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1 Introduction

Forecasts of asset price volatility are of crucial importance in portfolio management, risk man-

agement, and derivatives pricing. In recent years, the increasing availability of high-frequency

asset price data has led to the development of various different measures of daily volatility based

on intraday prices, see McAleer and Medeiros (2008b) and Andersen et al. (2009) for recent sur-

veys. Considerable research effort has also been spent on designing suitable time series models

for forecasting these so-called realized volatility measures. In several empirical applications,

the heterogeneous autoregressive (HAR) model of Corsi (2009) has been found most successful

for this purpose, see Andersen et al. (2007), Corsi (2009), and Busch et al. (2011), among oth-

ers. The HAR model’s appeal is due to its parsimony and ability to capture the stylized fact of

long-memory in (realized) volatility. In addition, the model can be extended in straightforward

ways to incorporate other typical features such as leverage effects, jumps, seasonality, as well

as impacts of macro-economic announcements, see Martens et al. (2009).

A crucial feature of the HAR model is its linearity, in the sense that the dependence between

realized volatility on consecutive days is assumed to be constant over time and independent of

the level of volatility. In principle, these assumptions can be relaxed by allowing for structural

breaks or regime-switching behavior within the HAR framework, see McAleer and Medeiros

(2008a), but in that case the model quickly becomes heavily parameterized and, thus, loses its

attractive property of parsimony.

In this paper, we propose an alternative approach to modeling possibly nonlinear dynam-

ics in realized volatility based on copula functions. The key idea underlying this copula-based

model for realized volatility (C-RV model) is that we can decompose the joint distribution of

current volatility and its first lag into their marginal distributions and a copula function, with

the latter characterizing the temporal dependence. As the marginal distributions and the depen-

dence structure can be modeled separately, the copula-based approach allows for a great deal of

flexibility in the construction of an appropriate multivariate distribution.

Not surprisingly, copulas have quickly gained popularity in economics and particularly fi-
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nance, see Cherubini et al. (2004), Patton (2009) and Genest et al. (2009) for recent surveys.

Although in finance copulas have been used mostly to describe the contemporaneous depen-

dence between returns on different assets, they can also be used to model nonlinear time series

dependence of a single variable. In fact, by combining different marginal distributions with

different copula functions, a wide variety of marginal characteristics (including skewness and

excess kurtosis) can be modeled, in addition to dependence characteristics such as clustering,

asymmetry and tail dependence. Recently, Ibragimov and Lentzas (2008) demonstrate that

copula-based time series models can also display long memory properties, see also Chen et al.

(2009) and Beare (2010). Together with the ability to capture nonlinear dependence in a flexi-

ble and parsimonious way, this makes copula-based time series models a possible contender to

conventional approaches for modeling realized volatility, such as the HAR model. In this paper

we examine whether this indeed is the case, in particular from a forecasting perspective.1

We evaluate the forecasting performance of the C-RV model in an empirical application to

daily volatility of the S&P500 futures, over the period from January 1995 to December 2006.

We employ the realized range developed by Martens and van Dijk (2007) and Christensen and

Podolskij (2007) to measure daily volatility. As we focus on the ability of the C-RV model to

capture long-memory and nonlinearity in the time series dependence of realized volatility, we

adopt the semi-parametric approach advocated by Chen and Fan (2006). This combines non-

parametric estimation of the marginal distributions with a parametric copula specification. The

adverse effects of misspecified marginals (Fermanian and Scaillet, 2005) are thus avoided, while

retaining consistency of estimates of important characteristics of the multivariate distribution,

such as moments and quantiles.

In the empirical analysis, we address the following two key issues in the specification of C-

RV models. First, different copula functions imply different types of time series dependence in

volatility, in terms of (a)symmetry and tail (in)dependence. This makes the choice of a copula

specification an important issue in practice. We consider a variety of copula functions and

1Independent, contemporaneous research by Ning et al. (2010) also suggests copula-based time series models
for describing the dynamics of realized volatility measures, but does not consider out-of-sample forecasting.
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examine which specifications yield the most accurate out-of-sample forecasts of volatility.

Second, although the C-RV model allows for possibly nonlinear time series dependence in

volatility, the dependence is assumed to be ‘stable’, that is, constant over time. We allow for the

possibility of changes in the dependence in the C-RV model by using conditional copulas with

time-varying parameters, as in Patton (2006).

Our empirical results can be summarized as follows. We find that the C-RV model out-

performs the HAR for one-day ahead volatility forecasts in terms of accuracy and in terms of

efficiency. Among the copula specifications considered, the Gumbel C-RV model achieves the

best forecast performance, which highlights the importance of asymmetry and upper tail depen-

dence for modeling volatility. Although we find substantial variation in the copula parameter

estimates over time, conditional copulas do not improve the accuracy of volatility forecasts.

The rest of the paper is organized as follows. In Section 2, we introduce the C-RV model and

briefly describe the semi-parametric estimation procedure of Chen and Fan (2006). In Section

3 we compare the out-of-sample forecasting performance of the C-RV and HAR models for the

volatility of S&P500 index futures. We conclude in Section 4. An Appendix provides details on

the parametric copula specifications used in the empirical analysis.

2 The copula realized volatility model

Let St denote the price of a financial asset and assume that it is determined by the stochastic

differential equation

d log St = µdt + σtdWt, (1)

where µ is the constant drift, σt is the possibly stochastic spot volatility, and Wt is a standard

Brownian motion that is independent of σt.

We focus on daily volatilities. Hence, for convenience we normalize time such that the unit
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interval corresponds to a day. We may then define the daily integrated variance (volatility),

IVt =

∫ t

t−1

σ2
sds. (2)

The integrated volatility IVt is not directly observable, but can be estimated consistently using

a ‘realized’ volatility measure based on high-frequency intraday prices, as discussed in Section

3.1. In the remainder of this section we describe the copula-based time series model for volatil-

ity in terms of IVt, with the implicit understanding that in empirical applications it should be

replaced by an estimate.

The essence of the C-RV model is the dependence structure between consecutive observa-

tions of the integrated volatility process. Following the convention in the stochastic volatility

literature, we assume that IVt is a first order Markov process. Hence, its statistical properties

are completely characterized by the joint distribution function of IVt−1 and IVt, denoted as

F (IVt−1, IVt). Sklar’s (1959) theorem states that we can represent any such bivariate distribu-

tion by means of a copula function C and the marginal distribution of IVt, that is,

F (IVt−1, IVt) = C(F (IVt−1), F (IVt)), (3)

where F is the marginal distribution of integrated volatility, which is assumed to be time-

invariant.

It is more common to express stochastic volatility models in terms of the conditional distri-

bution of IVt given IVt−1. This may also be done within the framework of copula functions.

Note that it follows from (3) that the joint density of IVt−1 and IVt is given by

f(IVt−1, IVt) = c(F (IVt−1), F (IVt))f(IVt−1)f(IVt),

where f(·) is the marginal density of IVt and c(·, ·) = ∂2C(·, ·)/∂ut−1∂ut is the density of the

copula function C with ut = F (IVt) denoting the probability integral transform of integrated
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volatility. Hence, the conditional density of IVt given IVt−1 can be expressed as

f(IVt|IVt−1) = f(IVt−1, IVt)/f(IVt−1) = c(F (IVt−1), F (IVt))f(IVt). (4)

The representation in (4) shows the attractiveness of the copula approach for modeling non-

linear time series dependence in a flexible way. As the conditional density of IVt given IVt−1

can be written as the product of the copula density and the marginal density, we can separate

the temporal dependence structure from the marginal behavior. As the choice of the marginal

distribution does not restrict the choice of the dependence function, or vice versa, a wide range

of conditional distributions can be obtained by combining different marginals F (·) with differ-

ent copulas C(·, ·). As we aim to focus on the usefulness of copulas to model the nonlinear

temporal dependence in realized volatility, we concentrate on possible specifications of the cop-

ula function C. As discussed in more detail below, the marginal distribution F is estimated

nonparametrically.

A wide range of parametric copula specifications is available, with different implications for

the dependence structure of volatility, see Joe (1997) and Nelsen (2006) for overviews. Different

copula functions may usefully be compared in terms of their so-called ‘quantile dependence’

and the limiting case of tail dependence. A particular measure of quantile dependence is the

exceedance probability. This is defined as the conditional probability that IVt exceeds a given

quantile q of its marginal distribution given that IVt−1 exceeds that quantile. Specifically, the

exceedance probabilities are given by

τ(q) =





P (ut < q|ut−1 < q) = C(q; q)/q for q ≤ 0.5,

P (ut > q|ut−1 > q) = (1− 2q + C(q; q))/(1− q) for q > 0.5.
(5)

where ut = F (IVt) is the probability integral transform of integrated volatility. The lower and

upper tail dependence coefficients are then defined as the limits of this quantile dependence

measure, that is, τL = limq↓0 τ(q) and τU = limq↑1 τ(q).
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Different copula specifications have different quantile and tail dependence characteristics.

Some copulas (such as the Gaussian, Student’s t and Frank copulas) are symmetric in the sense

that τ(q) = τ(1−q) for all 0 ≤ q ≤ 0.5, while others (such as the Gumbel and Clayton copulas)

are asymmetric. Some copulas have no tail dependence, i.e. τL = τU = 0, while others have

positive tail dependence. In the latter case, the dependence can be positive in either the lower

tail or in the upper tail, or in both. Which type of dependence structure is most appropriate for

realized volatility is not clear a priori. For that reason, we examine a broad range of copula

specifications with different quantile and tail dependence properties, and evaluate their relative

out-of-sample forecasting performance. In the Appendix we describe the specifications of the

copula functions that we consider, together with their quantile and tail dependence properties.

2.1 Estimation and forecasting

As discussed before, in the copula approach the temporal dependence structure, represented by

the copula function itself, is separated from the marginal distributions of volatility. However, in

a sense the choice of marginal distribution does affect the copula as F (IVt−1) and F (IVt) are

the arguments of the copula specification, see (3). As demonstrated by Fermanian and Scaillet

(2005), among others, misspecification of the marginal distribution may lead to spurious results

for the copula specification, for example in the form of biased parameter estimates. In order to

avoid this issue, we adopt the semi-parametric approach of Chen and Fan (2006) and estimate

the marginal distribution F (IVt) nonparametrically. Specifically, given a time series {IVt}T
t=1

we use the empirical distribution function (EDF) defined as

F̂ (x) =
1

T + 1

T∑
t=1

I[IVt ≤ x],

where I[A] is an indicator function for the event A and T denotes the sample size.2 The copula

parameters are then estimated by maximum likelihood using the copula part of the log likelihood

2We follow the convention in the copula literature to divide by T + 1 rather than T , to accommodate the fact
that some copula densities c(·, ·) are not defined when one of the arguments takes the value 0 or 1.
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function corresponding to (4), that is,

θ̂ = argmax
θ

T∑
t=2

log c(F̂ (IVt−1), F̂ (IVt); θ). (6)

We obtain one step ahead forecasts of volatility in period T + 1 from the C-RV model as

follows. First, given the parameter estimates θ̂, we simulate B draws of the adjusted ranks

F̂ (IVT+1) from the fitted copula C(F̂ (·), F̂ (·); θ̂), conditional on the known value of IVT . Sec-

ond, we use the inverse empirical distribution to transform each of the simulated ranks into

values of realized volatility. The mean across the B simulations is taken as the realized volatil-

ity forecast, denoted ÎV T+1|T .

Finally, it is useful to note that in our semiparametric set-up the C-RV model specification

is invariant to strictly monotonic transformations of IVt. Applying the model to the integrated

variance as defined in (2) or its square root or its logarithm will render identical results. This is

in contrast to conventional approaches such as the HAR model, which may be quite sensitive to

which transformation of IVt is used.

3 Application to S&P 500 index futures

In this section we apply the C-RV methodology to forecasting daily volatility of the S&P 500 in-

dex futures. In Section 3.1, we start with a brief description of the data and the estimation of the

integrated volatility (2) based on high-frequency intra-day prices, highlighting characteristics

that suggest the possibility of nonlinear dependence in these volatility measures. We discuss

the empirical results in Section 3.2, comparing the out-of-sample forecasting performance of

the C-RV model with the HAR model of Corsi (2009). Here we also address the issues which

type of copula specification renders most accurate volatility forecasts, and whether conditional

copulas with time-varying parameters may improve forecast performance.
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3.1 Data and integrated volatility measures

We obtain intraday transaction prices for futures contracts on the S&P500 (traded on the Chicago

Mercantile Exchange with trading hours from 8:30am - 3:15pm) for the period from January 3,

1995 to December 29, 2006, for a total of 3031 daily observations.3 The S&P500 futures con-

tract has maturities in March, June, September and December. At any given day we use prices

of the most liquid contract. Typically, this is the nearby contract until approximately one week

before maturity, when the trading volume in the second nearby contract becomes larger. We

make sure that when changing from one contract to the next, we never compute returns based

on prices from two different contracts.

The most straightforward estimator of the integrated volatility IVt in (2) is the realized

variance, defined as

RV M
t =

M∑
m=1

r2
t,m + r2

t,o, (7)

where M is the number of intra-day intervals used, rt,m is the return during the m-th interval

on day t, and rt,o is the overnight return between the closing price on day t and the opening

price on day t + 1. The latter is incorporated as Martens (2002) documents that the overnight

volatility represents an important fraction of total daily volatility, see also Fleming et al. (2003)

and Hansen and Lunde (2005) for discussion.

An alternative measure is the realized range, introduced by Martens and van Dijk (2007) and

Christensen and Podolskij (2007), defined as

RRM
t =

M∑
m=1

1

4 log 2
(log Ht,m − log Lt,m)2 + r2

t,o, (8)

where the high price Ht,m and the low price Lt,m are defined as the maximum and minimum of

all transaction prices observed during the m-th interval on day t. The realized range exploits

the complete price path in the intra-day intervals, while the realized variance only uses the first

and last price observations. Consequently, the realized range is a more efficient estimator than

3The data is obtained from Tick Data, http://www.tickdata.com/.
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the realized variance based on the same sampling frequency.4 For this reason, we focus on

the realized range.5 In the implementation of (8) we adopt the popular five-minute frequency,

corresponding to M = 81.

Market microstructure effects hamper the use of high-frequency data for estimating daily

variances. In particular, the standard realized variance in (7) suffers from an upward bias due

to the presence of bid-ask bounce.6 The same effect occurs for the realized range in (8), as the

observed high price in a given interval is an ask and the observed low price is a bid with proba-

bility close to 1 when trading is continuous. The realized range therefore overestimates the true

daily variance by an amount equal to the squared bid-ask spread times the number of intraday

intervals M . Additionally, however, infrequent trading (which does not affect the realized vari-

ance) leads to a downward bias in the realized range. When the continuous underlying price

process is only observed at discrete points in time, the observed high price during a given intra-

day interval underestimates the true maximum. Similarly, the observed low price overestimates

the true minimum in that case. Martens and van Dijk (2007) suggest to deal with the “net” bias

due to the combined effects of bid-ask bounce and infrequent trading on the realized range by

applying a multiplicative bias-correction. Specifically, the scaled realized range is defined by

RRM
S,t =

(∑Q
q=1 RRt−q∑Q
q=1 RRM

t−q

)
RRM

t , (9)

where RRt ≡ RR1
t is the daily range. Hence, the multiplicative correction factor is the ratio

of the average daily range estimator and the average of the realized range over the past Q days.

Adopting this bias-correction with Q = 66 (corresponding to approximately three months of

trading days), we find similar forecasting results as for the ‘unscaled’ realized range RRM
t . To

save space, we therefore only report detailed results for the latter measure.

4Specifically, assuming that the asset price St follows a geometric Brownian motion with constant instantaneous
volatility σ, the variance of the realized range estimator is equal to 0.407σ4/M2, compared to 2σ4/M2 for the
realized variance.

5Results using the realized variance RVt are qualitatively similar and are available upon request.
6This has resulted in a variety of approaches for bias-correcting realized volatility estimators on the one hand,

and for determining the ‘optimal’ sampling frequency (based on the trade-off between accuracy and bias) for the
standard realized variance estimator on the other hand, see the overview in McAleer and Medeiros (2008b).
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Figure 1: Realized range for S&P500 index futures
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Note: The graph shows the realized range RRM
t (converted to annualized volatility in percentage points) obtained

from (8) based on 5-minute intraday intervals (M = 81). The sample period runs from January 3, 1995 to Decem-
ber 29, 2006.

Figure 1 shows the time series of the realized range RRM
t obtained from (8), converted to

annualized volatility in percentage points. While the level of volatility is rather low at approxi-

mately 4 percent at the start of the sample period, it gradually increases during the second half

of the 1990s, with short outbursts during the Asian crisis in 1997 and the Russian default in

1998. Similar relatively short periods of high volatility occur during the collapse of the dot-com

bubble in 2000, and following September 11, 2001. During the final three years of the sample

period, volatility declines again to moderate levels below 10 percent. Due to the short periods

of high volatility, the realized range shows large positive skewness and excess kurtosis. The

asymmetry and fat-tailedness of the distribution of RRt are removed almost completely by tak-

ing logs. This is confirmed by Figure 2, which shows that the log of the realized range is close

to being normally distributed.

Figure 3 shows a scatterplot of the normalized EDF of the log realized range on the vertical

axis against its first lag on the horizontal axis. The strong positive dependence is obvious from

this graph. The empirical first-order autocorrelation of log RRM
t is equal to 0.81. We examine

the presence of nonlinear and asymmetric dependence by computing exceedance probabilities

and exceedance correlations for quantiles q = 0.05, 0.075, . . . , 0.95. Figure 4 shows these for
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Figure 2: Histogram of log realized range for S&P500 index futures
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Note: The graph shows the histogram of the logarithm of the realized range RRM
t obtained from (8) based on

5-minute intraday intervals (M = 81). The sample period runs from January 3, 1995 to December 29, 2006. The
dashed line is a normal density with the same mean and variance.

the log scaled realized range, together with the corresponding values for a bivariate normal dis-

tribution with correlation equal to the empirical first-order autocorrelation of log RRM
t , which

is equal to 0.81. The latter are obtained by simulating time series with length T = 3031 from

this bivariate normal distribution. The graph shows the mean as well as the 5th and 95th per-

centiles of the distribution of exceedance probability and exceedance correlation estimates in

this simulation, using 10,000 replications. The exceedance correlations display a pronounced

asymmetric pattern. For quantiles above the median, the empirical exceedance correlations cor-

respond reasonably well with the values obtained for the normal distribution. By contrast, for

values below the median the empirical exceedance correlations decay much more rapidly than

for the normal distributions as q becomes smaller. The empirical exceedance probabilities are

more symmetric, in the sense that the values for quantiles q and 1 − q are approximately equal

for all q ∈ (0, 0.5). At the same time, the empirical probabilities are larger than those for the

normal distribution. Taken together, these features suggest that a bivariate normal distribution

is not adequate to characterize the empirical temporal dependence in the log realized range. In

particular, the dependence is (possibly) asymmetric and stronger than implied by the normal dis-

tribution, which makes modeling the dependence by means of copulas an attractive alternative
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Figure 3: Scatter of log realized range for S&P500 index futures
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Note: The graph shows a scatterplot of the normalized EDF of the realized range RRM
t on the vertical axis against

its first lag on the horizontal axis. RRM
t is obtained from (9) based on 5-minute intraday intervals (M = 81). The

sample period runs from January 3, 1995 to December 29, 2006.

approach.

We assess the stability of these dependence characteristics by computing the exceedance

probabilities for a moving window of 500 observations. Figure 5 shows the resulting exceedance

probabilities at q = 0.10 and 0.90 for the log realized range, where the date displayed on the

horizontal axis refers to the mid-point of the moving window. We observe substantial time-

variation in both exceedance probabilities. For both quantiles, the exceedance probabilities

fluctuate between 0.3 and 0.7. The changes in the dependence in the left tail and the right

tail of the joint distribution of RRt−1 and RRt do not seem to be closely related. Sometimes

the exceedance probabilities move up or down together (e.g. during 1997 and 2003-4), but

sometimes the change in the opposite direction (e.g. during 1998-9 and 2001). The observed

instability in the exceedance probabilities motivates us to consider conditional copulas with

time-varying parameters.
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Figure 4: Exceedance correlations and probabilities of log realized range for S&P500 index
futures
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(a) Exceedance correlations
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(b) Exceedance probabilities

Note: The graph shows the exceedance correlations of and exceedance probabilities for the log realized range
and its first lag (line marked with solid circles). The sample period runs from January 3, 1995 to December 29,
2006. The line marked with open circles shows the average exceedance correlations (probabilities) across 10,000
simulations of series with length T = 3031 from a bivariate normal distribution with correlation equal to the
empirical first-order autocorrelation of log RRM

t (equal to 0.81). The dashed lines are 5th and 95th percentiles of
the distribution of exceedance correlation (probability) estimates in this simulation.

Figure 5: Exceedance probabilities of log realized range for S&P500 index futures
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Note: The graph shows exceedance probabilities at q = 0.10 (solid line) and q = 0.90 (dashed line) for the
log realized range and its first lag, for rolling windows of 500 observations. RRM

t is obtained from (9) based
on 5-minute intraday intervals (M = 81). The sample period runs from January 3, 1995 to December 29, 2006
(T = 3031 observations).
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3.2 Out-of-sample forecasting performance

We use the period from January 2, 1997 until December 29, 2006 (P = 2530 observations) to

assess the potential usefulness of the C-RV modeling approach from an out-of-sample forecast-

ing perspective. We re-estimate all models for each trading day using a rolling window of 500

observations and construct a one-step ahead forecast of the realized range, using the algorithm

described in Section 2.1. We have three specific purposes with this forecasting experiment.

First, we intend to gain some insight into which type of copula function captures the time series

dependence in realized volatility most adequately. For that reason, we compare the forecasting

performance of the C-RV model for a variety of copula specifications, namely Gaussian, Stu-

dent’s t, Frank, Gumbel, Clayton, and Clayton-survival, as well as mixtures of the Clayton or

Gumbel copula with its survival counterpart.

Second, we examine the forecasting performance of C-RV models relative to conventional

modeling approaches for realized measures. As a benchmark, we construct forecasts from the

logarithmic HAR model of Corsi (2009), given by

logRRt = β0 + β1logRRt−1,1 + β2logRRt−1,5 + β3logRRt−1,22 + εt, (10)

where logRRt−1,L ≡ 1
L

∑L
l=1 logRRt−l is the average logarithmic realized range between days

t − L and t − 1 (Corsi et al., 2008). The HAR model has been found to be most successful

for forecasting empirical measures of integrated volatility in several empirical applications (see

Andersen et al. (2007), Corsi et al. (2008), Corsi (2009), and Busch et al. (2011), among others).

Third, the instability in the exceedance probabilities documented in Section 3.1 motivates

us to consider conditional copulas with time-varying parameters. Following Patton (2006), we

specify the dynamics of the copula parameters as a measurable function of past observations,

such that estimation and inference for these conditional copulas does not become more compli-

cated than for standard copulas with constant parameters.7 To save space, we only report results

7Alternative approaches to conditional copulas allow the parameters in a given copula function to vary over
time in the form of an autoregressive or Markov switching process (see Jondeau and Rockinger, 2006; Bartram
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for conditional Gumbel copula with time-varying parameter θt given by

θt = θ0 + θ1ût−1ût−2,

where ût is the normalized EDF of the log realized range for day t.

We assess the out-of-sample forecasting results by means of several performance measures

to evaluate and compare the various copula specifications and the HAR benchmark model. First,

we consider the mean prediction error (ME), that is

ME =
1

P

R+P∑
t=R+1

(yt − ŷt|t−1),

where ŷt|t−1 denotes the one-step ahead forecast of the realized measure y for day t. The quality

of individual forecasts is further assessed by the Mincer-Zarnowitz type regression

yt = b0 + b1ŷt|t−1 + ηt. (11)

In (11), b0 and b1 should be equal to 0 and 1, respectively, for the forecast to be considered

efficient. We follow the suggestion of Patton and Sheppard (2009) to estimate the Mincer-

Zarnowitz regression using Generalized Least Squares (GLS). In this case, this effectively boils

down to estimating b0 and b1 with OLS in the regression specification

yt

ŷt|t−1

= b0
1

ŷt|t−1

+ b1 + ηt.

The accuracy of the volatility forecasts is evaluated using the Mean Squared Prediction Error

(MSPE), that is

MSPE =
1

P

R+P∑
t=R+1

(yt − ŷt|t−1)
2.

et al., 2007; Hafner and Manner, 2011, among others). Instead of the copula parameters the copula function itself
may also be allowed to vary over time (as in Okimoto, 2008; Chollete et al., 2009; Garcia and Tsafack, 2011).
Manner and Reznikova (2011) provide a recent survey.
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We directly compare the copula-based forecasts with the benchmark HAR specifications by

testing the null hypothesis of equal predictive accuracy with the Diebold and Mariano (1995)

statistic. Specifically, let ŷC-RV,t|t−1 and ŷHAR,t|t−1 denote the two competing one-step ahead

forecasts of yt, and define the loss differential dt = e2
HAR,t|t−1 − e2

C-RV,t|t−1, where e.,t|t−1 =

yt − ŷt|t−1 is the forecast error of the HAR and C-RV models. We then test the null hypothesis

of equal predictive accuracy, which corresponds to E[dt] = 0, by means of the t-statistic

DM =
d√

V̂ (dt)/P

, (12)

where d is the sample mean of the loss differential dt and V̂ (dt) is an estimate of the variance

of dt. Finally, we estimate the forecast encompassing regression

yt = b0 + b1ŷHAR,t|t−1 + b2ŷC-RV,t|t−1 + ηt. (13)

In case b1 = 0 and b2 6= 0 the copula-based forecast encompasses the HAR forecast, and vice

versa in case b1 6= 0 and b2 = 0. Again we adopt the suggestion of Patton and Sheppard (2009)

to use GLS to estimate the encompassing regression.

Table 1 shows the results based on the complete forecasting period from January 2, 1997

until December 29, 2006. The ME and MSPE are based on forecasts of the square root of

the realized range expressed in terms of annualized percentage points. These results lead to

fairly clear-cut conclusions concerning the three goals of the forecasting experiment mentioned

before. First, we find that the Gumbel copula performs best among the C-RV specifications with

constant parameters. Its forecasts are (i) unbiased in the sense that the ME is not significantly

different zero, (ii) efficient as we cannot reject the null hypothesis b0 = 0 and b1 = 1 in (11),

and (iii) most accurate in the sense that they minimize the MSPE at 12.41. The R2 of the MZ

regression is equal to 0.658, indicating that the Gumbel forecasts explain a fairly large fraction

of the variation in the realized range estimate of volatility. In terms of forecast accuracy, the

closest competitor is the Clayton survival copula, which achieves an MSPE of 12.55. The
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forecasts based on the Clayton survival copula have the undesirable feature of being biased

though (as shown by the significantly positive ME, and the null b0 = 0 in (11) being rejected).

The superior performance of the Gumbel and Clayton survival copulas suggests that allowing

for upper tail dependence is crucial for obtaining accurate volatility forecasts. Interestingly,

extending the Gumbel copula to a mixture with the Gumbel survival copula does not improve

forecast performance. While the forecasts remain unbiased and efficient, the MSPE increases

to 12.85. Allowing for lower tail dependence only, as with the Clayton copula, clearly is not

appropriate, leading to an MSPE of 17.48, which is about 40% larger than the MSPE achieved

by the Gumbel copula. The elliptical Gaussian and Student’s t copulas are not appropriate

for describing the temporal dependence of the realized range, in the sense that they produce

forecasts that are severely biased (ME ≈ −1.6) and are rather inaccurate with an MSPE that is

twice as large as the MSPE of the Gumbel copula. For the Gaussian copula this may not come

as a surprise given that it does not allow for tail dependence, but the Student’s t copula may

have been expected to perform better.

Second, the better performing copula specifications significantly outperform the benchmark

HAR model in terms of forecast accuracy. The HAR forecasts have an MSPE of 13.83, which is

significantly larger than the MSPE of the Gumbel copula as well as the mixtures of the Clayton

or Gumbel copulas according to the DM test statistic (based on a one-sided 5% significance

level). Interestingly, in the encompassing regression (13) for these three copula specifications,

we find estimates of b1 and b2 that are significantly different from 0 and 1, rejecting the hypoth-

esis that the C-RV model encompasses the HAR model or vice versa. This suggests that it may

be worthwhile to combine these forecasts to further improve accuracy. Note that the R2 of (13)

exceeds the R2 of the MZ regression (11) by only 0.03, such that the possible gains in terms of

MSPE seem limited though. We leave the issue of forecast combination for further research.

Third, inspecting the moving window estimates of the copula parameters reveals quite sub-

stantial variation over time.8 Incorporating this instability in the dependence explicitly in the

8Results are not shown here to save space, but are available upon request.
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Table 1: Out-of-sample forecast evaluation, January 1997-December 2006.

MZ regression Encompassing regression

ME b0 b1 R2 MSPE DM b0 b1 b2 R2

HAR 0.291 0.788 0.958 0.621 13.83
(0.074) (0.221) (0.021)

Ga −1.600 0.741 0.832 0.385 24.66 −14.69 0.096 0.099 0.901 0.625
(0.094) (0.281) (0.022) (0.225) (0.025) (0.029)

St-t −1.625 0.763 0.829 0.385 24.77 −14.84 0.104 0.097 0.902 0.625
(0.094) (0.277) (0.022) (0.224) (0.025) (0.029)

Fr 0.214 −0.157 1.028 0.628 13.58 0.47 −0.416 0.605 0.447 0.666
(0.073) (0.186) (0.018) (0.178) (0.035) (0.035)

Cl 0.329 1.021 0.937 0.516 17.48 −4.98 −0.149 0.335 0.699 0.637
(0.083) (0.286) (0.026) (0.196) (0.026) (0.034)

Cl-s 0.098 −0.039 1.011 0.638 13.13 1.17 −0.518 0.539 0.518 0.680
(0.072) (0.209) (0.019) (0.191) (0.034) (0.030)

Cl/Cl-s 0.181 0.456 0.973 0.653 12.55 2.59 −0.177 0.609 0.420 0.681
(0.070) (0.205) (0.019) (0.178) (0.034) (0.032)

Gu 0.137 0.044 1.008 0.658 12.41 2.44 −0.367 0.624 0.421 0.688
(0.070) (0.189) (0.018) (0.178) (0.034) (0.031)

Gu/Gu-s 0.121 0.130 0.997 0.646 12.85 1.94 −0.317 0.559 0.481 0.677
(0.071) (0.193) (0.018) (0.183) (0.037) (0.035)

Gu-c 0.364 −0.070 1.034 0.658 12.58 2.42 −0.438 0.640 0.421 0.686
(0.070) (0.189) (0.018) (0.180) (0.035) (0.031)

Note: The table reports the mean prediction error (ME), GLS estimation results for the Mincer-Zarnowitz
(MZ) type regression in (11), the Mean Squared Prediction Error (MSPE), the Diebold-Mariano (DM) statistic
defined in (12), and GLS estimation results for the encompassing regression in (13), for one-day ahead forecasts
of the square root of the realized range RRM

t , obtained from (9) based on 5-minute intraday intervals (M =
81). The forecasting period runs from January 2, 1997 to December 29, 2006 (P = 2530 observations).
Acronyms used for the copula specifications are: Ga - Gaussian; St-t - Student’s t; Fr - Frank; Cl - Clayton;
Cl-s - Clayton survival; Cl/Cl-s - Clayton-Clayton survival mixture; Gu - Gumbel; Gu-s - Gumbel survival;
Gu/Gu-s - Gumbel-Gumbel survival mixture; Gu-c - conditional Gu copula with the time-varying parameter.
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copula specification does not improve forecast accuracy. As shown in Table 1, the conditional

Gumbel specifications achieves an MSPE of 12.58, slightly larger than the MSPE of the Gumbel

copula with constant parameters. Note that the forecasts of the conditional Gumbel copula are

biased downward, with a significant ME of 0.358.

Finally, we examine the (in)stability of the (relative) forecasting performance of the C-RV

model with its different copula specifications and the log-HAR model. Fr this purpose, panel (a)

in Figure 6 shows the ratio of the MSPE of the volatility forecasts obtained from the C-RV model

with the Gumbel and conditional Gumbel copula specifications over the MSPE of the forecasts

obtained from the log-HAR model, computed for moving windows of 500 observations. The

relative MSPEs are below one except for a short period with moving windows ending in 2004-5,

indicating that these C-RV specifications outperform the log-HAR model quite consistently. To

put this result into perspective, panel (b) of Figure 6 shows the MSPE of the forecasts obtained

from the log-HAR model together with the mean and variance of the square root of the realized

range, again computed for moving windows of 500 observations. This graph shows that during

2004-5, both the mean and variance of volatility were rapidly declining. The MSPE of the

log-HAR model declines correspondingly. Apparently, the C-RV specifications adjust to this

change in market conditions more slowly, such that they are temporarily outperformed by the

log-HAR model. On the upside, the copula-based volatility forecasts are considerably more

accurate when they matter most, that is, during turbulent times with high and volatile volatility.

4 Conclusions

This paper has introduced a novel approach to modeling and forecasting measures of daily

volatility based on copula functions. Copula-based time series models can capture relevant char-

acteristics of volatility such as nonlinear dynamics and long-memory type behavior in a flexible

yet parsimonious way. In an empirical application to the daily realized range for S&P500 in-

dex futures, we find that the copula-based model outperforms the popular HAR approach for

one-day ahead volatility forecasts in terms of accuracy and efficiency. Among the specifications
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Figure 6: Forecasting performance over time
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Note: Panel (a) shows the ratio of the MSPE of the volatility forecasts obtained from the C-RV model with the
Gumbel and conditional Gumbel copula specifications over the MSPE of the forecasts obtained from the log-HAR
model, computed for moving windows of 500 observations. The date on the horizontal axis indicates the end-point
of the moving window.
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considered, the Gumbel copula achieves the best forecast performance, which highlights the im-

portance of asymmetry and upper tail dependence for modeling volatility dynamics. Although

we find substantial variation in the copula parameter estimates over time, conditional copulas

do not improve the accuracy of volatility forecasts.
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Appendix: Copula specifications

In this appendix we describe the specifications of the bivariate copula functions that we consider

in the empirical analysis, together with their quantile and tail dependence properties.

Gaussian copula The Gaussian copula can be obtained using the so-called inversion method,

that is

CGa(ut−1, ut) = Fb(F (ut−1), F
−1(ut)),

where F−1(u) = min{x|u ≤ F (x)} is the (quasi)-inverse of the marginal CDF F . The Gaus-

sian copula is obtained by taking Fb to be the bivariate normal distribution with mean zero, unit

variances, correlation ρ, and a standard normal marginal F . The corresponding copula density

is given by

cGa(ut−1, ut) =
1√

1− ρ2
exp(− Φ−1(ut−1)

2 + Φ−1(ut)
2 − 2ρΦ−1(ut−1)Φ

−1(ut)

2(1− ρ2)

− Φ−1(ut−1)
2 + Φ−1(ut−1)

2

2
),

(A.1)

The Gaussian copula is symmetric, with τ(q) = τ(1 − q) for all 0 ≤ q ≤ 0.5, but has neither

lower nor upper tail independence.

Student’s t copula The Student’s t copula is also obtained by the inversion method, but using

a bivariate Student’s t distribution with ν degrees of freedom and correlation ρ instead of the

Gaussian. The Student’s t copula is symmetric, with τ(q) = τ(1 − q) for all 0 ≤ q ≤ 0.5, and

has equal lower and upper tail dependence with τL = τL = 2Tν+1(−
√

(ν + 1)(1− ρ)/(1 + ρ)).

Frank copula The Frank (Fr) copula is given by

CFr(ut−1, ut) = −1

θ
log

(
1 +

(exp(−θut−1)− 1)(exp(−θut)− 1)

exp(−θ)− 1

)
, with θ ∈ R. (A.2)
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The Frank copula is symmetric, with τ(q) = τ(1 − q) for all 0 ≤ q ≤ 0.5, and has lower and

upper tail independence.

Clayton copula The Clayton (Cl) copula is defined by

CCl(ut−1, ut) = (u−θ
t−1 + u−θ

t − 1)−1/θ, with 0 < θ < ∞. (A.3)

The Clayton copula is asymmetric, with τ(q) > τ(1− q) for all 0 ≤ q ≤ 0.5; it has zero upper

tail dependence and positive lower tail dependence with τL = 2−1/θ.

Clayton survival copula The Clayton survival (Cl-s) copula is the mirror image of the Clay-

ton copula:

CCl-S(ut−1, ut) = ut−1 + ut − 1 + CCl(1− ut−1, 1− ut). (A.4)

It follows from the properties of the Clayton copula that the Clayton survival copula is asym-

metric with τ(q) < τ(1 − q) for all 0 ≤ q ≤ 0.5. Cl-s has zero lower tail dependence and

positive upper tail dependence with τU = 2−1/θ.

Clayton-Clayton survival mixture copula The Clayton-Clayton survival mixture (Cl-mix)

copula is a convex sum of Cl and Cl-s copulas:

CCl-mix(ut−1, ut) = (1− λ)CCl(ut−1, ut) + λCCl-S(ut−1, ut), (A.5)

where 0 ≤ λ ≤ 1 denotes the mixing parameter, and the parameters θCl and θCl-S in the Clayton

and Clayton survival copulas are allowed to be different. The quantile dependence properties of

the Clayton-Clayton survival mixture copula depend on the mixture weight λ. It can accommo-

date both lower and upper tail dependence with τL = (1− λ)2−1/θCl and τU = λ2−1/θCl-S .
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Gumbel copula The Gumbel (Gu) copula is given by

CGu(ut−1, ut) = exp
(
−[(− log ut−1)

θ + (− log ut)
θ]

1
θ

)
, with 1 ≤ θ < ∞. (A.6)

The Gumbel copula is asymmetric, with τ(q) < τ(1 − q) for all 0 ≤ q ≤ 0.5, and has zero

lower tail dependence and positive upper tail dependence with τU = 2− 21/θ.

The Gumbel survival and Gumbel-Gumbel survival mixture copulas are defined analogously

to the case of the Clayton copula.
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