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Abstract

The median problem is a classical problem in Location Theory: one searches
for a location that minimizes the average distance to the sites of the clients.
This is for desired facilities as a distribution center for a set of warehouses.
More recently, for obnoxious facilities, the antimedian was studied. Here one
maximizes the average distance to the clients. In this paper the mixed case is
studied. Clients are represented by a profile, which is a sequence of vertices with
repetitions allowed. In a signed profile each element is provided with a sign from
{+,−}. Thus one can take into account whether the client prefers the facility
(with a + sign) or rejects it (with a − sign). The graphs for which all median
sets, or all antimedian sets, are connected are characterized. Various consensus
strategies for signed profiles are studied, amongst which Majority, Plurality and
Scarcity. Hypercubes are the only graphs on which Majority produces the median
set for all signed profiles. Finally, the antimedian sets are found by the Scarcity
Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes.

Keywords: plurality strategy, median, consensus function, median graph, majority
rule, scarcity strategy, Hamming graph, Johnson graph, halfcube.

AMS subject classification (2000): 05C99, 05C12, 90B80

1 Introduction

Most of the facility location problems in the literature are concerned with finding
locations for desirable facilities. The goal there is to minimize a distance function
between facilities and the demand sites (clients). One way to model this is using a
network, see for instance [21, 22, 15]. In the discrete case one uses graphs, and clients
and facilities are to be positioned on vertices.

One may formulate such location problems also in terms of achieving consensus
amongst the clients. Thus it becomes a problem in Consensus Theory. This approach
has been fruitful in many other applications, e.g. in social choice theory, clustering,
and mathematical biology, see for instance [5, 14, 13, 20].

From the view point of median consensus the classical result of Goldman [10] is
very interesting: to find the median in a tree, just move to the majority of the clients.
In [18], this majority strategy was formulated for arbitrary graphs. It was proved that
majority strategy finds all medians for any set of clients if and only if the graph is a
so-called median graph. Clients are termed as profiles in the language of graph theory,
defined as a sequence of vertices in which vertices are allowed to repeat.

The class of median graphs comprises that of the trees as well as that of the hy-
percubes and grids. It allows a rich structure theory [16, 11, 19] and has many and
diverse applications, see, for. e.g., [12], for median type consensus. In the majority
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strategy we compare the two ends of an edge v and w: if we are at v and at least half
of the clients is strictly nearer to w than to v, then we move to w. One could relax
the requirement for making a move as follows: one may move to w if there are at least
as many clients closer to w than to v. Note that in the latter case less than half may
actually be closer to w because there are many clients having equal distance to v and
w. This idea of relaxing the majority strategy is formalized as plurality strategy in [2].
Also other consensus strategies known as Condorcet, hill climbing and Steepest ascent
hill climbing strategies were also proposed in [2] for profiles. There it is proved that
the plurality, hill climbing and steepest ascent hill climbing strategies starting at an
arbitrary vertex for arbitrary profiles will always return the median set of the profile
if and only if the graph has connected medians.

However just as important are the problems dealing with the location of undesirable
or obnoxious facilities, such as nuclear reactors, garbage dumps or water purification
plants, see [7, 8, 9]. Here the criterion for optimality is maximizing the sum of the
distances from the location of the obnoxious facility to the locations of the clients. The
problem is known as the antimedian problem.

In general any two subgraphs may appear as antimedian and median sets, respec-
tively, for clients located at all vertices without repetitions, with the distance between
them being arbitrary, see for instance [1]. It is possible that facilities which are unde-
sirable for some clients may be desirable for some other clients. For example, assume
the problem of locating a beer parlour in a human habitat area. Some of the inhab-
itants may consider it as a desirable facility where as some others may consider it as
undesirable facility. One way to formulate such problem is to associate a sign with the
clients indicating whether the facility is desirable or undesirable to the client. In this
paper we are concentrating on methods to solve such problems. For this a more general
concept called signed profiles is introduced and is formally defined in the next section.
In Section 3, the equivalence of rational weight functions and signed profiles are estab-
lished, and the relationship between the median and antimedian sets for signed profiles
is obtained. In Section 4, various consensus strategies are formulated, amongst which
Majority, Plurality and Scarcity, and it is shown that all these consensus strategies are
pairwise distinct for signed profiles, as was also the case with the usual profiles. We
show that, for signed profiles, the hypercubes are the only graphs on which Majority
produces the median set for any signed profile in Section 5. Finally, for Scarcity, we
study various classes of graphs, on which this strategy produces the antimedian set for
any signed profile.

2 Preliminaries

Let G = (V,E) be a finite, connected, simple graph with vertex set V and edge set E.
The distance function of G is denoted by d, where d(u, v) is the length of a shortest
u, v-path. We call a subset W of V a connected set if it induces a connected subgraph in
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G. The interval I(u, v) between two vertices u and v consists of all vertices on shortest
u, v-paths, that is:

I(u, v) = {x | d(u, x) + d(x, v) = d(u, v)}.

A profile on G is a finite sequence π = (x1, x2, . . . , xk) of vertices of G. The length of π
is the number k = |π|. Note that, π being a sequence, multiple occurrences are allowed.
In this paper we extend the concept of profile: a signed profile is a profile where a sign
from {+,−} is added to each element. We write the sign of element xi as si. Thus a
signed profile is a sequence π = (s1x1, s2x2, . . . , skxk). We call xi an element of π and
si its sign. Note that with this usage, a vertex occurring k times in a profile occurs as k
different elements in a profile. For an element x of π we denote its sign also by sx. For
computational reasons, we identify a sign s also with the number s1, and talk about
+1 or −1 as a sign. Thus we can take the sum of signs. As we will see below, a signed
profile with all signs being +1, plays the role of the usual profile without signs. We call
such a profile a positive profile. If all signs are −1, then the profile is negative. Since
all our profiles are signed, we call a signed profile just a profile, and omit the adjective
‘signed’, except in the statements of lemmas and theorems (to avoid confusion with
similar lemmas and theorems in the literature). A profile obtained from π by changing
each si by −si is denoted by −π. The size of a profile π is defined as

‖π‖ =
k∑
i=1

si.

So, for positive profiles we have ‖π‖ = |π|, and for negative profiles we have ‖π‖ = −|π|.
For an edge uv in G, we denote by πuv the subprofile of π consisting of the elements

of π strictly closer to u than to v, and by πvu the subprofile of all elements at equal
distance form u and v. Note that a profile, by definition, has a positive length. However,
for subprofiles we allow the empty subprofile. For instance, a graph is bipartite if and
only if the subprofile πvu is empty for any edge uv and any profile π.

In the literature we find such concepts as remoteness, median and antimedian of
positive profiles. These are all very natural and the definitions are in accordance with
our intuition. Because the definitions for signed profiles are basically the same, we use
the same terminology here. But the reader has to keep in mind that the effects of
the signs might just be contra-intuitive. For instance, if π is a negative profile, then a
median of π is an antimedian of the positive profile −π.

The remoteness of a vertex v to a profile π is defined as

D(v, π) =
k∑
i=1

sid(xi, v).

A permutation of the elements in a profile does not change remoteness. Because we
are only interested in the remoteness to profiles, we will consider two profiles as the
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same if they can be obtained from each other by permuting the elements. We write
the concatenation of two profiles π and ρ as πρ. Thus, for any edge uv, we can write
π = πuvπ

v
uπvu.

A vertex minimizing D(v, π) is called a median of the profile. The set of all medians
of π is the median set of π and is denoted by M(π). A vertex maximizing D(v, π) is
called an antimedian of the profile. The set of all antimedians of π is the antimedian
set of π and is denoted by AM(π).

A vertex x such that D(x, π) ≤ D(y, π), for all neighbors y of x, is a local median
of π. The set of all local medians is denoted by Mloc(π). If D(x, π) ≥ D(y, π), for all
neighbors y of x, then x is a local antimedian of π. The set of all local antimedians is
denoted by AMloc(π).

Let π = (s1x1, s2x2, . . . , skxk) be a profile, then we have

D(v,−π) =
k∑
i=1

−sid(xi, v) = −
k∑
i=1

sid(xi, v) = −D(v, π).

From this observation we deduce that, by replacing a profile π by its opposite −π, the
roles of (local) medians and (local) antimedians are exchanged. So we have M(π) =
AM(−π), etcetera. We single out one fact that we need in the sequel.

Lemma 1 Let G be a connected graph and π a signed profile on G. Then

‖πuv‖ ≤ ‖πvu‖ if and only if D(u, π) ≥ D(v, π),

for any neighbor v of u in G.

Proof. Since uv is an edge in G, we can ignore πvu in the following computation.

D(u, π)−D(v, π) =
∑
x∈πuv

sxd(u, x) +
∑
x∈πvu

sxd(u, x)−
∑
x∈πuv

sxd(v, x)−
∑
x∈πvu

sxd(v, x) =

=
∑
x∈πuv

sxd(u, x) +
∑
x∈πvu

sxd(u, x)−
∑
x∈πuv

sx(d(u, x) + 1)−
∑
x∈πvu

sx(d(u, x)− 1) =

= ‖πvu‖ − ‖πuv‖.
From this the assertion follows immediately. � � �

3 Remoteness with respect to arbitrary weight func-

tions

The concept of remoteness function and hence of medians and antimedians can also
be studied with respect to weight functions defined on the vertex set of a graph. This
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was studied by Bandelt and Chepoi in [4] for non-negative weight functions in the case
of medians. The equivalence of non-negative weight functions and positive profiles
and hence the corresponding equivalence of the remoteness function and medians of
non-negative weight functions and positive profiles are established in [2].

In this section, we establish that the same conclusion follows for arbitrary weight
functions and signed profiles.

A weight function on G is a mapping f from V to the set of real numbers. Note
that we now allow negative weights. We say that f has a local minimum at x ∈ V if
f(x) ≤ f(y), for every y adjacent to x. It has a local maximum if f(x) ≥ f(y), for
every y adjacent to x. The remoteness function with respect to the weight function f
is the function Df from V to the set of real numbers defined as:

Df (v) = D(v, f) =
∑
x∈V

d(v, x)f(x).

Note that Df is a weight function on G as well. A local median of f is a vertex u such
that Df has a local minimum at u. A local antimedian is a vertex at which Df attains
a maximum. The set of all local medians of a weight function f is denoted by Mloc(f).
The set of all local antimedians is denoted by AMloc(f). A median of f is a vertex u
such that Df has a global minimum at u. Similarly, an antimedian of f is a vertex at
which Df attains a maximum. The median set M(f) of f is the set of all medians of
f . The antimedian set AM(f) of f is the set of all anti-medians of f .

Let f be a weight function on a graph G and let −f be the weight function defined in
the obvious way: its value in x is −f(x). Then clearly, we have D(v, f) = −D(v,−f),
for any vertex v in G. In the sequel we make use of the following obvious facts.

Remark 2 Let f be an arbitrary weight function defined on the vertex set of a graph
G. Then replacing f with −f interchanges the roles of local maxima (minima) of f
with local minima (maxima) of −f , and hence also interchanges the roles of both local
and global medians (antimedians) of f with local and global antimedians (medians) of
−f , respectively.

Let π be a profile on G. Then the weight function associated with π is the function
fπ with fπ(x) =

∑
si, where the summation is taken over the occurrences of vertex

x. If x does not occur in π, then we set f(x) = 0. The following lemma follows
immediately from the definitions. Note that, for any integer-valued weight function f ,
there are infinitely many profiles having f as their associated weight function.

Lemma 3 Let G be a connected graph, and let π be a signed profile with associ-
ated weight function fπ. Then D(v, π) = D(v, fπ), and hence M(fπ) = M(π), and
AM(fπ) = AM(π), and Mloc(fπ) = Mloc(π), and AMloc(fπ) = AMloc(π), for every v
in V .
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Let f be a weight function on a connected graph G. For a positive real number t,
we define tf to be the weight function with (tf)(x) = t×f(x). Then we have M(tf) =
M(f) and Mloc(tf) = Mloc(f). Also we have AM(tf) = AM(f) and AMloc(tf) =
AMloc(f). Finally, Dtf has a strict local minimum (maximum) at a vertex u if and
only if Df has a strict local minimum (maximum) at u. The following lemma is obvious.

Lemma 4 Let g be rational weight function on a connected graph G. Then there is a
signed profile π on G such that fπ = tg for some positive integer t.

In other words, antimedians (medians) of signed profiles are exactly antimedians (me-
dians) of rational weight functions. The same holds for local antimedians (medians).
Next we show that real-valued weight functions may be replaced by rational-valued
weight functions, and thus by profiles, when one wants to compute antimedian (me-
dian) sets. We only present the proofs for the antimedian case. This is the one that
we need in Sections 4 and 5. The case for the median sets is similar to that in [2],
except that one has to take into account the signs. The next two Lemma’s are the
signed version of Lemma’s 5 and 6 in [2]. The proofs are easy adaptations of those
in [2]. Because they are short and prepare the way for Proposition 7, we include the
proofs of the signed versions.

Lemma 5 Let G be a connected graph, and let f be a weight function on G such that
Df has a local maximum at vertex u, which is not a global maximum. Then there is a
weight function g such that Dg has a strict local maximum at u, which is not a global
maximum. Furthermore if f is rational, then g may also be taken rational.

Proof. First note that, for any two vertices x and y, we have d(x, y) < n = |V |. Let
D(u, f) = ε1. Let Df have a global maximum at z, that is, D(z, f) = ε > ε1. Let
ε2 = ε− ε1. Now define the function g as follows.

g(v) =

{
f(v) if v 6= u
f(u)− ε2

n
if v = u.

ThenD(u, g) = D(u, f), because in these sums the values f(u) and g(u) of the functions
at u are multiplied by d(u, u) = 0. For any vertex v adjacent to u, we have

D(v, g) = D(v, f)− ε2
n
< D(v, f) ≤ D(u, f) = D(u, g).

So Dg has a strict local maximum at u. Furthermore,

D(z, g) = D(z, f)− d(u, z)
ε2
n
> D(z, f)− ε2 = D(u, f) = D(u, g).

So g has a strict local maximum at u that is not a global maximum. Also if f is
rational, then ε2 is rational. So g is also rational. � � �
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Lemma 6 Let G be a connected graph with the property that, for each rational weight
function g, every local maximum of Dg is also a global maximum. Then the same
property holds for any real-valued weight function f on G.

Proof. Assume that for some real-valued weight function f there is a local maximum
for Df , at some vertex u that is not a global maximum. In view of the preceding
lemma, we may assume that Df has a strict local maximum at u. Let Df have a global
maximum at z, and let

ε1 = min{D(u, f)−D(x, f) | x adjacent to u}, ε2 = D(z, f)−D(u, f),

ε =
min(ε1, ε2)

n2
.

Now choose a rational weight function g such that g(v) < f(v) and f(v) − g(v) < ε,
for all v. Then, for any vertex x adjacent to u, we have D(u, g) > D(u, f)− ε× n2 ≥
D(u, f)− ε1 ≥ D(x, f) > D(x, g). So u is a local maximum for Dg. Moreover, we have
D(z, g) > D(z, f) − ε × n2 ≥ D(z, f) − ε2 ≥ D(u, f) > D(u, g). So u is not a global
maximum for Dg, which is a contradiction. � � �

Graphs with connected median sets for non-negative weight functions were charac-
terized in [4]. Using an analogous approach, we now are able to characterize graphs
with connected antimedian and median sets for arbitrary weight functions.

Proposition 7 For a graph G and any arbitrary weight function defined on the vertex
set of G the following conditions are equivalent

(i) AMloc(f) = AM(f) for all weight functions f ;
(ii) all level sets {x : Df (x) ≥ λ} induce isometric subgraphs;
(iii) all antimedian sets AM(f) induce isometric subgraphs;
(iv) all antimedian sets AM(f) are connected.

Proof. The implications (ii)⇒ (iii), (iii)⇒ (iv) are trivial.
Next we prove (iv) ⇒ (i). Let f be a weight function. Assume to the contrary

that there exists a local antimedian z of f that is not an antimedian. Let y be an
antimedian. Amongst such pairs y, z, we may choose y and z such that d(y, z) is as
small as possible. Our aim is to find two vertices u and v with d(u, v) = 2 and a weight
function f ′ such that AM(f ′) = {u, v}. So f ′ does not have a connected antimedian
set.

Consider the interval I(y, z). Because of the minimality of d(y, z), we have Df (y) >
Df (x) for all x in I(y, z) distinct from y. Since z is a local antimedian, we have
Df (z) ≥ Df (x), for any neighbor x of z, in particular for any neighbor x of z in I(y, z).
This implies that d(y, z) ≥ 2. Hence, going from y to z within I(y, z), we will encounter
two vertices u, v such that d(y, u) = d(y, v)− 2, d(z, u) = d(z, v) + 2, d(u, v) = 2, with
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the properties that Df (u) > Df (x) and Df (v) ≥ Df (x), for any common neighbor x
of u and v. Note that these common neighbors of u and v are precisely the vertices in
I(u, v) distinct from u and v.

If there is any common neighbor x of u and v such that Df (v) = Df (x), then
we have Df (y) ≥ Df (u) > Df (v). If Df (v) > Df (x) for all common neighbors of u
and v, then we compare Df (u) and Df (v). If Df (u) ≥ Df (v), then again we have
Df (y) > Df (v). If Df (v) > Df (u), then we have Df (y) > Df (v) > Df (u). In this case
we interchange the names of u and v. In all cases we end up with two vertices u and
v at distance 2 with

Df (y) ≥ Df (u) ≥ Df (v) ≥ Df (x),

for all common neighbors x of u and v, such that, additionally,

Df (y) > Df (v) and Df (u) > Df (x),

for all common neighbors x of u and v.

We set µ1 =
Df (u)−Df (v)

2
. So µ1 ≥ 0, and Df (v) = Df (u) − 2µ1. We set µ2 =

Df (y)−Df (v). Then µ2 ≥ µ1 and µ2 > 0. Note that for any x in V , we have

Df (v) ≥ Df (x)− µ2.

We construct the new weight function f ′ from f as follows

f ′(x) =


f(x)− (µ1 + µ2) if x = v
f(x)− (µ2) if x = u
f(x) otherwise.

Straightforward computation now yields

Df ′(u) = Df (u)− 2(µ1 + µ2)

= Df (v)− 2µ2

= Df ′(v);

and for any vertex x in I(u, v) distinct from u and v:

Df ′(x) = Df (x)− µ1 − 2µ2 < Df (u)− µ1 − 2µ2 = Df ′(u)− µ2 < Df ′(u);

and for any vertex x outside the interval (recall that µ1 ≤ µ2):

Df ′(x) ≤ Df (x)− 3µ2 − µ1 ≤ Df (u)− 2µ2 − µ1 < Df ′(u).

Thus AM(f ′) = {u, v}, and hence the antimedian set of f ′ is not connected. This
impossibility proves this implication.

It remains to prove that (i)⇒ (ii). Let AMloc(f) = AM(f) for all weight functions
f . Assume to the contrary that the level set S = {x | Df (x) ≥ λ} corresponding to
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λ is not isometric. Hence there exist two vertices u, v such that no shortest u, v-path
lies completely inside S. Obviously, we can select u, v in S such that Df (x) < λ for
any x in I(u, v), distinct from u and v. Without loss of generality we may assume
Df (u) ≤ Df (v). Set Df (z) − Df (u) = µ1, where z is an antimedian, and set ε =
min{Df (u) − Df (w) | w ∈ I(u, v)}. Note that, since Df (u) > λ > Df (w), for w in
I(u, v), we have ε > 0. Let µ2 = ε

d(u,v)
. Define a weight function f ′ such that

f ′(x) =


f(x)− µ1 if x = u
f(x)− (µ1 + µ2) if x = v
f(x) otherwise.

Straightforward computation now yields

Df ′(v) = Df (v)− d(u, v)(µ1)

≥ Df (u)− d(u, v)(µ1)

> Df (u)− d(u, v)(µ1 + µ2)

= Df ′(u)

and for any vertex w in I(u, v) distinct from u and v:

Df ′(w) < Df (w)−d(u, v)µ1 ≤ Df (u)−ε2−d(u, v)µ1 = Df (u)−d(u, v)(µ1+µ2) = Df ′(u)

and for any other vertex x:

Df ′(x) < Df (x)−(d(u, v)+1)µ1 < Df (z)−µ1−d(u, v)µ1 = Df (u)−d(u, v)µ1 = Df ′(u).

This implies that v is the unique antimedian of f ′, while u is a local antimedian, which
is not an antimedian vertex. This contradicts the assumption, by which the proof is
complete. � � �

Above we established the equivalence of real-valued weight functions, rational-
valued weight functions, and signed profiles with respect to medians etcetera. The
next theorem is now an easy consequence of the previous results.

Theorem 8 Let G be a connected graph. Then the following conditions are equivalent.

(i) The antimedian set AM(f) is connected, for all weight functions f on G.
(ii) AM(f) = AMloc(f), for all weight functions f on G.
(iii) The median set M(f) is connected, for all weight functions f on G.
(iv) M(f) = Mloc(f), for all weight functions f on G.
(v) AM(f) = AMloc(f), for all rational weight functions f on G.
(vi) AM(π) = AMloc(π), for all signed profiles π on G.
(vii) M(f) = Mloc(f), for all rational weight functions f on G.
(viii) M(π) = Mloc(π), for all signed profiles π on G.
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Proof. (i) up to (iv) are equivalent by Proposition 7, and Remark 2 .
(ii)⇒ (v) follows trivially.
(v)⇒ (ii) follows from Lemma 6.
(v) ⇒ (vi): Let π be a signed profile on G. Now consider its associated weight

function fπ. By Lemma 3, we have D(v, fπ) = D(v, π). Since Dfπ cannot have any
local maximum that is not a global maximum, Dπ also cannot have any local maximum
that is not a global maximum.

(vi) ⇒ (v): Let g be any rational weight function on G. By Lemma 4, there is a
positive integer t and a signed profile π such that fπ = tg. By Lemma 3, Dfπ = Dπ,
and, as observed above, Dfπ has a local maximum that is not a global maximum if and
only if Dg have a local maximum that is not a global maximum. So Dg cannot have a
local maximum that is not a global maximum.

The equivalence of (vii) and (viii) with the other statements follows similarly. �
� �

4 Consensus Strategies

If one wants to find the median set of a positive profile in a tree, then there exists a
simple strategy formulated by Goldman [10] already in 1971. It reads as follows. When
at vertex u, consider neighbor v of u. If there is a majority of the profile closer to v
than to u, then move to v. In [18] this Majority Strategy was formulated for arbitrary
graphs. There it was proved that the Majority Strategy produces the median set for
any positive profile starting at any vertex if and only if the graph is a median graph,
Theorem 9 below. For more details, we refer the reader to [18, 2]. One of the main
reasons underlying this result is that the structure of median sets is very nice in median
graphs. In [2] four other related consensus strategies for positive profiles are studied.
Antimedian sets are not so well-structured. So one cannot expect such deep results
for signed profiles. But it is still possible to obtain some nice and unexpected results.
Below we present a number of consensus strategies for signed profiles similar to the
Majority Strategy from [16]. They are analogues of those in [2], but now formulated
for signed profiles.

In all the strategies below the input is a connected graph G, a profile π, and an
initial vertex at which the strategy starts. There are two possibilities: one gets stuck
at a vertex, or it is possible to visit vertices more than once. In the latter case the
strategy could get into a loop, so the stopping rule must be more sophisticated here.
In all cases, the output after stopping is the single vertex where one gets stuck or the
set of vertices visited at least twice. Steps 1, 3 and 4(i) below are the same for all
strategies, so we list these only in the first instance. In all other instances we only list
Step 2, describing when one moves to a neighbor, and Step 4(ii), the stopping rule
when one does not get stuck.
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Majority Strategy
1. Start at the initial vertex.
2. [MoveMS] If we are in u and v is a neighbor of u with ‖πvu‖ ≥ 1

2
‖π‖,

then we move to u.
3. We move only to a vertex already visited if there is no alternative.
4. We stop when

(i) we are stuck at a vertex u or
(ii) [TwiceMS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either ‖πvu‖ < 1

2
‖π‖ or v is also visited at least twice.

Before presenting the other strategies we quote the main theorem from [18]. This
theorem has been the motivation for studying such strategies on graphs. It also shows
the special role of median graphs within the Universe of All Graphs. Due to the
structure theory of median graphs, the equivalence of (ii) and (iii) on median graphs
in the theorem is not surprising. But otherwise it would not have been something one
would expect at first sight.

Theorem 9 [Majority Theorem] Let G be a graph. Then the following conditions
are equivalent.

(i) G is a median graph.
(ii) The Majority Strategy produces the median set M(π) from any initial vertex, for
each positive profile π on G.
(iii) The Majority Strategy produces the same set from any initial vertex, for each
positive profile on G.

In the majority strategy one moves towards majority. A slightly different point of
view is to move away from minority. This seems to be the same, but it is not, as we
will see below. This latter strategy is known as the Condorcet Strategy.

Condorcet Strategy
2. [MoveCS] If we are in u and v is a neighbor of v with ‖πuv‖ ≤ 1

2
‖π‖,

then we move to v.
4. (ii) [TwiceCS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either ‖πuv‖ > 1

2
‖π‖ or v is also visited at least twice.

In non-bipartite graphs the subprofile πvu of π, for an edge uv, is not always empty.
From the viewpoint of voting, one might say the that the elements of πvu abstain from
voting when the choice is between u and v. So these may be ignored when the question
is whether to move from u to v. This is the idea behind the Plurality Strategy. Note
that on bipartite graphs Majority and Plurality coincide.

12



Plurality Strategy
2. [MovePS] If we are in u and v is a neighbor of v with ‖πvu‖ ≥ ‖πuv‖,

then we move to v.
4. (ii) [TwicePS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either ‖πvu‖ < ‖πuv‖ or v is also visited at least twice.

The next two strategies were introduced to find a (local) minimum based on a
heuristic function in a search graph. They are also known as Hill Climbing and Steepest
Ascent Hill Climbing, respectively.

Ascent Strategy
2. [MoveAS] If we are in u and v is a neighbor of v with D(v, π) ≤ D(u, π),

then we move to v.
4. (ii) [TwiceAS] we have visited vertices at least twice, and

for each vertex u visited at least twice and each neighbor v of u,
either D(v, π) > D(u, π) or v is also visited at least twice.

Steepest Ascent Strategy
2. [MoveSAS] If we are in u and v is a neighbor of v with D(v, π) ≤ D(u, π), and

D(v, π) is minimum among all neighbors of u, then we move to v.
4. (ii) [TwiceSAS] = [TwiceAS].

The next simple Lemma is an analogue of Lemma 1 in [2] for signed profiles with
the same conclusion. Note that the Plurality and Ascent produce the same output
for signed profiles on any connected graph. On bipartite graphs both coincide with
Majority.

Lemma 10 Let G be a connected graph and π a signed profile on G. Plurality Strategy
makes a move from vertex v to vertex u if and only if D(u, π) ≤ D(v, π).

Proof. The assertion follows immediately from the following computation:

D(v, π)−D(u, π) =
∑
x∈πvu

sxd(v, x) +
∑
x∈πuv

sxd(v, x)−
∑
x∈πvu

sxd(u, x)−
∑
x∈πuv

sxd(u, x) =

=
∑
x∈πvu

sxd(v, x) +
∑
x∈πuv

sxd(v, x)−
∑
x∈πvu

sx(d(v, x) + 1)−
∑
x∈πuv

sx(d(v, x)− 1) =

= ‖πuv‖ − ‖πvu‖.
� � �

The various strategies are quite similar. But they are all different. We present some
examples to show this. The first example shows that Plurality, Condorcet and Majority
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are pairwise distinct strategies. Consider the profile π = (+a,+b,−c,+d,+e,+f) on
the graph shown in Figure 1. We have ‖πuv‖ = 1, ‖πvu‖ = 0, ‖πva‖ = ‖πvb‖ =
‖πvd‖ = ‖πve‖ = 2 ‖πvc‖ = 4, ‖πav‖ = ‖πbv‖ = ‖πdv‖ = ‖πev‖ = 1, ‖πcv‖ = −1,
‖πua‖ = ‖πub‖ = ‖πud‖ = ‖πue‖ = ‖πuf‖ = 3, ‖πuc‖ = 5, ‖πau‖ = ‖πbu‖ = ‖πdu‖ =
‖πeu‖ = ‖πfu‖ = 1, ‖πcu‖ = −1.

 

a b c d e 

v u 

 f 

Figure 1: Consensus functions differing on a graph

Apply all the strategies starting at u. Using Majority we may not move to any
of its neighbors, so we are stuck at u. Thus the outcome of Majority is {u}. Note
that we have ‖πux‖ ≤ 1

2
‖π‖, for any neighbor x of u other than c. So, if we use

Condorcet, then we can move to any of its neighbors except c. Note also that from
a, b, d and e a move to either u or v is allowed, but from v we can move only to u. Thus
using Condorcet we may move along u, a, b, d, e, v. Hence the output of the Condorcet
Strategy is {u, a, b, d, e, v}. When we use Plurality, then we can move only to v and we
get stuck at v. Hence the output of Plurality is {v}. Ascent and Steepest Ascent also
produce the output {v}.

It is shown in [2] that Steepest Ascent is essentially different from the other strate-
gies for positive profiles. Note that the other strategies might make a move from u
as soon as they find a neighbor v of u that satisfies the condition for a move, while
Steepest Ascent has to check all neighbors of u before it can make a move. For a
comparison of efficiencies of these strategies, see [3].

The following example shows that the first four strategies might not even find
the median vertex, even if the graph is bipartite. Consider the complete bipartite
graph K2,5 with vertices a, b and 1, 2, 3, 4, 5, where two vertices are adjacent if and
only if one is a ‘letter’ and the other is a ‘numeral’. Now take the profile π =
(+b,+1,+1,+1,+2,+2,+2,+3,+3,+3,+4,−5). Then we haveD(a, π) = 11, D(b, π) =
9, D(4, π) = 21, D(5, π) = 17 and D(i, π) = 13, for i = 1, 2, 3. Take 1 as initial vertex
and assume that we check its neighbors in alphabetical order. Then Majority, Con-
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dorcet, Plurality and Ascent move to a and get stuck there, whereas Steepest Ascent
moves to b and thus finds the median vertex of π.

It was already shown in [2] that Plurality produces the median set for any positive
profile if and only if all median sets in the graph are connected. Hence Plurality pro-
duces the antimedian set for negative profile in such graphs. Moreover the antimedian
sets are connected for all negative profiles in such graphs.

In the case of finding antimedian sets one would want to have the “converse” of
the above strategies, that is, apply the strategy on −π instead of π. Because we are
working with signed profiles these are strategies in their own right. We list them below,
with their appropriate names.

Minority Strategy
Minority applied to π is identical with Majority applied to −π.

Scarcity Strategy
Scarcity applied to π is identical with Plurality applied to −π.

Descent Strategy
Descent applied to π is identical with Ascent applied to −π.

Steepest Descent Strategy
Steepest Descent applied to π is identical with Steepest Ascent applied to −π.

It is interesting to note that Scarcity produces the antimedian set in hypercubes.
Recall that the n-dimensional hypercube Qn, the n-cube for short, has the 0, 1-vectors
of length n as its vertices, two vertices being adjacent if the corresponding vectors
differ in exactly one coordinate. Take any i with 1 ≤ i ≤ n. Let Q0

n,i be the (n − 1)-
dimensional subcube consisting of the vertices with a 0 as i-th coordinate, and let Q1

n,i

be the complementary subcube consisting of the vertices with a 1 as i-th coordinate.
For a profile π, let π0

i be the subprofile of π in Q0
n,i, and let π1

i to the subprofile of π
in Q1

n,i. Let W be the set of vertices in Qn, for which π has a signed minority in each
coordinate. That is, x lies in W if and only if x has a 0 in the i-th coordinate when
‖π1

i ‖ > ‖π0
i ‖, and a 1 when ‖π0

i ‖ > ‖π1
i ‖, and a 0 or 1 when ‖π0

i ‖ = ‖π1
i ‖. This is

precisely the antimedian set of π. It is also a subcube of dimension d, where d is the
number of coordinates, for which ‖π0

i ‖ = ‖π1
i ‖.

Proposition 11 Scarcity produces the antimedian set on a hypercube for any signed
profile.

Proof. Take any i with 1 ≤ i ≤ n. Take any vertex u in Q0
n,i, and let v be its neighbor

in Q1
n,i. Then we have πuv = π0

i and πvu = π1
i . So, if ‖π0

i ‖ ≥ ‖π1
i ‖, then we move from

Q0
n,i to Q1

n,i. And if ‖π0
i ‖ > ‖π1

i ‖, then we never move back to Q0
n,i. So Scarcity moves
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to the set of vertices W in Qn, for which π has a signed minority in each coordinate.
This is precisely the antimedian set of π. � � �

In general Scarcity will not always produce an antimedian. For example when we
use Scarcity moves in a tree we will always stuck at leaf nodes, as we can see in the
following lines. Consider a tree T with at least three leaves, and a positive profile π of
length k on T . Take any leaf v that occurs less than 1

2
k times in π, and let u be the

neighbor of v in T . Note that d(v, x) = d(u, x) + 1 for any x 6= v in T . Obviously we
will move to v from u, but we will never move back to v using Scarcity. But v need
not be the antimedian of π. If the profile is “close” to u, then obviously antimedian
will be at some other leaves far away.

Next we prove an analogue of the main Theorem for positive profiles in [2] in the
case of signed profiles.

Theorem 12 The following are equivalent for a connected graph G.

(i) The Scarcity Strategy produces AM(π) from any initial vertex, for all signed
profiles π on G.
(ii) AM(π) is connected, for all signed profiles π on G.
(iii) AM(π) = AMloc(π), for all signed profiles π on G.
(iv) Descent Strategy produces AM(π) from any initial vertex, for all signed profiles
π on G.
(v) Steepest Descent Strategy produces AM(π) from any initial vertex, for all signed
profiles π on G.
(vi) Scarcity Strategy, Descent Strategy, and Steepest Descent Strategy each produce
the same set from any initial vertex, for all signed profiles.

Proof. (i) ⇒ (ii): Suppose the antimedian set is not connected for some profile π.
Then let u and v be two vertices in different components of AM(π). Now, if Scarcity
starts at u, then it cannot reach vertex v, because a move from an antimedian vertex
to a non-antimedian vertex is not possible by Lemma 10. So the set computed by
Scarcity will not include u, which is a contradiction.

(ii)⇒ (iii): This follows from Theorem 8.
(iii)⇒ (iv): Starting at any vertex, Descent always finds a local maximum. Since

this local maximum is also global, it follows that Descent always reaches an antimedian,
and since the antimedian set is connected, Descent finds all antimedian vertices.

(iv)⇒ (i): Assume that Descent finds the antimedian set. This means that Descent
will move to an antimedian starting from any vertex and finds all the other antimedians.
The same moves will be made by Scarcity, by Lemma 10. Hence Scarcity will compute
the antimedian set correctly.

(iii)⇒ (v) follows similarly as (iii)⇒ (iv).
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(v) ⇒ (ii) follows from the fact that Steepest Descent finds a local maximum and
does move from antimedian to antimedian but does not move from an antimedian to
a non-antimedian.

(i)⇒ (vi) is obvious.
(vi) ⇒ (i) follows from the fact that, starting from an antimedian, Scarcity can

produce only a set of antimedians which includes the initial vertex. So starting from
any vertex it produces the same set if and only if the produced set is actually AM(π).
The same argument works for Descent and Steepest Descent. � � �

5 The Majority Strategy for Signed Profiles

In this section a characterization for hypercubes is obtained as the graphs for which
Majority always produces the median set for any signed profile. Before stating the
result, we need a few facts from the theory of median graphs as developed in [16]. A
median graph is bipartite, and does not contain K2,3 as induced subgraph. This implies
that any two vertices at distance 2 have either one or two common neighbors. It is
proved in [16] that a graph G is a hypercube if and only if it is a median graph in which
any two vertices at distance 2 have exactly two common neighbors. For any vertex w
in a graph G, we write Ni(w) = {x | d(x,w) = i}, and N>i(w) =

⋃
j>iNj(w).

Proposition 13 Let AM be the antimedian function on a median graph G. Then
AM(π) is connected for every signed profile π if and only if G is a hypercube.

Proof. If G is a hypercube, then Proposition 11 gives us the required result.
Conversely, let G be a median graph for which the antimedian set is connected, for

any signed profile. Let u and v be two vertices at distance 2, and let w be a common
neighbor of u and v. Due to the above mentioned characterization of hypercubes in [16]
we have to prove that there exists a unique common neighbor of u and v different from
w. Consider the profile π = (+w) of length 1. Note that, for any x in Nj(w), we have
Df (x) = j. So N>0(w) = V − w is a level set with respect to π. Due to Proposition7
any level set of π induces an isometric subgraph. So, within V −w, the vertices u and
v have distance 2 as well, that is, there is a common neighbor z in V − x. Since a
median graph is bipartite and does not contain K2,3, this neighbor is unique. � � �

The next theorem is an analogue of the majority theorem for signed profiles which
turns out to be a new characterization of hypercubes.

Theorem 14 A graph G is a hypercube if and only if the Majority Strategy, starting
from any initial vertex, produces the median set for any signed profile on G.

17



Proof. If G is a hypercube, then, by Proposition 11, Scarcity produces the antimedian
set for any signed profile. So, the hypercube being bipartite, Minority produces the
antimedian set for any signed profile, whence Majority produces the median set for any
signed profile.

Conversely, assume that Majority produces the median set for any signed profile.
Then it also produces the median set for any positive profile. So, by Theorem 9, the
graph is a median graph. Hence, by Proposition 13, the graph is a hypercube. � �
�

6 Graphs for which Scarcity produces the Antime-

dian Set for any Signed Profile

In this section we discuss some graph classes for which Scarcity always produces the
antimedian set for any signed profile.

First we consider the Hamming graphs. Let k1, . . . , kn be positive integers, and let
V be the Cartesian product

Πn
i=1{0, 1, . . . , ki − 1}.

The Hamming graph Hk1,...,kn is the graph with vertex set V , in which two vertices
are joined by an edge if and only if the corresponding vectors differ in exactly one
coordinate. The properties for Hamming graphs needed here probably all belong now
to folklore, but could also be found in [16, 17], where they were characterized for the
first time. The set of vertices in H = Hk1,...,kn having a in the i-th position of the
corresponding vector is denoted as Ha

k1,...,kn,i
, or simply as Ha

i . For a profile π, we
denote its subprofile contained in Ha

i by πai .
Let π be a profile on H = Hk1,...,kn . Fix a position i, for which ki ≥ 2, and let

a and b be distinct elements in {0, . . . , ki − 1}. Let u be a vertex in Ha
i , and let v

be its neighbor in Hb
i . Then πuv = πai and πvu = πbi . Note that, if u is in AM(π),

then we have ‖πai ‖ ≤ ‖πbi‖. This holds for every b in {0, . . . , ki − 1} distinct from
a. In this case we say that there is a signed minority at a in position i. Clearly, an
antimedian vertex in H is a vertex with a signed minority in each coordinate. Let mi

be the number of elements in {0, . . . , ki − 1} with a signed minority, for i = 1, . . . , n.
Then the antimedian set of π induces a subgraph isomorphic to Hm1,...,mn . Obviously,
any antimedian set is connected.

Proposition 15 Starting form any vertex Scarcity Strategy produces the antimedian
set on a Hamming graph for any signed profile.

Proof. Let π be a (signed) profile on the Hamming graph H = Hk1,...,kn . Take any i
with 1 ≤ i ≤ n and any vertex u in Ha

i , and let v be its neighbor in Hb
i with b 6= a. If
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‖πai ‖ ≥ ‖πbi‖, then we move from Ha
i to Hb

i . And if ‖πai ‖ > ‖πbi‖, then we never move
back to Ha

i . So Scarcity moves to the set of vertices W in H for which π has a signed
minority in each coordinate. This is precisely the antimedian set of π. � � �

Next we consider the Johnson graphs followed by half cubes. The Johnson graphs
and half cubes are important classes of graphs which occur as hosts for isometric
embeddings of graphs, [?]. The Johnson graph Jn,k has as vertices the k-element
subsets of {1, 2, . . . , n}, and two vertices are adjacent if and only if their intersection
has size k− 1. In other words the vertices ‘differ’ in exactly one element. Some special
Johnson graphs are: Jn,1 is the complete graph on n vertices, Jn,2 is the n-triangular
graph, and Jn,3 is n-tetrahedral graph. Since each vertex u in Jn,k corresponds to a
k-element subset X of {1, 2, . . . , n}, we represent u with the vector [u1, . . . , un], where

ui =

{
1; i ∈ X,
0; i 6∈ X

Clearly the total number of 1’s in each vector representation is k. Moreover adjacent
vertices differ in two positions. Note that mapping these vectors to the corresponding
vectors in a hypercube Qn corresponds to a so-called scale-2 embedding, that is, two
vertices at distance d in the Johnson graph are mapped onto vertices at distance 2d in
the hypercube, for any two vertices. Since below the antimedian sets in more than one
graph will be considered, we denote the antimedian set of π in G also by AM(π,G),
and so forth.

Proposition 16 Let G be a Johnson graph. Then M(π) and AM(π) are also Johnson
graphs.

Proof. Assume that G = J(n, k). Consider the scale-2 embedding of G in to the
hypercube Qn. Let π be a profile in G, and let M(π,Qn) be isomorphic to Qr. Without
loss of generality we may assume that, for all the vertices u = [u1, . . . , un] in this
subcube, the coordinates at positions r + 1 up to n are all the same, and that in the
remaining positions 1, . . . , r values 0 and 1 are taken. Let m be the total number of
1’s, in positions r + 1, . . . , n.

We analyze the properties of median sets in G by considering two cases.

Case 1. M(π,Qn) ∩G 6= ∅.
Clearly M(π,G) induces a subgraph isomorphic to Jr,(k−m).

Case 2. M(π,Qn) ∩G = ∅.
In this case we have either m < k − r or m > k. Clearly, if m < k − r, we get a
vertex in G by changing a minimum number of coordinates, say p, from the vertex in
M(π,Qn) having 1s in positions 1, . . . , r.

Similarly, when m > k, we get a vertex in G with a minimum number of changes, by
selecting the vertex with 0’s in positions 1, . . . , r. Since we are looking for a median set
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in G, we select the positions, in such a way that the change in remoteness is minimum.
Thus we select p coordinate positions with smaller signed majority values. If the signed
majority values are distinct we get a single vertex in G. Otherwise we make a selection
among, say p′ positions. In this case the subgraph induced by the vertices of G thus
obtained will be isomorphic to Jp′,p.

Since the remoteness is same for all vertices in the median set we get the same
result independent of the vertex selected. Hence we get a subgraph that is a Johnson
graph as the median set.

With similar arguments, by taking the signed minority values in coordinate po-
sitions, we can prove that antimedian sets also induce some Johnson graph. This
completes the proof. � � �

From the above theorem we have the following corollary.

Corollary 17 Let G be a Johnson graph. Then M(π) and AM(π) are connected, for
any signed profile π in G.

From the above Corollary and Theorem 12 we have:

Corollary 18 Starting from any vertex on a Johnson graph Scarcity produces the an-
timedian set for any signed profile.

Next, we consider halfcubes. The vertex set of a halfcube is the subset of the vertices
of the hypercube Q2n with an even (respectively, odd) number of ones in their vector
representation. Two vertices are adjacent when they differ in exactly two positions,
see [6]. Halfcubes also admit a scale-2 embedding into the corresponding hypercube.

Theorem 19 Let G be a halfcube, then M(π,G) and AM(π,G) are connected for any
signed profile π in G.

Proof. Let Qn be the hypercube of dimension n in which G is scale-2 embedded. Let
π be an arbitrary profile in G and ‖π‖ = k. Note that by applying the Majority rule
for the given profile π of the halfcube embedded into hypercube Qn (looking as the
vertices of a hypercube), we get the median of π in Qn which will be a sub-hypercube,
say Qr. We analyze the property of M(π,G) by considering the following two cases
separately.
Case 1. M(π,Qn) is a hypercube Qr of dimension at least one.
Clearly Qr has half vertices in the corresponding halfcube - call this set X. Set X
forms a halfcube in G, hence X is connected. Since the graph G is scale-2 embedded
the remoteness in G is obtained by dividing the corresponding remoteness in Qn by 2,
we get M(π,G) = X, as we follow the signed Majority rule on π.
Case . M(π,Qn) in Qn contains exactly one vertex say x.
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If x belongs to G, then clearly M(π,G) = {x} as the case may be and hence we are
done.

So assume that x is not in G. Note that x = (x1, . . . , xd) can be obtained from the
signed Majority rule among co-ordinates of the profile π. Let mi, 1 ≤ mi ≤ n be the
signed majority at each position. Let m = min{m1, . . . ,mn}. Clearly if for any vertex y
obtained by changing any single ith coordinate of x, the remoteness changes by 2mi−k,
where ‖π‖ = k. This change in remoteness is minimum for coordinates having signed
Majority value m. Hence M(π,G) is precisely the set of vertices obtained from G by
changing any coordinate of x, having minimum signed Majority mi. These vertices are
all adjacent to x, and hence forms a clique in G. Thus M(π,G) is connected for any
signed profile.

With similar arguments and by taking m as maximum(m1, . . . ,mn), where each mi

is signed minority, we can prove that AM(π,G) is also connected for any profile, which
completes the proof. � � �

From the proof of the above theorem, we have the following corollary.

Corollary 20 Let G be a halfcube, then M(π,G) and AM(π,G) induce a halfcube in
G or a clique, for any profile π in G.

From Theorem 19 and Theorem 12 we have:

Corollary 21 Starting from any arbitrary vertex in a halfcube Scarcity Strategy always
produce antimedian set for any signed profile

7 Concluding remarks

In this paper, we have proved that the classes of graphs in which the consensus strate-
gies Scarcity, Descent and Steepest Descent will always produce the antimedians for
any arbitrary signed profile is precisely the class of graphs with connected antimedians.
This class of graphs is characterized in terms of (local) medians and (local) antimedi-
ans of (rational) weight functions. Also, we proved that, among the median graphs,
the hypercubes are precisely the graphs with connected antimedians for an arbitrary
signed profile. Moreover, we presented some classes on which Scarcity produces the
antimedian set for any signed profile. An intriguing question remains: Which classes
of graphs have connected antimedians for arbitrary signed profiles?

References
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