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1 Background and motivation

We know how to build “smart grid” [1] components that can record energy usage in real time and
help consumers better manage their energy usage. However, this is only the technical foundation.
Variable energy prices that truly reflect energy scarcity can motivate consumers to shift their loads
to minimize cost, and for producers to better dispatch their capacities [14]. This will be critical to
the effort to develop a more sustainable energy infrastructure based on increasing proportions of
variable-output sources, such as wind and solar power. Unfortunately, serious market breakdowns
such as the California energy crisis in 2000 [3] have made policy makers justifiably wary of setting
up new retail-level energy markets.

The performance of markets depends on economically motivated behavior of the participants,
but proposed retail energy markets are too complex for straightforward game-theoretic analysis.
Agent-based simulation environments have been used to study the operation of wholesale energy
markets [22], but these studies are not able to explore the full range of unanticipated self-interested
or destructive behaviors of the participants. Smart grid pilot projects [11], on the other hand, are
limited in their ability to test system dynamics for extreme situations. They also lack the com-
petitiveness of open markets, because a single project consortium typically controls and optimizes
the interaction of all parts of the pilot regions. Therefore, we are presenting an open, competitive
market simulation platform that will address the need for policy guidance based on robust research
results on the structure and operation of retail energy markets. These results will help policy mak-
ers create institutions that produce the intended incentives for energy producers and consumers.
They will also help develop and validate intelligent automation technologies that will allow effective
management of retail entities in these institutions.

The Power Trading Agent Competition is an example of a Trading Agent Competition (TAC)1

applied to energy markets. Earlier successful examples of TAC include the Trading Agent Compe-
tition for Supply-Chain Management (TAC SCM) [7] and the Trading Agent Competition for Ad
Auctions (TAC AA) [13].

2 Competition overview

The major elements of the Power TAC scenario are shown in Figure 1. Competing teams will con-
struct trading agents to act as self-interested “brokers” that aggregate energy supply and demand
with the intent of earning a profit. In the real world, brokers could be energy retailers, commercial
or municipal utilities, or cooperatives. Brokers will buy and sell energy through contracts with retail
customers (households, small and medium enterprises, owners of electric vehicles), and by trading
in a wholesale market that models a real-world market such as the European or North American
wholesale energy markets. Brokers compete with each other trying to attract customers by offering
tariff contracts to a population of anonymous small customers (households, small businesses), and
by negotiating individual contracts with larger customers (such as major manufacturing facilities,
or greenhouse complexes with many Combined Heat and Power (CHP) units). Contract terms may
include fixed or varying prices for both consumption and production of energy, along with other
incentives such as rebates for energy conservation, or even sign-up bonuses or early-withdrawal
penalties. Separate contracts may be offered for charging electric vehicles, which could limit charg-
ing during high-demand periods, or even offer to pay the customer for feeding energy back into the

1see http://www.tradingagents.org



grid at certain times. Variable prices may follow a fixed schedule (day/night pricing, for example),
or they may be fully dynamic, possibly with a specified advance notice of price changes. Dynamic
pricing could motivate some customers to invest in “smart” appliances that can receive price signals
and adjust energy use to control costs.

Figure 1: Major elements of the Power TAC scenario.

The simulation is designed to model energy markets primarily from an economic rather than
from a technical viewpoint, and therefore we currently do not simulate the physical infrastructure
(see Appendix A). In the future, we anticipate integrating the market simulation with a physical
simulation in order to be able to evaluate the technical feasibility of the market’s energy allocation
over time.

Broker agents are challenged to operate profitably by planning and executing activities over
multiple timescales in two markets, a tariff market and a wholesale market. Over a planning
horizon from weeks to months, brokers build portfolios of consumer, producer and electric vehicle
customers by offering tariff contracts and negotiating individual contracts.2 At the operational
level, over a time horizon of 24 hours, brokers must balance the fluctuating energy demands of
their contracted power consumers against the actual output of their contracted energy producers.
Projected differences between supply and demand must be accommodated by influencing the levels
of supply and demand among customers using price signals, and by purchasing or selling energy
in the wholesale energy market. Retail market dynamics thus influence the wholesale market and
vice versa.

A broker’s primary goal in portfolio development (see Figure 2) is to develop a good-quality
set of tariff subscriptions and individual contracts with customers who will sell or purchase energy.
The ideal portfolio is profitable and can be balanced, at least in expectation, over a range of en-
vironmental conditions. A secondary goal is to manage financial and supply/demand imbalance
risks. For example, an agent will benefit from having reasonably-priced energy sources that can
be expected to produce power when demand is expected to be highest within its load portfolio.
Predictability is also important, and will generally improve both with volume and with a balanced
portfolio of uncorrelated generation capacities and loads. Risk can be managed by acquiring un-

2Individual contract negotiation is not implemented for the 2011 pilot competition.
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Figure 2: Portfolio management process. Tariff offerings proceed in parallel with individual contract
negotiation.

correlated sources and loads that can be expected to balance each other in real time, by acquiring
storage capacity, by acquiring flexible consumption and generation capacities (balancing capacity),
by selling variable-price contracts, and by trading future energy supply contracts on the wholesale
market.

2.1 Simulation time

In the Power TAC simulation, time proceeds in discrete blocks or “timeslots” of one simulated hour.
Each timeslot takes nominally 5 seconds of real time. A typical simulation runs for 60 simulated
days, or 1440 timeslots, over approximately 2 hours of real time. At any given time, there is a
“current” timeslot, and a set of “enabled” future timeslots for which the wholesale market is open
for trading. A primary goal of a broker is to achieve balance between power supply and demand
in the current timeslot, through interactions in the customer market and through trading power
delivery commitments for the enabled timeslots in the wholesale market.

2.2 Customer market

Broker agents try to acquire energy generation capacity from local producers and sell energy tariffs
to local consumers. Brokers can buy and sell energy through two different mechanisms. For most
customers, such as households, small businesses, and small energy producers, brokers may offer
tariffs that specify pricing and other terms. For large producers or consumers (for example, a large
industrial facility or a greenhouse complex with many CHP units), brokers may negotiate individual
contracts. Tariff offerings and contract negotiations may be conducted at any time, without regard
to the daily and hourly cycle of the simulation, as depicted in Figure 2. However, tariffs will be
published to retail customers in batches, nominally 4 times/day.

Power TAC supports fairly complex tariff specifications in-line with current developments in
real-world electricity markets. Brokers can offer base fees, time-of-use tariffs with hourly intervals,
tiered rates, sign-up and exit fees as well as dynamic pricing where the realized rate can continuously
be adjusted by the broker. These tariff design elements allow the brokers to shape and control their
portfolio.

3



Contract and tariff terms and conditions must be described in a language that has clear seman-
tics along with the necessary features to describe a variety of possible business agreements between
brokers and their customers. The development of a common semantic model and a common pricing
model to describe various kind of energy tariffs are considered top priorities on the EPRI / NIST
Smart Grid roadmap for the development of a smart grid [27]. With no common standard in place
to build on for Power TAC, we use with the work of Tamma et al. [24], an ontology that describes
a negotiation process including (i) the involved parties, (ii) the object to negotiate on, and (ii) the
negotiation process, i.e. the economic mechanism itself.

Within the Power TAC domain, negotiations and the contracts (including tariffs) that are the
subject and result of negotiations must be able to specify

Time: including points in time, time intervals, periodicity (days, weeks, months, etc.), and tem-
poral relationships (before, after, during, etc.). These terms can be used to specify contract
duration as well as other time-related contract terms.

Energy: including amounts of energy produced or consumed, and rate of production or consump-
tion (power). Some contracts or tariffs will also need to specify amounts of energy that can be
remotely controlled, for example by shutting off a domestic water heater for 15 minutes every
hour during peak demand periods. Such remotely-controllable sources or loads are called
“balancing capacity.”

Money: Agreements must specify payments to or from the customer based on time (one-time
sign-up fee or bonus, fixed monthly distribution fees), or time and energy (fixed or variable
prices for a kilowatt-hour).

Communication: contract award and termination, notification of price changes, etc.

A broker must use tariff offerings and contract negotiations to develop a portfolio of contracted
consumers and producers. To do this, brokers will need to estimate and reason about consumer
and producer preferences in order to design appropriate tariffs and to appropriately respond to
counteroffers from potential contract customers. Brokers will also need to estimate future consumer
and producer behavior to build a portfolio that has well-balanced demand and supply over time
and that provides sufficient balancing capacity to achieve an acceptably low risk of imbalance.

2.2.1 Tariff selection

The tariff market allows brokers to directly interact with the customer population (households,
businesses, small power plants, electric vehicle owners) provided by the simulation environment.
Brokers can publish tariffs (see Figure 8) from which customers will self-select the ones which are
most appropriate for them. Therefore, broker to broker interaction is indirect in this market as
competing tariff offers are evaluated against each other. Details on the Customer’s tariff evaluation
process are given in Section 4.3.

2.2.2 Contract negotiation

Individual contracts are negotiated through a request-for-quote (RFQ) process, initiated by large
customers (producers and consumers of power), and proceeding through one or more rounds with
as many brokers as continue to be interested. The process ends when any party accepts the current
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contract, or when either the RFQ originator or all brokers choose to withdraw. The smallest
entities that will engage in this process will have capacities of at least 100 times the mean demand
of individual households. The specifics of the negotiation process are undefined at this point, but
there are many examples in the literature, such as [12].

Contract negotiation will be included for the first official competition in 2012, but not for the
pilot competition in 2011.

2.3 Wholesale market

The wholesale market in Power TAC operates as a periodic double auction (PDA) and represents
a traditional energy exchange like NordPool, FERC, or EEX3. The brokers can buy and sell power
contracts for future timeslots to optimize their portfolio. In the wholesale market brokers interact
with each other directly as well as with generation companies (GenCos) and other wholesale market
participants as described below in Section 2.3.3.

2.3.1 Trading and timeslots available for trade

Brokers can submit market orders or “shouts” (limit buy or sell) for the upcoming 24 timeslots.
The timeslots available for trading are marked as “enabled”; changes in timeslot status are commu-
nicated to brokers at the beginning of each timeslot. Shouts submitted for non-enabled (disabled or
not yet enabled) timeslots are silently discarded. Depending on the market configuration brokers
may also be able to delete submitted shouts from order books. The market collects the submitted
orders and stores them in the corresponding 24 order books.

2.3.2 Market clearing

When the simulation clock is advanced to the next timeslot, all orderbooks in the wholesale market
are cleared. In the clearing process demand and supply curves are constructed from bids and
asks to determine the clearing price of each orderbook at the intersection of the two — i.e. the
price maximizing turnover. If there are multiple prices generating the same maximum turnover the
market clears at the mean of the lowest bid and the highest ask price supporting this turnover.
All bids above the clearing price and all asks below are executed. Figure 3 depicts the supply and
demand curves for 5 market participants (A – E) offering energy contracts and 5 (F – J) looking to
buy. In this example prices between 20 and 25 realize the maximum turnover of 30 [19]. In Power
TAC the realized clearing price would be 22.5.

After the market is cleared the following steps are performed:

• Clearing price and volume are publicly broadcast (public information).

• Brokers are informed about their own executed transactions (private information).

• The necessary updates of cash and market positions are performed and communicated to
brokers (private information).

• Depending on the market configuration all uncleared orders may be deleted.

• The cleared timeslot is disabled while the timeslot 24 hours ahead is enabled.

3see http://www.nordpoolspot.com, http://www.ferc.gov, or http://www.eex.com/en.
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Figure 3: Illustrative supply and demand curves in the wholesale market [6]

2.3.3 Wholesale suppliers and buyers

To ensure liquidity to the wholesale market, the simulation includes wholesale energy providers, and
if necessary wholesale buyers as well. The wholesale suppliers are called Generation Companies, or
GenCos for short. Each GenCo g has a nominal capacity Ĉg, a fixed cost/MWh cg, a commitment
leadtime τg, and a reliability value rg. Actual capacity Cg,s in timeslot s varies around the nominal
value by either a mean-reverting random walk, or by current weather conditions in the case of wind
turbines. Given a variability parameter v, a mean-reversion rate m, and a uniformly distributed
random value ν on [0..1], the random walk is defined as

Cg,s = Cg,s−1 + v(2ν − 1)Ĉg + vm(Ĉg − Cg,s−1) (1)

At any given time, each GenCo is “in operation” with a probability rg. If a GenCo is in operation,
it will submit an ask to the market for its uncommitted capacity at its fixed cost in each future
timeslot that is farther in the future than its commitment leadtime τg. Once it has sold at least some
power for a given timeslot, it is committed, and will attempt to sell the remainder by continuing to
submit asks in each enabled timeslot, including those closer to the current time than its commitment
leadtime. If it fails to sell at least some power in a given timeslot by its commitment time, then it
will withdraw its capacity from the market for that timeslot.

Once a GenCo has sold power for a given timeslot, it will deliver the power, regardless of its
capacity or operational status. We assume it has the ability to purchase power from others, if
necessary, to meet its commitments.

The exact set of GenCo entities in the simulation and their parameters are not specified, but
will be revealed to brokers at the beginning of a simulation. The available set of GenCos will be
sufficient to cover the demand in the simulation. This can be assured by providing one high-priced,
high-capacity GenCo with a minimal leadtime.

In addition to the GenCos, there will be a wholesale buyer who is willing to buy unlimited
quantities of power at a discount below the current lowest ask price from the set of GenCos for the
current timeslot.
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2.4 Balancing market

In electricity markets, supply and demand have to be balanced perfectly in real time. A major
task of the Independent Systems Operator (ISO)4 on the wholesale (transmission) level and of the
Distribution Utility (DU) on the regional (distribution) level is to monitor the grid and to maintain
balance while keeping voltage, frequency, and power factor within very tight bounds. This task
gets more challenging as more renewable energy sources, such as solar and wind, are connected to
the grid [25]. Many of these sources (e.g. wind) are only partially predictable. The grid balancing
problem has been studied on various levels (wholesale vs. retail) and with different approaches [16].

In Power TAC, the DU needs to determine the price that energy brokers need to pay in case
their profile of consumption and production of electricity is imbalanced in the current timeslot (see
Figure 4).

Figure 4: Entities and activities during balancing.

Brokers have the possibility to control some portion of customer production and consumption,
by offering price concessions in exchange for the ability to remotely interrupt loads or sources for
limited periods of time. Controllable loads are devices that are installed on the customer side and
can be turned on or off by the broker or DU for a certain time period dependent on the type
of contract the broker has with its customer. Examples of such controllable loads are remotely
controlled CHPs (Combined Heat and Power – increased or reduced production) and domestic
water heaters that can be remotely turned off (reduced consumption).

4In Europe the name TSO (Transmission Systems Operator) is used instead of ISO.
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2.4.1 Adjusting energy demand and supply

Here we explain more formally how the simulation computes balance, and how brokers can act to
avoid imbalance in the current timeslot. The total energy consumption for broker b in timeslot s is

ec(b, s) = eex(b, s) +

|Cb|∑
i=1

ei(s) (2)

or the sum of the loads during timeslot s of each energy consumer in the set Cb, the consumers in
the portfolio of broker b, plus the energy exported eex from the grid by broker b during timeslot s
through sales commitments in the wholesale energy market (see Section 3.1.3). Similarly, the total
energy production for broker b in timeslot s is

eg(b, s) = eim(b, s) +

|Gb|∑
j=1

ej(s) (3)

or the sum of outputs during timeslot s of each energy producer in the set Gb of producers in the
portfolio of broker b, plus the energy imported eim by b through purchase commitments in the
wholesale market.

In this context, balance between supply and demand means that supply equals demand for each
broker in each timeslot,

∀s ∈ S, eg(b, s)− ec(b, s) = 0 (4)

Note that eg(b, s) can include an arbitrary portion of contracted balancing capacity, and ec(b, s)
may include, as described in the following, an arbitrary portion of contracted controllable load.
Broker actions to buy or sell energy in the wholesale market, and to contract for balancing capacity,
can affect only future timeslots, not the current timeslot. Ultimately, it is the job of the DU to
ensure exact balance between supply and demand in real time. Any imbalance remaining after
summing supply and demand across all brokers will be balanced by the DU, by invoking brokers
controllable sources and loads, and by increasing or decreasing power draw from the transmission
system through the wholesale “regulating market” (also called the “ancillary services” market).
Costs for regulating power, along with DU fees, are charged to the brokers who are responsible for
the residual imbalance.

For each timeslot s, each broker b should balance expected supply and demand closely enough
that the DU can achieve exact balance without requiring regulating services. Expected demand is
the total expected load, or the sum of committed power exports and the expected loads e′i(s) of
each consumer i in the broker’s consumer portfolio Cb during timeslot s (see Equation 2):

e′c(b, s) = eex(b, s) +

|Cb|∑
i=1

e′i(s) (5)

Expected supply is committed power imports plus total expected production capacity of all gener-
ators g within the broker’s portfolio Gb during timeslot s (see Equation 3):

e′g(b, s) = eim(b, s) +

|Gb|∑
j=1

e′j(s) (6)

8



These values are maximum values in case some customers in the broker’s portfolios have agreed
to external control, presumably in exchange for better prices. For example, a combined heat and
power generator with a nominal output of 50kW can be adjusted by an external control so that
its real production is within certain boundaries, e.g., [40kW− 50kW]. Similarly, a domestic water
heater may be configured to permit remote shutoff for up to 15 minutes every hour. The total
controllable load for a broker b during timeslot s is ϵc(b, s), and the total controllable production
capacity is ϵg(b, s). As long as eg(b, s) − ϵg(b, s) ≤ ec(b, s) and ec(b, s) − ϵc(b, s) ≤ eg(b, s), then
supply and demand during timeslot s is expected to be in balance. Within this range, the DU will
either reduce load or reduce output as needed to achieve exact balance.

The dispatching of balancing power (or load) by the DU is done only during the current simu-
lation timeslot sn. In Figure 5(a), we can see in the current slot sn that both the actual observed
supply and demand have deviated from the forecasted overall supply and demand for broker b.
But as the difference between ec(b, sn) and eg(b, sn) was smaller than ϵg(b, sn), the controllable
production capacity of broker b in this slot, the DU was able to automatically reduce supply such
that overall demand and supply for timeslot sn was rebalanced.

For timeslot sn+1 in Figure 5(a), expected overall demand is forecasted to be within range of
the available production capacity, but the uncertainty envelope (grey boxes) shows that this is not
certain. In other words words e′g(b, sn+1)− ϵg(b, sn+1) ≤ e′c(b, sn+1). After 2τ simulation time has
elapsed (Figure 5(b)), this slot is now designated sn−1, and we can see that the real consumption
ec(b, sn−1) in this timeslot turned out to be lower than eg(b, sn−1) − ϵg(b, sn−1). This means that
even after the simulation environment reduced the broker’s production capacity to its minimum
level, the overall production still exceeded the overall consumption. In this case the DU either
reduced imports through the regulating market, or matched the surplus with a shortage of power
from some other broker, to absorb the excess generated energy.

In slot sn+2 in Figure 5(a), a significant difference between overall production and overall
consumption is forecast. Internal balancing capacity is likely to be insufficient for leveling the
expected difference. In order to avoid the (expensive) utilization of external balancing power,
broker b can either sell some of its surplus energy on the wholesale market, or use its contracted
pricing power to try to encourage (i) some or all of its consumers to increase their demand, or (ii)
some or all of its producers to reduce their production.

Technical adjustments by brokers (e.g. a remote activation of loads at consumer premises) is
not allowed within the competition; only the DU acts in the current timeslot. But a consumer’s
energy consumption is subject to the energy consumption price for consumer i in a timeslot s,
which is defined as pc(i, s). We define

êc(i, sn+2) = e′c(i, sn+2, pc(i, sn+2)) (7)

as the predicted load for consumer i in timeslot sn+2, given price pc(i, sn+2). If the broker changes
the underlying consumption price to p′c(i, sn+2) the forecasted consumption of this consumer is
expected to increase as

ê′c(i, sn+2) = e′c(i, sn+2, p
′
c(i, sn+2)) (8)

The ratio of demand change to price change

PE i =
êc(i, s, p)− êc(i, s, p

′)

p− p′
(9)
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Figure 5: Broker’s expected and actual energy supply and demand at two points in time.

is called the “price elasticity” for consumer i. Price elasticities will to be modeled within the
different consumer agents provided by the competition environment following empirical findings on
price elasticity as described for example in [23, 20].

Some customers in the broker’s portfolio (such as electric vehicle batteries that can be discharged
into the grid) might have agreed to flexible pricing as well, and therefore their output will be
sensitive to price in a similar way. In other words, the power generation capacity of broker b in
timeslot s, eg(b, s), is likely to change if the generation price pg(j, s) is changed to p′g(j, s), decreasing
if p′g(j, s) < pg(j, s). Next we discuss how the DU sets prices for balancing services.

2.4.2 Market-based balancing mechanisms

We present three different scenarios and the related mechanisms to balance the market and when
they will be used:
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Scenario I: no controllable loads This will be implemented for the pre-pilot release.

Scenario II: static with controllable loads This will be implemented for the pilot competi-
tion.

Scenario III: dynamic with controllable loads This will be implemented for the first official
competition.

In the following we discuss the desirable properties and the different scenarios. More detailed
background and examples on the balancing market can be found in [8].

Desirable balancing mechanism properties

The main goal of a real-time balancing mechanism is to have a balanced system, using the services
of the wholesale regulating market, local storage or spinning reserves, or controllable loads and
sources made available by brokers, such that demand and supply is matched exactly. To arrive at
this goal, we study the problem of setting prices for imbalanced portfolios from the standpoint of
mechanism design. Therefore, we first discuss desirable properties of such a pricing mechanism,
and we analyze what information is private to the brokers. These properties and the relevant
private information differ slightly depending on whether brokers have access to controllable loads
and sources. We start with the properties that hold for all scenarios.

1. To be able to restore any imbalance, the DU needs to know about expected imbalances from
the brokers ahead of time. Therefore, truthfully informing the DU of imbalances should be
incentive compatible to the brokers.

2. A second desired property is to have an efficient system, i.e., which optimizes social welfare.

3. To arrive at this, we do not just want efficient solutions regarding how imbalances are resolved
just in time, we, in fact, would like to have as little imbalance as possible between broker
commitments in the day-ahead market and the actual net load experienced in real-time.
The idea is that generally more efficient allocations are found when imbalances are resolved
in the day-ahead market (or even earlier), simply because there are more options then to
produce (or consume) additional power. For example, some generators have a start-up time
of several hours. Consequently, the strategy of brokers to have a portfolio with (almost) no
net imbalance should be incentive compatible.

4. Since the DU is responsible for the real-time balancing of the portfolio across all brokers, we
can argue that the payments have to be paid to the DU. An additional desired property then
is to ensure that the payments offered to the DU are always sufficient to cover its costs. A
pricing mechanism meeting this criterion is called weakly budget balanced.

In scenario I (without controllable loads) restoring the balance is done solely by the DU. How-
ever, to optimally restore the balance when brokers can have controllable loads (scenario II), we
need to extract additional information regarding costs and capacities of their controllable loads and
sources.

5. Since manipulating the costs of potential controllable loads can lead to sub-optimal solutions,
an additional goal in this setting is to make the strategy of declaring the true capacities and
costs of controllable loads incentive compatible.
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6. A second criterion in the case of controllable loads is a so-called participation constraint, i.e.,
the mechanism should benefit participating brokers, or otherwise brokers just will not declare
any controllable load at all. In other words, the mechanism should be individually rational.

In the following two sections we discuss which mechanisms can be used for the above two
scenarios (with/without controllable loads). The mechanisms for the different scenarios presented
meet all the desirable properties described above.

Scenario I: no controllable loads

The relevant players in both scenarios are the N brokers denoted by {1, 2, . . . , n}, and the system
operator or distribution utility (DU), denoted by 0. In our analysis, as is commonly done, we
consider energy production and consumption over a small amount of time, assuming that energy
production and consumption are more or less stable during that period. In such a timeslot, each
broker i ∈ N has an expected net local energy (potentially negative) surplus of xi ∈ R. Each broker
is requested to inform the DU of this surplus. Since this declared surplus potentially is different
from the actual surplus, we denote it by x̂i.

5 Furthermore we use P+ to denote the maximum
market price of energy for this timeslot in the day-ahead market (over all day-ahead trade periods),
P− to denote the minimum market price over all day-ahead trade periods, and P ∗ ≥ P the all-time
highest price possible.

The DU has the potential to import or export energy on the wholesale market (or apply its own
ancillary services such as spinning reserves) to arrive at a perfectly balanced energy production and
consumption. This comes at a cost of c0 : R → R per unit. See Figure 6 for an example, illustrating
that the cost of buying additional energy is higher than the benefit of selling additional energy at
this last instance.

To make the brokers’ strategy of declaring the true imbalance xi incentive compatible (require-
ment 1), we apply a mechanism with verification [17]. These mechanisms define payments after the
selected outcome (in our case the planned energy production and consumption) has been realized,
and there is a possibility of verifying the agents’ declaration in this realization; in our case this is
the net energy production. To obtain incentive compatibility here, we charge a penalty correlated
with the difference between the declared and true net energy production, which is guaranteed to
be higher than the maximum profit that can be made with the same amount of energy in the
day-ahead market.

Given the declared imbalances, the DU can compute the net declared imbalance x̂ =
∑

i∈N x̂i
over all brokers, and then apply its cost function c0 to the opposite to determine the (expected)
total costs for balancing, i.e., −x̂·c0(−x̂). Since in this first scenario there is no other way to recover
from imbalances, this meets our requirement (2) of an efficient solution in case all imbalances are
declared truthfully.

In addition to the penalty p1 set by the mechanism with verification, payments need to be set
such that also the third (regarding incentive compatibility) and fourth (regarding budget balanced-
ness) requirement are met. We denote these payments by p2. Since these payments are computed
after the timeslot has passed, we can base them upon the real imbalances xi. The third require-
ment in fact implies that the payment for an imbalance should always be higher than resolving
the imbalance against the maximum market price P in the day-ahead market, i.e., p2,i ≥ −xi · P+

5In Power TAC, the declared surplus does not necessarily need to be modeled, since the DU does not actually
arrange resources to recover from the net imbalance of all brokers based on the declared surplus.
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Figure 6: Usually the price (to be received) for a reduction of the production is significantly lower
than the price on the spot market, and the price for producing more is significantly higher than
the price on the spot market.

if xi < 0, or otherwise p2,i ≥ −xi · P−. Finally, the fourth requirement just says the payments
from the brokers (who consume more than they produce) should be more than the payments to the
brokers (who produce more than they consume) and the costs for recovering from the imbalance
together, i.e.,

∑
i p2,i + x · c0(−x) ≥ 0.

Given these constraints, there are infinitely many possible choices for these payments, since they
are only bounded from below. However, we are convinced that a DU should not profit significantly
from any imbalances, and the payments should be fair in the sense that brokers that produce too
much in an over-consuming market, or brokers that consume too much in an over-producing market
should not pay as much as the others. We therefore propose to minimize the difference between the
payments and the costs (or profits) attached to resolving the imbalance in the day-ahead market.
In the following mathematical programming model, let p2,i denote the payment of broker i; this is
the only variable, since xi, P

+, and P− are given.

minimize
∑

i if xi<0(p2,i + xi · P+)2 +
∑

i if xi≥0(p2,i + xi · P−)2

subject to p2,i ≥ −xi · P+ if xi < 0
p2,i ≥ −xi · P− if xi ≥ 0∑

i p2,i + x · c0(−x) ≥ 0

(10)

This program is a (quadratic) convex program if c0(·) can be modeled by a (set of) linear function(s);
it then can efficiently be solved, e.g., using interior point methods [4].

According to this definition over-consuming (xi < 0) brokers always have to pay a positive
amount. In the program in Equation 10 the distribution of the costs of balancing is defined by the
minimization criterion, which expresses that each broker should pay an equal portion above the
minimum amount defined by the constraints. However, this minimization criterion can be chosen
differently (e.g., never let over-producing brokers pay a positive amount); the results below rely
solely on the given constraints.

Scenario I will be used for the pilot competition in summer of 2011, using data from the
econometric analysis of [21] for parameter settings, scaled by the size of the customer population.
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Scenario II: static with controllable loads

The controllable loads for each broker i are represented by a capacity range for its controllable
production (or consumption)

[
c−i , c

+
i

]
, and a function describing the price (absolute costs per unit)

of diverting from its production xi, i.e., ci :
[
c−i , c

+
i

]
→ R, similar to the up- and downward regula-

tion of the DU. We assume this to be a monotonically increasing (often step-wise) function, since
it represents all contracts that include a controllable part, usually at different prices and capacities
and first (for rational agents) the cheapest options are used. Examples of such upward regulation
contracts are the possibility to turn-off lights or heat pumps, or turn on CHPs, and examples of
downward regulation contracts are pre-loaded washing machines, the charging of batteries (also of
electrical vehicles), and the possibility to temporarily tune down production capacity.

The distribution utility needs to make sure that for every i ∈ N ∪ {0} some extra production
(or consumption) δi within the possibilities is chosen at minimal total costs such that all energy
consumption and production is balanced, i.e.,

minimize
∑

i∈N∪{0} δi · ci (δi)
subject to δi ∈

[
c−i , c

+
i

]∑
i∈N∪{0} (xi + δi) = 0

(11)

This may or may not include an increase/decrease of production regulated by the DU itself,
dependent upon the costs. For now we assume this possibility to be unlimited, i.e.,

[
c−0 , c

+
0

]
=

[−∞,∞].
In case the correct information is used, Equation 11 meets the first requirement (of efficiency).

Furthermore, if all the functions ci are monotonically increasing, this problem is convex and can
therefore again efficiently be solved [4].

The payments to incentivize the brokers to provide the correct information now consists of three
parts:

1. The same mechanism with verification (with payments p1) as in scenario I is used to make
declaring the true imbalance a dominant strategy.

2. The same mechanism as in scenario I (with payments p2) is used to make having no imbalance
a dominant strategy.

3. An additional payment p3 is introduced in this section to make declaring the true cost function
a dominant strategy.

The utility of a broker i for a solution δ is not just defined by these payments, but also by the costs
of load control, i.e., ui(δ) = −ci(δi) − p1,i − p2,i − p3,i(δ). Regarding the incentives, note that the
first payment is completely independent of the others, and that the analysis of the incentives from
the previous section thus automatically transfers. The focus of this section will be on the third
payment.

No real-time matching among brokers First observe that since the verification mechanism
can be used to incentivize truthful reporting of the imbalance, the remaining strategic opportunities
for brokers relate to the cost function of their controllable loads. However, even then the social
costs for balancing can be reduced by real-time matching upward and downward regulating services
among brokers. If this is possible, these brokers could also have realized this exchange in the
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day-ahead market. It turns out that forbidding such exchanges in the real-time balancing phase
sufficiently restricts the setting to meet all given requirements. The additional conditions are that
for all i ∈ N ∪ {0} it holds that

δi ≥ 0 if
∑

i∈N xi < 0 (under-production)
δi ≤ 0 if

∑
i∈N xi > 0 (over-production)

(12)

With these conditions and step-wise cost functions, the mechanism is similar to a multi-unit
auction (in the case of over-production) or a reverse multi-unit auction (in the case of under-
production) [15]. With any type of cost functions, [10] mechanisms are the only mechanisms to
achieve both an efficient allocation and a truthful declaration, in our case of the cost function of the
controllable loads. Within this class, the VCG mechanism [26, 5] ensures that brokers always have
a nonnegative utility for participating (i.e., individual rationality) under two conditions that hold
in this domain: (i) choice-set monotonicity, which says that removing an agent never increases the
set of alternative solutions, and (ii) no negative externalities, which says that every agent has zero
(or more) utility for any choice that is made without its participation. When VCG is applied in
the above setting, given the optimal production vector δ, the payment for each broker i is defined
as follows (note that the sign is flipped because VCG is defined on the maximum social welfare,
not on the minimal costs).

p3,i(δ) = −
∑
j ̸=i

δ−i
j · cj

(
δ−i
j

)
+

∑
j ̸=i

δj · cj (δj) , (13)

where δ−i denotes the optimal solution to Equation 11 in a situation where the controllable loads
of broker i cannot be used, i.e., δi = 0. In case of over-production, all payments are positive, and
thus the VCG mechanism meets all our requirements.

2.5 Accounting

Provides accounting services in support of other components. Cash accounting including customer
billing and payments, tariff publication fees, market settlements, interest on debt, and credits and
debits related to taxes and incentives. Market position accounting tracks the current commitments
in the forward market for each broker. This is needed by the Distribution Utility to run the
balancing process in the current timeslot.

2.6 Weather reports

Provides weather forecasts and current-hour weather conditions. Some customer models will use
this information to influence energy consumption (temperature, for example), and production (wind
speed, sky cover). Brokers who have subscribed customers that are weather-sensitive will also need
this data to predict production and consumption. In most cases, this component will be a proxy
for an external data source containing real-world weather and forecast history data.

3 Brokers

3.1 Actions available to brokers

Figure 7 illustrates the timeline and information exchange between a broker and the simulation
environment in each timeslot. Note that the specific order of events is more flexible than what is
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shown.

Figure 7: Illustration of Power TAC activities within one timeslot, where the broker receives in-
formation from the accounting and weather services, enters contracts with customers, trades in
the wholesale market, and interacts with the distribution utility. The complete circle represents a
1-Hour timeslot; therefore each day consists of 24 timeslots.

In the following list we describe the minimum set of actions that a competition broker has to
implement. The interaction component is listed in parentheses, e.g. Tariff Market.

Create new tariffs (Tariff Market): Design and offer new tariffs to customers.

Revoke tariffs (Tariff Market): Revoke tariffs from customers.

Price adjustments (Customers): Adjust prices in a current tariff.

Contract negotiation (large Customers): Agree on a contract through bilateral negotiation.

Balancing offer (Distribution Utility): Design contracts and tariffs that include controllable
loads for real-time balancing.

Create asks and bids (Wholesale Market): Create asks and bids to sell (procure) energy.
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3.1.1 Design, offer and revoke tariffs

To manage their portfolios, brokers have to design, offer and revoke tariffs. In the following we
describe how tariffs in Power TAC can be constructed. Figure 8 shows a representation of a
constrained version of this ontology, slightly denormalized to simplify relational mapping:

Figure 8: Tariff structure.

This structure allows a number of features within a simple, compact object graph. Many of
the ontology concepts are collapsed into the Tariff itself (payments, energy-type), but the rate
structure is broken out. This allows for a range of rate structures without requiring space (memory
and bandwidth) for unused features. It also allows a simple convention for unused features: null
references. Here are some tariff features that can be represented:

• tiered rates, in which customers pay/receive one rate for a portion of usage (up to 20 kWh/day,
for example), and a different rate for the remainder;

• time-of-use rates;

• weekday/weekend rates;

• two-part tariffs (fixed daily fee plus usage fee);

• signup payments in either direction (fee or bonus);
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• early withdrawal penalties;

• variable rates with minimum and maximum values, estimated mean values, and notice inter-
vals.

This model is implemented in the powertac-common plugin. The classes in yellow,
TariffSpecification and its associated Rates and HourlyCharges are serializable value objects
that are used to communicate between Broker and Server. Once a TariffSpecification ar-
rives at the server, it is wrapped with a Tariff, which remaps the Rates of a Tariff into a 2-D
array, indexed by usage tier and hour. Customer subscriptions to the Tariff, are represented by
TariffSubscriptions, which are responsible for keeping track of the number of customers in a
population model that are currently subscribed, and for computing credits and debits for power
usage and production.

A major feature of the full ontology that is not included here is the ability to write tariffs
that bundle multiple power-types, such as household consumption and electric-vehicle charging.
Such bundling is certainly practiced in the real world, but for the time being, the complexity of
evaluating bundled tariffs is avoided. On the other hand, bundling of tariff instances within the
scope of a negotiated agreement seems reasonable and easily represented with minor modifications.

3.1.2 Dynamic pricing decisions

An important tool in a broker’s ability to balance the consumption and production from its portfolio
of customers is the ability to change prices dynamically using variable-price tariffs. However, since
such dynamic prices are typically communicated to the customers some number of timeslots before
the timeslot to which they apply, the broker must use some type of forecasting to determine the
optimal price to set for the target timeslot, i.e., the future timeslot for which it is now required to
communicate prices.

There are several environmental features that factor into the prices that the broker may want to
settle on. At a basic level, a broker may want to forecast the load and supply from the customers
for the target timeslot. Two major factors in the determination of this load and supply are (i)
the estimated or realized load and supply for timeslots preceding the target timeslot, and (ii)
the estimated weather conditions for the target timeslot. Correspondingly, in order to forecast,
the weather conditions for the target timeslot, the broker may want to consider current weather
conditions and historical averages for the time of the year.

At a more advanced level, a broker can also try to forecast the prices in the wholesale market as
well as the DU’s balancing market and use those forecasts in setting its tariff prices for the target
timeslot. For example, if the broker believes that it will likely be cheaper to buy energy in the
wholesale market than to increase production from its portfolio, it may choose to not increase its
dynamic tariff prices for producers, which would normally incentivize them to increase production,
even when it needs to respond to a potential short-supply condition in the target timeslot.

3.1.3 Wholesale market trading

Dynamic adjustment of prices for consumers and producers who are on variable-price tariffs and
the advance reservation of producer capacity as balancing power reserves are two possibilities to
balance a broker’s portfolio over time. Besides these two options, a third one is to buy missing, or
to sell excess, capacities on the wholesale market.
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Table 1 shows a sell order before its submission to the wholesale market (left) and after its
clearing (right). In this example Broker 1 wants to sell 10 MWh of power within the timeslot May
01, 2011 03:00 – 03:59 at a minimum price of 40 e/MWh. At 01:00 the order is matched on the
energy market at a price of 45 e/MWh and a quantity of 6.2 MWh. Broker 1 managed to sell 6.2
MWh of energy for this timeslot, which helps him to better balance his portfolio’s overall energy
supply and demand in this timeslot.

(a) Submitted Sell Order

Order ID: 1
Order Owner: Broker 1
Timeslot: May 01, 2011 03:00 – 03:59
Order Type: Sell
Order Status: Open
Quantity: 10 MWh
Limit: 40 e/MWh
Created at: May 01, 2011 00:00
Clearing Date: –
Clearing Quantity: –
Clearing price: –

(b) Matched Sell Order

Order ID: 1
Order Owner: Broker 1
Timeslot: May 01, 2011 03:00 – 03:59
Order Type: Sell
Order Status: Matched
Quantity: 10 MWh
Limit: 40 e/MWh
Created at: May 01, 2011 00:00
Clearing Date: May 01, 2011 01:00
Clearing Quantity: 6.2 MWh
Clearing price: 45 e/MWh

Table 1: Asks submitted to and later matched on the wholesale market.

3.1.4 Portfolio management

The primary goal of a broker is to acquire access to power sources and customers that result in
a portfolio that is profitable and balanced, at least in expectation, over the period of the next
execution activities and timeslots. A secondary goal is to manage financial and supply/demand
imbalance risks. For example, an agent will benefit from having reasonably-priced energy sources
that can be expected to produce power when demand is expected to be highest within its load
portfolio. Predictability is also important, and will generally improve both with volume (because
noise as a proportion of demand or supply will be lower with larger numbers of randomly-behaving
sources and load, even if they are correlated) and with a balanced portfolio of uncorrelated sources
and loads. Risk can be managed by acquiring uncorrelated sources and loads that can be expected
to balance each other in real time, by acquiring storage capacity, by acquiring sources that can be
used as needed (balancing sources), and by trading futures contracts on the regional exchange.

At any given time, a broker will have some number of active contracts, having negotiated them
earlier. Such contracts have expiration dates beyond the current date. Also, tariffs offered earlier
may remain active; customers who have agreed to a tariff in the past may or may not have an
opportunity to opt out and choose a different tariff, and if they have the opportunity they may not
choose to exercise it.

Acquire power sources Power source commitments are obtained by three different methods:

• Large local sources (large wind turbines, wind farms, large CHP plants, etc.) are traded in
the local market through the RFQ process as described in Section 2.2.2.

• Small local sources (household and small-business sources) are obtained by offering tariffs in
the local market, as described in Section 2.2.1.

• Power from the regional grid is obtained by trading in the wholesale market.
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Power sources can be continuous or intermittent, and local continuous sources may have a non-
zero balancing component as discussed in Section 2. Continuous sources include power obtained
from the regional exchange, as well as the continuous portion of the output from many CHP and
hydro plants. Intermittent sources include most renewable sources such as wind and solar plants.

Acquire storage capacity Storage capacity can be used to absorb excess power or to source
power during times of shortage. Power can be absorbed by capacity that is not fully charged, and
sourced by capacity that is above its contracted minimum charge level. Storage capacity that is
below its minimum charge level is considered to be a load that is possibly responsive to real-time
price signals.

Storage capacity can be contracted through the local market through the tariff or the RFQ
process. For example, individual owners of plug-in electric vehicles (PEVs) could sign up for tariffs
that provide for both charging of the batteries as well as limited discharging as needed for load
balancing by the contracted broker. On the other hand, a battery-exchange service for electric
vehicles might negotiate a contract for the use of a portion of its current battery inventory for
balancing purposes.

Acquire loads Loads may be contracted through both the local market and the wholesale market,
as is the case with power sources.

• Large local loads (industrial facilities and large office parks, for example), could negotiate
rates through the RFQ process.

• Small local loads (households and small businesses, for example) must choose tariffs in the
local market.

• Agents may choose to sell future power capacity in the wholesale market for periods when it
expects to have a surplus. Such advance sales are hard commitments; the sold quantity of
power will be transferred out of the system during that interval at a constant rate.

3.2 Information available to brokers

Tables 2, 3, 4 and 5 summarize the information available to brokers at various times during the
game. Specifically, Table 2 lists information that is made available at Startup. Table 3 lists the
information made available once per Tariff Period, which is typically once every 6 simulation
hours. Table 4 lists the information made available once per Timeslot, which is typically once
every 1 simulation hour. Table 5 lists the information available at Anytime during the game.

Each item in these tables is annotated with three attributes:

1. Public vs. Private: Is the item visible to all brokers; i.e., all competition participants, or only
the relevant broker?

2. Free vs. Cost: Is there a cost associated with acquiring this information? The cost, if any,
may be a fixed game parameter or change during the course of the game. Please refer to the
detailed documentation for further specification.

3. Receive vs. Request: Is the information automatically received by the broker as a message or
series of messages or does the broker need to initiate a request to the competition server to
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obtain this information in response? Please refer to the detailed technical documentation for
the APIs and message formats.

In the tables, values for the three attributes are indicated with a check mark (X) for Public,
Free and Receive while Private, Cost and Request are indicated with a cross (×).

Table 2: Information available to a broker at Startup. See Section 3.2.
Item Attributes Description

Pub? Free? Rcv?

Game parameters X X X The parameters used to configure or instantiate
the specific game. See Section 5.1 for details.

Initialization context X X X Additional information, besides the competition
parameters, e.g., identities of participating bro-
kers, available after the login process has com-
pleted. See Section 5.1 for details.

Broker identities X X X The identities of the participating brokers in the
current game. A particular competition partici-
pant maintains the same identity over the differ-
ent rounds of the competition.

Default tariffs X X X At game initialization, the tariff market consists
only tariffs offered by the Default Broker.

Weather report X X X The current weather and the forecast for the next
48 hours.

Wholesale market
prices

X X X Prices for each of the 23 open trading hours on
the wholesale market, based on offers from large
generating stations and bids from the Distribu-
tion Utility since brokers are not yet participat-
ing in the wholesale market.

Table 3: Information available to a broker per Tariff Period. See Section 3.2.
Item Attributes Description

Pub? Free? Rcv?

Tariff updates X X X New tariffs, revoked tariffs and superseding tar-
iffs where applicable.

Portfolio changes × X X New and dropped customer subscriptions.

Tariff transactions × X X Bonus and early-exit penalty transactions.

Customer history × X × 7-day historical consumption and production
profile of customers in current portfolio.

4 Customers

The simulation includes a range of customer models, including electric vehicles, CHPs, solar panels
and wind turbines, and multiple models of private households, clustered by preference similarity.

21



Table 4: Information available to a broker per Timeslot. See Section 3.2.
Item Attributes Description

Pub? Free? Rcv?

Wholesale market
prices

X X X Market clearing prices for the 23 currently open
trading hours in the wholesale market.

Balancing price X X X Price set by the DU to clear the balancing mar-
ket.

Total supply and
demand

X X X Consumption and production metrics aggregated
over all customers as seen by the DU; includes de-
rived statistics on net exports and imports from
or into the wholesale market.

Weather report X X X Realized weather for the current timeslot and
forecast for the next 48 hours.

Portfolio supply and
demand

× X X Production and consumption metrics for the cur-
rent customer portfolio, broken down by cus-
tomer subscription (individual customers or frac-
tions of customer population models).

Wholesale market
cleared trades

× X X Execution reports for bids and offers cleared by
the wholesale market.

Market position × X X Net import/export commitments for the 23 open
trading hours on the wholesale market.

Balancing report × X X List of balancing actions taken by the Distribu-
tion Utility on customers in the current portfolio.

Accounting
transactions

× X X List of market transaction entries as processed
by the Accounting service for the current period;
includes tariff subscription-related transactions,
wholesale market transactions and balancing fee
transactions. Note that tariff transactions are
reported separately.

Cash position × X X Updated cash position after all current account-
ing transactions have been applied.

Negotiation
bids/offers

× X X Initial or continuing updates on negotiations
with contract customers. Please refer to the Ne-
gotiation Protocol documentation for further de-
tails.

Level-2 wholesale
market data

X × X Full orderbook from the wholesale market data
with price and quantity of all bids/offers, from
all brokers, to be considered for clearing for the
23 open trading hours.

An important feature of these models is their responsiveness to price changes. A special focus
lies on modeling substitution effects between timeslots as price elasticity effects would be very
limited in 60 days of simulation time. In the literature such effects have been analyzed by means
of synthetic aggregate models [18] or micro-founded bottom-up models [2]. Power TAC’s dynamic
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Table 5: Information available to a broker at Anytime. See Section 3.2.
Item Attributes Description

Pub? Free? Rcv?

Resynchronization
context

X X × The game parameters and initialization context
available during Startup can also be queried if a
broker needs to recover from a crash.

Current tariffs X X × The full set of tariffs that have not been expired,
revoked or superseded.

Reputation metrics X X × Realized prices on variable rate tariffs and other
computed metrics quantifying the reputation of
each broker in the market.

Aggregate customer
profile

X × × Aggregate metrics characterizing the set of cus-
tomer models instantiated in this game. (TODO:
Need more detail.)

Demand forecast X × × TBD

Wholesale market
forecast

X × × TBD

Tariff market forecast X × × TBD - Forecasts for default tariffs only

demand models extend the latter approach to describe a rich customer population.
From a technical perspective customers are realized in the form of plugins. A customer model

plugin instantiates a population of a customer type. Such population models can represent larger
groups of homogeneous customer which helps to reduce computational complexity. Plugins can
maintain local databases to store information to guide their further activity. The plugin approach
allows researchers to investigate questions related to specific consumer types or behavioral assump-
tions by using only relevant customer models.

In the game context customers perform three major tasks; choosing tariffs, recording meter
readings and providing balancing capabilities. Choosing tariffs facilitates customer participation
in the tariff market; customer balancing capabilities provide an additional balancing tool while the
generation of meter readings instantiates the fundamental objective of interest of Power TAC –
dispersed consumption and generation of energy that need to be balanced. Therefore, customer
models are very important building blocks of the game environment.

4.1 Customer types

In the Power TAC simulation environment the CustomerType enumerations allows for the desig-
nation of generic customer types. These customer types characterize the general load profile of a
customer. The following customers types are implemented:

• households — typical residential consumption behavior; potentially provision of generation
from renewable energy sources

• offices — typical flat consumption throughout working hours, limited consumption at other
times

• factories — similar to office consumption but with greater magnitudes and more variance
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• electric vehicles — large loads (charging / V2G) when connected to grid, otherwise zero load

A customer’s load profile is further specified by the power type it supports. A customer uses at
least one of the types from the PowerType enumeration, but can also use multiple. The following
power types are implemented:

• consumption — power flow from grid to customer

• interruptible consumption — power flow from grid to customer that can (within certain
bounds) be interrupted by the broker

• production — power flow from customer to grid; this power type is further split into sub
types that allow differentiation of power sources

• storage — power flow to and from the grid; continuous operation in one direction is limited
by the storage capacity

4.2 Population models

Power TAC provides support for customer population models. These population models wrap
multiple customers of the same generic type. This allows representation of large customer bases
without compromising server performance. Population models have a total number of committable
consumption which they can split up between multiple tariffs.

4.3 Tariff market interaction

The tariff market facilitates the matching of consumers and brokers. Customer models actively
participate in the tariff market by choosing new tariffs through periodic evaluation of the tariffs
offered by the brokers. Customers face the tariff selection problem as shown in Figure 9. That is
they need to select an attractive tariff from the set of available tariffs.

Figure 9: Tariff market interaction.

The key part of customer tariff evaluation is calculation of the expected cost (gain) over the
lifetime of a contract relationship. This quantity is composed of the expected variable payments
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from estimated consumption (production), periodical payments as well as sign-up fees or bonuses.
Especially the derivation of expected variable payments is crucial: It needs to properly reflect
a customer’s consumption (production) choice under the tariff to be evaluated. Therefore, tariff
choice needs to be fundamentally driven by consumption choice under a tariff as described in the
next subsection. Especially for complex tariffs this is a key design challenge for creating customer
models. Since early exit is possible, customer models may evaluate available tariffs at any time.
Clearly in this case, a proper switching evaluation has to additionally factor in the exit fees from
leaving the current tariff. This monetary evaluation is complemented by an additional assessment
of other tariff aspects, e.g. broker reputation, energy sources, interruptibility properties or early
exit fees. The tariff comparison is therefore described by a utility value for each available tariff.
This value moderates costs and other factors. The tariff utility function and the corresponding tariff
choice logic are the key characteristics of customer model actions in the tariff market. Elicitation
of these tariff preferences is thus a major aspect of a successful broker strategy.

From the currently available tariff list customers need to select a suitable one (see Figure 10).
This is a two-step problem:

1. Derive the utility value for the current tariff and the new tariffs to be considered — this could
be either all tariffs or just a (random) subset.

2. Compare all evaluated tariffs and choose (most) suitable one

Figure 10: Tariff selection problem.

The implementation of the tariff selection problem is described in the remainder of this section.

4.3.1 Deriving tariff utility

To derive the utility of any given tariff, customers need to jointly evaluate costs, energy sources, bro-
ker reputation and tariff risk to determine a tariffs suitability. For customer tariff utility we assume
generalized additive independence between the attributes. Tariff utility can then be represented as

ui = −(cv + cf )αcost − eiαenergy − riαrisk − Iiαinertia. (14)
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The alphas are customer-specific weighting parameters for the different tariff-specific realizations
of the sub-disutility types. The sub-disutility values for tariff costs (cv + cf ), energy content (ei),
tariff risk (ri) and inertia (Ii) are evaluated using functions common to all customers:

Variable tariff costs cv Consumption payments are determined by sampling k random days,
deriving each day’s optimal consumption under the tariff to be evaluated and finally averaging the

realized cost: cv =
∑

k c∗v(k)
k . For variable tariffs this calculation is performed using the average

realized values.

Fixed tariff payments cf Fixed tariff payments consist of sign-up fees/ bonuses of the new
tariff, csign-up, daily periodic payments cdaily as well as exit fees of current tariff cexit. These costs
need to be normalized to a one day time span. While this is trivial in case of the periodic payment,
it requires the expected tariff life t̃ for the other payments.6 The normalized values of the fixed
payments are summed to obtain the fixed other payments value, cf = cdaily +

csign-up+cexit
t̃

.

Energy content ei ei is the percentage of non-renewable energy sources in the tariff considered.

Tariff risk ri Under a dynamic contract customers face the risk of unfavorable rate developments.
Hence, they evaluate a dynamic tariff’s rate risk using the variance of the realized prices.

Customer inertia Ii Customers have behavioral cost of changing a tariff. These are reflected
by the inertia term. Given the current tariff j, Ii is defined as

Ii =

{
1 if i ̸= j

0 if i = j.
(15)

With this procedure customers can assess the utility of any tariff offered. This utility is the
foundation of the customer tariff selection as described in the next section.

4.3.2 Choosing from a list of tariffs

An overall tariff choice does not need to strictly follow a deterministic choice of the highest utility
value. This is especially important for population models that wrap a larger group of customers.

A smoother decision rule which allocates the selection choice proportionally over multiple similar
tariffs is therefore needed. A logit choice model facilitates this type of tariff choice randomization.
Instead of providing a discrete tariff decision, a choice probability Pi is obtained for each tariff i
from the set of tariffs considered T:

Pi =
eλui∑
t∈T e

λut
(16)

The parameter λ ≥ 0 is a measure for how rationally a customer chooses tariffs: λ = 0 represents
random, irrational choice, while λ = ∞ represents perfectly rational customers always choosing the
tariff with the highest utility. Depending on the customer model type this choice probability can be
used in two ways — either to represent randomized and not perfectly rational tariff choice in case
of single customer models or to assign population shares to different tariffs in case of a population
customer model.

6The derivation of t̃ may be customer-specific.
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4.4 Provide balancing capacity

Customers can provide brokers with different forms of balancing capacities, determined by the
PowerType. These differ in availability and the amount of balancing energy available.

Interruptible consumption

Certain types of appliances (water heaters, heat pumps) can support remote interruption by the
broker. If a broker has such interruption under contract it can, when used, be turned off for the
broker’s balancing actions.

Pledged energy from storage

By pledging stored energy customers with energy storage can provide balancing capacity — limited
by the storage unit’s discharge power and level of charge.

Controllable micro generation

While intermittent producers typically cannot provide balancing capabilities, non-intermittent pro-
ducers like CHPs or bio-gas units can pledge extra generation capacity for balancing purposes.

4.5 Record meter reading

Customer models ultimately represent the entities connected to the grid. As such the game im-
plications of their actions can be represented as timeslot meter readings for both consumption
(positive reading) and generation (negative reading). Serving and balancing the meter readings
of their customer population is the brokers’ main task in Power TAC. Hence the determination of
meter readings is a crucial task performed by customer models.

The meter readings generated by a customer will typically depend on model primitives (number
of household members, work shift hours), randomization, the current season and weather conditions
(e.g. turning on A/C, output from solar panels), the selected tariff (time-of-use pricing induces
customers to shift consumption) as well as balancing capability actions (respond to current or
previous load interruption).

The relationship between a customer’s tariff and the meter reading is described by an economic
consumption or generation logic. In the following sections typical implementations for these con-
sumption/ generation logics are described. Note, that the other consumption influences (weather,
balancing actions) influence this logic by changing the origin meter reading.

Fully static consumption

These are customer models that do not adjust their consumption to the rates of their current tariff,
i.e. The meter readings of these customers are independent of their selected tariff. This could
be due to lack of shifting capabilities or relative insignificance of electricity costs (rich customers,
certain industrial customers). This is also the appropriate model for non-controllable generation
facilities (e.g. PV).
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Flexible consumption amount, static timing

This type of customer model implements a simple demand behavior: for each timeslot the optimal
consumption amount is decreasing in the timeslot electricity price. Such customer models reflect
synthetic consumption profiles determined in a top-down approach considering aggregate electricity
consumption as a continuous good with positive and decreasing marginal utility. Controllable
generation with well-defined cost functions (e.g. micro-CHP) are also captured by this modeling
approach. These models are especially helpful for economic analyses as their behavior can be
described in compact mathematical form.

Static consumption amount, flexible timing

Customer models who can change the timing of their loads (e.g. through automatic appliance
scheduling) will not change their consumption amount under a given tariff but will try to minimize
their cost by scheduling the activities appropriately. Such household models are typically bottom-
up models where consumption originates from the activity/ appliance level [2].

Fully dynamic consumption

Fully dynamic consumption features both flexible consumption amounts as well as flexible timing.
Such models can be both top-down as well as bottom-up. Top-down models specify cross-price
elasticities between timeslots [18]. Fully dynamic bottom-up models endogenize price for activity
occurrence and scheduling.

5 Competition format and interaction

Number of broker agents As opposed to previous TAC competitions where the number of
agents were fixed in each game, in Power TAC the number of broker agents varies. This is expected
to stimulate more dynamic agent design and a better abstraction of real-world conditions. We will
pick a few game-size values and group them into different sized broker pools to simulate oligopolies
as well as highly competitive markets.

5.1 Competition initialization and Default Broker

The standard competition parameters can be found in Table 6. Values for these parameters are
sent to a broker at the start of every game. For details see the software documentation.

To create a fair start of each game Power TAC initially allocates all tariffs to an incumbent
Default Broker, a non-competition broker. After a few timeslots, the Default Broker will change
all existing tariffs. This will force customers to evaluate new tariffs, and therefore stimulate tariff
switching to competition brokers.

5.2 Competition ending

The game ends at a random number of K timeslots after day 55 (timeslot 1320), K = 0, 1, . . ..
For each timeslot, starting day 55, there is a fixed probability p that the game ends by the end
of that particular timeslot. As a consequence, the number of timeslots in excess of day 55, K
follows a geometric distribution. The expected number of timeslots in excess of day 55 is equal to
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Table 6: Parameters used in the Power TAC game.

Parameter Symbol Standard Game Setting

Number of brokers in a game B 2, 4, and 8

Number of games in a round with 2 brokers G2 12

Number of games in a round with 4 brokers G4 6

Number of games in a round with 8 brokers G8 6

Nominal length of game E 60 days

Probability that there are k timeslots after
timeslot 1320 (start of day 55) before end of
game

[pmin, pmax] [pω, 1]

Probability for each timeslot after timeslot 1320
(start of day 55) of end of game

p 1
121

Minimum game length Min(TS) 1320

Expected game length E(TS) 1440

Timeslot length x 60 minutes

Time compression ratio ρ 720 (5 seconds/timeslot)

Open timeslots on wholesale market x 24

Market closing time x 1 timeslot ahead

Distribution fee x [0.01 - 0.3]/kWh

Balancing price basis P mean price over final three
market clearings

Balancing cost c0 [0.02 - 0.06]/kWh

Tariff publication fee x 1000

Tariff revocation fee x 1000

Tariff publication interval x 6 timeslots

Annual bank debt interest rate [βmin , βmax ] 4.0 – 12.0%

Annual bank deposit interest rate [β′
min , β

′
max ] 0.5β

Weather report interval x 1 hour

Weather forecast interval x 24 hours

Weather forecast horizon x 48 hours

E(K) = (1 − p)/p. The cumulative probability distribution that the game ends after at most k
extra timeslots is equal to:

P (K ≤ k) = 1− (1− p)k+1, for k = 0, 1, . . . (17)

The probability ω that the game does not end before day 60 (timeslot 1440) is derived from the
inverse cumulative distribution. More generally, we want the probability that the game takes more
than k′ timeslots to be at most equal to some ω:
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P (K > k′) ≤ ω ⇔ (1− p)k
′+1 ≤ ω (18)

⇒ k′ ≤ lnω

ln(1− p)
− 1 (19)

The end-of-timeslot ending probability p will be based on:

P (K > k′) ≤ ω ⇒ p ≥ 1− k′+1
√
ω (20)

If the probability that the game ends after 60 days (timeslot 1440 - timeslot 1320), k′ = 120,
is to be no more than 1%, ω = 0.01, then the timeslot ending probability should be set at p ≥
1− 121

√
0.01 = 0.037. The choice of p will be operationalized as a random drawing from a uniform

distribution defined on the domain [pω, 1], where pω refers to the probabilities calculated before;
for example, p0.01 would be 0.037. Given the random end of game and that each Power TAC day
lasts 120 seconds in real time, an average Power TAC game will last around 2 hours overall.

5.3 External metrics and game logs

In order to allow games to be followed in real time, and also analyzed in depth at a later date, an
additional set of metrics (including the following) will be monitored throughout the game. These
metrics are used by the game viewer to provide a visual representation of the game as it proceeds,
and are stored within the game logs for post-mortem analysis.

• Bank balance for each broker

• Balancing performance for each broker

• All Tariff offers and orders exchanged by brokers and customers

• Portfolio of each broker

5.4 Winner determination

Within a competition the performance of its participants has to be evaluated and compared at
a certain point in time. This is usually accomplished by rank ordering all participants according
to one or more defined performance criteria and to declare the best performer in this rank order
winner of the competition. This principle also applies to Power TAC. Consequently this section
describes the performance criteria used to rank order the Power TAC participants; albeit with quite
some differences compared to previous TAC competitions. Note that a wide range of performance
criteria, such as minimizing carbon emissions, maximizing the share of renewable energy, and other
factors can be converted to monetary units by introducing taxes and incentives as part of the
market structure.
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5.4.1 Performance criteria

Each Power TAC participant (broker) is assessed and an overall rank order of all participants is
created based on overall profits pprofit, calculated as the (monetary) payments, ppay, minus costs,
pcost, minus fees, pfee:

pprofit = ppay − pcost − pfee (21)

• Payments are monetary transfers from customers (consumer)to brokers and are based on
the agreed contract conditions and the actual (ex-post) measured energy consumptions of the
respective customer (consumer) as described in Section 2.4.1. Other payments for instance
include sales in the wholesale market, and possible payments from external balancing.

• Costs are monetary transfers from brokers to customers (producers) and are based on the
agreed contract conditions between the respective customer (producer) and broker and the
actual (ex-post measured) energy produced as described in Section 2.4.1. Other costs for
instance include procurement in the wholesale market.

• Fees are (i) the cost for external balancing power (see Section 2.4) used, and (ii) a carbon
tax. The carbon tax is a fixed fee (in e/MWh) for each MWh of energy produced from non
renewable energy sources. The carbon tax remains constant throughout a competition and
is publicly announced ahead of the start of the first round. Other fees for instance include
publishing or revoking tariff.

5.4.2 Final ranking algorithm

After each competition round ends, i.e. at the end of the finals, z-scores of the accumulated
profits for each broker can be straightforwardly calculated to facilitate comparisons between one
competition and another, i.e. between the 2-player, 4-player, and 8-player competition. If we
denote the accumulated profits of a broker in a competition as abc, the average accumulated profits
of all brokers in the competition as ac and the standard deviation of all brokers in the competition
as Sc, then the standardized accumulated profits of broker b in competition c, zbc, is obtained as:

zbc =
abc − ac

Sc
(22)

After all competitions C have ended, an overall measure of relative broker performance will be
obtained by taking a simple average of the standardized broker performance per competition:

zb =
1

C

C∑
c=1

zbc (23)

where C is the number of competitions.

5.4.3 Tournament structure

A typical Power TAC tournament consists of several rounds:

Qualification Round A chance for each team to test their broker against brokers from other
teams in a real competition environment. This is mainly done to check overall functionality
of a broker and its communication with competition server.
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Seeding Round This round will result in a ranking that is used to determine the broker pools for
the quarter final. It might result in an elimination of brokers that don’t perform according
to the game specification or are purposely disruptive to other agents.

Quarter Finals This is the first real elimination round, since only half of the teams will proceed
to the semi finals.

Semi Finals Elimination round; only half of the teams will proceed to the finals.

Final The winner of this round wins the overall tournament.

5.5 Competition rules

In the following list we highlight the competition rules that each participant team has to follow;
failure to do so will lead to disqualification from the overall tournament. The decision rests with
the current game master.

• Note that information about external metrics and game logs are not provided to a broker
directly, and agents should not attempt to access it though external means (i.e. through
the game viewer or the game logs). The use of such external information, either manually or
automatically, is regarded as external ‘tuning’ of the agent. As such, according to the existing
competition rules, it is forbidden within any specific round during the competition. Tuning
with any data on the other hand is allowed between the different tournament rounds.

• Data that agents discover on their own during a game can be used to fine-tune their agent in
games within a round.

• No team is allowed to enter the competition with two different agent identities.

• For efficient tournament scheduling, each team must be able to run two copies of their agent
at any time in the tournament, since agents are required to participate in different pools at
the same time.

• Collusion is not allowed between the different agents, i.e. their teams.

6 System architecture

6.1 Tournament deployment

Power TAC is designed to run as an annual competition, a model that has been very effective in
stimulating research. Each year, research groups build or update their agents and enter them in
the competition. The competition systems architecture is shown in Figure 11.

The tournament configuration is intended to support multi-round tournaments, with large num-
bers of visualizers. The administration portion of the web application supports tournament schedul-
ing and access to records of past games. The web-app also serves as a proxy to allow visualizers
access to running games on potentially several simulation servers.

A single web app can control multiple servers on multiple hosts, by storing game configuration
in a shared database and then starting a server on a remote host, or notifying a running server of a
game configuration that is ready to run. Weather and market price data will be served by remote
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Figure 11: Competition systems architecture.

services, hosted on their own databases. The shared database will hold summary information for
completed games, including access information for retrieving game logs.

Brokers register with the web app, and join a game by requesting credentials and a URL for an
active simulation. With this information, it then logs into the simulation server and runs its game
interactions.

6.2 Research deployment

After the competition, teams are encouraged to release their agent code, so all teams can design and
run their own experiments using a range of broker behaviors and market design details. The research
systems architecture is shown in Figure 12. The results are published, and teams incorporate new
insights into their agent designs for the following year.

The goal of the Research configuration is to support development of agents and server models
(customers, markets, etc.) and to support empirical research. In this configuration, the server
must be easily deployable on a desktop workstation, without requiring special privileges, and with
minimal dependencies on other installed software, such as a database. In addition, this configuration
must meet the following requirements:

• Single-simulation setup from a simple web interface.

• Optionally allow agent login without credentials.

• Visualizer support for at least one browser.

Figure 12 shows the components of this configuration. The Simulation server is identical to
the tournament version, and a portion of the web app is installed in the server. Through the
web interface, a user can configure and start a game, and use the visualizer to watch the game.
Weather and price data may be contained in flat files, or a research server could potentially access
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the weather and price services from a tournament installation. The game data is dumped to a flat
file at the conclusion of each game.

Figure 12: Research systems architecture.

Brokers may optionally log into the simulation server directly, without authentication. Oth-
erwise, the web app will perform the authentication as in the tournament setup, and pass back
credentials for access to the simulation server. Each year, the simulation may be updated to add
new challenges, and if necessary to tune the market designs and level of realism to enhance the
relevance of the shared enterprise for both research value and policy guidance.
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A Assumptions

In particular we make the following assumptions:

1. Within the simulated region, grid constraints (line capacity limitations) are assumed to be
non existent, i.e. power flows within the region are unconstrained. Local distribution grids
are typically overdimensioned with respect to their line capacities, thus this assumption is
not a strong restriction but may have to be rethought in future once much more distributed
generators and storage facilities are installed.

2. The point of common coupling (PCC) between the simulated distribution grid and the higher
level transmission grid has a maximum capacity for power inflow and outflow. A specialized
agent that serves as a “liquidity provider” on the regional energy spot market, and is able to
arbitrage with the national energy spot market, has to obey these technical limits.

3. Power factor effects, i.e. phase shifts between voltage and current, are not taken into ac-
count. Modeling these effects would possibly influence the brokers’ decision making on which
consumers and producers to add to their portfolios but is out of scope at this time.

4. Power distribution and transformation losses are ignored. In Germany these losses are es-
timated at 3%; for North America they are estimated at 5,5% [9]. These losses can be
considered as being more or less constant within a distribution grid and identical for all grid
participants. Thus the validity of the simulation results is not affected.

5. Two kinds of producers (energy production facilities) are distinguished. One kind (photo-
voltaic arrays, wind turbines) produce power when active, and are under control of their
respective owners. The second kind (PEV batteries, some CHP units) is called “controllable”
and may be switched on or off, or have its output adjusted remotely within its capacity range.

6. Technical load balancing (i.e. the real time operations of the local distribution grid) is ac-
complished outside the action domain of the competition participants using a combination of
controllable generators and spinning reserves.

7. The simulation will model time as a series of discrete “timeslots” rather than as continuous
time. This models the trading intervals in the regional wholesale market, and enables the
simulation to model a period of days rather than minutes or hours.

8. The temporal distribution of energy consumption and generation within a timeslot is not
taken into account. This means for example that balancing power demand for a timeslot is
calculated as the difference of the sum of generation and the sum of consumption for that
timeslot and not as the instantaneous difference between the two timeseries.

9. Some portion of the load, including the charging and discharging of plug-in Electric Vehicles
(PEVs), could be controlled by voluntary or automated means, using prospective or real-time
price signals.
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