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Various studies have shown the emergence of cooperative behavior in evolutionary models with 
spatially distributed agents. We investigate to what extent these findings generalize to evolutionary 
models of price competition among spatially distributed firms. We consider both one- and two-
dimensional models, and we vary the amount of information firms have about competitors in their 
neighborhood. Our computer simulations show that the emergence of cooperative behavior depends 
strongly on the amount of information available to firms. Firms tend to behave most cooperatively if 
they have only a very limited amount of information about their competitors. We provide an intuitive 
explanation for this phenomenon. Our simulations further indicate that three other factors in our 
models, namely the accuracy of firms’ information, the probability of experimentation, and the spatial 
distribution of consumers, have little effect on the emergence of cooperative behavior. 

1. Introduction 
The phenomenon of cooperative behavior among individuals in social, economic, 

and biological systems has been fascinating researchers already for a long time. An 
important topic in the economic and biological literature is the emergence of 
cooperative behavior among individuals who are pursuing their self-interest. 
Researchers aim to identify the conditions under which the emergence of cooperative 
behavior among such individuals is possible. 

In an economic context, the best-known explanation of cooperative behavior is 
probably the one based on the idea of reciprocity in repeated encounters. When 
individuals interact with each other repeatedly, they may choose to behave 
cooperatively, even though this has a negative effect on their short-term interests. 
Individuals may choose to behave cooperatively because they realize that if they do 
not behave this way, others won’t do either. They also realize that in the long run they 
are better off in a cooperative world than in a non-cooperative one. Hence, although 
cooperative behavior harms one’s short-term interests, it is likely to be beneficial to 
one’s interests in the long run. 

Explaining cooperative behavior in terms of reciprocity assumes that individuals 
interact with each other repeatedly and that they remember what happened in the past. 
These assumptions seem reasonable in some contexts but not in others. Because of 
this, a number of alternative explanations of cooperative behavior have been proposed 
in the literature. In this paper, we focus on one such explanation. This is the 
explanation that cooperative behavior is a consequence of the spatial distribution of 
individuals and the local interaction among them. In the biological literature, this 
explanation was proposed in a well-known paper by Nowak and May (1992). Many 
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biologists have built on this work, which has resulted in a substantial body of 
literature. 

Inspired by the work done in biology, economists have also attempted to explain 
cooperative behavior in terms of local interaction among spatially distributed 
individuals. An evolutionary perspective is typically taken, in which individuals are 
assumed to imitate each other and to randomly experiment with new actions. The first 
work in the economic literature was done by Bergstrom and Stark (1993) and Eshel, 
Samuelson, and Shaked (1998). In this work, cooperative behavior was shown to 
emerge in models in which individuals are organized in a circular structure. A large 
number of studies have built on this early work.1 Studies in the economic literature 
often focus on rather abstract models. Many studies for example assume that 
individuals are located in a one-dimensional world. Also, many studies assume a 
situation similar to a classical prisoners’ dilemma, in which individuals can choose 
from only two actions (i.e., cooperation and defection). For examples of studies that 
make these assumptions, we refer to Bergstrom and Stark (1993), Eshel et al. (1998), 
Jun and Sethi (2007), Mengel (2009), and Stark and Behrens (2010). 

In this paper, we consider a somewhat less abstract level of modeling. We aim to 
determine to what extent the findings from earlier studies generalize to models of 
price competition among spatially distributed firms. In particular, we want to find out 
whether imitation and experimentation may cause cooperative behavior to emerge in 
spatial price competition models. Compared with the frequently studied prisoners’ 
dilemma models, the models that we study are of a more complex nature. There is no 
simple binary decision between cooperative and non-cooperative behavior in our 
models. Firms can cooperate with each other by jointly increasing their price, and 
different price levels correspond with different levels of cooperation. Also, 
interactions in our models may involve more than two individuals. In one of our 
models, each consumer has four different firms from which he may choose to buy. 
Hence, firms in this model always have multiple competitors with which they fight for 
the same market share. Like in the literature mentioned above, we take an 
evolutionary perspective in our models. We assume firms’ behavior to be determined 
by imitation and experimentation. More specifically, we assume that firms change 
their price either by imitating successful competitors in their neighborhood or by 
experimenting with small price increases or decreases. 

We study a variety of conditions under which firms may or may not start to 
cooperate with each other. We consider both a model in which firms are organized in 
a one-dimensional space and a model in which firms are organized in a two-
dimensional space. Our two-dimensional model has two variants, which differ from 
each other in the way in which consumers are located. We also look at the effect of 
the information firms have about competitors in their neighborhood. In doing so, we 
distinguish between on the one hand the number of competitors about which firms 
have information and on the other hand the accuracy of the information firms have. 
Another effect that we look at is the effect of firms’ experimentation probability, that 
is, the probability with which firms experiment with small price increases or 
decreases. Due to the complexity of the models that we study, we perform our 
analyses mainly using computer simulations. 

                                                 
1 See Barr and Tassier (2010), Bilancini and Boncinelli (2009), Chen and Chow (2009), Eshel et al. 
(2000), Eshel, Sansone, and Shaked (1999), Fosco and Mengel (2011), Jun and Sethi (2007, 2009), 
Kirchkamp (1999, 2000), Mengel (2009), Noailly, Van den Bergh, and Withagen (2009), Noailly, 
Withagen, and Van den Bergh (2007), Outkin (2003), Stark and Behrens (2010), Tieman, Houba, and 
Van der Laan (2000), and Wilhite (2006). 
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This paper is organized as follows. The models that we study are introduced in 
Section 2. The analysis of the models is presented in Section 3. The main conclusions 
of our research are summarized in Section 4. 

2. Models 
We consider two closely related models. We refer to these models as the one-

dimensional model and the two-dimensional model. The way in which firms and 
consumers are located is different in each model. Apart from this difference, the 
models are essentially identical. We discuss the one-dimensional model in Subsection 
2.1 and the two-dimensional model in Subsection 2.2. 

2.1. One-dimensional model 

There are n firms, denoted by 1, …, n. In the one-dimensional model, firms are 
located equally spaced on a circle (see Figure 1).2 The distance, measured over the 
circumference of the circle, between any two neighboring firms equals one. 
Consumers are uniformly distributed on the circle. They are modeled as a continuum. 
The density of consumers equals 1 everywhere on the circle. Firms all produce the 
same product, they all have an unlimited production capacity, and they all have the 
same constant marginal cost. Without loss of generality, firms’ constant marginal cost 
is set to zero. The price at which firm i sells one unit of its product is denoted by pi. 
Firms choose their prices simultaneously. A consumer’s total cost of buying a unit 
from a firm equals the price charged by the firm plus transportation cost. 
Transportation cost equals the distance, measured over the circumference of the 
circle, between the consumer and the firm. Each consumer needs exactly one unit of 
the product produced by the firms. A consumer buys this unit from the firm for which 
the consumer’s total cost is lowest. This implies that the circle can be partitioned into 
n segments in such a way that all consumers located on the ith circle segment buy 
from firm i. Firm i’s quantity demanded, denoted by qi, then equals the length of the 
ith circle segment, and firm i’s profit is given by πi = piqi. 
 

 
 
Figure 1. One-dimensional model with n = 10 firms. A firm is indicated by a black 
dot. Consumers are located everywhere on the circle. 
 

The model has a symmetric pure-strategy Nash equilibrium in which p1 = … = pn 
= 1. This can be seen as follows. Suppose that p1 = … = pn = 1. We will show that a 
firm cannot increase its profit by unilaterally changing its price. Consider an arbitrary 

                                                 
2 Firms are located on a circle rather than on a line in order to avoid boundary effects. 
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firm i, and suppose that this firm changes its price pi. The other firms do not change 
their price. Next, consider a consumer located somewhere in between firm i and firm 
j, where firm j is one of the two neighboring firms of firm i. Let the distance between 
the consumer and firm i be denoted by d. The distance between the consumer and firm 
j is then given by 1 – d. The consumer’s total cost of buying from firm i equals pi + d, 
while the consumer’s total cost of buying from firm j equals pj + 1 – d = 2 – d. Hence, 
the consumer will buy from firm i if pi + d < 2 – d or, equivalently, if d < 1 – pi / 2. 
This means that firm i’s quantity demanded equals qi = 2(1 – pi / 2) = 2 – pi and that 
firm i makes a profit of πi = pi(2 – pi). Clearly, firm i maximizes its profit by choosing 
a price of pi = 1. In other words, if firm i changes its price to a value different from 1, 
its profit will decrease. This implies that p1 = … = pn = 1 is a Nash equilibrium. In this 
equilibrium, each firm makes a profit of 1. 

It is straightforward to see that firms find themselves in a situation that is 
somewhat similar to a prisoners’ dilemma. Choosing the Nash equilibrium price can 
be seen as defection, while choosing a price above the Nash equilibrium level can be 
seen as cooperation. If a firm cooperates while its neighbors defect, the firm will 
make a lower profit than in the Nash equilibrium. However, if a firm cooperates and 
its neighbors do so as well, the firm will make a higher profit than in the Nash 
equilibrium. The payoff matrix shown in Table 1 illustrates the situation in which 
firms find themselves. Notice that there is one important difference with a prisoners’ 
dilemma. This is because a firm may also choose a price below the Nash equilibrium 
level. For this action, there is no analogous action in a prisoners’ dilemma. 
 
Table 1. Payoff matrix that illustrates the situation of firms in the one-dimensional 
model. For the purpose of illustration, price is treated as a discrete variable that can 
take four different values. The row player represents an arbitrary firm i. The column 
player represents firms i – 1 and i + 1, which are the two neighbors of firm i. (The two 
neighbors are assumed to choose the same price.) The payoffs represent the profits of 
firm i.3 
 
 pi – 1 = pi + 1 = 1.50 pi – 1 = pi + 1 = 1.25 pi – 1 = pi + 1 = 1.00 pi – 1 = pi + 1 = 0.75 
pi = 1.50 1.50 1.13 0.75 0.38 
pi = 1.25 1.56 1.25 0.94 0.63 
pi = 1.00 1.50 1.25 1.00 0.75 
pi = 0.75 1.31 1.13 0.94 0.75 
 

In our model, we assume firms to be boundedly rational. Hence, firms need not 
use Nash equilibrium strategies. We take an evolutionary game theory approach and 
assume firms’ behavior to be determined by imitation and experimentation. The stage 
game described above is played repeatedly for a large number of rounds. After each 
round, firms may change their price. Firms change their price by imitating successful 
neighbors or by experimenting with a small price increase or decrease. Price is 
modeled as a discrete variable. That is, firms choose their price from a finite set of 
price levels. 

Imitation is modeled as follows. At the end of each round, a firm is randomly 
selected. The selected firm knows its own price in the most recent round and the 
                                                 
3 In the payoff matrix shown in Table 1, there are three Nash equilibria, namely a strict Nash 
equilibrium in which each firm charges a price of 1 and two weak Nash equilibria, one in which each 
firm charges a price of 1.25 and one in which each firm charges a price of 1.5. The weak Nash 
equilibria are due to the treatment of price as a discrete variable. We will come back to this issue later 
on in this paper (see Footnote 5). 
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prices of its ρ closest neighbors, where ρ is an even number that indicates the size of 
the information neighborhood of a firm. The selected firm also observes its own profit 
in the most recent round and the profits of its ρ closest neighbors. In the case of its 
neighbors, however, the firm does not observe their true profits but rather their true 
profits perturbed by some noise. For each neighbor, the noise is modeled by adding a 
normally distributed random variable to the neighbor’s true profit. The random 
variable has mean 0 and standard deviation , where we refer to  as the noise level. 
The selected firm chooses a new price by copying the price that appears to have been 
most profitable in the most recent round. More specifically, the firm first averages the 
observed profits of firms that used the same price in the most recent round. The firm 
then chooses the price associated with the highest observed profit as its new price. 
(Ties are broken randomly.) An illustration of the imitation mechanism is provided in 
Figure 2. 
 

 
 
 Firm 
 1 2 3 4 5 6 7 8 9 10 
Price 1.00 1.10 1.10 1.10 1.00 0.90 1.00 1.00 0.90 0.80 
Quantity 0.95 0.95 1.00 0.95 1.00 1.10 0.95 0.95 1.00 1.15 
Profit 0.95 1.05 1.10 1.05 1.00 0.99 0.95 0.95 0.90 0.92 
Obs. profit   1.17 1.23 1.00 0.98 0.86    
 
Figure 2. Illustration of the imitation mechanism. There are n = 10 firms. Firms have 
an information neighborhood of size ρ = 4, and the noise level equals  = 0.1. For 
each firm, the price, the quantity demanded, and the profit are listed in the table. Firm 
5 is randomly selected to change its price. Firm 5 does not observe the true profits of 
its neighbors but rather their true profits perturbed by some noise. The profits 
observed by firm 5 are listed in the table as well. The average observed profit equals 
0.98 for a price of 0.9, (1.00 + 0.86) / 2 = 0.93 for a price of 1.0, and (1.17 + 1.23) / 2 
= 1.20 for a price of 1.1. Hence, firm 5 will increase its price from 1.0 to 1.1. 
 

Experimentation takes place after imitation and is modeled as follows. At the end 
of each round, each firm independently decides whether to experiment with a new 
price or not. The probability that a firm chooses to experiment is given by the 
parameter μ. This probability is typically very small. If a firm chooses to experiment, 
there is a 50% probability of a price increase and a 50% probability of a price 
decrease. The firm will set its new price to the closest price level above or below its 
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current price. Of course, if the firm’s current price equals the highest (lowest) price 
level that can be chosen in the model, no price increase (decrease) is possible. 

One-dimensional models have been frequently studied in the literature (Barr & 
Tassier, 2010; Bergstrom & Stark, 1993; Chen & Chow, 2009; Eshel et al., 1998, 
1999, 2000; Jun & Sethi, 2007; Mengel, 2009; Noailly et al., 2007; Outkin, 2003; 
Stark & Behrens, 2010; Wilhite, 2006).4 Our model is somewhat similar to the model 
of Eshel et al. (1998). Eshel et al. study a population of altruists and egoists located on 
a circle. Like in our model, agents imitate the strategies of successful neighbors. It 
turns out that, even though being an egoist is a dominant strategy, altruism can still 
prevail in the long run. Altruism can prevail if altruists are grouped together on the 
circle, so that they benefit from each other’s altruism. An important difference 
between the model of Eshel et al. and our model is that in our model agents can 
choose from more than two actions (i.e., firms can choose from more than two price 
levels). Another difference is that in our model agents do not always have noise-free 
information about their neighbors’ payoffs. 

2.2. Two-dimensional model 

The two-dimensional model is very similar to the one-dimensional model except 
that firms and consumers are located differently. In the two-dimensional model, we 
start with a square lattice of m  m points. There are n = m2 firms, which are located 
on the points of the lattice (see Figure 3). The distance between firms that are direct 
neighbors equals one. The model has two variants. These variants differ from each 
other in the way in which consumers are located (see Figure 3). In one variant, 
referred to as variant A, consumers are located only on line segments between firms 
that are direct neighbors. In the other variant, referred to as variant B, consumers are 
located everywhere in the two-dimensional space in between the firms. Consumers 
are modeled as a continuum in both variants of the model. Also, in both variants, the 
distribution of consumers is uniform, with a density of one everywhere. All distances 
in the model are calculated using the city block or Manhattan distance measure rather 
than using the Euclidean distance measure (see Figure 4). The use of the city block 
measure is mathematically convenient, but it also is a natural choice if we interpret 
the model in terms of firms and consumers located in a city with a block design. 
 

 
 

                                                 
4 We focus on the theoretical literature. In the experimental literature, a model similar to our one-
dimensional model is considered by Selten and Apesteguia (2005). 
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Figure 3. Two-dimensional model with n = 16 firms. A firm is indicated by a black 
dot. In variant A of the model, consumers are located only on the black lines. In 
variant B of the model, consumers are located everywhere in the gray area. 
 

 
 
Figure 4. Illustration of the calculation of distances using the city block measure. The 
distance between firm F and consumer C equals 0.7 + 0.4 = 1.1. 
 

In our one-dimensional model discussed in Subsection 2.1, firms and consumers 
are located on a circle rather than on a line. This simplifies the analysis of the model, 
because there are no boundary effects that need to be taken into account. In a similar 
way, we also want to avoid boundary effects in our two-dimensional model. We 
therefore treat firms at opposite edges of the two-dimensional space as direct 
neighbors of each other. Hence, each of the leftmost firms has a direct neighbor 
among the rightmost firms. Similarly, each of the topmost firms has a direct neighbor 
among the bottommost firms. In this way, there are no boundary effects in the model. 
That is, each firm finds itself in exactly the same position, with the same number of 
neighboring firms and an equally-sized consumer market. 

Both variants of the model have a symmetric pure-strategy Nash equilibrium. 
Variant A has an equilibrium in which p1 = … = pn = 1. This can be shown using an 
argument analogous to the argument used in the case of the one-dimensional model. 
Variant B has an equilibrium in which p1 = … = pn = 1/2. This can be seen as follows. 
Suppose that p1 = … = pn = 1/2. We will show that a firm cannot increase its profit by 
unilaterally changing its price. Consider an arbitrary firm i, and suppose that this firm 
changes its price pi. The other firms do not change their price. We distinguish between 
two cases, namely the case of a price increase and the case of a price decrease. We 
first analyze the case of a price increase. If firm i increases its price pi to a value 
above 1/2, its quantity demanded will become qi = max(3/2 – pi, 0)2 (see Figure 5(a) 
for an illustration for pi = 0.7). Consequently, firm i will make a profit of πi = pi 
max(3/2 – pi, 0)2. Clearly, for pi ≥ 1/2, this profit function is monotonically 
decreasing. Hence, if firm i increases its price to a value above 1/2, its profit will 
decrease. We now analyze the case of a price decrease. In the case of a price decrease, 
firm i’s quantity demanded is given by qi = (1/2)pi

2 – (5/2)pi + 17/8 (see Figure 5(b) 
for an illustration for pi = 0.1). This results in a profit function of πi = (1/2)pi

3 – 
(5/2)pi

2 + (17/8)pi. For pi ≤ 1/2, this function is monotonically increasing. This implies 
that a decrease of firm i’s price to a value below 1/2 will lead to a decrease of firm i’s 



 8

profit. Hence, both a price increase and a price decrease will lead to a decrease in 
profit. This shows that p1 = … = pn = 1/2 is a Nash equilibrium of variant B of the 
model. 

 

  

(a) (b) 

 
Figure 5. Illustration of the calculation of a firm’s quantity demanded. The firm in the 
center of panel (a) charges a price of 0.7. The firm in the center of panel (b) charges a 
price of 0.1. The surrounding firms all charge a price of 0.5. In both panels, the 
shaded area marks the consumers that buy from the firm in the center. In panel (a), the 
quantity demanded of the firm in the center equals 0.8  0.8 = 0.64. In panel (b), the 
quantity demanded of the firm in the center equals 1.4  1.4 – 4  0.5  0.2  0.2 = 
1.88. 
 

Both in variant A and in variant B of the model, firms find themselves in a 
situation that resembles a prisoners’ dilemma. If a single firm unilaterally deviates 
from the Nash equilibrium by increasing its price, the firm will make a lower profit 
than in the equilibrium. However, if all firms jointly deviate from the Nash 
equilibrium by increasing their price, they will all make a higher profit than in the 
equilibrium. 

Like in our one-dimensional model, we assume firms to be boundedly rational in 
our two-dimensional model. Firms’ behavior is assumed to be determined by 
imitation and experimentation in the same way as in the one-dimensional model. In 
the one-dimensional model, imitation takes place by looking at the prices and profits 
of ρ + 1 firms, namely a randomly selected firm and its ρ closest neighbors. In the 
two-dimensional model, we focus on two scenarios for the way in which firms imitate 
each other. In the first scenario, imitation takes place based on the prices and profits 
of five firms, namely a randomly selected firm and its direct neighbors in horizontal 
and vertical direction. In this scenario, firms have an information neighborhood of 
size ρ = 4. In the second scenario, imitation takes place based on the prices and profits 
of nine firms. In this scenario, the selected firm’s direct neighbors in diagonal 
direction are included as well. The second scenario results in an information 
neighborhood of size ρ = 8. 
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A number of two-dimensional models have been studied in the economic 
literature (Barr & Tassier, 2010; Kirchkamp, 1999, 2000; Noailly et al., 2009; Outkin, 
2003; Tieman et al., 2000; Wilhite, 2006). The models of Kirchkamp (2000) and 
Tieman et al. (2000) are the ones that are most closely related to our model. 
Kirchkamp studies a two-dimensional model in which agents play prisoners’ dilemma 
games with their neighbors. He shows that under certain conditions cooperation can 
prevail in the long run. Important differences between Kirchkamp’s model and our 
model are that in our model agents can choose from more than two actions and that in 
our model agents do not always have noise free information about their neighbors’ 
payoffs. Tieman et al. study a local interaction model in which agents play 
generalized prisoners’ dilemma games, that is, prisoners’ dilemma games in which 
there can be more than two actions. They find that with a high probability a moderate 
level of cooperation emerges in their model. An essential difference between the 
model of Tieman et al. and our model is that in the model of Tieman et al. agents do 
not imitate each others’ strategies. Instead, agents increase or decrease their 
cooperativeness depending on whether their average payoff is higher or lower than the 
average payoff of their neighbors. 

3. Analysis 
We are interested in the long-run behavior of firms in our one-dimensional and 

two-dimensional models. In particular, we want to find out whether in the long run 
firms behave cooperatively by charging prices above the Nash equilibrium level. 
Because our models do not seem analytically tractable, we use computer simulations 
to perform our analysis. In Subsection 3.1, the setup of the simulations is discussed. 
The results obtained using the simulations are presented in Subsections 3.2 (one-
dimensional model) and 3.4 (two-dimensional model). Some intuitive insight into the 
one-dimensional model is provided in Subsection 3.3. 

3.1. Simulation setup 

In our simulations, there are n = 400 firms. This means that in the two-
dimensional model firms are located on the points of a 20  20 square lattice. Firms 
choose their price from a set of 21 price levels. These price levels are uniformly 
distributed between 0.5pN and 1.5pN, where pN denotes the Nash equilibrium price. 
Hence, in the one-dimensional model and in variant A of the two-dimensional model, 
the price levels that can be chosen are 0.50, 0.55, …, 1.50. In variant B of the two-
dimensional model, the price levels that can be chosen are 0.250, 0.275, …, 0.750.5 In 
the case of the one-dimensional model, simulations are run for six different values of 
the information neighborhood size ρ, namely 2, 4, 6, 8, 10, and 20. In the case of the 
two-dimensional model, simulations are run for an information neighborhood of size 
ρ = 4 and for an information neighborhood of size ρ = 8. Furthermore, both in the case 
of the one-dimensional model and in the case of the two-dimensional model, 
simulations are run for four different noise levels , namely 0, 0.1pN, 0.2pN, and 

                                                 
5 Modeling price as a discrete rather than a continuous variable may introduce additional Nash 
equilibria. This turns out to be the case in the one-dimensional model and in variant A of the two-
dimensional model. In addition to a strict Nash equilibrium in which each firm charges a price of 1.00, 
there are two weak Nash equilibria in these models, one in which each firm charges a price of 0.95 and 
one in which each firm charges a price of 1.05. There turn out to be no additional Nash equilibria in 
variant B of the two-dimensional model. In the rest of this paper, when we refer to a Nash equilibrium 
of a model, we always mean a strict Nash equilibrium. 
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0.5pN, and for four different experimentation probabilities μ, namely 0, 0.00001, 
0.0001, and 0.001. 

At the beginning of a simulation run, each firm’s price is initialized by randomly 
drawing a price from a uniform distribution over all price levels. A simulation run 
lasts for one million rounds. One million rounds turns out to be sufficient for studying 
firms’ long-run behavior. We performed some tests which indicate that after one 
million rounds the results of our simulations are insensitive to the way in which firms’ 
prices have been initialized. The tests that we performed also indicate that a larger 
number of rounds would yield essentially the same simulation results. 

The source code of the simulations is available online at 
www.ludowaltman.nl/price_competition/. The source code runs in MATLAB and has 
been written partly in the MATLAB language and partly in the C language. 

3.2. Simulation results for the one-dimensional model 

The results of the simulations for the one-dimensional model are reported in 
Tables 2 and 3. For each combination of an information neighborhood size ρ, a noise 
level , and an experimentation probability μ, 500 simulation runs were performed. 
For each simulation run, we calculated the mean price of the firms at the end of the 
last round (i.e., at the end of the one millionth round). In Tables 2 and 3, this mean 
price is averaged over the 500 simulations runs that were performed. Standard 
deviations over the 500 simulation runs (not reported in the tables) are always less 
than 0.05. The relatively small standard deviations indicate that there is little variation 
between simulation runs. 
 
Table 2. Simulation results for the one-dimensional model for ρ = 2 and for different 
values of  and μ. The table shows the mean price at the end of the simulation runs. 
 
  = 0.0  = 0.1  = 0.2  = 0.5 
μ = 0 1.28 1.33 1.31 1.31 
μ = 0.00001 1.27 1.25 1.27 1.28 
μ = 0.0001 1.25 1.20 1.22 1.23 
μ = 0.001 1.14 1.11 1.13 1.15 
 
Table 3. Simulation results for the one-dimensional model for different values of ρ, , 
and μ. The table shows the mean price at the end of the simulation runs. 
 
  = 0.0; μ = 0  = 0.0; μ = 0.0001  = 0.2; μ = 0  = 0.2; μ = 0.0001 
ρ = 2 1.28 1.25 1.31 1.22 
ρ = 4 0.90 0.90 0.93 0.95 
ρ = 6 0.90 0.90 0.95 0.95 
ρ = 8 0.90 0.93 0.95 0.96 
ρ = 10 0.93 0.95 0.96 0.96 
ρ = 20 0.98 1.00 0.98 0.98 
 

In Table 2, results are reported of simulations in which the information 
neighborhood has a size of ρ = 2. In these simulations, firms can imitate only their 
direct neighbors. As can be seen in the table, the simulations yield prices that are 
substantially above the Nash equilibrium level of 1. The prices are not very sensitive 
to the noise level . They are somewhat more sensitive to the experimentation 
probability μ. A higher experimentation probability clearly leads to a lower price. The 
results in Table 2 are in line with the findings of earlier studies in which somewhat 
similar models were analyzed (e.g., Eshel et al., 1998). 
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We now turn to the effect of the information neighborhood size ρ. Simulation 
results for different values of the size of the information neighborhood are reported in 
Table 3. If the size of the information neighborhood is larger than 2, firms can imitate 
not only their direct neighbors but also some of their more distant neighbors. The 
results in Table 3 are quite remarkable. It turns out that prices are no longer above the 
Nash equilibrium level if the size of the information neighborhood is larger than 2. On 
the contrary, if the size of the information neighborhood is not too large, prices turn 
out to be below the Nash equilibrium level. This is especially the case if there is no 
noise and no experimentation (i.e.,  = 0 and μ = 0). In earlier studies (Hoffmann, 
1999; Ifti, Killingback, & Doebeli, 2004; Mengel, 2009; Stark & Behrens, 2010), it 
was found that cooperative behavior (i.e., prices above the equilibrium level in our 
context) tends to be more difficult to sustain if the size of the information 
neighborhood is increased. This is consistent with our findings, but our findings go 
one step further. If the size of the information neighborhood is increased, firms not 
only stop behaving cooperatively but they in fact start behaving in exactly the 
opposite way, that is, they decrease their prices to values below the equilibrium level. 
Hence, our results show that in some cases the combination of local interaction and 
imitation of neighboring individuals has a negative rather than a positive effect on the 
degree to which individuals cooperate with each other. 

3.3. Further analysis of the one-dimensional model 

Why does our one-dimensional model yield completely opposite simulation 
results for an information neighborhood of size ρ = 2 on the one hand and for an 
information neighborhood of size ρ  {4, 6, 8, 10} on the other hand? To provide 
some intuitive insight, we first focus on the case of an information neighborhood of 
size 2 and we then consider the case of an information neighborhood of size 4. To 
simplify the analysis, we assume that in both cases firms can choose from only two 
price levels. We also assume that there is no noise and no experimentation (i.e.,  = 0 
and μ = 0). In other words, the only way in which a firm can change its price is by 
means of imitation, and if a firm imitates, it does so based on noise-free information 
about the profits of its neighbors. 

In the case of an information neighborhood of size 2, we assume that firms charge 
a price of either 1.0 (i.e., the Nash equilibrium price) or 1.1.6 We refer to these prices 
as, respectively, the low price and the high price, and we refer to firms charging the 
low price as low-price firms and to firms charging the high price as high-price firms. 
Suppose that we have a cluster of low-price firms and a cluster of high-price firms. By 
a cluster of low-price (high-price) firms, we mean a number of low-price (high-price) 
firms that are direct neighbors of each other. Suppose further that the cluster of low-
price firms and the cluster of high-price firms are located next to each other in the 
one-dimensional space of our model. This is illustrated in Figure 6(a). The figure also 
shows the profit made by each firm. Based on Figure 6(a), let us look what will 
happen. A low-price firm that is surrounded by two other low-price firms cannot 
change its price. The same holds for a high-price firm that is surrounded by two other 
high-price firms. We therefore focus on firms 5 and 6 in Figure 6(a). Firm 6 will not 
change its price. This is because, based on the information available to this firm, the 
average profit resulting from the high price (i.e., π6 / 2 + π7 / 2 ≈ 1.073) exceeds the 
average profit resulting from the low price (i.e., π5 = 1.050). Hence, firm 6 will stick 

                                                 
6 The choice of these two prices is fairly arbitrary. However, our analysis is valid for many other prices 
as well. 
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to the high price. Unlike firm 6, firm 5 will change its price. Firm 5 is currently a low-
price firm, but based on the information available to the firm, the high price appears 
to be more profitable than the low price (since π6 = 1.045 > π4 / 2 + π5 / 2 = 1.025). As 
a consequence, firm 5 will change to the high price. This will lead to a new situation, 
which is illustrated in Figure 6(b). Looking at Figure 6(b), it is clear that the next step 
will be firm 4 changing from the low price to the high price. Hence, the general 
pattern is that the cluster of high-price firms is growing more and more while the 
cluster of low-price firms is shrinking. This is the basic intuition underlying our 
simulation results for an information neighborhood of size 2.7 

 

(a) 

(b) 

 
Figure 6. Illustration of the effect of imitation in the one-dimensional model with an 
information neighborhood of size ρ = 2. 
 

We now consider the case of an information neighborhood of size 4.8 In this case, 
we assume that firms charge either a low price of 0.9 or a high price of 1.0 (i.e., the 
Nash equilibrium price). Notice that these prices are different from the prices used in 
the above analysis for an information neighborhood of size 2. This is because we now 
want to explain why firms charge prices below the Nash equilibrium level, while in 
the analysis presented above we wanted to explain why firms charge prices above the 
Nash equilibrium level. We again start from a situation with a cluster of low-price 
firms and a cluster of high-price firms. This situation is illustrated in Figure 7(a). 
Based on Figure 7(a), it can be seen that there are two firms for which a price change 
is possible, namely firm 4 and firm 5. In both cases, there would be a change from the 
low price to the high price. Firm 4 and firm 5 cannot both change their price at the 
same time. Instead, one of the two firms will be randomly selected to change its price. 
If firm 5 is selected, the effect will be that the cluster of high-price firms grows while 
the cluster of low-price firms shrinks. This is similar to what happens in the case of an 
information neighborhood of size 2. If firm 4 is selected, the effect will be quite 
different. We will then end up in the situation illustrated in Figure 7(b). As can be 
seen in the figure, there will no longer be a perfect separation of low-price and high-
price firms. In this new situation, there turn out to be three firms for which a price 

                                                 
7 The full story is more complicated. In particular, it can be shown that low-price firms will not 
disappear altogether. Suppose we have a cluster of low-price firms surrounded on both sides by a 
cluster of high-price firms. As explained above, the cluster of low-price firms will shrink more and 
more. However, when there are just two low-price firms left, the cluster of low-price firms will not 
shrink any further. Hence, in the end there will be mostly high-price firms, but in between these firms 
there will also be some small islands of low-price firms. We refer to Eshel et al. (1998) for an extensive 
discussion of this kind of dynamics. 
8 We refer to Mengel (2009) for a somewhat similar analysis. One of the differences between our 
analysis and the analysis of Mengel is that we do not consider the effect of experimentation while 
Mengel focuses on the limit case in which the probability of experimentation (referred to as trembling 
by Mengel) approaches zero. 
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change is possible, namely firm 4, firm 6, and firm 7. In all three cases, the price 
change would be a movement from the high price to the low price. At this point, a 
comprehensive analysis of the various possibilities becomes cumbersome. Let us 
therefore focus on the most interesting possibility. This is the possibility of a price 
change by firm 7. If firm 7 changes its price, the cluster of high-price firms will 
shrink, as is illustrated in Figure 7(c). A next step could then be that firm 8 or firm 9 
also changes its price, which would mean that the cluster of high-price firms will 
shrink even further. Going back to the initial situation illustrated in Figure 7(a), it is 
now clear that there are two counteracting forces at work. On the one hand the cluster 
of high-price firms may grow, while on the other hand this cluster may shrink. In the 
situation illustrated in Figure 7(a), the cluster of high-price firms will grow if firm 5 
changes its price. On the other hand, if firm 4 changes its price, this may cause the 
cluster of high-price firms to shrink. It is not immediately clear which of these two 
counteracting forces is stronger. However, based on the simulation results reported in 
Table 3, it can be concluded that the force working against the high-price firms must 
be the stronger one. 
 

(a) 

(b) 

(c) 

 
Figure 7. Illustration of the effect of imitation in the one-dimensional model with an 
information neighborhood of size ρ = 4. 
 

We have now looked at our one-dimensional model both in the case of an 
information neighborhood of size 2 and in the case of an information neighborhood of 
size 4. What is the essential difference between these two cases? In both cases, a 
cluster of high-price firms may take over a neighboring low-price firm. However, the 
difference is that in the case of an information neighborhood of size 2 the high-price 
firms will always remain organized in a single cluster (see Figure 6) while in the case 
of an information neighborhood of size 4 the high-price firms may become separated 
from each other (see Figure 7). When high-price firms are separated from each other, 
they become vulnerable. This is because an isolated high-price firm makes a relatively 
low profit while an isolated low-price firm makes a relatively high profit. The result 
may therefore be that low-price firms start to take over high-price firms. This is the 
basic mechanism that explains why in our one-dimensional model prices are lower in 
the case of an information neighborhood of size 4 than in the case of an information 
neighborhood of size 2. 

3.4. Simulation results for the two-dimensional model 

The results of the simulations for the two-dimensional model are reported in 
Tables 4 to 7. Tables 4 and 5 relate to variant A of the model. This is the variant in 
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which consumers are located on line segments between neighboring firms. Tables 6 
and 7 relate to variant B of the model. In this variant, consumers are located 
everywhere in the two-dimensional space in between the firms. The results in Tables 
4 to 7 were obtained in the same way as the results in Tables 2 and 3. Hence, the 
results are averages over 500 simulation runs. Standard deviations over the 500 
simulation runs (not reported in the tables) are always less than 0.03, indicating that 
there is little variation between simulation runs. 
 
Table 4. Simulation results for variant A of the two-dimensional model for ρ = 4 and 
for different values of  and μ. The table shows the mean price at the end of the 
simulation runs. 
 
  = 0.0  = 0.1  = 0.2  = 0.5 
μ = 0 1.15 1.05 1.06 1.06 
μ = 0.00001 1.17 1.07 1.06 1.07 
μ = 0.0001 1.18 1.10 1.08 1.08 
μ = 0.001 1.16 1.12 1.11 1.11 
 
Table 5. Simulation results for variant A of the two-dimensional model for ρ = 8 and 
for different values of  and μ. The table shows the mean price at the end of the 
simulation runs. 
 
  = 0.0  = 0.1  = 0.2  = 0.5 
μ = 0 1.04 1.01 1.00 0.99 
μ = 0.00001 1.04 1.00 1.00 1.00 
μ = 0.0001 1.05 1.01 1.01 1.01 
μ = 0.001 1.07 1.05 1.04 1.03 
 
Table 6. Simulation results for variant B of the two-dimensional model for ρ = 4 and 
for different values of  and μ. The table shows the mean price at the end of the 
simulation runs. 
 
  = 0.00  = 0.05  = 0.10  = 0.25 
μ = 0 0.58 0.53 0.53 0.54 
μ = 0.00001 0.59 0.54 0.54 0.54 
μ = 0.0001 0.59 0.55 0.55 0.55 
μ = 0.001 0.59 0.56 0.56 0.57 
 
Table 7. Simulation results for variant B of the two-dimensional model for ρ = 8 and 
for different values of  and μ. The table shows the mean price at the end of the 
simulation runs. 
 
  = 0.00  = 0.05  = 0.10  = 0.25 
μ = 0 0.52 0.50 0.51 0.51 
μ = 0.00001 0.52 0.51 0.51 0.51 
μ = 0.0001 0.53 0.51 0.51 0.52 
μ = 0.001 0.54 0.53 0.53 0.53 
 

We first focus on variant A of the two-dimensional model. As can be seen in 
Tables 4 and 5, prices tend to be relatively close to the Nash equilibrium level of 1. 
They do not exceed the equilibrium level by more than 18%. This is much less than in 
the one-dimensional model, in which prices exceed the equilibrium level by at most 
33% (see Table 2). Also, in variant A of the two-dimensional model, prices do not fall 



 15

below the equilibrium level (except for  = 0.5 and μ = 0, where the price is 
marginally below the equilibrium level). This is another difference with the one-
dimensional model. In the one-dimensional model, prices can be up to 10% below the 
equilibrium level (see Table 3). Comparing Tables 4 and 5, it can be seen that 
increasing the size of the information neighborhood from ρ = 4 to ρ = 8 leads to 
substantially lower prices. This is similar to what was observed for the one-
dimensional model, and it is also somewhat similar to earlier findings reported in the 
literature (Ifti, Killingback, & Doebeli, 2004). The effect of the noise level  and the 
experimentation probability μ is different than in the one-dimensional model. The 
noise level turns out to have a negative effect on prices, while the experimentation 
probability turns out to have a positive effect. Notice, however, that especially the 
effect of the experimentation probability is not very strong. 

We now consider variant B of the two-dimensional model. As discussed in 
Subsection 2.2, variant B has a Nash equilibrium price of 0.5, which is only half of 
the Nash equilibrium price of variant A. This explains why the prices in Tables 6 and 
7 are much lower than the prices in Tables 4 and 5. When looking at prices relative to 
the equilibrium price, it can be seen that the results in Tables 6 and 7 are in fact very 
similar to the results in Tables 4 and 5. The effects of the information neighborhood 
size ρ, the noise level , and the experimentation probability μ are also very similar. 
Hence, it turns out that the way in which firms behave is very similar in the two 
variants of the two-dimensional model. 

4. Conclusions 
We have studied evolutionary models of price competition among spatially 

distributed firms. In our models, firms are organized either in a one-dimensional space 
or in a two-dimensional space. Firms’ behavior is determined by imitation and 
experimentation. Imitation means that firms copy the price of one or more successful 
competitors in their neighborhood. Experimentation means that firms randomly 
increase or decrease their price by a small amount. 

In earlier studies (e.g., Bergstrom & Stark, 1993; Eshel et al., 1998; Nowak & 
May, 1992), often in the context of prisoners’ dilemma games, it was found that 
spatially distributed individuals that interact locally and that imitate successful 
neighbors tend to behave cooperatively in many cases. In this paper, our aim has been 
to investigate whether a similar tendency towards cooperative behavior can be found 
in the context of price competition among spatially distributed firms. In this context, 
cooperative behavior would mean that firms have prices and profits above the 
ordinary equilibrium level. 

We have performed our analyses mainly using computer simulations. The results 
of the simulations provide a mixed picture. The emergence of cooperative behavior 
turns out to depend strongly on the amount of information available to firms. In the 
one-dimensional model, firms behave cooperatively only if the information they have 
about the prices and profits of other firms is restricted to their two direct neighbors. In 
the two-dimensional model, firms behave more cooperatively if they have information 
about four neighbors than if they have information about eight neighbors. Hence, the 
general pattern seems to be that having too much information may hurt cooperation 
(for similar results, see Hoffmann, 1999; Ifti, Killingback, & Doebeli, 2004; Mengel, 
2009; Stark & Behrens, 2010). We have shown that in the one-dimensional model this 
is because having too much information may cause cooperative firms to become 
separated from each other, which weakens their position relative to non-cooperative 
firms. The two-dimensional model is more difficult to analyze, but the mechanism at 
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work in this model may well be similar. A remarkable finding is that in the one-
dimensional model having too much information may even lead to prices and profits 
below the ordinary equilibrium level. This shows that the combination of local 
interaction and imitation of neighboring individuals can have both a positive and a 
negative effect on the degree to which individuals cooperate with each other. To the 
best of our knowledge, negative effects have not been reported before in the literature. 
We have also investigated a number of other factors that may affect the degree of 
cooperative behavior among firms. One of these factors is the accuracy of the 
information firms have about the profits of their neighbors. Another factor is the 
probability with which firms experiment with small price increases or decreases. The 
effect of these two factors turns out to be relatively small. In the case of the two-
dimensional model, we have also looked at the effect of the way in which consumers 
are located in the two-dimensional space. There turn out to be no substantial 
differences between the two variants that we have considered. 
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