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Abstract.  This paper analyses the optimal combination of costly and costless messages that a 

Sender uses in a signaling game if he is able to choose among all equilibrium communication 

strategies.  We provide a complete characterization of the equilibrium that maximizes the 

Sender’s ex ante expected utility in case of uniformly distributed types and quadratic loss 

functions.  First, the Sender often wants to avoid money burning by using the most 

informative cheap talk communication strategy.  Second, if he does burn money, he avoids 

separation and only re-arranges the existing intervals of the most informative cheap talk 

equilibrium, possibly adding one extra interval.  Money burning takes place in the second 

interval only. 
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1. Introduction 

Communication in signaling games can take place through costly and costless signals.  

Crawford and Sobel (1982) present what has become the canonical model of communication 

through costless signals - cheap talk - between a sender who is privately informed about the 

state and an uninformed receiver who has to take an action that affects the utility of both 

players.1  They show that cheap talk can be informative as long as the degree to which the 

preferences of the two players concerning the best action in a given state do not differ too 

much.  Although informative, communication will necessarily be vague in the sense that the 

Sender adds noise to his messages: equilibrium communication strategies partition the 

(single-dimensional) type space in intervals, and the Sender only reports in which element of 

the partition his type lies. 

Costly signals were first studied in their extreme form of completely dissipative signals - 

money burning - by Spence (1973).  In the context of labor market signaling, he shows how 

high ability job applicants could separate themselves from low ability ones by showing 

credentials that are costly to obtain but otherwise useless.  This precision of communication 

through money burning contrasts with the vagueness of communication based on cheap talk. 

In practice, communication often relies on a combination of cheap talk and costly signals 

(dissipative or not).  This situation is studied by Austen-Smith and Banks (1998, 2000).  They 

show that the option to burn money expands the set of equilibria enormously, and can 

increase the precision of cheap talk communication.2  In this paper, we follow the same 

approach by allowing the Sender to use both cheap talk and money burning, and characterize 

all possible equilibrium communication strategies.  Our main contribution is the derivation of 

                                                                          

1  See also Green and Stokey (2007) for an earlier and an alternative formulation. 
2  Austen-Smith and Banks (1998) study some welfare results for the uniform-quadratic case.  Kartik 
(2007) shows that cheap talk can be influential with money burning if and only if it can be influential 
without money burning. 
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the optimal Sender’s equilibrium, i.e., the communication strategy that maximizes the 

Sender’s expected utility ex ante, before knowing his type. 

We study this optimal Sender’s equilibrium for the following reasons.  First, from a 

theoretical point of view it is interesting to know the optimal mixture of costly and costless 

signals from the Sender’s prospective.  Since it is up to the Sender whether he uses costly 

signaling in addition to cheap talk, we want to know whether he wants to use money burning 

or not and, if yes, to which extent. 

Second, this is a natural focal point for the Sender if he can choose an equilibrium.  This 

focal point is plausible because the Sender is the first mover in the signaling game and, 

therefore, might have an advantage to announce which equilibrium he will be playing.  

Finally, the optimal Sender’s equilibrium might have nice evolutionary stability properties, as 

the recent work of Demichelis and Weibull (2008) demonstrates. 

In the main part of the paper, we augment the much-used uniform-quadratic variant of 

the Crawford and Sobel (1982) cheap talk model with costly signaling (money burning).  In 

this model, the Sender's type is uniformly distributed, and the players' preferences are 

represented by quadratic loss functions. 

We find that the optimal equilibrium is similar to the most informative equilibrium of 

Crawford and Sobel (1982).  Depending on the preference misalignment parameter of the 

model, the Sender either burns money or not.  In particular, if the degree of misalignment 

exceeds a threshold value, the latter case realizes and the optimal equilibrium is just the most 

informative pure cheap talk equilibrium.  In this case, burning money does not allow the 

Sender to improve his pay-off because it is too costly. 

Only when the preference misalignment parameter is smaller than the threshold value, 

and satisfies some restrictions, does money burning occur in equilibrium.  Nevertheless, the 

Sender never uses it to separate the types perfectly.  The optimal equilibrium is again a 

partition equilibrium very similar to the most informative pure cheap talk equilibrium. 
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The Sender uses money burning in two ways.  First, he may increase the number of 

intervals in the equilibrium partition.  In this case, the optimal equilibrium is obtained from 

the most informative cheap talk equilibrium by squeezing the existing partition and inserting 

an extra interval in between the first and the second ones.  All types from the new (second) 

interval pool together, send identical message, and burn the same amount of money; no other 

types use costly signaling.  Although he burns a positive amount of money, the Sender’s 

expected utility increases because the resulting partition becomes finer. 

Second, even when having more intervals is not optimal (too costly), the Sender burns 

money in order to adjust the sizes of the existing intervals to his benefit.  In this case, the 

optimal equilibrium is obtained from the most informative cheap talk equilibrium by 

squeezing the second and stretching all the other intervals.  All types from the second interval 

pool together, send identical message, and burn a positive amount of money.  The expected 

utility of the sender increases because intervals in the resulting partition become more even. 

As to the values of the misalignment parameter for which the Sender burns money in the 

optimal equilibrium, we show that money burning can occur only when the degree of 

misalignment between Sender's and Receiver's preferences is such that the corresponding 

cheap-talk equilibrium has at least three intervals.  Moreover, money burning is only used 

when the value of the misalignment parameter is close to a value at which the maximum 

number of intervals changes in a pure cheap talk game.  When the misalignment gradually 

and continuously vanishes, optimal equilibria with and without money burning form an 

infinitely alternating pattern and the Sender’s ex-ante probability of sending a costly signal 

converges to zero. 

We conclude our analysis by studying general specifications of the type distribution and 

objective function of the Sender.  We derive a sufficient condition under which the separation 

of types is not optimal.  We also show that for any distribution and any objective function, 
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there will be a type for which this condition holds.  Consequently, perfectly separating 

equilibria are never optimal. 

Recently, De Haan et al (2011) have studied how subjects in a laboratory experiment use 

cheap talk and money burning in the uniform-quadratic case for various degrees of preference 

misalignment.  It is unlikely that any lab experiment will be able to mimic the precise 

alternating pattern of the presence and absence of money burning as a function of the 

misalignment parameter that we have shown to be the best from the Sender’s perspective.  

They do find, however, that Senders have a strong preference for cheap talk, and that only 

when interests start to grow more misaligned do Senders turn to money burning.  They also 

find, again in line with our theoretical observations, that Senders do not burn money to 

support intervals of full separation. 

The rest of the paper is organized as follows.  Section 2 sets up the original signaling 

model and derives all its WPBE.  Section 3 derives the Sender’s optimal equilibrium.  Section 

4 generalizes some of the results to general types’ distributions and Senders’ utility functions, 

Section 5 concludes, and Appendix contains all the proofs. 

2. Signaling Game 

In the main part of the analysis, we use a uniform-quadratic version of the signaling game 

from Austen-Smith and Banks (2000).  The main reason to start the analysis in this way is the 

fact that this version of the pure cheap talk game has been used extensively in applied work 

on communication.  It is therefore particularly important to understand how this version 

behaves when one adds money burning.  Section 4 generalizes some of the results to general 

types’ distributions and Senders’ utility functions. 

There are two players, a Sender S and a Receiver R.  The type t of the Sender is his 

private information and is uniformly distributed over the type space  .  Having observed 

 the Sender sends the Receiver a costless message 

1,0

t Mm  from any continuum space M, and 
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publicly burns an amount of money .  Let 0b    M1,0:  be the pure signaling 

strategy of S,     tbtm ,  , and let set  ,sT  be the pre-image of  under s  : it is a set of 

types that, by following the strategy  t , send signal    Mbms , : 

      t sts   ,01s  :1,T . 

Having observed signal  bms  , , the Receiver forms his posterior beliefs about the 

type of the Sender, which we denote by the CDF    ztszG  Pr .  Then, the Receiver takes 

an action .  Let a M:  be his pure strategy,  s  t  s a .  By   we refer 

to the action induced by type t . 

As is usual in cheap talk signaling games, the model is characterized by an enormous 

multiplicity of equilibria.  That is why we consider classes of WPBE such that all equilibria 

which generate the same induced action function     sta   belong to the same class.  We 

refer to the whole class of these equilibria as to equilibrium. 

Preferences of the Sender and the Receiver are given by the following utility functions 

 and  respectively: SU RU

     ax  2 bt bmtaU S ,,,

  

staU S ,, , 

and 

   2aR ,,, bmtaUs R ,, taU  t , 

where  is the parameter indicating the extent to which the players’ preferences over 

-pairs differ.  Players’ ex-ante expected utilities from a strategy profile 

0x

 ta,    ,  are given 

by: 

              tbE2tattV S ,,  xtEtUE S ,

   

, (1) 

        2R ,,, tttV  R tUE  at E . (2) 
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The definition of a weak perfect Bayesian equilibrium (WPBE)      stGst ,,  is 

standard and requires (i)  t  to be optimal given  s ,  s  to be optimal given  stG , and 

for  where  (on equilibrium path) s   0Pr s  stG  to be consistent with  t . 

Austen-Smith and Banks (2000) show that all equilibria of the model are essentially 

partition equilibria where the type space is a disjoint union of the set of pooling types P  with 

the set of separating types , i.e.,  S   PS1,0 , PS .  The set  consists of all types 

that send individual messages, which we assume to be 

S

  tm* “my type is t”, 

burn distinct amounts of money  tbS , and elicit distinct actions.  To the contrary, the set  is 

the union of mutually disjoint pooling intervals.  By neglecting marginal types, which 

measure is zero, we index the pooling intervals by a subscript 

P

Ii , where the size of the 

index set  is at most countable infinity, and write them as I  iB, ,iA  .  We denote the 

set of such pooling intervals by 

ii BA 

  IA  iBA ii , .  For any pooling interval   ABA, , all 

types t  send identical messages, which we assume to be A, B

  BAm ,* “my type is an element of  BA, ”, 

burn identical amounts of money , and elicit identical actions.  Since  uniquely 

determines the sets  and  by 

P
ib A

P S    A
P




ii B ii BA
,

, A
 and   PS \1,0 , we also refer to  as 

to equilibrium partition. 

A

In order to deal with strategies that have infinitely many pooling intervals we consider 

them as a limit of a strategy with finite number N  of intervals when N  unboundedly 

increases.  For finite N , any partition A  can be written as follows: 

  NiBA ii ,,1, A , 10 110   Niii AABAB , Ni ,,1 , (3) 
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where types  pool together and types  ii BAt ,   1,  ii ABt  separate.  If 0N  then 

, , and , i.e., all types separate.  We use  A 1 S1A  1,0   NΠ  to denote the set of all 

partitions  with up to  intervals.  Finally, we denote the amount of money burned by 

pooling types  by , and by separating types 

A N

tb ii BAt ,   P
ib  1, iAiBt  by    tbt Sb . 

According to Austen-Smith and Banks (2000) in any WPBE of the signaling game, the 

Sender partitions the type-space according to a finite partition  NΠΑ  or to a limit thereof 

when  increases unboundedly.  It turns out that the reverse is also true, i.e., for any partition 

 there exists a corresponding WPBE.  In order to characterize all such equilibria, 

we define a function : 

N

NΠ Α

Pc

      cABxABcBAcP  4/,, 2 . (4) 

The following proposition provides the equilibrium characterization result. 

Proposition 1.  For any partition  NΠΑ , there exist a money burning parameter c  and an 

off equilibrium path action  1,0  such that the tuple OFF OFFc ,  defines a (class of) 

WPBE   of the game where: 

,Α

a) For any Ni ,,1 , a type   ii BAt ,  burns   0,,  cBAcb ii
PP

i  and sends message 

 ii BA .  Having observed the signal m ,*   P
iii bBAms ,,* , the Receiver sets 

 2/i  s  i BA .  Type t Sender gets utility   cxtxtu  22  i . i AttB 

b) For any N , a type i ,,1  1,  ii ABt  burns   02  cxttbS  and sends messages 

 tm* .  Having observed the signal     tbt S, , the Receiver sets   ts ms  *  .  Type t 

Sender gets utility  .  t  cxtx  22u

c) Having observed any off equilibrium path signal OFFs , the Receiver sets   OFFOFFs   . 

d) Players get ex-ante expected utilities: 
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   



N

i
ii ABxxcV

1

32S

6

1
 and    

N

i
ii ABV 3R

12

1 

Α

  0,,  cBAcb ii
PP

i

  02  cxttbS

 (5) 

e) Every WPBE of the signaling game allows for such a representation. 

Parameter  in a WPBE is an additive constant to the amounts of money that all types burn.  

For a given partition , its value is not necessarily unique.  On the one hand, it cannot be too 

small as types cannot burn negative amounts, i.e.,  and 

.  This defines the lower bound 

c

  Α

0

c  as the lowest value of  for which all 

 and , and at least one type burns no money.  On the other hand,  cannot be 

too large either as otherwise no off equilibrium path beliefs support this WPBE.  This defines 

the upper bound 

c

c0P
ib   tSb

 Αc  as the highest value of  for which this WPBE still exists.  The 

following example demonstrates the general structure of an equilibrium and its multiplicity. 

c

Example 1.  Suppose 15.0x  and consider partition     1,3.0,2.0,0Α .  One can check 

that for any  ,  ccc  0,02.0  and off equilibrium path actions OFF [ cx  0225.0,0 ],  

OFFc ,  defines a WPBE such that types ,Α  2.0,0t  pool, types  3.0,2.0  separate, 

and types  1,3.0  pool. 

t

t

In Figure 1, we have drawn the equilibrium money burning function  (dotted bold 

line) and the Sender’s utility (drawn bold line), in case of 

 tb

02.0 cc .  Types  2.0,0t  

burn no money, types  burn  3.0,2.0t    02.03.0  ttbS , and types  burn 

.  This is the lowest value of the parameter c  for which WPBE exists: for 

 1,3.0t

  0525.03 tbP cc   

types  would need to burn a negative amount of money, which is not feasible.  This 

equilibrium is unique up to off equilibrium path actions: any  supports this 

WPBE. 

 2.0,0t 

 1.0, 0OFF
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Figure 1 also depicts a second equilibrium money burning function and concomitant 

Sender’s utility for 0 cc  (thin lines).  In this case, types  2.0,0t  burn , 

types  burn , and types 

  02.01 tbP

 3.0,2.0t    ttbS 3.0  1,3.0t  burn   .03 tbP

0

0725.  The only off 

equilibrium path action that supports this equilibrium is .  The value OFF 0 cc  is the 

highest value of the parameter c  for which WPBE exists: for cc   no off equilibrium path 

action can support this strategy profile. 

Ex-ante equilibrium utilities (5) represent players’ preferences over the set of all WPBE.  

In particular, for a given partition  NΠΑ , the Sender prefers an equilibrium with a lower 

value of c  whereas the Receiver is indifferent.  Hence, WPBE   OFFc ,, ΑΑ  Pareto 

dominates any other WPBE ,,cΑ  with  Αcc  . 

3. Sender’s Optimal Equilibrium 

We denote Sender’s optimal equilibrium by S .  According to Proposition 1, if 

OFFSSS c ,,Α  exists it is either a solution to the following optimization problem: 

 
 






1

0

32S

, 6

1
max

N

i
ii

c
ABxxcV

Α
 

   tbtu  ,

t

Pool Pool Separate 

OFFc ,,Α

OFFc ,,Α

 

Figure 1.  Two equilibrium outcomes for    1,3.0,2.0,0Α 15.0x and . 

 10



subject to 

 
     

  












 02

04/,,

1

2

iii

iiiiii
P

BAcxB

cABxABcBAc

NΠΑ

 

for finite , or it is the limit thereof when the number of pooling intervals  unboundedly 

increases.  The first inequality 

N N

  0,, cBAc ii
P  requires that the pooling types  burn 

non-negative amounts of money.  The second inequality requires that if there is a positive 

measure of the separating types 

 ii BA , t

 1,  ii ABt  so that   01  ii BA , each of them burns non-

negative amount   2  xttbS 0c , which can only be binding when . iBt 

It is easy to note the trade-off of the Sender.  On the one hand, he benefits from having 

fewer and longer pooling intervals in  thereby increasing the sum in the objective.  On the 

other hand, this requires a larger value of c  to maintain the inequality  which 

is costly as it directly decrease the value of . 

Α

  0,, cBAc ii
P

SV

We prove the existence and derive S  in several steps by showing which WPBE are 

certainly non-optimal for the Sender.  Here is the first restriction. 

Lemma 1.  If the measure of types that separate in WPBE   is positive, i.e., if 1 ii AB , 

then   is not optimal. 

According to Lemma 1, it is never in the interest of S to reveal his type perfectly by burning 

money.  The reason is that it is too costly for the marginal types: they are strictly better-off by 

pooling themselves.  Thus, if  does exist it must only contain pooling intervals so that 

 for all i .  Using this result, we rewrite the optimization problem of S as 

follows: 

S

1 ii AB N,,1

 





 

1

0

3
1

2S

, 6

1
max

N

i
ii

c
AAxxcV

Α
  subject to (6) 
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    04/2
11   cAAxAA iiii , and 10 111   Nii AAAA   (7) 

The second restriction is on the number of pooling intervals . N

Lemma 2.  For any 0x  there exists a number   1xN  such that if WPBE   has 

 xN  intervals, then   is not optimal. N 

According to Lemma 2, it is never in the interest of the Sender to have infinitely many 

pooling intervals.  The reason is very similar to that of Lemma 1.  Indeed, in a partition with 

infinitely many intervals, some (in fact, infinitely many) of them must be of an arbitrary small 

length and the same logic applies: it is cheaper for the Sender to pool some of these short 

intervals into a bigger one.  Using this result, we only need to consider finite partitions. 

The next restriction is on the number of the pooling intervals where the Sender burns 

money. 

Lemma 3.  If in WPBE  , the Sender burns money in more than one interval, then   is not 

optimal. 

According to Lemma 3, if the Sender finds money burning attractive he chooses only one 

pooling interval where he burns.  The reason for this result is the convexity of the objective 

function with respect to marginal types .  When money is burned in two or more intervals, 

the number of binding restrictions  in the optimization problem is smaller than the 

number of independent variables .  Therefore, small deviations in at least one of them 

violates neither of the equilibrium conditions.  However, due to the convexity of the objective 

function, the maximum cannot be achieved at an interior point, which implies that one 

additional restriction become binding.  Only when all c , except for possibly one, all  

are fully determined by the value of c , and the maximum only occurs at the corner. 

iA

P
ic

0P
i iA

0

iA
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This result suggests that if  exists, its structure is very similar to the pure cheap talk 

equilibria in Crawford and Sobel (1982).  The next restriction is on the position of the interval 

where S burns money in equilibrium partition. 

S

Lemma 4.  If in WPBE  , the Sender burns money in the interval which is not the second 

interval  32 , AA , then   is not optimal. t

According to Lemma 4, if the Sender burns money in S , she only burns it in the second 

interval.  The reason why burning money in the first interval  2,0 At  is suboptimal is that 

the objective function V  is strictly monotone in  and, hence, there is another equilibrium S
2A

~  that dominates  .  On the other hand, burning money in any interval k , , is 

suboptimal because there is another equilibrium 

2k

~  in which S burns in the previous interval 

 and which also dominates  . 1k

SOne important consequence of Lemma 4 is that   exists.  Indeed, the choice of 

 by means of  1,02 A  (7) uniquely defines a value of  2Ac c  by    0,,0 221  AcAcc PP

 3,,0

, 

and then, since , it defines values of  for 11 NA iN A  Ni 

2A

 by 

.  Therefore, the objective function   0, 2 Ac , 1 A iNiN



 Acc PP
i (6) is continuous in  and 

attains its global maximum at . S

It turns out that the structure of S  is closely related to the structure of a particular 

equilibrium if the Sender can only use cheap talk.  For every  3,2,1N , we define  as Nx

 12

1




NN
xN . (8) 

Without the option to burn money, if the degree of misalignment x  satisfies , 

for every value of  there exists an equilibrium in which the Sender uses  

messages, see Crawford and Sobel (1982).  For every 

 NN xxx ,1

n Nn ,,1 

x , the equilibrium with the highest 
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number of messages, which we denote by , is called the most informative equilibrium, 

and we denote it by 

CTN

CT : 

   N
CT xxN  max xN : . 

Thus, the equilibrium conditions put an upper bound on the number of messages that the 

Sender can use.  The Sender prefers an equilibrium with the largest number of messages for a 

given value of x . 

Intuitively, the introduction of an additional instrument to communicate – money burning 

– can be used to alleviate this bound.  This is particularly cost-effective for those values of x  

for which a slight reduction in x  would already have led to an increase in the number of 

messages in the absence of money burning.  The equilibrium conditions also determine the 

exact positioning of the intervals of CT .  Hence, although it may not be optimal to use 

money burning to increase the number of messages, it can be used to change the lengths of the 

intervals.  This is particularly beneficial for values of x  for which an additional message has 

just emerged, and the lengths of the intervals are unequal.  These intuitions are borne out by 

the next proposition. 

Proposition 2.  For every 4N  there exist 
N

y  and Ny  satisfying 

NNN yyx   11 NN yx  , such that: 

a) If  NN yxx ,  so that 1 N , then N  and 02 Pc , i.e., the 

Sender’s optimal equilibrium strategy has one more interval than the most informative 

cheap talk equilibrium strategy, and money is burned in the second interval. 

N CT NN CTS  1

b) If x ( NN
xy , ] so that N , then NCT   and 02 Pc , i.e., the Sender’s 

optimal equilibrium strategy has the same number of intervals as the most informative 

cheap talk equilibrium strategy, and money is burned in the second interval. 

N CT  NN S

 can be taken to be   10Pr  OFFstS  and 0OFF . c) Off equilibrium path beliefs in 
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   0Pr tb

Pb2

P or position 2 essentially says that the introduction of money burning raises the Sender’s 

expected utility if x  is close to x  and if the most informative cheap talk equilibrium allows 

Figure 2 illustrates how, 

N

for at least three dis ct messages ( 4N ). tin

for different values of x , money burning is present or absent 

rnating pattern.  It shows the ex ante probability 

 (thick line, left scale), which is the length of the second 

from the optimal equilibrium  in an alte

that money is burned 

 S

 0

l on 

 Pr tb

ainterval 23 AA   condition    0t , and the amount of money burned b2  in the second 

interval of ple, at 

b P

 S , and (thin line, right scale).  Note that, for exam 22/14 x , the  y

length of this interval is zero, and increases with fu ctions in rther redu x .  At 039.0
4
 yx , 

ount of monethe Sender burns money for nearly 20% of the possible values of t .  he am y 

2

T

burned tly poPb  is stric sitive at 4yx  , and decreas  fues with rther reductions in x .  This is so 

because equations 2A , 3A   0,2 cA,01  cPc P  and  c,3AAcP ,2cP
2  yield at 4yx  : 

   0Pr tb

Pb2

4x

x

4y
4

y5x 5y
5

y
 

Figure 2.  The amount of money burned, , and the ex ante probability that it is positive, Pb2

   0Pr tb , as functions of x . 
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0
1 2  AxAbP . 

Money burning cannot improve upon the most inform lk e

4 222 

ative cheap ta quilibrium for 

22/14  yx  (see the remark after the proof of the proposition in Appendix).  That is, for 

mon

should be alig

Irrespective of whether the Sender’s strategy space is limited to cheap talk or also 

ey burning to improve the Sender’s utility, the interests between Sender and Receiver 

ned sufficiently well such that unaided cheap talk communication allows for at 

least three messages. 

includes money burning, a decrease in x  eventually gives rise to the emergence of an 

additional interval (m

 the S

new intervals emerge as the first interval at 

essage).  There is, however, an interesting difference in the location of 

the newly emerged additional interval.  If ender only has cheap talk at his disposition, 

0t .  If, in addition, the Sender also has some 

money to burn, new intervals appear as a second interval. 

As an illustration, Figure 3 shows the equilibrium partitions, A  and A  for 042.0CT S x  

in the absence and the presence of money burning as a possible in estrum nt of communication, 

respectively.  Since  44 , yxx , the most informative cheap talk equilibrium    

intervals (with up to three digits of accuracy): 

 

 CT has three

    1,499.0,99165.0,0CTA , 

whereas the optimal equilibrium S  has four i

4.0,165.0,

ntervals: 

        1,504.0,504.0,176.0,176.0,066.0,066.0,0SA . 

 

t

14A01 A 2A 3A 

4A01 A 2A 3A 15 A

t

CTA

SA

CTA SA 042.0

 

Figure 3.  Equilibrium partitions  and  for x . 
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It shows how the additional interval appears at 2A . 

Figure 4 further shows, for 042.0x , ex-post equilibrium utility functions  tu

: the Sender burns 

 of the 

bu ing function Sender in CT  and S , and the money rn  tb

s 

-3105.5   in the second inte S .  In this way, the expected amount of money 

burned   -4
232 100.6  AAbE P  generates a gros utility gain of 

-4102.7 CT .  This type of ilibrium improvement is always possible as long 

as 

2 Pb

 S bEV

rval of A

e

 b

V



qu

 xx

04.0 , shows how money burning is used to raise the Sender’s 

util

1N . 1,N y

Figure 5, drawn for 

ity by leaving the n  interva

x

umber of ls unaffected, but changing their position.  Since 

 44
, xy , the most inform cheap talk equilibrium CTx ative   has four intervals: 

CT

t

   tbtu  ,
 tb

S

 

Figure 4.  Equilibria CT  and S  for 042.0x

 

. 

t
1A

4A1A 2A 3A 15 A

t

CTA

SA

2A 3A
4A 15 A

 

Figure 5.  Equilibrium partitions  and  for . CTA SA 04.0x
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        1,51.0,51.0,18.0,18.0,01.0,1.0,0CTA , 

s the optimal equilibrium Sand so doe  : 

        1,0,512.0,185.0,185.0,035.0,035.0,0SA 512. . 

ex-post equilibrium utility functions  of the Sender 

in  and , and the m unction 

Figure 6 further shows, for 04.0x ,  tu

CT S oney burning f  tb : the Sender burns  in -3102.0 

104.3 CT

2
Pb

V

the second interval of A  this way, the expected amount of money burned 

   -4
232 101.3 AbbE P  generates a gross utility gain of   -4S bEV .  

This type of equilibrium im vement is always possible as long as 

S .  In

pro

   A

x ( NN
xy , ]. 

es, it is not immediately clear how eff n 

raising the Sender’s expected utility.  Figure 7 plots (left scale, thick e) lati

From the previous figur

in ut

ective money burning is i

 lin  the re ve increase 

ility,   CTCTS VVV /  as a function of x.  As one can see, the relative increase in utility is 

small and attains its maximum of 1.26% at 025.0x .  Another way of measuring the 

effectivene burning is by comparing the expected net utility gain with the 

expected costs of money burning.  The thin lin ts the money burning 

effectiveness measured by 

ss of money 

e (right scale) represen

    CTS tbEVV / .  It can be seen that for smaller values of x , 

money burning becomes increasingly effective in the sense that the potential utility gain from 

CT

t
   tbtu  ,  tb

S

 

Figure 6.  Equilibria CT  and S  for 04.0x . 
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money burning is much larger in absolute terms than the expected budget which is necessary 

to achieve this gain. 

4. Generalizations of the Uniform-Quadratic Model 

So far, we have studied in deta uch used in 

applied work, and the results we ob

il the uniform-quadratic model.  This model is m

tained are therefore interesting by themselves.  It is also 

clear that the derivations of the optimal Sender’s equilibrium depend on the analytical form of 

the type distribution and on the Sender’s utility function.  Let us suppose now that the 

Senders’ types are distributed over the type space  1,0  in accordance with a distribution 

function  tF , which has a strictly positive and continuously differentiable density function 

   tFtf   on  1,0   Suppose also that the Sender’s utility function SU  is given by: 

       batWbmtaUaU  ,,,,SS , st,,

0

5
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15

20
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0
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0.02

 

x

CT

CTS

V

VV 
  

CT

CTS

V

VV 

tbE

VV CTS 

  tbE

VV CTS 

 

Figure 7.  Relative utility gain   CTCTS VVV / , and the money burning effectiveness 

    tbEVV CTS / , as functions of x . 
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where, in addition to the assumptions in Crawford and Sobel (1982),3 its third-order partial 

derivatives , and  are continuous functions on  atWtta ,   atWtaa ,  21,0 .4 

Our first result is the condition on  atW ,  and  tF  under which Lemma 1 generalizes, 

and the perfect separation of types is not optimal.  We define a function  as follows:  t

     
 ttW

ttWttW
t

ta

taatta

,2

,,2 
 . 

Proposition 3. Let a WPBE   have an interval of separating types  .  If the 

following condition holds for some 

   Α1, ii AB

 1,  ii ABt : 

F

f

f

f

F

f

f

f








1
, (9) 

then  is strictly suboptimal.  If this condition holds for all   1,0t , only semi-pooling 

equilibria can be optimal. 

Proposition 3 is a variant of Lemma 1 for the generalization of the model.  It can be 

interpreted as follows.  Suppose types  1,  ii AB 

1iA

    Α1iA

t  separate in equilibrium .  Pooling the 

types from the marginal neighborhood of  will require, in general, that all types either 

above or below  will need to burn extra marginal amount of money.  The two inequalities 

of condition 

1iA

(9) guarantee that at least one of those possibilities leads to a marginal increase 

of the Sender’s ex-ante utility.  When condition (9) holds for all types, any equilibrium with 

separating types  is strictly suboptimal. ,iB

Using Proposition 3, we can extend the validity of the results obtained in Section 3 for 

other model specifications.  It is easy to see that   0 t  in the uniform-quadratic model.  By 

                                                                          

  0,
3  These are ataa   0, attaW  and W  on  21,0 . 

4  A generalization of the receiver utility function sta ,,R

 sta ,,R

U  is straightforward and does not change the 

current analysis provided U  satisfies some mild regularity assumptions similar to those of 
Crawford and Sobel (1982). 
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our assumptions on  and  atW ,   tF , condition (9) will be satisfied in some open 

neighborhood of the uniform-quadratic model in  space, i.e., the space of three times 

continuously differentiable functions with the supremum norm 

3C

  


3,,0
sup

n

nff .  

Taking into account that in the proofs of Lemma 2, Lemma 3, Lemma 4, and Proposition 2, 

the conclusions have been made based on strict inequalities, they can be naturally generalized. 

Corollary of Proposition 3.  There exists a 0  such that for all  atW ,  and  tF  

satisfying         t , Lemmas 1-4 hold, the optimal Sender’s 

equilibrium exists, is unique, and is characterized by 

 tFaatW ,,max 2 xt

S

Proposition 2. 

According to this result,  from Proposition 2 qualitatively remains the same for all 

functional forms provided the distribution  tF

a

 is close in the norm to the uniform 

distribution and the utility  is close to the quadratic form.  ,tW

One can observe that at least one of the inequalities of condition (9) holds when  

converges to zero and to one.  Our last result exploits this property. 

t

Proposition 4.  There always exists a  1,0t  such that condition (9) holds, i.e., a perfectly 

separating equilibrium is not optimal for the Sender. 

Proposition 4 implies that the Sender never wants to use money burning to reveal his type 

perfectly, for any distribution of types and loss function. 

5. Discussion 

Above, we have derived the optimal equilibrium from the Sender’s perspective.  It is not hard 

to see that the equilibrium that maximizes the Receiver’s ex-ante expected utility is quite 

different in nature.  Indeed, as the Receiver does not incur the cost of money burning, the 
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Receiver’s optimal equilibrium is characterized by complete separation through money 

burning by the Sender.  An interesting question then becomes what equilibrium signaling 

strategy is best from a social welfare perspective.  We focus again on the uniform-quadratic 

case.  Let   denote the efficient equilibrium, i.e., the equilibrium that maximizes the social 

welfare function V : 

SW

 SW

        
N

i
ii ABxxcVVV 32RSSW

12

1
. 

A comparison with the objective function of the Sender (5) shows that the efficient 

equilibrium  is qualitatively the same as SW S .  All results from Section 3 continue to hold 

qualitatively for this new objective function, although the exact locations of marginal types in 

the efficient equilibrium will be different from that of the optimal Sender’s equilibrium.  

Thus, the practical role of money burning in improving social welfare is very limited as well. 

Crawford and Sobel (1982) have characterized the Sender’s optimal equilibrium if the 

Sender can use cheap talk only.  In Section 3, we have derived the optimal equilibrium when 

he can also use money burning.  We now discuss the Sender’s optimal equilibrium if his only 

means of communication is money burning.  Consider any equilibrium signaling strategy that 

involves cheap talk and possibly money burning, and consider the equilibrium partition it 

induces.  Rather than using various cheap talk messages, the Sender can burn various amounts 

of money.  The equilibrium partition can be approximated arbitrarily closely by making the 

amounts of money burned vanishingly small (but still different one from the other). As a 

result, the loss in expected utility due to the absence of cheap talk can be made arbitrarily 

small.  Consequently, the optimal equilibrium in case of money burning only does not exist; 

but the supremum of the ex-ante expected utility of the Sender in the absence of cheap talk 

equals his ex-ante expected utility in case of the optimal equilibrium characterized in Section 

3. 
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Besides the reasons stated in the Introduction, there is another reason why it is interesting 

to derive the Sender’s equilibrium signaling strategy that maximizes his ex-ante expected 

utility.  In a companion paper (Karamychev and Visser, 2011) we show that an announcement 

by the Sender, before observing his type, that he will play the optimal equilibrium signaling 

strategy is credible.  The notion of credibility that we use is essentially that of Farrell and 

Rabin (1996) – a statement is credible if it is both self-signaling and self-committing.  As the 

Sender is the first to move in the game, he may also have an advantage in announcing which 

equilibrium strategy he intends to play.  There is, however, no reason to believe that being the 

first to move in the game necessarily means that the informed player determines how his 

signals should be interpreted.  For example, even though it is a student who takes costly 

actions and makes cheap talk statements about his abilities, she may be living in a society in 

which potential employers decide how such actions and statements are interpreted. 

6. Conclusion 

In this paper, we study a Sender who can signal his private information by using both cheap 

talk messages and money burning.  Money burning significantly changes the set of possible 

outcomes of the signaling game.  Any partition of the type space can be made an equilibrium 

by properly choosing amounts of money that different types burn.  However, these equilibria 

are not equally likely to occur since the Sender has non-trivial preferences over them.  In this 

paper, we have derived the optimal Sender’s equilibrium, i.e., the equilibrium that the Sender 

prefers the most.  This equilibrium is very similar to the most informative cheap talk 

equilibrium, and may differ from it in two respects.  First, an extra interval may be injected in 

between the first and the second interval, and the second, in the resulting second interval the 

Sender burns money to adjust the lengths of all intervals in the equilibrium partition. 

We have also analyzed some asymptotical properties of this equilibrium when the 

misalignment between preferences of the Sender and Receiver disappears.  In this case, 
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money burning is used in smaller amounts, less often, but with unboundedly increasing 

effectiveness. 
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Appendix 

Analytical routines, long algebra transformations, and numerical computations are omitted 

and available upon request. 

Proof of Proposition 1. 

Let us fix  and a finite partition N  NΠΑ .  First we derive all the necessary conditions 

that a WPBE with partition  has to satisfy.  This gives us the strategy profile Α   , .  Then, 
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we show that it is always possible to satisfy these conditions by choosing parameters c  and 

 properly. OFF

We begin with the Receiver.  Having observed a signal  (on and off equilibrium), R 

believes that 

s

  1,Pr  st T .  Then, his equilibrium strategy must be: 

               ,s,maxarg,,maxarg 2R ttEstatEsttaUEs
aa

TTT  . 

By the definition of  Α (3), all types  ii BAt ,  send messages  in equilibrium, 

burn , and induce the same action 

 ii BAm ,* 

P
ib        2/iB, iii ABAttEta  .  Hence, if type  

sends a signal 

t

 y  as if his type were  ii BAy , , he gets the following pooling utility: 

, for  ii BAy , . (10)           P
iii

P bBAxtytyaUyt  2S 2/,,, u

Similarly, all types  send individual messages  1,  ii ABt   tm* , burn , and induce 

actions 

 tbS

    tttEta  .  Hence, if type t  sends a signal  y  as if his type were 

, he gets the following utility:  1, ii A  By

          ybyxtytyaUyt SS  2S ,,, u . 

In equilibrium, each type  must find it optimal to signal his true type.  Hence, it 

maximizes  with respect to 

 1,  ii ABt 

 ytu , y , and the truth telling condition requires that the 

maximum occurs at ty 

ib

.  This yields the first-order condition  which 

solution is , where  is an unknown constant.  Thus, if type t  sends a signal 

   tbx S  20

 S tb  2 S S
ibxt

 y  with , its separating utility is  iAy , iB

, for  1,  ii ABy . (11)          S
i

S bxyyxtytyaUyt  2,,, 2S u

Combining (10) and (11) we write utility of type t  when its signal is  y  as follows: 

      
  








1

2

2

,,2

,,2/
,

ii
S
i

ii
P
iii

AByifbxyyxt

BAyifbBAxt
ytu


 (12) 
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Each type  maximizes  with respect to  1,0t   ytu , y .  Hence, the equilibrium utility  tu  

can be written as follows: 

 
 

   ttuytutu
y

,,max
1,0




  . 

Thus,  is the upper envelope of  tu  ytu ,  and, therefore, is continuous in  at all intervals’ 

boundaries  and .  This allows us to relate , , , and  in the indifference 

equations  and 

t

iA

i
P A ,

t

u

iBt 

 i
S Au ,

P
ib S

ib iA iB

  ii AA      iBiB ,S
i uB, i

P Bu , which leads to the following 

relation: 

    P
iiiii

S
i

S
i bxABABbb  4/2

1 . 

This implies that all  are identical, and we denote its common value by : .  Using 

this notation and 

S
ib c cbS

i 

(4), the above relation reads as  cBAcb ii
PP

i ,, , and the equilibrium utility 

 can be written as  tu

      
 












1
2

2

,,2

,,2

ii

iiii

ABtifcxtx

BAtifAttBcxtx
tu  

This proves parts (a), (b), (c), and (e) of the proposition, except for the off equilibrium action 

.  The ex-ante expected utility of S and R are as follows: OFF

    


 











 N

i
ii

N

i

A

B

B

A

A

ABxxcdtudtudtudtuV
i

i

i

i
1

32

10

1

0

S

6

111

, 

        








 

N

i
ii

N

i

B

A

ii ABdtBAtdttatV
i

i
1

3

1

21

0

2R

12

1

2

1
. 

This proves part (d) of the proposition. 

In equilibrium, S can only burn non-negative amounts of money.  By taking 4/1c  we 

can ensure that  and .  Then, we start reducing the value of  until either 

 for some i, or  for some i for which 

0P
ib

b

  0tbS

0

c

0P
ib  i

S B 1 ii AB .  This can always be done as 

 is an additive constant in  and c P
ib  tbS .  This defines  Αc : 
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         icxBBAicBAccc iiiii
P   for  02 AND for  0,,:min 1Α . 

For any  Αcc  , some types would have need to burn negative amount of money, which is 

not feasible.  At  Αcc  , there is a type  that burns no money, and for 0t  Αcc   all types 

burn.  By the construction of  Αc , the equilibrium OFFc ,,Α  with  Αcc   and 

 always exists.  Finally, we define 0t
OFF   Αc  as the highest value of c  for which we can 

still find  that support WPBE  1,0OFF  OFFc ,,Α .  By construction,    ΑΑ cc  .  

This completes the proof.  Q.E.D. 

Proof of Lemma 1. 

Let us fix a WPBE   with partition  Α  in which  for some i  so that all types 

 burn b  in equilibrium.  We will show that there is another 

equilibrium 

ii BA 1

 1,  ii ABt   tS 02  cxt

~  (we use the tilde sign ‘~’ to denote all its variables) that generates a 

higher level of utility, i.e., that     SS ~
VV , so that   is non-optimal. 

Let us take an  ii BAx  1,4min,0 , and consider the equilibrium with partition 

     iB ,  iB
~

ΑΑ , which only differs from  Α  in that types   ii BBt ,  pool 

together.  In ,    02  cxBB iib  so that types  and S
iB iB  get utilities 

  cxBxBu ii  22  and     cBxxBu ii   22 . 

In ~ , types   ii BBt ,  burn    cBBctb ii
PS ,,

~  : 

      04/424/2,, 2   xcxBcxBcBBc iiii
P , 

so that the constraint  is not violated in  0,,  cBBc ii
P   ~ .  Types   ii BBt ,  get 

utilities: 

       22
~

2 tBBBBtcxtxtu iiii   . 

This implies that the marginal types  and iB iB  get 
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   iii BucxBxBu   22
~

 and        
iii BucBxxBu 22 ~

, 

i.e., the same utilities as they get in  .  Thus, all equilibrium conditions for ~  are satisfied.  

However, in WPBE ~ , the objective function  ~SV  given by (5) has one extra term, namely 

 that corresponds to an extra pooling interval 6/3  ii BB , , as compared to WPBE  .  

Thus,     6/
~ 3SS  VV   and, therefore,   is not optimal Q.E.D. 

Proof of Lemma 2. 

Let us take any WPBE  , which partition      ,,1, iBA iiΑ  has infinitely 

countable number of intervals (we use the notation  for such a partition because the 

existence of  or  is not guaranteed for every  as the index set I  can be any ordered 

set).  The set of marginal types    has at least one accumulation point, and we take any of 

them and denote by .  It follows that for any 

iB

1iA 1iA

Â

iA

IiiA

0 , there are infinitely many marginal types 

either in its right neighborhood  AA ˆ,ˆ  or left neighborhood  Â,Â  .  We consider the 

first possibility; the other case is treated similarly. 

Let us take an  x4,0   and choose two marginal types  and  such that 
1nA

2nA 21 nn   

and .  In , marginal type  burns Â AAA nn
ˆ

21
 iA  Ai  cxAb i

S 2 .  By continuity of 

, type  gets utility  t Âu

    cxAxAuAu
kik

 



 ˆ2limˆ 2 , 

where the limit is taken over any decreasing subsequence of  
ki

A  that converges to Â .  By 

construction, type  gets the same utility if he perfectly reveals his type, in which case he 

burns 

Â

  0ˆ2ˆ  AxAbS  c .  In , S gets the following utility :   SS VV

       
















 








 2

2

1

1

3
1

3

ˆ

3

ˆ

32S

6

1

ni

ni

ni

ni

ii AA
ii

AA
AA

ii

AA
AA

ii
AA

ii ABABABABxxcV . 
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Let us now consider WPBE ~  such that in the underlying partition  ~Α , all types 

 
2

,ˆ
nAAt  pool together and all other types follow the same strategies as in  .  In ~ , S gets: 

        




   

2
2

33

ˆ
32SS ˆ

6

1~~
nii AA iinAA ii ABAAABxxcVV . 

This implies: 

     

           0ˆˆ
2

1ˆˆ
6

1

ˆ
6

1~

21121212

211
2

333

3
ˆ

33SS








   

AAAAAAAAAAAA

ABABAAVV

nnnnnnnn

AAA iiAAA iin
ninni

 

In ~ , types  
2

,ˆ
nAAt  burn: 

       
             
       0ˆ4ˆ

4

1ˆ

ˆ4ˆ
4

1ˆˆ4ˆ
4

1ˆ2

ˆ
4

1ˆ,,ˆ~

2

2222

222

2







AbxAAAb

AAxAAAbAAxAAcAx

cAAxAAcAActb

S
n

S

nn
S

nn

nnn
PS



 

Thus, all equilibrium conditions for ~  are satisfied, and   is suboptimal due to 

    0
~ SS  VV .  This ends the proof.  Q.E.D. 

Proof of Lemma 3. 

Let us fix a WPBE   in which the Sender burns money in some two intervals and does not 

burn in between them.  We denote the index of the second such interval by , , 

and the number of intervals in between by , 

k Nk ,,2 

n 2,,0  kn  .  In other words, we assume that 

0P
kc ,  and  for 01 

P
nkc 0P

ic    1,,  knki  . 

We will show that there is another equilibrium ~  such that     0
~ SS  VV .  In particular, 

we consider a family of equilibria which have the same value of the parameter , and the 

same marginal types in the set  

c

 ,0 1 nk AA

 

1,1k .  It is easy to see that the choice of  

uniquely defines  for 

kA

iA  1,,  ki kn   through   0,, 1  cAA ii
P ccP

i  as follows: 
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 xcxAxAA iii   1
2

1 22 . 

By induction on i , this recursive equation implies:5 

  jxcAsjAA kkjk  ,2  for nj ,,1 , (13) 

where 

  cxAxcAs  2, 2 . 

Therefore, the lengths of the intervals, which we denote by 

iii AAD  1 , 

can be written as follows: 

     012,21   xjcAsAAD kjkjkjk  for nj ,,1 . 

The constraints   0,, 1  cAAc ii
P  imply that: 

     jkjkjkjkjkjkjk AAcAAxAAD   1
22

1
3

1
3 44  for . (14) nj ,,1

In this notation,  can be written as the following function of : SV kA

  







 








N

ki
ik

n

j
jknk

nk

i
ik DDDDDxxcAVV

1

33

1

33
1

2

1

32SS

6

1ˆ . 

It can be shown that  is convex so that it does not have an interior maximum, and its 

maximum necessarily violates one of the restrictions , , , or 

.  Consequently, in any open neighborhood of , there exists an 

 kAV Sˆ 

01 nkD

kA

0kD

A

0P
kc

01 
P

nkc k

~
 so that the 

corresponding WPBE ~  is such that     0
~ SS  VV , which ends the proof. Q.E.D. 

Proof of Lemma 4. 

It is easy to see that if  so that 1N     1,0A , and , 01 Pc   is not optimal.  Indeed, 

by reducing the value of , we get the same completely pooling WPBE in which less money c
                                                                          

  02, 5  The necessary condition for the induction is that  nxcAs jkA 

nj ,,1 0P
i

   1,,  knki 

.  When it fails,  does not exist 

for some .  Hence, this condition is necessarily satisfied by the assumption that c  for 

. 
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is burned.  In the rest of the proof, we assume that .  The proof consists of two parts.  

First, we show that 

2N

  is not optimal if .  Second, we show that neither is   optimal if 

 for . 

01 Pc

0P
ic

c

 N,

0

N /2



i ,3

1 Pc

0P
ic

 A 1

 

Part 1.  Let  in .  Then, in accordance with  Lemma 3,  for all .  

Constraints  define  and  as functions of  through 

0P
ic  N,,2 i

c iA NA (13): 

   xAA NN  14 , 

    xiN AiA N NAi N  211  1  for  N,i ,2  . (15) 

Then, (14) implies that 

    2
2

2
3

2  2 xx 
2

3
1 14

6

1

6

1
AAxAcDxA

N

i




  


3Di 


2xSV 14ccN  , 

and its derivative 

           
    













 x
N

A
xAA

N
AN

N

21
1

312
483 22

2
2

2

S

 xAN1 AN1

6

1
ANdA

dV
. 

It can be shown that .  Hence, 0/S NdAdV  NASV  strictly increases in  and, therefore, 

 is not optimal.  This ends the proof of part 1. 

NA



Part 2.  Let  for some 01 
P
kc  ,2 1, Nk  in  .  Then, in accordance with Lemma 3, 

 for , which defines  and  for  ,1  c iA  1,0P
ic i k, ,2 i  k  as functions of : 2A

2 , and     221 AiAi
2

2 4/ xAA c 2ix   . 

Next, we formally define  by 2
ˆ

kA  , cAcP ˆ, 21  Akk : 0

  22 1 Ak  2kx

kA





Âk . 

We will show that .  To this end, we observe that the function  is the 

second-degree concave polynomial w.r.t. 

22
ˆ

 kA  BA, ccP ,

B .  In addition, 

      04/12142,, 2
22

2
111   AxAkkkxcxAcAAc kkk

P , 
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since , and also 2k   0,ˆ, 21  cAAc kk
P  by construction.  Therefore, the assumed in part 2 

inequality   0,, 21  cAkk1  AcPP
kc  can only be satisfied for . 22

ˆ
  kk AA

The contribution of intervals  1, kk AA  and  21,  kk AA  into the objective  SV  is 

.  We will show that there is another equilibrium     6/6/ 3
12

3
1   kkkk AAAA ~  which 

generates a higher level of .  In particular, we consider the equilibrium with the same 

marginal types as in  except for 

SV

 1

~
kA .  In ~ , we take 1

~
kA  by   0,,

~
21  cAAc kk

P : 

 xcxAxAA kkk   2
2

21 22
~

. 

The following properties of 1

~
kA  can be shown.  First, that  11 , ~

  kkk AAA  and 

  0,
~

,~
1   cAAcc kk

PP
k  so that ~  is based on a legitimate partition.  Second, the contribution 

of intervals  1

~
,kA kA  and  21,

~
 kk AA  into the objective S~

V  is 

    6/
~

6/
~ 3

1kA2

3

1   kkk AAA .  Hence, 

        
       
        



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 
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so that 0
~ SS VV .  Thus,  is suboptimal, which ends the proof of part 2. Q.E.D. 

Proof of Proposition 2. 

In what follows, we assume  and define 3CTN

 22/1ˆ NxN  , 

so that .  For given  NNN xxx ,ˆ 1  x , x [ ), the most informative cheap talk 

equilibrium  has underlying partition 

CTCT NN
xx ,

1

CT   CT
ii NiAA ,,1, 1  A  with  intervals of 

positive lengths. 

CTN
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Suppose that WPBE   is the Sender’s optimal equilibrium, contains  intervals, and 

its first marginal type is .  Using  for 

N

 1,02 A 01  P
i

P cc Ni ,,3  , we write the parameter 

 and the other marginal types  as follows: c iA

  2
2

22 4

1
xAAAc  , and         xiNAsiNAAi 1121 22  , 

where 

    xAxcxxAs 822 2
22

12
2  . 

The last two necessary condition for   are   223 AAA   and .  It can be 

shown that these two inequalities lead to the following restriction on : 

  0,, 322  cAAcc PP

2A

      2212 1222 AxxNAxxNA NN   . (16) 

Since ,  requires  and, hence, .  Thus, 

optimal equilibrium  might only have  intervals at most, and we construct it as 

follows.  First, we fix any .  Then, we consider any  such that it 

satisfies 

CTN
xx    021  AxxN

S

,1N 

CTNN xx 1

1CT

1 CTNN

 1,02 A

N

1, CTN

(16).  Third, we choose  1,02 A  such that  2AV S  is maximized: 

   

      .
4

1
21214

6

1

6

1

223
2

3
3

23
3

2
2

1

3
1

2
2















 

 




AxAAAxAAAxx

AAxxcAV
N

i
ii

S

 

If it happens at the corner 22 AA   (the other corner 12 A  corresponds to the pooling WPBE 

and never occurs when ), the resulting WPBE is the cheap talk equilibrium with 2CTN N  

interval.  Obviously,  maximizes  across all CTNN SV N .  If, on the other hand, there is an 

interior maximum  222 , AAS A , it implies that    22 VAS  ASSV .  In other words, there is a 

WPBE  that yields a higher utility to the sender than the cheap talk equilibrium with S N  

intervals.  In this case, the derivative of  2ASV , which we denote by , vanishes:  2AG 

 33



       









2

3
23

2
2

2
232323

2

243234
6

1

dA

dA
AAxAAAxAAxAA

dA

dV
G

S

, 

where 

    
s

AxN
A

dA

dA

2

22 2
2

2

3 
 . 

Since x [ ), there can be two cases, CTCT NN
xx ,

1
x [ ) and CTCT NN

xx ,ˆ x [ ), which 

we consider separately. 

CTCT NN
xx ˆ,

1

Part 1.  Let x [ ).  Suppose, first, .  In this case, CTCT NN
xx ,ˆ 41 CTNN x [ ), 

 and, therefore, 

11,ˆ  NN xx

NN xxx  1ˆ 02 A  so that  must satisfy 2A 2A [ 2,0 A ).  It can be shown 

that  for all [ 2AG 0 2A 2,0 A ).  Hence,  2AV S  monotonically increases and has no 

maximum. 

Suppose now that .  In this case, 3 CTNN x [ ) and  must satisfy 

[

NN xx ,ˆ 2A

2A 22 , AA ).  It can be shown that    22 0 AGAG   at Nxx   and  2 A 0G  at Nxx ˆ .  

By continuity, this implies that there exists a  NxNN
xy ,ˆ  such that    22  0 AGAG   for 

all x ( NN
xy , ].  This implies, in turn, that there exists  22 , AA2AS   that is a local maximum 

of , and at which .  Next, it can be shown  2A V S 02 Pc  2A 0c  implies   02 AG  for 

x [ ).  Thus, when Nx,Nx̂  22 , AA2AS  , it is necessarily the case that .  When the 

maximum is at the corner 

 2  0Ac

22A  A , it is the cheap talk most informative equilibrium with 

 intervals with CTNN 

             01111 1
2

2   xxxxNxxNxNxNAc NNNN . 

Finally, suppose that .  In this case, 1 CTNN 1 Nxx .  It can be shown that 

 for all [  02 AG 2A 22 , AA ).  Hence,  2AV S  monotonically decrease and achieves its 

maximum at 2A2A  , the cheap talk equilibrium with  intervals. CTNN 
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Summarizing Part 1, if x ( CTCT NN
xy , ], the maximum is in the interior,  222 , AAAS  , 

the number of intervals is , and CTN N   02 Ac .  If, on the other hand, x [ CTCT
NN

yx ,ˆ ) the 

maximum is at the corner, 22A  A , it is the cheap talk equilibrium with  intervals 

and . 

CTNN

  02 Ac

Part 2.  Let x [ ).  Suppose, first, .  In this case, CTCT NN
xx ˆ,

1
41 CTNN x [ ), 

 and, therefore, 

1ˆ, NN xx

Nxx  02 A  so that  must satisfy 2A 2A [ 2,0 A ).  It can be shown that 

   20 AG0G   at  and Nxx   02AG  at 1ˆ  Nxx .  By continuity, this implies that there 

exists a  ˆ, NNN xxy 1  such that    20 0 GG A  for all x [ NN yx , ).  This implies, in turn, 

that there exists  22 ,0 AA  that is a local maximum of  2ASV , and at which .  

Finally, since 

02 Pc

 22 ,0 AA  ,   0x24 x2 A xN N  implies   02 Ac .  The maximum at the 

corner 22 AA   is not feasible. 

Suppose now that .  In this case, CTNN  Nxx ˆ .  It can be shown that  for all 

[

  02 AG

2A 2,0 A ).  Hence,  monotonically decrease and achieves its maximum at  2AV S
22A A , 

the cheap talk equilibrium with  intervals.  Consequently, optimal equilibrium has 

, and , as is shown in Part 1. 

CTNN 

CTNN   2Ac 0

Summarizing Part 2, if x [
11

,
 CTCT NN

yx ), the maximum is in the interior, 

 222 , AAAS  , the number of intervals is , and 1 CTNN   02 Ac .  If, on the other hand, 

x ( CTCT NN
xy ˆ,

1
) the maximum is at the corner, 22 AA  , it is the cheap talk equilibrium with 

 intervals and . CTNN    02 Ac

Combining the above cases yield the proof of parts (a) and (b) of the proposition, and that 

 in the optimal equilibrium.  In order to prove part (  02 Ac 0OFFc) we set  and note that 
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  02 Ac 0t

 22/Ax    2xtOFF 

 implies that type  prefers sending his equilibrium message and getting utility 

 to sending any off equilibrium message and getting u :  tu 
2

      0
4

1
22 xA2

2  AcA  tut

0t

uOFF . 

All other types , by construction of WPBE, prefer off equilibrium messages even less.  

Hence, off equilibrium path beliefs with the resulting action  support the optimal 

equilibrium of the Sender as Weak Perfect.  This proves part (

0OFF

c) of the proposition. Q.E.D. 

Remark.  Proposition 2 provides the sufficient condition for .  In order to show that it 

is also the necessary condition it is sufficient to show that the function  is quasi-

concave for all feasible values of .  The function 

02 Pc

 2AV S

2A  2AV S  has nice analytical properties, and 

numerical computations show that it is indeed the case.  This suggests that for x [
NN yy , ] 

and for 4yx  , the sufficient condition for burning money, Proposition 2, is also the necessary 

condition, implying that   for all CTS  x [
N

y,Ny ].  We do not pursue the aim to prove 

this claim here. 

Proof of Proposition 3. 

Let  have a separating interval Α    Α1, ii AB .  If a type  1,  ii ABt  signals as if it were 

of type , he gets utility  1,  ii AB y      yby StWytuS  ,, .  Since  is a WPBE,   ytuS ,  

attains its maximum at .  The first-order condition  at  yields t

S
i, .



y  yuS /0 y  t

 S tb  
t

B

a bdyyyW
i

   

Hence, types  get the following utility  in  1,  ii ABt u  : 

        S
i

t

B

a
S bdyyyWttWttWttu

i

  ,,,, . S tb u   
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Let us construct a WPBE ~  which only differs from  by that types 

   111 ,,   iiii ABAAt   pool, i.e.,       11 ,
~~

  ii AA ΑΑ , and type  1iAt  

burns the same amount as in  , i.e.,      





1

~

1 ii AbAb .  Expected type and, hence, 

optimal action  a t for  11 iA , A i  is: 

     






   1

1

1

1

/, 11

i

i

i

i

A

A

A

Aii dFtdFAAttEa


 . 

Types  11 ,   ii AAt   get utilities        PP batWttu  ,,~  where  is the amount of 

money burned in interval 

 Pb

 1 , i AA 1i  in ~ .  Byconstruction, it must be that    uttu P ,~  at 

1 iAt , which determines  Pb : 

         S
i

A

B aiii
P bdyyyWAAWaAWb

i

i

 



 

 1

,,, 111 . 

Therefore, types  11 ,   ii AAt   get utility  ttu P ,~ . 

            S
i

A

B aiii
P bdyyyWAAWaAWatWttu

i

i

 



 

 1

,,,,,~
111 . 

Type 1 iAt  gets utility    111

~
,~


  ii

P
i AAuAu  in ~  whereas it gets  

in  .  We consider the cases 

   111 , 
  ii

S
i AAuAu 

   11

~





  ii AuAu  and    11

~





  ii AuAu  separately. 

a) Let 1  1

~





  ii AuAu .  In this case, when types  11 ,   ii AAt   pool, all types 

1 iAt  have to burn extra amount of money       01

~

1  





ii AuAu   relative to 

what they burn in  . (explanation needed)  Using the properties of the function 



 a , 

i.e.,   10  iA , 5.0 , and a  0a       11 6/0  iAiAfa f , it is a routine to show that 

 0     000    and 

       
  








 









1

1
1

11

2

,
0

i

i
i

iita

Af

Af
A

AAW . 
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This implies that if  at ff / 1 iAt , there is an 0  such that   0  for all 

  ,0 .  The net ex-ante expected utility gain from pooling types  1t 1 ,  ii AA   is: 

       
            iii

S
ii

P
A

A

SP AFAAuAAudFttuttu

tuEtuEg
i

i















1,,,, 1111

~

1

1 


 

It is a routine to show that       0000  ggg , and 

   
  

















f

f

F

f
W

F
g ta 12

1
0 . 

at .  Thus, when 1 iAt

  f

f

F

f

f

f 






1

, 

the Sender strictly prefers WPBE ~  to WPBE  . 

b) Let 1  1

~





  ii AuAu .  In this case, when types  11 ,   ii AAt   pool all types  

must burn less money, which might not be feasible.  However, we may require instead 

that all types 

1 iAt

 1iAt  burn an extra amount of money   0   relative to what they 

burn in  .  In a similar fashion, it can be shown that when 

f

f

F

f

f

f 



, 

the Sender strictly prefers WPBE ~  to WPBE  . 

The only special case left is   fft / .  When this happens, whether    11

~





  ii AuAu  or 

   11 ~





  ii AuAu  is determined by higher-order derivatives.  Nevertheless, one of these 

inequalities will hold and, therefore, conditions  ffFf  Ff  1///  will hold 

due to the assumption . Q.E.D. 0f

 38



Proof of Proposition 4. 

The proof is done by contradiction.  Suppose that condition (9) fails for all .  This 

would imply that  

 1,0t 

  01//  Ffff  for 0t  and that  fFf /0 f /  for 

.  Since 1t ff /  is continuous, there exists a  1,0ˆt  such that  at  

and, therefore, condition 

0/ f f t t̂

(9) must hold at , the desired contradiction. Q.E.D. tt ˆ
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Inequalities which proofs are omitted in the main text. 

1. Proof of Lemma 3. 

Show that  is convex, where  kAV Sˆ
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We compute the first and the second-order derivatives:  
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 (17) 

Evaluating  and  yields: knk dAdA /
22 / knk dAAd 

 
 cAs

xn

dA
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n
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,

2
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,
21  , and  
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,
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Hence, the first bracket in (17) is strictly positive, so that: 
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Finally,  implies 0nkD    xncAs k 12,  , which yields: 
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. 

Hence,  is strictly convex.  kAV Sˆ 

2. Proof of Lemma 4, part 1. 

Show that , where 0/S NdAdV

          
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S
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Using (15), we express  it in terms of : NA 2A

     
 1

2
22

1
2



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
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N
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N

A
AN . 

Then, we express  it in terms of : NdAdV /S
2A

    
 
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
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
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 NNxx
N
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1
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S

. 

Next, we define Â  by   0,,ˆ
2 cAAcP : 

      
  




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







 x
N

A
NxNANA N 2

1

1
11211ˆ 2 . 

Since (4) implies , and   02//  ABxAcP   0,,0 21  cAcc PP  by our assumption, it 

must be that , which is equivalent to: 0ˆ A

    11/12 2  NNANx . 

Hence, 

     
 
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
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N
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N
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and, therefore, .  This ends the proof of part 1. 0/S NdAdV

3. Proof of Lemma 4, part 2. 

Show that  11 ,
~

  kkk AAA  and   0,
~

,~
1   cAAcc kk

PP
k , where 
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 xcxAxAA kkk   2
2

21 22
~

. 

We fix the value of , define 1kA 012   kk AAv , and formally consider  as a function 

of v , i.e., .  Similarly, we consider functions 
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  vvAk 2 Ak 1
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~

 and 

        xcvxAxvAvAvD kkkk   2
2

121 22
~~

. 

First,   kk AA  0
~

1  since   0,, 1  cAAc kk
P .  Then,   1121

ˆ~
  kkkk AAAA  since 

  0,ˆ, 2  cAk1Ac k
P .  Finally,   21 40
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AkxDk  .  The derivatives are 
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For , this implies that 2k   xDk 20
~

1  , and consequently xDk 2
~

1  , 0/
~

1  dvAd k , and 

finally  11 , ~
 kk AAkA .  Hence,   0,

~
,~

1  cAkk Acc PP
k  and ~  is indeed WPBE. 

4. Proof of Proposition 2, definitions of 2A  and 2A . 

Show that  and   223 AAA    0,, 322  cAAcc PP  together imply 222 AAA  . 

We define  by 2

~
A   0,,

~
32 cAAcP .  Since   0/,,  AcBAcP  holds,  

requires 

  0,, 32 cAAcP
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~
AA  .  Hence, we have 
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AAAAA  , 

where         xNAsNAA 1121 ~
22  .  Then, we proceed: 
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and, finally, 
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Using 
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we continue: 
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It is routine to show that the above system can be written as follows: 
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Here we consider 4 cases by assigning different signs to all four multipliers. 

Consider 4 cases: 
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as desired.  Now we will show that the other three cases can never realize. 

Case 2. 
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from which it follows that      12 1222   NN xxNxxN , and, finally, 
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This case can never happen. 
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from which it follows that 
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This case can never happen. 

Case 4. 
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from which it follows that      xxNxxN NN   1222 1 , and, finally, 
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This case can never happen. 

Thus,  and  imply   223 AAA    0,, 322  cAAcc PP
222 AAA  . 

5. Proof of Proposition 2, Part1, inequality   02 A  (done numerically). G

Show that  for all [  02 AG 2A 2,0 A ), and x [ ), where 11,ˆ  NN xx
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6. Proof of Proposition 2, Part 1, inequality    22 0 AGAG  . 
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Show that    22 0 AGAG   at Nxx  . 

At 22 AA  : 
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At 22 AA  : 
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Thus,    22 0 AGAG   at . Nxx 

7. Proof of Proposition 2, Part 1, inequality   02 AG . 

Show that   02 AG  at . Nxx ˆ

At 22 AA  : 
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Thus,   02 AG  at . Nxx ˆ

8. Proof of Proposition 2, Part 1, inequality   02 A  (done numerically). G

Show that  when ,   02 AG   02 Ac x [ ), and NN xx ,ˆ 2A [ 22 , AA ). 

9. Proof of Proposition 2, Part 1, inequality   02 A  (done numerically). G

Show that  for all [  02 AG 2A 22 , AA ) and 1 Nxx . 

10. Proof of Proposition 2, Part 2, inequality    200 AGG  . 
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Show that    200 AGG   at Nxx  .  The proof is exactly the same as the proof of 

   22 0 AGAG   at  above. Nxx 

11. Proof of Proposition 2, Part 2, inequality   02 AG . 

Show that   02 AG  at . 1ˆ  Nxx
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12. Proof of Proposition 2, Part 2, inequality   02 A  (done numerically). G

Show that  for [  02 AG 2A 2,0 A ) and Nxx ˆ . 
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