4 - 

(1.1 %) 

EGARCH 
-4.3- 

(4.0 %) 

GARCH 
- 4.8- 

(6.2 %) 

RSKM 
-4.8 - 

(1.7%) 

GJR 
-5.8 - 

(4.7  %) 

GJR 
- 6.6- 

(5.5  %) 

GARCH 
- 6.4- 

(6.9 %) 

GARCH 
-4.8 - 

(2.0  %) 

GJR 
- 4.8- 

(3.4 %) 

GARCH 
-9.6 - 

(1.9 %) 

RSKM 
-2.9- 

(5.1 %) 

RSKM 
- 6.4- 

(6.5 %) 

EGARCH 
- 6.4- 

(1.0 %) 

EGARCH_
G 

- 4.4- 
(3.7 %) 

GARCH 
- 6.6- 

(5.4 %) 

RSKM 
- 3.2- 

(7.0 %) 

RSKM 
- 4.8- 

(2.5 %) 

GARCH 
- 8.0- 

(4.9 %) 

RSKM 
-6.4 - 

(1.6 %) 

GARCH_G 
- 2.9- 

(4.8 %) 

GARCH_G 
- 4.8- 

(5.7 %) 

GJR 
-6.4 - 

(1.1 %) 

GARCH 
- 7.3- 

(5.8 %) 

RSKM 
- 1.7- 

(1.3%) 

GJR 
-3.2 - 

(5.7 %) 

GJR 
- 1.6- 

(0.7 %) 

RSKM 
- 6.4- 

(4.2 %) 

GJR 
- 4.8- 

(1.0 %) 

GJR 
- 4.3- 

(4.1 %) 

GJR 
- 3.2- 

(4.8%) 

GARCH_G 
- 3.2- 

(1.1 %) 

GJR_G 
- 5.8 - 

(4.4 %) 

EGARCH_
G 

-8.3 - 
(6.8 %) 

EGARCH_
G 

- 4.8- 
(5.8 %) 

EGARCH_
G 

- 1.6- 
(0.5 %) 

EGARCH_
G 

-3.2 - 
(2.2 %) 

GARCH_G
-3.2 - 

( 0.8%) 

EGARCH_
G 

- 4.3- 
(3.6 %) 

EGARCH_
G 

- 1.6- 
(4.0 %) 

MEDIAN 
- 3.2- 

(0.7 %) 

MEDIAN 
-5.8 - 

(4.4 %) 

MEDIAN 
- 3.3- 

(1.8 %) 

GARCH_G
-3.2 - 

(6.4 %) 

MEDIAN 
-1.6 - 

(0.7 %) 

GARCH_G 
-6.4- 

(3.9 %) 

MEDIAN 
-1.6- 

(0.8 %) 

MEDIAN 
- 2.9- 

(3.9 %) 

MEAN 
- 3.2- 

(4.5 %) 

MEAN 
-3.2- 

(0.7 %) 

MEAN 
- 5.8- 

(4.3 %) 

MEAN 
- 5.0- 

(3.3 %) 

MEDIAN 
-3.2- 

(5.6 %) 

MEAN 
- 1.6- 

(0.9 %) 

MEDIAN 
-3.2- 

(2.9 %) 

MEAN 
- 1.6- 

( 0.7%) 

MEAN 
-2.9 - 

(3.7 %) 

MEDIAN 
-3.2- 

(4.6 %) 

GJR_G 
-1.6- 

(0.6 %) 

RSKM 
-7.3 - 

(4.9 %) 

GJR_G 
- 8.3- 

(6.4 %) 

MEAN 
-3.2- 

(5.7 %) 

GARCH_G
-1.6 - 

(1.2 %) 

GJR_G 
-3.2- 

(2.9 %) 

EGARCH_
G 

- 1.6- 
(0.7 %) 

GJR_G 
-2.9 - 

(3.8 %) 

GJR_G 
-3.2- 

(4.5 %) 

EGARCH_
G 

-1.6- 
(0.6 %) 

GARCH_G
-7.3 - 

(5.2 %) 

GARCH_G
- 8.3- 

(6.1 %) 

GJR_G 
-3.2- 

(5.3 %) 

GJR_G 
- 1.6- 

(0.3 %) 

MEAN 
-3.2- 

(3.0 %) 

GJR_G 
- 1.6- 

(0.8 %) 

GARCH_T 
-2.9- 

(4.5 %) 

GARCH_T 
-4.8- 

(5.2 %) 

GARCH_T 
-3.2- 

(0.4 %) 

EGARCH_T
- 4.4- 

(2.9 %) 

EGARCH_T
- 8.3- 

(6.6 %) 

EGARCH_T
-3.2- 

(4.4 %) 

EGARCH_T
-1.6- 

(0.0 %) 

EGARCH_T 
-3.2- 

(1.5 %) 

GJR_T 
-1.6 - 

(0.6%) 

GJR_T 
- 2.9- 

(3.5 %) 

EGARCH_T 
-1.6- 

(3.9 %) 

GJR_T 
-1.6- 

(0.3 %) 

GJR_T 
- 5.8- 

(3.8 %) 

GJR_T 
-6.6 - 

(4.3 %) 

GARCH_T
-3.2- 

(5.8 %) 

GARCH_T
- 1.6- 

(0.6 %) 

GJR_T 
-3.2- 

(2.1 %) 

EGARCH_T
-1.6 - 

(0.5 %) 

EGARCH_T 
-1.4 - 

(1.3 %) 

GJR_T 
-3.2- 

(4.2 %) 

EGARCH_T 
-1.6- 

(0.3 %) 

GARCH_T
-5.8 - 

(4.3 %) 

GARCH_T
- 8.3- 

(6.8 %) 

GJR_T 
-3.2- 

(4.6 %) 

GJR_T 
- 0.0- 

(0.0 %) 

GARCH_T 
-3.2- 

(2.9 %) 

GARCH_T
-1.6 - 

(0.2 %) 

B
e
fo
re
 

INF 
- 1.4- 

(1.3 %) 

INF 
-1.6- 

(3.9 %) 

INF 
-1.6- 

(0.3 %) 

INF 
- 4.4- 

(2.1 %) 

INF 
- 5.0- 

(2.7 %) 

INF 
-3.2- 

(4.4 %) 

INF 
- 0.0- 

(0.0 %) 

INF 
-3.2- 

(1.5 %) 

INF 
- 1.6- 

(0.2 %) 

Notes: Higher in the table means lower daily capital charges. The number of violations NoV is the 
middle number in each cell, while the lower number is the accumulated losses. Underscore T (_T) 
denotes Student-t distribution and underscore G (_G) denotes Generalized Normal distribution. 
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Table 5b. Daily Capital Charges Rankings  - During GFC 

CAC DAX DJ FTSE HSHK IBEX NIKKEI SMI SP500 

SUP 
-13.06- 
(7.3%)  

EGARCH 
-8.4- 

(3.9%) 

EGARCH_
G 

-6.7- 
(6.7%) 

SUP 
-13.3- 
(8.0%) 

SUP 
-4.8- 

(4.6%) 

SUP 
-10- 

(2.5%) 

EGARCH
-14.9- 

(13.0%) 

EGARCH 
-8.3- 

(8.0%) 

EGARCH
-16.7- 

(12.2%) 

EGARCH 
-7.5- 

(4.6%) 

GARCH 
-8.4- 

(3.9%) 

EGARCH 
-11.7- 
(6.7%) 

EGARCH
-13.3- 
(8.0%) 

EGARCH
-4.8- 

(4.6%) 

EGARCH_
G 
-3- 

(2.5%) 

SUP 
-18.2- 

(13.0%) 

SUP 
-11.7- 
(8.0%) 

SUP 
-18.3- 

(12.5%) 

EGARCH_
G 

-7.5- 
(5.7%) 

EGARCH_
G 

-8.4- 
(2.8%) 

GARCH 
-10. 0- 
(5.0%) 

EGARCH_
G 

-13.3- 
(6.6%) 

GJR_N 
-4.8- 

(4.2%) 

EGARCH
-10- 

(4.4%) 

RSKM 
-6.6- 

(9.8%) 

EGARCH_
G 

-8.3- 
(4.2%) 

GJR 
-6.7- 

(5.2%) 

GJR 
-7.5- 

(5.1%) 

GJR 
-8.4- 

(4.2%) 

GJR 
-6.7- 

(3.9%) 

GJR 
-9.5- 

(6.5%) 

GARCH 
-4.8- 

(5.5%) 

GJR 
-8.1- 

(3.5%) 

GARCH 
-8.3- 

(8.1%) 

GJR 
-8.3- 

(5.1%) 

MEDIAN 
-5.0- 

(4.9%) 

EGARCH_T 
-3.7- 

(3.3%) 

SUP 
-15.1- 
(6.5%) 

SUP 
-15.0- 
(7.5%) 

EGARCH_T
-11.4- 
(4.3%) 

RSKM 
-4.8- 

(5.4%) 

GARCH 
-8.1- 

(2.6%) 

EGARCH_
G 

-9.9- 
(6.7%) 

GARCH 
-10- 

(4.8%) 

MEAN 
-5.0- 

(4.6%) 

GARCH 
-9.3- 

(3.9%) 

MEDIAN 
-6.7- 

(2.7%) 

MEDIAN 
-3.3- 

(3.0%) 

GARCH 
-7.6- 

(6.3%) 

EGARCH_
G 

-1.6- 
(1.0%) 

RSKM 
-5.0- 

(2.7%) 

GJR_N 
-9.9- 

(5.5%) 

MEDIAN 
-6.7- 

(3.7%) 

EGARCH_T
-3.3- 

(4.6%) 

MEDIAN 
-5.6- 

(3.5%) 

MEAN 
-6.7- 

(2.7%) 

MEAN 
-5.0 - 

(2.8%) 

MEAN 
-9.5- 

(4.9%) 

MEDIAN 
-4.8- 

(1.9%) 

MEDIAN 
-5.0- 

(1.6%) 

MEDIAN 
-5.0- 

(4.8%) 

MEAN 
-6.7- 

(3.6%) 

GARCH 
-11.7- 
(7.5%) 

MEAN 
-5.6- 

(3.3%) 

GJR_G 
-8.4- 

(3.3%) 

GARCH_G 
-3.3- 

(2.5%) 

GJR_G 
-9.5- 

(5.6%) 

MEAN 
-4.8- 

(1.4%) 

GJR_G 
-5.0- 

(1.9%) 

MEAN 
-5.0- 

(4.9%) 

GJR_G 
-8.3- 

(4.0%) 

EGARCH_
G 

-13.3- 
(7.2%) 

RSKM 
-1.8- 

(3.2%) 

GARCH_G 
-5.0- 

(2.7%) 

GJR_G 
-3.3- 

(2.5%) 

RSKM 
-9.5- 

(6.0%) 

GJR_G 
-3.2- 

(1.0%) 

MEAN 
-3.0 - 

(1.5%) 

GARCH_G
-5.0- 

(6.3%) 

EGARCH_T 
-6.7- 

(2.8%) 

GJR_G 
-5.0- 

(4.0%) 

GJR_G 
-7.5- 

(4.4%) 

GJR_T 
-6.7- 

(2.5%) 

EGARCH_T 
-3.3- 

(2.6%) 

MEDIAN 
-11.4- 
(5.4%) 

GARCH_G
-4.8- 

(2.5%) 

GARCH_G
-3.0 - 

(1.3%) 

GJR_G 
-3.3- 

(3.8%) 

GARCH_G 
-8.3- 

(3.3%) 

GARCH_G
-8.3- 

(4.5%) 

GARCH_G 
-5.6- 

(2.7%) 

EGARCH_T
-3.4 - 

(1.9%) 

RSKM 
-10.0- 
(4.3%) 

GARCH_G
-7.6- 

(5.0%) 

EGARCH_T
-0.0- 

(0.0%) 

EGARCH_T
-3.0- 

(0.6%) 

EGARCH_T
-8.3- 

(3.0%) 

GJR_T 
-6.7- 

(2.3%) 

RSKM 
-10.0- 
(6.2%) 

GJR_T 
-5.6- 

(3.3%) 

RSKM 
-8.4- 

(3.7%) 

GJR_T 
-3.3- 

(1.4%) 

GJR_T 
-9.5- 

(4.1%) 

GJR_T 
-0.0- 

(0.0%) 

GJR_T 
-2.0 - 

(0.2%) 

GJR_T 
-3.3- 

(2.8%) 

RSKM 
-10.0- 
(5.8%) 

GJR_T 
-3.3- 

(3.0%) 
GARCH_T 

-1.9- 
(1.9%) 

GARCH_T 
-5.0- 

(1.7%) 

GARCH_T 
-3.3- 

(1.2%) 

GARCH_T
-5.7- 

(3.1%) 

GARCH_T
-0.0- 

(0.0%) 

GARCH_T
-2.0 - 

(0.1%) 

GARCH_T
-5.0- 

(4.3%) 

GARCH_T 
-1.7- 

(1.6%) 

GARCH_T
-3.3- 

(2.9%) 

D
u

ri
n

g 

INF 
-1.9- 

(1.9%) 

INF 
-3.4- 

(1.7%) 

INF 
-3.3- 

(1.2%) 

INF 
-5.7- 

(1.4%) 

INF 
-0.0- 

(0.0%) 

INF 
-0.0 - 

(0.0%) 

INF 
-3.3- 

(2.3%) 

INF 
-1.7- 

(0.7%) 

INF 
-3.3- 

(2.7%) 
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Table 5c. Daily Capital Charges Rankings  - After GFC 
 CAC DAX DJ FTSE HSHK IBEX NIKEEI SMI SP500 

SUP 
-7.8- 

(7.5%) 

SUP 
-6.6- 

(7.05%) 

SUP 
-9.0- 

(6.52%) 

SUP 
-9.5- 

(5.74%) 

SUP 
-2.4- 

(2.98%) 

SUP 
-8.4- 

(10.6%) 

GARCH 
-3.6- 

(2.78%) 

SUP 
-6.59- 

(4.01%) 

SUP 
-10.8- 

(8.74%) 

GJR 
-4.8- 

(4.2%) 

EGARCH 
-4.8- 

(5.76%) 

EGARCH 
-9.0- 

(5.63%) 

MEAN 
-4.2- 

(1.94%) 

GJR 
-1.8- 

(2.36%) 

EGARCH
-7.8- 

(8.7%) 

SUP 
-6.6- 

(4.91%) 

GARCH 
-4.2- 

(2.41%) 

EGARCH
-10.2- 

(7.49%) 

EGARCH 
-6.0- 

(4.9%) 

GARCH 
-4.2- 

(3.12%) 

GARCH 
-5.4- 

(3.72%) 

EGARCH
-7.1- 

(3.98%) 

EGARCH
-1.8- 

(1.57%) 

GARCH 
-4.8- 

(7.0%) 

GJR 
-4.8- 

(3.64%) 

GJR 
-5.4- 

(2.47%) 

EGARCH_
G 

-6.6- 
(4.92%) 

EGARCH_
G 

-4.2- 
(3.9%) 

EGARCH_
G 

-4.2- 
(4.73%) 

GJR 
-7.2- 

(4.02%) 

EGARCH_ 
T 

-4.2- 
(2.09%)  

GARCH 
-2.4- 

(2.76%) 

MEDIAN 
-3.6- 

(4.9%) 

EGARCH
-4.8- 

(3.09%) 

EGARCH 
-4.8- 

(1.85%) 

GARCH 
-7.2- 

(4.20%) 

MEDIAN 
-3.0- 

(2.8%) 

MEDIAN 
-4.2 - 

(3.58%) 

RSKM 
-6.0- 

(4.25%) 

MEDIAN 
-4.8- 

(2.37%) 

RSKM 
-2.4- 

(2.89%) 

RSKM 
-4.2- 

(6.6%) 

RSKM 
-5.4 - 

(3.17%) 

GJR_G 
-3.60- 

(1.67%) 

MEDIAN
-4.8 - 

(2.73%) 

GJR_G 
-4.2- 

(3.3%) 

RSKM 
-4.2- 

(2.10%) 

EGARCH_
G 

-7.2- 
(3.38%) 

GARCH 
-5.3- 

(2.72%) 

GJR_G 
-0.6- 

(1.43%) 

EGARCH_
G 

-6.0- 
(6.0%) 

MEDIAN
-2.4- 

(1.01%) 

EGARCH_
G 

-3.60- 
(1.18%) 

GJR 
-8.4- 

(5.10%) 

MEAN 
-3.6- 

(2.4%) 

GJR_N 
-5.4- 

(5.50%) 

MEDIAN 
-4.8- 

(2.39%) 

GJR_N 
-6.5- 

(4.11%) 

MEDIAN
-0.6- 

(1.40%) 

GJR_G 
-4.8- 

(4.6%) 

EGARCH_
G 

-2.4- 
(1.34%) 

RSKM 
-3.60- 

(2.51%) 

MEAN 
-4.8- 

(2.63%) 

EGARCH_T 
-3.6- 

(2.9%) 

MEAN 
-4.2- 

(2.95%) 

GJR_G 
-4.8- 

(2.21%) 

GARCH_G
-3.0- 

(1.82%) 

MEAN 
-0.6- 

(1.31%) 

MEAN 
-3.6- 

(4.7%) 

MEAN 
-1.8- 

(1.00%) 

MEDIAN 
-3.00- 

(1.12%) 

RSKM 
-6.6- 

(4.19%) 

GARCH 
-5.4- 

(4.1%) 

GJR_G 
-4.8- 

(4.32%) 

MEAN 
-4.8- 

(2.20%) 

RSKM 
-4.2- 

(2.43%) 

EGARCH_
G 

-0.6- 
(0.98%) 

GJR_N 
-7.2- 

(7.1%) 

GARCH_G
-2.4 - 

(0.97%) 

MEAN 
-3.00- 

(1.03%) 

GJR_G 
-4.8- 

(2.74%) 

RSKM 
-4.2- 

(4.3%) 

GJR_T 
-4.2 - 

(3.26%) 

EGARCH_T 
-3.00- 

(1.59%) 

EGARCH_G
-5.9- 

(3.13%) 

GARCH_G
-1.2- 

(1.51%) 

GARCH_G
-3.6- 

(5.1%) 

GJR_G 
-3.00- 

(1.11%) 

GARCH_G 
-3.00- 

(1.49%) 

GARCH_G
-3.6- 

(1.93%) 

GJR_T 
-3.0- 

(2.1%) 

GARCH_G 
-3.6- 

(1.51%) 

GARCH_G 
-4.2- 

(1.97%) 

GJR_T 
-3.6- 

(2.31%) 

GJR_T 
-0.6- 

(0.99%) 

GJR_T 
-3.0- 

(2.0%) 

GJR_T 
-1.2- 

(0.32%) 

EGARCH_T 
-1.2- 

(0.54%) 

EGARCH_T
-5.4- 

(2.44%) 

GARCH_G 
-3.6- 

(2.5%) 

EGARCH_T
-4.2- 

(3.56%) 

GJR_T 
-3.00- 

(0.72%) 

GJR_G 
-6.5- 

(3.27%) 

EGARCH_T
-0.6- 

(0.46%) 

EGARCH_T
-4.2- 

(2.5%) 

EGARCH_T
-1.2- 

(0.35%) 

GJR_T 
-1.8- 

(0.80%) 

GJR_T 
-3.0- 

(1.33%) 

GARCH_T 
-1.8- 

(1.0%) 

GARCH_T 
-1.8- 

(0.31%) 

GARCH_T 
-1.2- 

(0.69%) 

GARCH_T
-1.8- 

(0.92%) 

GARCH_T
-0.6- 

(0.83%) 

GARCH_T
-2.4- 

(2.9%) 

GARCH_T
-0.6- 

(0.49%) 

GARCH_T 
-1.2- 

(0.49%) 

GARCH_T
-1.2- 

(0.59%) 

A
ft

er
 

INF 
-1.2- 

(1.0%) 

INF 
-1.8- 

(0.27%) 

INF 
-1.2- 

(0.46%) 

INF 
-1.2- 

(0.77%) 

INF 
-0.6- 

(0.46%) 

INF 
-1.8- 

(1.8%) 

INF 
-0.0- 

(0.00%) 

INF 
-0.6- 

(0.36%) 

INF 
-1.2- 

(0.52%) 
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Table 6a. Model Rankings using Asymmetric Linear Tick Loss Function - Before GFC 

  CAC  DAX  DJ  FTSE  HSHK  IBEX  NIKEEI  SMI  SP500 

EGARCH_T  EGARCH  EGARCH  INF  INF  EGARCH_T GJR  EGARCH_T  GJR 

INF  EGARCH_G EGARCH_G EGARCH_T MEDIAN  GJR  EGARCH_GEGARCH_G  MEAN 

EGARCH_G EGARCH_T  GJR  EGARCH_G SUP  GJR_G  GJR_G  EGARCH  EGARCH 

EGARCH  MEAN  MEDIAN  EGARCH  MEAN  GJR_T  MEDIAN  INF  MEDIAN 

MEAN  GJR_T  MEAN  GJR_T  RSKM  MEDIAN  EGARCH_T GJR_T  EGARCH_G 

GJR_G  GJR_G  GJR_G  GJR_G  GJR_T  EGARCH_G MEAN  GJR_G  GARCH_G 

GJR  MEDIAN  EGARCH_T  MEAN  EGARCH  MEAN  GJR_T  MEDIAN  GJR_G 

MEDIAN  GJR  GARCH_T  MEDIAN  GARCH  INF  INF  MEAN  GARCH_T 

GJR_T  INF  GJR_T  GJR  GJR  EGARCH  GARCH_G GJR_N  EGARCH_T 

GARCH_G  GARCH_T  GARCH_G  GARCH_T GARCH_G GARCH  GARCH  GARCH_T  GJR_T 

SUP  GARCH_G  SUP  RSKM  EGARCH_G GARCH_G GARCH_T GARCH_G  RSKM 

GARCH  GARCH  RSKM  GARCH_G EGARCH_T RSKM  RSKM  RSKM  SUP 

RSKM  SUP  INF  GARCH  GJR_G  GARCH_T SUP  SUP  INF 

B
ef
o
re
 

GARCH_T  RSKM  GARCH  SUP  GARCH_T SUP  EGARCH  GARCH  GARCH 
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Table 6b. Model Rankings using Asymmetric Linear Tick Loss Function - During GFC 

  CAC  DAX  DJ100  FTSE  HSHK  IBEX  NIKEEI  SMI  SP500 

GARCH_G  EGARCH_T  GARCH_G  INF  EGARCH_G EGARCH_T EGARCH_T INF  MEAN 

EGARCH_T EGARCH_G  MEAN  EGARCH_T GJR_G  MEDIAN  GJR_G  EGARCH_T EGARCH_T 

GARCH_T  MEDIAN  MEDIAN  GARCH_T MEAN  MEAN  GJR_T  GARCH_T  MEDIAN 

RSKM  MEAN  GJR_G  GJR_T  EGARCH_T GARCH_G INF  GJR_T  GJR_G 

MEAN  GARCH_T  GARCH_T  MEAN  MEDIAN  GJR_T  MEDIAN  GARCH_G  GARCH_G 

INF  GJR_T  EGARCH_T  MEDIAN  EGARCH  EGARCH_G GJR  MEAN  GARCH_T 

MEDIAN  EGARCH  GJR_T  GARCH_G GJR_T  GARCH  MEAN  EGARCH_G  GJR 

EGARCH  GARCH_G EGARCH_G  GJR_G  GJR  GJR_G  EGARCH_G MEDIAN  GJR_T 

GARCH  GJR_G  GJR  EGARCH_G GARCH_G GARCH_T GARCH_T GJR_G  INF 

GJR_T  GARCH  INF  GARCH  SUP  INF  GARCH_G EGARCH  RSKM 

GJR_G  INF  RSKM  RSKM  GARCH_T RSKM  GARCH  GARCH  EGARCH_G 

GJR  RSKM  GARCH  GJR  INF  GJR  EGARCH  GJR  GARCH 

EGARCH_G  GJR  EGARCH  EGARCH  GARCH  EGARCH  RSKM  RSKM  EGARCH 

D
u
ri
n
g 

SUP  SUP  SUP  SUP  RSKM  SUP  SUP  SUP  SUP 
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Table 6c. Model Rankings using Asymmetric Linear Tick Loss Function - After GFC 

  CAC  DAX  DJ100  FTSE  HSHK  IBEX  NIKKEI  SMI  SP500 

MEAN  RSKM  GJR_T  MEAN  EGARCH  EGARCH_T MEDIAN  EGARCH_G GJR_T 

MEDIAN  GARCH_G  GJR_G  MEDIAN  GJR  GJR_T  MEAN  EGARCH  MEDIAN 

GJR_T  GARCH_T  EGARCH_T EGARCH_T SUP  GJR_G  GJR_G  MEDIAN  GJR_G 

GJR_D  INF  MEAN  EGARCH_GGARCH  MEAN  EGARCH_GMEAN  MEAN 

EGARCH_T GARCH  MEDIAN  GARCH_G  RSKM  MEDIAN  GARCH  EGARCH _T EGARCH_T 

EGARCH_D MEAN  EGARCH_G RSKM  GJR_G  EGARCH_GGARCH_G  GJR_G  GARCH_G 

GJR  MEDIAN  GARCH_G  GARCH  EGARCH_GINF  EGARCH  GJR_T  GARCH_T 

GARCH_D  GJR_T  GJR  GJR_T  MEDIAN  GJR  GJR_T  GJR  GARCH 

GARCH_T  EGARCH_T GARCH  GARCH_T  MEAN  GARCH_G  RSKM  GARCH_G  INF 

EGARCH  GJR_G  GARCH_T  GJR_G  GARCH_G  GARCH_T  EGARCH _T GARCH  GJR 

INF  EGARCH_G INF  EGARCH  GJR_T  GARCH  GJR  RSKM  EGARCH_G 

GARCH  GJR  RSKM  INF  EGARCH_T RSKM  SUP  SUP  RSKM 

RSKM  EGARCH  EGARCH  GJR  GARCH_T  EGARCH  GARCH_T  GARCH_T  EGARCH 

A
ft
e
r 

SUP  SUP  SUP  SUP  INF  SUP  INF  INF  SUP 

 

 


