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General Introduction
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Cystic Fibrosis

Cystic Fibrosis (CF) is one of the most common life-threatening autosomal reces-
sive diseases in the Western World, with a reported incidence rate of approxi-
mately 1 in every 2.000 to 5.000 caucasian newborns in most European countries.
(1-3) The gene mutation that plays an important role in the pathophysiology of 
CF is a mutation in the cystic fibrosis transmembrane conductor regulator (CFTR) 
gene on chromosome 7. Currently, 1890 mutations in this gene are known to be 
associated with CF, from which the F508 deletion is the most prevalent mutation.
(4) The CFTR gene codes for the CFTR protein which is present in the membrane 
of epithelial cells, and functions as an important regulator of the surface fluid in 
the airways.(5-6) Mutations in this gene result in defective chloride secretion and 
excessive sodium reabsorption, which negatively impacts the airway surface fluid 
and impairs the mucociliary clearance. (7) This may form the basis for the chronic 
bacterial airway infection and inflammation characteristic for CF, which results 
in irreversible lung damage.(5) However, the pathophysiology of CF is not com-
pletely understood and the mechanism of acquisition and maintenance of bacte-
rial infection in the CF airway is unclear. In addition, there is a poor correlation 
between genotype and phenotype, especially with the severity of lung disease.(8) 
Thus, knowing which mutation causes CF is of little help in predicting the course 
of the disease. 

Lung disease in CF

Although CF affects multiple organs, it is the severity of lung disease that causes 
most of the disease-related morbidity and mortality. At birth, the lungs of CF pa-
tients appear to be histologically normal.(8) However, CF lung disease starts early. 
Cohort studies have shown the presence of structural abnormalities in the lungs 
of infants with CF, even in the absence of symptoms.(9-12) Frequently occurring 

Figure 1. Computed tomography images of an 8 year-old boy showing the frequently occurring 
structural abnormalities in the lungs of CF patients. Shown are bronchiectasis and airway wall 
thickening (A, white arrows), mucus plugging (A, black arrow), and trapped air (B, dashed area) 
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lung abnormalities in CF are bronchiectasis, airway wall thickening, mucus plug-
ging, trapped air (TA), atelectasis/consolidations, and bulla/cysts (Figure 1).

Monitoring CF lung disease

To diagnose and monitor the progression of structural lung changes and their re-
sponse to treatment, several diagnostic modalities are being used in clinical prac-
tice. These modalities can be categorized into pulmonary function tests (PFTs) to 
measure functional aspects of the lung and imaging techniques to visualize lung 
structure. 

Pulmonary function tests
For CF, the most routinely used PFTs are spirometry and body plethysmography. 
From spirometry, the forced expiratory volume in 1 second (FEV1) is considered 
an important surrogate outcome measure of CF lung disease. PFTs such as spirom-
etry require optimal patient cooperation, and can therefore only be performed in 
cooperative children aged 6 years and older. Alternative PFTs methods have been 
developed to measure lung function in infants and preschool children.(13-14) For 
young children, the most widely used method is the body box. Unfortunately, this 
method is cumbersome, variable, and time-consuming and therefore mostly used 
in a research setting. More recently the lung clearance index (LCI), derived from 
multiple breath washout techniques, has been used. The LCI is reported to be sen-
sitive to detect small airways disease (15), which is thought to be an early marker 
of CF lung disease.(16) However, further validation to determine the clinical rel-
evance of LCI as a diagnostic and monitoring tool for CF-lung disease is needed.
(17) 

Chest imaging
To determine lung structure, various imaging modalities can be used. Traditionally, 
chest radiography was considered the most important imaging modality to diagnose 
and monitor CF-related structural abnormalities. However, chest radiography has a 
low sensitivity to detect early changes and to monitor disease progression.(18-19) 
Currently, chest computed tomography (CT) is the most sensitive imaging modality 
to detect structural changes in the lungs. More recently, chest magnetic resonance 
imaging (MRI) has been suggested as a radiation free alternative for chest CT. The 
sensitivity of MRI to depict large morphological changes has been estimated to be 
comparable to CT.(20) However, its sensitivity to detect early and smaller changes in 
lung structure is considered to be inferior to that of chest CT.(20-22) In this thesis, 
we focused on CT protocols, image analysis of chest CT scans and validation of CT 
derived parameters as outcome measures for CF lung disease.
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CT Protocol

CT is currently the modality of choice when it comes to assessment of structural 
changes in CF. CT has the advantage of being more sensitive for detection and 
monitoring of CF-related structural abnormalities compared to PFTs. (19-20) Fur-
thermore, CT scanning can be performed in infants, using either free breathing or 
controlled ventilation techniques.(23) The disadvantage of CT is that it exposes 
patients to ionizing radiation, which increases a patient’s life long risk of cancer. 
Therefore, CT protocols should aim to limit radiation dose to the absolute mini-
mum needed to acquire images of sufficient quality. Unfortunately, relatively little 
research has been performed on how to acquire all relevant information at the 
lowest radiation dose. Most routine CT protocols for CF include images acquired 
after maximal inhalation (inspiratory images) and images acquired after maximal 
exhalation (expiratory images). Inspiratory images are used to diagnose structur-
al changes such as bronchiectasis. Expiratory images are needed to evaluate TA. 
However, it is unknown whether expiratory scans may suffice for the assessment 
of structural changes as well. When expiratory images would suffice to obtain all 
clinically relevant information, radiation dose would be substantially reduced. In 
addition, the optimal expiratory protocol for detection of TA is unknown. It is 
common practice to use only 3 expiratory slices to assess TA.(9, 11-12, 24-29) 
However, whether this approach is sensitive enough for accurate assessment of TA 
is not clear, as the effect of the number of slices on TA assessment has never been 
systematically studied in CF.  

Image analysis

Further validation of CT requires quantification of the structural abnormalities 
on CT. A method used to date is semi-quantitative scoring, for which several re-
producible methods have been developed.(30) However, a major disadvantage 
of these systems is that it is difficult to understand the clinical relevance of the 
scores. Scores expressed in percentage of total lung volume would be easier to 
understand. In addition, these systems were mainly developed for mild to moder-
ate CF lung disease. A specific scoring system to quantify abnormalities in severe 
advanced lung disease (SALD) is not available. In addition, little is known about 
the spectrum of structural abnormalities in CF patients with SALD. A dedicated 
SALD scoring system is probably more sensitive to detect differences in the dis-
ease spectrum between these patients, and could be used to study the structural 
abnormalities in SALD. 
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Validation 

Due to its extensive validation, FEV1 has long been considered the most clinically 
relevant surrogate outcome parameter to detect and monitor CF lung disease in 
clinical practice and clinical trials. However, due to advances in treatment, life 
expectancy has greatly increased over the years. Currently, the median age of CF 
patients is approaching 38 years.(31) This improved survival is paralleled with a 
reduced annual loss in FEV1. Hence, FEV1 has become a relative insensitive pa-
rameter to monitor disease progression and is therefore less suitable as a primary 
endpoint in clinical trials. Thus, there is a need for validated, sensitive and accu-
rate outcome parameters for CF lung disease. CT has great potential to fulfill these 
requirements. First, chest CT is the gold standard to detect bronchiectasis, the 
most prominent structural change in CF lung disease. Second, CT has been shown 
to be more sensitive than PFT parameters to detect and monitor structural abnor-
malities such as bronchiectasis and airway wall thickening.(32) Third, various CT 
scores have been shown to respond to treatment. (27, 33-38) Fourth, recently CT 
parameters have been found to correlate with the true outcome measure health-
related quality of life. (39-40) However, various important steps in the validation 
process were still missing. In the validation process, it is important to know the 
course of CT abnormalities over time. Bronchiectasis for example, has been shown 
to be irreversible and progressive in CF.(41) In addition, progression of airway wall 
thickening has also been reported.(32) For TA however, little is known about the 
course and reversibility over time. In addition, we aimed to study the correlation 
between chest CT and important clinical outcomes parameters such as respiratory 
tract exacerbation rate (RTE-R) and survival. The association between CT scores 
and RTE-R was only investigated in one small, selected cohort.(24) Whether CT-
related parameters correlate with RTE-R in an unselected CF population was un-
known. In addition, the link between CT and survival has never been investigated. 
Several studies have aimed to find better predictors of survival, but CT parameters 
were never evaluated.(42-47) If there is a link between CT scores and survival, the 
next step would be to investigate whether CT-related parameters can improve cur-
rently used prediction models for survival in CF.

Aim of the study

We executed 5 studies in patients with early and advanced CF lung disease with 
the aim to optimize CT protocols and image analysis, and to further validate CT 
parameters as surrogate endpoints in clinical trials. 
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Optimizing CT protocols:
•	 To investigate whether ultra low dose expiratory CT scans could suffice for 

assessment of CF-related structural lung abnormalities  
•	 To investigate the effect of the number of CT slices on TA assessment in CF 

Image analysis:
•	 To design a new quantitative CT scoring system for evaluation of CT scans of 

CF patients with SALD
•	 To investigate the spectrum of structural abnormalities in SALD patients us-

ing the SALD CT scoring system

Validation:
•	 To study the course and reversibility of TA over time in children with CF
•	 To investigating the predictive value of CT scores for RTE-R  in children with 

CF
•	 To study the correlation between SALD CT scores and survival in CF patients 

with SALD awaiting lung transplantation
•	 To investigate whether SALD CT scores can improve currently used predic-

tion models of survival for CF patients awaiting lung transplantation
•	 To review what is known and what is still missing in the validation process of 

CT as surrogate endpoint in CF clinical trials.
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Outline of this thesis

Chapter 1 contains the introduction to the studies that were performed in this 
thesis.

Chapter 2 describes the results of a study in which low dose inspiratory and ultra 
low dose expiratory CT scores were compared to determine whether expiratory 
CT alone may suffice for monitoring the structural changes in CF lung disease. 

Chapter 3 reports the results of a study investigating the effect of the number of 
expiratory CT slices on the assessment of TA in CF. 

Chapter 4 provides the results of a study aiming to design a new quantitative 
CT scoring system for CF patients with SALD, and to determine the spectrum of 
structural abnormalities in SALD. 

 Chapter 5 reports the results of a study investigating localized changes in TA dis-
tribution over time using automated image analysis software. 

Chapter 6 shows the results of a study investigating the association between CT 
scores and RTE-R in an unselected cohort of pediatric CF patients. 

Chapter 7 shows the results of a study investigating the association between CT 
scores and survival, and the added value of CT to a currently used survival predic-
tion model are shown. 

Chapter 8 provides a review on what is known about the use of CT as surrogate 
endpoint in CF clinical trials and what further research is needed to complete the 
port folio of CT.  

Chapter 9 provides a general discussion on the results of the studies performed 
in this thesis. 
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Abstract

Purpose 	 To assess whether chest computed tomography (CT) scores from 
ultra-low-dose end-expiratory scans alone could suffice for as-
sessment of all cystic fibrosis (CF)-related structural lung abnor-
malities.

Methods 	 In this institutional review board–approved study, 20 patients 
with CF aged 6–20 years (eight males, 12 females) underwent 
low-dose end-inspiratory CT and ultra-low-dose end-expiratory 
CT. Informed consent was obtained. Scans were randomized and 
scored by using the Brody-II CT scoring system to assess bron-
chiectasis, airway wall thickening, mucus plugging, and opacities. 
Scoring was performed by two observers who were blinded to pa-
tient identity and clinical information. Mean scores were used for 
all analyses. Statistical analysis included assessment of intra- and 
interobserver variability, calculation of intraclass correlation co-
efficients (ICCs), and Bland-Altman plots.

Results 	 Median age was 12.6 years (range, 6.3–20.3 years), median forced 
expiratory volume in 1 second was 100% (range, 46%–127%) of 
the predicted value, and median forced vital capacity was 99% 
(range, 61%–123%) of the predicted value. Very good agree-
ment was observed between end-inspiratory and end-expiratory 
CT scores for Brody-II total score (ICC=0.96), bronchiectasis 
(ICC=0.98), airway wall thickening (ICC=0.94), mucus plugging 
(ICC=0.96), and opacities (ICC=0.90). Intra- and interobserver 
agreement were good to very good (ICC range, 0.70–0.98). Bland-
Altman plots showed that differences in scores were independent 
of score magnitude.

Conclusions 	 In this pilot study, CT scores from end-expiratory and end-in-
spiratory CT match closely, suggesting that ultralow- dose end-
expiratory CT alone may be sufficient for monitoring CF-related 
lung disease. This would help reduce radiation dose for a single 
investigation by up to 75%.
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Introduction

In patients with cystic fibrosis (CF), lung disease is the predominant cause of 
morbidity and mortality (1). To enable early intervention and treatment, it is im-
portant to monitor the onset and progression of lung disease at an early stage 
(2) Pulmonary function tests (PFTs), combined with chest radiographs, were long 
considered to be the standard of care for monitoring CF lung disease (3). Recently, 
computed tomography (CT) was shown to be more sensitive for detection of dis-
ease progression than were PFTs (4-7). Furthermore, CT is superior to chest radio-
graphs for depiction of structural abnormalities such as bronchiectasis (8-9). Most 
routine CT protocols for CF include inspiratory and expiratory images made dur-
ing voluntary breath holds. End-inspiratory CT scans are used to monitor struc-
tural changes such as bronchiectasis, peribronchial thickening and consolidations. 
End-expiratory scans are used to evaluate trapped air (4, 10), which is an early and 
important feature in CF lung disease (7, 11-12). 

The major disadvantage of the use of recurrent CT scanning to monitor CF lung 
disease is the repeated exposure of the patient to ionizing radiation. Since life ex-
pectancy for patients with CF is progressively increasing (13),  lifelong exposure 
to ionizing radiation should be limited to the lowest possible dose (14). Current 
strategies for minimizing radiation from CT include low-dose protocols, automat-
ed patient centering in the gantry (15), and reduction of the number of images per 
scan (16-18). These strategies were developed primarily for use with end-inspira-
tory CT. To our knowledge, only one study has focused on dose reduction for end-
expiratory CT (19). Recently, ultra low dose CT protocols were developed, which 
help to further reduce radiation dose. 

At our center, biannual volumetric low-dose end-inspiratory CT and ultra-low-
dose end-expiratory CT have been used since 2006. After assessing these scans 
for a year, it occurred to us that end-expiratory CT images might reveal the same 
structural abnormalities as observed on end-inspiratory CT. This led us to specu-
late that end-expiratory CT alone could suffice for detection of relevant CF-related 
changes. To our knowledge, no researchers have investigated the use of end-expi-
ratory CT for evaluating structural changes other than trapped air. Furthermore, 
whether CT scores from end-inspiratory CT images are comparable to those ob-
tained with end-expiratory CT images has not been studied. If end-expiratory CT 
is sufficient for monitoring CF lung disease, radiation dose could be substantially 
reduced, improving the risk-benefit ratio of the use of CT in patients with CF. 
Therefore, the aim of this pilot study was to assess whether chest CT scores from 
ultra-low-dose end-expiratory CT alone could suffice for assessment of all CF-
related structural lung abnormalities.  
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Methods

Study population
Twenty consecutive subjects with CF who were monitored at a single tertiary CF 
clinic (Erasmus Medical Center Sophia Children’s Hospital) were selected for this 
study. Patients were enrolled if they underwent routine biannual CT scanning and 
PFTs as part of their annual visit between March 2004 and August 2007. In addi-
tion, all patients had to be clinically stable. Children receiving intravenous anti-
biotics for pulmonary exacerbations were considered unstable and thus, were not 
included.  The institutional review board approved the retrospective study proto-
col, and informed consent for retrospective use of anonymous data was obtained 
for all patients. 

CT scanning procedures 
Scans were performed with a 6-section CT scanner (Somaton Emotion; Siemens 
Medical Solutions, Erlangen, Germany) with the patients in supine position. Each 
CT examination consisted of one volumetric end-inspiratory CT and end-expi-
ratory acquisition. All children received similar instructions for voluntary breath 
holds before scanning. For younger children however, more time was scheduled 
to explain the procedures to the child and to practice the breath hold instructions.  
A 0.6-second rotation time was used with a tube voltage of 80 kV (patients<35 
kg) or 110 kV (patients>35 kg). Scanning was performed from lung apex to base, 
including the costophrenic sulci, with a 1.5 pitch and 6x2 mm collimation. Images 
were reconstructed with a 2.5 mm section thickness, 1.2-mm increment and a 
B60s kernel. For optimal image quality with the inspiratory protocol, traditionally 
used for assessment of CF-related structural changes, a modulating tube current 
(CareDose4D; Siemens Medical Solutions) with an effective (i.e. divided by pitch) 
reference tube current-time product of 20 mAs was used. For end-expiratory CT, 
used for trapped air assessment, image quality was considered sufficient when the 
tube current was fixed at 25 mA, with an effective tube current-time product of 
10 mAs. As a result, the radiation dose for end-expiratory CT was lower than for 
end-inspiratory CT. 

Lung volume measurements
CT volume levels for end-inspiratory CT and end-expiratory images were assessed 
by using a morphometric approach (M.L. 3 years of experience) with a precessing 
application (20). First, a 10x10-mm grid was digitally projected over each image. 
Second, the lung area in each section was estimated by counting the grid cells pro-
jected over lung tissue. The percentage filled was recorded for grid cells that were 
partially filled with lung tissue. Percentages were added, and the sum was rounded 
to the nearest whole number. This number was added to the number of completely 
filled cells. Third, the lung area on each section was multiplied by the increment 
to calculate the volume. Right and left lung volumes were added to compute total 
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lung volume. Scan volumes were then compared with body box measurements 
of lung volume. Total lung capacity (TLC), residual volume (RV), and functional 
residual capacity (FRC) were obtained by using a body plethysmograph (Master-
lab; Erich Jaeger, Würzburg, Germany). Inspiratory scan volume was compared 
with TLC, and expiratory scan volume was compared with RV and FRC. All scan 
volumes were expressed as percentages of body box volumes, as these volumes 
were considered to be the maximum a child was able to achieve. Spirometry was 
performed by using a diagnostic system (Erich Jaeger). All reference values were 
obtained according to Zapletal et al(21).

CT evaluation
Scans were scored according to pattern and severity for bronchiectasis, airway 
wall thickening, mucus plugging, opacities, and trapped air by using the Brody-II 
CT scoring system (7). All components except trapped air were scored on both 
inspiratory and expiratory images. Trapped air was excluded because it can only be 
assessed on end-expiratory CT images. Therefore, the maximal possible total score 
(207 points) was reduced by the trapped air score (27 points), which changed the 
upper limit to 180 points. Scores were expressed as percentages of maximal pos-
sible scores on a scale of zero (no disease) to 100 (maximal lung disease). All scans 
were collected and scored in one batch. Identifying information was removed. 
End-inspiratory and end-expiratory CT scans were randomized and indepen-
dently presented to two observers (K.G. and M.L., with 1 and 3 years experience, 
respectively, scoring CT scans from CF patients for study purposes) for scoring. 
Observers were blinded to clinical data. Intraobserver variability was established 
by having observer 2 rescore all CT scans after 1 month. Interobserver variability 
was established by using all CT scans; mean scores were used for analysis.

To quantify the differences in radiation dose between end-inspiratory and end-
expiratory CT, the dose-length product for both scans was obtained from the CT 
scanner console for each patient (22). In addition, mean effective dose (expressed 
in milliSieverts) for both scans was calculated by using a dosimetry calculator (Im-
PACT CT Patient Dosimetry Calculator, version 0.99x; ImPACT Group, London, 
England, http://www.impactscan.org/ctdosimetry.htm) (23) and was multiplied 
by pediatric normalised values (24).  

Statistical analysis
The Wilcoxon signed rank test was used to evaluate the medians of the end-inspi-
ratory and end-expiratory CT scores. Intraclass correlation coefficients (ICC) and 
Bland-Altman plots were used to evaluate agreement between both Brody-II scores 
and to assess the inter- and intraobserver agreement. ICC values of 0.41–0.60 in-
dicated moderate agreement; 0.61–0.80, good agreement; and 0.81 or greater, very 
good agreement. Spearman correlation coefficients (ρ) were used to investigate 
correlations between CT and plethysmographic volume estimates. Software (SPSS, 
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version 14.0 for Windows; SPSS, Chicago, Ill) was used for all analyses. Inferential 
tests were considered to be significant if the P value was less than 0.05. 

Results

Study population
The cohort consisted of eight male patients (median age, 15.7 years; interquar-
tile range, 11.2–18.7 years; range, 7.0–20.3 years) and 12 female patients (median 
age, 12.4 years; interquartile range, 10.8–13.5 years; range, 6.3–17.2 years). Patient 
characteristics are given in Table 1. Spirometry and body plethysmography were 
performed on the same day as CT in 19 children. One child was too young to 
perform pulmonary function tests. For end-inspiratory CT, the effective tube cur-
rent–time product depended on tube voltage and patient size and ranged from 23 
to 34 mAs. When using 80 and 110 kV, mean doselength product for end-inspira-
tory CT was 2.6 and 3.2 times higher, respectively, than that for end-expiratory CT. 
Owing to the differences in scanning protocols, mean effective dose was 0.69 mSv 
for end-inspiratory CT and 0.35 mSv for end-expiratory CT. For a 13-year-old, the 
median age in this cohort, effective dose was 1.2 mSv for end-inspiratory CT and 
0.4 mSv for end-expiratory CT.

Characteristic Datum

Sex*
Male
Female

8
12

Age (y) 12.6 (11.2 – 15.8) [6.3 – 20.3]
Height (m) 1.55 (1.38-1.69) [1.23 – 1.78]
Weight (kg) 43 (31-54) [23 – 66]
Forced expiratory volume in 1 sec† 100 (78-108) [46 – 127]
Forced vital capacity†  99 (80-113) [61 – 123]

Brody-II total score‡ 
Inspiratory scan  
Expiratory scan 

11 (7-24)  [2 – 55]
12 (5-20)  [2 – 52]

Table 1. Baseline characteristics in 20 patients. 

Note – Unless otherwise specified, data are medians, with interquartile ranges in parenthesis and 
ranges in square brackets.
* Data are number of patients.
† Data are percentages of predicted values.
‡ Data are percentages of maximum possible scores.
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Volume level CT
The median lung volume calculated from end-inspiratory CT scans was 3.3 L 
(range, 2–6 L), corresponding to a median of 77% (range, 55%–106%) of the mea-
sured TLC. The median volume calculated from end-expiratory CT scans was 1.8 
L (range, 0.6–3 L), which was a median of 86% (range, 49%–153%) of the mea-
sured FRC and 140% (range, 83%–293%) of the measured RV (Figure 1). Thus, 
end-expiratory CT was obtained at a lung volume closer to FRC than to RV. Strong 
correlations were observed between the volume calculated from endinspiratory 
CT scans and TLC (ρ=0.71; P=0.001) and between the volume calculated from 
end-expiratory CT scans and FRC (ρ=0.92; P=0.001) and RV (ρ=0.92; P=0.001) 
(Figure 1). 

Inspiratory- versus expiratory CT scores
No significant differences were found between end-inspiratory and end-expiratory 
CT scans for Brody-II total (P=0.776) (Figure 2), bronchiectasis (P=0.283), airway 
wall thickening (P=0.600), mucus plugging (P=0.070), and opacities (P=0.565) 

Figure 1. Plots show correlation between lung volumes calculated from CT scans and those 
measured with body box plethysmography. Plot A shows correlation between volume calculated from 
inspiratory CT scan and TLC. Plot B shows correlation between volume from expiratory CT scan and 
FRC. Plot C shows correlation between volume from expiratory CT scan and RV.
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scores. In addition, excellent agreement among all inspiratory and expiratory Bro-
dy-II scores was found (Table 2). Bland-Altman plots for the Brody-II total score 
(Figure 2), and each of the component scores showed that the differences between 
inspiratory and expiratory CT scores were independent of the magnitude of the 
scores. An illustration of matching structural changes on end-inspiratory and end-
expiratory CT images is shown in Figure 3. 

Intra- and interobserver agreement was good or very good for all Brody-II compo-
nents (Table 3), and the corresponding Bland-Altman plots showed that variations 
in scores were independent of the magnitude of the scores.

Figure 2. Two plots illustrating the correlation between the total Brody-II scores from inspiratory 
and expiratory CT scans. The Bland-Altman plot on the left shows that the difference in percentage 
between inspiratory and expiratory total Brody-II scores is independent of the magnitude of the 
scores. The lines in the plot represent the mean of the difference between the inspiratory and 
expiratory scores and the 95% upper and lower limits of agreement respectively. The plot on the right 
shows the correlation between inspiratory and expiratory total Brody-II scores. 

Brody-II scoring system component Intraclass correlation coefficient 95% CI

Brody-II total score
Bronchiectasis score
Airway wall thickening score
Mucus plugging score
Opacities score

0.99
0.96
0.94
0.98
0.91

0.96 – 0.99
0.87 – 0.98
0.86 – 0.98
0.94 – 0.99
0.78 – 0.96

Table 2. Intraclass correlation coefficient with the 95% confidence interval (CI) showing the 
agreement between inspiratory and expiratory Brody-II total and component scores.  
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Intraobserver ICC Interobserver ICC

Brody-II category Inspiratory 
CT

Expiratory 
CT

Inspiratory 
CT

Expiratory 
CT

Brody-II total score
Bronchiectasis score
Airway wall thickening score
Mucus plugging score
Opacities score

0.97
0.98
0.94
0.90
0.91

0.98
0.97
0.97
0.92
0.92

0.90
0.84
0.75
0.89
0.86

0.82
0.76
0.70
0.91
0.84

Table 3. Intra- and interobserver agreement for Brody-II scores from inspiratory and expiratory CT 
scans. 

Figure 3. CT images of two patients show that structural changes can be accurately detected on both 
inspiratory and expiratory images obtained at the same level. Images for patients 1 and 2 showed lung 
volume that was 108% and 106%, respectively, of predicted TLC, while expiratory images showed 
119% and 79%, respectively, of predicted FRC. Black arrows = small consolidations, white arrows = 
bronchiectasis.
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Discussion 

In our study, end-inspiratory and end-expiratory CT scores matched closely, sug-
gesting that end-expiratory CT alone may suffice for assessing CF-related struc-
tural abnormalities, thus allowing a reduction in radiation dose by up to 75%. We 
showed that diseased airways can be adequately identified on end-expiratory CT 
images. However, before we recommend this approach for monitoring patients 
with CF, a number of issues need to be addressed. First, our study was conducted 
in a cohort that did not include children younger than six years. Whether end-
expiratory CT suffices for assessing structural changes in young children should 
be further investigated, ideally by using controlled-volume procedures (10). The 
most common previously reported structural abnormalities in young children are 
trapped air and bronchiectasis. For trapped air, end-expiratory CT is the optimal 
technique. For bronchiectasis, present in one-third of young children with CF, 
detection with volume-controlled end-inspiratory and end-expiratory CT images 
was shown to be substantially different(25). However, these results were found 
in children aged 1.4–3.6 years. Whether these results also apply to children older 
than 3.6 years is unknown and should be investigated.

Second, disease severity in our cohort ranged from no abnormalities to advanced 
disease. Only three patients with end-stage lung disease(26) were included. Clear-
ly, this number is too small  to prove that end-expiratory CT may suffice for end-
stage lung disease in patients with CF. However, we do consider that it likely is 
sufficient because the structural abnormalities differ from those of patients with 
mild CF only in extent(27-28). Furthermore, trapped air (as measured by the RV/
TLC ratio) is probably more extensive in end-stage lung disease, as it has been 
shown to increase with age(29). Clearly, this factor should be further investigated. 

Third, it is unknown whether disease progression can be tracked on endexpira-
tory CT images with equal sensitivity as that that has been shown for endinspira-
tory CT images(5-6). To evaluate this factor, longitudinal end-expiratory CT scans 
need to be analyzed. 

We investigated CT scans obtained with voluntary breath holds, which are  used 
in most centers worldwide. Lung volume on inspiratory CT scans was shown to 
be close to the TLC, but lung volume on expiratory CT scans was clearly above 
the RV. However, we compared supine CT volumes with sitting plethysmographic 
volumes. Since the supine position leads to a reduction in lung volume(30), the 
reported differences between CT and plethysmography may have been smaller 
had similar postures been used. Spirometer-controlled CT scans help to standard-
ize inflation levels and are highly reproducible(31), but involve a substantially 
more complicated procedure. The inspiration level is important, as it influences 
airway dimensions and the mechanical properties of healthy airways(32). At full 
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expiration, airways may be less distended than at inspiration, especially in young 
children(10). Little is known about the effect of airway disease on the mechanical 
properties of these airways. In adults, the diameter of bronchiectatic airways was 
reduced by 40% between voluntary breath-hold end-inspiratory and end-expira-
tory CT images(33). We observed that, on end-expiratory CT images obtained 
during voluntary breath holds, many bronchiectatic airways remained clearly vis-
ible and could be easily recognized as abnormal. This finding suggests that the 
physiologic reduction in airway diameter at expiration is impaired in bronchiec-
tasis, thus allowing its identification on expiratory images. Additional studies will 
have to be performed to examine whether spirometer-controlled end-expiratory 
CT is also sensitive enough to detect bronchiectases. For trapped air, spirometer-
controlled scans would be ideal, as scanning at lung volumes higher than the RV 
has been shown to overestimate the volume of trapped air(12, 18, 34). Whether the 
magnitude of this difference is of any relevance is unclear and should be investi-
gated further.

The reduction in radiation dose when using only end-expiratory CT is substantial. 
Doses of 3 mSv per pediatric chest CT scan are not uncommon(35). In contrast, 
our end-expiratory CT dose was typically 0.4 mSv (110 kV), in agreement with 
reported values(18), which is approximately one-eighth of the annual U.S. back-
ground radiation dose of 3 mSv per person(35). Biannual CTs have been advo-
cated to monitor onset and progression of CF lung disease (36). To minimize the 
lifelong risk of cancer inherent to frequent scanning (37), low-dose inspiratory 
protocols with a modulating-beam current and ultralow-dose expiratory protocols 
with a fixed-beam current were developed. Using only end-expiratory CT further 
reduces lifelong cancer risks related to our protocol to one-fourth of previous es-
timates(37-38), which were considered quite conservative. Therefore, monitoring 
structural CF-related changes by using only end-expiratory CT biannually is likely 
to be valuable and safe. 

The six-section scanner we used is relatively old. For state-of-the-art multidetector 
scanners, the absolute dose values may be different, depending on the protocols 
used. However, we expect the relative dose reduction from using only end-expi-
ratory CT with these modern scanners to be of similar magnitude. Radiation-free 
alternatives, such as chest magnetic resonance imaging, have been suggested, but 
their use for the assessment and follow-up of CF-related structural abnormalities 
needs to be further investigated before routine use can be recommended (39).  

In conclusion, voluntary breath-hold end-inspiratory and end-expiratory CT 
scores matched closely in patients with mild CF, suggesting that end-expiratory 
CT may be sufficient to assess CF-related changes. However, larger studies that 
use volume-controlled CT imaging are needed before end-expiratory CT can be 
recommended as the optimal protocol for monitoring all patients with CF.
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Abstract

Purpose	 To estimate the effect of the number of computed tomography 
(CT) slices on trapped air (TA) assessment in cystic fibrosis (CF) 
using an established and a new quantitative scoring system, and 
to compare CT and pulmonary function test (PFT) estimates of 
TA in a cross-sectional and longitudinal study. 

Methods	 In this institutional review board approved pilot study, twenty 
children aged 6-20 years (12 girls, 8 boys, median age 12.6 years) 
contributed two expiratory CTs (3-slice CT1, volumetric CT2) and 
two PFTs (PFT1, PFT2) over two years after parental informed 
consent. From CT2, 7 sets were composed; set 1 was volumetric, 
sets 2, 3, 4, 5, had a spacing of respectively 2.4, 4.8, 9.6, and 20.4 
mm between slices. Set 6 and 7 contained 5 and 3 slices. Longi-
tudinal follow-up was done with 3 slices. All scans were de-iden-
tified, randomized and TA was scored with the Brody-II system 
(CTTA(brody)) and a new quantitative system (CTTA(quant)). Analysis 
included Wilcoxon’s sign test, Spearman’s correlation (rs), intra-
class correlation coefficients (ICC) and linear mixed models. 

Results	 For CTTA(brody), ICC for set 1 versus sets 2 to 7 was 0.75 to 0.87, 
but mean scores from set 6 and 7 were significantly lower than 
mean scores from set 1 (p=0.01 and p<0.001). For CTTA(quant), the 
number of slices did not affect TA assessment (ICC’s 0.82 to 0.88, 
all p>0.13).CT and PFT estimates were not correlated (rs=-0.19 to 
0.09, p=0.43 to 0.93). No change in TA over time was found for 
CT and PFTs (all p>0.16). 

Conclusions	 The number of slices affected CTTA(brody) estimates, suggesting that 
3-slice protocols underestimate TA assessment in CF using the 
Brody-II system,  CT and PFT estimates of TA showed no correla-
tion, and no significant change over time. 
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Introduction

For patients with cystic fibrosis (CF), morbidity and mortality are mainly deter-
mined by the severity of lung disease. Trapped air (TA) is an early and impor-
tant feature of CF lung disease (1-4), which occurs frequently. Studies showed 
that nearly two thirds of children aged 3 months showed signs of TA, even when 
asymptomatic .(5) In addition, TA forms a substantial component of the abnor-
malities seen in patients with end stage CF lung disease (6).   Furthermore, TA is 
increasingly recognised as an important endpoint for clinical trials (7). TA likely 
reflects peripheral airway pathology (8), and is traditionally determined by pul-
monary function tests (PFTs). End-expiratory chest computed tomography (CT) 
is a more direct method to detect TA (1, 9-11). PFT estimates of TA (PFTTA) have 
been shown to correlate with CT estimates of TA (CTTA), however, CTTA was 
thought to be more sensitive (9, 12-14). In addition, CT has the advantage over 
PFTs that it can assess both TA severity and distribution. To date, CTTA is mainly 
estimated using semi-quantitative scoring systems (15). In these systems, pattern 
and/or severity of TA are assigned scores ranging from 0 to 3. A major disadvan-
tage of this approach is that it is difficult to understand the clinical relevance of 
the scores. CTTA estimates expressed as percentage of total lung volume would 
be easier to understand. An additional advantage of these estimates is that it al-
lows a more straight forward comparison between CTTA and PFTTA. Few studies 
have investigated the longitudinal progression of TA using semi-quantitative CT 
scoring systems or PFTs. These studies show conflicting results. PFT studies have 
observed progression (16), no change (17) or improvement of TA over time (18), 
while CT studies all showed progression of TA (19-20). 

To use CT for monitoring of TA, it is of key importance to minimise the radiation 
dose delivered by CT. Therefore, it is common practice to determine TA using 
only 3 expiratory slices (3, 5, 7, 19-24). However, it is unclear whether this ap-
proach is sensitive enough, since the minimal number of slices to compute CTTA 
accurately has never been systematically studied in CF. A small study in 10 CF 
patients showed that accurate TA estimates could be obtained sampling 20 slices 
out of a volumetric CT (25). Another study in lung transplant recipients showed 
significant differences between CTTA scores from protocols with 10 mm spacing 
between slices and scores derived from 3-slice protocols (26). This suggests that 
3 slices may be insufficient for accurate CTTA assessment. To test this hypothesis 
for CF patients, we performed this pilot study to estimate the effect of the number 
of CT slices on TA assessment in CF using an established and a new quantitative 
scoring system, and to compare CT and PFT estimates of TA in a cross-sectional 
and longitudinal study. 
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Materials and methods 

Patient population
Twenty consecutive CF patients monitored at a single tertiary CF clinic were se-
lected for this retrospective study. All CF patients at this institution undergo a 
routine annual assessment including biannual CT scans and annual PFTs. In this 
study, we included all patients that could contribute two of these routine CT scans 
and PFTs during annual check-up when clinically stable between March 2004 and 
August 2007. Clinical instability at the time of the assessment was the exclusion 
criterion. Eight children on intravenous antibiotics were considered unstable and 
were therefore not included. Institutional review board approval and informed 
consent for the retrospective use of anonymized data was obtained from the par-
ents of all subjects. 

Characteristics of the study cohort (12 girls, 8 boys) are shown in Table 1. For PFT1, 
3 children performed PFTs > 3 months of CT date and were thus excluded from the 
analyses, and 4 children were too young for testing. For PFT2, all children performed 
PFTs within 3 months of CT date, except 1 child who was too young for testing.

CT scans and evaluation
Each child contributed two voluntary breath hold expiratory CTs over two years. 
Scanning was done in supine position from apex to base using a 6-slice scan-
ner (Somaton Emotion, Siemens Medical Solutions, Erlangen, Germany). Two 
scanning protocols were used. Baseline CT (CT1) consisted of 3 slices taken at 
defined anatomical positions (Figure 1), using the following settings: rotation 

Characteristic CT1 CT2 p value

Age (years) 10.6 (6 – 18) 12.6 (8 – 20) *
BMI (kg/m2) 16.2 (14 – 20) 17.3 (14 – 21) 0.002
FVC (% predicted) 97 (60 – 127) 99 (61 – 123) 0.28
FEV1 (% predicted) 97 (41 – 119) 100 (46 – 127) 0.85
FEF75 (% predicted) 58 (8-151) 69 (6-135) 0.74
Brody-II air trapping score (%) 16 (0 – 83) 20 (0 – 59) 0.53
Quantitative scores (%) 3 (0 – 46) 10 (0 – 34) 0.12
RV/TLC ratio (%) 27 (20 – 36) 28 (20 – 37) 0.18
TLCbb-TLChe/TLCbb (%) 9 (4 – 19) 13 (0 – 21) 0.95

Table 1. Baseline characteristics of the study cohort. The p value indicates the significance of 
differences in patient characteristics at the time of CT1 and CT2. Data given are patient numbers (%) 
or median (range). CT scores for CT2 are given for the 3 slice set only (set 7).

* not tested
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time 1.0-sec, tube voltage 110 kV, 
slice thickness 1.0 mm, kernel B70s, 
and a modulating current with a ref-
erence tube current-time product of 
36 mAs. Mean radiation dose (cal-
culated using the impact dosimetry 

calculator (27), multiplied with pediatric normalised values (28)) for this protocol 
was 0.02 mSv. Follow up CT (CT2) was volumetric (ultra low dose) using the fol-
lowing settings: rotation time 0.6-sec, tube voltage 80 or 110 kV (weight < or > 35 
kg), pitch 1.5, 6x2 mm collimation, kernel B60s, and a fixed current of 25 mA, i.e. 
an effective tube current-time product of 10 mAs. Scans were reconstructed with 
a 2.5 mm slice thickness, and 1.2 mm increment. Mean radiation dose for the 20 
scans made with this protocol was 0.4 mSv.

Effect of the number of slices on TA assessment
To estimate the effect of the number of slices on CTTA assessment, 7 sets were com-
posed from CT2. Set 1 contained all slices and was considered the “gold standard”. 
Set 2, 3, 4, and 5, had spacings of respectively 2.4, 4.8, 9.6, and 20.4 mm. These 
sets were generated by deleting respectively 1, 3, 7, 16 slices between the slices 
used for analysis. Set 6 and 7 contained 5 and 3 slices at predefined anatomical 
positions (Figure 1). All scans were scored with the Brody-II system (CTTA(brody)), 
evaluating TA pattern and severity (21). Scores were expressed as percentage of 
the maximal possible score on a 0-100% scale. In addition, we developed a new 
quantitative scoring system to compute TA volume expressed as percentage of to-
tal lung volume (CTTA(quant), Figure 2). First, the lung tissue including regions of 
TA was automatically segmented (29), and total lung volume in milliliters was 
computed. Second, TA volume per slice was assessed using a digital 10x10mm grid 
and manually counting the cells projected over TA (30) (http://mipav.cit.nih.gov/). 
Partially filled cells were counted for the proportion of TA only. TA volume per 
slice was calculated by multiplying the number of grid cells by the grid cell volume 
in milliliters. Third, average CTTA volume was computed by summing TA volumes 
(in milliliter) of each slice and dividing this by the total lung volume. 

Figure 1. Predefined anatomical positions of 
the 5 respectively 3 images from which the 
CT2 subsets 6 and 7 were composed. Line 
1 represents the level between lung apex 
and top of the aortic arch (set 6&7), line 2 
the top of the aortic arch (set 6), line 3 the 
position just below the carina (set 6&7), 
line 4 the level between carina and top of 
the diaphragm (set 6) and line 5 the top of 
the diaphragm (set 6&7). Lines 1, 3 and 5 
also represent the levels of the images of the 
3-slice CT1.
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Scans were de-identified, randomized, and scored by a single observer (ML, 4 
years of experience). This observer re-scored all CTs after 4 months to establish 
intraobserver variability. Mean scores from the first and second scoring session 
were used for analysis. 

CT - PFT comparison and the course of TA over time  
Lung volumes were obtained using a Masterlab Body Plethysmograph (Erich Jae-
ger AG, Würzburg, Germany) using the panting technique (31). Spirometry was 
done with a Jaeger diagnostic system (Erich Jaeger AG, Würzburg, Germany) fol-
lowing ERS guidelines. Reference values were according to Zapletal (32). PFTs 
were obtained within 3 months of CT1 (PFT1TA) and CT2 (PFT2TA), and excluded if 
otherwise. Used were: 1) ratio residual volume to total lung capacity (RV/TLC), 
and 2) the difference between TLC from body plethysmography (TLCbb) and TLC 
from helium dilution (TLChe) expressed as percentage ((TLCbb - TLChe)/TLCbb 
*100%). Cross-sectionally, we only compared PFT2TA  and CT2TA estimates of set 1, 
as these were considered most precise in the assessment of TA. Longitudinally, we 
compared the 3-slice CT1 (CT1TA) with the 3-slice set of CT2 (CT2TA), and PFT1TA 
with PFT2TA.

Statistical analysis
Intraclass correlation coefficients (ICC) were used to investigate agreement of 
CTTA(brody) and CTTA(quant) between sets 1 versus sets 2 to 7, and to assess intraobserv-
er variability. Although no universally applicable standards are available for what 
constitutes poor, fair or good reliability, ICC between 0.4 and 0.6, 0.6 and 0.8 and 
³ 0.80 are generally considered to represent moderate, good and very good agree-

Figure 2. CT slices illustrating the new quantitative scoring system. First, the lung volume is 
automatically segmented (A), and the total lung volume in milliliters is computed. Second, TA 
volume per slice was assessed using a digital 10x10 mm grid and manually counting the number of 
cells projected over TA (B). TA volume per slice was then calculated by multiplying the number of 
TA grid cells by the volume of a grid cell in milliliters. Third, to compute average CTTA volume for 
the complete scan, TA volumes (in milliliter) of each slice were summed and divided by the total 
lung volume of the complete scan.  A full color version of this image can be found on page 216 in the color 
section
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ment, respectively. For CTTA(brody) and CTTA(quant) separately, mixed model Anova 
with the Dunnett method to adjust for multiple comparisons was used to test for 
differences between the assumed “gold standard” set 1 and sets 2 to 7. Wilcoxon 
signed rank test was used to test for differences in patient characteristics at the 
time of CT1 and CT2, and to evaluate the course of PFTTA and CTTA over time. 
Spearman’s correlation coefficient (rs) was used to correlate PFTTA and CTTA. SPSS 
version 15.0 for Windows and SAS version 9.2 was used for analyses. Results are 
displayed as median (range) unless defined otherwise. P < 0.05 was considered 
significant.

Results

Effect of the number of CT slices on TA assessment
The respective mean number of slices for CT2 sets 1 through 7 was 187, 82, 36, 19, 
12, 5, and 3. Median scores per set are shown in Figure 3. Intraobserver variabil-
ity for CTTA(brody), and  CTTA(quant) scores for the sets was good with respective ICC 
values of 0.75 and 0.76 (set 1), 0.74 and 0.64 (set 2), 0.68 and 0.70 (set 3), 0.73 and 
0.74 (set 4), 0.66 and 0.67 (set 5), 0.66 and 0.85 (set 6), and 0.60 and 0.85 (set 7). 
The mixed model Anova showed significant differences between mean CTTA(brody) 
scores from set 1 and mean scores from set 6 and 7 (Table 2).These mean scores 
were respectively 7% and 10% lower than scores from set 1. The ICC showed good 
agreement between set 1 and all other sets (Table 3). For CTTA(quant) scores, no sig-
nificant differences were found between set 1 and the other sets regarding mean 
levels (Table 2). Good agreement was present between set 1 and the other sets for 
this score (Table 3). 

Figure 3. Boxplots showing the distribution over the 7 sets of CT
2 

for the Brody-II scores 
in percentage of maximum score (A) and the quantitative scores in percentage of total 
lung volume (B). Boxes represent the interquartile range, the bars in the boxes display the 
medians. Minimal and maximal values are also shown.
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CT - PFT comparison and the course of TA over time  
Cross-sectional analysis showed no correlation between follow up PFTTA param-
eters RV/TLC and (TLCbb - TLChe)/TLCbb and follow up CTTA(brody) scores (rs=0.09, 
p=0.92 and rs=-0.11, p= 0.93 respectively) and follow up CTTA(quant) scores of set 1 
(rs=0.03, p=0.90 and (rs=-0.19, p=0.43 respectively). RV/TLC was also not corre-
lated with (TLCbb - TLChe)/TLCbb (p=0.34). 

Longitudinal analysis of CTTA (3 slices) and PFTTA did not show a significant 
change over two years: baseline and follow up estimates were not significantly dif-
ferent for CTTA(brody) (p= 0.16), CTTA(quant) (p=0.10), RV/TLC (p=0.63), and (TLCbb 
- TLChe)/TLCbb) (p=0.50, Figure 4). 

Brody-II scoring system

Set 1
mean

2 3 4 5 6 7

34.5 -1.9
(0.92)

-4.5
(0.22)

-4.1
(0.30)

-5.1
(0.13)

-7.2
(0.01)

-9.6
(<0.001)

Quantitative scoring system

Set 1
mean

2 3 4 5 6 7

11.8 -1.4
(0.72)

-0.6
(0.99)

-1.3
(0.79)

1.1
(0.90)

2.6
(0.13)

1.8
(0.46)

Table 2. The mean value for set 1, and the mean differences (adjusted p values) for pairwise 
comparisons of average CT trapped air scores of set 1 versus sets 2-7 for the Brody-II 
system and the quantitative system.

Comparison Brody-II system Quantitative system 

Set 1 vs 2 0.82 0.84 
Set 1 vs 3 0.86 0.82 
Set 1 vs 4 0.87 0.87
Set 1 vs 5 0.80 0.86 
Set 1 vs 6 0.82 0.88 
Set 1 vs 7 0.75 0.87 

Table 3. Intraclass correlation coefficients (ICC) indicating the agreement between trapped 
air scores of the volumetric CT

2
 and the scores of sets 2-7 for the Brody-II system and the 

quantitative scoring system. 
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Figure 4. Charts illustrating the course of trapped air over time for individual patients. Plots A and 
B represent the Brody II (A) and the quantitative (B) trapped air scores over time, plots C and D 
indicate the pulmonary function test (PFT) estimates of trapped air over time. CT scores and PFT 
estimates of trapped air between the baseline and follow up CT were not significantly different.
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Discussion

In this study, we aimed to estimate the effect of the number of CT slices on TA as-
sessment in CF, using quantitative and Brody-II scores. In addition, we compared 
CTTA and PFTTA in a cross-sectional and longitudinal study. For both scoring sys-
tems, good agreement was found between sets 2-7 and the “gold standard” set 1, 
suggesting that there is no effect of the number of slices on the assessment of TA. 
However, there was a statistically significant difference between mean Brody-II 
scores from set 1 and mean scores from sets 6 and 7. This difference was in the 
order of 7% (set 6) and 10% (set 7). We considered the 10% difference to be sub-
stantial. This may imply that currently used 3-slice protocols underestimate TA 
using Brody-II scores. The hypothesis that 3-slice CT scans are not sufficient for 
TA assessment is supported by the results of 2 other studies. Goris and co-workers 
studied the effect of sampling density on TA assessment in CF, using volumetric 
CTs and automated TA scores. They found that the precision of TA measurements 
decreased markedly below a 3.4% sampling density (approximately 6-7 slices) 
(25). Bankier and co-workers studied the effect of reducing the number of CT 
images on TA assessment in lung transplant recipients using a 5-point scoring 
system. They found significant differences in scores from CTs with 10 mm spacing 
and simulated protocols with 20 mm spacing, and respectively 3, 2 and 1-slices 
(26). In contrast with these results is the finding that CTTA(quant) scores from set 1 
and scores from sets 6 and 7 were not significantly different. Thus, the quantitative 
scoring system appears to be less sensitive to the effect of limited slice protocols. 
This suggests that the effect of the number of slices depends on the type of scoring 
system used. This needs to be further investigated. 

Assessing the effect of the number of slices on TA assessment is not only impor-
tant to minimize radiation, it also provides relevant information for clinical stud-
ies. In pilot studies in CF and asthma, CTTA has been used as an endpoint (33-34). 
Our findings can be used for protocol design, and sample size estimation.  

In this study, we used two scoring systems to quantify TA on CT. Our newly de-
veloped quantitative system has several advantages over the Brody system. First, 
CTTA(quant) is derived from automated lung volume estimates combined with simply 
counting grid cells, while CTTA(brody) requires recognition of TA patterns. Second, 
CTTA(quant) is a volume estimate, and clinically easier to understand than semi-quan-
titative CTTA(brody) scores. A disadvantage however, is its time consuming nature. 
Quantitative scoring for set 5 required 20 minutes, while Brody scoring required 
5-10 minutes. However, the quantitative approach may be automated, reducing 
analysis time. Such systems have been developed (25), but, to our knowledge, are 
not yet commercially available.
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In this study, CTTA and PFTTA were not significantly correlated. This is in contrast 
with other studies that did show a correlation between CTTA scores and RV/TLC 
(9, 12). These differences could be due to differences in CT analysis (automated 
analysis systems versus our manual scoring systems), CT protocol (6 slices versus 
our volumetric protocol), or breath hold technique (spirometer-triggered versus 
our voluntary breath hold CT). However, we consider it more likely that PFTs may 
not estimate TA as precise as CT. PFTTA is derived from body plethysmography, a 
measurement with relatively high variability (35). First, plethysmography tends to 
overestimate TLC, as it includes gas in nose, mouth, oesophagus and abdomen. 
Second, the variability between repeated measurements is high, with reported 95% 
limits of agreement (expressed as percentage of the mean of 2 measurements) of 
8% for TLC and 40% for RV in healthy subjects (36). This variability increases with 
more severe airflow obstruction (35). Third, plethysmography has a number of 
potential error sources and requires constant conditions for temperature, pressure, 
atmosphere, and humidity. 

CT is likely to be more sensitive to detect TA than PFTs. First, CT studies have 
shown that CTTA could distinguish between CF patients and healthy subjects in 
infants (3) and older children (9, 12). This in contrast to PFT studies in which 
PFTTA could not distinguish between patients and controls in infants (4), while 
showing contrasting results in older children (9, 12). Second, CT can detect TA 
early. Infant CT studies have been described using either free breathing (1-3, 7) or 
controlled-volume techniques (1-3, 7) to acquire the expiratory images needed to 
assess TA. Infant TA estimations using multiple breath washout techniques have 
been described (37-38), but the accuracy of this method and its value as an indi-
cator of peripheral airway pathology needs to be further investigated. Standard 
PFTTA estimates require patient cooperation, which is usually obtained around age 
6 years. Third, CT can assess patterns of TA, allowing sensitive monitoring of its 
distribution over time. Thus, CT is likely to be more sensitive for TA detection 
than plethysmography. Additional studies are needed to investigate this further. 

We observed no progression of CTTA. This is in contrast to other CT studies that 
did show progression of TA over time (19-20). This could be due to differences in 
age of the study subjects, or the scoring method used. Alternatively, this finding 
could be due to the small sample size in our cohort. However, we consider it likely 
that 3-slice protocols, which are commonly used for patient care and clinical stud-
ies (3, 5, 7, 19-24), may not be sensitive enough to detect progression. The sensi-
tivity to detect changes in TA over time can be improved by increasing the number 
of slices and by optimizing volume control during scanning. 

Limitations of this pilot study are the small sample size, and the lack of volume 
control during CT scanning. This may have reduced the sensitivity to detect pro-
gression. Inspiration level is important, as CT scans near functional residual ca-
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pacity may overestimate TA relative to scans near RV (12). Volume-controlled 
scans could address this problem. 

In conclusion, this pilot study suggests that expiratory 3-slice protocols underesti-
mate TA in CF using the Brody-II system. PFTTA and CTTA showed no correlation. 
CT can assess both TA pattern and severity, and is likely to be more sensitive for 
early TA detection and follow up than PFTs. Additional studies are needed to in-
vestigate this further. 
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Abstract

Rationale 	 In cystic fibrosis (CF), lung disease is the predominant cause of 
morbidity and mortality. Little is known about the spectrum of 
structural abnormalities on computed tomography (CT) scans 
from CF patients with severe advanced lung disease (SALD).  No 
specific CT scoring system for SALD is available.

Objectives 	 To design a quantitative CT scoring system for SALD, to deter-
mine the spectrum of structural abnormalities in patients with 
SALD, and to correlate the SALD system with an existing scoring 
system for mild CF lung disease and pulmonary function tests 
(PFTs). 

Methods 	 57 patients with CF contributed one CT made during screening 
for lung transplantation. For the SALD system, lung tissue was 
divided into four components: infection/inflammation (includ-
ing bronchiectasis, airway wall thickening, mucus and consoli-
dations) air trapping/hypoperfusion, bulla/cysts, and normal/
hyperperfused tissue. The volume proportion of the components 
was estimated on a 0-100% scale; mean volumes for the whole 
lung were computed. Scores were correlated with Brody-II scores 
and PFTs. 

Results 	 The SALD system identified a wide spectrum of structural ab-
normalities ranging from predominantly infection/inflammation 
to predominantly air trapping/hypoperfusion. SALD infection/
inflammation scores correlated with Brody-II scores (rs 0.36 to 
0.64) and SALD normal/hyperperfusion scores correlated with 
FEV1 (rs = 0.37). Reproducibility for both systems was good.

Conclusions 	 A CT scoring system was developed to characterise the structural 
abnormalities in patients with SALD. A wide spectrum was ob-
served in SALD, ranging from predominantly air trapping to pre-
dominantly infection/inflammation-related changes. This spec-
trum may have clinical implications for patients with SALD. 
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Introduction

Since the first description of cystic fibrosis (CF) in 1938, patients’ life expectancy 
has greatly improved. Thanks to better treatment that curbs progression of pulmo-
nary disease (1, 2), life expectancy is now around 40 years (3), and over 40% of CF 
patients are adults (4). Nevertheless, most patients still develop Severe Advanced 
Lung Disease (SALD), the predominant cause of mortality in CF. 

Little is known about the structural abnormalities in SALD, as few pathology stud-
ies are available. These studies used lung specimens from transplant and/or au-
topsy procedures to describe the structural changes in SALD (5-7). To the best 
of our knowledge, no systematic studies have investigated SALD in vivo. Routine 
chest computed tomography (CT) scans from CF patients made for screening for 
lung transplantation may be used for this purpose. Knowledge on the structural 
changes in SALD is important, as it may indicate which structural abnormalities 
in CF lung disease can lead to SALD and hence, have to be monitored and treated 
in patients with early disease to prevent progression to SALD. Furthermore, it 
may give more insight in clinical differences and outcomes in patients with SALD. 
When SALD has established, lung transplantation is often the only treatment op-
tion left. To date, it has been a major challenge to determine which SALD patients 
have the highest risk of dying, and are thus most in need of a lung transplant.  
This is reflected in reported mortality estimates for patients awaiting transplanta-
tion, which range from 15% to 40% (8-10). Currently used prediction models for 
waiting list survival in these patients include clinical parameters, but no infor-
mation on lung structure. CT may add important information to these predic-
tion models, as it was proven to be more sensitive to detect and monitor CF lung 
disease than pulmonary function tests (PFTs) (1, 11-13). We speculate that the 
patient’s clinical outcome may be impacted by the type of structural lung abnor-
mality observed on CT. Our hypothesis is that, based on our clinical impression, a 
spectrum of abnormalities can be observed in SALD, ranging from predominantly 
infection/inflammation-associated changes such as consolidations and bronchiec-
tases to hypoventilation-associated changes such as air trapping and hypoperfu-
sion. 

To test this hypothesis, a scoring method is needed to quantify the structural ab-
normalities in SALD in a systematic, objective and time-efficient fashion. Current 
scoring systems, such as the Brody-II system, are reproducible (14), but were pri-
marily designed to quantify early and moderately advanced disease (11, 15, 16). 
For the CT scans of patients with SALD, a dedicated SALD scoring system may be 
more sensitive to detect differences in disease spectrum between patients. 

Therefore, we aimed to 1) design a CT scoring system for the CT abnormalities 
of patients with SALD; 2) correlate this new system with the Brody-II system and 
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PFTs, and 3) investigate the spectrum of structural abnormalities on CT scans of 
patients with CF who have SALD.

Methods

Study population 
In this retrospective study, data from patients with a confirmed diagnosis of CF 
and screened for lung transplantation between 2001 and 2005 was collected in 
three transplant centers. Patients were only included when screening data, includ-
ing a chest CT scan, was available. Patient characteristics are defined in the online 
supplement. Screening criteria were based on internationally used recommenda-
tions (8, 17-20), although one center (center 3 in the analysis) used a forced expi-
ratory capacity in 1 second (FEV1) of < 25% for males and FEV1 < 40% for females. 
The review boards of all three participating centers approved the study protocol 
and waived informed consent.

CT scanning procedures and scoring
Lung structure was evaluated with CT scans. Eight CT scanners (characteristics 
in online supplement) were used in this study. CT scans were anonymised before 
evaluation and analysed in random order. A single experienced observer scored all 
scans using the Brody-II scoring system (11) and a newly developed SALD scoring 
system. Reproducibility within and between observers was determined for both 
systems. Within observer agreement was tested by re-scoring a random subset of 
25 scans. For between-observer agreement analysis, an independent experienced 
second observer scored a random subset of 25 scans. Both observers were blinded 
for clinical data and outcome of the patients.

Brody-II scoring system
This system evaluates bronchiectasis, airway wall thickening, mucus plugging 
and opacities on inspiratory images and air trapping on expiratory images (11). 
As expiratory images were lacking in 45/57 patients, the maximal possible total 
Brody-II score (207 points) was reduced by the air trapping score (27 points), thus 
changing the upper limit to 180 points. To enable direct comparison, scores were 
recalculated and expressed as percentages of the maximal possible score on a scale 
of 0 (no disease) to 100 (maximal lung disease).

SALD scoring system
The development of the SALD system is described in the online supplement. In 
brief, the SALD score aims to divide the total lung volume into 4 mutually-ex-
clusive and comprehensive components of lung morphology, each assessed on a 
0-100% scale. Three components indicate abnormalities: 1) infection/inflamma-
tion, which includes bronchiectasis, airway wall thickening, mucus and consoli-
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dations, 2) air trapping/hypoperfusion, and 3) bulla/cysts. The fourth category, 
normal/hyperperfused tissue, reflects parenchyma that is normal or hyperper-
fused due to a redistribution of blood caused by perfusion defects. This tissue is 
still thought to contribute to normal gas exchange. For all CT slices (1 slice per 
10 mm), the observer estimated the percentage of total lung area to be assigned 
to each component. Then, for each component separately,  the volume estimates 
from all slices were summated and the sum was divided by the number of slices to 
obtain mean volume estimates. High scores for the first three categories reflect a 
high volume of structurally changed lung tissue and thus, severe disease. A high 
score for the normal/hyperperfusion component reflects a high volume of rela-
tively normal lung tissue. Thus, in the SALD system, all lung tissue was assigned 
to one or more of the four SALD components, with these four component scores 
adding up to 100%. Therefore, the SALD scoring system consists of only four com-
ponent scores and does not compute a total score.

Statistical analysis
For continuous and categorical variables, the Kruskal-Wallis and Chi-square test 
were used in the comparison of baseline characteristics between the centres. Cor-
relations between SALD and Brody-II score and between CT scores and PFTs 
were investigated using Spearman’s correlation coefficients (rs). Reproducibility 
for both scoring systems was evaluated using intraclass-correlation coefficients 
(ICC) and Bland-Altman plots. Although no universally applicable standards are 
available for what constitutes poor, fair or good reliability (21), we considered ICC 
values between 0.4 and 0.6, 0.6 and 0.8, and 0.80 or greater to represent moderate, 
good and very good agreement. SPSS version 14.0 for Windows was used for all 
statistical analyses. Results are displayed as median (range) unless defined other-
wise. A p value of <0.05 was considered significant.

Results

Study population
Data was collected from 57 consecutive patients. No significant differences in pa-
tient characteristics were observed between the centers, except for some compo-
nents of the Brody-II system (Table 1). SALD component scores for bulla/cysts 
were excluded in further analyses, since this item was only present in 11/57 (19%) 
patients. 
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CT scoring systems
Between and within observer agreement
Between and within observer agreement for both scoring systems was good, with 
most ICC values near or above 0.80 (Table 2). Bland-Altman plots showed that dif-
ferences between the observers were independent of the magnitude of the scores 
in either scoring system (online supplement).

Characteristic Center 1 Center 2 Center 3 Total

N 10 12 35 57
Males 5 (50%) 8 (67%) 21 (60%) 34 (60%)
Age (years) 28.5 (16-38) 32.2 (16-49) 24.4 (17-53) 26.7 (16-53)
BMI (kg/m2) 19.5 (16-26) 20.0 (18-22) 19.0 (15-27) 19.0 (15-27)
Pancreatic insufficiency 8 (80%) 10 (83%) 34 (97%) 52 (91%)
Diabetes Mellitus 5 (50%) 3 (25%) 9 (26%) 17 (30%)

Microbiology

	 P. aeruginosa 10 (100%) 11 (92%) 32 (92%) 53 (93%)
	 B. cepacia Complex 0 2 (17%) 2 (6%) 4 (7%)
FEV1 (% predicted) 24 (19-34) 26 (15-38) 27 (13-45) 26 (13-45)
FVC  (% predicted) 43 (25-70) 42 (29-67) 43 (24-89) 42 (24-89)

Brody-II scores

	 Total score 40 (32-60) 48 (33-59) 34 (17-52) 37 (17-60)
	 Bronchiectasis 44 (29-57) 60 (35-72) 36 (25-60) 41 (25-72)
	 Mucus plugging 31 (25-47) 16 (8-42) 19 (0-42) 25 (0-47)
	 Airway wall thickening 31 (19-63) 54 (26-69) 35 (15-60) 36 (15-69)
	 Opacities 11 (6-26) 15 (7-26) 9 (0-22) 11 (0-26)

SALD scores

	 Infection/inflammation 24 (17-30) 23 (17-41) 23 (9-43) 24 (9-43)
	 Air trapping/ 
 	 hypoperfusion 48 (27-61) 36 (28-68) 43 (24-61) 43 (24-68)

	 Bulla/cysts 0 (0-11) 4.5 (0-39) 0 (0-13) 0 (0-39)

	 Normal/ 
	 hyperperfusion 29 (21-43) 31 (10-46) 31 (20-51) 30 (10-51)

Data are given as patient numbers (%) or as median (range). 
BMI, Body Mass Index; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; 
SALD, severe advanced lung disease

Table 1. Patient characteristics and CT scores for the study cohorts in the three transplant centres.
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SALD spectrum
Although all scans showed the SALD components infection/inflammation, air 
trapping/hypoperfusion and normal/hyperperfusion, there was a striking differ-
ence in the extent in which these abnormalities were present (Figure 1 and E5 on-
line). Thus, a SALD spectrum could be distinguished ranging from predominantly 
infection/inflammation to predominantly air trapping/hypoperfusion (Figure 2). 

Type of scoring system Within observer 
agreement

Between observer 
agreement

Brody-II scoring system

Total score 0.77 0.80
Bronchiectasis 0.79 0.65
Mucus plugging 0.77 0.79
Airway wall thickening 0.56 0.73
Opacities 0.77 0.61

SALD scoring system

Infection/inflammation 0.89 0.77
Air trapping/hypoperfusion 0.88 0.70
Bulla/cyst 0.99 0.98
Normal/hyperperfusion 0.71 0.68

SALD, severe advanced lung disease

Table 2. Between and within observer agreement expressed as intraclass correlation coefficients for 
the Brody-II and SALD scoring system.

Figure 1. Distribution of the 
severe advanced lung disease 
(SALD) component scores. 
CT scans from lung transplant 
screening were scored according 
to the SALD criteria. A SALD 
spectrum was identified in which 
the dark grey bars represent 
the lung volume scored as 
hypoperfused tissue, the white 
bars infection/inflammation; 
the light grey bars normal/
hyperperfused tissue; and the 
black bars bulla or cysts. Patients 
are sorted according to their 
air trapping/hypoperfusion 
component. The figure sorted 
for the infection/inflammation 
component can be found in the 
online supplement.
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Correlation SALD system – Brody-II system 
Positive correlations were found between the SALD infection/inflammation score 
and the total Brody-II score (rs =0.64 p<0.001; Figure 3) as well as with each of the 
Brody-II component scores: bronchiectasis (rs=0.59 p<0.001), airway wall thick-
ening (rs=0.62 p<0.001), mucus plugging (rs=0.50 p<0.001) and opacities (rs=0.36 
p=0.006). No significant correlations were found between the SALD normal/hy-
perperfusion score and the total Brody-II score or any of the component scores.

Correlation CT scores – PFTs
Total Brody-II score correlated, albeit weakly, with forced vital capacity (FVC) 
(rs = - 0.28 p=0.035, Figure 4) but not with forced expiratory volume in 1 second 

Figure 2. Illustration of the severe advanced lung disease (SALD) spectrum. Images show the 
spectrum of SALD-related changes in lung morphology and SALD component scores for each image. 
These range from infection/inflammation-related changes such as bronchiectasis (black arrows) to 
air trapping / hypoperfusion (white arrows). Image A shows predominantly bronchiectasis, image 
B shows a mix of bronchiectasis and air trapping / hypoperfusion, and image C displays minimal 
bronchiectasis but extensive air trapping and hypoperfusion.

Figure 3 The correlation between the severe 
advanced lung disease (SALD) infection/
inflammation score and the total Brody-II 
score. 
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(FEV1). None of the Brody-II component scores correlated with FEV1, and only the 
component score airway wall thickening correlated with FVC (rs = - 0.31 p=0.018).  
None of the SALD components correlated with FVC, and only the normal/hyper-
perfusion score correlated with FEV1 (rs =0.37 p=0.005, Figure 4).

Discussion

To our knowledge, this is the first study in CF that systematically describes the 
structural abnormalities on CT scans from CF patients with SALD screened for 
lung transplantation. The most important finding of this study is the wide disease 
spectrum that was identified in patients with SALD in vivo, using the newly de-
veloped SALD scoring system. At one end of the spectrum, patients had predom-
inantly infection/inflammation-related changes, and at the other end predomi-
nantly air trapping/hypoperfusion. The observed structural abnormalities have 
been described in pathology studies, which revealed the presence of inflamma-
tion, atelectasis, bronchiestasis, fibrosis, cyst formation, airway wall thickening, 
and a substantial loss of cartilage (5-7). In these pathology studies, it was well rec-
ognized that these abnormalities were unevenly distributed throughout the lung. 
However, whether substantial differences in disease spectrum between patients 
could be observed was not studied. 

Infection/inflammation, which included bronchiectasis, was found to be an im-
portant disease component in SALD. The importance of bronchiectasis in CF has 
been well recognized (22-24). Hence, prevention of bronchiectasis is an important 
treatment target in patients with SALD. A striking observation is the finding that 
air trapping is another important disease component in many patients with SALD. 

Figure 4. Correlation between CT scores and lung function parameters. Plot A shows the correlation 
between the total Brody-II score and the forced vital capacity (FVC), while plot B displays the 
correlation between the severe advanced lung disease (SALD) air trapping/hypoperfusion score and 
the forced expiratory volume in 1 second (FEV1).
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In some patients, it was clearly the predominant morphological substrate for their 
severely impaired lung function. Air trapping has been observed early in the dis-
ease process of CF (25, 26). In a small randomized controlled study, it was shown 
that treatment with dornase alpha in patients with mild to moderately severe CF 
lung disease reduced air trapping on CT and improved peripheral airway obstruc-
tion (27). These results suggest that air trapping may be reversible when treated 
early. Clearly, this warrants further investigation. 

Our observation is not only important in terms of prevention of SALD, but can 
also be relevant for the management of patients with SALD. We feel that more 
tailored treatment of the subtypes in SALD at an earlier stage of the disease has 
the potential to reduce mortality and improve the quality of life. It is likely that the 
therapeutic strategy for SALD patients with predominantly bronchiectasis should 
be different from that of patients with predominantly air trapping. Whether air 
trapping in CF patients with SALD is reversible is unknown. To the best of our 
knowledge, no systematic therapeutic studies have been performed in CF patients 
with SALD with the aim to reduce the severity of air trapping. The effect of dor-
nase alpha in CF patients with advanced disease has been studied, air trapping 
however was not included as an endpoint (28). This needs to be further investi-
gated in clinical studies. In addition, we think that the CT information of SALD 
patients may improve patient selection for lung transplantation. Currently used 
selection criteria comprise predicted forced expiratory volume in 1 second (FEV1) 
< 30%, rapid respiratory deterioration with predicted FEV1 > 30%, PaCO2 > 50 
mmHg and/or PaO2 < 55 mmHg on room air, and/or females <18 years of age 
with FEV1 > 30% and rapid deterioration (8, 17-20). Several studies have aimed 
to identify better predictors of survival, but remarkably, CT related parameters 
were never evaluated (8, 17, 18).  It has been suggested that patients with SALD 
and predominantly infection/inflammation-related changes on their CT have a 
poorer prognosis than patients with predominantly air trapping/hypoperfusion 
(29). If so, the SALD score infection/inflammation may be able to contribute to 
survival prediction models independent of lung function-related parameters. A 
large multi-center study is currently ongoing to investigate this further. 

Correlating CT scores with PFT parameters revealed only one significant associa-
tion, i.e. between the SALD air trapping/hypoperfusion score and FEV1. None of 
the Brody component scores correlated significantly with FEV1. A likely explana-
tion is the limited range in FEV1  in this cohort (from 13- to 45%-predicted), and 
/ or the limited sample size. These correlations will be further investigated in our 
large multicenter study. 

In this study, the reproducibility of the SALD scoring system in the evaluation 
of SALD-related structural abnormalities was comparable to that of the Brody-II 
scoring system. However, there are several reasons why we consider the SALD 
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scoring system to be more attractive for further development than the Brody score. 
First, the SALD system is probably easier to automate than the Brody system, as it 
is based on differentiation between areas with high density (infection/inflamma-
tion) and low density (air trapping). This in contrast to the Brody-II system, which 
is based on pattern recognition, and therefore difficult to automate. Automated 
analysis can likely further improve the SALD system’s reproducibility. A challenge 
for the automated approach however, will be the range of CT scanners and scan 
protocols used in transplant centers, which likely affects density parameters. The 
semi-quantitative scoring systems used in this study are less sensitive for technical 
differences than currently available automated systems (30). A short term option 
to improve the precision of the SALD system is to use a digital grid to estimate the 
volume of the components, a method shown feasible for volumes of air trapping 
(31). Second, the SALD system is easier to learn than the Brody-II system. The 
latter requires estimating severity of lesions, has more components, and requires 
classifying abnormalities per lobe. Third, SALD scores are continuous variables 
representing the volume of abnormal lung tissue involved in infection/inflamma-
tion, air trapping, and normal tissue. Hence, it is easy to understand what the 
scores mean. This in contrast to the Brody scores, which are computed of scores 
for severity and extent of an abnormality. This makes it complicated to understand 
what the scores mean for the patient. 

The development of an automated method for the SALD system is important. 
Currently, the most important drawback for the clinical use of the current SALD 
system is its time-consuming nature. The SALD system requires 45-60 minutes to 
score a single CT examination while the Brody-II system requires only 20 min-
utes. An automated approach can make the SALD scoring more time-efficient and 
therefore, more accessible for clinical use. Currently, we would recommend using 
the SALD scoring system solely to evaluate SALD CT scans. It provides insight 
into the predominant features of the abnormalities on the CT scans. This system 
has not yet been validated, however, for patients with mild to moderately advanced 
lung disease. Our next step, therefore, will be to further validate the SALD system 
in a large cohort and to study correlations between SALD scores and clinical out-
come. In this analysis, we may include the observation of bullae/cysts in the air 
trapping/ hypofusion component, since this reflects lung tissue not contributing to 
gas exchange, and which likely shows little inflammatory changes. 

This study has a few limitations. First, we used CTs that were obtained with eight 
different CT scanners and scanning protocols. This may have introduced some bias 
related to differences in resolution and density distribution. However, we consider 
it unlikely that this should have affected observation of the substantial differences 
in disease spectrum present in the patients. Before scoring, images were assessed 
on image resolution and movement artefacts. All were found to be of sufficient 
quality for scoring, with good reproducibility, so we may assume that the use of 
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different scanners was non-differential. In addition, manual semi-quantitative 
scoring systems generally are thought to be less sensitive to differences between 
CTs and protocols (30, 32). Second, the correlations between the components of 
the two scoring systems were limited by the absence of air trapping scores since 
expiratory scans were only available in 12/57 patients (21%). Evidently, expiratory 
images were not routinely included in the screening protocols before 2005. The 
absence of expiratory images likely had more impact on the Brody-II scores than 
on the SALD scores, as air trapping in the Brody system was completely excluded. 
The SALD component air trapping/hypoperfusion most likely included areas that 
would have been classified as air trapping on expiratory images. Third, we can-
not be sure that the morphological features on CT adequately reflect the histol-
ogy of these abnormalities. Several studies have shown correlations between CT 
morphology and histologic findings, although none of them included CF patients 
(33-35). However, a study in idiopathic pulmonary fibrosis patients showed that 
chronic cystic lesions, including bronchiectasis, correlated well with histology. 
This in contrast to ground glass opacities and consolidations on CT, that failed to 
correlate with histologic specimens (33). Additional correlative studies using CT 
scans and histology from CF patients could address this issue.

In summary, we designed a CT scoring system specifically for patients with CF who 
have SALD and tested this retrospectively on 57 CT scans made during screening 
for lung transplantation. The new SALD system is reproducible, and able to iden-
tify a wide spectrum of structural abnormalities in SALD. A striking finding was 
that air trapping/hypoperfusion was an important component of SALD, in addi-
tion to inflammation/infection (including bronchiectasis). Differences in disease 
spectrum may have implications for prognosis and treatment of CF patient with 
SALD. Our next step will be to link the SALD scores to clinical outcome, to deter-
mine the minimal important difference of changes in the component scores 
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Patient characteristics

Diagnosis of CF followed from clinical CF features, positive sweat test, and/or the 
presence of two CF mutations. Age was defined as ‘age at the time of the screening 
CT scan’. Pancreatic exocrine insufficiency was defined as maintenance treatment 
with pancreatic enzyme. Diabetes mellitus was defined by the use of subcutaneous 
insulin by the patient. This was obtained by chart review. A patient was consid-
ered chronically infected with a given micro-organism when it was cultured from 
three or more different sputum samples in the six months preceding screening. 
The following international used guidelines were used to determine the moment 
of screening for patients:
•	 Predicted forced expiratory volume in 1 second (FEV1) < 30%
•	 Rapid respiratory deterioration with predicted FEV1 > 30% 
•	 PaCO2 > 50 mmHg and/or PaO2 < 55 mmHg on room air, and/or
•	 Females under the age of 18 years with FEV1 > 30% and rapid deterioration (1-5).

Computed Tomography (CT) scanning protocols

Lung structure was evaluated using CT scans. In this multi centre study, 8 different 
CT scanners were used during the screening period. 

In center one, three multi slice scanners were used (Sensation 16, Emotion 16 and 
Volume zoom, Siemens AG Medical Solutions, Forchheim, Germany). Scans were 
obtained using a beam current of maximally 390 mA, and dose modulation was 
used in two of the three scanners. The rotation time was 0.5-0.6 seconds, and the 
beam potential 110-120 kV. Scans were obtained from lung apex to base at inter-
vals varying from 1.2-5.0 mm using 1.0-5.0 mm thick slices. 

In center two, one single slice CT scanner (SR7000, Philips Medical Systems, Best, 
the Netherlands) and two multi-slice scanners (Brilliance 16 and the MX8000, 
Philips Medical Systems) were used throughout the study period. Scans were 
obtained using a beam current of 250 mA for the single slice scanner, and dose 
modulation was applied in the multi scanner protocol. The exposure time ranged 
from 0.5-1.0 seconds, and the beam potential was 120 kV for all three scanners. 
Scans were made from lung apex to lung base at 5-10 mm intervals using 1.0-5.0 
mm thick slices. 

In center three, a single slice CT scanner (Hi speed ZXi, GE Medical Systems, 
Milwaukee, WI, USA) was used up to October 2004, and a multislice CT scanner 
after October 2004 (Light Speed 16 Pro, GE Medical Systems). Scans were obtained 
using a beam current of 300-700 mA, a rotation time of 0.5-1.0s, and a beam po-
tential of 140 kV from lung apex to base at 10 mm intervals using 1.25 mm thick 
slices.  
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Since different transplant centers use different scanners and scanning protocols, 
image quality was likely to vary. Therefore, the quality of the CTs was assessed be-
fore scoring. This was done by scrolling through the scan and determining wheth-
er the quality was sufficient for scoring. CT scans with severe movement artefacts 
were excluded from analysis. 

CT scoring

Development of the SALD scoring system
In order to define tissue/morphology categories for use in the SALD scoring sys-
tem, a panel consisting of a pediatric radiologist, a pediatric pulmonologist, and a 
PhD student systematically evaluated a random set of 10 CT scans acquired from 
CF patients during lung transplant screening. They classified the most prevalent 
structural abnormalities on these CT scans into 5 categories: 1) infection/inflam-
mation; 2) air trapping and/or hypoperfused tissue; 3) hyperperfusion; 4) bullae 
or cysts, and 5) normal lung tissue, which formed the basis of the SALD scoring 
system. 

Two independent observers tested this concept categorization on 10 CT’s. This pi-
lot indicated that clear distinction between areas of hyperperfusion areas of normal 
tissue was difficult to make.  As the experts felt that hyperperfusion does not nec-
essarily negatively influence lung function, these categories were combined into a 
single category ‘normal/hyperperfusion’ into which all tissue with functional gas 
exchange would fall. The final SALD scoring system  therefore incorporated 4 cat-
egories — three components indicating abnormalities: 1) infection/inflammation, 
2) air trapping/hypo perfusion, and 3) bulla/cysts;  and one component reflecting 
tissue with a normal contribution to gas exchange: normal/hyperperfused tissue. 
The category infection/inflammation includes area with bronchiectasis, bronchial 

Figure E1. Illustration of the 
SALD category infection/
inflammation. Shown is a 
CT scan of a CF patient with 
SALD. The areas in the right 
lung which would be scored as 
SALD ‘infection/inflammation’ 
are outlined in black and 
include abnormalities such as 
bronchiectasis (white arrow), 
bronchial wall thickening (grey 
arrow) and mucus plugging 
(black arrow).
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wall thickening, atelectasis, ground glass, consolidations, and mucus plugging 
(Figure E1). The definitions for these items are according to Brody et al (6). 

The category air trapping/hypoperfusion (Figure E2) includes areas with a lower 
density than normal lung tissue, which are thought to represent poorly ventilated 
and hypoperfused parenchyma (7-9). 

The category bulla/cysts (Figure E3) represents areas of apparent parenchymal de-
struction thought to have no association with inflammation and no contribution 
to gas exchange. Both bulla and cysts are defined as more or less round, air-filled 
parenchymal spaces with well-defined walls and a diameter of more than 1 cm. 
Neither has an identifiable connection to the bronchial tree. A cyst has a wall 
thickness of more than 1 mm and a bulla of less than 1 mm (10). 

Figure E2. CT slice of a CF 
patient with SALD illustrating 
the SALD categories air 
trapping/hypoperfusion and 
normal/hyperperfusion. Areas 
which are hypodense due to air 
trapping and hypo perfusion 
are circled in black. Normal 
and hyperperfused lung 
parenchyma is circled in white. 

Figure E3. CT image to 
illustrate the SALD category 
cysts/bulla. Shown is a CT scan 
of a CF patient with SALD. The 
arrows indicate the bullae in 
the left lung of this patient.
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The last category covers areas likely to contribute to gas exchange, including nor-
mal and hyperperfused tissue (Figure E2).  Hyperperfusion appears on CT as areas 
with a higher density than normal lung parenchyma, and is considered a second-
ary effect related to areas of hypoperfusion. 

After definition of the categories, we decided on a scoring system based on relative 
volume, and tested 2 methods to estimate the relative volume, each on 25 scans us-
ing 2 independent observers with respectively 1 and 4 years experience in scoring 
chest CT scans. For both methods the left and right lung were scored separately, 
and for both methods, all lung tissue was completely and exclusively divided over 
the SALD categories, so that the component scores added up to 100% by defini-
tion.

In the first method, the observer scrolls through the entire lung using all avail-
able slices and then directly estimates the volume of tissue in each category for 
the entire lung (the “scroll and score method”). In the second method, the ob-
server estimates the percentage lung area in each category on each individual slice, 
which are averaged to determine the final SALD component score (the “single 
slice method”). For the single-slice method, we scored one image from each 10 
mm interval; hence, not all available slices were scored. In the case of scans using a 
10-mm interval, we did score all slices, while only every second slice was scored in 
scans using a 5-mm interval, and so on. Each image was scored independently and 
in random order. The precision level of each method was investigated by estab-
lishing the means and standard error of the means for each component. The Wil-
coxon signed rank test was used to compare the methods. The single slice method 
was more precise and better reproducible. Therefore, only results obtained by that 
method are displayed in the results section.

Figure E4. Distribution of the SALD 
component scores. CT scans from lung 
transplant screening were scored according 
to the SALD criteria. A SALD spectrum 
was identified in which the dark grey 
bars represent the lung volume scored as 
hypoperfused tissue, the white bars infection/
inflammation; the light grey bars normal/
hyperperfused tissue; and the black bars bulla 
or cysts. Patients are sorted according to their 
infection/inflammation component.
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Abstract

Rationale	 Trapped air (TA) is an important early change in cystic fibro-
sis (CF) lung disease, and can be determined using pulmonary 
function tests (TAPFT) or computed tomography (TACT). Little is 
known about the course and reversibility of TACT over time, and 
how TACT compares with TAPFT. 

Aims	 To investigate changes in TACT volume and distribution over time, 
and to compare TACT with TAPFT.

Methods	 In this institutional review board approved study, 30 consecutive 
children gave informed consent and contributed two CTs and 
PFTs over two years. TACT was determined using image analysis 
software. Localized changes in TACT were assessed by deforming 
CT2 to match CT1, and measuring the relative volume of stable TA 
(TAstable), disappeared TA (TAdisappeared) and new TA (TAnew). For 
TAPFT we used the difference between TLC measured by pleth-
ysmography en helium dilution ((TLCbb-TLChe)/TLCbb), residual 
volume to total lung capacity ratio (RV/TLC), forced expiratory 
flow at 75% of vital capacity (FEF75) and maximum mid-expirato-
ry flow (MMEF). Statistical analysis included Wilcoxon’s signed 
rank test and Spearman’s correlation coefficients.

Results	 Baseline median (range) age and FEV1 were 11.9 (5-17) years, 
and 91 (39-130)%-predicted. Median (range) TACT1 and TACT2 
was respectively 9.5 (2-33)% and 9.0 (0-25)% (p=0.49). Median 
(range) TAstable, TAdisappeared and TAnew was respectively 3.0 (0-12)%, 
5.0 (1-22)% and 7.0 (0-20)%. Visual assessment suggested that 
predominantly TAstable was accurately assessed. TACT correlated 
significantly with (TLCbb-TLChe)/TLCbb (rs=0.58, p=0.005), FEF75 
(rs=-0.53, p=0.003) and MMEF (rs=-0.62, p=0.001)

Conclusions	 TACT was not progressive over 2 years, and has a substantial stable 
component. TACT correlated significantly with TAPFT.
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Introduction

In cystic fibrosis (CF), the majority of the disease-related morbidity and mortal-
ity is determined by the severity of lung disease. CF lung disease starts early in 
life, evidenced by chest computed tomography (CT) studies showing structural 
lung abnormalities in infants (1-4). Of these early abnormalities, trapped air (TA), 
reflecting small airways disease, is considered an important finding (5). At age 
3 months, TA is present in nearly two thirds of children diagnosed by newborn 
screening even in the absence of symptoms (6). In addition, TA occupies a sub-
stantial lung volume in most patients with end stage CF lung disease (7). Tradi-
tionally, TA was measured by pulmonary function tests (TAPFT). More recently, 
the volume and distribution of TA can be visualized using expiratory chest CT 
(TACT). To our knowledge, there is no gold standard to determine TA, and how 
TACT relates to TAPFT is not clear. A limited number of cross-sectional studies have 
been performed, and showed a correlation between TAPFT and TACT (8-9). In addi-
tion, little is known about the change of TA over time. Studies using TAPFT showed 
either progression (10), no change (11-12), or improvement over time (13). Two 
studies using semi-quantitative scoring to estimate TACT showed progression over 
approximately 2 years’ time (14-15). The advantage of TACT is that TA severity as 
well as distribution can be determined. This enables the detection of even small, 
localized areas of TA. More recently, (semi-)automated systems have been devel-
oped to quantify and visualize the distribution of TACT (8-9). These techniques are 
fast, objective, and provide a more continuous measure of extent of TA. To our 
knowledge, these systems have never been used to study the natural course of TA 
in an unselected population. Although some CT studies suggest that TACT is pro-
gressive, it is unknown whether TACT reflects irreversible and/or reversible small 
airway changes. To investigate this, we have developed new software that com-
bines quantitative analysis of TACT with deformable image registration to assess 
local changes in TACT in a longitudinal study. Using this software, we performed 
a pilot study with the aims to assess: 1) the change in TAPFT and TACT volume over 
time; 2) changes in distribution of TACT over time; and 3) the relationship between 
TACT and TAPFT and spirometric indicators of small airways disease.
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Methods

Study population 
In this retrospective study, we selected 30 consecutive children with CF, monitored 
at a single tertiary CF clinic, who could contribute two volumetric expiratory chest 
CT scans and PFTs between December 2006 and November 2009. All CTs and 
PFTs were made as part of routine care during annual check-up when clinically 
stable. Children on intravenous antibiotics were considered unstable and were 
excluded. The institutional review board approved the study protocol, informed 
consent from all subjects allowing use of anonymized data was obtained. 

CT scanning protocol 
Each child contributed two expiratory scans (CT1 and CT2) over two years. Scan-
ning was performed from lung apex to base using a 6-slice CT scanner (Somatom 
Emotion, Siemens Medical Solutions, Erlangen, Germany) with the patient in su-
pine position. Baseline CT1 was made between December 2006 and October 2007 
using voluntary breath holding. Patients were instructed to maximally exhale and 
hold their breath during scanning. Follow up CT2 was made between January 2009 
and November 2009 using spirometer control. This was done as follows: prior to 
scanning patients practiced the breathing maneuvers in supine position, super-
vised by a lung function technician. Patients were trained with their arms raised 
above their shoulders using nose clip and spirometer. For the expiratory scan, pa-
tients were asked to inhale maximally starting at tidal volume level followed by a 
maximum slow expiratory vital capacity manoeuvre and to hold their breath at 
the end of the expiration. The children performed the same breathing manoeu-
vres during CT scanning supervised by the same lung function technician. The 
scanning protocol for both CTs was volumetric (ultra low dose) using the follow-
ing settings: rotation time 0.6-sec, tube voltage 80 kV(weight < 35 kg) or 110 kV 
(weight  ≥ 35 kg), pitch 1.5, 6x2 mm collimation, kernel B60s, and a fixed tube cur-
rent of 25 mA, i.e. an effective tube current-time product of 10 mAs. Scans were 
reconstructed with a 2.5 mm slice thickness, and 1.2 mm increment.  

Image analysis
TACT volume and total lung volume were computed using in-house developed soft-
ware. First, the lungs were segmented automatically(16). Second, a median filter 
(size 3x3x3) was applied to reduce noise. TA volume was defined as the volume of 
lung tissue within the segmented lung with an intensity value between thresholds 
of –975 and –850 HU (8, 17-18). Third, a single experienced observer visually 
checked the TA thresholds. Per scan, the observer evaluated whether the thresh-
olds covered most TA areas appropriately. When needed, the upper threshold was 
adjusted in steps of 25 HU. Hence, the lower TA threshold in this study was set 
at a fixed value of–975, while the upper threshold varied between –900 and –675 
HU. To evaluate the course of TACT over time, we compared the total TA volume 
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(expressed as a percentage of total lung volume) between CT1 (TACT1) and CT2 
(TACT2). To investigate changes in the distribution of TA over time, we used de-
formable image registration to match CT1 and CT2 of the same subject.(19) We 
first estimated TA regions in both scans as described above. Then, the non-rigid 
transformation that optimally matched CT2 to CT1 was computed and applied to 
deform CT2 to CT1. The same transformation was applied to the TA regions of CT2. 
Subsequently, the following parameters were computed, expressed as percentage 
of overlapping lung volume: 1) stable TA volume (TAstable), 2) newly formed TA 
volume (TAnew), and 3) disappeared TA volume (TAdisappeared).

All images were visually checked to confirm successful lung segmentation and 
registration, and correct annotation of the changes in TA. This was done by com-
paring CT1 and CT2 displayed next to each other. On CT1, an overlay image could 
be switched on and off, showing the volume TAnew, TAdisappeared, and TAstable in dif-
ferent colors. First, we visually examined whether TA appeared to be stable, new 
or disappeared. Second, we switched the overlay on and assessed whether the an-
notated areas matched our visual interpretation. Without further quantification, 
we documented for each scan whether large areas of TA were correctly indicated, 
and/or whether there was noise present.

Pulmonary function tests
Lung volumes were obtained using a Masterlab Body Plethysmograph (Erich Jae-
ger AG, Würzburg, Germany) using the panting technique following ERS guide-
lines (20). Spirometry was done with a Jaeger diagnostic system (Erich Jaeger 
AG, Würzburg, Germany) following ERS guidelines. All reference values were ac-
cording to Zapletal (21). Only measurements obtained within 3 months of CT1 
(TAPFT1) or CT2 (TAPFT2) were included for analysis. The following parameters were 
used as lung function parameters of TA; 1) residual volume (RV) to total lung 
capacity (TLC) ratio (RV/TLC); 2) difference in TLC measured by body plethys-
mography (TLCbb) and helium dilution (TLChe) expressed as percentage of TLCbb 
((TLCbb-TLChe)/TLCbb). In addition, the following parameters of small airways 
disease were used; forced expiratory flow at 75% of vital capacity (FEF75) and 
maximum mid-expiratory flow (MMEF). We evaluated the course of TAPFT over 
time by comparing TAPFT1 with TAPFT2. Unfortunately, this could not be done for 
TLCbb ((TLCbb-TLChe)/TLCbb), as no reliable helium dilution measurements were 
available for TAPFT2 due to a defect in the equipment’s hardware. We investigated 
the relationship between TACT and TAPFT by correlating TACT with RV/TLC ratio, 
(TLCbb-TLChe)/TLCbb, FEF75, and MMEF. 

Statistical analysis
The Wilcoxon signed rank test was used to test for differences between respective-
ly TACT1 and TACT2, TAPFT1 and TAPFT2, and the change in TA (TAstable, TAnew, TAdisap-

peared). Spearman’s correlation coefficient (rs) was used to evaluate the correlation 
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between TACT and TAPFT. SPSS 15.0 software for Windows was used for all analyses, 
p-values of < 0.05 were considered significant.

Results

Patient characteristics
The study cohort consisted of 30 patients (14 boys, 16 girls). CT1 and PFT1 (spi-
rometry and lung volume measurements) were performed on the same day for 28 
patients. For 1 patient, PFT1 was done 1 day prior to CT1, and for another patient 
PFT1 was performed more than 3 months prior to CT1, and therefore excluded. In 
addition, 7 patients were too young for body box measurements. Thus, spirometry 
for CT1 was available for analysis in 29 patients, and RV/TLC ratio and (TLCbb-
TLChe)/TLCbb was available for 22 patients. 

CT2 and PFT2 (spirometry and lung volume measurements) were performed on 
the same day for 25 patients, for 5 patients, the median (range) time between CT2 

Characteristic Baseline CT1 n Follow up CT2 n p-value

Age (years) 11.9 (5-17) 30 13.9 (7-19) 30 Not tested
Length (meters) 1.48 (1.04-1.78) 30 1.58 (1.17-1.79) 30 <0.001
BMI (kilogram/meter2) 17 (14-24) 30 18 (9-23) 30 0.01
FVC (% predicted) 92 (57-121) 29 93 (51-122) 30 0.46
FEV1 (% predicted) 91 (39-130) 29 88 (26-118) 30 0.22
FEF75 (% predicted) 58 (6-136) 29 47 (8-105) 30 0.01
MMEF (% predicted) 71 (12-149) 29 63 (5-110) 30 0.09
RV/TLC ratio (%) 28 (17-51) 22 30 (18-68) 27 0.99
TLCbb-TLChe/TLCbb (%) 9 (0-27) 22 * * *
CT trapped air (% of lung 
volume) 9.5 (2-33) 28 9.0 (0-25) 28 0.49

Table 1. Patient characteristics of the study cohort at baseline and follow up CT (n=30). Data shown are 
median (range), n indicates the number of observations on which the estimates are based.

List of abbreviations

FVC: 	 Forced vital capacity

FEV
1
:	 Forced expiratory volume in 1 second

FEF
75

:
	

Forced expiratory flow at 75% of vital capacity

MMEF: Maximum mid-expiratory flow

RV/TLC: Ratio of residual volume divided by the total lung capacity

TLCbb – TLChe / TLCb: Difference in total lung capacity measured by body 
plethysmography and helium dilution

* No values could be generated for CT
2
, due to unreliable helium dilution measurements.
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and PFT2 was 36 (-70 to 63) days. Two lung volume measurements were performed 
more than 3 months after CT2, and therefore excluded, and 1 patient could not be 
tested due to methicillin-resistant Staphylococcus aureus (MRSA) infection. Thus, 
spirometry for CT2 was available for analysis in 30 patients, and RV/TLC ratio was 
available for 27 patients. 

For TACT measurements, 2 scans were excluded due to difficulties in the image 
analysis for the following reasons: failure to initialize lung segmentation due to 
severe malacia (n=1), and poor image registration (n=1). Thus, TACT analyses were 
based on 28 patients. All 28 CT1 scans were made using voluntary breath holding. 
For CT2, 22 were spirometer-controlled. The remaining 6 scans were made during 
voluntary breath holding for the following reasons: lack of time before CT scan 
to train the spirometer-controlled CT maneuvers (n=2), fear for the spirometer-
controlled CT procedures (n=1), MRSA infection (n=1), and no PFT technician 
available during scanning (n=2). Thus, our data set consisted of 6 CT pairs made 
using voluntary breath holds and 22 pairs consisting of 1 voluntary breath hold 
CT1 and 1 spirometer-controlled CT2. Patient characteristics are shown in Table 1.

Figure 1. Plots showing the course of computed tomography estimates of relative volume of trapped 
air (A), pulmonary function test estimates of trapped air (B), and the spirometry measures of small 
airways disease forced expiratory flow at 75% of vital capacity (C) and maximum mid-expiratory flow 
(D) over 2 years for individual patients. Differences between the first and second measurement are 
only significant for plot C. Bars indicate the median values.
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The course of TA over time
Longitudinal analysis of TACT showed no significant change over two years: median 
(range) TACT1, and TACT2 was respectively 9.5 (2-33)%, and 9.0 (0-25)% (p=0.49). 
Similarly, TAPFT showed no significant change over two years: Median (range) 
baseline and follow up RV/TLC was respectively 28 (17-51)%, and 30 (18-68)% 
(p=0.99). Of the small airways disease parameters, only FEF75 was significantly 
decreased over time: median (range) baseline and follow up FEF75 was respectively 
58 (6-136)%-predicted and 47 (8-105)%-predicted (p=0.01). The course of TACT, 
TAPFT, FEF75 and MMEF over time for individual patients is shown in Figure 1.

Localized changes in distribution of TA
CT

 over time
Median (range) TAstable, TAdisappeared and TAnew was respectively 3.0 (0-12)%, 5.0 (1-
22)% and 7.0 (0-20)%. TAnew and TAdisappeared was significantly higher than TAstable 
(p=0.001 and p=0.002). This suggests that most TA is dynamic over 2 years’ time. 

Visual assessment of the measured local changes in TA showed that large areas of 
TA were correctly annotated, and consisted mainly of TAstable (Figure 2). TAnew and 
TAdisappeared were frequently present as very small areas and alternated with TAstable 
(Figure 3). Hence, the detection of TAnew and TAdisappeared appeared to be noisy and 
may not have reflected true dynamic behavior of TA. Thus, we concluded that at 
least a part of TACT is stable over time, which is probably around one-third.

Figure 2. Images showing a CT slice 
of a patient of baseline CT1 with 
its corresponding mask showing 
trapped air (TA, white) and normal 
lung tissue (grey) (A), follow up 
CT2 with its corresponding mask 
(B), and CT2 registered to CT1 with 
the measured localized TA changes 
overlaid on CT1 (C) all taken at 
the same level. The overlay shows 
normal lung tissue (green), and 
the proportion of stable TA (red), 
new TA (yellow), and reversed TA 
(blue). Colors highlight only those 
areas where lung segmentations 
in CT1 and registered CT2 overlap. 
This figure shows that the large area 
of stable TA in the right lung (white 
arrows) is correctly annotated. The 
relative volume for stable, new, and 
reversed TA in the slice shown is 
respectively 20.2%, 6.9%, and 2.7%.  
A full color version of this image 
can be found on page 216 in the color 
section 
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Figure 3. Images showing a CT 
slice of a patient of baseline 
CT1 with its corresponding 
mask showing trapped air (TA, 
white) and normal lung tissue 
(grey) (A), follow up CT2 with 
its corresponding mask (B), and 
CT2 registered to CT1 with the 
measured localized TA changes 
overlaid on CT1 (C) all taken at 
the same level. The overlay shows 
normal lung tissue (green), and 
the proportion of stable TA (red), 
new TA (yellow), and reversed TA 
(blue). Colors highlight only those 
areas where lung segmentations 
in CT1 and registered CT2 overlap. 
This figure shows the noise in TA 
detection. Visually, the area of TA 
in CT1 and CT2 (white arrows) 
appear quite similar, perhaps with 
some slight progression. In the 
segmentation however, these areas 
were indicated as stable, new, and 
reversed TA with relative volumes 
of respectively 5.8%, 10.4%, and 
4.5%.  A full color version of this 
image can be found on page 217 in the 
color section

Figure 4. Scatterplots showing the correlation 
between the trapped air estimate from CT1 and 
trapped air measured by the difference in TLC 
measured by body plethysmography (TLCbb) and 
helium dilution (TLChe) expressed as percentage 
of TLCbb ((TLCbb-TLChe)/TLCbb) at the time of 
CT1 (A), and the spirometry measures of small 
airways disease forced expiratory flow at 75% of 
vital capacity (B) and maximum mid-expiratory 
flow (C). 
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Relationship between TA
CT 

and
 
TA

PFT
 

Correlations between baseline TACT1 and TAPFT1 were only significant for TACT1 and 
(TLCbb-TLChe)/TLCbb (rs=0.58, p=0.005, Figure 4). Correlations between TACT1 
and FEF75 (rs=-0.53, p=0.003) and MMEF (rs=-0.62, p=0.001) were all significant 
(Figure 4). Similar findings were found for correlations between follow up TACT2 
and FEF75 (rs=-0.45, p=0.02) and MMEF (rs=-0.43, p=0.02). Correlations between 
TACT2 and (TLCbb-TLChe)/TLCbb could not be established, as follow up (TLCbb-
TLChe)/TLCbb measurements were lacking. 

Discussion 

To our knowledge, this is the first study to assess changes in TACT distribution over 
time. Our results showed that around one-third of TACT was stable over 2 years, 
suggesting irreversible small airway damage. Our technique is a first approach to 
monitor TACT distribution. Although we could not determine to what extent TACT 
may have been reversible, we consider it likely that not all TACT is irreversible over 
time. Reversibility of TACT is supported by studies showing TACT improvement af-
ter 3-months’ dornase alpha treatment (22). In addition, partial reversibility of 
small airways disease measured by spirometry has been reported (23-27). Oth-
er treatments shown to improve small airways disease are nebulised tobramycin 
(28), hypertonic saline (29), and denufosol tetrasodium (30). TA is considered 
an important component of CF lung disease reflecting small airways disease (5).  
TACT is present in two-thirds of infants diagnosed by newborn screening (5-6), 
and forms an important component of advanced lung disease (7). TACT may be an 
important outcome parameter in clinical management or clinical trials aiming to 
reduce small airways disease. Our techniques may be of great value for monitoring 
treatment effects on TA volume and distribution. Whether the TAstable we observed 
can be reversed is an important clinical question that requires further investiga-
tion. 

Detection of TAnew and TAdisappeared using our technique was less robust. This may 
have been caused by the following issues. First, images were acquired using ultra 
low dose protocols. Image quality allowed TA assessment, but with a substantial 
degree of noise. A filter reduced the noise, but could not eliminate it. More ad-
vanced segmentation techniques, manually or automatically outlining complete 
regions of TA could improve results. Second, TA thresholds were visually de-
termined. Small observer-related changes may have influenced whether TA was 
annotated as new, reversed or stable. Third, differences in scan exhalation level 
may have affected the measurements. Baseline CTs were made using voluntary 
breath holds, while 22/28 follow up CTs were made using spirometer-control. 
Voluntary breath hold scans are likely close to functional residual capacity (31), 
while spirometer-controlled scans are close to RV. Subgroup analysis comparing 8  



C
h

a
p

te
r 

5
	

R
ev

er
si

b
il

it
y

 o
f 

tr
a

p
p

ed
 a

ir
 o

n
 C

T
, a

n
 a

u
to

m
a

te
d

 a
p

p
ro

a
ch

91

voluntary breath hold pairs with 22 pairs with 1 voluntary breath hold CT1 and 1 
spirometer-controlled CT2 revealed no differences in TACT volume or distribution 
over time (data not shown). Ideally, our findings should be reproduced using two 
spirometer-controlled CTs. Fourth, lung growth may have affected the measure-
ments. Median age in our cohort at baseline approached 12 years, the age at which 
growth accelerates in healthy children. Mean total lung growth for 12-year-olds 
has been estimated at 300 ml (girls) and 600 ml (boys) over 2 years (32). Little 
is known about how lung growth affects TACT, and whether lung growth in CF 
patients resembles that of healthy children. We used deformable image registra-
tion to match CTs, which may have partly compensated for effects of growth (19).  

Cross-sectional analysis showed significant correlations between TACT and (TL-
Cbb-TLChe)/TLCbb, FEF75, and MMEF. These findings support the accuracy of our 
TACT volume estimate to reflect small airways disease. In contrast to other stud-
ies (8-9), we found no correlation between TACT and RV/TLC. These differences 
could be due to differences in CT analysis or CT protocol. 

Longitudinally, we found no change in total TACT volume over time. Other stud-
ies showed TACT progression over two years (14-15). These studies however, used 
younger (14) or older (15) CF patients, limited slice protocols, and manual scor-
ing methods. Similarly, TAPFT did not change over time, which replicates results of 
2 other studies (11-12). However, TAPFT progression (10), and improvements (13) 
over time have also been described. These differences can only be partly explained 
by differences in TA measure used and study duration (10). A limitation was the 
absence of CT2 values of (TLCbb-TLChe)/TLCbb. The (TLCbb-TLChe)/TLCbb has been 
used to estimate TA (33), but never longitudinally. 

Only FEF75 decreased significantly over time, a finding supported by other stud-
ies.(5, 34-37) These results suggest that FEF75 was the most sensitive measure to 
monitor small airways disease. However, sample size was small, and larger studies 
are needed to confirm our observation. Furthermore, our software can likely be 
improved in the near future, which may improve its sensitivity to track changes 
in TACT. In addition, CT’s advantage of visualizing patterns of TA may enhance 
the detection of TA subtypes, which may warrant tailored treatment. The draw-
back of CT however, is radiation exposure. The current protocol can acquire  
expiratory CTs by administering approximately 0.4 milli Sievert (31). Keeping the 
risk-benefit ratio in mind, monitoring TA using CT is likely to be valuable and 
safe. 

In conclusion, the importance of small airways disease in CF is well recognized. 
However, little is known on its pathophysiology, treatment, reversibility, and mon-
itoring. TA detection by CT can improve our understanding of small airways dis-
ease. In this pilot study, we describe a technique to assess TA volume and distribu-
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tion over time, which can be used to monitor TA treatment in clinical practice and 
clinical trials. TACT detection can be further improved using spirometer-control 
and improved segmentation techniques. Further longitudinal studies comparing 
TACT and TAPFT are needed to identify the most optimal strategy to monitor small 
airways disease. 
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Abstract

Objective 	 Respiratory tract exacerbation rate (RTE-R) is a key clinical ef-
ficacy endpoint in cystic fibrosis (CF) trials. Chest computed 
tomography (CT) holds great potential as a surrogate endpoint. 
Evidence supporting the ability of CT scores to predict RTE-R is 
an important step in validating CT as a surrogate endpoint. The 
objective of this study was to investigate the association between 
CT scores and RTE-R in a cohort of pediatric CF patients. 

Methods 	 Retrospective review of data from pediatric CF patients included 
chest CT scans, spirometry, and two years follow up. RTE-R was 
defined as number of intravenous antibiotics courses per year. CT 
scans were scored with the Brody-II system assessing bronchiec-
tasis, airway wall thickening, mucus, and opacities.  

Results 	 One hundred fifteen patients contributed 170 CTs. Median age 
and FEV1 at first CT were 12 years (range, 5-20 years) and 90% 
predicted (range, 23% predicted -132% predicted). Analyzing 
exacerbation counts using Poisson regression models, bronchi-
ectasis score and FEV1 were both found to be strong independent 
predictors of RTE-R in the subsequent 2 years. For the bronchi-
ectasis score categorized in quartiles, RTE-R increased by factors 
of 1.8 (95% CI 0.6-6.1; p=0.31), 5.5 (1.9-15.4; p=0.001), and 10.6 
(3.8-29.4; p<0.001), respectively, for each quartile compared to 
the quartile with the best, i.e. lowest, scores. Similarly, time to 
first RTE was significantly associated with quartiles of both bron-
chiectasis score and FEV1

Conclusions 	 The CT scan bronchiectasis score is strongly associated with RTE-
R in pediatric patients with CF, providing an important piece of 
evidence in the validation of CT scans as an endpoint for CF clini-
cal trials.
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Introduction 

In cystic fibrosis (CF), many endpoints for clinical trials have been evaluated, in-
cluding respiratory tract exacerbation rate (RTE-R), spirometry, bronchoalveolar 
lavage markers and imaging.(1-2) Of these endpoints, only RTE-R is considered a 
clinical outcome parameter, whereas the others are surrogate endpoints. Unfortu-
nately, RTE-R lacks a standardized definition, and frequently requires a relatively 
large sample size to detect a relevant treatment effect.(3) Therefore, surrogate end-
points have been used, of which forced expiratory volume in one second (FEV1) is 
the most common.(4) However, FEV1 has become relatively insensitive for moni-
toring the progression of CF lung disease because average lung function is now in 
the normal range until adolescence, and average annual FEV1 decline is currently 
less than 1% per year.(5) FEV1 also is insensitive to important localized structural 
damage such as bronchiectasis.(6) Thus, there is a need for more sensitive surro-
gate endpoints with the ability to detect disease onset and progression at an early 
stage. 

Computed tomography (CT) has great potential for use as a surrogate endpoint in 
CF lung disease because it is the gold standard for the detection of bronchiectasis, 
the defining structural abnormality in CF.(7) CT scanning has been shown to be 
more sensitive than FEV1 in detecting early CF lung disease and in monitoring dis-
ease progression.(8) In addition, CT parameters such as mucus plugging and cen-
trilobular nodules have been shown to respond to treatment.(9) Importantly, the 
use of CT-related parameters instead of FEV1 could potentially reduce the sample 
size in intervention studies,(10) significantly enhancing the feasibility of clinical 
studies in CF. 

An important step in the validation process of CT as a clinical trial endpoint is 
establishing its association with clinical outcomes, such as RTE-R.(3) To date, the 
association between CT scores and RTE-R has only been investigated in one small 
selected cohort. Among 61 CF patients aged 6-11 years with well preserved lung 
function participating in the Pulmozyme Early Intervention Trial, Brody et al (11) 
found a statistically significant but relatively poor correlation between CT scores 
and RTE-R. Whether CT scan-related parameters correlate with RTE-R in an un-
selected CF population has never been investigated. Therefore, as one step in vali-
dating CT scores as a clinical trial endpoint, our primary aim was to investigate 
the predictive value of CT scan scores for RTE-R in the ensuing 2 years. Because 
lung function is the most widespread surrogate endpoint in CF clinical trials, a 
secondary objective was to evaluate the predictive value of CT scores while taking 
account of spirometric measurements regarding RTE-R in the ensuing 2 years.  
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Methods

Study population 
This institutional review board-approved, retrospective, single-center study used 
clinical data from patients with CF followed at the Sophia Children’s Hospital Cys-
tic Fibrosis Clinic in Rotterdam, The Netherlands.  Inclusion criteria were: (1) con-
firmed CF diagnosis, (2) one or more routine biannual chest CT scans performed 
between March 2002 and March 2006 while clinically stable (CT scans performed 
for acute respiratory deterioration were not included in the current analysis), (3) 
at least one routine spirometry while clinically stable within 4 months of each CT, 
(4) age between 5 and 20 years at the first CT scan, (5) ³2 years of follow up after 
each CT, and (6) informed consent. Exclusion criteria were: (1) CT scans per-
formed under general anaesthesia (due to risk of anaesthesia-induced atelectasis), 
(2) non CF-related lung abnormalities, and (3) co-morbidity potentially affecting 
RTE-R (severe tracheomalacia [n=1] and IgM deficiency [n=1]). 

Because there is no universal consensus on the definition of a respiratory tract ex-
acerbation (RTE) (12), we selected a conservative approach and defined RTEs as 
episodes of treatment with intravenous (IV) antibiotics for pulmonary indications, 
as used in other studies.(11, 13-14) For each subject, annual RTE-R was determined 
by detailed chart review. For one subject with severe lung disease requiring continu-
ous IV treatment of > 1 year, the number of exacerbations was arbitrarily set at 10, a 
number larger than the highest observed count in the cohort. Pseudomonas aerugi-
nosa culture positivity was defined as the presence of one or more positive respira-
tory cultures at any point in time before each CT scan (Pseudomonas positivity ever).

CT scanning protocol 
Scans were performed on two scanners (Prospeed SX; GE Medical Systems; 
Waukesha, Wisconsin, and Somaton Emotion; Siemens Medical Solutions; Erlan-
gen, Germany) in the supine position from apex to base. Only inspiratory scans 
were analyzed because protocols before September 2003 did not include expira-
tory acquisitions. All scans were perfomed during voluntary breath holds at end 
inspiration. CT scans performed from March 2002 to July 2004 were high-resolu-
tion scans and obtained at 80- to 120-kVp and 100- to 130 mA fixed tube current, 
1.0 mm slice thickness at 5- to 10-mm intervals, 0.8-1.0-s rotation time, and high 
spatial frequency algorithm. Average radiation dose for these protocols was 0.9 
mSv (based on a mean gap of 7.5 mm, and calculated using the impact dosimetry 
calculator (15), and multiplied with pediatric normalized values (16). From Au-
gust 2004 to March 2006, volumetric CT scans were obtained at 80- to 110-kVp 
and 20-mAs reference tube current, with 2-mm collimation, 3-mm slice thickness, 
0.6-s rotation time, pitch 1.5 and high spatial frequency algorithm. Average radia-
tion dose for this protocol was approximately 1 mSv (inspiratory scan, 0.69 mSv, 
plus expiratory scan, 0.35 mSv).
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CT scoring and spirometry
Scans were scored with the Brody-II scoring system, evaluating bronchiectasis, 
airway wall thickening, mucus plugging, and opacities (17). Trapped air was ex-
cluded from the total score. Hence, the maximal possible total score (207 points) 
was reduced by 27 points for trapped air, changing the maximum score to 180 
points. Scores were expressed as percentages of maximal scores on a zero-to-100 
scale. All scans were de-identified, randomized and scored by one experienced 
observer (K.G.) (18). For within-observer variability, this observer re-scored 25 
random scans after one month. For between-observer variability, a second blinded 
observer (M.L.) scored 25 random scans. Both observers were blinded to lung 
function results and clinical status. The observers were trained using a scoring 
manual including reference images, and established good interobserver and in-
traobserver agreement prior to scoring CT scans for the current study. Spirom-
etry was performed using the Jaeger diagnostic system (Jaeger AG, Hoechberg, 
Germany). FEV1, forced vital capacity (FVC), and forced expiratory flow at 75% 
of vital capacity (FEF75) were analysed. All reference values were according to 
Zapletal et al.(19)

Statistical analysis
Descriptive statistics were used to characterize the patients at the time of their first 
CT scan. For patients with two CTs, the paired t test, and Wilcoxon signed rank 

Figure 1. Flow chart of the study cohort. CF=cystic fibrosis
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test were used to compare spirometry, , and CT scan scores, respectively, at the 
time of the first versus the second CT scan. 

To evaluate the predictive value of CT score and spirometry on annual RTE-R in 
the subsequent two years, we used univariate and multivariable Poisson regression 
with generalized estimating equations to account for the correlation between re-
peated measures within an individual using SAS, PROC GENMOD (SAS Institute; 
Cary, North Carolina). To account for the effect of the temporal change in CT 
scanning protocols, CT scans performed between March 2002 and July 2004 were 
coded CT1, and CT scans between August 2004 and March 2006 were coded CT2, 
with log e (observation time) per period as an offset. CT scores and spirometric 
measurements were grouped into quartiles based on their observed distributions 
in the study population, with the lowest CT score or highest FEV1 quartile as the 
reference category. This grouping into quartiles was chosen, because there are no 
“natural” cut off levels for the CT scores. The same grouping into quartiles was 
used for spirometry data. Kaplan Meier curves were used to assess the time from 
each CT to the first subsequent RTE, and the log rank test was used to evaluate 
differences between the quartiles. 

Characteristic Study cohort

N 115
Males 55 (48%)
Age (years) 11.9 (5-20)
FEV1 (% pred)‡ 91 (23-132)
FVC (% pred)* 94 (41-122)
FEF75 (% pred)# 50 (6-151)
Positive Pseudomonas aeruginosa culture ever** 76 (67%)
Brody-II total score (%) 7.2 (0-36)
Bronchiectasis score (%) 6.9 (0-39)
Airway wall thickening score (%) 5.6 (0-39)
Mucus plugging score 8.3 (0-44)
Opacity score (%) 5.6 (0-13)

Table 1. Baseline characteristics of the study cohort.

Data are presented No. (%) or as median (range), unless otherwise indicated.
‡Forced expiratory volume in 1 second
*Forced vital capacity
#Forced expiratory flow at 75% of vital capacity 
** Includes all P. aeruginosa cultures ever before the time of the first CT scan.
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Intraclass correlation coefficients (ICCs) were used to evaluate between- and 
within-observer agreement for CT scan scores. ICC values between 0.4 and 0.6, 
0.6 and 0.8 or ≥ 0.80 generally are considered to indicate moderate, good and very 
good agreement, respectively. SPSS, version 15.0 (SPSS Inc; Chicago, Illinois) and 
SAS, version 9.2, statistical software were used for analyses. P <0.05 (two-sided) 
was considered statistically significant.

Results

Study population
We identified 156 patients who had at least one chest CT during the study period. 
From this cohort, 41 patients were excluded for reasons outlined in Figure 1. Thus, 
115 patients were included in the current analyses, with 55 contributing two scans 
and 60 contributing one scan, for a total of 170 scans, Total person-years of follow 
up was 335. The mean ±SD follow-up period was 23.6 ±2.2 months after each CT. 
Spirometry was performed on the same day as CT scanning for 149 of 170 ob-
servations. For the 21 remaining observations, the median time between CT and 
spirometry was 0 days (range, -42 to 125 days). Baseline subject characteristics are 
shown in Table 1. 

Characteristic First CT Second CT Difference  
(95% CI) p-value

FEV1 (% pred) 93 ±13 88 ±16 -5 (-8 to -2) 0.005
FVC (% pred) 94 ±12 92 ±14 -2 (-4 to 1) 0.47
FEF75 (% pred) 58 ±23 49 ±27 -9 (-15 to -3) 0.001
Positive P. aeruginosa culture 
ever* 35 (64%) 42 (76%) 12 (3 to 21) % …

Brody-II total score (%) 6.7 (0-35) 9.4 (0-35)  1.7 (1.1 to 3.5) <0.001
Bronchiectasis score (%) 5.6 (0-39) 8.3 (0-46) 1.4 ( 0.9 to 4.2) 0.003
Airway wall thickening score 
(%) 5.6 (0-39) 5.6 (0-35) 0 (-0.7 to 2.9) 0.22

Mucus plugging score 5.6 (0-31) 8.3 (0-39) 0 (0 to 3.0) 0.005
Opacity score (%) 5.6 (0-13) 7.4 (0-15)  1.9 (0-1.9) <0.001

Data are presented as mean ±SD, median (range) or No. (%), unless otherwise indicated. See Table 1 
legend for expansion of abbreviations. 
* includes all P. aeruginosa cultures ever before the time of CT. The p value is not calculated, as this 
percentage can only increase.

Table 2. Spirometry, Pseudomonas culture status and CT scan scores at the time of the first and 
second CT scans among subjects contributing two CT scans (n=55).
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Among the 55 subjects contributing two CT scans, a significant decrease in lung 
function (except for FVC), and increase in CT scores (except for airway wall thick-
ening subscore) was observed between the first and second CT scans (Table 2). 
Mean ±SD time between the first and second CT was 1.9 ±0.31 years.

Among the 115 subjects, 51 (44%) experienced a total of 148 RTEs during follow 
up. The mean annual RTE-R in the two years following each CT scan by quartile 
of CT scan score and spirometric measurements, derived from univariate Poisson 
modeling, is shown in Table 3. (Definitions of the parameters for all quartiles are 
presented in Table 4.) RTE-R increased significantly with both worsening lung 
function and CT scan score. 

In separate multivariable models for spirometry and CT scan scores, the strongest 
spirometric predictor for annual RTE-R was FEV1, with FVC and FEF75 not add-
ing significantly to the model. For CT scan scores, the bronchiectasis score was 

Spirometry Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-value

FEV1 
0.12
(0.06-0.24)

0.24
(0.12-0.50)

0.25
(0.12-0.52)

1.18  
(0.87-1.59) <0.001

FVC 
0.20
(0.12-0.35)

0.15
(0.06-0.35)

0.34
(0.18-0.63)

1.06
(0.75-1.49)

 <0.0001

FEF75 
0.15
(0.05-0.40)

0.17
(0.09-0.30)

0.27
(0.15-0.49)

1.03
(0.75-1.41)

<0.0001

CT scan scores

Bronchiectasis 
0.06
(0.02-0.14)

0.11
(0.06-0.21)

0.52
(0.36-0.76)

1.18
(0.84-1.67)

<0.0001

Airway wall 
thickening 

0.12
(0.06-0.23)

0.19
(0.11-0.32)

0.48
(0.27-0.88)

1.08
(0.76-1.52)

<0.0001

Mucus plugging 
0.09
(0.04-0.20)

0.33
(0.16-0.71)

0.43
(0.27-0.69)

1.04
(0.72-1.50)

<0.0001

Opacity 
0.10
(0.05-0.23)

0.15
(0.07-0.30)

0.54
(0.37-0.79)

1.42
(0.97-2.11)

<0.0001

Brody-II total 
0.07
(0.03-0.16)

0.15
(0.08-0.27)

0.45
(0.26-0.80)

1.13
(0.82-1.54)

<0.0001

Table 3. Annual number of RTEs during the two years following spirometry and CT scans by 
observed quartile of the parameter in the study population.a

Data are presented as mean (95% CI). P values are for the overall difference among quartiles from 
univariate Poisson regression models. RTE=respiratory tract exacerbation. See Table 1 legend for 
expansion of abbreviation.
aSee Table 4 for definitions of quartiles for all parameters
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the strongest predictor, with no additional significant effect of the other CT scan 
scores, including the total score (data not shown). 

Table 5 shows the results of the multivariable Poisson regression model, includ-
ing FEV1 and bronchiectasis score; age was not included because it did not add 
significantly to the model (p=0.83).  These results show that both FEV1 and the 
bronchiectasis score have significant, independent predictive values for RTE-R in 
the ensuing 2 years.

parameter quartile 1 quartile 2 quartile 3 quartile 4

FEV1  > 100 90-100 79-89 ≤78
FVC  > 101 95-101 85-94 ≤84
FEF75  > 70 50-70 31-49 ≤30
Bronchiectasis score  ≤ 1 2-6 7-15 ≥16
Airway wall thickening score  ≤ 1 2-5.6 5.7-11 ≥12
Mucus plugging score  ≤ 1 2-8.3 8.4-16 ≥17
Opacity score  ≤ 3.7 3.8-5.6 5.7-9.2 ≥9.3
Brody-II total score  ≤ 2.9 3-8 9-14 ≥15

Table 4. Definitions of parameters for all quartiles.

Spirometry is presented as % predicted, and CT scan scores are presented as % of maximal scores. 
See Table 1 legend for expansion of abbreviations.

Parameter RR 95% CI p-value

FEV1 (%-predicted)
> 100 

90-100 

79-89 

≤78 

1*
1.9
1.8
3.9

-
0.7-5.0
0.6-5.1
1.7-8.9

-
0.21
0.27
0.001

Bronchiectasis score (%)

≤ 1

2-6 

7-15 

≥16 

1*

1.8

5.5

10.6

-

0.6-6.1

1.9-15.4

3.8-29.4

-

0.31

0.001

<0.001

Table 5. Exacerbation rate ratios (RR) according to FEV1 and CT scan bronchiectasis score.

*From the multivariable Poisson regression model including FEV1 and bronchiectasis score quartiles, 
adjusted for CT number. Both parameters were divided into quartiles as detailed in Table 3.
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Kaplan Meier plots of time to first RTE according to bronchiectasis score and FEV1 
quartile are shown in Figure 2. Time to first RTE was significantly associated with 
quartiles of both bronchiectasis score and FEV1. 

Reproducibility was good for all CT scan scores. ICCs for within-observer agree-
ment were all above 0.95, while between-observer agreement ranged from 0.61 
(mucus plugging) to 0.86 (total score).

Discussion

The U.S. Food and Drug Administration defines a surrogate endpoint as “a labora-
tory measurement or physical sign that is used in therapeutic trials as a substitute 
for a clinically meaningful endpoint that is a direct measure of how a patient feels, 
functions, or survives.(20) Surrogate endpoints, such as CT scan scores, generally 
are used as a substitute for true clinical efficacy measures, such as RTEs, when the 

Figure 2. Kaplan-Meier plots for time to first respiratory tract exacerbation after CT scan. Individuals 
are grouped by quartile of bronchiectasis score (plots A and B) or FEV1 (plot C and D). Quartiles 
for FEV1 (% predicted) are as follows: quartile 1= > 100, 2= 90-100, 3=79-89, 4= £78, and for 
bronchiectasis score (%): quartile 1= £ 1, 2= 2-6, 3= 7-15, 4= ³16. P-values are derived from log-rank 
test for trend.



C
h

a
p

te
r 

6
	

B
ro

n
ch

ie
ct

a
si

s 
a

n
d

 p
u

lm
on

a
ry

 e
xa

ce
rb

a
ti

on
s 

in
 c

h
il

d
re

n
 a

n
d

 y
ou

n
g

 a
d

u
lt

s 
w

it
h

 C
y

st
ic

 F
ib

ro
si

s

107

clinical benefit may not be detectable in trials of reasonable cost, duration, or size.
(3) Food and Drug Administration regulations state that a surrogate endpoint is 
considered to be “reasonably likely to predict clinical benefit and, therefore, use-
able for drug approval if there is evidence based on epidemiologic, therapeutic, 
pathophysiologic, or other data supporting the association of the surrogate with 
the clinical benefit.(21)

In the present study, we demonstrate the clear association between CT scan scores, 
particularly the bronchiectasis score, and RTEs in a cohort of patients with CF. 
This step is important in the process of validating CT scanning as a surrogate end-
point for CF clinical trials. The association between bronchiectasis and RTEs has 
been observed previously in a small cohort of young patients with CF with mild 
disease enrolled in a clinical trial (11), in non-CF bronchiectasis patients (22), and 
in patients with chronic obstructive pulmonary disease.(23)  In CF, RTE-R is an 
important clinical endpoint for intervention studies. RTE-R has been shown to in-
crease with age and more severe lung function impairment.(24) Furthermore, RTE 
rates are clearly associated with survival.(25) Unfortunately, RTE-R is a relatively 
insensitive endpoint, especially in patients with well preserved lung function, and 
requires a large sample size when used in clinical studies.(3) In addition, there is 
no consensus regarding the definition of an RTE.(12) Currently, FEV1 is still the 
most widely used surrogate endpoint; however, its use as surrogate endpoint has 
substantial limitations. First, the annual change in FEV1 has become so small that 
intervention studies using rate of decline in FEV1 as the primary endpoint would 
require large sample sizes.(10) In addition, FEV1 has poor sensitivity to detect ear-
ly structural airway damage.(8) It has been estimated that the use of bronchiectasis 
scores as a surrogate endpoint would require a smaller sample size (10) and would 
increase the feasibility of clinical trials in CF. Other arguments that favor the use 
of the bronchiectasis score as a surrogate endpoint are that bronchiectasis is pro-
gressive,(8) detectable early in the disease process,(26) an important component 
of end stage CF lung disease (27), and associated with impaired quality of life.(28)  
An important next step in validating CT scanning as a surrogate endpoint will be 
to demonstrate that the effect of a therapy on the CT score predicts the drug’s ef-
fect on a clinical endpoint, such as RTE.(3).

To be able to use CT parameters such as the bronchiectasis score as endpoints 
in multi-center trials, CT scanning protocols and image analysis will need to be 
standardized to avoid bias related to differences in image resolution and density 
distribution, and to improve the sensitivity and reproducibility of the scores.  In 
addition, to use CT scanning in clinical studies, it is of utmost importance that 
the radiation dose be minimized. Scan protocols requiring low doses of radiation 
without losing relevant information have been developed.(29) The volumetric CT 
scan protocol used in this study, which we currently still use in clinical practice, 
can acquire volumetric inspiratory and expiratory scans with a mean total effec-



Part 3	 Further validating CT as surrogate endpoint in CF

108

tive dose of approximately 1 mSv (depending on tube voltage and patient size).
(18) This is comparable to one-third of the annual US background radiation dose.
(30) These doses can likely be further reduced in the near future.(18) Keeping 
the risk-benefit ratio of clinical trials in mind, the bronchiectasis score should be 
considered as an endpoint in studies aiming to slow the progression of CF lung 
disease. Although the use of magnetic resonance imaging (MRI) in patients with 
CF as an alternative to CT seems promising,(31) the spatial resolution of MRI, and 
therefore its use in the assessment of bronchiectasis, is currently still inferior to 
that of CT.(32) For spirometry, methods such as lung clearance index may prove to 
be good surrogate markers for early disease in the future (2, 33-34). However, this 
needs to be further investigated. 

The present study has several limitations. First, it was retrospective; therefore, we 
had to select a robust and conservative definition for RTEs by defining it as the 
need for IV antibiotic treatment for pulmonary deterioration and increased symp-
toms. This data was easily extracted and validated using our electronic patient 
record. Unfortunately, there is no accepted consensus for RTEs in CF. Our defini-
tion has been used in other studies.(11, 13-14) Using this definition, RTEs were 
unlikely to be missed. However, any lack of ascertainment of RTEs would be un-
likely to alter the association between CT scores and RTE-R. Secondly, this study 
was performed in a single center, potentially affecting the generalizability of the 
results. Although we included patients aged up to 20 years, our cohort consisted of 
relatively few adult patients with severe lung disease (n=8 with FEV1 35-49%-pre-
dicted, severe as defined by American Thoracic Society/European Respiratory 
Society criteria).(35) Hence, our model may not be adequate for the adult popula-
tion with more advanced lung disease. Similarly, the model’s fit on an infant CF 
population could not be studied, as children aged < 5 years were not included in 
this study. Whether bronchiectasis on CT scans is predictive for RTE in children 
aged < six has to be further investigated, since the nature of exacerbations and the 
frequency may be different in these children relative to the population included in 
our study. Third, the importance of trapped air on CT images could not be estab-
lished, since 40/170 scans did not contain expiratory images. In general, the im-
portance of trapped air is less well established than that of bronchiectasis. Trapped 
air is present early in the disease process (26), and in end-stage lung disease.(27) 
However, its reversibility and impact on quality of life have not been established.  
Future studies are needed to determine the importance of trapped air as a possible 
surrogate endpoint in CF. Fourth, the CTs in this study were performed using 
two different scanners and, thus, potentially could have introduced some bias re-
lated to differences in resolution and density distribution. However, we consider 
it unlikely that the differences in scanning techniques were substantial enough to 
cause significant differences in CT scores. In addition, we used a manual scoring 
system that generally is thought to be less sensitive to differences between CT 
scans and protocols (10, 36). Despite these limitations, the results showed that the 
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bronchiectasis score has significant additional predictive value for RTE-R beyond 
that provided by FEV1 in children and adolescents with mild to moderate CF lung 
disease, supporting further validation in a prospective study using the bronchiec-
tasis score as a clinically relevant surrogate endpoint in clinical trials designed for 
this patient population.
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Abstract

Background	 Up to a third of cystic fibrosis (CF) patients awaiting lung trans-
plantation (LTX) die while waiting. Inclusion of computed to-
mography (CT) scores may improve survival prediction models 
such as the lung allocation score (LAS). This study investigated 
the association between CT and survival in CF patients screened 
for LTX.

Methods	 Clinical data and chest CTs of 411 CF patients screened for LTX 
between 1990 and 2005 were collected from 17 centers. CTs were 
scored with the Severe Advanced Lung Disease (SALD) 4-cat-
egory scoring system, including the components ‘infection/in-
flammation’ (INF), air trapping/hypoperfusion (AT), normal/hy-
perperfusion (NOR) and bulla/cysts (BUL). The volume of each 
component was computed using semi-automated software. Sur-
vival analysis included Kaplan-Meier curves, and Cox-regression 
models. 

Results	 366 (186 males) out of 411 patients entered the waiting list (me-
dian age 23, range 5-58 years). Subsequently, 67/366(18%) died 
while waiting, 263/366(72%) underwent LTX, and 36/366(10%) 
were awaiting LTX at the census date. INF and LAS were signifi-
cantly associated with waiting list mortality in univariate analyses. 
The multivariate Cox model including INF and LAS grouped in 
tertiles and comparing tertiles 2 and 3 to tertile 1, showed waiting 
list mortality hazard ratios of 1.62 (95%CI 0.78-3.36, p=0.19), and 
2.65 (1.35-5.20, p=0.005) for INF and 1.42 (0.63-3.24, p=0.40), 
and 2.32 (1.17-4.60, p=0.016) for LAS, respectively. These results 
indicated that INF and LAS had significant, independent predic-
tive value for survival. 

Conclusions	 CT score INF correlates with survival, and adds to the predictive 
value of LAS.
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Introduction

In cystic fibrosis (CF), life expectancy has greatly improved, and median age now 
approaches 38 years.(1) However, most patients still develop severe advanced lung 
disease (SALD), which accounts for 85% of deaths in this patient population.(2) For 
CF patients with SALD, lung transplantation (LTX) is often the only treatment op-
tion left that may provide survival benefit and improves quality of life.(3) Currently, 
CF is the third leading indication for LTX in adults, and the most common indica-
tion for LTX in children aged 6 years and older.(4-5) Choosing the appropriate time 
for referral for LTX remains a challenge. In 1998, the American Thoracic Society 
(ATS) published guidelines to assist physicians in identifying potential candidates 
for LTX.(6) Despite these guidelines, mortality estimates for CF patients awaiting 
LTX as high as 37% have been reported.(7-9) This urged studies to search for bet-
ter outcome measurements of survival (10-17), leading to an update of the guide-
lines in 2006.(18) Presently, referral for LTX assessment is advised when 2- to 3-year 
predicted survival is less than 50%, using the following CF-specific criteria: forced 
expiratory capacity in 1 second (FEV1) below 30%-predicted or rapid respiratory 
deterioration in subjects with an FEV1 greater than 30%-predicted, particularly in 
young females; acute pulmonary exacerbations requiring intensive care; increasing 
frequency of acute pulmonary exacerbations; refractory and/or recurrent pneumo-
thorax, and recurrent hemoptysis not controlled by embolization.(18) 

Another approach towards reducing waiting list mortality was the introduction 
of the lung allocation score (LAS) in the United States in May 2005.(8) This score 
balances pre- and one-year post-transplant survival using clinical parameters with 
subsequent proven survival effect.(8, 19) 

The relationship of lung structure information and survival has never been stud-
ied. This data is readily available, although not systematically interpreted, as chest 
computed tomography (CT) scans are routinely incorporated in most LTX assess-
ment protocols worldwide.(20) There is substantial evidence that CT could add 
highly relevant information to current survival prediction models. First, FEV1 
below 30%-predicted is an important screening criterion.(18) However, in mild 
to moderate CF, lung function correlates poorly with the severity of structural 
changes on CT.(21-23). CT is more sensitive than pulmonary function tests (PFTs) 
in detecting onset and progression of CF-related lung disease.(21-24) Second, se-
verity of CF bronchiectasis on CT is predictive of acute pulmonary exacerbations 
(25-26), and has a negative impact on the quality of life.(27) We hypothesized that 
structural abnormalities on CT would predict survival prior to LTX.(28) There-
fore, we conducted the current study to: 1) examine the association between CT 
and survival in CF patients listed for LTX, 2) investigate the prognostic value to 
LAS added by CT, and 3) determine the spectrum of structural abnormalities in 
SALD and its correlation with PFTs.
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Methods 

Study population 
CF patients screened for LTX between January 1 1990 and December 31 2005 in 
17 centers were included if clinical screening data, including a chest CT within 
the preceding 12 months was available. We collected demographic information, 
weight and height, sputum microbiology, hematology, blood chemistry, and pul-
monary function data (online supplement). Data was collected by chart review by 
a single investigator (ML) during site visits in 16 sites and by review of the elec-
tronic medical record at one site. Selection criteria in all centers were based on the 
1998 ATS guidelines.(6) One center used alternative values for FEV1 i.e <25%-pre-
dicted (males) and <40%-predicted (females). The human subjects review boards 
at all centers approved the study protocol and waived written informed consent 
because of the observational nature of the study.

CT scanning procedures 
CTs were made using a range of scanners and protocols (online supplement, Table 
E1). Scans were available in two formats; 208(51%) films (January 1991 to Novem-
ber 2005), and 203(49%) digital scans (October 1996 to December 2005). Scans 
on film were digitized. All scans were anonymized and copied on compact disc. 

CT analysis 
CT analysis was done in a single batch. Before scoring, image quality was rated 
(good/medium/poor), based on image resolution and movement artefacts. Scans 
with poor quality were excluded from scoring. Scans were scored in randomized 
order using the SALD scoring system.(28) In this system, all lung tissue is divided 
into 4 components of lung morphology. Three components indicate abnormalities: 
1) infection/inflammation (INF, including bronchiectasis, airway wall thicken-
ing, mucus and consolidation), 2) air trapping/hypoperfusion (AT), and 3) bulla/
cysts (BUL). The fourth component normal/hyperperfused tissue (NOR) reflects 
normal or hyperperfused parenchyma. We applied a novel semi-automated ap-
proach to the SALD scoring system to improve precision and reduce analysis time, 
by using an in-house developed software tool (MeVis Medical Solutions AG and 
Fraunhofer MEVIS, Bremen, Germany). Scans were annotated using a standard-
ized procedure (online supplement). In brief; a 10x10 mm grid was projected over 
each slice and each grid cell was manually assigned to one of the 4 components, 
using different colors (online supplement, Figure E1). To speed up the manual 
annotation process, lung tissue was segmented using region growing with one 
manual seed point per lung in the color of the component predominantly present 
in the scan. 

A random subset of CTs (online supplement) showed that scoring 1 slice every 30 
mm was sufficient to compute reproducible and accurate scores, thus analyzing 
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6-9 slices per scan. Scoring was done by a single experienced observer (ML), who 
was blinded to clinical data and outcome. Within observer agreement was estab-
lished by re-scoring 25 random scans after one month. 

Statistical analysis
To define the spectrum of abnormalities, data from all patients assessed but not 
listed (n=411) was used. For survival analysis, only data from patients listed after 
screening was used (n=366). The Mann-Whitney-U and Chi-square test were used 
to compare patient characteristics between patients listed and patients not listed. 
Reproducibility of the SALD system was evaluated using intraclass-correlation co-
efficients (ICC) and Bland-Altman plots. Correlations between CT scores (listed 
patients only) and PFTs were investigated using Spearman’s correlation coefficients 
(rs). To estimate survival, it was a priori decided to group LAS and CT scores into 
tertiles. Using these tertiles, Kaplan Meier curves were constructed and compared 
using Cox regression. Primary endpoint was death on the waiting list. Each patient 
was included from listing up to LTX, death, or end of follow up. Patients were en-
rolled up to December 31 2005, the census date was December 31 2006. Survival 
differences between centers were evaluated by dividing the centers into 6 groups 
according to geography, as some centers did not contribute enough patients for 
separate analysis (patient characteristics: online supplement, Table E2). LAS was 
calculated only for patients ≥ 12 years (n = 334) (29), as pediatric lung allocation 
is still based on waiting time.(8) Multiple imputations were used to estimate miss-
ing clinical data needed in the calculation of the LAS scores (online supplement). 
Multivariate Cox regression models were used to evaluate the predictive value of 
the SALD and imputed LAS scores. Goodness of fit was assessed using log-minus-
log plots and the Therneau-Grambsch proportional hazards test. Sensitivity analy-
sis was performed to evaluate the influence of missing data on the association of 
LAS with survival (online supplement). SPSS version 15.0 and STATA version 11.1 
were used for statistical analyses. Results are displayed as median (10th – 90th per-
centile) unless indicated otherwise. P < 0.05 was considered significant.

Results

Study population
From the 565 eligible patients, 154 subjects were excluded, resulting in 411 pa-
tients (Figure 1). For patients with multiple screenings, we only included the last 
screening before listing. Subsequently, 366 (89%) patients were listed for LTX after 
screening, and consisted of 247 (68%) adults, 87 (24%) adolescents aged 12-18 
years, and 32 (8%) children younger than 12 years. Patient characteristics are de-
scribed in Table 1. 
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Within observer agreement for the SALD system was good, ICC for the 4 com-
ponents ranged from 0.92 to 0.97. Bland-Altman plots showed that differences in 
scores were independent of the magnitude of the scores (Online supplement, Table 
E3, Figure E2). 

SALD spectrum 
We identified a SALD spectrum ranging from predominantly infection/inflamma-
tion to predominantly air trapping/hypoperfusion. The distribution of the SALD 
components for individual patients is visualized in Figure 2. 

Correlation SALD CT scores – PFTs 
Weak correlations were found between INF and FVC (rs= -0.18 p=0.001), AT and 
FEV1 (rs= -0.23 p<0.001), and NOR and FVC (rs=0.11 p=0.04) as well as FEV1 
(rs=0.28 p<0.001). 

Figure 1. Flow chart of the study cohort.
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Parameter
Patients listed
(n=366)

n Patients not  
listed (n=45) n p-value

Males 186 (51%) 366 29 (64%) 45 0.11
Age (years) 22.8 (13-38) 366 20.8 (11-39) 45 0.32
BMI (kg/m2)† 18 (15-22) 356 18 (15-22) 43 0.62
Pancreatic insufficiency 335 (93%) 359 42 (96%) 44 0.44
Diabetes mellitus 132 (37%) 358 9 (21%) 44 0.04
P. aeruginosa 316 (89%) 357 36 (88%) 41 0.80
B. cepacia complex 24 (7%) 355 3 (7%) 41 0.75
FEV1 (% predicted)‡ 25 (16-37) 356 29 (20-51) 44 0.001
FVC  (% predicted)* 42 (28-59) 340 48 (30-69) 40 0.004
Corticosteriod use 128 (36%) 353 12 (27%) 44 0.32
Oxygen use 282 (84%) 336 23 (53%) 43 <0.001

6 minute walk distance 
(meters) 431 (280-588) 288 440 (248-600) 38 0.92

PCO2
& (kPa) 6.1 (5.1-7.8) 318 5.9 (4.7-7.9) 37 0.11

PO2
# (kPa) 8.0 (5.7-10.0) 318 8.3 (5.6-11.3) 37 0.54

Waiting time (days) 237 (30-758) 366 - -
LAS§ 34.9 (32.7-38.6) 334 - -
SALD¥ scores (%)
Infection/inflammation 29 (18-42) 366 27 (16-36) 45 0.02
Air trapping/hypoperfusion 50 (35-62) 366 49 (36-62) 45 0.82
Bulla/cysts 0 (0-1) 366 0 (0-2) 45 0.83
Normal/hyperperfusion 19 (12-31) 366 22 (14-36) 45 0.007

Data are given as patient numbers (%) or median (10th – 90th percentile).
† Body Mass Index
‡Forced expiratory volume in 1 second
*Forced vital capacity
& Carbon dioxide partial pressure
# Oxygen partial pressure
§ Lung allocation score (only calculated for children ≥ 12 years of age)
¥ Severe advanced lung disease

Table 1. Patient characteristics and CT scores for the study cohort (n=411), divided in patients who 
were listed (n=366) and patients who were not listed (n=45) for lung transplantation after screening. 
The n indicates the number of observations on which the estimates are based per parameter, the 
p-values indicate the significance of differences between the groups.
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Survival analysis
Of the 366 listed patients, 67 (18%) patients died while waiting, 263 (72%) patients 
underwent LTX after a mean waiting period of 10 months, and 36 (10%) patients 
were still awaiting LTX after a mean waiting period of 20 months. No patients were 
lost to follow up. All deaths were due to cardiorespiratory disease. Waiting list 
survival did not change with calendar year of listing. Minor differences in survival 
were found between centers (p=0.028), but after adjustment for LAS no signifi-
cant differences remained (p=0.84). No survival differences were found between 
children younger than 12 years and the adults and adolescents (p=0.43). Kaplan-
Meier survival curves for INF and LAS, both variables categorized into tertiles, are 

Figure 2. Visual distribution of the 4 categories of the SALD CT scoring system in the 411 patients 
who were screened for lung transplant: white = infection/inflammation (INF); dark grey = air 
trapping/hypoperfused (AT); light grey= normal/hyperperfused (NOR); black = bulla or cysts 
(BUL). Patients are sorted according to their infection/inflammation component (A) or air trapping/
hypoperfusion component (B). A full color version of this image can be found on page 218 in the color 
section
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shown in Figure 3. These univariate analyses showed significantly worse survival 
with higher scores, with p=0.001 and 0.012 for INF and LAS, respectively. Simul-
taneous evaluation of both variables using Cox regression showed that INF had 
predictive value for survival on top of LAS (p=0.003, Table 2). Further analysis 
showed that the effect of INF did not depend on the levels of LAS (interaction p-
value= 0.83). Similar results for tertiles of INF were found when the Cox-model 
additionally allowed for center. LAS and center adjusted hazard ratios of INF ter-
tiles 2 and 3, both in comparison with the lowest tertile, were 1.57 (p=0.24) and 
2.53 (p=0.008), respectively. Additional analysis investigating the use of INF and 
LAS as continuous variables are provided in the online supplement. 

Evaluating NOR, worse survival was found with decreasing scores. Three-years 
Kaplan-Meier survival for tertile 1 was 70%, and decreased to 50% for tertile 3 
(ptrend=0.003). However, NOR did not add significantly to the Cox model including 
INF and LAS (p=0.18). Sensitivity analysis showed no influence of missing data on 
the association of LAS with survival (online supplement). 

Figure 3. Kaplan-Meier plots of the proportion of cystic fibrosis patients alive while awaiting lung 
transplantation. Individuals are grouped in tertiles of SALD infection/inflammation (INF) score (plot 
A) and the mean Lung Allocation Score (LAS) (plot B). The full cohort of 366 patients was used to 
construct plot A, however, children < 12 years of age (n=32) were excluded from plot B, as LAS scores 
for this cohort cannot be generated. Tertiles for INF (%) are as follows: tertile 1≤25 (solid line), 2=26-
32 (dashed line), 3≥33 (dotted line), and for LAS: tertile 1£34 (solid line), 2=34.1-36.1 (dashed line), 
3≥36.2 (dotted line). 
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DISCUSSION

To our knowledge, this is the first study to investigate the association between CT 
findings and survival in CF. Several studies have aimed to identify reliable predictors 
of survival, but CT-related parameters have never been included in survival analy-
ses.(10-12, 17, 30-31) In the current study, we found an association between CT 
and survival. This is a clinically important finding, as it implies that CT parameters 
can improve survival prediction models, such as the LAS. The LAS was introduced 
to reduce wait list mortality by prioritizing candidates based on urgency.(8) LTX 
candidates are ranked according to their LAS, which is calculated using risk fac-
tors associated with mortality before and after transplantation. Early results from 
the introduction of the LAS are encouraging; decreases in the number of patients 
awaiting LTX, as well as in waiting time and mortality have been reported.(32) To 
date, only clinical parameters are incorporated in the LAS. We showed that INF had 
independent predictive value to LAS, strongly suggesting that CT may improve the 
predictive value of LAS for CF. As supportive evidence, the prognostic value of CT 
has previously been shown for idiopathic pulmonary fibrosis (33-34), and CT is cur-
rently incorporated in these patient’s transplantation guidelines.(18) Whether CT 
adds to the predictive value of LAS in other lung diseases warrants further investiga-
tion. Another consideration is that our multivariate model only included LAS and 
INF, due to the limited number of events. Analysis including INF and the separate 
LAS parameters in a larger group is necessary to evaluate which components of LAS 
are of minor influence when the influence of INF is allowed for.

Parameter HR 95% CI p-value

LAS
 ≤34
34.1 – 36.1
≥36.2

1*
1.42
2.32

-
0.63 – 3.24
1.17 – 4.60

-
0.40#

0.016#

INF (%)
≤26
26-32 
≥33

1*
1.62
2.65

-
0.78 – 3.36
1.35 – 5.20

-
0.19$

0.005$

Table 2. Hazard ratios (HR) derived from the multivariate Cox model with the 95% confidence 
interval (95% CI) according to tertiles of the Lung Allocation Score (LAS) and SALD infection/
inflammation score (INF). The first tertile is used as reference category. 

*Reference category
#Lung allocation score p-value for trend=0.013 
$SALD infection/inflammation score p-value for trend=0.003
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In this study, we calculated LAS for patients listed between 1990 and 2005. How-
ever, the LAS was introduced in May 2005. Thus, most patients were listed in the 
pre LAS era. Furthermore, patient selection was based on the 1998 ATS guidelines 
which were updated in 2006.(18) In addition, patient survival has improved over 
the years.(35-37) Although we found no trend for improved survival with listing 
year, these factors may affect the generalizability of our results to patients cur-
rently awaiting LTX. Future studies are needed to address these concerns. 

In this study, the possibility of informative censoring exists, where the reason for 
removal from the list for LTX is not independent of the outcome. However, sen-
sitivity analysis using the composite endpoint “death or LTX” showed that INF 
remained significantly correlated with survival (p=0.039), suggesting that infor-
mative censoring did not greatly affect our results. 

The correlation between CT and survival is an important step in the validation of 
CT as surrogate endpoint in CF. Previous studies suggested that CT may substan-
tially reduce sample size in clinical trials, increasing the feasibility of such trials.
(38) CT has already been linked to pulmonary exacerbations (25-26), and quality 
of life.(27) The association with survival was an important missing link. Often, 
new therapies aim to increase survival, and surrogate markers of survival, such as 
FEV1, are frequently used as endpoint. Our results support the use of CT as sur-
rogate endpoint, as it shows that CT can predict survival.

The spectrum of structural abnormalities found in this study confirms the re-
sults of our pilot study that INF and AT are important components of SALD.(28) 
This observation is important for prevention and treatment of SALD. Therapeutic 
strategies for patients with predominantly INF probably need to be different from 
that of patients with AT. Tailored treatment of the SALD subtypes at an earlier 
stage may potentially reduce mortality and improve the quality of life. Further 
investigation is warranted. 

We found weak correlations between SALD scores and PFTs. These results are in 
agreement with findings in mild to moderate CF.(22, 39) INF was not correlated 
with FEV1, an important screening criterion in CF.(18) FEV1 correlated weakly 
with AT and NOR, which showed no substantial predictive value. This strength-
ens the concept that CT can contribute relevant information to survival models 
independent of PFTs.  

This study has some limitations. First, data was collected by a single investigator 
during site visits. This minimized workload for the centers, reduced variability in 
data collection, and minimized missing data. However, no re-sampling was pos-
sible to check for errors. Nevertheless, we considered errors in follow up to be 
uncommon, as this was robustly divided in death, LTX, or alive. Second, SALD 
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scoring was performed by one observer. Thus, interobserver variability could not 
be assessed. However, importantly, intraobserver agreement was very good. Given 
the analysis time, our system requires automation to be feasible in clinical prac-
tice. To date, we have developed a framework to classify the SALD components 
and showed that these automated INF scores correlated well with our semi-au-
tomated scores.(40) Next step will be to investigate the association between au-
tomated scores and survival. Third, CTs were made with different scanners and 
protocols. This may have introduced some bias related to differences in resolution 
and density distribution. However, we consider it unlikely that this could have af-
fected the robust division of lung tissue in the 4 SALD components. Image quality 
was assessed before scoring. In general, manual systems are generally considered 
less sensitive to differences between CTs and protocols.(38, 41) Fourth, United 
Network of Organ Sharing default values were used for pulmonary artery systolic 
pressure and carbon dioxide partial pressure increase. However, we consider it un-
likely that this affected the association between LAS and survival, as these defaults 
were normal or least beneficial values and therefore unlikely to contribute to a 
higher LAS than expected when using true values.

In summary, in this study we found a significant association between CT param-
eters and survival, with independent predictive value of CT to LAS. This strongly 
suggests that in CF, CT can add significant information to survival prediction 
models. In addition, we reported a spectrum of abnormalities which may warrant 
more personalized clinical management of CF patients with SALD. 
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Screening data and definitions

The following data was collected, using the following definitions:

Age - age at the time of the CT scan

CF diagnosis - clinical features typical for CF, positive sweat test, and/or the pres-
ence of two CF mutations

Pancreatic exocrine insufficiency - need for supplemental pancreatic enzymes 

CF-related diabetes - need for subcutaneous insulin or oral medication  

Corticosteroid use - use of oral corticosteroids at the time of screening

Oxygen - supplemental oxygen at home at the time of screening, expressed in 
liters per minute and specified for the time of day used.

Assisted ventilation - Need for assisted ventilation at the time of screening (yes/
no) If yes, then the type of ventilation (BiPAP, CPAP, me-
chanical ventilation) and time of use (continuous/inter-
mittent) was recorded.

BMI - weight at the time of screening in kilogram/(length at time of screening in 
meters)2    

Microbiology - Presence of a given micro-organism in sputum culture at the time 
of screening

Six-minute walk distance - distance walked in 6 minutes in meters, tested at the 
time of screening 

Blood test results - creatinine, blood gas analysis  

Spirometry - spirometry values performed or stated at the time of screening ex-
pressed in percent predicted. Recorded were forced expiratory vol-
ume in one second (FEV1), and forced vital capacity (FVC).
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Standardized CT scoring procedure

All scans were evaluated using a 10x10 mm grid. This grid size was selected by vi-
sually evaluating different sizes to see which one would capture the abnormalities 
best using the slice at carina level in 10 randomly selected scans. Since the original 
spacing between slices for all scans ranged between 3 mm and 10 mm, we planned 
to use 10 mm spacing as default for all scans. However, analysis of a scan with 10 
mm spacing (approximately 24 slices) took 90 minutes to complete. To reduce 
analysis time, we investigated the effect of increasing the spacing on the SALD 
scores. First, we scored 25 randomly selected scans using 10 mm spacing. Second, 
we increased the spacing by deleting slices to create a spacing of 20 mm, 30 mm 
and 40 mm. Third, we assessed the agreement between the SALD scores derived 
from scans with 10 mm spacing and respectively 20, 30, and 40 mm spacing using 
intraclass correlation coefficients (ICC) and Bland-Altman plots. Excellent agree-
ment for all SALD component scores was shown, with ICC values of 0.99 (10 vs 
20 mm), 0.99 to 0.98 (10 vs 30 mm), and 0.98 to 0.96 (10 vs 40 mm). In addition, 
we assessed individual differences between the 10 mm scores and the scores from 
20, 30 and 40 mm spacing. Using a maximum of 5% difference in scores as cut off 
value, 1 slice every 30 mm spacing was still acceptable. This reduced analysis time 
to 20-30 minutes per scan. Since this study included pediatric and adult CTs, there 
was some overlap between the mean number of images per CT for 30 mm (5 to 9 
slices) and 40 mm spacing (4 to 6 slices). To ensure enough slices were scored, we 
set the minimum on 6 slices per scan. If a scan contained less than 6 slices, 20 mm 
spacing was used.  

For film scans, 30 mm spacing was created by manually skipping the required 
number of slices to reach a spacing closest to 30 mm. For digital scans, the soft-
ware tool automatically created a subset of the scan with the appropriate spacing 
between slices. 

Before scoring the complete data set, we first established within observer agree-
ment for 30 mm spacing, by re-scoring the 25 randomly selected CTs after one 
month. Good agreement was shown (ICC range 0.88-0.94), after which analysis of 
the complete data set was commenced. 

For each scan, start and end slice were standardized using the following defini-
tions: the start slice was considered the first slice in which lung tissue was clearly 
visible for both lungs. The end slice was considered the slice in which both right 
and left dome of the diaphragm were visible and lung tissue was still visible for 
scoring. Only lung parenchyma was scored, thus, lung hili, trachea, main right 
and left bronchi and diaphragm were not annotated. Window level and width were 
preset at -500/1600. If needed, adjustments were made to increase the visibility of 
the areas with normal/hyperperfused tissue and air trapping/hypoperfused tissue. 
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This was done using slices where the differences between these areas were best 
visible, which was usually at the basal level. 

All scans were scored using a standardized procedure. First, the lungs were semi-
automatically segmented using region growing with one manually indicated seed 
point per lung. This segmentation was used to mark all grid cells belonging to lung 
tissue, using the label of the SALD component predominantly present in the scan 
(usually air trapping/hypoperfusion). Second, the observer manually specified per 
grid cell to which SALD component it belonged by adjusting the label when appro-
priate. Each SALD component was assigned a different label, shown as a coloured 
overlay on the image. The SALD components were scored as follows:

Infection/inflammation: all grid cells were scored that contained (parts of) ab-
normalities belonging to this component (bronchiectasis, bronchial wall thicken-
ing, mucus, and/or consolidations). Vessels were considered to belong to normal 
tissue. 

Air trapping/hypoperfusion: grid cells were scored when ≥ 50% filled with tissue 
with an abnormal hypodense aspect. 

For normal/hyperperfusion: grid cells were scored when ≥ 50% filled with nor-
mal or hyperlucent lung parenchyma. 

Bulla and cysts: all grid cells were scored that contained (parts of) air spaces with 
no visible connection to the bronchial tree. 

Imputed data analysis

Multiple imputations were used to estimate missing values of functional status 
(n=175), 6 minute walk test distance (n=78), liters of oxygen at rest (n=117), body 
mass index (n=10), forced vital capacity (n=26), partial pressure of carbon dioxide 
(n=48), presence of diabetes (n=8), and creatinine (n=19). Since pulmonary arte-
rial systolic pressure was not measured in most cases, the United Network of Or-
gan Sharing (UNOS) default value of 20 mmHg was used for all patients. Increase 
in carbon dioxide partial pressure was not part of the LAS when the study started, 
thus UNOS least beneficial value indicating no change was used. These compo-
nents needed in the calculation of LAS scores were imputed using Stata software 
(version 11.1). Twenty data sets with imputed data for the missing components 
were constructed and LAS scores were subsequently calculated in each resulting 
dataset. These resulting LAS scores were grouped into tertiles. Cox regression, 
taking account of these multiple imputed values for LAS, was used for the evalu-
ation of LAS scores regarding their impact on waiting list mortality. For all other 
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analyses occasional missing values not needed for calculation of the LAS, e.g. for 
FEV1, were disregarded and no imputations were done.

Sensitivity analysis

A large group of patients had missing values for functional status, an important 
factor in the determination of the LAS. Therefore, we performed a sensitivity 
analysis to evaluate the influence of missing data for functional status on the as-
sociation of LAS with survival. Kaplan-Meier plots for LAS derived from multiple 
imputations were compared with plots derived from LAS calculations using the 
defaults “No assistance with activities of daily living (ADL)” and “Some assistance 
with ADL”. Using these defaults for patients with missing values showed that cor-
relations between LAS and survival remained significant. 

INF and LAS as continuous variables

The use of INF and LAS as continuous variables gave satisfactory fits in the Cox 
regression, with hazard ratios for INF (per 10 percentage points increase in score) 
of 1.45 (95%CI 1.12 – 1.85, p=0.003) and LAS (per point increase in score) of 1.1 
(95%CI 1.04 – 1.17, p=0.001). 

Characteristic n

Number of identified scanners 31 368
Slice spacing (mm) 10 (0.5-20) 411
Slice thickness (mm) 1.5 (0.8-10) 408
Beam potential (kV) 120 (90-290) 404
Beam current (mA) 150 (28-420) 382
Gantry rotation time (s) 1.0 (0.4-6.8) 377

Table E1. Scanning characteristics for all CT scans included in the study (n=411). 

Numbers given are median (range), or total number. 
Not all scanner types and scanning parameters could be identified, therefore the number of number 
of identified scanners and the number of observations on which the estimates are based is displayed 
(n).



Part 3	 Further validating CT as surrogate endpoint in CF

134

Parameter A
(n=100)

B
(n=78)

C
(n=71)

D
(n=44)

E
(n=43)

F
(n=30)

p-value

Males 46 
(46%)

35 
(50%)

37 
(52%)

23 
(52%)

26 
(51%)

19 
(63%)

0.71

Age (years) 17.1 
(10-37)

25.9 
(15-40)

25.0 
(12-39)

22.6 
(15-40)

25.0 
(14-39)

20.1 
(13-36)

<0.001

BMI (kg/m2)† 17 
(14-22)

19 
(16-22)

18 
(14-21)

17 
(15-20)

19 
(15-23)

19 
(15-23)

<0.001

Diabetes 28 
(29%)

25 
(36%)

30 
(46%)

13 
(30%)

26 
(51%)

10 
(33%)

0.054

B. cepacia 
Complex

3 
(3%)

5 
(7%)

8 
(13%)

1 
(2%)

7 
(14%)

0 0.025

FEV1 (% 
predicted)‡ 

29 
(16-44)

23 
(15-35)

24 
(16-34)

22 
(14-33)

23 
(17-31)

27 
(17-37)

<0.001

FVC  (% 
predicted)* 

46 
(27-65)

37 
(22-51)

39 
(29-49)

43 
(28-59)

44 
(30-58)

42 
(29-68)

<0.001

Oxygen use 68 
(68%)

62 
(89%)

60 
(85%)

28 
(64%)

47 
(92%)

17 
(57%)

<0.001

6 minute walk 
distance (meters)

447 
(337-596)

400 
(280-552)

380 
(144-500)

433 
(265-600)

485 
(302-628)

454 
(299-570)

<0.001

PCO2
& (kPa) 5.6 

(4.8-7.9)
6.3 

(5.3-8.1)
6.1 

(5.3-7.6)
5.9 

(4.8-9.1)
6.3 

(5.0-8.1)
6.7 

(4.8-7.5)
0.011

PO2
# (kPa) 8.5 

(5.3-10.9)
7.5 

(5.5-9.9)
7.7 

(5.7-9.5
7.8 

(5.1-9.9)
8.4 

(6.7-9.9)
8.4 

(4.9-10.8)
0.009

Waiting time 
(days)

284 
(18-1169)

304 
(50-783)

168 
(22-533)

185 
(32-545)

287 
(34-726)

238 
(49-607)

0.07

LAS§ 33.9 
(32.3-38.2)

35.6 
(33.0-40.8)

35.5 
(34.0-37.5

34.6 
(32.7-37.6)

36.0 
(33.4-39.1)

33.9 
(32.4-37.0)

<0.001

Table E2. Patient characteristics for the 17 centers divided into 6 groups according to geography, and the overall p-values.

Data are given as patient numbers (%) or median (10th – 90th percentile). 
†Body Mass Index
‡Forced expiratory volume in 1 second
*Forced vital capacity
& Carbon dioxide partial pressure
# Oxygen partial pressure
§ Lung allocation score
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SALD Parameter ICC 95% CI

Infection/inflammation score (%) 0.97 0.94-0.99
Air trapping/hypoperfusion score (%) 0.96 0.92-0.98
Bulla/cysts score (%) 0.92 0.84-0.97
Normal/hyperperfusion score (%) 0.96 0.91-0.98

Table E3. Intraclass correlation coefficients (ICC) and the 95% confidence interval (95% CI) for the 
within observer agreement of the SALD CT scores for a subset of 25 scans. 

Figure E1. Images show a slice at the level of the mid-trachea of a chest CT scan of a CF patient with 
SALD. Image A shows the original slice on which the abnormalities are indicated by arrows. Red 
arrows: bronchiectasis, blue arrows: air trapping/hypoperfusion. Image B shows the same slice after 
the observer has manually annotated the abnormalities with colours. Red=inflammation, blue=air 
trapping, green=normal perfused tissue. A full color version of this image can be found on page 217 in the 
color section
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Figure E2. Bland-Altmans plots 
for within observer agreement 
for the SALD scores infection/
inflammation (plot A), air 
trapping/hypoperfusion (plot 
B) and normal/hyperperfusion 
(plot C). All plots show that 
differences (first minus second 
measurements) in scores are 
independent of the level of 
the scores. The plot for SALD 
bulla/cyst score is not shown, 
as a score greater than zero was 
only present in 1 patient.
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Abstract 

Clinical trials for the treatment of cystic fibrosis (CF) lung disease are important 
to test and optimize new therapeutic interventions. To evaluate the effect of these 
interventions, sensitive and accurate outcome measures are needed. The most 
commonly used endpoints are spirometric variables such as the forced expiratory 
volume in one second (FEV1) and respiratory tract exacerbations (RTE).  Unfor-
tunately, these endpoints are relatively insensitive to monitor progression of CF 
lung disease, and thus require a large number of patients when used in clinical 
studies. In addition, these endpoints are not suitable to study CF lung disease in 
young children. Chest computed tomography (CT) holds great promise for use as 
a sensitive surrogate endpoint in CF. A large body of evidence has been produced 
to validate the use of chest CT as primary endpoint to study CF lung disease. 
However, before chest CT can be used in clinical trials, it has to be recognized as 
a validated surrogate endpoint by regulatory agencies. The aim of this review is to 
summarize what is currently known about the use of chest CT as surrogate end-
point in clinical trials in CF. 
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Introduction

Cystic fibrosis (CF) lung disease is the primary cause of death in most CF patients. 
Thanks to improved treatment, median age currently approaches 38 years.(1) New 
therapeutic agents such as inhaled antibiotics and disease modifying agents are 
in development to further improve current treatment.(2-4) To test the effective-
ness and safety of these drugs in randomized clinical trials, sensitive and accu-
rate outcome measures are needed. Before an outcome measure can be used as a 
primary endpoint in a clinical study, it has to meet stringent requirements. First, 
it must reflect the presence and severity of the disease. Second, it has to reflect 
clinically meaningful improvement in disease severity when the disease is treated 
effectively. Third, the measurement must be reproducible. Fourth, changes in the 
endpoint should closely match changes in the true outcome.(5) Two types of end-
points can be distinguished; clinical or “true” endpoints, and surrogate endpoints. 
The US Food and Drug Administration (FDA) defines clinical endpoints as direct 
measures of how a patient feels, functions, or survives, and are thus expected to 
predict the effect of a therapy. The FDA defines surrogate endpoints as labora-
tory measurements or physical signs that can be used as a substitute for a clinical 
endpoint.(6) Surrogate endpoints are generally used when the clinical benefit may 
not be detectable in trials of reasonable cost, duration, or size.(7) FDA regulations 
state that a surrogate endpoint is considered to be “reasonably likely to predict 
clinical benefit and, therefore, useable for drug approval if there is evidence based 
on epidemiologic, therapeutic, pathophysiologic, or other data supporting the as-
sociation of the surrogate with the clinical benefit”.(7)

In CF, two endpoints to assess clinical benefit are currently used; respiratory tract 
exacerbation rate (RTE-R) and quality of life (QoL).(8) RTE-R is an important 
endpoint that has been shown to increase with age and more severe lung func-
tion impairment.(9) In addition, there is a clear association between RTE-R and 
survival in CF.(10) Unfortunately, the use of RTE-R has disadvantages. It is a rela-
tively insensitive endpoint, especially in (young) children with early lung disease 
in whom exacerbations due to underlying disease severity are indistinguishable 
from intercurrent viral lower respiratory tract infections. As a result, RTE-R re-
quires a large sample size when used in clinical studies.(11) Furthermore, there is 
no universal consensus regarding the definition of an RTE.(12) 

QoL is another important clinical endpoint. The FDA accepts patient reported 
outcome measures as primary or secondary endpoints if they are appropriate for 
the disease, product, and indication.(13) QoL has the advantage of measuring di-
rectly how a patient reports to feel or function. The two most commonly used 
CF-specific QoL questionnaires (the CF questionnaire-revised (CFQ-R), and the 
CF Quality of Life Questionnaire) are well validated with demonstrated reliability, 
validity, and sensitivity.(14-15) The CFQ-R has been used as a primary endpoint 
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in a study evaluating the effectiveness of an inhaled antibiotic against Pseudo-
monas Aeruginosa.(16) However, further work is needed to standardize the use 
of QoL instruments in clinical research. Furthermore, the development of new 
QoL instruments that are sensitive to smaller and earlier changes in symptoms is 
needed, as improvements in overall health status and lung function are seen in CF 
birth cohorts.(13) 

The most commonly used surrogate endpoint in CF is the forced expiratory vol-
ume in one second (FEV1). The FEV1 is indirectly related to structural lung dam-
age. When structural damage affects a large volume of the lungs, low values are 
observed.(17) Thanks to improvements in CF therapy over the last decades, FEV1 
has become relatively insensitive for monitoring progression of CF lung disease. 
Currently, FEV1 is in the normal range for most patients until adolescence, and 
average annual FEV1 decline is less than 1%.(18) In addition, FEV1 is insensitive 
to detect early and localized structural changes (17), is difficult for young children 
to perform, and is an inappropriate measurement for infants and most pre-school 
children.(8) Thus, there is a need for new, more sensitive surrogate endpoints in 
CF that reflect mild lung disease and that can be used to assess lung disease in 
infants and young children. 

A promising endpoint that has been extensively studied since the mid nineties 
is standardized assessment of images of the lungs obtained by chest computed 
tomography (CT). Importantly, using chest CT, structural abnormalities can be 
easily observed. Various methods have been developed to quantify these structural 
abnormalities. In addition, a large number of studies have been done to validate 
chest CT as a surrogate endpoint. The aim of this review is to summarize what is 
currently known about the use of chest CT as a surrogate endpoint in clinical tri-
als in CF. In addition, we will discuss the advantages and disadvantages associated 
with its use, and the future work needed to further improve sensitivity and accu-
racy of chest CT for use in clinical trials. 

CF lung disease
At birth, CF patients have macroscopically normal lungs.(19) The structural 
changes related to CF however, occur early. Pathology studies have shown the 
presence of structural abnormalities such as bronchiectasis (BE), and mucus im-
paction even in infants with CF aged 0 to 4 months.(20) In addition, all children in 
this age group were found to have evidence of bronchial wall inflammation. Air-
way wall thickening, a frequently observed abnormality in CF, has been correlated 
with airway inflammation.(21-22) In other lung diseases, such as chronic obstruc-
tive pulmonary disease (COPD) and asthma, the severity of airflow obstruction is 
proportional to the severity of airway wall thickening.(21, 23) Similar correlations 
have been reported in CF. Furthermore, a 3-fold increase in airway wall thickening 
was found in specimens from CF patients compared with specimens from COPD 
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patients.(22) In addition, destruction of the epithelial layer and a substantial loss 
of cartilage have been described in CF.(24-25) All these factors are likely to con-
tribute to the airflow obstruction that is present in CF.(22) To monitor CF-related 
lung changes in vivo, CT scanning can be used, as it was shown to correlate well to 
pathologic findings such as BE.(26) 

Image analysis
An important condition for the use and validation of chest CT as a surrogate end-
point is that the structural abnormalities can be quantified in a reproducible man-
ner. This can be done using manual (semi-)quantitative scoring systems and/or 
automated systems. 

Scoring systems
For CT scoring, a range of systems is available with proven reproducibility. In a 
comparative study, within and between reader reproducibility for 5 scoring systems 
was found to be good with intraclass correlation coefficients of 0.74 and higher.
(27) These systems were mainly developed to quantify the abnormalities in mild 
to moderate CF lung disease. For CF patients with severe advanced lung disease 
(SALD), a dedicated SALD scoring system was developed.(28) This system uses a 
quantitative approach to quantify the most important structural abnormalities of 
CF lung disease. Using a digital grid projected over the CT image, all lung tissue 
within one grid cell is annotated into one of 4 components. Three components in-
dicate abnormalities: (1) infection/inflammation (including several abnormalities, 
from which BE is the most important one), (2) air trapping/hypoperfusion; and (3) 
bulla/cysts. The fourth component consists of normal/hyperperfused tissue. The 
SALD system has been shown to correlate with the Brody-II system, with accept-
able reproducibility between and within observers. 

Automated systems
Ideally, automated systems should be used for CT quantification, as they allow 
more rapid analyses with near perfect intratest reproducibility. Various semi-au-
tomated systems have recently been developed. These systems have been shown 
capable of measuring airway wall thickness and bronchial internal diameter (29-
36), and trapped air (TA).(33, 37-38) These automated systems were able to dif-
ferentiate CF patients from controls (32-33, 35, 37-38) and parameters correlated 
well with pulmonary function tests (PFTs). (33, 35, 37-38) In addition, automated 
systems to quantify BE, airway wall thickening and mucus scores have been pub-
lished, which correlated strongly with visual scores from radiologists.(29-30, 35) 
For longitudinal follow up, automated systems have been described that allow se-
rial comparisons (31), and matching of airways.(36) Matching was also used to 
track progression of TA. In this study, two routine expiratory CTs over 2 years 
were matched, and the proportion of stable, disappeared and new TA was mea-
sured. With this novel approach, TA was found to have a stable component.(39) 
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Quantitative TA measurements have been used in intervention trials, such as de-
scribed by Robinson et al.(40) In this 1-year randomized placebo-controlled trial 
with dornase alpha, 25 children with mild CF were enrolled. They found that the 
quantitative TA measures could discriminate differences in treatment effects in 
children with mild CF. Furthermore, these measures were reported to be more 
sensitive outcome measures than either spirometry or total CT scores. Thus, auto-
mated systems are promising, but there are still substantial technical issues to be 
resolved. For example, the influence on the measurements by factors such as scan 
parameters, inflation level, effect of heuristic element in some systems on repro-
ducibility and clinical validity of the measurements.(41) Further development is 
needed before these systems can be used in multi-center clinical trials. 

Presence and severity of disease
The first validation requirement for endpoints is that it must reflect the presence 
and severity of the disease. Currently, chest CT is considered the gold standard for 
the detection of BE.(42) An important advantage of CT is that it is easily allows 
recognition of the structural lung abnormalities characteristic for CF, such as BE, 
which are not present in normal subjects. Furthermore, CT can detect abnormali-
ties early in the course of the disease. In recent cohort studies in children with CF 
diagnosed through newborn screening structural abnormalities such as BE, TA, 
and mucus impaction could be observed even in asymptomatic infants.(33, 43-45) 
In addition, in infants and in older children BE was shown to be progressive.(43, 
46-47) Furthermore, CT proved to be more sensitive in detecting and monitor-
ing BE and other structural abnormalities than PFTs related parameters (Figure 
1). (46-47) Finally, BE and TA are also the most important components of end 
stage CF lung disease (Figure 2).(28) Other structural abnormalities that can be 

Figure 1. Image showing the 
dissociation between lung 
function and lung structure 
assessed by computed tomography 
(CT). Shown is a slice of a routine 
CT scan of a cystic fibrosis 
patient, performed during 
annual check up when clinically 
stable. This slice clearly shows 
bronchiectasis and bronchial wall 
thickening (white arrows), and 
mucus plugging (black arrow). 
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observed on chest CT in CF are airway wall thickening, consolidations and bulla/
cysts. An important advantage of CT over PFTs is that structural lung abnormali-
ties can be differentiated in the above described components.  

To summarize, there is a large body of data supporting the concept that CT is 
sensitive to detect the presence and monitor the severity of structural changes 
relevant for patients with CF starting in infancy into adulthood. 

Lung function at the time of the CT however, was normal, with a forced expiratory 
volume in 1 second of 98%-predicted.   

Response to treatment
The second validation requirement for endpoints is that it has to show improve-
ment upon succesful treatment of the disease. CT scores have been shown to im-
prove with antibiotic treatment for an RTE. Shah et al. prospectively studied 27 
adult CF patients, and showed that CT scores for airway wall thickening, mucus, 
and air fluid levels in BE and centrilobular nodules improved in respectively 2/19 
(11%), 6/18 (33%), 2/2 (100%) and 4/11 (36%) of patients in response to treat-
ment.(48) Similar findings were reported for pediatric patients. Robinson et al. 
prospective studied 17 pediatric and adult CF patients (mean age 17.2 years), and 
showed that CT total scores and mucus scores were significantly reduced after 
treatment for an RTE.(49) Brody et al. studied 8 pediatric CF patients (mean age 
12.7 years) experiencing a total of 15 RTEs, and showed that CT scores for airway 
wall thickening and mucus significantly improved after treatment.(50) Even in 
very young children, these improvements were observed. Davis et al. studied 13 
young children with CF (mean age 17 months), and showed that CT total score, 
combined bronchiectasis-bronchial dilatation score and hyperinflation score sig-
nificantly reduced after treatment.(51) CT parameters have also been shown to 

Figure 2. CT slice of a patient 
with end stage cystic fibrosis 
lung disease. This CT scan was 
made during screening for lung 
transplantation. Lung function 
estimated by forced expiratory 
volume at 1 second at the time of 
the CT was 21%-predicted. Clearly 
visible are the bronchiectatic 
airways (white arrows). 
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improve after treatment with rhDNase (40, 52-53) and trends toward improve-
ments were observed when evaluating the effect of tobramycin solution for inha-
lation.(54) To date, only one long term study used CT diagnosed BE as outcome 
parameter.(55) Since BE is an irreversible change, such a study should look at the 
change in BE development. Clearly, when an intervention is able to prevent BE or 
stop the progression, this would be considered clinical meaningful. In this study, 
32 CF patients aged ≥ 6 years with mostly mild lung disease were randomly as-
signed to receive 3 cycles of 28 days on and 28 days off treatment with nebu-
lized tobramycin solution for inhalation or placebo. They found that the total CT 
score significantly improved after 28 days. However, no difference in BE scores 
between the study arms was observed. The authors concluded that the BE score 
was only marginally useful in assessing the response to treatment. A limitation of 
this study was that only 5 inspiratory and 5 expiratory CT slices of each subject 
were analyzed, which has been shown to reduce the sensitivity to detect changes.
(56) To date, no other study has been performed to investigate the long term ef-
ficacy of antibiotics, mucolytics or disease modifiers on the development of BE 
or TA. Thus, while the ability of other CT scores to improve with treatment has 
been clearly demonstrated, long term effect of treatment on the development of BE 
needs to be further studied.  

Standardization
The third validation requirement for endpoints is reproducibility of the measure-
ment. For CT, it is important to standardize the scanning protocol to optimize 
reproducibility. The most important variable that requires standardization is the 
lung volume during scanning. Traditionally, in patients of 5 years and above vol-
untary breath holding is used during scanning. Patients are instructed by the CT 
technician or by a recorded voice to perform a maximal inhalation manoeuvre, 
and then hold their breath during scanning to obtain end-inspiratory images. 
Next, patients are asked to exhale and hold their breath at the end of the exhalation 
to obtain end-expiratory images. With this technique however, one does not assess 
whether a patient was able to follow the instruction correctly and hold his breath 
at the maximum in- and exhalation level. Unfortunately, for many patients and 
specifically for children, these manoeuvres are difficult to perform. In a pediatric 
study (mean age 12 years), scan volumes were compared with plethysmographic 
lung volume measurements prior to scanning. Average inspiratory volume was 
at an acceptable level of 77% of total lung capacity (TLC). However, this volume 
ranged from 55% to 106%. Average end-expiratory volume was 86% of functional 
residual capacity (FRC) and 140% of residual volume (RV), and thus closer to 
FRC than to RV. This suggests that expiratory manoeuvres are even more difficult 
to execute for children.(57) Thus, there is a need for better standardization of 
the breath hold manoeuvres during CT scanning. This volume control can be ob-
tained by using a spirometer combined with instructions by a qualified lung func-
tion technician. Prior to scanning, the patient practices the required breathing 
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manoeuvres coached by the technician and using a spirometer. Next, the patient 
performs these manoeuvres with the spirometer during scanning, again coached 
by the lung function technician. (58) The scanning will commence when the re-
quired volumes are reached by the patient. The aim of this procedure is to obtain 
an inflation level near 95% of slow vital capacity (SVT), and an expiration level 
near 5-12% of SVT(44, 59) Recently, a new spirometer technique was described; 
the volume-monitored technique. This method combines coaching with a por-
table spirometer that generates respiratory tracings to aid the patient in achieving 
targeted lung volumes.(60)  With this method, patients as young as 4 years are able 
to achieve reproducible images at 95% of full inflation and at 77% of vital capacity 
for the expiratory images. 

In young children, standardization of lung volume during scanning requires a dif-
ferent approach, as most children aged 0-5 years are not able to do a voluntary 
breath hold at the correct volume level and at the correct moment. Therefore, a 
non-invasive pressure controlled ventilation (PCV) technique under general an-
aesthesia or sedation has been introduced.(44) This technique starts off by hyper-
ventilating the child by giving a short series of augmented breaths using positive 
pressure applied via a facemask to induce a physiologic respiratory pause in the 
sedated child. During this pause, the lungs are imaged at full inflation by main-
taining a positive facemask pressure of 25–30 cm water pressure for inspiratory 
images, and resting end exhalation by applying no mask pressure for expiratory 
images.(44, 59) Both spirometer and PCV techniques have been shown to be high-
ly reproducible.(59, 61) 

Volume control is particularly important for assessment of BE en TA. In a pediatric 
study, BE was identified on 30% of images obtained at end-inspiration using PCV 
techniques compared with 6% of images obtained during quiet breathing. TA was 
seen in 45% of images obtained at end-expiration compared with 19% of images 
obtained during quiet breathing.(62) Thus, for standardization of chest CT, volume 
control is an important condition for both inspiratory and expiratory scans.

Correlation to true endpoints
The fourth validation requirement for endpoints is that changes in the endpoint 
should closely match changes in the true outcome. The first argument providing 
that CT meets this criterion is that higher CT scores have been correlated with 
conditions associated with a more severe course of the disease. For example, higher 
CT scores were reported for patients with pancreatic insufficiency compared with 
patients with sufficient pancreatic function.(63) In addition, CT scores strongly 
correlated with Pseudomonas Aeruginosa acquisition, which is a well established 
risk factor for progressive CF lung disease.(64-66) The second argument that CT 
meets this criterion, is that CT scores have been linked to the true endpoints RTE-
R, quality of life, and survival. 
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RTE-R: Two studies have shown that the severity of structural changes on CT 
correlated significantly with RTE-R.(67-68) The first study described 61 subjects 
from the Pulmozyme Early Intervention Trial.(67) In this trial, 6- to 10-year-old 
children with well preserved lung function (forced vital capacity ≥ 85%) were in-
cluded. CTs and PFTs were performed at the beginning and end of the 2-yr trial 
during which RTE-R was recorded. Nine out of 61 subjects experienced a total 
of 22 RTEs. PFTs and CT scores at baseline showed significant correlations with 
RTE-R, although none of these variables by itself predicted RTEs with high ac-
curacy.(67) 

The second study was performed in an unselected cohort of 115 children and 
young adults with CF.(68) In this retrospective study, routine chest CTs and PFTs 
performed during annual checkup were collected with two years’ follow up in 
which RTE-R was recorded. Fifty-one of the 115 subjects experienced a total of 
148 RTEs. BE was found to be the strongest predictor of RTEs of all CT param-
eters, and added significantly to the predictive value of FEV1.  

QoL: In patients with non-CF BE, studies have shown an association between BE 
and impaired QoL.(69) In a cross-sectional study including 46 adults with non CF 
bronchiectasis, the relationship between the BE severity and QoL was investigated. 
CTs were scored with a modified Bhalla scoring system and QoL was measured us-
ing the St George’s Respiratory Questionnaire. A significant correlation between 
BE severity and QoL in patients with a more severe bronchiectatic disease was 
observed.(70) In a recent study, similar results were observed in CF. In this cross-
sectional study, the effect of CT scores on QoL was assessed using routine CTs 
and CFQ-Rs from 72 children and adolescence with CF. CTs were scored using a 
modified Brody-II scoring system. Significant correlations between the respira-
tory domain of the CFQ-R and BE and TA scores were found.(71)   

Survival: Recently, a correlation between CT and survival has been established. In 
a multi-center study including 366 CF patients awaiting lung transplantation, CT 
scans acquired at the time of screening were scored using a semi-automated ver-
sion of the manual SALD scoring system.(28) SALD infection/inflammation score 
(including BE) was shown to be significantly correlated with waiting list survival. 
In addition, BE score added clinically useful, and practical information to the pre-
dictive value of the lung allocation score.(72) The correlation with survival is an 
important addition to the portfolio of CT as an outcome measure.

Correlation to other surrogate endpoints
In addition to correlations with true endpoints, CT parameters have also been 
linked to the following frequently used surrogate endpoints.
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Spirometry parameters
Several studies have shown a correlation between CT scores and spirometry pa-
rameters such as FEV1, which is currently the most extensively validated surrogate 
endpoint in CF. From these studies we learned that CT scores are more sensitive 
than PFT parameters in detecting and monitoring onset and progression of CF 
lung disease.(46-47) Comparing the validation status of FEV1 to CT-related pa-
rameters, it can be concluded that most of the validation steps for CT have been 
addressed (Table 1).

Parameter FEV1 CT

References References

Presence and severity 
of CF lung disease

(17), (93), (94), (95), (96), 
(97), (18), (98), (99), (100), 
(101), (102)

(42), (28), (33), (43), (45), 
(103), (47), (95), (104), (103)

Response to treatment 
in CF

(105), (106), (107), (49), (40), 
(108), (109), (110), (111), 
(112), (113), (114), (115), 
(116), (117), (118), (119), 
(120), (121), (122), (123), 
(124), (125), (126)

(48), (49), (50), (51) (52), 
(53), (40), (55)

Reproducibility of the 
measurement

(127), (128), (129), (130), 
(131), (132), (133), (134), 
(135)

(27), (28)

Link to true outcomes in CF

Respiratory tract 
exacerbations

(68), (67), (9), (136), (105), 
(137), (96)

(68), (67)

Survival (10), (138), (139), (140), 
(141), (142), (101), (136), 
(143), (98), (144), (145)

(146)

Quality of life (147), (148), (149), (150), 
(151), (152), (153), (154), 
(155), (156), (157), (158), 
(159)

(69), (71)

Table 1. Overview of the literature published on the validation of the surrogate endpoints FEV1 and 
CT.
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Lung clearance index (LCI)
CT scores have also been shown to correlate with LCI, a promising marker of early 
disease derived from multiple breath washout.(73-75) The LCI has been shown 
to be more sensitive to detect lung disease than spirometry, (73, 76-79). In addi-
tion,  LCI is reproducible (76, 79), and can be performed in infants.(80) Its narrow 
range in normal subjects makes it a suitable measure for long term follow up.(73, 
76-79) A normal LCI has even been suggested to exclude structural changes on CT 
(73-74), a finding that was not supported by another study.(75) Its sensitivity to 
monitor progression of advanced lung disease however, has not been investigated 
to date. In addition, LCI has not been well validated against other true and sur-
rogate endpoints.

Inflammatory parameters
The severity of structural changes on CT has been shown to correlate with inflam-
matory parameters in bronchoalveolar lavage (BAL). In a study in 17 infants and 
young children under the age of 4 years, regional distribution of airway disease 
was assessed using CT scans, and abnormalities were correlated to markers of low-
er airway inflammation provided by BAL. They found that in the lobe with great-
est disease as indicated by CT, inflammatory markers were higher than in lobes 
with least disease.(51) These findings have been confirmed in two other studies 
in infants with CF identified by newborn screening who underwent BAL and CT 
scanning as part of an early surveillance program.(43, 45)

Thus, CT has been shown to be clearly linked to a number of clinically meaning-
ful outcome measures. These correlations are essential in the validation of CT as 
surrogate endpoint in CF. 

Advantages of using CT in clinical trials
In the previous paragraphs, we have shown that CT meets many of the requirements 
for surrogate endpoints. CT is able to detect structural changes highly relevant for 
CF patients, and the abnormalities on CT can be quantified in a reproducible fash-
ion. CT scores can improve with treatment, and standard chest CT scanning pro-
cedures have been defined. In addition, CT parameters have been linked to other 
clinically meaningful outcome measures. Thus, based on these arguments, CT can 
be considered well validated as a surrogate endpoint for CF-related lung disease. 
Using CT as surrogate endpoint in clinical studies has the following advantages. 
First, CT can easily be performed in most CF centers, as virtually all centers are 
equipped with a CT scanner. Second, CT can be performed across all age ranges, 
including infants and young children. Third, CT is the most sensitive tool to detect 
early and regional disease. Compared with spirometry parameters, CT is more 
sensitive to detect and monitor disease progression.(46-47) It has been estimated 
that the better sensitivity of CT relative to PFTs can reduce sample size in clinical 
studies substantially.(63, 81) This would increase the feasibility to run clinical tri-
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als in CF. A three-year randomized controlled multi-center intervention study in 
infants diagnosed through newborn screening using BE diagnosed by chest CT as 
the primary endpoint is about to start.(82) 

Disadvantages of using CT in clinical trials
Clearly, the use of chest CT in clinical trials also has a number of disadvantages 
such as: ionizing radiation; the need for general anesthesia in young children; 
costs; and the relative complicated procedures needed for the pressure controlled 
volume scanning.

Radiation
CT exposes patients to ionizing radiation, which increases one’s natural life-long 
risk of cancer. Children are particularly at risk, as tissue and organs are still grow-
ing and developing and therefore more sensitive to radiation effects. In addition, 
children have a longer life expectancy and therefore more time to manifest the on-
cogenic effects of radiation. Furthermore, children have a smaller cross-sectional 
area compared with adults, resulting in a higher radiation dose when scanned 
with the same protocol.(83) At high exposures, the risk of cancer increases linearly 
with increasing dose. The relationship between radiation exposure and cancer risk 
from low-dose radiation (such as CT scanning) is less clear. In a study using a 
computational model, bi-annual chest CTs (mean dose 1 milli Sievert (mSv)) were 
shown to carry a low risk of radiation-induced mortality, with reported cumula-
tive cancer mortalities of 1% at age 40 and 6% at age 65.(84) However, with overall 
survival increasing for CF patients, life-long radiation exposure also increases, and 
thus the risk of radiation-induced mortality can become more meaningful. There-
fore, protocols should aim to limit radiation to the absolute minimum needed to 
acquire images of sufficient quality. Six slice protocols with a mean dose of 0.19 
mSv have been described, and were found to be appropriate for evaluating BE 
in pediatric patients.(85) However, limited slice CT reduces the ability to iden-
tify specific areas and their interval change, thus decreasing its ability to detect a 
therapeutic effect.

Volumetric CT scanning will improve the ability to identify and compare specific 
structures on serial CTs. Currently, we can acquire volumetric CTs (inspiratory 
plus expiratory images) with a mean total effective dose near 1 mSv.(57) This is 
comparable to 1/3 of the annual US background radiation.(83) These doses can 
likely be further reduced in the near future.(57) Keeping the risk-benefit ratio of 
clinical trials in mind, CT should be considered as surrogate endpoint in studies 
aiming to slow the progression of CF lung disease. 

Sedation/anesthesia
Second disadvantage is that CT scanning in infants and young children often re-
quires sedation (i.e., with chloral hydrate) or general anesthesia. These agents are 
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very effective, with reported sedation failure rates of less than 1% using chloral 
hydrate.(86) In addition, they have a good safety profile. In two large retrospec-
tive studies reviewing records of children who underwent sedation for imaging 
studies, adverse events were reported in 0.85% and 0.42% of patients respectively.
(86-87) Thus, the risks of sedation are low, but not zero. To minimize these risks, 
patients should be carefully selected and monitored (88), and sedated using the 
most suitable technique.(89) The advantage of sedation or anesthesia is that in-
spiratory lung volume can be standardized and the volume of gas trapping can be 
determined at end expiration. Sedation or general anesthesia can be avoided using 
recently developed ultra fast CT scanners. A comparative study showed that excel-
lent image quality could be achieved in infants and small children using a second 
generation (2 x 128 slices) dual source CT without sedation with a radiation dose 
similar to that of conventional CT scanners.(90). However, CTs acquired during 
free breathing are usually taken at a volume level near FRC. Whether the sensitiv-
ity and accuracy of these scans to detect structural abnormalities is comparable 
to that of volume controlled inspiratory and expiratory scans has not yet been 
investigated. 

Costs
Third disadvantage of CT is the high costs of the procedure. Including CT as sur-
rogate endpoint will increase the costs of an intervention study. However, CT like-
ly reduces the required sample size of a clinical trial, which ultimately reduces the 
total costs of a trial. To the best of our knowledge, the costs and cost-effectiveness 
of chest CT in CF clinical trials has never been investigated. More research is 
needed to investigate this further.    

Volume control
A fourth disadvantage is that CT protocols including PCV techniques or a spirom-
eter are relatively complicated and require a well trained team. Children of 5 years 
and older need to be trained and coached by a lung function technician before 
and during scanning. In addition, a spirometer is required for use in the CT room. 
Procedures involving children below the age of 5 require personnel experienced in 
both pediatric sedation/anesthesia and the CV procedure. Furthermore, adequate 
time slots must be available to execute the protocol. This may limit its feasibility 
in multicenter trials.

Future research
In this review, we have presented a large body of evidence supporting the use of 
chest CT as surrogate endpoint in clinical studies. However, even though there is 
sufficient evidence to support its use in clinical trials in the near future, further 
improvements can be made that will increase the accuracy and sensitivity of the 
technique.
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Calibration, standardization
CT already has shown its feasibility in multi-center trials.(64, 67, 91) These trials 
deomnstrated the importance of defining a detailed protocol at the start of the 
study to improve compliance, and to document the ability of the centers to apply 
this protocol.(92) CT studies require well defined standard operating procedures 
to guarantee optimal image resolution and the use of the correct reconstruction 
algorithms. Since CT technology is moving fast, the procedures will require fre-
quent updating. 

Image analysis
Standardization is also important for CT quantification. Agreement on the most 
appropriate scoring systems for the different CF cohorts (infants, children and 
adults) is necessary. To date, no validated automated image analysis systems are 
available to quantify for example BE and TA. Such systems can further improve the 
sensitivity and accuracy of chest CT as a surrogate end point. 

Further validation steps 
An important next step will be to demonstrate that the effect of an intervention on 
the CT score predicts the effect on true clinical endpoints such as RTE-R and QoL. 
This validation is specific to the class of intervention, and the CT score studied. 
Different CT scores may capture different types of structural changes, and there-
fore may affect different primary endpoints.(81) Furthermore, it is important to 
establish the minimal clinically relevant changes for each of the various CT scores. 
Thus, more comparative studies are needed. In addition, more longitudinal studies 
will help to further establish the trends of the different CT features over various 
time periods. This will help defining the required time span for intervention stud-
ies. Ideally, a profile should emerge defining the therapeutic indications and target 
populations where CT will be most useful and likely to show change.

Summary

In this review, we showed that CT scores meet all critical requirements for sur-
rogate endpoints. CT is able to detect structural changes highly relevant for CF 
patients using standardized image acquisition protocols, and the abnormalities 
detected using CT can be quantified in a reproducible fashion and can improve 
with treatment. In addition, CT variables have been linked to a number of clini-
cally meaningful outcome measures. CT can be performed across all age ranges, is 
the most sensitive tool to assess mild and regional disease, and may reduce sample 
size requirements for clinical studies compared to other recognized endpoints. 
The disadvantage of chest CT in clinical studies however, include the radiation 
exposure to the patient, the need for sedation in small children, high costs, and 
the more complicated procedures when volume control is needed.  Further inno-
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vations in image analysis techniques will help to further improve sensitivity and 
accuracy of chest CT to monitor CF lung disease. Remaining challenges in the use 
of CT as surrogate endpoint in clinical trials comprise standardization of CT pro-
tocols, procedures and quantification, better assessment of accuracy, and reliabil-
ity of CT scores, better understanding of the association of CT scores with clinical 
outcomes, together with assessment of its feasibility in multi-center settings.
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In this thesis, we aimed to optimize CT protocols and image analysis techniques, 
and further validate chest CT parameters as surrogate endpoints for CF lung di-
sease in clinical management and clinical trials. In this chapter, we discuss the 
main findings of our studies in the context of current literature, their implications, 
and directions for future research. 

The first important finding of our studies is that expiratory scans may suffice for 
assessment of structural changes in CF lung disease. In the study described in 
chapter 2, we compared CT scores of low dose inspiratory and ultra low dose ex-
piratory scans after a voluntary breath hold, and found that these matched closely. 
This is important, as exclusion of the inspiratory scan from the routine CT scan-
ning protocol in CF can reduce radiation dose by up to 75%. The CT protocol for 
the inspiratory scan used in this study exposed patients to a mean effective dose of 
0.69 mSv while the exposure for the expiratory scan was only 0.35 mSv. Limiting 
chest CT scanning to only expiratory images would expose patients to a radiation 
dose comparable to only 1/8th of the annual background radiation dose (3 mSv) in 
the United States of America.(1) Reducing radiation dose in CT scanning is im-
portant, as CT has been shown to be an increasing source of radiation exposure.
(2) However, before we can recommend the use of only expiratory images to assess 
the structural changes in CF, the following issues need to be further investigated. 
First, we need to ascertain that the sensitivity of this restricted expiratory protocol 
to track disease progression is similar to that of the protocol including both the 
inspiratory and expiratory CT. Currently, disease progression has only been re-
ported for inspiratory images.(3-4) Second, we only included children aged 6-20 
years with mild to moderately severe lung disease in this study. Thus, whether 
expiratory images alone may be sufficient to assess disease onset and progression 
in infants with early CF lung disease or in adults with more advanced lung disease 
needs to be further investigated. Third, the effect of inflation level on the assess-
ment of structural CF-related changes should be assessed. In our study, we used 
voluntary breath holds during scanning. However, current practice in our clinic is 
to use a spirometer-controlled protocol to standardize inflation levels.(3) Inflation 
levels influence the detection of airway dimensions. Thus, future studies preferab-
ly using spirometer-controlled CTs are required.    

The second important finding of our studies is that the number of CT slices can 
affect the sensitivity of the assessment of trapped air (TA) in CF, and depends on 
the type of scoring system used. Our study showed that mean TA Brody-II scores 
from 3-slice protocols were significantly lower compared with mean scores from 
volumetric protocols. This difference was in the order of 10%. To date, the mi-
nimal number of slices required for adequate TA assessment on CT is unknown, 
and a 3-slice protocol is often used to reduce radiation exposure.(6-14) Our data 
suggests that these 3-slice protocols tend to underestimate the severity of TA in 
CF when measured with the Brody-II scoring system. Other studies in CF (4) and 
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lung transplant recipients (5) also show that limited slice protocols decrease the 
precision of TA assessment. However, mean TA scores from 3-slice protocols deri-
ved from another quantitative scoring system were not significantly different from 
mean scores from volumetric protocols.  Thus, the quantitative scoring system 
appeared to be less sensitive to the effect of limited slice protocols. This suggests 
that the effect of the number of slices depends on the type of scoring system used. 
However, sample size in this pilot study was small. Larger studies preferably using 
a range of different scoring systems are needed to investigate this further. 

The third important finding of our studies is that there is a wide spectrum of 
structural abnormalities in CF patients with severe advanced lung disease (SALD). 

This spectrum ranges from predominantly infection/inflammation-like changes 
to predominantly air trapping/hypoperfusion-like changes. This has the following 
clinical implications. First, it shows which abnormalities lead to SALD and thus, 
should be prevented. Infection/inflammation, which includes bronchiectasis, is 
an important disease component in SALD. The importance of bronchiectasis in 
CF has been well recognized.(26-28) Hence, prevention of bronchiectasis is an 
important treatment target in patients with SALD. The observation that air trap-
ping/hypoperfusion makes up an important volume proportion in SALD is new 
and offers new opportunities for intervention and prevention. To date, the clinical 
significance of TA has never been systematically studied. To some extend we can 
conclude that small airways disease has been neglected as a potential target for 
treatment. In mild to moderate CF lung disease, there is substantial evidence that 
TA can be treated to some extent.(6),(7) Thus, TA may be reversible when treated 
early. Our observation warrants future intervention studies with the aim to target 
small airways disease more aggressively at an early stage of disease. The other 
important implication of our findings is that the CT spectrum in SALD offers the 
opportunity for a more personalized approach for these patients with SALD. The-
rapeutic strategies for patients with predominantly infection/inflammation are li-
kely different from strategies needed for patients with predominantly air trapping/
hypoperfusion. More personalized treatment of the SALD subtypes at an earlier 
stage may potentially reduce mortality and improve the quality of life. 

The fourth important finding of our studies is that TA on CT has a stable com-
ponent over time, reflecting irreversible small airways damage. This was found 
in a study in which we investigated the volume and the distribution of TA over 
time using newly developed image analysis software. By overlaying a baseline and 
follow up CT of the same subject, we were able to assess whether TA on the follow 
up CT was stable, new or reduced compared to the baseline CT. Matching has pre-
viously been used to track changes in regional bronchial morphology (8), but ne-
ver to estimate the reversibility of TA. Our observation that at around one third of 
the small airways disease that causes TA is irreversible has important implications 
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for the treatment of TA. Dornase alpha has been shown to reduce TA in mild to 
moderate CF lung disease.(6) Our technique enables visualization of the distribu-
tion TA. This information can be used to determine the optimal settings for mo-
dern smart nebulizers.(7) Next, the therapeutic effect of the inhaled medication 
can be visualized. This can be of great value for both clinical practice and clinical 
trials aiming to reduce TA. TA is present early in the course of CF lung disease 
(9-10), and forms a substantial component of the abnormalities seen in SALD.(11) 
Thus, early treatment and monitoring of TA may prevent progression to end sta-
ge lung disease. However, our proposed technique requires further improvement, 
and validation studies using larger number of patients to establish its importance 
for clinical practice. 

The fifth important finding of our studies is that CT bronchiectasis score is a st-
rong independent predictor of respiratory tract exacerbation rate (RTE-R). In this 
study, data from an unselected pediatric cohort of CF patients monitored at our 
tertiary care CF center was used to study the association between CT and RTE-R. 
From all CT scores, bronchiectasis score was the strongest predictor, with no sig-
nificant added effect of the other CT scores. In addition, the bronchiectasis score 
was found to add significantly to the predictive value of FEV1. The association be-
tween bronchiectasis and RTEs found in our study confirms the results of previous 
studies in young CF patients with mild disease enrolled in a clinical trial (12), in 
non-CF bronchiectasis patients (13), and in patients with chronic obstructive pul-
monary disease.(14) 

The association between CT and RTE-R is an important step in the validation 
process of CT as surrogate endpoint, as RTE-R is considered a clinical important 
endpoint. A potential limitation of our study was its retrospective study design. 
However, we selected a robust definition of RTEs, which were defined as the need 
for intravenous antibiotic treatment for pulmonary deterioration and increased 
symptoms. In CF, there is no accepted consensus on the definition of an RTE. Our 
definition has been used in other studies. (9, 24-25) Using this definition, RTEs 
were unlikely to be missed. Another limitation was that our cohort consisted of 
mainly pediatric patients with mild to moderate CF lung disease. Whether a si-
milar correlation between bronchiectasis and RTE-R exists in infants and young 
children with early disease or in the adult population with more advanced lung 
disease needs to be further investigated. 

The sixth important finding of our studies is that the SALD infection/inflamma-
tion CT score is significantly associated with survival. In this study, we used data 
and CTs from CF patients with SALD screened for lung transplantation (LTX) 
between 1990 and 2005 from 17 centers worldwide. All scans were scored using 
a semi-automated approach based on our previously developed SALD CT sco-
ring system.(11) Using data of patients who were subsequently listed for LTX after 
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screening (n=366), we found a significant association between SALD infection/
inflammation score and survival. Many studies have aimed to identify better pre-
dictors of survival, but CT parameters have never been included in survival mode-
ling.(15-20) The prognostic value of CT for survival has been shown for idiopathic 
pulmonary fibrosis (39-40). For this reason CT has recently been incorporated in 
the transplantation guidelines for these patients.(41) The association between CT 
and survival is an important finding, as it suggests that CT can be used to improve 
survival prediction models, such as the lung allocation score (LAS). The LAS was 
introduced in the USA in May 2005 with the aim to reduce waiting list mortality 
by prioritizing candidates based on urgency, and thus, “de-emphasizing the role 
of waiting time and geography.”(21) In practice, this means that LTX candidates 
are ranked according to their LAS. In our study, we found that both SALD infec-
tion/inflammation score and LAS had significant, independent predictive value 
for survival. The retrospective study design was a limitation in our study. We used 
data from patients listed for LTX between 1990 and 2005 and calculated their LAS. 
However, the LAS was introduced in May 2005. Thus, most patients were listed 
in the pre LAS era. In addition, the criteria to select patients for LTX screening 
were based on the American Thoracic Society guidelines of 1998 (22), which were 
updated in 2006.(23) In addition, patient survival has improved over the years.
(24-26) Although we found no trend for improved survival with listing year in our 
study, these factors may affect the generalizability of our results to patients cur-
rently awaiting LTX. Prospective studies are needed to further establish the role of 
CT as a predictor for mortality and LTX outcome.

The association between the SALD infection/inflammation score and waiting list 
mortality also provides an important missing step in the validation of CT as surro-
gate endpoint. For FEV1 the link with mortality has been well established in the 
eighties (15-20, 27-32), and FEV1 is still the most extensively validated surrogate 
endpoint in CF. Our finding that SALD infection/inflammation score is linked 
with mortality is essential for the validation of CT as surrogate endpoint for CF 
clinical trials.  

Other directions for future research

In addition to the findings and directions for future research based on the findings 
discussed above, there are a number of other opportunities to improve the role of 
chest imaging for CF lung disease 
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Lowering radiation dose

Radiation dose is the major limitation of chest CT as a monitoring tool for CF 
lung disease. To minimize radiation risk of CT scanning to patients, CT protocols 
should be performed using doses as low as reasonably achievable. Apart from our 
suggestion to use only one expiratory chest CT to detect and monitor CF lung 
disease, there may be a role for improvements in CT technologies and reconstruc-
tion algorithms to further reduce radiation dose and thus improve the risk benefit 
ratio. One such new CT technology is the multi detector CT scanner. This type of 
scanner was introduced in the nineties and, due to its fast acquisition time, may 
become the new standard. Some studies have attempted to address the effect of 
such scanners on radiation dose (47-48), but more studies are needed. 

Chest magnetic resonance imaging (MRI) has been suggested as radiation free 
alternative for chest CT to monitor CF lung disease. The sensitivity of MRI to de-
pict large morphological changes has been estimated to be comparable to CT.(33) 
However, its sensitivity to detect early and smaller changes in lung structure is 
considered to be inferior to that of chest CT.(33-35) Clearly, MRI needs to be 
adequately validated to establish its role in monitoring CF lung disease. 

Trapped air 

The studies performed in CF patients with SALD clearly demonstrate the importance 
of TA as important component of end stage CF lung disease. TA reflects a combination 
of small airways disease and diffusion defects.(20) Recent studies in children with CF 
diagnosed by newborn screening show that TA is present early in life.(10, 36) This ma-
kes TA an important treatment target. However, little is know about the reversibility of 
TA. There is evidence that dornase alpha can reduce TA in mild to moderate CF lung 
disease (6). The effect of dornase alpha in CF patients with advanced disease has been 
studied. However, TA detected by CT was not included as an endpoint.(37) In infants, 
lower CT scores for TA were reported after dornase alpha treatment, however, similar 
changes were found after placebo treatment and the significance of these changes was 
not reported.(50) Thus, more studies on the effect of dornase alpha on TA are needed. 

For TA detection, both PFT and CT can be used. To our knowledge, there is no gold 
standard to determine TA, and how PFT estimates of TA relate to CT estimates of TA 
is not clear. Further longitudinal studies comparing both modalities are needed to 
identify the optimal strategy to monitor TA. In addition, the optimal CT technique 
should be assessed. Nowadays, CT inflation level can be standardized using control-
led-volume techniques. It has been shown that the level of inflation affects the volume 
of  TA visible on CT.(38) Future studies aimed to quantify the effect of these tech-
niques on the assessment of TA are needed. 
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CT standardization

Our studies underline the potential use of chest CT in clinical management and 
clinical studies. However, the use of chest CT in clinical trials requires further stan-
dardization of CT protocols. This is especially important in multi-center studies. 
Protocol standardization will avoid bias related to differences in image resolution 
and improve the sensitivity and reproducibility of the CT parameters quantified 
by CT scoring or automated image analysis techniques. The type of protocol will 
depend on the aims of the study. Standardization of the level of inflation is an im-
portant condition that can be achieved using a spirometer or pressure-controlled 
ventilation techniques. Standardization is especially important for automated CT 
quantification. 

Image analysis

In our studies, we primarily used manual and semi-automated scoring systems. 
To date, there are no fully automated image analysis systems available that can 
generate clinical relevant numbers in CF lung disease. Fully automated systems 
have the advantage of allowing more rapid analyses with near perfect intratest rep-
roducibility. Various systems have been developed that can measure airway wall 
thickness and bronchial internal diameter (8, 39-45), and TA in CF.(38, 43, 46) 
However, further cross-sectional as well as longitudinal studies are needed to furt-
her refine and validate these systems for use in clinical care and studies.

Further validation of CT 

Overall we strongly feel that chest CT can supply highly relevant information. 
However, the role of chest CT as an accurate and sensitive monitoring instrument 
for CF lung disease can be further strengthened. An important next step in the 
validation of CT as a surrogate endpoint is to determine how CT findings impact 
clinical management. In addition, treatment algorithms based on the CT findings 
are needed. Furthermore, it is important to establish which change in CT score 
is clinically relevant. Thus, more comparative studies that include CT scores as 
well as a traditional clinical endpoint are needed. In addition, more longitudinal 
studies will be necessary to establish the trends of the different CT features over 
a defined period of time. This will help defining the required time span for inter-
vention studies. 
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Chapter 1 contains a general introduction to cystic fibrosis (CF), and states the 
aims of the studies performed in this thesis

In the first section of the thesis we describe the studies that aimed to optimize 
computed tomography (CT) protocols in CF. One major disadvantage associated 
with the use of CT is that it exposes patients to ionizing radiation. Therefore, ra-
diation dose should be as low as reasonably achievable. In CF, a CT examination 
usually consists of an inspiratory scan to assess structural changes and an expira-
tory scan to assess trapped air. If expiratory scans can be used to assess structural 
abnormalities as well, CT examinations would be limited to a single scan. This 
could reduce radiation dose substantially. We investigated whether this may be 
possible in chapter 2. In this study, we compared low dose inspiratory and ultra 
low dose expiratory CT scores to determine whether expiratory CT alone may suf-
fice for monitoring the structural changes in CF lung disease. In- and expiratory 
CTs of 20 children were scored using the Brody-II CT scoring system to assess 
bronchiectasis, airway wall thickening, mucus plugging, and opacities. We found 
that CT scores of both scans matched closely, suggesting that ultra low dose expi-
ratory scans alone may be sufficient for monitoring CF lung disease. This would 
reduce radiation dose for a single investigation by up to 75%. 

Trapped air (TA) is an important early change in CF lung disease, and can be 
assessed using pulmonary function tests (PFTs) or CT. However, little is known 
about the relationship between these two modalities. In addition, the course of 
TA over time has not been well studied. For the quantification of TA on CT, it is 
common practice to use only 3 expiratory slices. However, it is unclear whether 
this approach is sensitive enough, since the effect of the number of slices on the 
assessment of TA has never been evaluated in CF. This was the subject of our study 
described in chapter 3.  In addition, we compared CT and PFT estimates of TA 
cross-sectionally and longitudinally. Twenty children contributed 2 routine expi-
ratory CTs and two PFTs over two years. From the volumetric follow up CT, we 
composed 7 sets with a decreasing number of slices. The last two sets contained 
5 and 3 slices. Longitudinal follow-up was done with 3 slices. Trapped air on CT 
was scored using the Brody-II scoring system and a newly developed quantitative 
scoring system. We concluded that in general, there was good agreement between 
TA scores of set 1 (volumetric CT) and set 2 to 7 (CTs with a spacing of respec-
tively 2.4, 4.8, 9.6, and 20.4 mm, and 5 and 3-slice CTs) for both scoring systems 
(all ICC>0.75). However, the number of CT slices affected the TA assessment us-
ing Brody-II scores; mean scores from 5- and 3-slice sets were respectively 7% and 
10% lower than mean scores from the volumetric set (p=0.01 and p<0.001). This 
suggests that commonly used 3-slice protocols underestimate TA in CF using the 
Brody-II system. Furthermore, CT and PFT estimates were not correlated, and 
showed no change over time. 
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In the second section of the thesis we describe the studies that aimed to further im-
prove image analysis of CT scans of CF patients with severe advanced lung disease 
(SALD). To quantify the abnormalities on these CTs, we developed a new quantita-
tive CT scoring system for SALD in chapter 4. Using this system, we determined 
the spectrum of structural abnormalities on CT. In this study, 57 CT scans from 
CF patients screened for LTX in 3 centers were used to design the SALD scor-
ing system. Lung tissue was divided into 4 components: infection/inflammation 
(including bronchiectasis, airway wall thickening, mucus and consolidations) air 
trapping/hypoperfusion, bulla/cysts, and normal/hyperperfused tissue. We inves-
tigated the correlation between the SALD scoring system and the Brody-II scor-
ing system. With the SALD system, we were able to identify a wide spectrum of 
structural abnormalities ranging from predominantly infection/inflammation to 
predominantly air trapping/hypoperfusion. This spectrum may have implications 
for the clinical management of CF patients with SALD. Furthermore, infection/
inflammation scores correlated with Brody-II scores.

In the third section of the thesis we describe the studies that aimed to validate 
CT as surrogate endpoint in CF. Clinical trials are important to test and optimize 
new therapeutic interventions. To evaluate the effect of these interventions, sensi-
tive outcome measures are needed. CT holds great potential for use as surrogate 
endpoint, but needs to be validated for this purpose. In the validation process, it is 
important to know the course of CT abnormalities over time.

For TA, we previously investigate the course over time, however, we were lim-
ited to only 3 expiratory CT slices which was probably not sufficient for sensitive 
monitoring. In chapter 5, we used volumetric CT scans to investigate the changes 
in TA volume and distribution over 2 years time using automated image analysis 
software. Localized changes in TA were assessed by matching the follow up CT 
on the baseline CT, and measuring the volume of stable TA (TAstable), disappeared 
TA (TAdisappeared) and new TA (TAnew). The proportion of TAnew and TAdisappeared were 
found to be significantly higher than TAstable. Visual assessment suggested that only 
TAstable was accurately assessed. We concluded that TA has a stable component over 
time, reflecting irreversible peripheral airway damage. In addition, TA on CT was 
not progressive over 2 years. 

Another important step in the validation process is to show that CT scores are as-
sociated with important clinical outcomes, such as respiratory tract exacerbation rate 
(RTE-R) and survival. In chapter 6, we investigated the association between CT scores 
and RTE-R in a cohort of pediatric CF patients. We collected CT scans and PFTs made 
during annual check up when clinically stable, and tracked the number of RTEs in the 
two years after the CT. We found that bronchiectasis score and FEV1 were both strong 
independent predictors of RTE-R in the subsequent 2 years. Categorizing the bronchi-
ectasis score in quartiles, RTE-R increased by factors of 1.8, 5.5, and 10.6, respectively. 
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In chapter 7 we investigated the association between CT scores and survival, us-
ing a semi-automated version of the SALD scoring system. In addition, we studied 
the value of CT scores to a currently used survival prediction model; the lung al-
location score (LAS). We also determined whether the SALD spectrum found in 
chapter 6 could be reproduced in this larger cohort. For this study, we collected 
data and CT scans of CF patients with SALD screened for LTX between 1990 and 
2005 from 17 centers worldwide. Using data of all patients (n=411), we observed 
the same SALD spectrum in this cohort as previously observed. Of these patients, 
366 entered the waiting list after screening. Using this cohort, we found a signifi-
cant association between SALD infection/inflammation score and survival, with 
a hazard ratio per 10 percentage point increase in score of 1.45. The LAS was also 
significantly associated with survival, with a hazard ratio per point increase in 
score of 1.1. Furthermore, infection/inflammation score was shown to add signifi-
cantly to the predictive value of LAS.  This study provides an important step in the 
validation of CT as surrogate endpoint, and strongly suggests that CT scores can 
add relevant information to survival prediction models such as the LAS.   

In chapter 8, we reviewed what is known about the use of CT as surrogate end-
point and what research could further strengthen the validation portfolio of CT. 

The discussion of the findings of the studies included in this thesis and sugges-
tions for further research are provided in chapter 9. 
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 Chapter 11
Samenvatting
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Hoofdstuk 1 geeft wat algemene informatie over de ziekte cystische fibrose (CF), 
en beschrijft het doel van de studies die in dit proefschrift staan.

In hoofdstuk 2 en 3 staan de studies die tot doel hadden om computer tomo-
grafie (CT) protocollen van de longen in CF te optimaliseren. Een nadeel van 
het gebruik van CT is dat het patiënten blootstelt aan straling. Deze straling kan 
kankerverwekkend zijn. Daarom is het belangrijk dat de stralingsdosering zo laag 
mogelijk wordt gehouden. Gewoonlijk bestaat het CT protocol voor CF patiënten 
uit 2 scans; 1 scan na diep inademen en 1 scan na diep uitademen. De inademing 
scan wordt gebruikt voor het beoordelen van afwijkingen aan de grote luchtwegen. 
De uitademing scan wordt gebruikt voor het beoordelen van schade aan de kleine 
luchtwegen. Op CT scans is deze schade zichtbaar als ‘trapped air’ (TA). Het is 
onbekend of de uitademing scan alleen voldoende zou kunnen zijn om alle belang-
rijke afwijkingen te beoordelen. Als dit zo is, dan kan de inademing scan voort-
aan uit het protocol weggelaten worden. Dit zou de hoeveelheid straling drastisch 
kunnen verminderen. Of dit mogelijk is, is onderzocht in hoofdstuk 2. In deze 
studie werd gekeken of CT scores van inademing scans hetzelfde waren als CT 
scores van uitademing scans. Voor dit onderzoek werden 20 in- en uitademing CT 
scans van kinderen met CF gebruikt. Alle scans werden gescoord met een CT score 
systeem (Brody-II). Dit was nodig om de ernst van de long afwijkingen om te zet-
ten in een getal. Met het Brody-II systeem werden scores gegeven aan afwijkingen 
van de luchtwegen (bronchiectasiën), luchtwegwand verdikking, slijm pluggen, en 
andere afwijkingen. De inademing scan werd gemaakt met een lage stralingsdo-
sering, en de uitademing scan werd gemaakt met een extra lage stralingsdosering. 
De resultaten lieten zien dat de CT scores van beide scans goed overeen kwamen. 
Dit suggereert dat een uitademing scan alleen genoeg zou kunnen zijn voor het 
beoordelen van long afwijkingen bij CF. Dit zou de stralingsdosis voor een enkel 
CT onderzoek van de longen kunnen verminderen met 75%. 

TA is een belangrijke en vroege afwijking in CF longziekte, en ontstaat door scha-
de aan de kleine luchtwegen. Om afwijkingen aan de kleine luchtwegen op te spo-
ren kan naast CT ook gebruik worden gemaakt van longfunctie testen. Er is maar 
weinig bekend over de relatie tussen TA op CT en de longfunctie testen gevoelig 
voor de kleine luchtwegen. Verder is het onduidelijk hoe TA verloopt over de tijd. 
Om de ernst van TA met CT te bepalen worden vaak maar 3 plakjes van de longen 
gemaakt. Er is nooit onderzocht of deze aanpak wel gevoelig genoeg is om de ernst 
van TA goed in te schatten. Dit was het onderwerp van hoofdstuk 3. Ook zijn CT 
en longfunctie waardes gevoelig voor de kleine luchtwegen met elkaar vergeleken 
in deze studie. Hiervoor is gebruik gemaakt van een groep van 20 kinderen met 
CF die allemaal 2 uitademing CT scans en longfunctie testen over twee jaar tijd 
hadden gehad. Van de CT zijn 7 sets met een afnemend aantal CT plakjes samen-
gesteld. De laatste twee sets bevatten slechts 5 en 3 plakjes. Om te onderzoeken 
hoe TA verloopt over de tijd werd gebruik gemaakt van 3 plakjes. TA op CT werd 
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gescoord met het Brody-II score systeem en een nieuw ontwikkeld, deels gecom-
puteriseerd score systeem. Deze studie liet zien dat TA scores van set 1 (alle plak-
jes) en CT scores van set 2 tot en met 7 goed overeen kwamen. Dit gold voor beide 
score systemen. Echter, de TA bepaling was minder nauwkeurig bij gebruik van 5 
of 3 plakjes. Dit doet vermoeden dat de veelgebruikte CT protocollen met maar 3 
plakjes de hoeveelheid TA minder nauwkeurig weergeven. Er werd geen verband 
gevonden tussen CT en longfunctie waardes voor TA, en over de tijd lieten ze geen 
verandering zien. 

In hoofdstuk 4 staat de resultaten van de studie die tot doel had om de beeld-
analyse van CT scans van CF patiënten met vergevorderde long ziekte (SALD) te 
verbeteren. Om de afwijkingen op deze CT scans te kunnen meten is een nieuw 
CT score systeem voor SALD ontworpen. Voor deze studie is gebruik gemaakt 
van 57 CT scans van CF patiënten met ernstige longziekte die gescreend waren 
voor longtransplantatie (LTX). Al het longweefsel op de scans werd ingedeeld in 1 
van de volgende 4 categorieën: infectie/inflammatie (bevat bronchiectasiën, lucht-
wegwand verdikking, slijm pluggen en consolidaties) air trapping/hypoperfusie, 
bullae/cysten, en weefsel met een normale/hyperperfusie. Daarnaast werden alle 
scans ook gescoord met het Brody-II score systeem. Daardoor kon de relatie tus-
sen het SALD score systeem en het Brody-II score systeem worden onderzocht. 
De resultaten lieten een sterke relatie zien tussen de SALD infectie/inflammatie 
score en de Brody-II scores. Bovendien werd er een spectrum van afwijkingen bij 
patiënten met SALD gevonden. Dit spectrum varieerde van voornamelijk infectie/
inflammatie-gerelateerde afwijkingen tot voornamelijk air trapping/hypoperfusie-
gerelateerde afwijkingen. Wij denken dat deze bevinding belangrijk is voor de be-
handeling van CF patiënten met SALD. 

In hoofdstuk 5 t/m 7 staan de resultaten van de studies die tot doel hadden om CT 
verder te valideren als uitkomstmaat in CF. Klinische studies zijn nodig om nieuwe 
medicijnen bij CF patiënten te testen. Om het effect van deze nieuwe medicijnen te 
kunnen beoordelen zijn gevoelige uitkomstmaten nodig. CT kan een belangrijke 
uitkomstmaat zijn, maar moet eerst uitgebreid getest worden met validatie studies. 
In het validatie proces is het belangrijk om het verloop van CT afwijkingen over de 
tijd te meten. Dit was het onderwerp van hoofdstuk 5. In deze studie zijn CT scans 
gebruikt die de hele long nauwkeurig weergeven. Deze scans bestaan vaak uit 200 
plakjes of meer. Met deze scans is gekeken naar de veranderingen in het volume 
van TA en de verdeling over 2 jaar tijd. TA werd gemeten met nieuw ontwikkelde 
automatische beeldanalyse software. Om de veranderingen van TA over de tijd te 
beoordelen werden ‘follow up’ CTs bovenop de eerste CT gelegd. Zo konden de 
verschillen in TA volume en verdeling over de tijd goed zichtbaar gemaakt wor-
den. De conclusie van deze studie was dat ongeveer een derde van de hoeveelheid 
TA stabiel is over de tijd. Dit wijst op onherstelbare schade aan de kleine luchtwe-
gen. Hoopgevend is dat een groot deel van TA nog wel veranderlijk lijkt te zijn en 
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dus mogelijk gevoelig is voor behandeling. Met deze gevoelige methode werd geen 
toename van TA gezien over 2 jaar tijd. 

Een andere belangrijke stap in het validatie proces is het aantonen dat CT sco-
res een relatie hebben met belangrijke klinische uitkomsten, zoals het aantal zie-
kenhuisopnames en overleving. In hoofdstuk 6 is de relatie tussen CT scores en 
ziekenhuisopnames onderzocht in een groep kinderen met CF. Hierbij werd ge-
bruik gemaakt van CT scans en longfunctie testen gemaakt tijdens de jaarlijkse 
uitgebreide polikliniek controle van de patiënten. Er werden alleen gegevens ver-
zameld van patiënten die op dat moment niet acuut ziek waren. Ook werd het 
aantal ziekenhuisopnames in de twee jaar na de CT voor alle patiënten uitgezocht. 
De resultaten lieten zien dat zowel de CT score voor bronchiectasiën als de long-
functiemaat FEV1 zeer sterke en onafhankelijke voorspellers waren voor het aantal 
ziekenhuisopnames in de 2 jaar na CT. 

De relatie tussen CT scores en overleving is onderzocht in hoofdstuk 7. De CT 
scans in deze studie werden gescoord met half geautomatiseerde versie van het 
SALD score systeem. Daarnaast is gekeken naar de toegevoegde waarde van CT 
scores aan een veel gebruikt model om overleving te voorspellen. Dit model heet 
de long allocatie score (LAS). Bovendien is gekeken of in deze grote groep pati-
ënten hetzelfde SALD spectrum aanwezig was als eerder beschreven in hoofdstuk 
6. Voor deze studie zijn gegevens en CT scans verzameld van CF patiënten met 
SALD die tussen 1990 en 2005 gescreend waren voor LTX. Aan dit onderzoek 
werd meegewerkt door 17 transplantatie centra wereldwijd. Gebruikmakend van 
de gegevens van 411 patiënten is hetzelfde SALD spectrum in deze patiëntengroep 
gevonden als beschreven in hoofdstuk 6. Van de 411 patiënten kwamen er 366 
vervolgens op de wachtlijst voor LTX na de screening. In deze groep werd een 
duidelijke relatie gevonden tussen de SALD infectie/inflammatie score en over-
leving. Ook de LAS had een duidelijke relatie met overleving. Bovendien werd 
aangetoond dat de SALD infectie/inflammatie score een bijdrage kon leveren aan 
de voorspellende waarde van de LAS. De uitkomsten van deze studie zijn zeer be-
langrijk voor het validatie proces van CT als uitkomstmaat in CF. Bovendien sug-
gereren deze resultaten heel sterk dat CT scores belangrijke informatie toevoegen 
aan bestaande voorspellingsmodellen voor overleving zoals de LAS. 

In hoofdstuk 8 is samengevat wat er bekend is over het gebruik van CT als uit-
komstmaat in CF. Ook wordt beschreven wat voor onderzoek er verder nog nodig 
is voor de validatie van CT. De discussie van de resultaten van de studies in dit 
proefschrift en de suggesties voor verder onderzoek zijn gegeven in hoofdstuk 9. 
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Na 5,5 jaar, 17 (inter)nationale studiebezoeken, 938 CT scans, 4 publicaties, 3 ge-
submitte manuscripten (soon to be publicaties), 1 verhuizing en 2 kinderen is het 
zover; mijn onderzoek is af en heeft geresulteerd in een proefschrift. En bij een 
proefschrift hoort een dankwoord. Graag wil ik iedereen bedanken die mij de af-
gelopen jaren geholpen heeft bij het tot stand komen van dit alles, en een paar 
personen in het bijzonder. 

Ten eerste mijn promotoren, die het mogelijk maakten voor mij om dit onderzoek 
te gaan doen. Professor Dr. H. A. W. M. Tiddens, beste Harm, toen ik in 2005 bij 
je langs kwam om over een project te praten, gaf je me garantie voor 1 jaar, met de 
toevoeging dat je er alles aan zou doen om er een volledige promotie van te maken. 
Beginnen bij jou was een kwestie van vertrouwen. Niet alleen heeft dit vertrouwen 
dit proefschrift opgeleverd, wederzijds heb ik ook een groot vertrouwen van jouw 
kant gevoeld. Je gaf me de vrijheid om studies zelfstandig te organiseren en uit te 
voeren (ook internationaal), maar op momenten dat ik echt feedback van je nodig 
had, was je er. Met je enorme energie en enthousiasme heb je me altijd weten te 
inspireren en me de gelegenheid gegeven om me ook persoonlijk verder te kunnen 
ontwikkelen. Bedankt voor alles. 

Professor G. P. Krestin, beste Gabriel, in 2007 kreeg ik een gastvrijheidsovereen-
komst bij de Radiologie. Niet alleen werd ik onderdeel van jouw goed geoliede 
afdeling, ook gaf jij aan vertrouwen in mijn project te hebben en zo nodig finan-
ciële garantie te willen bieden om het project te kunnen laten eindigen in een 
proefschrift. Gelukkig was dat niet nodig, maar het vertrouwen dat je in me stelde 
heeft mij destijds veel rust gegeven dat het allemaal goed zou komen. Ik denk met 
plezier terug aan de jaarlijkse (PhD) uitjes en borrels, waar ik meerdere malen de 
gelegenheid heb gekregen om de mens achter de professor te ontmoeten. Je per-
soonlijke touch tijdens deze avonden maakte het mogelijk om heel laagdrempelig 
naar je toe te stappen. Door jouw enthousiasme voor het vak, het onderzoek en je 
onderzoekers weet je wat er speelt op je afdeling. Mocht ik me nog bedenken en 
toch radioloog willen worden, dan weet ik je te vinden. 

Prof. Dr. C. K. van der Ent, Prof. Dr. M. G. Hunink, en Prof. Dr. A. J. van der He-
ijden wil ik graag bedanken voor de bereidheid om plaats te nemen in de kleine 
commissie. 

Prof. Dr. R. R. de Krijger, Dr. M. de Bruijne, en Dr. P. Th. W. van Hal wil ik graag 
bedanken voor het zitting nemen aan de grote commissie.

Tijdens mijn promotie was ik regelmatig op de afdeling Radiologie te vinden, zo-
wel in het Sophia als in het Erasmus MC. Hier zou ik graag de volgende mensen 
bedanken die steeds voor me klaar stonden:
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Dr. Maarten Lequin, bedankt voor de input op de artikelen waar jij mede-auteur 
van bent en je uitleg en antwoorden op al mijn radiologische vragen. 

Dr. Ieneke Hartmann, bedankt voor het steeds kritisch nalezen van mijn manus-
cripten en het attenderen op radiologische bijeenkomsten om mijn werk te presen-
teren. Zonder jou had ik de Radiologendagen prijs niet kunnen winnen! 

Ook van de Radiologie baliemedewerkers in het Sophia heb ik veel praktische hulp 
gekregen: Roland, Margreet en Edith, heel erg bedankt voor jullie hulp bij inscan-
nen van CTs die niet digitaal waren. De vele uurtjes die ik bij jullie heb doorge-
bracht waren altijd erg gezellig.

Bij de afdeling Medische beeldvorming was ik ook bijna kind aan huis. Het is mooi 
om ideeën te bedenken en daarna uitgevoerd te zien worden in beelden. Ik heb 
met plezier samengewerkt met de volgende mensen:

Ass. Prof. Dr. Marleen de Bruijne, bedankt voor het nalezen van enkele van mijn 
manuscripten, je hulp om de wirwar op beeldvormingsgebied te ontrafelen en de 
hulp tijdens de zoektocht naar de beste programma’s. Jij was ook degene die uitein-
delijk Marcel Koek voorstelde om aan een semi-automatisch systeem te werken, 
dat mij enorm heeft geholpen in de klus om ongeveer 500 CTs te scoren. Marcel, 
bedankt voor jouw inzet in dit project en de gezellige middagen uittesten die erbij 
hoorden. 

De zoektocht naar het juiste systeem viel niet altijd mee en heeft me zelfs op de 
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Summary of PhD training and teaching activities

 
Name PhD student: Martine Loeve
Erasmus MC Department: 

1.	 Pediatric Pulmonology 
2.	 Radiology

Research School: Molecular Medicine

PhD period: April 2006 – October 
2011
Promotors: 
Prof. Dr. H.A.W.M. Tiddens 
Prof. Dr. G.P. Krestin

1. PhD training

Year Workload
(Hours/ECTS)

General academic skills 
-	 Online HIPAA training course 
-	 Biomedical English Writing and 

Communication

2007
2008

0.5 
4.0

Research skills
Statistical courses:
-	 Introduction to data-analysis
-	 Principles of Research in Medicine and 

Epidemiology
-	 Survival Analysis

2007
2008

2009

0.7
0.7

1.4

In-depth courses 
-	 ERS School Course  “Lung transplantation” 2007 0.7 

Seminars/workshops
-	 Cystic Fibrosis Young investigators Meeting, 

Lille (oral presentation)
-	 Radiologendagen, Rotterdam (oral 

presentation, awarded for best scientific 
contribution)

-	 Nederlands Respiratoir 
Samenwerkingsverband (poster presentation)

-	 Symposium Nederlandse Cystic Fibrosis 
Stichting (3 poster presentations)

-	 Nederlands Respiratoir 
Samenwerkingsverband (poster presentation)

2007

2008

2009

2010

2010

1

0.3

0.3

0.3

0.3
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International conferences 
-	 30th European Cystic Fibrosis Conference, 

Belek, Turkey ( oral & poster presentation)
-	 17th European Respiratory Society Conference, 

Stockholm, Sweden (oral presentation)
-	 21st North American Cystic Fibrosis 

Conference, Anaheim, USA (oral 
presentation) 

-	 European Society for Pediatric Radiology 
Conference, Edinburgh, UK (oral & poster 
presentation)

-	 31st European Cystic Fibrosis Conference, 
Prague, Czech Republic (oral presentation)

-	 18th European Respiratory Society Conference, 
Berlin, Germany (oral presentation)

-	 22nd Annual North American Cystic Fibrosis 
Conference, Orlando, USA (5 poster 
presentations)

-	 SPIE Medical Imaging, Lake Buena Vista, 
Florida (poster presentation, awarded for best 
poster)

-	 2nd World Conference of Thoracic Imaging, 
Valencia, Spain (oral presentation)

-	 32nd European Cystic Fibrosis Conference, 
Brest, France (oral presentation)

-	 23rd Annual North American Cystic Fibrosis 
Conference, Minneapolis, USA (poster 
presentation)

-	 34nd European Cystic Fibrosis Conference, 
Hamburg, Germany (2 oral poster 
presentations, awarded with travel grant)

-	 4th International Workshop on pulmonary 
image analysis, Toronto, Canada (oral 
presentation)

-	 25th Annual North American Cystic Fibrosis 
Conference, Anaheim, California (oral & 
poster presentation)

2007

2007

2007

2008

2008

2008

2008

2009

2009

2009

2009

2011

2011

2011

0.3

0.3

1

0.3

1

1

1

0.1

0.3

0.1

0.1

1

0.2

1

Seminars and workshops
-	 Presenteren en informatieoverdracht 

(Postgrade)
-	 Workshop Creatief denken (Nederlands 

Instituut voor Wetenschappelijk onderzoek)
-	 Workshop Solliciteren naar een opleidingsplek 

(KNMG)

14-5-09

19-5-09

15-3-2011

0.3 

0.3 

0.2 
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Didactic skills
-	 Instructor CT scoring 2006-2010 1

2. Teaching activities

Year Workload 
(Hours/ECTS)

Supervising practicals and excursions
-	 Asthma and inhalation medication (1st year 

medical students)
2008 0.3 

Other
-	 Outpatient clinic pediatric pulmonology
-	 Research meeting (every Friday)
-	 Peer review for articles for scientific journals

2006-2010
2006-2010
2008

6
3
1.5

Total 30.5
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Chapter 3 - Figure 2. CT slices illustrating the new quantitative scoring system. First, the lung volume 
is automatically segmented (A), and the total lung volume in milliliters is computed. Second, TA 
volume per slice was assessed using a digital 10x10 mm grid and manually counting the number of 
cells projected over TA (B). TA volume per slice was then calculated by multiplying the number of 
TA grid cells by the volume of a grid cell in milliliters. Third, to compute average CTTA volume for 
the complete scan, TA volumes (in milliliter) of each slice were summed and divided by the total lung 
volume of the complete scan. 

Chapter 5 - Figure 2. Images 
showing a CT slice of a patient of 
baseline CT1 with its corresponding 
mask showing trapped air (TA, 
white) and normal lung tissue 
(grey) (A), follow up CT2 with its 
corresponding mask (B), and CT2 
registered to CT1 with the measured 
localized TA changes overlaid on 
CT1 (C) all taken at the same level. 
The overlay shows normal lung 
tissue (green), and the proportion 
of stable TA (red), new TA (yellow), 
and reversed TA (blue). Colors 
highlight only those areas where 
lung segmentations in CT1 and 
registered CT2 overlap. This figure 
shows that the large area of stable 
TA in the right lung (white arrows) 
is correctly annotated. The relative 
volume for stable, new, and reversed 
TA in the slice shown is respectively 
20.2%, 6.9%, and 2.7%.  
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Chapter 5 - Figure 3. Images 
showing a CT slice of a patient of 
baseline CT1 with its corresponding 
mask showing trapped air (TA, 
white) and normal lung tissue 
(grey) (A), follow up CT2 with 
its corresponding mask (B), and 
CT2 registered to CT1 with the 
measured localized TA changes 
overlaid on CT1 (C) all taken at 
the same level. The overlay shows 
normal lung tissue (green), and 
the proportion of stable TA (red), 
new TA (yellow), and reversed TA 
(blue). Colors highlight only those 
areas where lung segmentations 
in CT1 and registered CT2 overlap. 
This figure shows the noise in TA 
detection. Visually, the area of TA 
in CT1 and CT2 (white arrows) 
appear quite similar, perhaps with 
some slight progression. In the 
segmentation however, these areas 
were indicated as stable, new, and 
reversed TA with relative volumes 
of respectively 5.8%, 10.4%, and 
4.5%.  

Chapter 7 - Online supplement - Figure E1. Images show a slice at the level of the mid-trachea 
of a chest CT scan of a CF patient with SALD. Image A shows the original slice on which the 
abnormalities are indicated by arrows. Red arrows: bronchiectasis, blue arrows: air trapping/
hypoperfusion. Image B shows the same slice after the observer has manually annotated the 
abnormalities with colours. Red=inflammation, blue=air trapping, green=normal perfused tissue.
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Chapter 7 - Figure 2. Visual distribution of the 4 categories of the SALD CT scoring system in the 
411 patients who were screened for lung transplant: red = infection/inflammation (INF); blue = 
air trapping/hypoperfused (AT); green = normal/hyperperfused (NOR); orange = bulla or cysts 
(BUL). Patients are sorted according to their infection/inflammation component (A) or air trapping/
hypoperfusion component (B).
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