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Chapter 1

Circle of life

Figure 1. SchemaƟ c overview of the circle of development from gamete to gamete. Primordial germ 
cells (*) are produced during fetal development and mature into a gamete, either a spermatozoon or 
an oocyte. The next phase of the circle of life is the zygote which arises from the ferƟ lizaƟ on of an 
oocyte by a spermatozoon. The zygote divides into a 2-cell stage embryo which becomes an 8-cell 
embryo and eventually a blastocyst. The blastocyst develops into an embryo which will become a 
fetus.

Life starts with the ferƟ lizaƟ on of an oocyte by a spermatozoon which gives rise to a new 

being: the zygote (Figure 1). This zygote contains both parental DNA sets which are enclosed 

in separate nuclear membranes called pronuclei; the maternal pronucleus, derived from the 

oocyte and the paternal pronucleus, derived from the spermatozoon. The zygote is the fi rst 

stage of embryonic development and divides and develops into a 2-cell embryo, followed by 

the morula and blastocyst stages. The human embryo, which is now a blastocyst, will implant 

into the womb around 7-9 days aŌ er ferƟ lizaƟ on. The Ɵ me point of implantaƟ on diff ers 

between species, a mouse blastocyst implants around d4.5 while in bovines implantaƟ on 

takes place around d15. 
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AŌ er implantaƟ on the embryo grows organs and limbs, a nose, a mouth, ears and eyes. The 

reproducƟ ve tract is formed and the primordial germ cells migrate from the extra-embryonic 

mesoderm to the gonads. They eventually become either female oocytes or male sperm, aŌ er 

diff erenƟ aƟ on and maturaƟ on. With the ferƟ lizaƟ on of a new oocyte by a new sperm the 

circle of life is completed.

Male and female primordial germ cells and their progeny

Gametes are produced by gonads. Spermatozoa are formed in the tesƟ s, and oocytes are 

produced in the ovary. Although both the mature oocyte and spermatozoon originate from the 

same kind of precursor cells, the primordial germ cells (PGC’s), their developmental process is 

strikingly diff erent [1]. 

 Both spermatogenesis and oogenesis have a period of arrest, however, the Ɵ me point 

of this arrest during development diff ers. In the male germline, it follows immediately aŌ er 

the mitoƟ c proliferaƟ on phase and the male precursors, that are now called spermatogonia B, 

enter a protracted period of arrest that lasts unƟ l puberty aŌ er which they will start meiosis. 

The oogonia also proliferate fi rst, but contrary to spermatogonia, they enter meiosis during 

fetal development and arrest at the diplotene stage, now called dictyate, of the meioƟ c 

prophase around birth. Thus, the mammalian oocytes that exist at birth are the oocytes that 

will be ferƟ lized in adult life. 

 It is perhaps not surprising that with advancing maternal age, the quality of oocytes 

diminishes and the long period of arrest at the phase of meiosis is associated with increased 

rate of chromosome division errors in human oocytes [2]. To understand how these errors could 

arise in mature oocytes, the development from oogonia to MII oocytes and the development 

of a follicle will be explained hereaŌ er.

Oocytogenesis 
Oogenesis is a dynamic and challenging process which is not yet fully understood. Around the 

4th week of human fetal development primordial germ cells start to migrate from the extra-

embryonic mesoderm via the allantois and the adjacent yolk sac to the genital ridge where 

they diff erenƟ ate into oogonia [1,3]. AŌ er an extensive phase of proliferaƟ on, the human 

oogonia enter the prophase of meiosis (box 1) around the 10th–12th week of gestaƟ on and are 

now called primary oocytes [1]. Primary oocytes develop in clusters. These clusters of oocytes, 

called cysts, are connected through cytoplasmic bridges. IniƟ aƟ on of meiosis is regulated by the 
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meiosis specifi c gene Stra8, which is transcripƟ onally controlled by reƟ noic acid [4,5]. During 

gestaƟ on, oocytes at diff erent stages of the meioƟ c prophase can be observed simultaneously 

in fetal ovary [6]. Human oogonia enter leptotene around the 10th–11th week of gestaƟ on [6,7] 

and zygotene oocytes can be observed from week 11–22. Pachytene oocytes can be observed 

for the fi rst Ɵ me around week 12–13 and in week 14 the fi rst diplotene oocytes can be seen. 

Thus altogether, it takes about four weeks for a human oocyte to complete the prophase of 

meiosis and arrest at dictyate. 

 Although mitoƟ cally dividing germ cells can be observed at birth in the female ovaries, 

and may possibly develop to oocytes, they are likely to be of compromised quality and it is 

thought that they will not populate the pool of primordial follicles [8]. However, the long 

accepted dogma that the generaƟ on of oocytes is restricted to the fetal period and does not 

occur in adult ovaries has been challenged. Johnson et al. observed large ovoid acƟ ve cycling 

cells near the surface of mouse ovaries which express germ cell markers [9]. They proposed 

that these putaƟ ve germ cells produce new oocytes during adult life which would mean that 

oogenesis is sƟ ll ongoing in juvenile and adult mouse ovaries. This new theory on oocyte 

development was further supported by experimental data in a follow-up study from the same 

research group [9,10]. However, as these experiments could not be confi rmed by other groups 

the debate is ongoing [11-14]. Although in vitro studies show the possibility for germ cell 

generaƟ on from somaƟ c Ɵ ssue and the iniƟ aƟ on of meiosis from stem cells [15-17], the in vivo 

pathways are far from clear. 

 Females start with a large pool of PGCs, it peaks around 7 million at week 20 in humans, 

however, only 2 million remain at birth [18]. In mice, a dramaƟ c breakdown of cysts occurs two 

days aŌ er birth, leaving only single oocytes with surrounding somaƟ c cells [19]. Other species 

have a similar decrease in numbers of oocytes, both vertebrates as well as invertebrates, and 

the decrease is likely to be regulated by apoptosis. Although the underlying cellular and/or 

molecular cause of this loss of primary oocytes is not yet clear, studies have shown that genes 

in the apoptoƟ c pathway, such as B-cell lymphoma/leukemia-2 (Bcl2), Bax and Caspase 2, are 

involved [20-23]. It has been postulated that this loss is a random process that conƟ nues into 

adult life and environmental or nutriƟ onal factors may aggravate this loss. Others have viewed 

it as an eliminaƟ on of defecƟ ve germ cells [24-27].

Follicular development 
Follicular development encompasses the growth and diff erenƟ aƟ on of a primordial follicle to 

a Graafi an follicle (Figure 2).
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Figure 2. SchemaƟ c overview of oocyte and follicle development (adapted from [28]).

From puberty onwards, oocyte development recommences when primary oocytes are 

recruited for maturaƟ on and from then on each phase of follicle development can be found in 

the ovary. During follicle development, the granulosa cells surround the oocyte and together 

they form the oocyte-granulosa complex. The granulosa cells originate from the ovarian cortex 

and their funcƟ on is to nurse and support oocyte development. Follicles can be classifi ed into 

fi ve stages based on the morphological characterisƟ cs of the granulosa cells, the appearance 

of the zona pellucida and the formaƟ on of the antral cavity. The fi ve stages are: the primordial 

follicle, the primary follicle, the pre-antral follicle, the early-/mid-antral and the antral 

follicle, which is also called the Graafi an follicle (reviewed in [29]). Follicular development in 

the human ovary culminates in either the ovulaƟ on of one, and occasionally two oocytes, 

or the degeneraƟ on (atresia) of the follicle and its oocyte. The follicle cells or granulosa 

cells are connected to the oocyte via gap juncƟ ons and through these communicaƟ on and 

transport of molecules takes place between the oocyte and granulosa cells. Each follicular 

phase is characterized by transcripƟ on of stage specifi c genes such as Dazla, Flgα, Gdf9 and 

Bmp15 [30-35] and also involves endocrine regulaƟ on by hormones like the anƟ -müllerian 

hormone (AMH), gonadotropins, and estrogens ([36,37]) reviewed in [38]). An increasing body 

of evidence shows that estrogen-like chemicals such as Bisphenol A have negaƟ ve eff ects on 

mammalian oocyte development by interfering with the endogenous hormonal regulaƟ on 

of follicle development [39-43]. Thus, environmental exposure to these chemicals may have 

consequences for oocyte development and might even have a grand-maternal eff ect through 

epigeneƟ c interference [44]. However, phenotypic diff erences of the eff ect of Bisphenol A 
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on oocyte development have been described for diff erent mouse strains [40,45]. One study 

showed an increase of aneuploidy in the oocytes of mice that were exposed to Bisphenol A 

[46], whereas Eichenlaub-RiƩ er et al. observed an arrest at the MI stage [45]. These diff erences 

may indicate that genotypic variaƟ on may infl uence the suscepƟ bility to these compounds. 

 Mammalian oocyte development and follicle development are asynchronous and the 

oocyte remains in the dictyate stage of the prophase (Figure 2) during all the growing stages of 

follicle development. During this period the oocyte is transcripƟ onally acƟ ve and does respond 

to environmental cues. In the growing phases of follicle development, key processes take place 

such as zona pellucida (ZP) formaƟ on, cumulus expansion, oocyte cytoplasmic diff erenƟ aƟ on, 

and nuclear maturaƟ on. AddiƟ onally, the oocyte has to stock pile mRNAs before it terminates 

transcripƟ on and enters the divisional stages of meiosis. This mRNA storage is needed for 

the fi rst stages of embryonic development, when the embryo is transcripƟ onally quiescent 

(reviewed in [47]). 

 Only one antral follicle, the Graafi an follicle, remains at the fi nal stage of human follicle 

development. The oocyte, or occasionally two oocytes, will recommence meiosis under 

infl uence of the LH surge. 

Nuclear maturaƟ on of oocytes
Nuclear maturaƟ on comprises the steps from the release from dictyate stage of prophase to 

the arrest at the metaphase II stage and is regulated by the cyclic acƟ vity of CDK1. High levels 

of cAMP are required to maintain the oocyte at the dictyate stage during follicle growth and 

sustain cytoplasmic maturaƟ on, a process which in vivo is regulated by the Gpr3 receptor 

[48,49]. A drop of cAMP leads to the breakdown of the nuclear envelope of the germinal vesicle 

(GV) and entry into the fi rst meioƟ c division (MI). Thus, during in vitro maturaƟ on of oocytes 

from pre-antral follicles, the addiƟ on of cAMP analogs to the culture medium is required to 

prevent accelerated nuclear maturaƟ on [48,50,51]. 

 Primary oocytes or germinal vesicle oocytes have a large nucleus which can be observed 

by light microscopy, the germinal vesicle. Germinal vesicle oocytes have two main chromaƟ n 

confi guraƟ ons, iniƟ ally a so called non surrounding nucleus (NSN) is present, followed by a 

surrounding nucleus (SN). GV oocytes with an SN organizaƟ on have a heterochromaƟ n rim 

that is not yet present in NSN GV oocytes and the chromaƟ n is far more condensed in SN 

oocytes indicaƟ ve of the onset chromaƟ n condensaƟ on. Oocytes of the NSN confi guraƟ on 

have high levels of transcripƟ on and are more immature than oocytes with a SN confi guraƟ on 

which have terminated transcripƟ on. The transiƟ on in the level of chromaƟ n condensaƟ on 

is associated with a Ɵ mely progression of meioƟ c maturaƟ on and subsequent embryonic 
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development (reviewed in [52]). This large scale remodeling of chromaƟ n involves the adding 

and removal of histone modifi caƟ ons (box 2). InteresƟ ngly, the chromaƟ n of both NSN as well 

as SN GV oocytes have acetylated lysines in histones 3 and 4 e.g H3K9, H3K14, H4K5, H4K8, 

H4K12 and H4K16 [53,54]. Histone acetylaƟ on is usually a mark of transcripƟ onally acƟ ve 

chromaƟ n, although SN GV oocytes are transcripƟ onally silent [55,56]. This indicates that 

H3/H4 acetylaƟ on is not invariably associated with ongoing transcripƟ on. Germinal vesicle 

breakdown (GVBD) is followed by chromosome condensaƟ on. At this stage, the chromaƟ n 

is deacetylated by histone deactylases (HDACs, [53,54,57-59]). Their inhibiƟ on leads to 

hyperacetylated chromaƟ n in mammalian oocytes [60-62]. Class I and II HDACs are the most 

plausible candidates for the deacetylaƟ on of chromaƟ n as mouse MII oocytes have high levels 

of mRNA of the individual HDACs and the proteins have been detected in mouse GV oocytes 

[63,64]. 

 During progression from GVBD to the metaphase I stage, the chromosome homologous, 

which are physically aƩ ached at the sites of recombinaƟ on, move to the equatorial plate and 

microtubules connect the homologous chromosomes to opposite spindle poles. It is crucial 

that the sister chromaƟ ds are connected to the same spindle pole and therefore they have to 

be orientated in such a way that both kinetochores of the sister chromaƟ ds form a binding unit 

for the microtubules (box 1). AŌ er compleƟ on of meiosis I the oocyte immediately progresses 

to the second meioƟ c division. The DNA remains condensed and a new spindle is formed. As 

in mitosis, the sister chromaƟ ds are now orientated amphitelically with the single chromaƟ ds 

aƩ ached to microtubules of the opposite spindle poles. 

 At this metaphase stage the oocyte arrests (MII) and awaits to be ferƟ lized by a 

spermatozoon to complete the second meioƟ c division. A special acƟ vity, known as the 

cytostaƟ c factor (CSF) maintains the metaphase II arrest in oocytes [65]. This pathway was 

iniƟ ally invesƟ gated in frog oocytes. Masui and Markert proposed that CSF had to fulfi ll three 

criteria. First, it should appear during oocyte maturaƟ on and reach its highest level at the MII 

stage. Secondly, it should be able to induce an exogenous metaphase arrest upon injecƟ on 

into blastomeres. Lastly, a fl ux of Ca+ should inacƟ vate CSF and release the MII arrest [65]. 

The fi rst  protein that was idenƟ fi ed as a CSF candidate was the c-MOS kinase. InjecƟ on of 

the c-MOS protein induces MII arrest and depleƟ on of c-MOS leads to a failure of maintaining 

MII arrest [66-68]. AŌ er c-MOS had been idenƟ fi ed, more factors in the pathway that act 

downstream of c-MOS were found, such as the mitogen acƟ vated protein module (MAPK) 

which contains MEK, the ERK kinases and the ribosomal S6 kinase (RSK; reviewed in [69]). 

Furthermore, over-expression of the components of the SAC can induce an arrest but immune 

depleƟ on of these components does not inhibit the APC/C, nor does it block an induced CSF 
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release by CA+ in Xenopus [70-72]. This indicates that the APC/C acƟ vaƟ on and the subsequent 

cyclin B degradaƟ on do not solely depend on the proteins of the SAC and the c-MOS pathway 

may act independent of the SAC. Although the proteins of the c-MOS/ MAPK pathway and 

the members of the SAC are conserved in mammalian oocytes, the pathway involved in 

the MII arrest is less clear in mouse oocytes. Loss of c-MOS or MAPK/MEK does induce an 

arrest in mouse oocytes, however they exit MII and undergo parthenogenesis aŌ er 2–4 hrs 

[66,67,73,74]. This suggests that these proteins are required for the maintenance of the MII 

arrest, however, they are not solely responsible for its establishment.

 In 1991, it was already described that upon ferƟ lizaƟ on the acƟ vity of CaMKII increases, 

leading to cyclin B degradaƟ on [75]. However, levels of c-MOS remain high up to 30 min aŌ er 

the Ca+ fl ux, indicaƟ ng that c-MOS may regulate APC/C acƟ vaƟ on and cyclin B degradaƟ on 

via an intermediate kinase, one that is inacƟ vated directly by the Ca+ fl ux. EMI 2 [76-78] was 

idenƟ fi ed to be the intermediate protein that inhibits APC/C (reviewed in [69,79,80]). 

BOX 1

Female meiosis versus mitosis
Human somaƟ c cells contain 23 pairs of chromosomes, thus 46 chromosomes (2n). The 

cell cycle of a somaƟ c cell has two main stages, the interphase and the mitoƟ c phase. The 

interphase consists of three stages: the two gap phases G1 and G2 and an intervening 

synthesis phase (S phase) in which the DNA is replicated aŌ er which each chromosome 

consists of a pair of chromaƟ ds. During the 4 mitoƟ c phases, the chromaƟ ds of each 

chromosome are condensed (prophase), aligned (metaphase), segregated (anaphase) and 

form new nuclei (telophase) followed by cytokinesis, in which two new somaƟ c daughter 

cells are formed. 

Mature gametes diff er from somaƟ c cells as they contain only half of the genome, 

23 chromosomes (n). This reducƟ on of the genome is realized through a special kind of cell 

division called meiosis which has two dividing phases without an intervening interphase 

(box Figure 1). In addiƟ on, the prophase is extended and exists of four separate stadia: 

Leptotene, Zygotene, Pachytene and Diplotene.
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Box Figure 1. Diff erences between mitosis and meiosis. The prophase in meiosis is protracted 
and during this phase, recombinaƟ on between the homologous chromosomes take place. The 
daughter cells are haploid in meiosis whereas mitoƟ c daughter cells are idenƟ cal to the mother 
cell (adapted from [120]).
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Prophase
In the prolonged prophase the homologous chromosomes pair and recombine the two 

parental strands of DNA. This process of exchanging informaƟ on ensures the diversity 

within the species and between the species. RecombinaƟ on is iniƟ ated by the formaƟ on 

of double strands breaks (DSBs) by the enzyme SPO11 [194,195]. The fi rst breaks can be 

observed in leptotene. DSBs are thought to enable the pairing process of the homologous 

chromosomes as the breaks are repaired by making use of the homologous chromosome 

as an intact template rather than the sister chromaƟ d as is common in somaƟ c cells that 

have completed S-phase. In addiƟ on, the other, less accurate, pathway of DSB repair, non-

homologous end-joining (NHEJ), is repressed. Although many breaks are formed, only a 

minority of the DSB breaks is repaired to form a cross-over. The majority of the breaks are 

repaired via other pathways such as synthesis-dependent strand annealing (reviewed in 

[196]). 

A cross-over forms a physical link between the homologous chromosomes which is 

called a chiasmata. Per chromosome only a few chiasmata can be observed, the number of 

which depends on the length of the chromosomes (reviewed in [197]). When these chiasmata 

are lacking or placed at certain vulnerable regions of a chromosome, this chromosome pair 

is predisposed to mis-segregate during the division stages [198]. During meioƟ c prophase, 

the meioƟ c cohesion complex [199-201] is loaded onto the chromaƟ n [199]. It binds the 

sister chromaƟ ds and ensures that they stay together unƟ l they are separated during the 

second meioƟ c division.

Metaphase I and II in oocytes
The fi rst meioƟ c division is iniƟ ated by the breakdown of the nuclear envelope of the 

germinal vesicle, a process called germinal vesicle breakdown (GVBD). The chromaƟ n (box 

2) condenses into chromosomes and extensive remodeling takes place. The lysine residues 

of histone 3 (H3) and histone 4 (H4) are deacetylated in the [53,54] and H3 is phosphorylated 

at serine 10 and 28 [202]. This remodeling of chromaƟ n is necessary to create a stable 

kinetochore at the centromeres of the chromosomes. InhibiƟ on of this process results 

in chromosome segregaƟ on errors due to disturbed interacƟ ons with microtubules and 

kinetochore interacƟ ng proteins [60,61,112-119,203,204]. 
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Mammalian oocytes lack centrosomes and thus spindle organizaƟ on and bi-orientaƟ on is 

diff erently regulated compared to somaƟ c cells. AŌ er GVBD, many microtubule organizing 

centers (MTOC) can be observed in the cytoplasm [205]. The mulƟ polar MTOCs cluster 

into a bi-polar barrel shaped spindle that exhibits similar characterisƟ cs as a mitoƟ c 

centrosomal spindle. During this process the homologous chromosomes congress and 

align at the equatorial plate. A recent study shows that this process of homologue bi-

orientaƟ on is highly erroneous and almost all chromosomes need more than one round 

of correcƟ on before they are aƩ ached amphitelicly, with each homologous chromosome 

aƩ ached to an opposite pole of the spindle [206]. Erroneous aƩ ached chromosomes/

chromaƟ ds, for example merotelic aƩ achment of a homologous chromosome to both 

poles or syntelic aƩ achment when both homologues are aƩ ached to the same pole, are 

monitored by proteins of the chromosomes passenger complex (CPC) and corrected by 

the mitoƟ c centromere associated kinesin (MCAK; [207,208]). The CPC has mulƟ ple roles, 

namely regulaƟ ng proper microtubule aƩ achment, regulaƟ on of the spindle assembly 

checkpoint, localizing the Shugoshin proteins and cytokinesis. In mammalian oocytes, the 

CPC consists of the proteins INCENP, Aurora kinases B/C, Survivin and Borealin [209-217]. 

When the chromosomes are aligned properly at the equatorial plate and they are each 

aƩ ached to the microtubules, the oocyte progresses to anaphase. Progression to anaphase 

is regulated by the proteins of the anaphase-promoƟ ng complex/cyclosome (APC/C) which 

inacƟ vate CDK1. The proteins of the spindle assembly check point (SAC) delay the acƟ vaƟ on 

of the APC/C unƟ l all chromosomes are properly aƩ ached [106,218-220]. ProtecƟ on 

of centromeric bound REC8 by Shugoshin proteins secures the aƩ achment of the sister 

chromaƟ ds unƟ l MII (reviewed in [221]). The localizaƟ on of these proteins is regulated by 

BUB1, which in turn depends on H2A phophorylaƟ on [222]. Upon progression to anaphase I 

the cohesion complex is removed from the chromaƟ d arms by Separase [223], which allows 

the homologous chromosomes to be separated.

Both meioƟ c divisions are asymmetric which enables the oocyte to retain almost all 

the cytoplasm. These asymmetric divisions are governed by the proteins SPIRE 1, SPIRE 2 

and FORMIN 2 [224]. AŌ er extrusion of the fi rst polar body the sister chromaƟ ds progress 

and align at the equatorial plate. Now, the sister chromaƟ ds have to bi-orientate at the 

opposite spindle poles like in mitosis. AŌ er acƟ vaƟ on of the oocyte by the fusion of the 

oolemma with the membrane of the spermatozoon, the second meioƟ c division is iniƟ ated. 

The centromeric bound REC8 is cleaved which allows the separaƟ on of the sister chromaƟ ds. 

One set of sister chromaƟ ds is extruded into the second polar body. The remaining haploid 

set will form the maternal pronucleus.
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Why do eggs go bad?
AŌ er Ɵ med intercourse, a woman has on average a 20%–30% chance to become pregnant 

[81,82]. Other mammals such as rodents and rabbits, but also the more closely related monkeys, 

have a much higher pregnancy rate per cycle (80%–95%) [83-85]. One of the main reasons for 

this low pregnancy chance is most likely the high rate of aneuploidy in human oocytes. Many 

studies have shown that the percentage of aneuploid oocytes in women can be up to 50% and 

one factor that has been unequivocally associated with the high incidence of chromosome 

aberraƟ ons is advanced maternal age (reviewed in [86]). As menƟ oned before, oocytes enter 

the meioƟ c prophase around birth and have a protracted phase of developmental arrest. From 

puberty onwards, when a woman has her fi rst menarche, oocyte development recommences. 

Thus, complete oocyte development, from the precursor cells to the mature MII oocytes, can 

take up to decades. It is therefore not surprising that human chromosome abnormaliƟ es, such 

as Down’s syndrome, are in most cases maternally derived [87-89]. Human oocytes replicate 

and recombine their DNA many years before they enter the division stages. This means that 

during this long Ɵ me the two chromosome homologous have to remain physically aƩ ached. 

The proteins responsible for this are the components of the cohesion complex. Recent 

studies have shown that in mouse oocytes at least two cohesins, the meioƟ c variants REC8 

and SMC1β, are not replenished during oocyte maturaƟ on from the prophase onwards and 

that older mice have diminished levels of these proteins [90-96]. Because the components 

of the meioƟ c cohesion complex are conserved in mammals, these data suggest that also in 

human oocytes these proteins are loaded only once at the prophase of meiosis around birth, 

and must last for decades unƟ l the oocyte is recruited for ovulaƟ on and ferƟ lizaƟ on. Another 

factor that has been unequivocally associated with aneuploidy is the number and placement 

of the recombinaƟ on sites. Studies of animal models [97] as well as data from Down syndrome 

paƟ ents [98,99] show that reduced cross-over formaƟ on or the placement of the cross-over at 

vulnerable chromosomal regions, for example in the vicinity of the centromere and telomeres, 

are associated with chromosome segregaƟ on errors in MI and MII ([100], reviewed in [88,101]). 

 Other proteins that have been associated with the high incidence of chromosome 

segregaƟ on errors in oocytes of women of advance maternal age are the proteins of the 

spindle assembly checkpoint (SAC). These proteins funcƟ on as a tension sensor of microtubule-

kinetochore aƩ achment and are able to delay the transiƟ on to anaphase unƟ l all chromosomes 

are properly aligned. A geneƟ c screen in yeast cells idenƟ fi ed the genes encoding for these 

proteins to be essenƟ al for the arrest at metaphase when cells are challenged with spindle 

poisons [102-105]. These genes belong to the mitoƟ c arrest defi ciency (MAD) and budding 

uninhibited by benomyl (BUB) gene families and are conserved in mouse and humans. Studies 
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in mouse oocytes have proven that a spindle assembly checkpoint is acƟ ve during the meioƟ c 

segregaƟ on stages. Oocytes respond to spindle damage by recruiƟ ng proteins of the SAC 

to the unaƩ ached microtubules [106]. However, oocytes that have a univalent (achiasmaƟ c 

chromosomes) can evade the SAC if the sister chromaƟ ds are bi-orientated [107,108]. In 

addiƟ on, other data suggest that the geneƟ c background infl uences the suscepƟ bility to 

aneuploidy and indicate that some mouse strains only need a criƟ cal mass of chromosome 

alignment rather than full chromosome alignment to proceed to anaphase [109]. Thus, subtle 

diff erences in the SAC mediated response may contribute to an oocyte’s suscepƟ bility to age-

related aneuploidy. It has been shown that components of the SAC are expressed in human 

oocytes and diminished MAD2 and BUB1 mRNA levels were observed in human oocytes of 

women of advanced maternal age [110]. This may indicate that these genes could be involved 

in the increase of aneuploidy in older women. The more perƟ nent data on protein levels and 

localizaƟ on are, however, sƟ ll lacking. New studies are needed to defi nitely determine the role 

of these proteins in age-related human aneuploidy. 

 It has become clear that correct chromosomes segregaƟ on, either in mitosis or 

meiosis, involves many processes and proteins that together orchestrate the equal division 

of homologous chromosomes. Key processes such as chromaƟ n condensaƟ on, kinetochore 

formaƟ on and proper microtubule aƩ achment require the proper interacƟ on of many 

proteins both with each other but also with the chromosome. It is thought that the chromaƟ n 

is remodeled in such a way that it creates an opƟ mal plaƞ orm to allow stable kinetochore-

microtubule interacƟ on. Histone acetylaƟ on and euchromaƟ c histone modifi caƟ ons are 

associated with decondensed open chromaƟ n to allow for gene transcripƟ on [111]. As 

described above, the removal of acetyl groups of lysines residues by HDACs precedes chromaƟ n 

condensaƟ on at the prometaphase to metaphase transiƟ on in meiosis I [53,54,58,59]. 

InhibiƟ on of HDACs by chemical agents such as trichostaƟ n A and sodium butyrate results in 

hyperacetylated chromaƟ n aff ecƟ ng kinetochore formaƟ on, chromosome segregaƟ on, and, 

aŌ er long term culture, also leads to dysregulaƟ on of gene transcripƟ on. Experimental data 

show that inadequate remodeling of chromaƟ n through inhibiƟ on of HDACS during mitosis 

leads to aneuploidy eventually resulƟ ng in apoptosis [112-119]. In vitro maturaƟ on of mouse 

and porcine oocytes in the presence of an HDACi results in chromosome mis-segraƟ on and 

aneuploidy in the off spring [60-62]. Furthermore, it was observed that oocytes from older 

mice show residual acetylaƟ on at the MI and MII stage and an increase in chromosome 

misalignment compared to oocytes from young mice [60]. This inadequate remodeling of 

chromaƟ n during mouse oocyte maturaƟ on may be an important factor in the eƟ ology of age 

related aneuploidy. Chapter 2 of this thesis describes the kineƟ cs of chromaƟ n remodeling, 
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in parƟ cular the deacetylaƟ on of lysine residues on H4, during human oocyte maturaƟ on and 

provides evidence that residual acetylaƟ on may be correlated with advanced maternal age 

and chromosome misalignment in human oocytes. 

BOX 2

About DNA, epigeneƟ cs and chromaƟ n 

Box Figure 2. Beads on a string (adapted from [225]).

In the nucleus, the DNA is wrapped around an octamere of proteins, called the nucleosome 

(box Figure 2). Around each nucleosome about 150 basepairs of DNA are wrapped. 

Nucleosomes are separated by 10-80 bp of DNA, depending on the species and the Ɵ ssue. 

The core of the nucleosome contains fi ve very basic proteins that neutralize the negaƟ ve 

charge of the DNA, the histone proteins. They are histone 2a (H2A) and histone 2B (H2B) 

which form heterodimers, histone 3 (H3) and histone 4 (H4) which form heterotetrameres. 

One molecule of histone H1 is bound to the DNA on the edge of most nucleosomes. The 

histones form the basic subunits of the chromaƟ n and they can be either replaced by variant 

histones or they can be post-translaƟ onally modifi ed by covalently bound small molecule 

groups (Box Figure 3). These histone variants and modifi caƟ ons play a very important role in 

creaƟ ng a specifi c chromaƟ n structure which allows the associated DNA, ranging from the 

promoter region of individual genes to complete intergenic repeat regions, to be accessible 

or inaccessible to protein complexes interacƟ ng with the chromaƟ n or directly with DNA. 
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Catalyzing enzymes such as histone acetyl transferases (HATs), histone methyltransferase 

(HMTs) and histone deacetylases (HDACs) are components of transcripƟ onal regulatory 

complexes and can modify the tails of all 5 histones, which sƟ ck out of the spherical 

core. The combinaƟ on of histone modifi caƟ ons and variants results in a dynamic code, 

“the histone signature” [111], which is related to the chromaƟ n structure of the DNA of 

a specifi c gene, a region or a phase of the cell cycle. Recently, novel sites of histone post-

translaƟ onal modifi caƟ ons (PTMs) and a new type of histone modifi caƟ on, histone lysine 

crotonylaƟ on (Kcr), involved in spermatogenesis, have been described [226] and it was 

suggested that new PMTs will be discovered. DysregulaƟ on of chromaƟ n can result in up- 

or downregulaƟ on of transcripƟ on of genes but also causes disrupƟ on of the higher order 

chromaƟ n structure which aff ects chromaƟ n interacƟ ng protein complexes. For example, 

acetylated lysines of H4 are associated with DNA transcripƟ on and repair during interphase; 

however, hyperacetylated chromaƟ n during the metaphase of mitosis and meiosis causes 

chromosome division errors leading to aneuploidy. 

Box Figure 3. Examples of post translaƟ onal histone modifi caƟ ons on the amino acids (numbers) of 
the histone proteins (adapted from [227]). 
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Spermatogenesis
Spermatogenesis is the male counterpart of oogenesis. It consists of three stages: i) mitoƟ c 

proliferaƟ on, ii) meiosis and iii) spermiogenesis. Unlike oogenesis, spermatogenesis is a 

conƟ nuous process in adults. The testes contain undiff erenƟ ated spermatogonial stem cells 

that can proliferate and generate new daughter cells throughout life. Spermatogenesis iniƟ ates 

at puberty and the spermatogonia enter the meioƟ c prophase [120]. 

 The stages of meiosis are basically the same in spermatocytes and oocytes, 

however, there are some diff erences, and in this context the diff erenƟ al behavior of the sex 

chromosomes during male and female gametogenesis is most relevant. During prophase (box 

1), the homologous chromosomes pair and synapse to allow cross-over formaƟ on. In contrast 

to females that have two X chromosomes, the sex chromosomes of males, the X and Y, do not 

share full sequence homology. Although transient pairing of the heterologous regions occurs 

in early pachytene, at midpachytene only the pseudo autosomal regions (PAR), where the X 

and Y chromosome share sequence homology, remain synapsed [121]. The unsynapsed regions 

trigger a silencing mechanism, known as meioƟ c sex chromosome inacƟ vaƟ on (MSCI). This 

mechanism involves extensive remodeling of chromaƟ n including incorporaƟ on of histone 

variants and the addiƟ on of specifi c histone modifi caƟ ons. This results in the formaƟ on of 

a heterochromaƟ c compartment at the periphery of the nucleus, known as the sex body or 

XY body (reviewed in [122,123]). In round spermaƟ ds of the mouse, the X and Y chromosome 

are thought to remain largely inacƟ ve, forming the so called post-meioƟ c sex chromaƟ n 

(PMSC) [124], although several single-copy and mulƟ -copy genes are reacƟ vated [125,126]. 

MSCI and PMSC have been associated with imprinted X chromosome inacƟ vaƟ on in the 

mouse pre-implantaƟ on embryo [127], although this is sƟ ll controversial [128]. For a correct 

progression through male meiosis, MSCI is essenƟ al as mutants in which MSCI is incomplete, 

are inferƟ le due to toxic eff ects of genes expressed by the X and Y chromosome [129-132].

 AŌ er compleƟ on of meiosis, the spermaƟ ds undergo morphological changes as they 

mature into spermatozoa. The chromaƟ n also undergoes drasƟ c remodeling via the histone-

to-protamine replacement process, which allows the DNA to be highly compacted [133,134]. 

The percentage of remaining histones diff ers per species: in human sperm around 15% of 

histone proteins are retained while in mice this percentage is only around 1% [135-137].  

 To be able to ferƟ lize an oocyte, the spermatozoon must undergo a fi nal maturaƟ on 

step, known as the capacitaƟ on process [138], which occurs in the female genital tract [139]. 
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The zygote: FerƟ lizaƟ on and pronuclei formaƟ on

Upon ferƟ lizaƟ on the oocyte needs to remodel the maternal and paternal chromaƟ n in 

preparaƟ on for transcripƟ onal acƟ vaƟ on, a process to which the spermatozoon does not 

contribute any proteins. When an oocyte ovulates, it has a window of around 36 hrs to 

be ferƟ lized before it reaches the uterus, where it degenerates and is taken up by the 

endometrium. When a spermatozoon reaches the oocyte it binds to the zona pellucida and 

undergoes the acrosome reacƟ on. This reacƟ on involves the release of the contents of the 

sperm acrosome by exocytosis into the oocyte cytoplasm. This generates a Ca+ fl ux within the 

oocyte which triggers it into anaphase and fi nishing the second meioƟ c division by extruding 

the second polar body. 

 Pronuclear formaƟ on of the parental genomes occurs simultaneously in most human 

oocytes [140]. The parental pronuclei (PN) are quite diff erent with respect to their chromaƟ n. 

As menƟ oned above, a spermatozoon has to pack its DNA into a small, aerodynamic sperm 

head, and to accomplish this, the histones are largely replaced by smaller highly posiƟ vely 

charged protamines. 

 Approximately three hours aŌ er the spermatozoon has entered the oocyte cytoplasm, 

the pronuclei start to form. The sperm head decondenses and the protamines are removed 

to be replaced by histones. These new histones are not yet modifi ed in the same way as 

the histones on the maternal pronucleus [141,142]. Thus at the Ɵ me of pronuclei formaƟ on, 

the two parental chromaƟ n structures are quite diff erent and show asymmetric paƩ erns of 

mainly heterochromaƟ n related histone modifi caƟ ons, such as H3K9me2 which is present in 

the maternal pronucleus but absent in the male PN. This asymmetry can sƟ ll be observed in 

the next stage of pre-implantaƟ on development. Mouse 2 cell stage embryos sƟ ll have nuclei 

that are not completely evenly stained for histone H3 K9 dimethylaƟ on when compared to 

somaƟ c nuclei or nuclei of later stage blastomeres [143,144]. This diff erence in staining was 

not observed in the nuclei of 2 cell stage androgeneƟ c embryos (see glossary for explanaƟ on), 

which have no staining of H3K9me2 or parthenogeneƟ c embryos, which have evenly stained 

nuclei. This asymmetry gradually disappears during the subsequent stages following zygoƟ c 

genome acƟ vaƟ on indicaƟ ng that from that stage onwards the responsible methyltransferases 

are acƟ ve. As will be described in chapter three, our data on human tri-pronuclear zygotes 

suggest that human embryos have a similar diff erenƟ al paƩ ern of histone modifi caƟ ons on the 

male and female pronuclei as mouse zygotes.



24 

Chapter 1

Abnormal pronuclei formaƟ on
ArƟ fi cial reproducƟ ve technology (ART) has provided much new knowledge on human early 

embryonic development. As concepƟ on takes place outside the body, the fi rst developmental 

stages of an embryo can be followed in vitro. AŌ er approximately 16–20 hrs post inseminaƟ on 

(hpi) two nuclear structures can be observed under a light microscope. Occasionally, the 

zygote contains more than two pronuclei. Even aŌ er intra cytoplasmic sperm injecƟ on (ICSI), 

where only a single spermatozoon is injected directly into the ooplasm, three pronuclei can 

someƟ mes be observed. AŌ er IVF, around 5% to 8% of the zygotes contains an extra pronucleus 

and in around 2.5 % and 6% of the zygotes derived aŌ er ICSI, a third pronucleus can be seen 

[145-147]. 

 Another abnormal pronuclear paƩ ern is the presence of only a single pronucleus. This 

single PN aŌ er convenƟ onal inseminaƟ on is in most cases larger than one of the two pronuclei 

in normal ferƟ lized oocytes, indicaƟ ve of the presence of more than one parental genome 

([148] and own observaƟ ons). 

 Abnormal ferƟ lizaƟ on can also occur aŌ er natural concepƟ on. Oocytes that are 

ferƟ lized by two spermatozoa can become embryos and even implant in the uterus. They are, 

of course, geneƟ cally aberrant and do not develop into a normal fetus. They form many extra-

embryonic grapelike Ɵ ssues and are called hydaƟ diform moles. In case of a triploid embryo 

with two sets of the paternal genome and one maternal genome, embryonic structures are 

formed and this is called a parƟ al hydaƟ diform mole. In contrast, a complete hydaƟ diform 

mole (CHM) exclusively exists of paternal geneƟ c material. These androgeneƟ c embryos are 

most likely the result of the ferƟ lizaƟ on of an oocyte without DNA, a so called empty egg 

by a single sperm that is reduplicated. In these cases the embryo will be homozygous and 

either XX or YY. However, 4% of the CHM are heterozygous XY and most likely originated from 

ferƟ lizaƟ on by two spermatozoa [149]. Complete and parƟ al hydaƟ diform moles usually end in 

a spontaneous aborƟ on, however, the cells are someƟ mes invasive and can cause a tumor-like 

phenotype in the uterus. 

 It is evident that in ART treatments, tri-pronuclear zygotes are not safe to transfer back 

into the uterus even as the pre-implantaƟ on embryo can develop seemingly normal unƟ l 

the blastocyst stage. The transfer of embryos developed from mono-pronuclear zygotes is 

someƟ mes considered in cases where no normal zygotes are available for transfer into the 

uterus. IdenƟ fying the sex and chromosome consƟ tuƟ on of the embryo might give more 

informaƟ on on the presence of a diploid genome indicaƟ ng that ferƟ lizaƟ on may have 

occurred. However, the presence of either an XX or XY chromosome combinaƟ on can in 

fact originate from an abnormal ferƟ lizaƟ on and does not provide conclusive evidence of a 
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normal ferƟ lizaƟ on. As menƟ oned above, a mono-pronuclear zygote could be the result of 

the ferƟ lizaƟ on of an empty egg by two spermatozoa [149-151]. In chapter 3 of this thesis we 

describe the parental contribuƟ on of the gametes in mono-pronuclear zygotes derived from 

IVF and ICSI treatments.

Embryogenesis/pre-implantaƟ on development
At the fi rst cell division the zygote becomes a 2-cell embryo. The pre-implantaƟ on divisions 

diff er from normal somaƟ c divisions in that there is no cellular growth aŌ er cytokinesis. Thus, 

the fi rst divisions result in daughter cells of half of the size of the parental cell and are called 

cleavage divisions. As menƟ oned before, the oocyte has stockpiled mRNA during oocyte 

maturaƟ on and the pre-implantaƟ on embryo is dependent on this maternal supply unƟ l its 

own genome is acƟ vated. In the mouse, embryonic genome acƟ vaƟ on occurs in three waves. 

The fi rst minor wave occurs at the zygote stage followed by the major wave at the two cell stage 

(reviewed in [152]) that acƟ vates most genes. The third minor wave occurs at the cleavage 

stages between the two cell stage and the blastocyst stage [153]. Human embryos start to 

acƟ vate their genome at a later Ɵ me point than mouse embryos, approximately between the 

fourth and eight cell stage [154]. 

 In both mouse and human embryos, but also in other mammals, the fi rst morphologic 

cell diff erenƟ aƟ on occurs between the 8 and 16 cell stage at the Ɵ me of compacƟ on. The outer 

cells of the embryo will take part in the formaƟ on of the extra-embryonic lineage whereas 

the inner cells will mainly consƟ tute the epiblast. At the blastocyst stage this disƟ ncƟ on in 

cell allocaƟ on and diff erenƟ aƟ on is most prominent as the inner cells form a small clump of 

cells, the inner cell mass (ICM). The outer cells form the outside layer, the trophectoderm 

(TE), enclosing the blastocoelic fl uid. The trophectoderm will form the future extra embryonic 

Ɵ ssues such as the chorion and the placenta. The ICM will eventually form all the cells of 

the Ɵ ssues and organs of the embryo. The ICM cells can diff erenƟ ate into every somaƟ c cell 

type and this special characterisƟ c is called pluripotency. Genes that are associated with this 

state of pre-diff erenƟ aƟ on are called pluripotency genes and they encode for proteins such as 

NANOG, SOX2 and OCT3/4 [155-158]. Cells of the ICM have high levels of these proteins which 

is a mark for their undiff erenƟ ated state although the protein levels vary between individual 

cells. At day 3.5 the ICM of a mouse embryo contains cells which express both epiblast markers 

such as NANOG as well as primiƟ ve endoderm (PrE) markers such as Gata4. Following further 

development to the hypoblast stage (mouse 5.5 dpc.) NANOG is only expressed by the future 

epiblast cells [159,160]. In mouse blastocysts this expression is mirrored by the protein CDX2 

that is exclusively present in the TE cells or the GATA4/GATA6 proteins present in the PrE cells 
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[161-163]. Around this Ɵ me the mouse embryo will implant in the uterus. In humans, the exact 

Ɵ me point of implantaƟ on is not possible to determine in vivo. However, in vitro models, using 

a layer of endometrial stromal and epithelial cells have shown that “implantaƟ on” takes place 

in vitro between days 7.5 and 9 post ferƟ lizaƟ on [164-166]. 

 During pre-implantaƟ on development, female and male embryos are morphologically 

the same, however, they are of course geneƟ cally diff erent. Female mammals have to 

compensate the expression of X-linked genes that males are lacking on their Y chromosome 

[167]. Therefore, the expression of the majority of genes is silenced on one of the X 

chromosomes through an elaborate epigeneƟ c process called X chromosome inacƟ vaƟ on 

(XCI; box 3). XCI comprises all the features of epigeneƟ c regulaƟ on, such as transcripƟ onal 

regulaƟ on by non-coding RNAs, chromaƟ n remodeling and DNA methylaƟ on. In the mouse XCI 

is established in three steps during embryonic development [127,128,160,168-171]. 

 In the mouse pre-implantaƟ on embryo, the fi rst step of XCI takes place at the two 

cell stage when the fi rst signs of XCI can be observed, namely expression of the X inacƟ ve 

specifi c transcript gene (Xist) [172-174]. During the fi rst stages of murine pre-implantaƟ on 

development the paternal X (Xp) preferenƟ ally iniƟ ates XCI. The Xp exhibits the most important 

hallmarks of XCI, such as coaƟ ng of the inacƟ ve X chromosome by Xist RNA in cis, exclusion 

of the transcripƟ on machinery, loss of euchromaƟ n histone modifi caƟ ons, accumulaƟ on of 

heterochromaƟ n histone marks and silencing of individual genes. This preferenƟ al silencing 

of the paternal X chromosome is called imprinted XCI. DNA methylaƟ on of silenced genes is 

not established at the pre-implantaƟ on stage. This lack of DNA methylaƟ on may refl ect the 

incomplete status of XCI at this early stage of XCI [175]. DeleƟ on of the key genes of XCI, Xist 

and Tsix, is lethal only aŌ er implantaƟ on development and this raises the quesƟ on whether 

funcƟ onal dosage compensaƟ on is required during normal pre-implantaƟ on development 

[147,148]. FISH data examining XIST cloud formaƟ on, as an indicator of XCI, in parthenogeneƟ c, 

gynogeneƟ c and androgeneƟ c pre-implantaƟ on embryos show that at the morula stage a 

counƟ ng mechanism is iniƟ ated which indicates that imprinted XCI can be overridden [176,177]. 

This counƟ ng mechanism explains why XpO mice are viable although they are smaller as their 

wildtype counterparts [178-180]. 

 It was iniƟ ally postulated that the paternal X enters the oocyte in a pre-inacƟ vated 

state. This was thought to occur by the mechanism of meioƟ c sex chromosome inacƟ vaƟ on 

(MSCI) followed by PMSC, which take place during spermatogenesis [127]. However, as there 

is expression of the paternal X during pre-implantaƟ on development this theory was rejected. 

A study in mouse oocytes showed that the maternal X (Xm) acquires the mark that prevents 

it from being inacƟ vated during maturaƟ on [181] most likely by methylaƟ on of the Xist gene 
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on the Xm. This is mirrored by the unmethylated status of Xist on the Xp which may allow 

the preferenƟ ally expression of paternal Xist RNA from the two cell stage onward [182-184]. 

However, these data on the parental specifi c methylaƟ on were not completely reproducible 

[185]. 

 The second step of XCI takes place in the blastocyst embryo. The cells of the  

trophectoderm secure the imprinted mark on the paternal X [186,187], whereas the ICM cells 

will reacƟ vate the Xp [128,168]. At the Ɵ me of implantaƟ on, the cells of the now epiblast 

iniƟ ate random XCI by inacƟ vaƟ ng either the maternal or the paternal X chromosome in the 

third step of XCI. Diff erent models have been proposed to explain the kineƟ cs of XCI (box 

3). Undiff erenƟ ated mouse ES cells, which are derived from the ICM [188,189], sƟ ll have two 

acƟ ve X chromosomes and are commonly used as a model to study the process and the genes 

that are involved in the iniƟ aƟ on of random XCI (reviewed in [190]). 

BOX 3

Random XCI
In mouse blastocyst embryos, the cells of the developing ICM reacƟ vate the paternal X 

whereas the cells of the trophectoderm maintain the Xp silenced [127,128,168,228]. AŌ er 

reacƟ vaƟ on, just aŌ er implantaƟ on, the cells of the ICM start random XCI which results in 

silencing of either the maternal or paternal X chromosome. Mouse embryonic stem cells 

(mES cells) originate from the ICM and can be used to recapitulate the steps that are taken 

in random XCI. The use of mES cells has provided in depth knowledge of the complicated 

process of XCI. Many genes and proteins have been discovered and diff erent models 

have been proposed to explain how a cell ends up with one inacƟ ve X and one acƟ ve X 

chromosome (reviewed in [229,230]).

Models of XCI
A diploid set of autosomes always has one acƟ ve X chromosome and every extra X 

chromosome will be inacƟ vated. This indicates that a cell somehow “counts” how many 

X chromosomes there are per diploid set of autosomes and then “chooses” which X to 

inacƟ vate. Diff erent models have been proposed to explain this counƟ ng and choice 

mechanism [231-237]. However, it has become clear in recent years that XCI is best explained 

by the so called “stochasƟ c” model. 



28 

Chapter 1

The stochasƟ c model 
ObservaƟ ons in female ES cell lines with diff erent X:autosomes raƟ os revealed that at some 

Ɵ me points during the iniƟ aƟ on of XCI, diff erent numbers of inacƟ ve X chromosomes per 

set of autosomes can be observed; XX cells with two acƟ ve X chromosomes, instead of 

the correct paƩ ern of one Xi and one Xa and cells with two Xi’s [238]. This paƩ ern can 

be explained when it is assumed that every X chromosome has a certain chance to be 

inacƟ vated. The probability to be inacƟ vated depends on the nuclear concentraƟ on of 

trans-acƟ ng factors that regulate Xist and Tsix transcripƟ on upon diff erenƟ aƟ on [239-242]. 

During diff erenƟ aƟ on, these trans-acƟ ng factors upregulate Xist and/or down regulate Tsix, 

thereby increasing the chance of inacƟ vaƟ on which leads in most cases to the random 

inacƟ vaƟ on of one X-chromosome. Cells that will inacƟ vate both X chromosomes will die 

and cells without an Xi will go through another round of XCI or die. Most paƩ erns of XCI 

observed in wild type ES cells as well as in cells that carry XCI related mutaƟ ons can be 

explained by this model [243]. 

IniƟ al data had suggested that XCI did not exist in human pre-implantaƟ on embryos. This was 

based on nested RT-PCR data of XIST RNA from male and female human pre-implantaƟ on 

embryos [191,192]. However, single cell FISH data from mouse pre-implantaƟ on embryos 

suggested that also mouse male embryos have a small pinpoint expression of XIST RNA from 

the maternal X [193]. We decided to study XCI on a single cell level in human pre-implantaƟ on 

embryos because the nested RT-PCR data do not allow reliable discriminaƟ on between 

pinpoint XIST expression and clouds of XIST RNA. In this thesis we provide evidence that human 

female embryos iniƟ ate XCI during pre-implantaƟ on development as the main characterisƟ cs 

of XCI are present in female embryos (chapter 4.1). However, whether human female embryos 

establish XCI using the same mechanism as mouse embryos has yet to be determined. 

 Although the fi rst important discoveries in the fi eld of XCI were made in both humans 

and in mice, most subsequent studies on the geneƟ c elements that control XCI have been 

done in the mouse. Chapter 4.2 of this thesis reviews all the steps in XCI during embryonic 

development in mice and men and in that we propose that a disƟ ncƟ on should be made 

between X chromosome remodeling (XCR) and actual X chromosome inacƟ vaƟ on (XCI).
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Thesis aim and outline

The aim of this thesis was to gain more insight in specifi c epigeneƟ c changes that take place In 

human oocytes, zygotes and early embryos. 

 The work described in this thesis can be divided into three topics: 1. EpigeneƟ c 

regulaƟ on of the chromaƟ n structure during human oocyte maturaƟ on. 2. EpigeneƟ c features 

that disƟ nguish the parental pronuclei in abnormal ferƟ lized human and mouse zygotes, and 3. 

IniƟ aƟ on of the epigeneƟ c process of X chromosome inacƟ vaƟ on in human pre-implantaƟ on 

embryos. The topics are described in three chapters (2-3-4) while the fi ndings of the conducted 

research are discussed in the fi nal chapter (5).

Chapter 2

DefecƟ ve regulaƟ on of chromaƟ n remodeling during human oocyte maturaƟ on
This chapter focuses on the epigeneƟ c regulaƟ on of chromaƟ n remodeling during human 

oocyte maturaƟ on. It describes the paƩ ern of histone acetylaƟ on during the last three stages 

of human oocyte maturaƟ on: the germinal vesicle (GV) stage, the metaphase of meiosis I (MI) 

and the metaphase of the second meioƟ c division (MII). It has been described for diff erent 

mammals that the chromaƟ n is deacetylated during maturaƟ on from the GV stage to the MII 

stage. The fi ndings presented in this chapter show that also during human oocyte maturaƟ on, 

chromaƟ n is deacetylated for most of the invesƟ gated lysine residues of histone 4. However, 

it was observed that a large percentage of the in vivo matured human oocytes sƟ ll showed 

acetylated chromaƟ n. This residual acetylaƟ on was found to be associated with a higher 

maternal age and a higher incidence of chromosome misalignment.

Chapter 3

Diff erence between the parental chromaƟ n in pronuclei of human and mouse zygotes
This chapter describes the work on abnormal ferƟ lized human oocytes and their chromaƟ n 

consƟ tuƟ on. The observaƟ on that the maternal and paternal chromaƟ n in tri-pronuclear 

zygotes are diff erenƟ ally modifi ed allowed us to use it as a tool to determine the parental 

origin of the single pronucleus in mono-pronuclear oocytes.
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Chapter 4

X chromosome inacƟ vaƟ on in pre-implantaƟ on embryos
The work described in chapter 4.1 shows that female human pre-implantaƟ on embryos iniƟ ate 

the process of X chromosome inacƟ vaƟ on. 

 Chapter 4.2 provides a detailed overview on the current knowledge on iniƟ aƟ on of the 

process of XCI in the earliest stages of mouse and human development. It discusses the most 

recent fi ndings and raises quesƟ ons for future research.

Chapter 5

General discussion
In this chapter the fi ndings described in the preceding chapters are discussed in light of the 

current knowledge of the research fi eld.
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Abstract

BACKGROUND: Chromosome segregaƟ on errors during human oocyte meiosis are associated 

with low ferƟ lity in humans and the incidence of these errors increases with advancing 

maternal age. Studies of mitosis and meiosis suggest that defecƟ ve remodeling of chromaƟ n 

plays a causaƟ ve role in aneuploidy. We analyzed the histone acetylaƟ on paƩ ern during the 

fi nal stages of human oocyte maturaƟ on to invesƟ gate whether defecƟ ve epigeneƟ c regulaƟ on 

of chromaƟ n remodeling in human oocytes is related to maternal age and leads to segregaƟ on 

errors. 

METHODS: Human surplus oocytes of diff erent meioƟ c maturaƟ on stages [germinal vesicle 

(GV), metaphase (M)I and MII] were collected from standard IVF/ICSI treatments. Oocytes 

were analyzed for acetylaƟ on of diff erent lysines of histone 4 (H4K5, H4K8, H4K12 and H4K16) 

and for α-tubulin. 

RESULTS: Human GV oocytes had an intense staining of the chromaƟ n for all four histone 4 

lysine acetylaƟ ons. MI and MII stage oocytes showed either normal deacetylaƟ on or various 

amounts of defecƟ ve deacetylaƟ on. Residual H4K12 acetylaƟ on was more frequently found 

in oocytes obtained from older women, with a signifi cant correlaƟ on between defecƟ ve 

deacetylaƟ on and maternal age (r = 0.185, P = 0.007). Eighty-eight percent of the oocytes 

with residual acetylaƟ on had misaligned chromosomes, whereas only 33% of the oocytes that 

showed correct deacetylated chromaƟ n had misaligned chromosomes (P < 0.001). 

CONCLUSIONS: We conclude that defecƟ ve deacetylaƟ on during human female meiosis 

increases with maternal age and is correlated with misaligned chromosomes. As chromosome 

misalignment predisposes to segregaƟ on errors, our data imply that defecƟ ve regulaƟ on of 

histone deacetylaƟ on could be an important factor in age-related aneuploidy.

 

Key words: histone deacetylaƟ on / female meiosis / maternal age / misaligned chromosomes 

/ aneuploidy
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IntroducƟ on

Aneuploidy is one of the main underlying causes of human inferƟ lity and is primarily caused 

by segregaƟ on errors during female meiosis (reviewed in [1,2]) and the frequency of these 

oocyte errors increases with advancing maternal age [1-3]. Although the occurrence of 

premature sister chromaƟ d separaƟ ons and non-disjuncƟ on has been described [3-6], the 

exact mechanisms causing division errors and the specifi c genes/proteins involved are sƟ ll 

unknown. Chromosome structure is of criƟ cal importance for faithful chromosome segregaƟ on 

during mitosis as well as meiosis [7-12]. DefecƟ ve remodeling of chromaƟ n, which determines 

the structure of chromosomes, is thus a possible cause of abnormal segregaƟ on during human 

oocyte meiosis. 

 AŌ er maturaƟ on from a primordial to an antral follicle, oocytes must switch from a 

transcripƟ onally acƟ ve stage to a transcripƟ onally silent stage characterized by strongly 

condensed chromosomes, which permits faithful segregaƟ on during meiosis. At the fi nal 

maturaƟ on phase, just prior to the meioƟ c segregaƟ ons, gene transcripƟ on is terminated 

[13,14], and the chromosomes are arranged for division. For this transiƟ on in transcripƟ onal 

acƟ vity, the chromaƟ n of the oocyte needs to be drasƟ cally altered from a conformaƟ on that 

favors gene transcripƟ on at the germinal vesicle (GV) stage to a structure that allows for two 

sequenƟ al chromosome divisions in a correct and Ɵ mely manner during metaphase I and II 

(MI and MII). Changes in chromaƟ n conformaƟ on are established through modifi caƟ ons on 

the basic subunits of the nucleosome, the histone proteins. Histones can be modifi ed through 

the addiƟ on or removal of small molecule groups, such as methyl, phospho and acetyl groups, 

that are covalently bound to specifi c residues in the histone tails (reviewed in [15]). 

 To form a chromaƟ n structure that permits the condensaƟ on and segregaƟ on of 

chromosomes, histone modifi caƟ ons that favor gene transcripƟ on, such as acetylaƟ on of 

histones H3 and H4, are removed during the fi nal steps of oocyte maturaƟ on and meiosis 

[16,17]. The hypo-acetylated state of chromaƟ n is regulated through a balance of the acƟ vity 

of two groups of enzymes: the histone acetyl transferases (HATs), which are responsible for 

adding acetyl groups, and the histone deacetylases (HDACs), which remove acetyl groups to 

permit heterochromaƟ n formaƟ on. InhibiƟ on of these HDACs leads to chromosome instability 

in meioƟ c and mitoƟ c cells [7-9,11,12,18]. 

 The regulaƟ on of chromaƟ n confi guraƟ ons in human oocytes has not yet been 

invesƟ gated, nor is it known whether abnormal chromaƟ n organizaƟ on is implicated in 

aneuploidy. To invesƟ gate the possible relaƟ onship between epigeneƟ c modifi caƟ ons and 

segregaƟ on errors in human oocytes, we studied the deacetylaƟ on dynamics of histones during 
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the last phases of meioƟ c maturaƟ on in combinaƟ on with an assessment of spindle structure 

and chromosome alignment in surplus human oocytes. As oocytes of older women are known 

to have reduced developmental competence and to be extremely prone to aneuploidy [3], we 

therefore hypothesized that inadequate deacetylaƟ on during human oocyte maturaƟ on could 

be involved in the eƟ ology of (age-related) aneuploidy. Based on our experiments, we suggest 

that segregaƟ on errors during human female meiosis are related to the faulty regulaƟ on 

of chromaƟ n and that this regulaƟ on becomes more defecƟ ve in oocytes as maternal age 

advances. 

Materials and Methods

Ovarian sƟ mulaƟ on and ovum retrieval
SƟ mulaƟ on schemes were chosen according to paƟ ent requirements and generally consisted 

of ovarian hypersƟ mulaƟ on with recombinant FSH (rFSH) and co-treatment with either GnRH 

antagonist or GnRH agonist. Ovum retrieval was performed 35 h aŌ er hCG injecƟ on. In ICSI 

treatments, oocytes were denuded aŌ er ovum retrieval and checked for the maturaƟ on 

stage. In IVF treatments, oocytes were inseminated as cumulus-oocyte complexes. On the 

following day, the oocytes were checked for ferƟ lizaƟ on. This study was approved by the local 

ethics review commiƩ ee of the Erasmus MC Hospital (MEC 2007-130). To confi rm that surplus 

oocytes could be used for research purposes, couples undergoing an ICSI/IVF treatment were 

informed of the study and could sign an objecƟ on declaraƟ on. 

Oocyte collecƟ on
AŌ er ovum retrieval, cumulus-oocytes complexes were collected in G-MOPS culture medium 

(Vitrolife, Sweden) and cultured in G-IVF medium (Vitrolife, Sweden) under 5% CO2 unƟ l 

pronuclear assessment at Day 1. Oocytes at the GV and MI stage are considered not suitable 

for ferƟ lizaƟ on and are not used in ICSI treatments. GV oocytes were fi xed 3–7 h aŌ er ovum 

retrieval. MI and MII oocytes were collected at two Ɵ me points. One group (Day 0) was 

obtained from paƟ ents whose semen parameters were too low to inject all oocytes or who 

wanted to ferƟ lize only some of their oocytes for personal reasons. These surplus oocytes 

were collected 4–8 h aŌ er ovum retrieval. The other group (Day 1) was collected 20–24 h aŌ er 

inseminaƟ on (IVF) or injecƟ on (ICSI). These oocytes did not show any signs of ferƟ lizaƟ on 

(one polar body and no pronuclei) and were therefore considered surplus. Oocytes from total 
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ferƟ lizaƟ on failures were not included in this study. All oocytes were fi xed as soon as they 

became available aŌ er donaƟ on for research. 

FixaƟ on, immunocytochemistry and microscopy 
Oocytes were fi xed as described previously [19] with some minor modifi caƟ ons. For a detailed 

descripƟ on of the methods, see Supplementary data, Table S1. Oocytes and cumulus control cells 

were analyzed on an epi-fl uorescence microscope (Axioplan 2, Zeiss, Germany) equipped with 

appropriate fi lter sets and a charge-coupled device video camera, and images were captured 

with ISIS Imaging System soŌ ware (Metasystems, Germany). For three-dimensional analysis, 

we used a confocal microscope with appropriate lasers and soŌ ware (Zeiss LSM510). Both 

epifl uorescent and confocal images were quanƟ fi ed with Image J [20] through a comparison of 

the histone modifi caƟ on staining in the 4’,6-diamidino-2-phenylindole (DAPI)-posiƟ ve region 

with the cytoplasmic background staining. For confocal analysis, seƫ  ngs were kept constant 

for the laser intensity and the interval of the Z series was kept constant. Bleed through of 

DAPI was assessed by image acquisiƟ on of the acetylated H4K12 (H4K12ac) laser wavelength 

set to zero. In case of bleed through, the H4K12ac staining was quanƟ fi ed against the DAPI 

bleed through signal. Cumulus cells were taken as a posiƟ ve control in each experiment. As 

each oocyte was fi xed individually at the moment of donaƟ on, this resulted in a variaƟ on in 

fi xaƟ on and storage Ɵ me for which no internal reference standard was available. Meaningful 

comparison of quanƟ fi ed intensiƟ es between individuals was therefore not possible.

 Only oocytes that had maternal chromosomes, an indicaƟ on that they were sƟ ll in the 

MII stage, were used. Oocytes that either had a pronucleus or had degenerated DNA were 

excluded from the analysis. 

 Oocytes were scored for chromosomal alignment according to previously published 

classifi caƟ ons [21-23]. Oocytes that had paternal chromaƟ n that was indisƟ nguishable from 

the maternal chromaƟ n, and oocytes in which the spindle orientaƟ on could not be observed, 

were considered not analyzable. To defi ne the range of the misalignment, we measured the 

width of the chromosome alignment. A perfect alignment in which all chromosomes were 

arranged on the equatorial plate was scored as 1 (width of 1 chromosome) and considered 

normal. Alignments spanning two and three chromosome lengths were sƟ ll considered 

normal. Oocytes were considered to have congression failure if the width of the chromosomes 

around the equatorial plate spanned four chromosome lengths or more. Oocytes with a single 

chromosome clearly siƫ  ng apart from the remaining aligned chromosomes were considered 

as chromosome lagging. Images were deconvoluted with SVI soŌ ware (SVI, The Netherlands) 
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when necessary. Spindle structure and chromosome alignment were scored by two researchers 

who were unaware of the acetylaƟ on status of the chromaƟ n.

StaƟ sƟ cs 
To analyze the relaƟ onship of residual acetylaƟ on with maternal age and the associaƟ on of 

residual acetylaƟ on with chromosome misalignment, we used the λ2 test and Spearman’s 

correlaƟ on. When necessary, correcƟ on for small numbers was performed with Fisher’s exact 

test. For the diff erence in median age between groups of oocyte donors the Mann-Whitney 

U-test was used. StaƟ sƟ cal signifi cance was defi ned as P < 0.05 (StaƟ sƟ cal Package for the 

Social Sciences 15.0 USA). 

Table I. 

Oocyte acetylaƟ on on H4 lysines, +/n (%)

MaturaƟ on stage H4K5 H4K8 H4K12 H4K16

GV 12/12 (100) 12/12 (100) 32/32 (100) 5/5 (100)

MI  2/5 (40)  2/6 (33) 19/41 (46) 4/4 (100)

MII  8/15 (53) 29/48 (81) 96/210 (46) 5/10 (50)

Data (+/n) show the number of oocytes with posiƟ ve staining/total number of oocytes. GV, germinal vesicle; MI/II, 
metaphase I/II.

Results 

R egulaƟ on of histone acetylaƟ on during human oocyte maturaƟ on 
To determine the acetylaƟ on paƩ ern of human oocytes during meioƟ c maturaƟ on, we analyzed 

the acetylaƟ on status of four lysine residues on histone 4, H4K5, H4K8, H4K12 and H4K16, at 

diff erent maturaƟ on stages, GV, MI and MII in surplus oocytes from IVF treatments (numbers 

analyzed shown in Supplementary data, Table S2). We collected both un-inseminated (virgin) 

MII oocytes at the day of ovarian aspiraƟ on (Day 0) and failed ferƟ lized MII oocytes at Day 1 

to invesƟ gate the acetylaƟ on status of MII oocytes that had matured in vivo (Supplementary 

data, Table S2, Table I). In surplus human GV oocytes collected at Day 0 from ICSI treatments, 

we observed two types of DNA confi guraƟ ons: oocytes with DNA dispersed around the large 

nucleolus with a number of condensed bodies (non-surrounding nucleolus, NSN, Figure 

1A-C), and later-stage oocytes with the DNA completely condensed around the nucleolus 

(surrounding nucleolus, SN, Figure 1D-F). Both stages of GV oocytes showed intense staining 
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of all of the four analyzed H4 acetylated lysine residues (Figure 2 and data not shown). As DAPI 

staining has a preference for AT-rich regions, the DAPI staining does not always overlap with 

the histone acetylaƟ on markers.

Figure 1. Histone acetylaƟ on in human GV oocytes. An early-stage human GV oocyte with a non-
surrounding nucleus (NSN)(A-C) stained for chromaƟ n (blue, DAPI); (A) and histone acetylaƟ on (red, 
anƟ -H4K12ac) (B). Some chromaƟ n regions have intense staining, whereas other (dense) regions 
showed no acetylaƟ on (overlay C). A more developed human GV oocyte with a surrounding nucleus 
stained for chromaƟ n (blue, DAPI; D) and histone acetylaƟ on (red, anƟ -H4K12ac; E) has chromaƟ n that 
is far more condensed (D) than the NSN GV, but it sƟ ll has acetylated chromaƟ n (E), as shown by the 
overlay (F). Scale bar represents 10 μm (see page 169 for colour fi gure).

With the progression of meiosis, we found that at the divisional stages MI and MII, chromaƟ n 

was deacetylated in variable proporƟ ons of the oocytes at H4K5, H4K8, H4K12 and H4K16 

(Table I, Figure 2). However, a substanƟ al percentage of the oocytes had residual acetylaƟ on 

at the MI and MII stages (Table I, Figure 2) varying from 46% residual acetylaƟ on for H4K12 

to 81% residual acetylaƟ on for H4K8 in MII oocytes. We used oocytes collected from both 

Day 0 as well as Day 1 and compared the acetylaƟ on status between the groups but found 

no diff erence in the percentage of residual acetyaƟ on (Day 0 39.7% versus Day 1 49.2%; λ2 

P = 0.743). We therefore combined all MII oocytes into one group in our further analyses.
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Figure 2. Histone deacetylaƟ on during human oocyte maturaƟ on. GV, MI and MII oocytes were stained 
for H4K5ac (A1–A15), H4K8ac (B1–B15), H4K12ac (C1–C15) and H4K16ac (D1–D15). RepresentaƟ ve 
images are shown for the indicated groups. GV oocytes showed intense staining for all four lysine 
residues (A2, B2, C2 and D2) and were not analyzed for a-tubulin because no spindle is present at this 
stage. At the MI stage, the majority of oocytes had no staining for H4K5ac (A4–6), H4K8 (B4–6) and 
H4K12ac (C4–6). H4K16ac was posiƟ ve in all tested MI oocytes (D7–9). In oocytes of the MII stage, a 
variable part of the oocytes showed no staining for the four tested lysine acetylaƟ ons (A11–D11). In 
oocytes with residual acetylaƟ on, histone lysine staining was observed (A14–D14) overlapping with 
the DAPI-stained chromosomes (A13–A15 to D13–D15). Scale bar for A1–A3, B1–B3, C1–C3 and D1–
D3 represents 30 μm. Scale bar for A4–A15, B4–B15, C4–C15 and D4–D15 represents 10 μm (see page 
172 for colour fi gure).
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H4K12ac and maternal age
A factor that is known to strongly infl uence human oocyte quality and developmental 

competence is advanced maternal age [2]. A previous study in mouse oocytes showed that 

maternal age is related to residual acetylaƟ on of two lysines on histone 4 (H4K8 and H4K12) 

[9]. We hypothesized that in human MII oocytes, maternal age might also negaƟ vely infl uence 

the deacetylaƟ on process. Because in mouse oocytes, the diff erence between the percentage 

of residual acetylaƟ on in old and young mice was most prominent for the acetylaƟ on on H4K12 

[9] and surplus human oocytes are limited, we focused on the acetylaƟ on status of H4K12. 

Oocytes were grouped according to the following maternal age categories: young maternal 

age (age 24–30 years), middle maternal age (age 31–35 years) and advanced maternal age (age 

36–42 years, Table II). Increasing amounts of acetylated oocytes were found with advancing 

age. The diff erence in residual acetylaƟ on was signifi cant between the young and intermediate 

(31.8% versus. 50.0%; λ2 P = 0.023) and between the youngest and oldest groups (31.8% 

versus. 55.6%; λ2 P = 0.009). This indicates that advanced maternal age negaƟ vely infl uenced 

the deacetylaƟ on process of H4K12 during the fi nal stages of human oocyte maturaƟ on. A 

diff erence in the residual acetylaƟ on between Day 1 ICSI and IVF oocytes (42.6% and. 53.8%, 

respecƟ vely) was found, but this was not signifi cant. The diff erence may be parƟ ally explained 

by the higher maternal age of the IVF oocytes (median age ICSI 32 years versus IVF 34 years; 

Mann-Whitney U P = 0.009). Thus, advancing maternal age was signifi cantly correlated with 

increasing residual acetylaƟ on in human MII oocytes (r = 0,185, P = 0,007).

Table II. 

H4K12ac oocytes, n (%)

Maternal age N PosiƟ ve Total

All ages (24–42 yrs) 92 96 (46) 210

Young (24–30 yrs) 22 21 (32)ab  66

Middle (31–35 yrs) 41 45 (50)a  90

Advanced (36–42 yrs) 29 30 (56)b  54

N is the number of women and n the number of oocytes. Groups that show a signifi cant diff erence (λ2) are indicated with 
the same superscript a(P = 0.023) and b(P = 0.009).

H4K12ac and chromosome misalignment 
Previous data on mouse and porcine oocytes have shown that inhibiƟ on of HDACs during in 

vitro maturaƟ on (IVM) leads to hyperacetylated histones, resulƟ ng in a high rate of aneuploidy 

in oocytes and zygotes [11,24]. To invesƟ gate whether residual acetylaƟ on following normal 

in vivo maturaƟ on is also related to chromosome and spindle abnormaliƟ es, we analyzed 
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human virgin and failed ferƟ lized MII oocytes for H4K12ac and the spindle component 

α-tubulin. Oocytes were classifi ed according to previously published criteria [21,25]. In total, 

55 oocytes had an informaƟ ve spindle and chromosome structure. We observed diff erent 

types of chromosome alignment abnormaliƟ es, varying from a single chromosome lagging 

to complete failure of congression of all chromosomes along the metaphase plate (Figure 

3 and Supplementary data, Figure S1 (movies)). AŌ er scoring for spindle and chromosome 

alignment, oocytes were categorized according to their acetylaƟ on status (residual acetylaƟ on 

or deacetylaƟ on). Oocytes that had residual acetylaƟ on of H4K12 had signifi cantly more 

misaligned chromosomes, either with or without an abnormal spindle structure (88.2%, 

30/34), than the oocytes with deacetylated chromaƟ n (33.3%, 7/21; λ2 P = 0.001, Table III). 

These data show that the risk of chromosome misalignment was 15 Ɵ mes higher in oocytes 

with residual acetylaƟ on compared to oocytes with correct deacetylaƟ on (odds raƟ o = 15; 

95% confi dence interval: 3.76–59.78, P < 0.0001). The Day 0 oocytes, consisƟ ng of high-quality 

Day 0 virgin oocytes, show a similar signifi cant eff ect of residual acetylaƟ on on metaphase 

abnormaliƟ es (Table III, Fisher’s exact test for correcƟ on on small number P = 0.024). As shown 

above, our data showed a signifi cant correlaƟ on of advancing maternal age with increasing 

residual acetylaƟ on (r = 0.185, P = 0.007, Table II and Supplementary data, Figure S2A) as 

well as a signifi cant correlaƟ on between acetylaƟ on and abnormal metaphase alignment 

(r = 0.568, P = 0.0001, Table III). To control for collecƟ on day as a possible confounder, we split 

the data into groups according to age and collecƟ on days. The graph for age and misalignments 

(Supplementary data, Figure S2B) has a similar paƩ ern as the graph showing age and residual 

acetylaƟ on (Supplementary data, Figure S2A) and there was no diff erence between the two 

collecƟ on days, indicaƟ ng that failed ferƟ lized oocytes were not diff erent from Day 0 virgin 

oocytes. 

 The observed correlaƟ on between acetylaƟ on and misalignment may be indirect and 

caused by factors that increase with advancing maternal age and aff ect histone acetylaƟ on 

on the one hand and, independently, aff ect misalignment by a diff erent mechanism. We 

thus wished to analyze whether advancing age and acetylaƟ on have independent eff ects on 

chromosomal misalignment in MII oocytes. Spliƫ  ng the oocytes into three age categories 

of the donor showed, however, a consistent percentage of misaligned metaphases in 

acetylated oocytes of, respecƟ vely, 86, 88 and 90% in the young, middle and advanced age 

groups (Supplementary data, Figure S2C). AŌ er correcƟ on for small numbers, the middle age 

group sƟ ll showed a signifi cant diff erence in the number of abnormal metaphases between 

acetylated and non-acetylated oocytes (Fisher’s exact test, P = 0.004).
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Figure 3. Metaphase alignment and residual acetylaƟ on in human MII oocytes. RepresentaƟ ve 
immunofl uorescence of an MII oocyte without staining of H4K12ac and with properly aligned 
chromosomes in the equatorial plane (A–C). Residual acetylaƟ on of H4K12ac in an MII oocyte is 
associated with chromosome misalignment of a single chromosome (D–F) or congression failure (G–I). 
Scale bar represents 10 μm (see page 173 for colour fi gure).

Table III. 

Metaphase chromosome conformaƟ on

H4K12ac staining Normal n(%) Abnormal n(%) Total 

D 0 + D 1 oocytes Ac- 14 (67)  7 (33)a 21

Ac+  4 (12) 30 (88)a 34

Total 18 (23) 37 (67) 55

D 0 oocytes Ac-  7 (64)  4 (36)b 11

Ac+  1 (9) 10 (91)b 11

Total  8 (36) 14 (64) 22

There were signifi cant diff erences in the percentage of metaphase misalignment in human oocytes that have residual 
acetylaƟ on compared with those with proper deacetylaƟ on, in the subgroup of high-quality Day 0 virgin oocytes (Day 0), 
in the group of Day 1 oocytes as well as in the group comprising all oocytes (Day 0 + Day 1). Groups that show a signifi cant 
diff erence (x2) are indicated with the same superscript aP = 0.024, bP = 0.002, cP = 0.001.
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Discussion

In this study, we examined the process of histone deacetylaƟ on during the fi nal stages of 

human oocyte meiosis. Our observaƟ ons suggest that inadequate histone deacetylaƟ on in 

human is correlated with both advanced maternal age and, independently, with aberrant 

chromosome alignment. Our results are supported by observaƟ onal data from mouse oocytes 

showing a correlaƟ on between age and residual acetylaƟ on [9,24] as well as experimental data 

with mouse oocytes that showed a clear causal relaƟ onship between induced hyperacetylaƟ on 

and chromosomal misalignment in oocytes, resulƟ ng in aneuploidy in zygotes and fetal death 

[9]. This may indicate that with increasing age, oocytes increasingly fail to deacetylate their 

chromaƟ n correctly, resulƟ ng in a failure to accurately align their chromosomes at metaphase, 

which predisposes the oocytes to aneuploidy.

 Studies in diff erent animal models have shown that mouse, porcine, bovine and 

sheep oocytes have a general paƩ ern of histone deacetylaƟ on during maturaƟ on from GV 

to MII, though not all lysine residues are regulated to the same extent in all studied species 

[16,17,26-29]. Similar to mouse oocytes, we observed that in human GV oocytes, both NSN and 

SN confi guraƟ ons had acetylated chromaƟ n, indicaƟ ng that acetylaƟ on of H4 is not always 

associated with transcripƟ onal acƟ vity and that it is more likely related to chromaƟ n remodeling 

during the fi nal stages of oocyte maturaƟ on (Figure 1A-F, Figure 2 and mouse data not shown). 

AddiƟ onally, human oocytes showed deacetylaƟ on of H4 lysines during maturaƟ on from GV 

to MII that was similar to other mammals. Only H4K16ac did not show a similar deacetylaƟ on 

at the MI stage. However, the small numbers may not refl ect the actual acetylaƟ on status of 

H4K16 at the MI stage in the general populaƟ on. Although human oocytes showed variable 

percentages of deacetylaƟ on of individual lysine residues (Table I), our data, together with 

data from animal studies, demonstrate that the process of general deacetylaƟ on of chromaƟ n 

during the fi nal stages of female meiosis is conserved among mammalian species. Because we 

mainly focused on H4K12ac, the reduced number of oocytes we used to invesƟ gate the other 

lysines may have led to results which do not refl ect accurately the actual percentage of residual 

acetylaƟ on. However, because we observed oocytes that were negaƟ ve for acetylaƟ on on 

all lysine residues at the MII stage, we conclude that deacetylaƟ on of chromaƟ n takes place 

during human oocyte maturaƟ on.

H4K12ac and maternal age
The oocytes analyzed for this study consisted of both good-quality Day 0 ‘virgin’ oocytes as 

well as Day 1 failed ferƟ lized oocytes. We did not see any signifi cant diff erences with respect to 
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acetylaƟ on or to metaphase alignment in these two groups of oocytes and thus analyzed them 

as one group. The observaƟ on that histone acetylaƟ on was not diff erent between oocytes 

from Day 0 and Day 1 ICSI oocytes (39.7 versus 42.6%) might suggest that histone acetylaƟ on 

does not infl uence the capacity of the oocyte to be ferƟ lized. In support of this, mouse 

oocytes treated with the HDAC inhibitor trichostaƟ n A that resulted in hyperacetylaƟ on of 

histones, where not compromised in their ferƟ lizaƟ on rate, but only in their post-implantaƟ on 

development [9]. 

 Compared with the ICSI oocytes, the IVF oocytes showed a 10% higher, but not 

signifi cant, remaining acetylaƟ on of 53.8%. This may be explained parƟ ally by the higher 

average age in the IVF group compared with the ICSI group (34 versus 32 years). However, it 

is also possible that IVF oocytes have a higher residual acetylaƟ on owing to predominance of 

a female factor in the IVF subferƟ lity problem, whereas ICSI couples are more oŌ en subferƟ le 

because of a male factor. Our fi nding that correct deacetylaƟ on of chromaƟ n during the fi nal 

stage of oocyte maturaƟ on is negaƟ vely infl uenced by advanced maternal age may explain the 

decreased quality and developmental potenƟ al of oocytes from women of advanced maternal 

age [1-3]. Oocytes from young mice completely deacetylate their chromaƟ n during maturaƟ on 

from GV to MII [9,16]. However, in our populaƟ on, 31.8% of the oocytes obtained from women 

under 31 years of age had residual acetylaƟ on. The average age of menarche is 12 years [30], 

and the oocytes used in this study were donated by women with an average age of 32 years 

(24–44 years). Therefore, the studied oocytes may not refl ect the complete reproducƟ ve 

lifespan of the general human populaƟ on, and the percentage of residual acetylaƟ on may be 

lower in adolescent women. 

 We have aƩ empted to analyze whether advancing age leads to an increase in H4K12 

acetylaƟ on that subsequenƟ ally results in misalignments, or whether these two parameters 

are independently related to advancing age. It is clear that the percentage of acetylated 

oocytes is increasing with advancing age (P = 0.023–0.009). Unfortunately, grouping the data 

according to age, to acetylaƟ on status and to misalignment status (Supplementary data, 

Figure S2C) results in small sample numbers, from which no staƟ sƟ cally fi rm conclusions can 

be drawn. Supplementary data, Figure S2C suggests that the percentage of misalignments 

within the acetylated oocyte group is similar in all three age groups, implying that acetylaƟ on 

itself may be a main contributor to misalignment. Thus, it is most likely that oocytes with 

residual acetylaƟ on are inherently more suscepƟ ble to mis-segregaƟ on. The observaƟ on 

that women of advanced maternal age have a signifi cantly higher percentage of residual 

acetylaƟ on than young women might therefore explain the higher incidence of aneuploidy 

oocytes in older women. SegregaƟ on errors such as premature sister chromaƟ d separaƟ on 
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and non-disjuncƟ on of whole chromosomes have been described in human oocytes of women 

of advanced maternal age [4-6]. However, no molecular pathway has yet been idenƟ fi ed that 

could explain the increased aneuploidy with advanced maternal age [2,3,31]. Studies in older 

mammalian oocytes have shown that mRNA levels of several genes are diminished, including 

structural factors that are criƟ cal for correct segregaƟ on [32-34]. It should be kept in mind that 

in human oocytes, actual quanƟ fi caƟ on data on protein levels for these factors are limited, 

and the threshold levels leading to mis-segregaƟ on are yet to be determined. Our data that 

show maternal age to be highly correlated with defecƟ ve deacetylaƟ on point to a molecular 

pathway aff ecƟ ng genome-wide chromaƟ n remodeling. Thus, catalyƟ cally acƟ ve proteins, 

such as members of the HDAC family, might be essenƟ al for oocyte quality and potenƟ al. 

Unfortunately, detecƟ on of histone acetylaƟ on in single human oocytes simultaneously with 

acƟ vity measurements of individual HDACs is currently not possible. 

 Oocyte quality is infl uenced by interacƟ ons between the oocyte and its surrounding 

cumulus cells and granulosa cells, and is dependent on maternal age, lifestyle and environmental 

factors. Apart from age, other possible factors that may infl uence chromaƟ n remodeling are 

FSH, which is known to aff ect oocyte quality and embryo aneuploidy [35], a woman’s BMI, 

which infl uences fecundability in several ways [36] and smoking, which is known to reduce 

HDAC acƟ vity in somaƟ c cells [37]. Unfortunately, we were not able to obtain a suffi  ciently 

large dataset to analyze these parameters in our group of oocytes.

Residual acetylaƟ on and segregaƟ on errors
Apart from maternal age, the only factor that has so far been unequivocally associated with the 

eƟ ology of aneuploidy in humans is a reduced or altered placement of meioƟ c recombinaƟ on 

[31,38,39], but a mechanism for this is not known. Our fi nding that inadequate histone 

deacetylaƟ on is associated with aberrant chromosome alignment indicates that, in addiƟ on to 

abnormal meioƟ c recombinaƟ on, defecƟ ve histone deacetylaƟ on is a second molecular factor 

associated with oocyte aneuploidy. However, these two factors do not need to be mutually 

exclusive. In fact, the ‘two-hit’ hypothesis proposed by Lamb and Warren [40,41] states 

that aneuploidy is caused by two independent events that occur at diff erent Ɵ mes during 

oocyte development. The fi rst ‘hit’ occurs at the prenatal stage, when ovaries and oocytes 

are formed and meioƟ c recombinaƟ on takes place. Data from trisomic pregnancies provide 

evidence that recombinaƟ on sites at specifi c posiƟ ons on chromosomes are more suscepƟ ble 

to mis-segregaƟ on [31,38,40]. The second ‘hit’ supposedly happens years later, aŌ er the 

resumpƟ on of maturaƟ on during the division stages, when these vulnerable oocytes are not 

able to detect and respond to this recombinaƟ on failure. Studies in mitoƟ c cells have shown 
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that an arƟ fi cially induced hyperacetylated state leads to aberrant localizaƟ on of many kinds 

of proteins that are essenƟ al during the segregaƟ on process, such as the spindle assembly 

checkpoint proteins MAD2 and BUB1, proteins of the chromosome passenger complex and 

kinetochore and motor proteins, such as HP1 and CENP E [8,18,26,42-44]. Thus, it is possible 

that an atypical localizaƟ on and funcƟ on of these proteins caused by the disturbed interacƟ on 

with a scaff old that is formed from inadequately remodeled, acetylated chromaƟ n contributes 

to inaccurate chromosome alignment and chromosome mis-segregaƟ on during human female 

meiosis. Another factor implicated in age-related aneuploidy is the detoriaƟ on of the cohesion 

complex. The cohesion complex holds the 4 chromaƟ d bivalents together from prophase during 

fetal development onward, unƟ l the oocyte is recruited for meioƟ c maturaƟ on which may 

happen decades later. The proteolyƟ c acƟ vity of Separase will resolve the cohesion complex 

on the chiasmata in mouse oocytes only during preparaƟ on for MI [45,46]. Four mutant mouse 

strain suggest that cohesions are involved in age-related aneuploidy [47-50]. Human data 

are not yet conclusive on the role of cohesins in human age-related aneuploidy [51] possibly 

because only oocytes from younger women and mRNA levels rather than protein levels were 

studied. The chromaƟ n forms a scaff old on which cohesions are loaded, thus, residual histone 

acetylaƟ on, such as H4K12 acetylaƟ on, may interfere with the stepwise cleavage of cohesin 

proteins. More research is needed to elucidate if the residual acetylaƟ on that we found in 

our study to be associated with maternal age has downstream eff ects on for example, the 

cohesion and cohesion-related proteins in human oocytes.

 The prospect of IVM of immature oocytes to good quality mature oocytes for certain 

paƟ ent groups has been the aƩ enƟ on of many studies. However, up Ɵ ll now, in vitro maturaƟ on 

has not been very successful mainly because of the diffi  culty of developing opƟ mal culture 

condiƟ ons [52]. Our study suggests that histone deacetylaƟ on may be an important feature 

of human oocyte maturaƟ on and may be taken into consideraƟ on when opƟ mizing culture 

condiƟ ons for IVM. Controlling proper remodeling of chromaƟ n may be important to opƟ mize 

IVM that allows GV oocytes to mature fully and divide their chromosomes correctly. However, 

more research is needed to relate the acetylaƟ on status of an oocyte to its developmental 

competence. 

 In conclusion, our data from human oocytes show that during human female meiosis, 

residual acetylaƟ on is signifi cantly correlated with chromosome misalignment in both young 

and older women. Advanced maternal age leads to both signifi cantly more oocytes with 

residual acetylaƟ on and more abnormal metaphases. Thus, aŌ er the fi rst ‘hit’ of a suscepƟ ble 

meioƟ c recombinaƟ on, defecƟ ve histone deacetylaƟ on is possibly a second hit in the eƟ ology 

of aneuploidy.
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Supplementary informaƟ on

S1 Methods
All fi xaƟ on, staining and washing steps were done in a 96-well plate to preserve oocyte 

3-D morphology. Chemicals were purchased from Sigma (Sigma-Aldrich, Zwijndrecht, The 

Netherlands) unless stated otherwise. Oocytes were fi xed for 30 min at 37°C in microtubule-

stabilizing buff er (100 mM PIPES, 5 mM MgCl2, 2.5 mM EGTA, 2% formaldehyde, 2% Triton 

X-100 and 0.5 mM taxol). Because the spindle is cold-sensiƟ ve, care was taken to conƟ nuously 

keep the oocytes at 37°C unƟ l the fi xaƟ on process was fi nished. AŌ er fi xaƟ on, cells were 

washed in 0.1% BSA and stored in 1% BSA in 0.04% NaN3 at 4°C. AŌ er storage, samples 

were blocked for 30 min in 1% BSA in PBS-Triton X-100 0.05% (blocking buff er). IncubaƟ on 

with primary anƟ bodies was done overnight at 4°C in blocking buff er. Oocytes were washed 

three Ɵ mes in 1X PBS and incubated for 1.5–2 hrs at room temperature in blocking buff er 

with two secondary anƟ bodies. To visualize chromosomes, DNA was counterstained with DAPI 

(Invitrogen, Breda, The Netherlands) in Vectashield mounƟ ng medium (Vector laboratories, 

Burlingame, UK). Cumulus cells and the polar body were used in each experiment to confi rm 

posiƟ ve staining of the anƟ bodies

S1 Table. Primary and secondary anƟ bodies used in this study.

against label host diluƟ on supplier Catalog no

primary H4K5ac n.a. rabbit 1 : 500 Abcam ab51997

H4K8ac n.a. rabbit 1 : 500 Upstate 06-760

H4K12ac n.a. rabbit 1 : 500 Upstate 06-761

H4K16ac n.a. rabbit 1 : 500 Upstate 07-329

α-tubulin n.a. rat 1 : 500 Abcam ab6160

 secondary rabbit Alexa 594 goat 1 : 500 Invitrogen A11012

rat Dylight Cy5 donkey 1 : 500 Jackson Laboratory 712-495-153

mouse Alexa 488 goat 1:500 Invitrogen A1101
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S2 Table. Number of collected oocytes analyzed for histone lysine acetylaƟ on status.

MaturaƟ on stage Number

GV  61

MI 118

MII 321

– MII day 0  78

– MII day 1 170

– MII day 1 ICSI 104

– MII day 1 IVF  66

S3 Movies
Movies can be found at: Ʃ p://humrep.oxfordjournals.org/content/26/5/1181/suppl/DC1

 Movie 1 shows a rotaƟ ng image of a MII oocyte with the chromosome aligned at the 

equatorial plane with a nicely barrel-shaped spindle (green) and no staining of H4K12ac (red).

 Movie 2 shows a rotaƟ ng image of a MII oocyte with posiƟ ve staining of H4K12ac and 

chromosome misalignment (pink overlay of DNA in blue and H4K12ac staining in red). One 

chromosome is totally detached from the equatorial plane at one pole of the spindle (green) 

and congression failure of other chromosomes at the other spindle pole. 
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Legend S2A and B. Analysis of acetylaƟ on and misalignments in the three diff erent age groups 
separated by day of collecƟ on. A. The percentage of H4K12 acetylaƟ on in MII oocytes increases with 
advancing maternal age. Groups that diff er signifi cantly (chi-square) are indicated with a (P = 0.023) 
and b (P = 0.009).  B. The percentage of misalignment within the age groups did not diff er between 
the days of collecƟ on, indicaƟ ng that day 1 oocytes do not have increased numbers of misaligned 
oocytes (chi-square P = 0.49). The ascending percentages of misalignment with increasing age is not 
staƟ sƟ cally signifi cant, perhaps due to the small numbers.
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Abstract

In mouse zygotes, many post-translaƟ onal histone modifi caƟ ons are asymmetrically present 

in male and female pronuclei. We invesƟ gated whether this principle could be used to 

determine the geneƟ c composiƟ on of mono-pronuclear human zygotes in convenƟ onal IVF 

and ICSI. First we determined whether male female asymmetry is conserved from mouse to 

human by staining poly-pronuclear zygotes with anƟ bodies against a subset of histone N-tail 

post-translaƟ onal modifi caƟ ons. To analyze human mono-pronuclear zygotes, a modifi caƟ on, 

H3K9me3, was selected that is present in the maternal chromaƟ n. AŌ er IVF, a total of 45 

mono-pronuclear zygotes were obtained. In 39 (87%) of the zygotes a non-uniform staining 

paƩ ern was observed, proof of a bi-parental origin and assumed to result into a diploid 

concepƟ on. Two zygotes showed no staining for the modifi caƟ on, indicaƟ ng that the single 

pronucleus was of paternal origin. Four zygotes contained only maternally derived chromaƟ n. 

ICSI-derived mono-pronuclear zygotes (n = 33) could also be divided into three groups based 

on the staining paƩ ern of their chromaƟ n: (1) of maternal origin (n = 15), (2) of paternal origin 

(n = 8) or (3) consisƟ ng of two chromaƟ n domains as dominaƟ ng in IVF (n = 10). Our data show 

that mono-pronuclear zygotes originaƟ ng from IVF generally arise through fusion of parental 

chromaƟ n aŌ er sperm penetraƟ on. Mono-pronuclear zygotes derived from ICSI in most cases 

contain uni-parental chromaƟ n. The fact that chromaƟ n was of paternal origin in 24% of ICSI 

and in 4% of the IVF zygotes confi rms earlier results obtained by FISH on cleavage stages. Our 

fi ndings are of clinical importance in IVF and ICSI pracƟ ce.

Key words: Mono-pronuclear; chromaƟ n; histone lysine methylaƟ on; IVF; ICSI; zygote, human
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IntroducƟ on

FerƟ lizaƟ on entails both cytoplasmic and chromaƟ n fusion of two highly specialized gamete 

types. Cytoplasmic fusion occurs at sperm penetraƟ on. Nuclear fusion follows aŌ er syngamy 

of the two pronuclei when nuclear envelopes dissolve and at the fi rst cleavage division, one 

mitoƟ c spindle is constructed [1]. In in vitro ferƟ lizaƟ on (IVF), a zygote with two disƟ nct 

pronuclei is considered to be the result of normal ferƟ lizaƟ on and is usually encountered. 

Two types of abnormal ferƟ lizaƟ on are known to occur aŌ er both convenƟ onal IVF and intra 

cytoplasmic sperm injecƟ on (ICSI): mono-pronuclear and poly-pronuclear zygotes. Both 

types of zygotes are able to undergo cleavage divisions and can result in embryos of good 

morphological quality. 

 AŌ er inseminaƟ on, 2-6% of the oocytes will display only a single pronucleus aŌ er 

convenƟ onal IVF [2] and 5-27% aŌ er ICSI [3]. TradiƟ onally and inspired by research into the 

arƟ fi cial acƟ vaƟ on of mouse secondary oocytes [4], mono-pronuclear zygotes are thought 

to lead to haploid parthenogeneƟ c embryonic development [5]. However, previous studies 

invesƟ gaƟ ng the chromosomal status of embryos resulƟ ng from mono-pronuclear zygotes by 

fl uorescence in situ hybridizaƟ on (FISH), have shown a diploid chromosome consƟ tuƟ on in 

49–62% of IVF-derived and 10–30% of ICSI-derived embryos [6,7]. Diploid embryos may be 

generated from uni-parental mono-pronuclear zygotes and subsequent diploidizaƟ on at fi rst 

cleavage [4,8] or by early fusion of paternal and maternal chromaƟ n [9]. Due to imprinƟ ng 

requirements only the laƩ er ones may result in off spring whereas mono-parental diploid 

embryos of paternal descend can yield complete hydaƟ diform mole (CHM) pregnancies [10]. 

Mono-pronuclear zygotes have been reported to lead to progeny in the human [2,11,12], which 

indicates these to originate from a fusion of male and female chromaƟ n.

 Chromosomal FISH analysis of cleavage stage embryos from mono-pronuclear zygotes 

can diff erenƟ ate between haploidy and diploidy. For haploid embryos, the Y is a marker for 

a male chromosome complement. DiploidizaƟ on can be detected by the presence of two 

Y chromosomes. Therefore, the frequency assessment of the geneƟ c content of the single 

pronucleus by FISH is indirect, needing correcƟ on for X bearing male pronuclei.

 To know the precise fracƟ on of mono-pronuclear zygotes that are precociously ferƟ lized 

by the unƟ mely fusion of paternal and maternal chromaƟ n (and according to the defi niƟ on 

of ferƟ lizaƟ on are suitable for embryo transfer) it is necessary to determine the origin of the 

chromaƟ n present in a mono-pronuclear zygote. The fracƟ ons of androgenic and gynogenic 

mono-pronuclear zygotes are simultaneously assessed.
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Histones are proteins that together with DNA form the nucleosome, the basic repeat unit of 

chromaƟ n. The nucleosome protein complex consists of four diff erent histones (H2A, H2B, H3 

and H4), each of them present twice [13]. Around this complex approximately 150 base pairs 

DNA are wrapped. The histones can be modifi ed at specifi c amino acids by covalent aƩ achment 

of small molecules (e.g., acetyl, phosphoryl, methyl) or pepƟ des (e.g. ubiquiƟ n, sumo) [14,15]. 

These post translaƟ onal modifi caƟ ons are especially numerous at the N-tails of H3 and H4, 

that extend form the nucleosomal globular domain. Depending on their biological context 

these modifi caƟ ons infl uence for instance chromaƟ n compacƟ on, hence gene transcripƟ on 

and DNA repair [14,16]. It has been shown that in the mouse zygote, several H3, H4 lysine 

methylaƟ on marks are absent in the paternal pronucleus but present in the maternal one, a 

phenomenon denoted as pronuclear asymmetry [17-22]. 

 In mouse zygotes, we observed that the asymmetrical seƫ  ng of lysine methylaƟ on 

is maintained when parental chromaƟ n is precociously fused, leading to a mono-pronuclear 

zygote. If the asymmetric seƫ  ng of parental marks is conserved in the human, it could be 

used to determine the composiƟ on of the chromaƟ n present in mono-pronuclear zygotes. We 

therefore collected human tri-pronuclear zygotes and determined the presence of methylated 

lysine residues at posiƟ ons 4, 9 and 27 of the N-terminal tail of histone H3 by probing with 

anƟ bodies specifi c for these modifi caƟ ons. A clear asymmetry was observed for trimethylated 

histone H3 lysine 9 (H3K9me3) and lysine 27 (H3K27me3). We subsequently stained mono-

pronuclear zygotes derived from ICSI or IVF with α-H3K9me3 anƟ bodies, which allowed 

unambiguous idenƟ fi caƟ on of the parental origin. This enabled us to disƟ nguish maternal from 

paternal chromaƟ n and determine the chromaƟ n composiƟ on of mono-pronuclear zygotes on 

day 1 aŌ er convenƟ onal IVF or intracytoplasmic sperm injecƟ on.

Results

During previous studies in which we determined paƩ erns of post-translaƟ onal histone 

modifi caƟ ons and response to double strand DNA breaks in the early mouse zygote, we 

occasionally observed mono-pronuclear zygotes [17,23]. These were either the result of 

parthenogenic acƟ vaƟ on of the secondary oocyte or of fusion of the parental chromaƟ n 

domains. This conclusion was based on the fact that the parƟ Ɵ on of chromaƟ n into histone 

methylaƟ on posiƟ ve and negaƟ ve domains was maintained (Figure 1). Depending on the 

modifi caƟ on, the asymmetry existed throughout the fi rst cell cycle (Figure 1h). Experiments 

done in four diff erent mouse strains showed an incidence ranging from 2.2% to 6.1% in three 
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and of 11.6% in the C.B17 strain (Table I). Apparently there are strain-specifi c factors that 

infl uence suscepƟ bility for early fusion of the parental chromaƟ n in the mouse.

Figure 1. Diploid mouse mono-pronuclear zygotes. Examples of pre S-phase (A-G) and mitoƟ c (H) 
mono-pronuclear zygotes A-D: Zygote stained for H3K9me3 (blue) and the H3K9me2,3 binding protein 
HP1-β [43]. (green) Dapi labels DNA (red). E-G) zygote stained for H3K4me3 (green), Dapi labels DNA 
(red). H) zygote stained for H4K20me3 (green), Dapi labels DNA (red). Histone H4K20me3 marks 20 
maternal chromosomes at the consƟ tuƟ ve heterochromaƟ n. It has been reported that chromosomes 
in the mouse zygote are interconnected via their α-satellite sequences [38]. This causes some 
chromosomes to be posiƟ oned in a head to head posiƟ on. Arrowheads indicate head-to-head posiƟ on 
of maternal and paternal chromosomes (see page 173 for colour fi gure).

To determine whether origin-specifi c chromaƟ n diff erences are also observed in human 

zygotes, we studied the distribuƟ on of trimethylated histone H3 at lysine 4, 9, and 27 in poly-

pronuclear post-S-phase human zygotes derived from IVF and ICSI (Figure 2). We observed a 

clear staining of both parental chromaƟ n domains for H3K4me3 (Figure 2b, n = 10) whereas 

trimethylated H3K9 and H3K27 were asymmetrically set (Figure 2c, n = 40; Figure 2d, n = 20). 

In IVF derived zygotes that originated from polyspermia, we consistently found one posiƟ ve 

pronucleus (Figure 2c,d). In the few poly-pronuclear zygotes obtained via ICSI, which arise as a 

consequence of failure of extrusion of the 2nd polar body, two posiƟ ve pronuclei were found 

(Figure 2e). This strongly suggested that, as in mouse and fl y, the male pronucleus chromaƟ n 

lacks certain histone lysine methylaƟ ons [17,21]. 
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Table I. Frequency of mono-pronuclear zygotes in diff erent mouse strains.

Strain Mono PN frequency (x/n) No IVF experiments

B6.CBA hybrid  2.5 (2/79) 6

B6.129 syntheƟ c  2.2 (1/46) 4

C.B17 11.6 (13/112) 6

Scid  6.1 (4/66) 7

Total without C.B17  3.7 (7/191)

Total  6.6 (20/303)

Data selected from H3K9me2 and H4K20me3 stained zygotes obtained in [23,44]. 

We decided to study the consƟ tuƟ on of human mono-pronuclear zygotes by staining with an 

anƟ body against H3K9me3. A total number of 45 mono-pronuclear zygotes as determined by 

rouƟ ne light microscopy (Figure 3a) were collected 16–20 hr aŌ er the start of a convenƟ onal 

IVF procedure. In 39 cases we observed one posiƟ ve and one negaƟ ve domain aŌ er staining. 

Among the apposed chromaƟ n domains we could disƟ nguish two morphological types: 27 

zygotes displayed a clear fusion of the chromaƟ n masses similar to observaƟ ons in mouse 

mono-pronuclear zygotes (Figure 3b). In 12 zygotes, however, the two chromaƟ n domains 

were not fused but in very close proximity of each other as if within the nucleus, a stricter 

compartmentalizaƟ on had occurred (Figure 3c). This diff erence in appearance might be due 

to chromaƟ n compacƟ on which occurs during zygoƟ c G2 and is more advanced for maternal 

chromaƟ n. In both cases, one of these domains showed overall staining for the histone 

modifi caƟ on whereas the other domain was largely negaƟ ve: although disƟ nct foci could 

occasionally be observed. A clear disƟ ncƟ on in chromaƟ n compacƟ on between the two 

domains was also noƟ ced (Figure 3c). The maternal H3K9me3 posiƟ ve domain was always of 

a smaller size than the paternal counterpart. A total of two zygotes showed a single chromaƟ n 

domain without staining for the modifi caƟ on although a posiƟ ve polar body was seen, 

suggesƟ ng that these zygotes only contained male chromaƟ n. In four zygotes only a single, 

stained chromaƟ n mass was observed, indicaƟ ng that they contain only maternal chromaƟ n.

 A total number of 33 mono-pronuclear zygotes derived from ICSI were collected. We 

observed three staining paƩ erns in these pronuclei: (1) two asymmetrically stained, fused 

chromaƟ n domains (n = 10). (2) A single chromaƟ n domain without staining (n = 8); chromaƟ n 

present in polar bodies stained posiƟ ve, indicaƟ ng successful IF. (3) A single, stained chromaƟ n 

domain and a condensed sperm head (n = 15). The results of the human mono-pronuclear 

zygotes obtained aŌ er IVF and ICSI are summarized in Table II.
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Figure 2. DistribuƟ on of H3K4me3, H3K9me3 and H3K27me3 in human tri-pronuclear zygotes. A) A 
light microscopic image of a tri-pronuclear zygote prior to removal of zona pellucida and fi xaƟ on. B) 
Symmetrical distribuƟ on of trimethylated histone H3 lysine 4. DoƩ ed line indicates posiƟ on of the 
maternal PN, which can be disƟ nguished from the paternal PN by size. C) Asymmetrical localizaƟ on 
of histone H3K9me3. A tri-pronuclear zygote obtained aŌ er convenƟ onal inseminaƟ on and therefore 
likely the result of polyspermia. This histone modifi caƟ on is absent from the two larger paternal 
pronuclei. D-E) Absence of histone H3K27me3 from paternal chromaƟ n. In tri-pronuclear zygotes 
obtained aŌ er inseminaƟ on, H3K27me3 was present in the smaller maternal PN (D). A rare case 
of a tri-pronuclear zygote aŌ er ICSI (E). In these zygotes failure of second polar body extrusion is 
responsible for the extra PN. Therefore two PNs show this maternal mark (see page 176 for colour 
fi gure).

Table II. Origin of Single Pronucleus in Human Mono-pronuclear Zygotes.

GeneƟ c consƟ tuƟ on
ART

IVF (%) ICSI (%) Total

Diploid 39 (86.7) 10 (30.3) 49

Haploid of paternal origin  2 (4.4)  8 (24.2) 10

Haploid of maternal origin  4 (8.9) 15 (45.5) 19

Total 45 33 78
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Figure 3. DistribuƟ on of H3K9me3 in human mono-pronuclear zygotes A) A mono-pronuclear zygote 
prior to removal of zona pellucida and fi xaƟ on. B) A mono-pronuclear zygote with a clear fusion of 
the chromaƟ n domains alike the mouse mono-pronuclear zygotes in Figure 1. Two out of focus sperm 
heads are overlying the pronucleus. Higher magnifi caƟ on shows a diff use region in between parental 
chromaƟ n domains. C) The mono-pronuclear zygote depicted in 3a aŌ er staining. Two not overlapping 
chromaƟ n domains in close proximity are observed. Higher magnifi caƟ on shows a clear separaƟ on of 
the parental domains. D) A mono-pronuclear zygote obtained aŌ er ICSI in which the oocyte is acƟ vated 
by the sperm (indicated by arrow) but no further nuclear decondensaƟ on of the sperm has occurred. 
E) A mono-pronuclear zygote obtained aŌ er ICSI which contains paternally derived chromaƟ n only. 
The posiƟ ve domain in proximity of the PN is a polar body (see page 176 for colour fi gure).

 Discussion

The asymmetrical seƫ  ng of histone lysine methylaƟ on for paternal and maternal chromaƟ n in 

the zygote is observed in a range of species [17,21,24]. Our results demonstrate this to extend 

to humans as well. Our observaƟ ons for H3K4me3 and H3K9me3 are idenƟ cal to the mouse 

post-S-phase zygote [18,19]. The presence of trimethylated H3K4 in the paternal human PN 

is intriguing (Figure 2b). This mark is fi rmly associated with transcripƟ onal acƟ ve chromaƟ n 
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[14,15]. In mouse zygotes, it appears in the paternal pronucleus during S-phase and could be 

linked to the (minor) transcripƟ onal acƟ vaƟ on of the zygoƟ c genome at this stage [19,25]. 

In the human early embryo, geneƟ c acƟ vaƟ on of the embryo occurs between the four- and 

eight-cell stages, suggesƟ ng that the presence of H3K4me3 in zygoƟ c paternal chromaƟ n 

is not related to transcripƟ onal acƟ vaƟ on [26]. TrimethylaƟ on of paternal histone H3 lysine 

27, an important regulatory mark for down regulaƟ on of transcripƟ on and heterochromaƟ n 

formaƟ on in embryogenesis, occurs during DNA replicaƟ on in the mouse zygote [18]. In this 

study human tri-pronuclear zygotes were collected 16–20 hrs aŌ er inseminaƟ on. Most likely, 

the majority, if not all, of these zygotes were progressing into S-phase or had reached G2. The 

absence of H3K27me3 in these zygotes might indicate species-specifi c dynamics of H3K27 

methylaƟ on, hence heterochromaƟ n formaƟ on at fi rst cleavage. 

 In this study 87% of the mono-pronuclear zygotes obtained by convenƟ onal IVF 

appeared to be bi-parental. In the human oocyte, the sperm nucleus can enter ooplasm at 

any locaƟ on whereas in mouse the region overlying the metaphase II spindle is inaccessible 

for sperm [27]. However, this does not seem to prevent pronuclear fusion in the mouse (Table 

I). The proximity of the parental chromaƟ n domains early aŌ er gamete fusion has an eff ect on 

the chance of fusion. This is illustrated by the fi nding that in the mouse, injecƟ on of the sperm 

close to the maternal complement resulted in 22% mono-pronuclear zygotes [28]. These 

authors provide evidence for aggregaƟ on of chromaƟ n masses before pronucleus formaƟ on. 

In humans, evidence for pronucleus fusion as the way to the mono-pronuclear state, has only 

been obtained aŌ er injecƟ on of round spermaƟ ds [29]. Bi-parental mono-pronuclear human 

zygotes most likely are the result of sperm entry close to the metaphase II spindle, suggesƟ ng 

this to be a disƟ nct possibility at natural concepƟ on too. The bi-parental mono-pronuclear 

zygotes obtained aŌ er ICSI likely do have the same origin. Although clinical pracƟ ce aims to 

puncture the oolemma and deposit the sperm without disturbing the metaphase II spindle, 

one cannot rule out the possibility that the sperm is close to the maternal complement aŌ er 

injecƟ on. This is supported by the fact that the fi rst polar body has proven to be a unreliable 

marker for the locaƟ on of the metaphase plate [30]. Imaging the meioƟ c spindle by using its 

birefringence has made it possible to analyze the oocyte in more detail, leading to the same 

insight [31]. 

 The majority of the ICSI-derived mono-pronuclear zygotes (70%) contained an abnormal 

genomic composiƟ on. This high rate of haploid zygotes aŌ er ICSI confi rms previously published 

studies [6,32]. A total of 15 zygotes (45%) contained a maternal pronucleus with a condensed 

sperm head. It has been reported that among low numbers of sperm, the main reason to 
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revert to ICSI, there are nuclei with a decreased ability to undergo decondensaƟ on while sƟ ll 

being able to induce oocyte acƟ vaƟ on [33,34]. 

 In our study one-quarter of the 1 PNs (n = 8) aŌ er ICSI and 4% aŌ er IVF consisted of 

paternal chromaƟ n only. Most likely in these cases, the complete maternal chromaƟ n was 

extruded during formaƟ on of the second polar body. 

 In general, the trends found by us confi rm the fracƟ ons that can be calculated from 

the FISH data of Staessen and Van Steirteghem (1997). For instance, despite the relaƟ vely 

low numbers of both studies, assuming an equal raƟ o of X- and Y-bearing spermatozoa, we 

found the same proporƟ on of 1 PN embryos with only a paternal contribuƟ on. This indicates 

that complete extrusion of the female chromaƟ n is a frequently occurring mechanism of 1 PN 

formaƟ on. 

 There are a few case reports [35,36] that imply a relaƟ on between mono-pronuclear 

embryos and a risk of a complete hydaƟ diform mole (CHM) pregnancy. These likely are male 

haploid zygotes carrying an X chromosome that undergo diploidizaƟ on at fi rst cleavage [10]. 

 There have been reports of live births aŌ er the transfer of human embryos which had 

only one pronucleus [2,11,12]. Apparently, the seƫ  ng of the parent specifi c histone marks 

can be correctly executed within one nuclear membrane. The fact that we did not observe a 

mingling of histone posƩ ranslaƟ onal states within a mono-pronuclear zygote confi rms this. 

 In the mouse, the implantaƟ on success rate of mono-pronuclear zygotes is around 19% 

(15/79) [28] whereas in humans one study reported a percentage of 8% (3/38) [2]. Although 

one should be cauƟ ous of over interpretaƟ on of the relaƟ vely small numbers in these studies, 

human mono-pronuclear zygotes could have a decreased developmental potenƟ al. The mouse 

study on bi-parental mono-pronuclear zygotes indicated that negaƟ ve eff ects of a pronuclear 

fusion in the zygote are limited. No changes in in vitro blastocyst development were observed. 

Also, most off spring derived from mouse mono-pronuclear zygotes were healthy and ferƟ le 

[28]. 

 PerƟ nent for clinical pracƟ ce is the quesƟ on of a disturbing interacƟ on between 

paternal and maternal chromaƟ n within one nuclear envelope. For mouse zygotes it has 

been shown that some proteins, in this case implicated in chromosome condensaƟ on, are 

specifi cally targeted to the female PN [37]. The fusion of the parental chromaƟ n masses could 

potenƟ ally disrupt such parent specifi c mechanisms in the zygote. However, an indicaƟ on 

for origin specifi c chromaƟ n condensaƟ on in G2 was also obtained for the human mono-

pronuclear zygotes (Figure 3c). In chromosome spreads of mono-pronuclear mouse zygotes, 

trimethylated histone H4 lysine 20 was absent from paternal chromosomes as is the case 

in normal ferƟ lizaƟ on (Figure 1h; [22]). Centric heterochromaƟ n domains are inƟ mately 
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apposed around the nucleolus precursor body at interphase [38]. This indicates that for this 

modifi caƟ on, fusion of the chromaƟ n sets does not lead to an apparent change in localizaƟ on 

of parent of origin specifi c chromaƟ n marks. Possibly the diff erent origin of the male and 

female zygoƟ c chromaƟ n may suffi  ce to ensure their separate idenƟ Ɵ es, even when present 

within one nuclear envelope.

 Although this study also has demonstrated that mono-pronuclear zygotes originated 

aŌ er convenƟ onal IVF are in most cases ferƟ lized, more research into their epigeneƟ c status 

and consequences of deviaƟ ons thereof is needed to determine whether these embryos are 

suitable for transfer.

Conclusions

Immunofl uorescence of histone 3 N-tail post-translaƟ onal modifi caƟ ons is a reliable way to 

determine the ancestry of chromaƟ n in human zygote pronuclei. When this tool was used 

on mono-pronuclear zygotes obtained in classical IVF and ICSI, most PN resulted from early 

fusion events in IVF whereas for ICSI a mono-parental origin dominated. Androgenic mono-

pronuclear zygotes were found both aŌ er IVF and ICSI but more so with the laƩ er technique.

Materials and methods

CollecƟ on of mono- and mulƟ -pronucleated zygotes
Ovarian sƟ mulaƟ on, oocyte retrieval and IVF procedures were performed as described 

previously [39,40]. The study was approved by the Dutch Central CommiƩ ee on Research 

Involving Human Subjects (CCMO) and the local ethics review commiƩ ee of the Erasmus MC 

hospital. WriƩ en consent was obtained from the couples in order to confi rm that the zygotes 

could be used for research purposes. The stage of ferƟ lizaƟ on was checked 16–20 hours post 

inseminaƟ on or sperm injecƟ on. Only zygotes that had less or more than two pronuclei were 

used. Mouse zygotes were collected in parallel to previous projects [17,23].

FixaƟ on and immunofl uorescence staining
Prior to fi xaƟ on the zona pellucida was removed with 0,05% pronase in calcium/magnesium 

free medium (G-PGD, Vitrolife Sweden). 
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ThereaŌ er, cells were immobilized in a fi brin clot [41]. Fibrinogen was obtained from Calbiochem 

(cat. nr. 341573) and thrombin was obtained from Sigma (cat. nr. T-6634, Zwijndrecht, The 

Netherlands). Cells were fi xed in 2% paraformaldehyde (PFA), 0.15% Triton-X-100 for 30 min. 

Immunofl uorescence (IF) was applied as described before [42].

AnƟ bodies
The following anƟ bodies were used: HP1-β (raised in rat, P. Singh; 1:100), Polyclonal rabbit 

anƟ bodies against H3K9me3; H3K27me3 and H4K20me3 were diluted 1:250 (T.Jenuwein). 

Rabbit polyclonal anƟ body for H3K4me3 and H3K9me3 were purchased from Abcam (ab8580, 

1:1500 and ab1186, 1:250 respecƟ vely). 

 Secondary anƟ bodies used were goat anƟ -rabbit IgG (H+L) conjugated with Alexa Fluor 

594 (Molecular Probes, Leiden, The Netherlands) and anƟ -rat IgG, FITC-conjugated (Sigma 

F6258). All were used in a 1:500 diluƟ on. NegaƟ ve controls were performed by omiƫ  ng the 

fi rst anƟ body, but non-specifi c binding was never observed.

CollecƟ on of images
Images were collected with a Zeiss Axioplan fl uorescence microscope. Pictures were captured 

by a Zeiss AxioCam MR camera with Axiovision 3.1 soŌ ware (Carl Zeiss, Oberkochen, 

Germany). Shown images are either stacks projected into a single image or a single slide of a 

stack. Whenever necessary, images where deconvoluted with Metamorph soŌ ware version 6.
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Abstract

X chromosome inacƟ vaƟ on (XCI) is the mammalian mechanism that compensates for 

the diff erence in gene dosage between XX females and XY males. GeneƟ c and epigeneƟ c 

regulatory mechanisms induce transcripƟ onal silencing of one X chromosome in female cells. 

In mouse embryos, XCI is iniƟ ated at the pre-implantaƟ on stage following early whole-genome 

acƟ vaƟ on. It is widely thought that human embryos do not employ XCI prior to implantaƟ on. 

Here, we show that female pre-implantaƟ on embryos have a progressive accumulaƟ on of XIST 

RNA on one of the two X chromosomes starƟ ng around the 8-cell stage. XIST RNA accumulates 

at the morula and blastocyst stages and is associated with transcripƟ onal silencing of the 

XIST-coated chromosomal region. These fi ndings indicate that XCI is iniƟ ated in female human 

pre-implantaƟ on stage embryos, and suggest that pre-implantaƟ on dosage compensaƟ on is 

evoluƟ onarily conserved in placental mammals.
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IntroducƟ on

Mammalian XX females equalize gene dosage relaƟ ve to XY males by the inacƟ vaƟ on of one 

of their X chromosomes in each cell. The X chromosome inacƟ vaƟ on center (XIC) contains 

several geneƟ c elements essenƟ al for the transcripƟ on iniƟ aƟ on of long noncoding RNAs that 

are involved in XCI. IniƟ aƟ on of XCI requires the cis accumulaƟ on of a nontranslated mouse 

Xist RNA or human XIST RNA (Xist/XIST RNA) (MIM 314670) that coats the X chromosome [1-

3]. This is followed by various epigeneƟ c changes on the future inacƟ ve X (Xi) chromosome 

that contribute to chromosome silencing [4]. In somaƟ c cells, the Xi chromosome is visible as 

a region of dense chromaƟ n called the Barr body [5].

 There are two diff erent forms of XCI: random XCI and imprinted XCI. Random XCI of 

either the maternal or the paternal X chromosome takes place in all somaƟ c cell lineages of 

eutherian mammals, starƟ ng around gastrulaƟ on. Random XCI has no specifi c preference for 

inacƟ vaƟ on of one of the parental X chromosomes [6-8]. In contrast, imprinted XCI results in 

preferenƟ al inacƟ vaƟ on of the paternal X chromosome and occurs in female marsupials and 

mouse placental Ɵ ssues [9-11]. Although expression of Xist RNA and a preferenƟ al expression 

of Xist from the paternal allele has long been observed in pre-implantaƟ on mouse embryos, 

the prevailing view has been that actual inacƟ vaƟ on of the X chromosome, and thus dosage 

compensaƟ on, begins only aŌ er diff erenƟ aƟ on of the placental precursor cells [12-14]. In recent 

years, however, it has become apparent that X inacƟ vaƟ on of the paternal X chromosome is 

already present from the 4-cell stage onward in all cells of pre-implantaƟ on mouse embryos 

[15-17]. Imprinted XCI in the mouse persists unƟ l the blastocyst stage and conƟ nues in the 

trophectoderm and the primiƟ ve endoderm [10,11,18]. However, the inacƟ ve paternal X 

chromosome is reacƟ vated in the inner cell mass (ICM) that forms the embryo proper [15-

17] and is followed by random XCI in somaƟ c cell lineages [5,16,19]. It is sƟ ll unclear exactly 

how the earlier imprinted XCI in cleavage-stage embryos, trophectoderm cells and primiƟ ve 

endoderm cells is programmed by the parental germline. Evidence exists for a mark on the 

maternal X chromosome that allows it to remain acƟ ve [20,21]. On the other hand, there is 

also evidence for a preference of Xist-mediated inacƟ vaƟ on of the paternal X chromosome 

[12,15,22] but these two mechanisms do not need to be mutually exclusive.

 Data regarding the mechanism of human XCI are not easy to obtain because of 

restricƟ ons on the use of human embryos and the generaƟ on of human embryonic stem (ES) 

cell lines. Only a minority of human ES cell lines have two acƟ ve X chromosomes in their 

undiff erenƟ ated state and will start a process of random XCI upon diff erenƟ aƟ on, similar to 

mouse ICM cells and ES cell lines [16,23-25]. The majority of the undiff erenƟ ated human ES 
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cell lines so far examined have already inacƟ vated one X chromosome, evident from the single 

XIST cloud in 20%–70% of the cells and the accumulaƟ on of specifi c chromaƟ n modifi caƟ ons 

[24-27]. One study showed that diff erenƟ aƟ on of a human ES cell line resulted in either random 

XCI or preferenƟ al inacƟ vaƟ on of a single allele, depending on the diff erenƟ ated cell type. 

Only trophoblast cells showed a preferenƟ al inacƟ vaƟ on of a single X chromosome similar to 

mouse trophoblast Ɵ ssue [23]. Although the parental origin of the X chromosome could not 

be idenƟ fi ed in this ES cell line, which was generated from anonymously donated embryos, 

it does suggest that a form of preferenƟ al XCI, such as imprinted XCI, may exist during the 

fi rst stages of human trophoblast development, similar to mouse extra-embryonic Ɵ ssues 

[10,11,18]. Studies of human placental Ɵ ssue have shown a variety of paƩ erns of XCI. Some 

reports describe preferenƟ al expression from the maternal X chromosome, similar to mice, 

suggesƟ ng conservaƟ on of imprinted XCI [28-31]. However, other papers report a random XCI 

or XCI moderately skewed in favor of an inacƟ ve paternal X chromosome [32-36]. If imprinted 

XCI in humans occurs, it is possible that human trophoblasts gradually lose their imprint and 

perform random XCI at later stages, as has been demonstrated in vitro [37,38]. This may result 

in an XCI paƩ ern skewed towards an inacƟ vated paternal X, which would explain the mixed 

results observed in the analysis of placentas [28-36]. 

 Defects in dosage compensaƟ on prior to implantaƟ on of the embryo lead to abnormal 

development in a majority of the embryos and is early lethal, as demonstrated by analysis of 

parthenogeneƟ c mouse embryos that have two maternal genomes [13,39]. Similarly, female 

mutant embryos that inherit a paternal X chromosome with a deleƟ on of the Xist gene are 

not able to inacƟ vate this X chromosome, resulƟ ng in two acƟ ve X chromosomes and early 

lethality [40,41].

 Previous studies using PCR analysis of human pre-implantaƟ on embryos detected 

XIST expression both in female and in male embryos [42,43]. Because female-specifi c XIST 

expression was not detected, it was concluded that XIST RNA was not funcƟ onal at this stage 

of development and that dosage compensaƟ on was not iniƟ ated in human pre-implantaƟ on 

embryos [42,43]. However, in mice, a brief ‘pinpoint’ expression of Xist from both the paternal 

and maternal X chromosome was later reported in male and female pre-implantaƟ on 

embryos [17,19,44,45]. The iniƟ al Xist expression on the maternal X chromosome subsequently 

disappears while Xist expression from the paternal X chromosome accumulates in female 

pre-implantaƟ on embryos to coat the future Xi chromosome [17,44-46]. Similar pinpoint 

signals are also observed during the onset of random X inacƟ vaƟ on in male and female ES 

cells [17,19,46]. Thus, the XIST expression previously reported in male human embryos could 
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be aƩ ributable to a brief window of expression of XIST from the maternal X chromosome and 

does not exclude XCI in female embryos. 

 We therefore decided to reinvesƟ gate XCI in human pre-implantaƟ on embryos at the 

single-cell level to analyse XIST RNA localisaƟ on and the transcripƟ onal and epigeneƟ c features 

of XCI.

Material and Methods

CollecƟ on of surplus embryos and cryopreserved embryos donated for research
Ovarian sƟ mulaƟ on, oocyte retrieval and in vitro ferƟ lizaƟ on (IVF) and/or intracytoplasmic 

sperm injecƟ on (ICSI) procedures were performed as described previously [47]. This study was 

approved by the Dutch Central CommiƩ ee on Research Involving Human Subjects (CCMO, 

NL11448) and the local ethics review commiƩ ee of the Erasmus Medical Center Hospital 

(MEC 2007–130). WriƩ en consent was obtained from the couples in order to confi rm that the 

surplus or cryopreserved embryos could be used for research purposes. 

RNA FISH, DNA FISH and Immunofl uorescence
Immunofl uorescence followed by RNA/DNA fl uorescence in situ hybridizaƟ on (FISH) was 

performed as described previously [17], with some modifi caƟ ons. The zona pellucida of 

fresh or thawed cryopreserved embryos was removed with 0.05% pronase (Sigma-Aldrich) in 

calcium- and magnesium-free medium (G-PGD, Vitrolife, Kungsbacka, Sweden). Embryos of 

the 8-cell and morula stage were incubated in calcium- and magnesium-free medium so that 

single cells could be obtained. Single cells and blastocysts were washed in phosphate-buff ered 

saline (PBS) and fi xed on slides in 1% paraformaldehyde (Sigma-Aldrich) containing 0.5% Triton 

X-100 for 0,5-1 hr. Slides were washed with PBS and stored in 70% ethanol at -20ǡC. Cumulus 

cells and amniocytes were fi xed similarly. Primary anƟ bodies used for immunofl uorescence 

were H3K27Me3 (Abcam, 1:50), macroH2A.1 (Upstate, 1:100), H3K9ac (Upstate, 1:100). 

Secondary anƟ bodies (Invitrogen), used at 1:250 diluƟ ons, were as follows: goat anƟ -rabbit 

Alexa 594, goat anƟ -mouse Alexa 488 and goat anƟ -mouse Pacifi c Blue.

 For the detecƟ on of XIST RNA, a 16,4 kb plasmid covering the complete RNA sequence 

of the XIST gene [48] was used on nondenatured cells. Cot1 RNA detecƟ on was performed using 

labeled Cot1 DNA (Invitrogen) as a probe. For the detecƟ on of chromosomes X, Y and 15, the 

following DNA probes were used: X centromere (pBAMX5), Y chromosome heterochromaƟ n 

(RPN1305X) and chromosome 15 satellite III region f (D15Z1). The Y probe occasionally 
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produces a diff use signal because of the highly polymorphic heterochromaƟ n region [49].

Overlapping CHIC1 fosmid clones (G248P81074F7 and G248P86549C3) were located using 

the UCSC genome browser (UC Santa Cruz) and obtained from BACPAC Resources (Oakland). 

RNA and DNA FISH probes were labeled by nick-translaƟ on with fl uorochromes Alexa 594 and 

555 (Molecular Probes, Invitrogen, Leiden, The Netherlands), diethylaminocoumarin-5-UTP 

(NEN Life science products, Boston, USA) or Bio-16-dUTP (Roche). Probes were validated in 

cultured lymphocytes of a normal XY male. A signifi cant distance between the signals of the 

X centromere probe and XIST RNA was oŌ en observed, as XIST is located 80 Mb distal to the 

centromere. XIST expression was detected either as a pinpoint signal, a small cloud, or a full 

cloud where the disƟ ncƟ on between the three was usually easy to detect. A pinpoint signal 

was equivalent in size and intensity to a locus-specifi c DNA FISH signal, a small cloud was 

10–20 Ɵ mes the size of a pinpoint signal, and a full cloud was 100 or more Ɵ mes the size of a 

pinpoint signal. 

 Slides were examined with a Zeiss Axioplan 2 epifl uorescence microscope, equipped 

with appropriate fi lters (Chroma, Rockingham, VT, USA). Images were captured with the ISIS 

FISH Imaging System (MetaSystems, Altlussheim, Germany) and background correcƟ on was 

applied using Adobe Photoshop CS2 when necessary. For each embryo, the posiƟ ons of all nuclei 

were mapped in detail, which allowed an accurate analysis of each nucleus. Chromosomally 

chaoƟ c embryos (based on X, Y and chromosome 15 analysis) were excluded from analysis and 

mosaic embryos were included only if less than 50% of the cells were aneuploid for X and Y. 

Results

Donated cryopreserved and surplus embryos from in vitro ferƟ lizaƟ on (IVF) treatments were 

dissociated and fi xed at the 8-cell, morula and blastocyst stages. RNA FISH with a human XIST 

probe was performed for the detecƟ on of the inacƟ ve X-chromosome in single cells, followed 

by DNA FISH with chromosome X-, Y- and 15 specifi c probes to idenƟ fy the sex and diploid 

status of the embryos (see Figure S1). 

XIST expression in early human embryos
Only a fracƟ on of the blastomeres from male embryos showed XIST RNA signals. These signals 

were small ‘pinpoint’-like signals reminiscent of expression of unstable XIST RNA [44,46]. This 

form of XIST expression was mostly observed at the morula stage, and the pinpoints never 

accumulated to a ‘cloud’-like signal in blastocysts, indicaƟ ng the absence of XCI in male pre-
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implantaƟ on embryos (Figure 1A-C, Table I). In contrast, female embryos showed a diff erent 

XIST-staining paƩ ern: the majority of cells had pinpoint signals for XIST RNA at the 8-cell 

stage. The XIST signal gradually accumulated to a full cloud on one of the X chromosomes 

at the late morula and blastocyst stages in female embryos (Figure 1D-F). DisƟ nct paƩ erns 

of XIST expression were observed for diff erent developmental stages (Table I): In 8-cell stage 

embryos, 65% of the blastomeres displayed one pinpoint signal of XIST, 4% of the blastomeres 

had a small cloud of XIST and 19% showed two pinpoints of XIST RNA. The remaining 12% 

of blastomeres had no expression of XIST. In morulas, XIST expression had progressively 

accumulated resulƟ ng in 49% of the cells displaying a single XIST cloud, suggesƟ ng that XCI 

was iniƟ ated in these cells and 19% of the cells having a pinpoint of XIST RNA. The percentage 

of cells with two pinpoints was reduced from 19% at the 8-cell stage to 2% in morulas. The rest 

of the blastomeres either had no XIST, a single pinpoint of XIST, two small clouds of XIST, or 

a pinpoint together with a cloud signal. Diff erent cells of the same embryo regularly showed 

variable levels of XIST and disƟ nct XIST expression paƩ erns (Figure S2) similar to previous 

observaƟ ons in mouse embryos [13,44,50,51].

Figure 1. XIST expression in male and female human pre-implantaƟ on embryos. RNA and DNA FISH 
staining with probes to detect XIST RNA (green) ,the X (red) and Y chromosome (yellow) and DAPI 
counterstain. Human male embryos (A-C) do not generally show XIST signals at the 8-cell stage (A) or at 
the morula stage (B). A minority of male cells at the morula stage show a pinpoint of XIST staining (C). 
Female embryos (D-F) show an XIST pinpoint in the majority of embryos at the 8-cell stage (D). (E) Two 
cells at the morula stage each show a beginning cloud of XIST on one of their two X chromosomes. (F) 
At the blastocyst stage this has further accumulated to a full cloud on one of the two X chromosomes. 
A third diff use red signal is an X chromosome from an adjacent cell that is in a diff erent focal plane 
(see page 177 for colour fi gure). 
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Table I. XIST paƩ erns in female human embryos at diff erent developmental stage.

XIST paƩ ern in  embryos XIST paƩ ern in  embryos

Embryo stage

No. of  
embryos 

(No. of Cells)

No. of  
Embryos 

(No. of Cells)

8-cell 5 (26) 12 65 19  4 6 (30) 94  6

Morula 13(89) 19 19  2 6 49 4 9 (91) 86 14

Blastocyst 6 (>100)  5 90 5 5 (98) 93  7

Percentages of analyzable cell that have the indicated paƩ ern of XIST signals. Signals in blastomeres were scored as 
negaƟ ve (-). Pinpoint signal (•), small cloud (•), or full cloud (•).

Blastocysts did not disaggregate well during the fi xaƟ on procedure and were therefore 

examined as intact embryos. Nuclei that could be visualized showed a full XIST cloud in 90% 

of the cells (Figure 1 and Table I). The remainder of cells either had no XIST signal or two small 

cloud signals. In summary, whereas female embryos showed a clear single pinpoint or small 

cloud of XIST at the 8-cell stage that accumulated to a proper XIST cloud at the late morula 

and blastocyst stage, male embryos showed only brief expression of XIST in a minority of the 

cells. Thus, a clear diff erence in the Ɵ ming, duraƟ on and the level of XIST expression between 

male and female human embryos suggests the occurrence of XCI in female pre-implantaƟ on 

embryos.

Absence of transcripƟ onal acƟ vity on XIST-coated chromosomal region
We analyzed the transcripƟ onal acƟ vity together with XIST staining since XIST RNA 

accumulaƟ on on the X chromosome itself does not automaƟ cally imply an inacƟ vated status of 

the X chromosome. TranscripƟ onal acƟ vity was invesƟ gated by Cot1 RNA FISH staining, which 

highlight areas of ongoing hnRNA transcripƟ on; trancripƟ onally silent nuclear compartments, 

such as an inacƟ vated X chromosome are devoid of Cot1 RNA [15, 17]. Human embryos were 

stained by RNA and DNA FISH with probes for Cot1 RNA, XIST RNA, chromosome 15, and 

the X and Y chromosomes. Cumulus cells of human follicle complexes were used as posiƟ ve 

controls in each experiment (Figure S3A-3C). Cells of human blastocysts showed XIST RNA 

clouds corresponding to areas where Cot1 RNA (Figure 2A-F) was excluded. Figures 2D-F 

show a representaƟ ve cell with an XIST-coated X in a Cot1-depleted region and the second 

X chromosome in a Cot1-posiƟ ve area. The Cot1 exclusion coincided with the XIST signal in 

89% of the cells (n = 47). Comparable percentages of Cot1 exclusion from Xist/XIST posiƟ ve 

areas have been observed in mouse embryos and diff erenƟ aƟ ng human embryonic stem cells 
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[15,22,24]. The iniƟ aƟ on of transcripƟ onal silencing was confi rmed with RNA FISH to detect 

nascent transcripts of the X-linked CHIC1 gene. Blastocyst cells showed a single spot of CHIC1 

expression close to one X centromere and an XIST cloud on the other inacƟ ve X chromosome 

(Figures 2G-J). Bi-allelic expression was not observed in blastocysts and was not assayed 

in earlier stages. Thus, the X chromosome that is at least parƟ ally coated with XIST RNA in 

the human embryo is in a transcripƟ onally silent area, demonstraƟ ng that XCI and dosage 

compensaƟ on commences in pre-implantaƟ on female human embryos.

Figure 2. TranscripƟ onal changes on the inacƟ ve X chromosome. (A-F) Cot1 exclusion around XIST. (A-
C) Cells of a female blastocyst embryo with staining for Cot1 RNA (red in A) and XIST RNA (green in B) 
showing depleted regions of Cot-1 RNA around the XIST signals indicaƟ ng the posiƟ on of the inacƟ vated 
X (merged in C). (D-F) RepresentaƟ ve cell of a female blastocyst with staining for the X centromeres 
and XIST RNA (D, Xcen in magenta, XIST in green) together with Cot1 (red in E). TranscripƟ on of Cot1 
RNA was absent in a region that overlaps with XIST RNA staining (F), while the acƟ ve X without XIST 
staining overlaps with a Cot1-posiƟ ve region. (G-J) Female blastocyst cell with two X centromeres 
(cyan in G) has a single XIST cloud on one X chromosome (green in H) and monoallelic expression 
of CHIC1 on the other X chromosome (red in I, merged in J). A dust spot is visible in all colors and is 
therefore nonspecifi c staining (see page 177 for colour fi gure).



90 

Chapter 4.1

Figure 3. EpigeneƟ c changes on the inacƟ ve X chromosome. (A-C) Three adjacent blastocyst cells 
show H3K27Me3 hypermethylaƟ on (arrowheads in J and enlarged panels 1-3) and staining for H3K9 
acetylaƟ on (B, 1-3) shows a H3K9ac-depleted region overlaying the H3K27Me3 accumulaƟ on (C, 
1-3) indicaƟ ng the posiƟ on of the Xi chromosome. (D-F) RepresentaƟ ve blastocyst cell shows H3K27 
hypermethylaƟ on (green, D) and enrichment for macroH2A (red, E) with a clear overlap (yellow, F) 
analogous to the signal around an Xi chromosome (see page 180 for colour fi gure). 

ChromaƟ n conformaƟ onal changes on the inacƟ ve X
To further explore XCI in human pre-implantaƟ on embryos, we invesƟ gated histone 

modifi caƟ ons that are established hallmarks of a silenced X chromosome. Specifi c accumulaƟ on 

of one or more histone modifi caƟ ons form macrochromaƟ n bodies that indicate the posiƟ on 

of the inacƟ ve X chromosome, as shown for XCI in mouse pre-implantaƟ on embryos and in 

diff erenƟ aƟ ng mouse and human ES cells [1,4,16,17,25, 52-54].

 IdenƟ fi caƟ on of the chromaƟ n state of X chromosomes was carried out with 

anƟ bodies to detect hypoacetylaƟ on of lysine 9 on histone H3 (H3K9ac), accumulaƟ on of 

trimethylaƟ on of lysine 27 on H3 (H3K27Me3), and the enrichment of the histone variant 

macroH2A [1,4,16,17,52,53] followed by DNA FISH to idenƟ fy the gender of the embryo. As 

a control, we used cumulus cells in which the inacƟ vated X can be idenƟ fi ed as a chromaƟ n 

dense Barr body or amniocytes in which an immunostaining together with XIST detecƟ on is 

possible. Human cumulus cells showed DAPI-dense Barr bodies that were posiƟ vely stained 

for macroH2A and H3K27Me3, marks associated with inacƟ ve chromaƟ n. Amniocytes showed 
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the same accumulaƟ on of chromaƟ n markers overlaying the XIST signal (Figure S3H-S3K). 

In addiƟ on, staining with an anƟ body against H3K9 acetylaƟ on, an acƟ ve chromaƟ n mark, 

showed exclusion from Barr bodies in cumulus cells or from XIST-stained regions in amniocytes 

(Figure S3P-S3S). These fi ndings confi rm the specifi city of the anƟ bodies used to indicate a 

macrochromaƟ n body as the Xi. Staining of cells from pre-implantaƟ on blastocysts using the 

same anƟ bodies showed idenƟ cal results, i.e., double staining showed a single region where 

accumulated H3K27Me3 staining exactly overlay the region of H3K9 hypoacetylaƟ on (Figure 

3A-C), indicaƟ ng the presence of an Xi. Furthermore, macroH2A enrichment and accumulaƟ on 

of H3K27Me3 (Figure 3D-F) colocalized exactly in blastocyst cells. Up to 30% of the analyzable 

cells in blastocysts showed a double immunostaining of chromaƟ n marks that are specifi c for 

XCI (either H3K27Me3 together with macroH2A or H3K27Me3 in a depleted region of H3K9ac). 

The other 70% of the cells had no visible accumulaƟ on (or depleƟ on in case of H3K9ac) of 

either anƟ body, and single accumulaƟ ons were rarely found (<5%). In contrast, male embryos 

did not show accumulaƟ on of H3K27Me3 or macroH2a, and no specifi c exclusion of H3k9ac 

was observed (data not shown). 

 Taken altogether, these observaƟ ons show that once XIST RNA coats the X chromosome 

in human embryos, epigeneƟ c changes that are known to lead to XCI are induced, similar 

to what has been observed in mouse pre-implantaƟ on embryos and embryonic stem cells 

[4,55,56].

Discussion

In contrast to previous suggesƟ ons that XCI may not be present in the human pre-implantaƟ on 

embryo, [4,42,43,55,57] our observaƟ ons of XIST RNA accumulaƟ on in female embryos, local 

accumulaƟ on of Xi-specifi c chromaƟ n modifi caƟ ons, and the absence of acƟ ve transcripƟ on 

in XIST RNA-coated areas indicate that XCI occurs in human female pre-implantaƟ on embryos 

starƟ ng from the 8-cell stage. However, the extent of the coaƟ ng by XIST and the extent of the 

transcripƟ onal silencing other than that of the CHIC1 gene remain unknown.

ConservaƟ on of Ɵ ming of XCI
The developmental stage at which embryonic genome acƟ vaƟ on occurs in mammalian 

species varies considerably: at the 1-to-2-cell stage in mice, at the 4-to-8-cell stage in cows 

and humans, and at the 8-to-16-cell stage in sheep and rabbits [58,59]. The necessity of dosage 

compensaƟ on by XCI is likely to start at the onset of genome acƟ vaƟ on; thus, around the 2 
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cell stage in mice and around the 8-cell stage in humans. IniƟ aƟ on of XCI can be detected in 

mice from the 2-cell stage onwards by Xist RNA FISH, showing a small pinpoint of Xist in 67% 

of female cells, and complete X-associated Xist accumulaƟ on occurs by the 8-cell stage [15,17]. 

In human embryos, we observed pinpoint XIST signals in 65% of female 8-cell blastomeres 

and cis accumulaƟ on (cloud-like signals) of XIST in late morulas and in blastocysts. We could 

not analyze embryos before the 6- to 8-cell stage, because such embryos were not available 

for research. Given that our observaƟ ons in 6- to 8-cell stage human embryos show XIST RNA 

with exactly the same pinpoint signals and at a similar frequency as in 2-cell stage mouse 

embryos (67% vs. 65%, Table I and [15]), it is likely that the 8-cell stage represents the actual 

onset of XIST expression in humans. The later stage of XCI in humans relaƟ ve to mice suggests 

a correlaƟ on with the later transiƟ on from maternal to embryonic or zygoƟ c gene expression 

in humans [60].

 XIST paƩ erns were only analyzed in euploid cells, and because similar results were 

observed in cells derived from normal or mosaic embryos (Table S1), these data were combined. 

No consistent paƩ ern of XIST expression was discernible in the sex aneuploid cells (Table S1). 

The quality of the embryos did not infl uence the results; we observed similar paƩ erns of X 

inacƟ vaƟ on in euploid cells of surplus embryos and cryopreserved embryos. It is likely that 

aneuploidies other than detected with the X, Y or chromosome 15 probes were present in the 

analyzed cells since human embryos are known to have high aneuploidy rates [61]. However, 

aneuploidies may only have a subtle eff ect on skewing of the selected X chromosome [62].

 Comparison of several characterisƟ cs of X inacƟ vaƟ on between mouse and human 

embryos indicates that although the onset of XIST expression may occur later in humans than 

in mice, the Ɵ meline and order of XIST expression iniƟ aƟ on through actual X inacƟ vaƟ on is 

similar in mice and men (Figure 2 and [63]).

DetecƟ on of Xist in male embryos
In contrast to previously reports on the detecƟ on of XIST in human embryos [42,43], we 

found a clear diff erence in XIST expression between male and female embryos (Figure 1). The 

previous data on human male embryos were obtained by nested PCR that, in contrast to our 

FISH method, detects very low levels of XIST RNA. The large number of cycles in this method 

probably masked the diff erence in XIST levels between male and female embryos, leading to 

the erroneous conclusion that human embryos do not iniƟ ate XCI [42,43]. In general, large 

diff erences in levels of Xist/XIST expression are found between embryos and between cells 

of a single embryo in both mice [17,50] and humans (Table I and Figure S2). PCR detecƟ on of 

RNA expression in pooled embryos or even single embryos can mask these variaƟ ons [50] and 
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interpretaƟ ons of these results are therefore unreliable. Thus, although PCR is more sensiƟ ve 

than the FISH method, the ability to localize the transcripts, as in a FISH experiment, is essenƟ al 

for studying the X-inacƟ vaƟ on process. 

 The onset of Xist/XIST expression in male embryos, detected as a pinpoint signal by 

Xist/XIST RNA FISH, is slightly later than in human female embryos, both in mice and humans 

([17,44,45] and Table I). Although our XIST RNA FISH probe did not overlap with the reported 

transcribed TSIX sequence [64] (MIM 300181), which is transcribed in the opposite orientaƟ on 

and may be involved in down regulaƟ on of XIST, we cannot exclude that the transient male 

and early female pinpoint signals are (in part) TSIX RNA. We therefore tested TSIX probes that 

had been used previously to detect TSIX in human fetal cells [64], but failed to obtain specifi c 

signals on either embryos or amniocytes from rouƟ ne amniocentesis. Thus, whether human 

TSIX plays a role in the inƟ Ɵ aƟ on of XCI remains to be elucidated. 

 Similar to mouse embryos, the pinpoint signals in human male embryos never 

accumulated to a complete cloud, indicaƟ ng that iniƟ al XIST and/or TSIX expression does not 

lead to actual inacƟ vaƟ on of the X chromosome in male embryos ([17,44,45] and Table I).

What is the mechanism of XCI?
Our data on human embryos show a variety of XIST-staining paƩ erns that are similar to mouse 

Xist embryo paƩ erns ([13,15,17,19,44] and Table I, Figure S1). Slight discrepancies between 

published data can be explained by diff erences in detecƟ on sensiƟ vity, as double Xist signals 

were observed more frequently when larger probes and increased signal amplifi caƟ on were 

used [13,15,44]. 

 Both random XCI and imprinted XCI can result in paƩ erns of X inacƟ vaƟ on that are 

comparable to the paƩ erns that we have observed in human embryos: Of the diff erent 

models for random XCI [8], the stochasƟ c model, -in which every X chromosome has a certain 

probability of being inacƟ vated, resulƟ ng in a majority of cells with one Xi, as well as cells with 

no Xi or two Xi’s [7] – best explains our results. Only this model accommodates the variety 

of XIST expression paƩ erns such as we have observed; other random XCI models view this 

variaƟ on as errors of the XCI mechanism. Imprinted XCI has a preferenƟ al expression of the 

paternal Xist allele but is only manifested in 70–90% of the cells, whereas the remainder of 

the cells shows no Xist expression. These Xist negaƟ ve cells may at a later stage inacƟ vate the 

correct number of X chromosomes, akin to random XCI [65]. The human data could thus be 

explained by both imprinted and random mechanisms of XCI. The majority of blastomeres 

from our 8-cell human female embryos, showed only one pinpoint XIST signal, suggesƟ ng a 

preference for acƟ vaƟ on of a single XIST allele that could be indicaƟ ve of imprinted XCI, similar 
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to what is observed in mice. The obvious soluƟ on would be parental tracing of the expressed 

XIST gene. Unfortunately, this was not possible with these anonymously donated embryos. 

Future experiments are necessary in order to determine whether XCI in human embryos is a 

random process or whether imprinted XCI is fully conserved. 

 In summary, we fi nd X-associated accumulaƟ on of XIST RNA in female cleavage-

stage and blastocyst embryos, together with transcripƟ onal silencing and Xi-specifi c histone 

modifi caƟ ons. These results indicate that (at least part of) the X chromosome is silenced 

in human pre-implantaƟ on embryos. Our fi ndings therefore suggest that X-linked dosage 

compensaƟ on in mammalian pre-implantaƟ on embryos is evoluƟ onary conserved. 
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Supplemental Data

X-Chromosome InacƟ vaƟ on is iniƟ ated in Human Pre-ImplantaƟ on Embryos

Table S1. XIST paƩ erns in sex euploid and aneuploid human embryonic cells.

Embryos Genotype # Cells “Expected” XIST 
paƩ erna

 (%) “Unexpected” XIST 
paƩ ern

Unexpected paƩ erns: 
more (+) or less (-) 

XIST spots

XY cleavage stage       

euploid (N = 3) XY  17  16  (94)  1 + 

mosaic (N = 3) XY  13  12  (92)  1 + 

 XX  1  1 (100)   

 XO   3   3 (100)   

 XYY   1   1 (100)   

XY morulas       

euploid (N = 2) XY  24  24 (100)   

mosaic (N = 7) XY  67  54  (81) 13 + 

 XX   3   0   (0)  3 + 

 XO  12   7  (58)  5 + 

XY blastocysts       

euploid (N = 3) XY  52  52 (100)   

mosaic (N = 2) XY  46  39  (85)  7 + 

 XX  1   1 (100)   

 XO,YO   2   2 (100)   

XX cleavage stage       

euploid (N = 2) XX  11   8  (73)  3 +

mosaic (N = 3) XX  15  10  (67)  5 2+ and 3- 

 XO   1   1 (100)   

 XXXX   1    (0)  1 - 

XX morulas       

euploid (N = 4) XX  30  20  (67) 10 4+ and 6 

mosaic (N = 9) XX  59  41  (69) 18 7+ and 11-

 XO  11   9  (82)  2 + 

 XXX   5   3  (60)  2 -

XX blastocysts       

euploid (N = 4) XX 110 110 (100)   

mosaic (N = 2) XX  34  32  (88)  2 +

 XO   1   1 (100)   

 XXXX 1  (0) 1 -

Data include only cells with an analysable X/Y, 15 and XIST. aAn ”Expected” paƩ ern is an XIST signal for every n1 X 
chromosome.



 99 

RegulaƟ on of XCI during early development

4

Figure S1. Single cell RNA/DNA FISH analysis of human embryos. (A) Diploid blastomere from a female 
8-cell embryo displaying two X centromeres (red), two chromosome 15 centromeres (aqua), and an 
XIST pinpoint (green). (B) Diploid male blastomere from a 12-cell male embryo with an X chromosome 
(red), a Y chromosome (yellow) and two chromosomes 15 (aqua). XIST RNA was absent (see page 180 
for colour fi gure).

Figure S2. Examples of diff erent paƩ erns of XIST RNA signals in female embryos. (A) Single pinpoint of 
XIST (green) near the X centromere (red) at the 8-cell stage. (B) Two pinpoint signals of XIST at morula 
stage. (C) Single cloud signal in blastocyst. (D) double cloud signals of XIST in late morula embryo. (E) 
Two cells from a morula, one with a pinpoint XIST signal and the other with an intermediate cloud of 
XIST RNA (see page 181 for colour fi gure).
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Figure S3. EpigeneƟ c changes on the inacƟ ve X chromosome in human cumulus cells (A-G, L-O) and 
female amniocytes (H-K, P-S). RNA FISH and immunocytochemistry of human female cumulus cells 
with probes and anƟ bodies commonly used to characterize the inacƟ ve X chromosome. Cot1 RNA 
FISH staining of cumulus cells (red in A) shows an excluded area (indicated with arrowheads), that 
overlaps with XIST RNA staining (green in B) as shown in the overlay in (C). The third nucleus is not in 
focus and the Cot1 depleted region can thus not be seen. Inverted DAPI staining reveals the posiƟ on 
of the inacƟ ve X/Barr body (arrowhead in D) in cumulus cells that overlaps with macroH2A staining 
(red in E) and H3K27Me3 (green in F), merged in G. (H-K) In female amniocytes, XIST RNA (H) shows 
a complete overlap with the accumulated nuclear domains of macroH2A (red in I) and H3K27me3 
(green in J) as shown in the overlay (merged in K). (L) Cumulus cell with Barr body that is indicated with 
an arrowhead in the inverted DAPI image. H3K9 acetylaƟ on staining shows exclusion of the Barr body 
area (red in M) and H3K27Me3 gives a strong localized signal staining (green in N) that overlaps exactly 
with the exclusion of H3K9ac and the posiƟ on of the Barr body (merged in O). In female amniocytes 
the Barr body (arrowheads in P) overlaps the XIST cloud (green signal in Q) and at this area H3K9ac is 
depleted (red in R) as shown in the overlay (merged in S) (see page 184 for colour fi gure).
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Abstract

Female eutherians silence one of their X chromosomes to accomplish an equal dose of X-linked 

gene expression compared with males. The mouse is the most widely used animal model in XCI 

research and has proven to be of great signifi cance for understanding the complex mechanism 

of X-linked dosage compensaƟ on. Although the basic principles of XCI are similar in mouse 

and humans, diff erences exist in the Ɵ ming of XCI iniƟ aƟ on, the geneƟ c elements involved in 

XCI regulaƟ on and the form of XCI in specifi c Ɵ ssues. Therefore, the mouse has its limitaƟ ons 

as a model to understand early human XCI and analysis of human Ɵ ssues is required. In this 

review, we describe these diff erences with respect to iniƟ aƟ on of XCI in human and mouse 

pre-implantaƟ on embryos, the extra-embryonic Ɵ ssues and the in vitro model of the epiblast: 

the embryonic stem cells.
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IntroducƟ on

This year, we celebrate the 50th anniversary of Mary Lyon’s fi rst publicaƟ on on X chromosome 

inacƟ vaƟ on. Her fi rst study hypothesized about the basic principle of X chromosome inacƟ vaƟ on 

(XCI) that would result in dosage compensaƟ on of X-linked gene expression between male and 

female mice. In 1991, Brown et al. [1] described a gene that was exclusively expressed from the 

inacƟ ve X, the Xi specifi c transcript (Xist), and it was proposed to be involved in the process of 

XCI (reviewed in [2]). XCI has become a research fi eld of its own, and many genes have been 

discovered to be involved in the process of sex-linked dosage compensaƟ on. The mechanism 

of XCI comprises diff erent aspects of molecular biology, cell biology and epigeneƟ cs, and it 

combines many fi elds of not only basic research, but also translaƟ onal science. Although the 

general outcome of the X-inacƟ vaƟ on process is similar in somaƟ c cells of mice and men, 

resulƟ ng in dosage compensaƟ on of X-linked genes, there are important diff erences in the 

genes that take part in the iniƟ aƟ on process of XCI, the extent of gene inacƟ vaƟ on and how XCI 

occurs in diff erent Ɵ ssues. This review focuses on the similariƟ es and the diff erences between 

mouse and human Ɵ ssues with respect to the Ɵ ming of XCI iniƟ aƟ on at the earliest stages of 

development, namely, (1) the pre-implantaƟ on stage, (2) in extra-embryonic Ɵ ssues and (3) in 

ES cells. 

Brief introducƟ on on some key players of human and mouse XCI
Excellent reviews exist that describe in detail the regulatory elements that are involved in the 

X inacƟ vaƟ on process [3-7]. Most of these data are derived from mouse ES cell diff erenƟ aƟ on 

experiments and mutant mouse models. We briefl y menƟ on some of the genes here to describe 

their basic funcƟ on and describe other genes in the ES cell secƟ on. Xist is the most important 

gene in XCI that codes for Xist, a non-coding RNA transcript which wraps itself around the future 

inacƟ ve X chromosome [8,9]. Human XIST shows sequence similarity but has large sequence 

divergence in the fl anking regulatory regions [10,11]. This may have consequences for the 

iniƟ aƟ on and maintenance of XCI. The Tsix transcript is a key regulator of Xist in mouse Ɵ ssues 

[12,13]. It is expressed in opposite direcƟ on of Xist and thereby represses Xist expression. The 

balance between Xist and Tsix expression ensures that only one X chromosome is inacƟ vated 

in females and none in males. The human TSIX region is not well conserved, the transcript is 

truncated and does not overlap the XIST promoter region and lacks other regulatory elements, 

such as DXPAS34, that are essenƟ al for murine Tsix funcƟ on [10,14-16]. Other murine genes 

that play a role in the XCI process in mouse ES cells such as Rnf12, Jpx, Yy1, CTCF and Eed 
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[17-21] are conserved in humans although diff erences exist between mice and humans in the 

fl anking regions of some of the genes [10,11]. 

XCI during pre-implantaƟ on development, the fi rst step

XCI kineƟ cs in mouse embryos
The fi rst iniƟ aƟ on of XCI starts at the 2-cell stage of pre-implantaƟ on development. Mouse 

cleavage stage embryos have an imprinted form of XCI in which the inacƟ vated chromosome 

is always the paternal X chromosome [22,23]. The second step comprises the reacƟ vaƟ on 

of the paternal X in the inner cell mass (ICM) and the maintenance of imprinted XCI in 

the trophectoderm (TE) and primiƟ ve endoderm (PrE) at day 4.5 [24-27]. The third step is 

the iniƟ aƟ on of random XCI in cells of the epiblast between days 5.5-6.3 [28,29], which is 

recapitulated in in vitro ES cell diff erenƟ aƟ on experiments [3]. 

 Most of our knowledge about XCI in pre-implantaƟ on embryos comes from the analysis 

of mouse embryos (reviewed in [30]). Imprinted XCI is likely caused by opposite marks on the 

parental X chromosomes in oocytes and spermatozoa [31-34]. Both maternal and paternal 

imprints ensure the inacƟ ve status of Xp and the acƟ ve status of Xm. It has been hypothesized 

that the paternal X chromosome enters the oocyte in a pre-inacƟ vated state as a result from 

the chromaƟ n remodelling and silencing process during spermatogenesis called meioƟ c sex 

chromosome inacƟ vaƟ on (MSCI) [35]. However, several studies have shown that the paternal 

X is transcripƟ onally acƟ ve at the 2-cell stage [27,36-38]. In addiƟ on, in a mouse model in 

which the murine Xist gene is translocated on an autosome, which is not subjected to MSCI 

or meioƟ c silencing of unsynapsed chromosomes (MSUC), Xist is sƟ ll able to induce silencing 

of neighbouring genes and epigeneƟ c remodelling of the ectopically Xist coated region [39]. 

Thus, it could be that another feature is responsible for paternal X inacƟ vaƟ on, for example 

the presence of paternally specifi c histones or protamines. Furthermore, as will be discussed 

below, recent data suggest that iniƟ al silencing of X-linked genes may be Xist independent. 

 In a 2-cell stage mouse embryo, only a single pinpoint area of Xist RNA is present, but 

this pinpoint gradually expands to a full cloud at the 4-8 cell stage. At the 4-cell stage, the fi rst 

signs of transcripƟ onal repression of the Xi appear, including the exclusion of RNA polymerase 

II and the absence of transcripƟ on of Cot1 repeƟ Ɵ ve elements [27,35]. From the 8-cell stage 

onwards, epigeneƟ c marks appear such as hypoacetylaƟ on of H3K9 and H3K4 hypomethylaƟ on 

[27]. Morula and blastocyst embryos show Eed/Ezh2 associaƟ on on Xi [27,40], the incorporaƟ on 

of the histone variant macroH2A and the accumulaƟ on of H3K27 trimethylaƟ on, although 
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individual embryos are variable in the onset of these marks [25,27,41]. This variability in 

chromaƟ n modifi caƟ ons might be the consequence of the diff erent levels of Xist RNA in the 

individual blastomeres [42] and may be related to the fate of each cell in the eight cell embryo. 

As the fi rst cell diff erenƟ aƟ on takes place at the compacƟ on stage, with the inner cells being 

predominantly future ICM cells and the outer cells future TE (reviewed in [43,44]), it is possible 

that this process of cell allocaƟ on and specifi caƟ on causes the reacƟ vaƟ on of the paternal X in 

the ICM while the inacƟ ve state of Xp is maintained in the TE. 

 Although the female mouse pre-implantaƟ on embryo displays almost all characterisƟ cs 

of XCI, some of the fi nal features, such as DNA methylaƟ on of Xist on the Xa and Barr body 

formaƟ on, are not established [35]. The lack of fi nal modifi caƟ ons indicates that XCI during 

pre-implantaƟ on development is not as complete as in somaƟ c cells, thereby allowing the 

reacƟ vaƟ on of the Xi in the ICM. 

XCI kineƟ cs in human embryos
Studies in human pre-implantaƟ on embryos have been hampered by diffi  culƟ es in obtaining 

permission for research by ethical commiƩ ees and in recruiƟ ng paƟ ents willing to donate 

their surplus embryos. Another diffi  culty is that surplus embryos can only be donated aŌ er 

the clinical phase of embryo transfer has been performed, and the remaining good quality 

embryos are cryopreserved for future clinical use. Embryos of good quality at the earliest 

cleavage stages are thus even more diffi  cult to obtain. Therefore, very few studies have used 

human embryos to examine dosage compensaƟ on by X-inacƟ vaƟ on [45-48]. 

 Human embryos divide somewhat slower than mouse embryos; they consist of 8 

cells at day 3 and become morulas at day 4 and blastocysts at day 5, while mouse embryos 

develop 1–2 days faster. In agreement with the slower development is the later acƟ vaƟ on 

of the human embryonic genome at the 4-8 cell stage, while mice acƟ vate their genome 

at the 1–2-cell stage [49,50]. This diff erence between mice and men is also refl ected by the 

observaƟ on that human 8-cell stage embryos have a pinpoint expression of XIST, while mouse 

8-cell stage embryos have already formed a full cloud of Xist expression by that Ɵ me [25,27,35-

37,47]. IniƟ al experiments with RT-PCR analysis showed that both female and male embryos 

expressed XIST [45,46], which at the Ɵ me led to the conclusion that XIST is not funcƟ onal at 

these stages in human development. Subsequent experiments challenged these conclusions 

as single cell analysis of human embryos showed single XIST clouds defi ned as confi ned areas 

of XIST transcript accumulaƟ ons, in blastocysts [47]. However, oŌ en, loose XIST transcripts 

throughout the nucleus are found which are not observed in human somaƟ c cells ([47] and 

unpublished observaƟ ons). Unfortunately, it is not possible to idenƟ fy the parental origin of the 
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XIST cloud based on single nucleoƟ de polymorphisms in XIST as both the XIST cloud mRNA as 

well as the loose XIST transcripts will be amplifi ed with an RT-PCR (unpublished observaƟ ons). 

Importantly, many hallmarks indicaƟ ve of XCI, such as accumulaƟ on of H3K27me3 and 

macroH2a, depleƟ on of H3K9ac, and the mono-allelic silencing of a gene adjacent to XIST 

have been observed in single cell analysis of human female embryos [47], demonstraƟ ng that 

the process of XCI is iniƟ ated. A recent paper on XCI in rabbit and human embryos reported 

the presence of two XIST clouds in part of the human embryonic cells [48]. We suspect that 

high XIST probe concentraƟ ons detect local accumulaƟ ons of XIST transcripts that are not 

indicaƟ ve of an inacƟ vaƟ on process [48]. It is clear that XCI in human embryos basically follows 

the same cascade of events observed in mouse embryos, although the Ɵ ming diff ers (Figure 

1). Whether human embryos also show imprinted Xi at the pre-implantaƟ on stage is not 

yet known, the predominantly single XIST pinpoints in human embryos may suggest that an 

imprinted mechanism of XCI takes place in human embryos.

Does Xist/XIST coaƟ ng induces dosage compensaƟ on?
Whether the typical hallmarks of XCI lead to actual gene silencing and thus dosage 

compensaƟ on of X-linked coding genes is not yet known. As introduced above, iniƟ al silencing 

of X-linked genes during the fi rst cleavage stages may occur independent of Xist expression 

and coaƟ ng: a recent study shows that a majority of the X-linked genes have virtually wild-type 

expression rates in an Xist mutant background as no diff erences were found in the mono-allelic 

and bi-allelic expression rates [36]. InteresƟ ng excepƟ ons were the genes Rnf12 and Atrx. 

These genes were aff ected by the Xist defi ciency and since they both play a role in the XCI 

process this may suggest the presence of feedback mechanisms. Rnf12 has recently been 

described as an acƟ vator of Xist in mouse ES cells [19,51] and Atrx is essenƟ al for imprinted 

XCI in the murine placenta [52,53]. These data suggest that iniƟ al silencing of certain regions 

of the X chromosome is Xist independent. Whether Xist independent silencing is in fact due 

to remaining marks of MSCI or protamines [27,35] is not yet known. This form of silencing may 

be reminiscent of a more ancient form of XCI such as found in marsupials, which is also Xist 

independent [54]. At later stages Xist is required to stabilize the imprinted XCI during further 

embryonic development [36]. It has been postulated that the coaƟ ng of Xist and the modifi ed 

chromaƟ n confi guraƟ on creates a territory containing repeƟ Ɵ ve sequences into which genes 

can be recruited to be silenced [55,56]. In embryos as well as in ES cells, the actual silencing 

of X-linked genes and thus dosage compensaƟ on does not immediately follow the gradual 

coaƟ ng by Xist [25,35-37,57]. This indicates that the Xist expression and cloud formaƟ on alone 

is not suffi  cient for silencing [37]. Instead, a gradual conversion of bi-allelic to mono-allelic
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Figure 1. SchemaƟ c overview of the three diff erent steps of XCI in mouse and man. 
Mouse: In the mouse 2-cell stage embryo, imprinted XCI begins with pinpoint Xist expression from 
the paternal X. At the 8-cell stage the Xp chromosome is remodeled (XCR, see text for details) with 
COT-1 exclusion and epigeneƟ c marks; this remodeled X chromosome generally becomes inacƟ vated 
(XCI) at the blastocyst stage. Mouse blastocyst ICM cells reacƟ vate the paternal X while the TE and PrE 
retain the imprinted form of XCI (see text for more detailed descripƟ on). The imprinted form of XCI is 
maintained in the placenta while the epiblast converts to a random XCI mechanism. Human: No data 
are available for single human 2-cell stage embryos regarding the level and locaƟ on of XIST expression. 
At the 8-cell stage most cells have a single pinpoint of XIST expression but whether this is an imprinted 
XCI is not yet known. Human blastocysts have a full cloud of XIST, COT1 exclusion, epigeneƟ c marks 
and mono-allelic expression of a gene adjacent to XIST in a porƟ on of the cells indicaƟ ve of XCR and 
the iniƟ aƟ on of XCI [47]. Data on XCI in human placenta point towards a preferenƟ al silencing of the 
paternal allele, although random XCI paƩ erns are oŌ en observed. The model hES cell lines to study 
random XCI are not as good in humans as they are in mice: undiff erenƟ ated mouse ES cells have two 
acƟ ve X chromosomes and upon diff erenƟ aƟ on one X is randomly silenced. However, undiff erenƟ ated 
human ES cells are extremely variable in XIST expression and so far three classes have been described 
(see text). ICM = inner cell mass, TE = trophectoderm, PrE = primiƟ ve endoderm (see page 185 for 
colour fi gure).
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expression of X-linked genes is observed. These highly dynamic processes are refl ected by 

the variability in silencing of genes along the X chromosome and the variability in silencing 

between individual blastomeres of single mouse and human embryos [35-38,47]. It can be 

postulated that this form of XCI, which starts with the remodelling of the future inacƟ ve X 

by chromaƟ n modifi caƟ ons but does not include Xist DNA methylaƟ on may allow for a more 

dynamic X-linked gene silencing at these early stages. 

Eff ects of in vitro development
Studies in bovine embryos have shown that in vitro culture aff ects X-linked gene expression 

including the levels of Xist RNA [58,59]. Unfortunately, no data exist on the parental origin 

of the Xist-expressing alleles and on whether in vitro culture leads to ectopic inacƟ vaƟ on in 

pre-implantaƟ on embryos. AddiƟ onally, studies in mouse placentas have shown that in vitro 

pre-implantaƟ on development can alter the expression paƩ ern of Xist and imprinted placental 

genes [60-63]. Culture condiƟ ons such as glucose levels that have no impact on epiblast 

development, do aff ect TE diff erenƟ aƟ on [64]. These fi ndings suggest that the extra-embryonic 

lineages may be diff erent from the epiblast with respect to epigeneƟ c regulaƟ on. This 

diff erence indicates that the manipulaƟ on of pre-implantaƟ on embryos infl uences imprinted 

gene expression, and this might be the case for human embryos from assisted reproducƟ ve 

technology (ART) treatments as well. Several studies on children conceived with ART 

treatments have shown a slightly higher incidence in imprinƟ ng disorders, an altered sex raƟ o 

shiŌ ed towards males, altered birth weight and even skewed XCI [65-69]. A number of reasons 

may explain the diff erences between ART outcome and the general populaƟ on such as the 

reason for inferƟ lity of the parents, the ovarian sƟ mulaƟ on procedure, the high amount of 

mulƟ ple pregnancies and the extended Ɵ me to pregnancy [70]. Although the long-term eff ects 

are subtle, infl uences of the in vitro environment must be considered when studying human 

pre-implantaƟ on development. 

XCI in extra-embryonic Ɵ ssues, the second step
Upon diff erenƟ aƟ on into blastocysts, the inacƟ vaƟ on of the paternal X is maintained in 

the mouse trophectoderm and will remain silenced all throughout placenta development. 

Overexpression of X-linked genes due to a lack of dosage compensaƟ on is lethal, primarily due 

to placental defects [71]. Whether a mouse embryo can survive with an extra X chromosome 

depends on the parental origin of the X chromosomes. Having two maternal X chromosomes 

is lethal (XmXmY) whereas a single X or two paternal X chromosomes can be tolerated and 

corrected [72-74]. This disƟ ncƟ on suggests that the paternal imprint is much easier to reverse 
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than a maternal imprint. In humans, the diff erence in embryo lethality caused by the parental 

origin of the X chromosome aberraƟ on is less pronounced. Whether a missing or extra 

chromosomes are paternally or maternally derived does not seem to be of great infl uence as 

both XmXmY and XmXpY Klinefelter syndrome genotypes as well as triple X women (XmXmXp 

or XmXpXp) are viable. Also in Turner paƟ ents (either XpO or XmO) the parental origin of 

the X chromosomes does not seem to infl uence the pregnancy outcome [75]. However, up to 

90% of the human embryos with sex chromosome aneuploidies die in utero because humans 

have many pseudoautosomal and other escape genes on the X chromosome that are normally 

not silenced and are thus required at double dosage [76].These data suggest that in human 

placental development, the parental origin is of less importance in dosage compensaƟ on. 

Maintenance of imprinƟ ng in mice 
How the mouse paternal X retains the inacƟ ve mark is sƟ ll unclear, but knockout experiments 

have idenƟ fi ed genes that are essenƟ al for maintenance of imprinted XCI in the mouse placenta, 

namely Eed and Tsix [12,77-80]. Tsix, the anƟ sense transcript of Xist, represses Xist expression 

on the future acƟ ve X. Tsix thereby ensures that only one X is inacƟ vated in random XCI and 

protects the maternal X from inacƟ vaƟ on in the placenta. The parental origin of the mutated 

Tsix allele therefore has a strong eff ect on future mouse placenta development. While the 

inheritance of a maternal Tsix deleƟ on results in embryonic lethality during post implantaƟ on 

development around d9.5, inheritance of a paternal Tsix mutaƟ on has no eff ect in female 

embryos [13,81]. In humans, TSIX does not seem to play a role in the process of XCI, as the 

sequence is truncated compared with its murine counterpart and is, unexpectedly, transcribed 

from the same allele as XIST [15,82]. Thus, it is not likely that human XCI is regulated by TSIX 

expression, neither in the embryo nor in the extra-embryonic lineages. 

 The polycomb protein EED has been of interest, as it is required to keep the paternal 

X inacƟ ve in the extra-embryonic Ɵ ssue [79]. Other signals that may be important for the 

maintenance of the imprinted state in trophoblast cells could be present in the blastocoel 

fl uid, which has direct contact with both the trophoblast as well as the primiƟ ve endoderm 

cells, the two cell types that contain the imprinted XCI mark. A study on imprinted XCI started 

out using diff erenƟ aƟ on of mouse ES cell towards the extra-embryonic lineages and found 

that imprinted XCI was not iniƟ ated this in vitro system. Subsequent cloning of the nucleus of 

this ES cell line into an oocyte resulted in aberrant random XCI in the trophectoderm of the 

resulƟ ng blastocyst [83]. This study indicates that ICM cells lose the memory of the X imprint 

during the reacƟ vaƟ on process and that TE cells can only maintain and acƟ vely secure the 

inacƟ ve Xp when they directly originate from the pre-implantaƟ on embryo.
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Do humans prefer to inacƟ vate the paternal X chromosome during placenta 
development?
Many studies have analysed whether XCI is imprinted in human extra-embryonic Ɵ ssues similar 

to mouse trophectoderm, but the results have been contradictory. PreferenƟ al imprinted XCI 

such as is found in mouse embryos describes a situaƟ on in which part of the cells shows XCI 

and those cells always inacƟ vate the paternal X, whereas other cells do not show signs of 

XCI. On the other hand, a completely imprinted paƩ ern describes the situaƟ on as found in 

the mouse trophectoderm in which all cells show paternal XCI. Skewing on the other hand is 

defi ned as a bias of XCI towards the paternal or maternal allele, usually of 70–75% instead of 

the normal 50:50 raƟ o. About half of the human placental Ɵ ssues and isolated trophoblast 

and cytotrophoblast cells showed skewing towards the paternal X chromosome, but the 

remainder of the samples showed no skewing or skewing towards the maternal allele [84-

93]. No consistency exists between studies that invesƟ gated the same Ɵ ssue or gene, and it 

is diffi  cult to clarify the discrepancies, as studies with diff erent outcomes used essenƟ ally the 

same methodology. 

 Two studies invesƟ gated XCI aŌ er in vitro diff erenƟ aƟ on of trophectoderm from ES cells. 

In one study using human ES cells, it was suggested that imprinted XCI can be recapitulated 

upon diff erenƟ aƟ on towards the extra-embryonic lineages [94]. However, as the parental 

origin of the X chromosome was not determined, imprinted XCI of the paternal X in human 

TE cells is not yet conclusive. In addiƟ on, whether ES cell lines are an appropriate model to 

study in vitro trophectoderm diff erenƟ aƟ on is quesƟ onable based on the observaƟ ons from 

the recent publicaƟ on discussed above: the iniƟ aƟ on of imprinted XCI was not possible in vitro 

but required in vivo diff erenƟ aƟ on [83]. 

 What is the underlying mechanism to explain the diff erent observaƟ ons from placental 

studies? If preferenƟ al silencing of the paternal allele occurs at the human blastocyst stage, 

perhaps implied by the prevalence of single pinpoints at the cleavage stage [47], it would 

explain the skewing of XCI towards the paternal allele that has mostly been found in human 

placental material [84,85,89,95,96]. It could be hypothesized that during human placental 

development an iniƟ al preferenƟ al silencing of the paternal allele that is not as rigid and 

stable as in the mouse, allows for the reacƟ vaƟ on of the paternal X followed by random XCI. 

Indeed, reacƟ vaƟ on of the Xi has been observed in human placental cells of spontaneous 

aborƟ on material [96], and in somaƟ c cells containing a transgene of Xist, XCI can also be 

reversed in vitro [97]. Such mechanisms of reversible XCI could explain the variable results of 

independent studies on human extra-embryonic Ɵ ssues. A slightly diff erent explanaƟ on can 

be made from the observaƟ on that only a subset of the cells in human blastocysts carries the 
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visible epigeneƟ c mark of XCI [47]. If these cells start with a paternal XCI, and the other cells 

convert to random XCI at a later Ɵ me point, it will result in a mixture of skewed XCI and random 

XCI within the studied placentas. It is clear that the fi nal choice of XCI in the placenta occurs 

fairly early, as large patches of placental villi demonstrate the same choice of XCI [87,93]. 

 If, in contrast, there is no preferenƟ al imprinted XCI but random XCI in human blastocysts, 

it is not easy to explain the predominance of the preferenƟ al silencing of the paternal X found 

in human placentas. Perhaps, the skewed paƩ erns of XCI found at later stages of placental 

development could be aƩ ributable to a selecƟ ve advantage, only favourable in the placenta, 

of paternally silenced X-linked genes [71]. AlternaƟ vely, the single gene analysis used in most 

placental X-inacƟ vaƟ on studies may have inadvertently created a bias towards imprinted Xp 

results. If this is true the actual random X-inacƟ vaƟ on paƩ ern may be beƩ er represented by 

the analysis of more genes along the X chromosome [88].

IniƟ aƟ on of random XCI in the epiblast and embryonic stem cells, the third step
The third step of XCI takes place in the ICM cells of the blastocyst that will become epiblast 

cells. It follows the reacƟ vaƟ on of the paternal X chromosome and results in random XCI in 

the epiblast [25,27]. Mouse embryos at day 3.5 have already formed an ICM, but these cells 

sƟ ll contain an inacƟ ve X as shown by Xist clouds. These cells show high levels of pluripotency 

proteins such as OCT4, SOX2 and NANOG. In the mature blastocyst at d4.5, only the ICM cells 

that are NANOG posiƟ ve will reacƟ vate the paternal X chromosome. The other ICM cells 

that are expressing GATA4/GATA6 will maintain the silenced paternal X and diff erenƟ ate into 

PrE. Thus, both the TE and PrE maintain the same imprinted form of XCI [25,26]. At d5.5-d6, 

epiblast cells will iniƟ ate random XCI [25,29], and this process can be recapitulated in ES cells. 

Therefore, one of the main characterisƟ cs of an undiff erenƟ ated state of female ES cell lines is 

the acƟ ve state of both X chromosomes [3,98]. 

Mouse models of random XCI iniƟ aƟ on 
Because ES cell lines were fi rst derived from mice, iniƟ aƟ on of random XCI has been extensively 

studied in this in vitro model. Upon diff erenƟ aƟ on, both X chromosomes begin to express 

Xist at a low level, but only one X chromosome will upregulate Xist expression. At day 7 of 

ES cell diff erenƟ aƟ on, 80% of the cells will have formed a single Xist cloud [99]. The random 

choice of the X chromosome that becomes inacƟ vated has been a subject of study ever since 

Mary Lyon’s fi rst paper, and diff erent theories have been postulated as to how this random 

inacƟ vaƟ on is regulated [7]. Although studies using mouse ES cells have provided key insights 
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in the process, important quesƟ ons sƟ ll remain, and novel genes are conƟ nuously being 

discovered (reviewed in [5,100-102]). 

 Xist regulatory sequences contain binding sites for NANOG, OCT4 and SOX2 [103]. 

Furthermore, downregulaƟ on of Nanog expression results in upregulaƟ on of Xist, independent 

of Tsix [104]. Several candidate genes for Xist regulaƟ on have been described in mouse ES 

cells, for example Rnf12 and Jpx. Both are X-linked genes and located distal from Xist. Rnf12 

is implied to funcƟ on as an acƟ vator of Xist in both imprinted and random XCI although 

observaƟ ons and conclusions do not completely agree [19,51,105]. Double mutant Rnf12 

female ES cells do not upregulate Xist expression upon diff erenƟ aƟ on and only sporadic XCI 

occurs. However, in heterozygous mutant female ES cells which have the same protein level 

as male ES cells, XCI occurs in a delayed fashion upon diff erenƟ aƟ on indicaƟ ng that there are 

more Xist-acƟ vaƟ ng factors involved that either operate at diff erent Ɵ me points or in diff erent 

doses. Ectopic expression of addiƟ onal copies of human RNF12 in mES cells has the same 

eff ect indicaƟ ng that the funcƟ on of RNF12 is likely conserved [19,51] however, experiments in 

hES cells are needed to support this. 

 The Jpx gene is a likely candidate co-acƟ vator of Xist. DeleƟ on of Jpx has no eff ect in 

male ES cells, heterozygous female mutant cells however, showed impaired EB formaƟ on aŌ er 

diff erenƟ aƟ on and whereas wild-type female ES cells contained a single cloud of Xist in 75% 

of the cells at d8, female heterozygous ΔJpx mutant cells only had a single cloud of Xist in 

6.35% of the cells. The eff ect of ΔJpx/+ was rescued by placing it into a Tsix mutant background 

indicaƟ ng the opposite acƟ on of both genes [17]. Although conserved, human JPX diff ers from 

murine Jpx as the distance between the JPX CpG island and the fi rst exon is 9 Ɵ mes larger and 

no sequence conservaƟ on of this region has been found [11]. More research is needed to fi nd 

out if human XCI is under the same geneƟ c regulaƟ on as mouse XCI in ES cell diff erenƟ aƟ on. 

 As has been menƟ oned before, TSIX structure and funcƟ on are not conserved in 

humans [10,15,16], therefore, other factors are expected to negaƟ vely regulate XIST expression 

from the future acƟ ve X. Candidate genes for this funcƟ on are the members of the polycomb 

repressive complex 2 (PRC2) namely Eed, EZH2 and Suz12 as they are responsible for the 

recruitment of repressive histone modifi caƟ ons such as H3K9 and H3K27 methylaƟ on [18]. 

Especially Eed has been of interest as it is needed to keep the paternal X inacƟ ve in the extra-

embryonic Ɵ ssue [77,79] and lack of Eed in the absence of Tsix results in elevated levels of 

Xist in diff erenƟ ated male ES cells [106]. This resulted in parƟ al XCI and retarded outgrowth 

of embryonic bodies (EB). Even at the undiff erenƟ ated state higher expression levels in the 

double mutant ES cells were found. However, this aberrant expression of Xist was rescued by 

ectopic expression of Eed. Thus, either Eed or Tsix is suffi  cient to repress Xist during random 
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XCI. As humans lack a funcƟ onal TSIX, EED might be the negaƟ ve regulator of Xist in human 

cells. Indeed, PRC2 expression has been found in human pre-implantaƟ on embryos at the 4-cell 

stage [107]. However, funcƟ onal data on human PRC2 proteins in human pre-implantaƟ on 

embryos and hES cells are lacking. 

 The specifi c epigeneƟ c hallmarks that are found on the inacƟ ve X in somaƟ c cells 

[108] which are used to prove the iniƟ aƟ on of XCI in pre-implantaƟ on embryos, are thought 

to silence the transcripƟ on machinery by recruiƟ ng specifi c silencing factors and forming a 

heterochromaƟ c region. Candidate genes for recruiƟ ng modifying complexes or incorporaƟ ng 

histone modifi caƟ ons on the Xi are the genes CTCF, Yy1 and members of the polycomb 

repressive complexes 1 and 2 (PRC1 and PRC2) which are known to funcƟ on as histone modifi ers 

[109,110]. CTCF and Yy1 aff ect Xist expression [20] by changing the epigeneƟ c status of the 

promoter. The human XIST promoter contains a much smaller CTCF binding site compared to 

the mouse Xist promoter. It is however sƟ ll funcƟ onal as a single nucleoƟ de polymorphism 

(SNP) in this site can cause skewing of XCI [111]. The eff ect of the polymorphism is moderate 

as males do not seem to be aff ected. 

 The current challenge is to embed all these proteins in a complete network that 

combines Ɵ me and space during epiblast and extra-embryonic development. 

Why we know liƩ le about human ES cells 
The regulaƟ on of TE and ICM diff erenƟ aƟ on in human blastocysts has not been well studied. 

This lack of research is surprising, because many hES cell lines have been characterised 

without the knowledge of the ground state of pluripotency in human ICM cells. For instance, it 

is unknown whether human ICM have the same expression profi le of pluripotency genes and 

epigeneƟ c make-up as mouse ICM cells. This lack of knowledge hampers the proper evaluaƟ on 

of the quality of exisƟ ng human ES cell lines. A reason for this lack of knowledge may be the 

ethical issues and scarcity of surplus human embryos. More research on human ICM cells 

would contribute to establishing high quality hES and iPS cell lines both for basic research on 

XCI kineƟ cs as well as regeneraƟ ve medicine.

Human models of random XCI iniƟ aƟ on
How the process of XCI iniƟ aƟ on is regulated in human ES cells is much less understood, and 

how it is regulated in vivo is not possible to invesƟ gate. A number of studies have invesƟ gated 

the XCI state in diff erent hES cell lines and it is clear that human ES cells are quite diff erent in 

several aspects, including XCI, from mouse ES cells [94,98,112-118]. Human ES cell lines that 

are characterized as being undiff erenƟ ated based on morphologic features and the presence 
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of pluripotency markers show a highly variable paƩ ern of XCI. In general, three paƩ erns 

of XCI have been observed in hES cell lines: (a) cell lines that showed no signs of XCI but 

iniƟ ate XCI upon diff erenƟ aƟ on, (b) cell lines in which 20-80% of the cells have an XIST cloud 

or an epigeneƟ c hallmark of XCI such as H3K27me3, macroH2A or H4K20me1, indicaƟ ve of 

precocious XCI at d0 of diff erenƟ aƟ on and (c) cell lines without XIST either at d0 or upon 

diff erenƟ aƟ on [114]. It has been postulated that the long-term culture and frequent passaging 

of the cell lines may introduce artefacts, such as loss of XIST and expression of the Xi. This may 

be possible but precocious XCI is also already present in very early passages of some newly 

established cell lines [112] and has further been observed in human iPS cells [119]. Further, 

it is possible that human ES cells are derived from ICM cells that have not yet reacƟ vated 

their Xi and that the observed XCI in the hES cell lines is in fact a remnant from the XCI at the 

pre-implantaƟ on stage. Indeed, some hES cell lines have a non-random precocious XC and 

reversal to a random paƩ ern of X-linked gene silencing has been observed [112,117]. It has also 

been proposed that the hES cell lines currently available are actually epiblast stem cells lines 

and thus one step further diff erenƟ ated than cells from the ICM [120-122]. Lastly, it has been 

proposed that specifi c culture condiƟ ons during the derivaƟ on process may infl uence the 

pluripotency state of human ES cells [123], and these condiƟ ons may also have consequences 

for XCI regulaƟ on. Indeed, a recent study showed that human ES cells, when cultured under 

physiological low O2-tension, reacƟ vate the Xi and more closely resemble mES cells than cells 

that were cultured under atmospheric condiƟ ons [124]. SƟ ll, this fi nding indicates that the 

process of XCI is diff erently regulated in human compared with mouse ES cells. The reason for 

this diff erence in sensiƟ vity between human and mouse may originate in the geneƟ c elements 

that are involved in XCI [10,11]. Importantly, only a few mouse strains allow the derivaƟ on of 

pluripotent ES cell lines [125], indicaƟ ng that geneƟ c variaƟ ons such as SNPs and CNVs are of 

infl uence on the successful isolaƟ on of undiff erenƟ ated ES cell lines. As human embryos are 

far more geneƟ cally diverse than most commonly used mouse strains, the derivaƟ on of human 

ES and iPS cell lines may require embryo tailored culture condiƟ ons. Recent progression in ES 

cell derivaƟ on using small molecule inhibitors allow the derivaƟ on of ES cells from virtual all 

mouse strains and possibley from humans as well [126]. 

Discussion

In the past 50 years, much research has been carried out to unravel the phenomenon of 

mammalian X-linked dosage compensaƟ on. Although we now understand the basic principles 
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of X chromosome inacƟ vaƟ on, it is sƟ ll remarkable that two chromosomes that are geneƟ cally 

the same are epigeneƟ cally complete opposites. Monotremes and marsupials have solved 

the dosage compensaƟ on problem by always inacƟ vaƟ ng the paternal allele. This imprinted 

form of XCI is also present in the pre-implantaƟ on embryo and extra-embryonic Ɵ ssues of 

the mouse. Whether human pre-implantaƟ on embryos and early placenta also prefer to 

inacƟ ve the paternal X has yet to be determined. Human cleavage stage embryos have 26,5% 

cells with double staining for XIST signals [47] that may be reminiscent of a counƟ ng and 

choice mechanism such as found in diff erenƟ aƟ ng ES cells. However, the predominant single 

XIST pinpoints in 68% of the cells at this stage [47] more resemble the single Xist pinpoints 

in imprinted XCI in mouse embryos. Up Ɵ ll now, the placenta data are variable, but most 

evidence points towards an iniƟ al preference for a paternal Xi [84-93]. As menƟ oned before, 

two pathways could explain the observed preferenƟ al silencing of the paternal X in human 

placentas. Either a paternal imprint in the trophectoderm is diluted or reversed with random 

XCI during further development. However, an argument against an imprinted form of XCI is 

the equal birth rate of children with an extra maternal or paternal X chromosomes, such as in 

Klinefelter (XXY) syndrome [127,128] or the relaƟ vely healthy status of triple X females (XXX). 

There are no indicaƟ ons that embryos with extra maternal chromosomes (XmXmXp or XmXmY) 

have more in utero demise than embryos with an extra paternal X chromosome (XmXpXp or 

XmXpY) [75]. Thus, in contrast to female mice where an extra maternal X is lethal for placenta 

development, the equal birth-rates of children with an extra Xm or an extra Xp in humans 

suggests that the parental origin of the sex chromosome aberraƟ on is of less importance for 

embryonic survival. How can these clinical data poinƟ ng at random XCI correspond to the 

molecular data from pre-implantaƟ on embryos and placental Ɵ ssues that more resemble an 

imprinted XCI mechanism?

Diff erence between X-linked remodelling and X-linked inacƟ vaƟ on? 
Although various hallmarks of somaƟ c XCI are found in the mouse pre-implantaƟ on embryo, a 

disturbance of the process, such as a mutaƟ on in an XCI essenƟ al gene, does not immediately 

interfere with mouse development at the pre-implantaƟ on stage; rather, such a disturbance 

only aff ects post-implantaƟ on development from d6 onwards leading to death at d7.5-9. In 

embryos that carry a deleƟ on of the paternal Xist gene or parthenogeneƟ c embryos, which 

don’t have a paternal genome, imprinted XCI is recued by maternal Xist expression in a subset 

of the cells. However, these embryos arrest during post-implantaƟ on most likely due to poor 

development of the extra-embryonic Ɵ ssues [81,129,130]. This late death suggests that dosage 

compensaƟ on is not immediately necessary, and that there is a window to establish silencing. 
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Both mouse embryos as well as ES cell diff erenƟ aƟ on experiments have shown that hallmarks 

for X-inacƟ vaƟ on such as the presence of clouds of Xist, exclusion of RNA pol II and several 

epigeneƟ c remodelling characterisƟ cs does not necessarily indicate that the X chromosome is 

completely silenced [36-38]. Thus, Xist clouds and epigeneƟ c remodelling in pre-implantaƟ on 

embryos may suggest the iniƟ aƟ on of a dosage compensaƟ on mechanism but do not tell us to 

what extent the X chromosome is actually silenced at this stage. This epigeneƟ c X chromosome 

remodelling (XCR) modifi es the X chromosome into a repressive state that allows future XCI. 

XCR only creates the possibility for individual genes recruited to be silenced [55,56] rather 

than that it automaƟ cally leads to complete dosage compensaƟ on. It is thus possible that only 

in the extra-embryonic trophectoderm the chromosome wide XCI with defi nite silencing is 

completed. 

Necessity of dosage compensaƟ on
It may be that early remodelling of the Xp in mouse embryos, 3 days before implantaƟ on, is not 

essenƟ al for the early embryo itself but prepares for immediate dosage compensaƟ on in the 

extra-embryonic Ɵ ssues from the moment of implantaƟ on onwards. If dosage compensaƟ on 

is only necessary from this point onwards, the late lethality of mouse embryos that carry XCI 

knockout genes can be beƩ er understood. Thus, also in human embryos, the iniƟ aƟ on of XCI 

in blastocysts may not indicate actual inacƟ vaƟ on and a widespread dosage compensaƟ on 

mechanism but only remodelling of the X chromosome. So far, only one gene shows mono-

allelic expression in human blastocysts [47]. A possible eff ect of the XCI process itself in human 

pre-implantaƟ on embryos may be the observed retarded growth of female blastocysts [65, 

131], however, it is not known whether this is linked to X-inacƟ vaƟ on, imprinted genes on the 

X or an eff ect of the Y chromosome. 

 The necessity for immediate dosage compensaƟ on in the placenta could be more acute 

in mice than in humans. Two reasons may account for the divergence between mouse and 

men: fi rst, the mouse has a large amount of X-linked placental genes that are essenƟ al for 

proper placental development [71]. Second, as human embryos develop along a diff erent, 

slower Ɵ me line than mouse embryos, the lack of dosage compensaƟ on may be tolerated 

for a longer period. However, actual data on this are not known and many embryos may be 

lost as most studies on human birth rates do not include the possible death of an embryo 

before a recognized pregnancy [132]. Whether failures in X-inacƟ vaƟ on play a role in these fi rst 

trimester deaths is not known. 

 As science progresses to unravel the mechanism of mammalian dosage compensaƟ on, 

it has become clear that with the in-depth knowledge gained of this process in the mouse, 
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the challenge remains to extrapolate these fi ndings to the human. The diff erences in 

pre-implantaƟ on and post-implantaƟ on development, in the geneƟ c elements of the XIC and 

the heterogeneity among humans require that human XCI should be studied from its own 

point of view. With this review on the three steps of XCI iniƟ aƟ on, we hope to provide novel 

insight regarding the diff erences that exist between humans and mice.
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This thesis describes examples of epigeneƟ c regulaƟ on during human meiosis and 

pre-implantaƟ on embryo development. Important events such as the meioƟ c divisions 

during oocyte meiosis, pronuclei formaƟ on in the zygote and dosage compensaƟ on between 

male and female embryos all involve epigeneƟ c regulaƟ on, i.e. remodeling of chromaƟ n. 

Chapter 4.2 reviews the most important steps in the iniƟ aƟ on of X chromosome inacƟ vaƟ on, 

and describes the diff erences between mouse and human fi ndings and will not be further 

discussed in depth. In this chapter the main fi ndings of the studies in human oocytes and 

zygotes described in this thesis are summarized and discussed. 

Oocyte maturaƟ on, from the Germinal Vesicle stage to Metaphase II 
arrest

Human oocytes have a high frequency of chromosome aberraƟ ons and so far, the only factor 

that has unequivocally been associated with this high error frequency is advanced maternal 

age. It was previously thought that the majority of segregaƟ on errors occur during the fi rst 

meioƟ c division, MI, when the homologous chromosomes are separated and that homologous 

non-disjuncƟ on was the predominant error leading to oocyte aneuploidy. This theory was 

based on data from animal models, data from individuals with Down syndrome and cytogeneƟ c 

analyses of human oocytes [1-4]. Although Angell et al. proposed that human MII oocytes have 

a high rate of single chromaƟ ds [5-8], which would result from premature sister chromaƟ d 

separaƟ on (PSCS) during MI, these observaƟ ons were quesƟ oned and thought to arise from 

fi xaƟ on artefacts. However, recent data on the fi rst and second polar body of human oocytes 

from ART treatments confi rm these observaƟ ons from Angell et al. and show that it is not 

homologous chromosome non-disjuncƟ on but premature separaƟ on of the sister chromaƟ ds 

that is the predominant error of mis-segregaƟ on in both MI and MII [9,10]. Studies on mouse 

oocytes indicate that older mice also suff er from age-related aneuploidy [11-15]. 

 The exact underlying mechanism that causes the mis-segregaƟ on in human oocytes, 

either through homologue non-disjuncƟ on or chromaƟ d predivision, is sƟ ll unknown. 

However, many proteins and pathways have been idenƟ fi ed and found to be essenƟ al for 

correct chromosome segregaƟ on in oocytes from animal models. It is reasonable to assume 

that these are also important for human aneuploidy (reviewed in [16,17]). A pathway that 

is suggested to be involved in the age-related aneuploidy in mice is the regulaƟ on of the 

cohesion complex which holds the sister chromaƟ ds together (Figure 1). 
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Figure 1. Stepwise cleavage of the cohesion complex in meiosis. The cohesion complex holds the two 
sister chromaƟ ds together. At the transiƟ on from MI to AI the REC8 cohesin between the arms of the 
chromaƟ ds is cleaved by Separase to allow the homologues to be separated. Centromeric cohesion is 
protected by the Shugoshin proteins which prevents unƟ mely cleavage of the sister chromaƟ ds at the 
MI-AI transiƟ on. At the MII stage the sister chromaƟ ds are now bi-orientated to the spindle poles. This 
orientaƟ on creates tension on the centromeres which relocates Shugoshin from cohesin and allows 
REC8 to be cleaved by Separase at the MII to AII transiƟ on (adapted from [18]) (see page 188 for colour 
fi gure). 

Two research groups that used geneƟ cally modifi ed mice have shown that at least two 

components of the cohesin complex are not replenished from the fetal meioƟ c prophase to 

the adult MII stage indicaƟ ng that these proteins must last unƟ l adult life [19,20]. Oocytes from 

older mice (12–18 months) have depleted protein levels of the cohesin components REC8, 

SMC1β and STAG3 [11,13,14,21]. AddiƟ onally, oocytes from old mice show loss of the Shugoshin 

2 protein that protects the centromeric bound REC8 from unƟ mely cleavage during MI [13]. 

Thus, maternal aging aff ects the cohesin complex and associated proteins in mouse oocytes 

and it likely contributes to the age-related aneuploidy found in mouse oocytes. Furthermore, 

the same eff ect of reduced cohesin levels has also been found in aged Drosophila oocytes 

suggesƟ ng that the mechanism may be conserved [22]. 
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Can these fi ndings be extrapolated to humans? A study on human ART oocytes shows that the 

meioƟ c cohesin proteins are present in human prophase, MI and MII oocytes. Unfortunately, 

no protein data were obtained from oocytes of women of advanced maternal age [23]. The 

high rate of PSCS in human oocytes indicates that the stepwise removal of the cohesin complex 

during MI and MII may be aff ected by advanced maternal age. Since women are ferƟ le for more 

than thirty years aŌ er menarche, it is obvious that in human oocytes the cohesin complex 

must last for decades. This indicates that either the cohesin complex is more stable in humans 

than in mice or that it is replenished in human oocytes during adult life. SƟ ll, other factors 

that stabilize the cohesin complex during dictyate arrest may also be important in prevenƟ ng 

mis-segregaƟ on of chromosomes during MI and MII. Reduced funcƟ on of such factors could 

lead to depleƟ on of cohesin subunits and subsequently PSCS and thus may be involved in the 

age-related aneuploidy in both mice and women. It would be interesƟ ng to study whether a 

human- or humanized REC8 protein will rescue older mice from age-related aneuploidy. 

 Another pathway which has been proposed to be implicated in age-related aneuploidy 

is the dysregulaƟ on of chromaƟ n remodeling during the fi nal stages of oocyte maturaƟ on. 

Studies in mouse and porcine oocytes have shown that defecƟ ve histone deacetylaƟ on, either 

induced or as consequence of aging, leads to aneuploidy. Our aim was to study whether human 

oocytes have a similar paƩ ern of histone deacetylaƟ on during maturaƟ on and also whether 

there is a relaƟ on between histone acetylaƟ on and chromosome segregaƟ on errors in human 

oocytes. In our study of human oocytes we analyzed the deacetylaƟ on kineƟ cs during the fi nal 

stages of human oocyte maturaƟ on. 

ChromaƟ n remodeling during the last stages of oocyte maturaƟ on
During maturaƟ on from the germinal vesicle stage to the arrest at the metaphase of the second 

meioƟ c division, mammalian oocytes prepare for segregaƟ on by remodeling their chromaƟ n 

to enable opƟ mal compacƟ on of the chromosomes. In chapter 2 of this thesis we show that 

chromaƟ n is deacetylated on lysine residues of histone 4 during maturaƟ on of human oocytes. 

We observed the following paƩ ern in human oocytes: GV oocytes showed staining for all the 

examined acetylated lysine residues and at the MI and MII stage, oocytes were negaƟ ve for 

almost all tested lysine residues. A similar paƩ ern has been observed in other mammalian 

oocytes, i.e. mouse oocytes, porcine, sheep and bovine oocytes, although some diff erences 

exist between individual lysine residues [24-27]. 

 Faithful chromosome division depends on a correct kinetochore-microtubule 

interacƟ on which is impeded by defecƟ ve deacetylaƟ on or induced hyperacetylaƟ on by 

inhibiƟ on of HDACs ([28-35]). Akiyama et al. showed that when mouse oocytes are cultured 
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in the presence of trichostaƟ n A (TSA), a commonly used HDAC inhibitor, mouse MII oocytes 

were hyperacetylated for H4 and had an increased percentage of lagging chromosomes. 

Furthermore they observed that oocytes of older mice (12 months) showed abnormal residual 

acetylaƟ on of two lysine residues, namely H4K8ac and H4K12ac. 

 One of our major interests is the mechanism that underlies the erroneous division of 

chromosomes in human oocytes and since defecƟ ve chromaƟ n remodeling would potenƟ ally 

explain unfaithful chromosome segregaƟ on, we chose to study histone acetylaƟ on in human 

oocytes. We analyzed H4K12ac in human MII oocytes, both freshly donated (Day 0) and failed 

ferƟ lized oocytes (Day 1). We found that residual staining of H4K12ac was more frequently 

observed in oocytes of women of advanced maternal age indicaƟ ng that defecƟ ve deacetylaƟ on 

is associated with advanced maternal age in human oocytes. To study whether residual histone 

acetylaƟ on of H4K12 is also related to chromosome mis-segregaƟ on, we analyzed chromosome 

alignment at the equatorial plate and the microtubule spindle structure together with histone 

acetylaƟ on in human MII oocytes. We observed more lagging chromosomes and complete 

congression failure in oocytes that were posiƟ ve for the H4K12ac than in oocytes that had 

no staining of H4K12. This was observed in oocytes of all age groups indicaƟ ng that defecƟ ve 

deacetylaƟ on of chromaƟ n may predispose a human oocyte to aneuploidy independent of 

maternal age. By calculaƟ ng the relaƟ ve risk we found that residual acetylaƟ on of H4K12 gives 

a 15 Ɵ mes higher chance of chromosome mis-alignment. Thus, our data show that in human 

oocytes defecƟ ve chromaƟ n remodeling, in this case residual histone acetylaƟ on of H4K12, is 

correlated with chromosome mis-alignment. This suggests that residual acetylaƟ on may be 

one of the major factors that cause age-related aneuploidy. To confi rm the causaƟ ve eff ect of 

residual acetylaƟ on experimentally, human GV oocytes should be cultured in the presence of 

HDACi to induce histone hyperacetylaƟ on to subsequently study the eff ect on chromosome 

segregaƟ on. Although surplus human GV oocytes are available as a byproduct aŌ er ovarian 

hyper sƟ mulaƟ on, they are known to be of low quality and have less developmental potenƟ al 

when cultured to the MII stage in convenƟ onal IVF media (rescue maturaƟ on) and are not 

used for clinical purposes [36-39]. The reason for this might be related to their delayed 

development. As they have not reached the MII stage aŌ er hormonal sƟ mulaƟ on they lag 

behind in maturaƟ on for unknown reasons. This delay may possibly aff ect the chromaƟ n 

structure and a rescue maturaƟ on may thus lead to misinterpretaƟ on of normal human 

developmental paƩ erns. Indeed, we observed that all in vitro ”rescue” matured human GV to 

MII oocytes had residual acetylaƟ on even without chemical inducƟ on. For this reason we were 

unable to obtain reliable experimental data with human oocytes to verify the causaƟ ve eff ect 

of histone hyperacetylaƟ on on chromosome mis-segregaƟ on. 
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How does residual histone acetylaƟ on aff ect chromosome segregaƟ on? 
The kinetochore is a proteinaceous structure built on centromeric DNA containing numerous 

proteins whose funcƟ ons are essenƟ al for accurate chromosome segregaƟ on ensuring 

the aƩ achment of spindle microtubules to chromosomes, sister chromaƟ d cohesion 

regulaƟ on and localizaƟ on of the spindle assembly checkpoint proteins. Correct division of 

chromosomes not only involves the centromeric chromaƟ n, but also the adjacent region, 

the pericentomeric chromaƟ n. The consƟ tuƟ ve layer of the kinetochore which encompasses 

the centromeric chromaƟ n is built on the highly repeƟ Ɵ ve centromeric DNA sequence. The 

centromeric chromaƟ n contains the histone variant Cenp A (reviewed in [40]) and remains 

stable and unmodifi ed throughout the whole mitoƟ c cell cycle. The outer kinetochore and 

the pericentromeric chromaƟ n, on the contrary, are diff erently modifi ed during the diff erent 

phases of the cell cycle (reviewed in [41,42]). 

 AcetylaƟ on of histones is considered an “open” chromaƟ n mark and is associated with 

gene transcripƟ on and DNA repair [43]. DeposiƟ on of acetyl groups on histone H4 follows 

DNA replicaƟ on [44] and deacetylaƟ on of chromaƟ n is related to gene silencing, e.g. on the 

inacƟ ve X, with heterochromaƟ n formaƟ on and chromosome condensaƟ on [29,45,46]. Both 

the centromeric and the pericentromeric heterochromaƟ n are hypoacetylated during the 

metaphase of the cell cycle [45,47]. Several studies have shown that inhibiƟ on of HDAC’s by 

either RNAi or chemical agents induces hyperacetylaƟ on of chromaƟ n [28-32,34,35,48,49]. 

A consequence of this hyperacetylated chromaƟ n is that proteins of important regulaƟ ng 

complexes such as the spindle assembly checkpoint (SAC), the chromosome passenger 

complex (CPC) and microtubule motor proteins fail to localize properly, and cannot execute 

their funcƟ on (Table I). As menƟ oned before, data from mouse but also porcine oocytes 

show that induced hyperacetylaƟ on during meiosis leads to aneuploidy [15,50,51]. Because 

the regulaƟ on of the cohesion complex involves many proteins that are aff ected by induced 

histone hyperacetylaƟ on by chemical agents, defecƟ ve regulaƟ on of histone deacetylaƟ on 

during oocyte maturaƟ on may have drasƟ c eff ects on the fi delity of chromosome segregaƟ on. 

Our data show that also in human oocytes defecƟ ve remodeling of chromaƟ n, which is implied 

by the residual histone acetylaƟ on, may be an important factor leading to chromosome mis-

segregaƟ on. New studies should be conducted to see which proteins are aff ected by induced 

hyperacetylaƟ on or natural residual acetylaƟ on in mammalian oocytes. 
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Table I. Overview of proteins that are aff ected by HDAC inhibiƟ on.

Protein FuncƟ on HDACi phenotype Cell type used 
in study

Reference

ATRX Centromeric binding 
protein

Loss Mouse oocytes [50]

BUB1 Component of SAC Loss HeLa, MCF7, PC3 [31,35]

BUBR1 Component of SAC Diminished localizaƟ on HeLa [48]

Shugoshin Prevents premature 
cleavage of cohesin

Diminished levels HeLa [30]

MAD2 Component of SAC Loss/ Centromeric 
localizaƟ on failure

HeLa [31,49]

H3S10Phospo Entry of mitosis;
 target of Aurk B

Diminished levels HeLa, MCF7, PC3 [30,35,48,49]

HP1 (HP1α/Hp1β); 
Swi6p (yeast)

HeterochromaƟ n 
binding protein

LocalizaƟ on loss from 
centromeric chromaƟ n in G2

HeLa, mouse L929, 
Fission yeast

[28,29,31,34,35]

CENP-E MT motor protein Loss HeLa, MCF7, PC3 [31,35]

Survivin Component of CPC Loss HeLa [31]

Borealin Component of CPC Loss HeLa [31]

AURK B Component of CPC Centromeric localizaƟ on 
failure in G2 and M-phase

HeLa [31,35]

INCENP Component of CPC Centromeric localizaƟ on 
failure

HeLa [31]

CYCLIN B Target of APC/C Premature degradaƟ on HeLa [49]

securin Target of APC/C Premature degradaƟ on HeLa [30,49]

MCAK Target of CPC; 
interacts with MT

Loss HeLa [31]

The most obvious candidates involved in the dysregulaƟ on of deacetylaƟ on in human oocytes 

are the HDAC enzymes. There are four diff erent classes of HDACs (I, II, III and IV) and they 

diff er in their localizaƟ on and structure. HDAC1, 2, 3 and 8 (class I) localize to the nucleus 

and are similar to the yeast RPD3 protein. Class II are the HDACs 4, 5, 6, 7, 9, and 10. They 

are homologous to yeast HDA1 and localize both in the cytoplasm and in the nucleus. Class 

III HDACs diff er from class I and II as they are NAD-dependent similar to the yeast Sirtuin 

proteins. Class IV only comprises HDAC11 and has features of both class I and II. Mouse MII 

oocytes have diff erent mRNA levels of class I and II HDACs which are known to be aff ected by 

TSA treatment [52]. Most likely, individual HDACs may regulate one or more lysine residues on 

H3 and H4 and have non-histone targets. This makes it diffi  cult to assess which HDAC or HDACs 

are involved in the deacetylaƟ on of the individual lysine residues during oocyte maturaƟ on. 
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SelecƟ ve inhibiƟ on of the individual HDACs, either by more specifi c HDAC inhibitors or by RNAi 

injecƟ on in mouse GV oocytes, is needed to determine which HDACs are involved in the age-

related aneuploidy. IdenƟ fi caƟ on of the responsible HDAC will give new insights and may allow 

for a more direct approach to study HDACs in human oocytes. Thus, our hypothesis would 

be that advancing age leads to reduced HDAC acƟ vity resulƟ ng in defecƟ ve deacetylaƟ on 

and consequently open chromaƟ n. This open chromaƟ n structure may interfere with several 

aspects of chromosome segregaƟ on, in parƟ cular unstable spindle-kinetochore interacƟ on, 

impaired cohesion protecƟ on or a failure of the SAC to monitor and correct unstable 

microtubule aƩ achment which eventually results in segregaƟ on errors [28-32,34,35,48,49].

ChromaƟ n composiƟ on in the male and female pronuclei of zygotes 

From the moment an oocyte is ferƟ lized, it becomes a zygote, a new life. In ART treatments, 

ferƟ lizaƟ on takes place in vitro and zygotes are analyzed 16–20 hpi to see whether normal 

ferƟ lizaƟ on has occurred. Normally, two pronuclei (PN) are observed: one maternal PN 

derived from the oocyte and one paternal PN coming from the spermatozoon. SomeƟ mes, 

however, only one PN or more than two pronuclei can be observed. To study the chromaƟ n 

and the diff erences in histone modifi caƟ ons between the maternal and paternal pronuclei 

only abnormally ferƟ lized human oocytes can be used because of ethical legislaƟ ons.

Diff erences in histone modifi caƟ ons between the maternal and paternal pronucleus
The chromaƟ n of a mature spermatozoon exists mainly of protamines and only a small fracƟ on 

consists of histone proteins. At ferƟ lizaƟ on, the protamines are replaced by new histones which 

are subsequently chemically modifi ed by maternal modifying enzymes [53]. Thus, the maternal 

and paternal chromaƟ n can be disƟ nguished by their histone signature during pronuclei 

formaƟ on (Table II). There is sƟ ll some controversy whether mono-pronuclear zygotes are 

indeed ferƟ lized and both gametes have contributed to the single pronucleus. Because liƩ le 

is known about the histone signature of chromaƟ n in human zygotes we decided to analyze 

histone modifi caƟ ons in human tri-pronuclear zygotes. We studied both euchromaƟ c as well 

as heterochromaƟ c modifi caƟ ons to analyze whether human zygotes have the same paƩ ern 

of histone modifi caƟ ons as mouse zygotes and found that also in human zygotes the parental 

pronuclei are diff erenƟ ally modifi ed (chapter 3). Based on these novel insights we were able 

to discriminate between the maternal and paternal chromaƟ n and determine the parental 

chromaƟ n contribuƟ on in human mono-pronuclear and tri-pronuclear zygotes.
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Figure 2. SchemaƟ c overview of the experimental approach of our study on human tri-pronuclear and 
mono-pronuclear zygotes (see page 189 for colour fi gure).

We observed diff erenƟ ally modifi ed histone modifi caƟ ons in the parental pronuclei of 

human zygotes similar to what has been found in mouse zygotes (Table II). We found that the 

euchromaƟ c histone mark H3K4trimethylaƟ on is present in both the maternal as well as the 

paternal pronucleus and thus does not disƟ nguish between maternal and paternal chromaƟ n. 

As the same has been observed for another euchromaƟ c marker, namely H4R3me3 [54], this 

suggest that human zygotes follow a similar Ɵ meline of euchromaƟ c chromaƟ n modifi caƟ on 

deposiƟ on as mice. In contrast to the euchromaƟ c mark, the heterochromaƟ c histone 

modifi caƟ ons H3K27trimethylaƟ on and H3K9trimethylaƟ on were not present in the human 

paternal pronucleus whereas the maternal pronucleus, that is slightly more compact, was 

extensively modifi ed for both H3K27me3 as H3K9me3 (Figure 2). This asymmetry between 

the paternal and maternal pronucleus has also recently been described for the H3K9me2 

modifi caƟ on in human tri-pronuclear zygotes [54,55]. Our data for both euchromaƟ c as well 

as heterochromaƟ c marks suggest that chromaƟ n remodeling is basically conserved between 

mouse and human zygotes during the pronuclear stages, but some modifi caƟ ons appear to 

be diff erent. Early pronuclear stage mouse zygotes have an asymmetric staining paƩ ern for 

the H3K27me3 modifi caƟ on [56,57], which becomes symmetrical at the late pronuclear stage 

of mouse zygotes [58]. Our observaƟ ons that the human paternal PN remains unmodifi ed 

for H3K27me3, may be a refl ecƟ on of the slower developmental kineƟ cs of human embryos. 

Whether these diff erences serve any funcƟ on or only refl ect a diff erent Ɵ me line remains to 

be elucidated. 

 The presence of trimethylated H3K4 in the paternal human PN is intriguing. This mark 

is usually associated with transcripƟ onal acƟ ve chromaƟ n [59]. In mouse zygotes, H3K4me3 



136 

Chapter 5

appears in the paternal pronucleus during S-phase [58] and is possibly linked to the (minor) 

transcripƟ onal acƟ vaƟ on of the zygoƟ c genome at this stage [60]. In the early human embryo, 

however, embryonic genome acƟ vaƟ on occurs between the four- and eight-cell stages, 

suggesƟ ng that the presence of H3K4me3 in zygoƟ c paternal chromaƟ n is not directly linked to 

transcripƟ onal acƟ vaƟ on [61,62]. A similar observaƟ on has been made in mammalian germinal 

vesicle oocytes with a surrounding nuclear confi guraƟ on. At this stage of oocyte development 

general transcripƟ on is terminated [63]. However, the chromaƟ n carries both inacƟ ve as 

well as acƟ ve chromaƟ n marks such as the heterochromaƟ n modifi caƟ on H3K9me2/3, the 

euchromaƟ n modifi caƟ on H3K4me3 [64] as well as acetylaƟ on of H3/H4 [24-27]. Furthermore, 

in our study on human oocytes, we observed that human GV oocytes also contain euchromaƟ c 

markers. Whether this asynchronous remodeling has a funcƟ on during these early stages has 

yet to be clarifi ed. 

Table II. Overview of literature on histone modifi caƟ ons in the parental pronuclei in mouse and human 
zygotes.

Modification HeterochromaƟ n
/euchromaƟ n

Presence in mouse pronuclei Presence in 
human pronuclei

Reference

H3K9me1
H3K9me2

H3K9me3

heterochromaƟ n Both PN
 Both PN from PN5 

stage onwards * 
Only 

ND
Only 
Only 

[54,55,57,91-95]

H3K27me1
H3K27me2

H3K27me3

heterochromaƟ n Both PN
 Both PN from PN3 

stage onwards * 
 Both PN from PN4 

stage onwards * 

ND
ND

Only 

[57,92,95,96]

H4K20me1
H4K20me2
H4K20me3

heterochromaƟ n Both PN
Only 
Only 

ND
ND
ND

[57]

H3K4me1
H3K4me3

euchromaƟ n Both PN
 Both PN from PN4 

stage onwards 

ND
Both PN

[56-58,92]

H4ac euchromaƟ n Both PN ND [56,97,98]

H4R3me2
H4R3me3

euchromaƟ n No staining present
ND

ND
Both PN

[54,56]

Some confl icƟ ng results have been reported on the presence of H3K27me2/3 in the paternal pronucleus. This can be 
aƩ ributed to the examined stage of PN formaƟ on because at the PN3 stage the paternal PN is devoid of H3K27me3 
whereas at the PN4 and PN5 stage clear staining was observed. For H3K9me2 it likely that the authors of the confl icƟ ng 
studies use diff erent thresholds for the interpretaƟ on of the immuno stainingg [58,95].
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Parental contribuƟ on in mono-pronuclear zygotes aŌ er IVF and ICSI
AŌ er convenƟ onal inseminaƟ on procedures, around 2-5% of the zygotes have a single 

pronucleus which is oŌ en larger than normal pronuclei. AŌ er ICSI, this percentage varies 

between 2.5%–11.4% (Table III). Studies using FISH have shown that around 31–81% of these 

mono-pronuclear zygotes and derived embryos originaƟ ng from convenƟ onal inseminaƟ on 

procedures have in fact a diploid chromosome consƟ tuƟ on. This indicates that ferƟ lizaƟ on 

had indeed occurred but that the pronuclei have aberrantly fused. FISH analysis can be used 

to assess the chromosome composiƟ on but an XX or XY genotype does not necessarily mean 

that both parental genomes are present in a 1 PN zygote (Table III). A female embryo is in most 

cases the result of a normal ferƟ lizaƟ on of an oocyte by a single sperm. However, embryos with 

two X chromosomes can also be the result of parthenogenesis or the ferƟ lizaƟ on of an empty 

egg by two spermatozoa. The laƩ er can also result in an XY or YY embryo with a complete 

paternal diploid genome. We observed that in almost all the human 1 PN zygotes derived from 

IVF (87%), both parental genomes were present and occupy separate compartments within 

the single nuclear membrane (Figure 2). The other zygotes contained only paternal chromaƟ n 

(4%) or maternal chromaƟ n (9%). In this aspect, the human 1 PN IVF zygotes are the same as 

mouse bi-parental mono-pronuclear zygotes. For 1 PN zygotes aŌ er ICSI, we observed that 

only 10 out of the thirty-three 1 PN zygotes (30%) contained both parental chromaƟ n sets, 

indicaƟ ve of ferƟ lizaƟ on (Figure 2). In the remaining cases, the single PN was of completely 

maternal (15/33) or paternal origin (8/33). Our data are consistent with other studies that 

show that 1 PN zygotes from ICSI treatments have much lower rates of diploid embryos than 

1 PN IVF zygotes (Table III). 

 In normally ferƟ lized zygotes, in which the two genomes have their own nuclear 

envelope, replicaƟ on occurs within each compartment. Limited data from a mouse study on 

bi-parental mono-pronuclear zygotes do not suggest a major eff ect of a pronuclear fusion, 

however, the pregnancy rates were very low [65]. It has been suggested that during IVF 

treatments in which only mono-pronuclear zygotes are available aŌ er an IVF or ICSI treatment, 

extended culture to the blastocyst stage may be considered to select a 1 PN embryo suitable 

for transfer. A previous study showed that around 18% of the IVF mono-pronuclear zygotes 

can develop to the blastocyst stage, contrary to ICSI 1 PN zygotes, where no survival to the 

blastocyst stage was observed [66]. In addiƟ on, normal hES cell lines have been derived 

from 1 PN zygotes indicaƟ ng that extended culture may select against abnormal and haploid 

embryos [67,68]. However, chemically acƟ vated non-inseminated oocytes can also develop 

to the blastocyst stage [69], which indicates that extended culture does not select against 

parthenogeneƟ c embryos. To date, mainly case reports have been described of successful 
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pregnancies aŌ er transfer of a mono-pronuclear zygote [70-72] and only one study reported 

that 2 out of 38 transfers resulted in the birth of a healthy baby [73]. In addiƟ on, in our own 

IVF clinic the ongoing pregnancy rates of embryos derived from 1 PN IVF zygotes are relaƟ vely 

low (15.4% per embryo transfer, unpublished data). 

 Thus, although mono-pronuclear zygotes are aƩ racƟ ve and useful research material 

that possibly represent relaƟ vely normal human zygotes, the transfer of 1PN zygotes does not 

have addiƟ onal clinical value. Our policy is that only in the cases where no 2 PN embryos are 

available for transfer, embryos from 1 PN from IVF but not from ICSI zygotes, are considered 

for transfer.

Table III. Literature on the chromosome consƟ tuƟ on of human mono-pronuclear zygotes.

ART % 1pn Day of analysis % Diploid % haploid Method Reference

IVF 5.5 Day 1 80.5 12.2 CytogeneƟ c analysis [73]

IVF 3.6 Day 2/3 55.6
XX: 33.3
XY: 22.2

33.3 CytogeneƟ c analysis [99]

IVF ND Day 1 31.3 50 FISH [100]

IVF 4.5 Day 3 71.5
XX: 28.6
XY: 42.9

14.3
XO:14.3

YO: 0

FISH [101]

ICSI 11.4 Day 3 28.6
XX: 23.8
XY: 4.8

66.7
XO: 61.9
XY: 4.8

FISH [101]

IVF 7.7 Day 2/3 48.7
XX: 27.0
XY: 21.7

YY: 0

31.2
XO: 26.2
YO: 4.9

FISH [102]

ICSI 5.0 Day 2/3 27.9
XX: 16.4
XY: 9.8
YY: 1.6

31.2
XO: 26.2
YO: 4.9

FISH [102]

IVF ND Day 2 73.1 23.1 CytogeneƟ c analysis [103]

ICSI ND Day 2 37.5 58.3 CytogeneƟ c analysis [103]

IVF ND Day 2 54.3
XX: 21.7
XY: 32.6

23.9
XO: 19.6
YO: 4.3

FISH [104]

ICSI ND Day 2 31.5
XX: 15.1
XY: 16.4

31.5
XO: 24.7
YO: 6.9

FISH [104]
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How do mono-pronuclear zygotes arise?
Diff erent theories have been proposed that would lead to a single pronucleus 16–20 hrs 

post ferƟ lizaƟ on or inseminaƟ on. One is that pronucleus formaƟ on occurs asynchronously 

in these mono-pronuclear zygotes. Indeed, it has been reported that aŌ er re-examinaƟ on, 

6%-25% of the mono-pronuclear zygotes showed a second PN [66,73]. However, whether 

asynchronous pronuclei formaƟ on is a normal feature of human zygotes is controversial. 

Several studies reporƟ ng confl icƟ ng observaƟ ons and diff erences in methodology might 

underlay the various interpretaƟ ons [74-76]. The other theory is that fusion of the parental 

genomes occurs. Although this is not common in mammals, it occurs in other species such as 

sea urchins [77,78]. The proximity of the parental chromaƟ n domains early aŌ er gamete fusion 

has an eff ect on the chance of pronuclear syngamy. This is illustrated by the fi nding that in 

the mouse, injecƟ on of the sperm close to the maternal complement resulted in 22% mono-

pronuclear zygotes [65]. The authors provide evidence for the hypothesis that aggregaƟ on of 

chromaƟ n masses within a single nucleus can occur, when the two parental chromaƟ n sets are 

in close proximity during pronuclei formaƟ on. This arƟ fi cial generaƟ on of high rates of mono-

pronuclear zygotes has also been observed in humans [79], when round immature spermaƟ ds 

(ROSI) were injected. The authors suggested that pronuclear fusion or syngamy might be a 

normal but very short phenomenon in human zygotes and injecƟ on of immature spermaƟ ds 

would lead to a prolonged state of this syngamy due to yet unknown controlling elements. 

However, Ɵ me lapse recording of pronuclear formaƟ on aŌ er ICSI showed no pronuclear fusion 

in 2 PN zygotes [76] and it is unlikely that fusion occurs in normal ferƟ lizaƟ on. 

 Bi-parental mono-pronuclear human zygotes most likely are the result of sperm 

entry close to the metaphase II spindle, suggesƟ ng this to be a disƟ nct possibility at natural 

concepƟ on, too. Most likely the syngamy is the result of precocious interacƟ on of the maternal 

and paternal chromaƟ n before nuclear membrane formaƟ on. Clinical pracƟ ce aims to puncture 

the oolemma and deposit the sperm without disturbing the metaphase II spindle, by keeping 

the oocyte with the polar body perpendicular to the injecƟ on needle. However, one cannot 

rule out the possibility that the sperm is occasionally close to the maternal complement aŌ er 

injecƟ on, especially since the fi rst polar body has proven to be an unreliable marker for the 

locaƟ on of the metaphase plate [80,81]. 

3 PN zygotes: rescue them?
For zygotes that contain three or more pronuclei it is clear that these abnormally ferƟ lized 

zygotes cannot develop into a geneƟ cally normal embryo as they will form molar pregnancies 

and are therefore not considered for transfer into the uterus. It has been reported that 
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tri-pronuclear zygotes can be microsurgically rescued into a “normal ferƟ lized” 2 PN zygotes 

(reviewed in [82]) and can even result in the birth of a healthy child [83]. It should be noted that 

this procedure is sƟ ll very experimental and should only be considered when a couple has no 

other opƟ ons leŌ . Even then, it remains quesƟ onable whether the procedure is safe. One must 

be sure that aŌ er the enucleaƟ on procedure, the remaining 2 pronuclei are from maternal and 

paternal origin and that one did not create a gynogeneƟ c (containing only maternal DNA) or 

androgeneƟ c (containing only paternal DNA) embryo. The couple must be counseled properly 

for the risk of having a spontaneous aborƟ on, neonatal death or a child with severe birth 

defects. 

 Given these many disadvantages and the limited evidence regarding the safety of 

the technique, it may presently even be wiser to not consider the microsurgical rescue of 

tri-pronuclear zygotes for embryo transfer at all. However, as human embryos for research 

purposes are scarce these rescued 3 PN zygotes could be an extra source for human embryonic 

stem cells (hES) lines. If this proves to be successful and safe, the step to the ART clinic will be 

much smaller. 

IniƟ aƟ on of XCI in female human pre-implantaƟ on embryos

Dosage compensaƟ on between males and females is a very important epigeneƟ c process 

that is iniƟ ated in mice during pre-implantaƟ on development. To determine if human female 

embryos iniƟ ate the XCI process we analyzed the most important hallmarks of XCI, namely 

expression and in cis coaƟ ng of XIST, the exclusion of the transcripƟ on machinery, the exclusion 

of open chromaƟ n histone modifi caƟ ons on one X chromosome and the accumulaƟ on of 

heterochromaƟ n marks on one X chromosome. 

 We analyzed human embryos at diff erent stages of pre-implantaƟ on development, 

namely the 8-cell, the morula and the blastocyst stage. At the 8-cell stage we observed 

that of the cells that express XIST, 68% had a single pinpoint at one X chromosome. During 

development from the morula to the blastocyst stage the pinpoint signal extends to a full 

cloud of XIST. This full cloud is excluded from nascent RNA transcripƟ on as we observed 

that the cloud of XIST is located in a hole of Cot1 RNA staining. Furthermore, we observed 

accumulaƟ on of H3K27me3 in 30% of the nuclei in female blastocysts. This accumulaƟ on of a 

facultaƟ ve heterochromaƟ c hallmark overlapped another hallmark of XCI namely macroH2A 

accumulaƟ on. Similarly, nuclei that have a single region of accumulaƟ on of H3K27me3 showed 

exclusion of an acƟ ve chromaƟ n mark, H3K9ac, in this region. These three characterisƟ cs were 
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validated in control cells with DNA FISH where they overlapped the Barr body. Barr bodies are 

not formed unƟ l later stage X inacƟ vaƟ on in somaƟ c cells. Lastly, we found that in blastocysts 

the X-linked CHIC1 gene was mono-allelicly expressed. Based on these data together we 

concluded that in human female pre-implantaƟ on development XCI is iniƟ ated. A disƟ ncƟ on 

should be made, however, between the XCI hallmarks observed in pre-implantaƟ on human 

embryos and XCI in somaƟ c cells. Our data show full remodeling of one X chromosome but it 

may well be possible that chromosome wide gene inacƟ vaƟ on on the X chromosome does not 

occur in human embryos and that only a limited number of genes is inacƟ vated. 

 In 2011 another group studied the XCI kineƟ cs in human female and male embryos 

[84]. Their fi ndings were completely diff erent from our observaƟ ons. One of the diff erences 

was that all X chromosomes expressed and accumulated XIST, the single X chromosome in 

males and both X chromosomes in female embryos. Our new data (manuscript in preparaƟ on) 

with embryos cultured in a diff erent commercial medium, sƟ ll show the predominance of 

single XIST clouds, although some female embryos have more double clouds (max 60%). This 

formaƟ on of double clouds may be dependent on the quality of the embryo and the number 

of X chromosome aberraƟ ons. Another diff erence between the data is that Okamoto et al. 

did not observe accumulaƟ on of H3K27me3 in human female embryos. They did observe 

this in rabbit and mouse embryos. We performed several immuno-stainings on whole mount 

human blastocyst embryos and found accumulaƟ on of H3K27me3, as well as incorporaƟ on of 

macroH2a which overlapped H3K27me3 and exclusion of the acƟ ve mark H3K9ac (manuscript 

in preparaƟ on). Furthermore, a DNA FISH confi rmed that this single region of accumulaƟ on 

of H3K27me3 with exclusion of H3K9ac overlapped with one of the X chromosomes in female 

embryos. AddiƟ onally, we found that cells of the ICM show accumulaƟ on of H3K27me3. 

Finally, our new data show that TSIX is not expressed in human blastocyst embryos which 

indicates that during human pre-implantaƟ on development XIST expression is not regulated 

by TSIX. These new observaƟ ons confi rm our previous conclusions that XCI is iniƟ ated during 

human pre-implantaƟ on development. 

 Rather than the term XCI, we think that the term X chromosome remodeling (XCR) 

describes these observaƟ ons in human embryos more accurately. The contradictory results 

may be explained by technical aspects or diff erences in sƟ mulaƟ on or culture condiƟ ons. It 

has for example been shown that culture condiƟ ons infl uence XCI in bovine pre-implantaƟ on 

embryos and in human ES cells [85,86]. Thus the IVF culture medium may infl uence XIST 

RNA expression in human embryos. We have been studying XCI in embryos cultured in two 

diff erent media and found no diff erences in the general paƩ ern of single XIST clouds in female 

embryos thus verifying our previous observaƟ ons. However, in embryos that were cultured 
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in commercial IVF medium we did observe more double clouds, but not as high numbers as 

Okamoto et al. [84], as well as XIST RNA transcripts throughout the whole nucleus. 

 The current opinion is that Xist accumulaƟ on leads to silencing in agreement with our 

observaƟ ons. It is therefore diffi  cult to envision that the high rate of double clouds observed 

by Okamoto et al. would go without consequences. Double clouds can only be tolerated when 

Xist coaƟ ng and Xist mediated silencing are two separate mechanisms. New data from mouse 

pre-implantaƟ on embryos may shed light on this quesƟ on. Embryos carrying a deleƟ on of the 

paternal Xist allele have similar levels of X-linked expression as wild type embryos [87], which 

indicates that imprinted XCI during pre-implantaƟ on development may be Xist independent 

and suggests that Xist coaƟ ng itself at this stage does not lead to chromosome wide X-linked 

silencing [87-89]. Furthermore, the same group reported that in cells of the ICM, reacƟ vaƟ on 

of the Xp occurs while the X chromosomes are sƟ ll coated by an Xist cloud, which indicates 

that coaƟ ng of Xist sƟ ll allows gene transcripƟ on during pre-implantaƟ on development [90]. It 

remains a quesƟ on whether XIST independent silencing also exists in human embryos. 

 Although our data show that all hallmarks for XCI are present, including the silencing 

of an X-linked gene, they do not exclude an XIST independent silencing mechanism. Such a 

mechanism would explain the observaƟ on that human embryos can tolerate double XIST 

clouds. Why the embryos used by Okamoto et al. have such a high percentage of double 

clouds is unknown and no mechanism is suggested by the authors. 

 As proposed in chapter 4.2, XCI during murine pre-implantaƟ on development may fi rst 

start with remodeling of the paternal X chromosome, which is subsequently secured in the cells 

of the TE with chromosome wide gene silencing during post-implantaƟ on development. The 

ICM cells lose the Xp imprint and iniƟ ate random XCI in the epiblast during post-implantaƟ on 

development. Whether the paternal X is also preferenƟ ally silenced and whether this is 

maintained in the extra-embryonic lineages in human pre-implantaƟ on embryos remains to be 

answered. New studies on human pre-implantaƟ on embryos that will address imprinƟ ng and 

to what extent the X chromosome that accumulates XIST and H3K27me3, is actually silenced, 

may provide more insight in the steps that lead to XCI in humans.
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Chapter 6

Summary 

This thesis describes several aspects of epigeneƟ c regulaƟ on during diff erent phases of 

gametogenesis and early embryogenesis. This chapter summarizes our main fi ndings.

Chapter 2

It has been postulated that defecƟ ve remodeling of the chromaƟ n structure and defecƟ ve 

deacetylaƟ on in parƟ cular is associated with chromosome mis-segregaƟ on and advanced 

maternal age in mouse oocytes. Because human oocytes have a high rate of chromosome 

aberraƟ ons we decided to study the acetylaƟ on/deacetylaƟ on kineƟ cs in human oocytes. 

 During maturaƟ on from the germinal vesicle (GV) stage to the MII stage, deacetylaƟ on 

of lysine residues of histone 4 (H4) takes place. Both immature and mature human GV oocytes 

were acetylated for H4K5, H4K8, H4K12 and H4K16 which indicates that at this stage acetylaƟ on 

is not directly linked to transcripƟ onal acƟ vity. During the process of oocyte maturaƟ on, the 

acetyl groups are removed which results in deacetylated chromosomes at the MII stage. Most 

likely, a general process of chromaƟ n deacetylaƟ on exists in mammalian oocytes, however, 

some lysines are regulated diff erently in diff erent species. 

 Although human oocytes display the same kineƟ cs of deacetylaƟ on as mouse oocytes, 

a substanƟ al percentage of oocytes failed to suffi  ciently deacetylate the histone acetyl 

residues. The percentage of human oocytes with residual acetylaƟ on of H4K12 signifi cantly 

increases with advancing maternal age. It has been shown that induced hyperacetylaƟ on leads 

to chromosome mis-segregaƟ on in both mitosis and meiosis. We found that human oocytes 

that had residual acetylated chromosomes for H4K12 also had a high percentage of misaligned 

chromosomes or complete congression failure at the MII stage whereas oocytes that had no 

acetylaƟ on had a signifi cant lower percentage of chromosome misalignment. Residual histone 

acetylaƟ on gave a 15 Ɵ mes higher risk on misalignment compared to correctly deactylated 

chromaƟ n. The associaƟ on of residual acetylaƟ on and chromosome misalignment was present 

equally in oocytes from women of diff erent age groups. These data suggest that advancing 

maternal age increases the chance of defecƟ ve histone deacetylaƟ on and these acetylated 

chromosomes subsequently fail to correctly align at the equatorial plate, thus predisposing 

the oocyte to aneuploidy. It is plausible that defecƟ ve deacetylaƟ on during the fi nal stages of 

mammalian oocyte maturaƟ on is an important factor in the eƟ ology of age-related aneuploidy.
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Chapter 3

A zygote contains the two haploid genomes from the parental gametes, the maternal genome 

from the oocyte and the paternal genome from the spermatozoon. Because liƩ le is known 

about the histone signature of chromaƟ n in human zygotes, we decided to analyze histone 

modifi caƟ ons in human tri-pronuclear zygotes and with this new knowledge we determined 

the parental chromaƟ n contribuƟ on in human mono-pronuclear zygotes.

 We observed that the parental chromaƟ n of human zygotes is diff erently remodeled 

for several histone modifi caƟ ons. The maternal chromaƟ n contains both the open chromaƟ n 

mark H3K4me3 as well as the heterochromaƟ n marks H3K9me3 and H3K27me3. The paternal 

chromaƟ n, on the contrary, does contain the open chromaƟ n mark H3K4me3 but is devoid of 

the heterochromaƟ n marks H3K9me3 and H3K27me3. This asymmetry was used to disƟ nguish 

parental chromaƟ n in mono-pronuclear zygotes. Staining of the chromaƟ n for H3K9me3 

showed that almost all 1 PN zygotes aŌ er IVF had an asymmetric paƩ ern of chromaƟ n for 

this histone modifi caƟ on which indicates both a maternal and paternal set of chromaƟ n and 

that the oocytes were ferƟ lized. On the contrary, ICSI mono-pronuclear zygotes were in most 

cases aberrantly ferƟ lized as these zygotes contained either only maternal or only paternal 

chromaƟ n. 

Chapter 4.1

Dosage compensaƟ on ensures the equal expression of genes between males and females. 

Mammals achieve this by silencing one of the two X chromosomes in each female somaƟ c 

cell. In the mouse this process of X chromosome inacƟ vaƟ on (XCI) is iniƟ ated during 

pre-implantaƟ on development. 

 Human also use XCI as a means of of dosage compensaƟ on and chapter 4.1 describes 

that, like in the mouse, this process is iniƟ ated in human female pre-implantaƟ on embryos. 

The most important hallmarks of XCI are all present in cells of female human pre-implantaƟ on 

embryos. They are: 

 − coaƟ ng of one X chromosome by the XIST RNA

 − exclusion of Cot1 RNA

 − depleƟ on of the open chromaƟ n mark H3K9ac

 − accumulaƟ on of the facultaƟ ve heterochromaƟ n mark H3K27me3

 − incorporaƟ on of the histone variant macroH2A

 − monoallelic expression of the X-linked gene CHIC1.
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Chapter 4.2

Although the basic principles of XCI are similar in mouse and humans, diff erences exist in the 

Ɵ ming of XCI iniƟ aƟ on, the geneƟ c elements involved in XCI regulaƟ on and the form of XCI in 

specifi c Ɵ ssues. Chapter 4.2 describes and discusses these diff erences between human and 

mouse with respect to iniƟ aƟ on of XCI in pre-implantaƟ on embryos, in the extra-embryonic 

Ɵ ssues and in the embryonic stem cells which are the in vitro model of the epiblast. We 

further propose a diff erent descripƟ on of the XCI phenomenon, discriminaƟ ng X chromosome 

remodeling from actual X chromosomal silencing. This is necessary because mouse and 

human pre-implantaƟ on embryos have a second X chromosome that is not as completely 

silenced in mouse pre-implantaƟ on embryos as it is in somaƟ c cells. This probably allows for 

the reacƟ vaƟ on in the cells of the ICM to prepare for random XCI. Therefore, the fi rst steps 

towards the silenced state of the X chromosome that take place during pre-implantaƟ on 

development are beƩ er described by the term X chromosome remodelling (XCR) rather than 

by the term X chromosome inacƟ vaƟ on (XCI).
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Samenvaƫ  ng 

Dit proefschriŌ  beschrijŌ  voorbeelden van epigeneƟ sche regulaƟ e Ɵ jdens de maturaƟ e van 

eicellen en vroege embryonale ontwikkeling. Dit hoofdstuk geeŌ  een samenvaƫ  ng van de 

belangrijkste bevindingen.

Hoofdstuk 2

Een defecte vorming van de chromaƟ ne structuur en in het bijzonder een defecte deacetylaƟ e 

van histon 3 en 4 Ɵ jdens de meiose worden geassocieerd met chromosoom missegregaƟ e en 

een verhoogde maternale leeŌ ijd bij muizen. Omdat humane eicellen een hoog percentage 

chromosomale afwijkingen bevaƩ en, besloten wij het acetylaƟ e-deacetylaƟ eproces in 

humane eicellen te bestuderen. Onze resultaten lieten zien dat zowel mature als immature 

GV eicellen geacetyleerd waren voor de lysines H4K5, H4K8, H4K12 and H4K16. Omdat er 

in mature GV eicellen geen transcripƟ e meer plaatsvindt, is er op dit stadium mogelijk geen 

relaƟ e tussen geacetyleerd chromaƟ ne en gentranscripƟ e. 

 Tijdens de laatste fase van het humane eicel-maturaƟ eproces worden de acetylgroepen 

verwijderd wat uiteindelijk resulteert in gedeacetyleerde chromosomen in het MII stadium. 

Waarschijnlijk hebben zoogdieren een algemeen patroon van histon deacetylaƟ e Ɵ jdens de 

eicel maturaƟ e, al bestaan er verschillen tussen de individuele lysines en de verschillende 

diersoorten. 

 Hoewel humane eicellen een vergelijkbaar patroon van deacetylaƟ e vertonen, heeŌ  

een substanƟ eel percentage van de humane MII eicellen nog resterende acetylaƟ e. Het 

percentage humane MII eicellen met resterende acetylaƟ e neemt signifi cant toe naarmate 

een vrouw ouder wordt. In diermodellen en somaƟ sche cellen is er aangetoond dat 

geïnduceerde hyperacetylaƟ e leidt tot chromosoom missegregaƟ e, zowel Ɵ jdens de mitose 

als Ɵ jdens de meiose. Wij observeerden dat een hoog percentage van de humane eicellen 

met resterende acetylaƟ e van H4K12, een of meerdere losliggende chromosomen bevaƩ en. 

Eicellen zonder acetylaƟ e, echter, hadden een signifi cant lager percentage van losliggende 

chromosomen. Een eicel met resterende acetylaƟ e had een 15x hogere kans om abnormaal 

te zijn dan een eicel met verwijderde acetylaƟ e. De relaƟ e tussen resterende acetylaƟ e van 

H4K12 en een verstoorde ordening van chromosomen op het equatoriale vlak, vonden wij in 

alle leeŌ ijdsgroepen. Waarschijnlijk draagt de resterende histon acetylaƟ e van chromosomen 
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bij aan de kans op chromosoom missegregaƟ e en is het een belangrijke factor in het ontstaan 

van leeŌ ijdsgerelateerde aneuploïdie in humane eicellen. 

Hoofdstuk 3

Na ferƟ lisaƟ e bevat een zygote twee haploide genomen aŅ omsƟ g van de parentale gameten; 

het maternale genoom van de eicel en het paternale genoom van de zaadcel. Omdat er weinig 

bekend is over de histon code van het chromaƟ ne in humane zygoten besloten wij histon 

modifi caƟ es te analyseren van humane tri-pronucleaire zygoten (3 PN) en met deze kennis 

hebben we de parentale contribuƟ e vastgesteld in mono-pronucleaire zygoten (1 PN). 

Wij vonden dat er in humane zygoten verschillen zijn tussen de twee parentale chromaƟ ne 

structuren in de aanwezige histon modifi caƟ es. Het maternale chromaƟ ne bevat zowel 

heterochromaƟ ne als euchromaƟ ne modifi caƟ es namelijk respecƟ evelijk H3K9me3 en 

H3K27me3 en de open chromaƟ ne marker H3K4me3. Het paternale chromaƟ ne daarentegen 

bevat alleen de open chromaƟ ne marker H3K4me3 en niet de heterochromaƟ ne markers 

H3K27me3 en H3K9me3. Dit verschil tussen het maternale en het paternale chromaƟ ne 

hebben wij toegepast om onderscheid te kunnen maken tussen maternaal en paternaal 

chromaƟ ne in mono-pronucleaire zygoten. 

 Na kleuring van het chromaƟ ne voor de asymmetrische marker H3K9me3 observeerden 

wij dat bijna alle 1 PN IVF zygoten beide parentale chromaƟ ne structuren bevaƩ en wat 

betekent dat de eicellen waren bevrucht. In tegenstelling tot de IVF 1PN zygoten, was de 

meerderheid van de 1 PN zygoten na ICSI abnormaal bevrucht, aangezien deze zygoten óf 

alleen maar maternaal óf alleen paternaal chromaƟ ne bevaƩ en. 

Hoofdstuk 4.1

Dosis compensaƟ e compenseert het verschil in gen-expressie tussen mannen en vrouwen. X 

chromosoom inacƟ vaƟ e (XCI) is het mechanisme dat zoogdieren gebruiken om de genexpressie 

van één X chromosoom sƟ l te leggen. Ook mensen gebruiken XCI als dosis compensaƟ e 

mechanisme en in hoofdstuk 4.1 is beschreven dat, net als in de muis, dit proces geïniƟ eerd 

wordt Ɵ jdens de pre-implantaƟ e ontwikkeling. Wij vonden dat de meest belangrijke kenmerken 

van XCI aanwezig zijn in de kernen van humane vrouwelijke embryo’s. Deze zijn:
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 − Coaten van één X chromosoom met het XIST RNA

 − Exclusie van COT1 RNA

 − DepleƟ e van de open chromaƟ ne marker H3K9ac

 − AccumulaƟ e van de facultaƟ eve heterochromaƟ ne marker H3K27me3

 − incorporaƟ e van de histon variant macroH2A

 − mono-allelische expressie van het op het X-chromosoom gelegen gen CHIC1

Hoofdstuk 4.2

Hoewel de basale kernmerken hetzelfde zijn tussen muizen en mensen, bestaan er verschillen 

in het moment van XCI iniƟ aƟ e, de betrokken geneƟ sche elementen in de regulaƟ e van XCI en 

welke vorm van XCI aanwezig is in bepaalde weefsels. Hoofdstuk 4.2 beschrijŌ  deze verschillen 

ten op zichte van XCI in humane en murine pre-implantaƟ e embryo’s, in de extra-embryonale 

weefsels en in de embryonale stamcellen, het in vitro model van de epiblast. Tijdens de murine 

pre-implantaƟ e ontwikkeling wordt de paternale X preferenƟ eel geïnacƟ veerd. Deze vorm van 

XCI wordt imprinted XCI genoemd. Aangezien er nog steeds transcripƟ onele acƟ viteit is van 

de paternale X, is XCI nog niet volledig Ɵ jdens de pre-implantaƟ e ontwikkeling. Ook wordt 

de Xp weer geacƟ veerd in de cellen van de ICM. Wij stellen voor dat de term X chromosoom 

remodeling (XCR) een betere omschrijving is van de eerste stappen in het dosis compensaƟ e 

proces Ɵ jdens de pre-implantaƟ e ontwikkeling dan de term X chromosoom inacƟ vaƟ e (XCI). 
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Glossary 

Defi niƟ ons 

ParthenogeneƟ c embryo 
An embryo that contains only the geneƟ c material derived from the oocyte. The second polar 

body is not extruded and the embryo is diploid. However, as it lacks the paternal DNA and 

its epigeneƟ c imprints, parthenogeneƟ c embryos are not viable. Parthenogenesis can occur 

naturally or by chemical inducƟ on.

AndrogeneƟ c embryo
An embryo that contains only the geneƟ c material of the spermatozoon. An androgeneƟ c 

embryo can arise by the ferƟ lizaƟ on of an empty oocyte by a single spermatozoon or by 

two spermatozoa. In the fi rst case, the haploid DNA will be duplicated and the embryo is 

homozygous. In the laƩ er case the embryo is heterozygous. An androgeneƟ c embryo can also 

be arƟ fi cially created by removal of the maternal DNA from the oocyte before inseminaƟ on or 

sperm injecƟ on. AndrogeneƟ c embryos are not viable due to imprinƟ ng defects and usually 

result in spontaneous aborƟ ons.

GynogeneƟ c embryo
A gynogeneƟ c embryo contains only maternal DNA but from two diff erent oocytes. These 

embryos can only be arƟ fi cially created and are used in imprinƟ ng and XCI studies. GynogeneƟ c 

embryos are not viable. 
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List of abbreviaƟ ons 

Ac acetylaƟ on

AI anaphase I

AII anaphase II

APC/C anaphase promoƟ ng complex/
cyclosome

ART arƟ fi cial reproducƟ ve 
technology

CHM complete hyadaƟ form mole

CPC chromosome passenger 
complex

DAPI 4’,6-diamino-2-phenylindole

DNA deoxyribonucleic acid

DSB double strand break

EB embryonic bodies

ES cells embryonic stem cells

FISH fl uorescence in situ 
hybridizaƟ on

rFSH recombinant Follicle sƟ mulaƟ ng 
hormone

GV germinal vesicle

GVBD germinal vesicle breakdown

Hpi hours post inseminaƟ on

H4K12 lysine 12 of histone 4 (example)

HAT histone acetyltransferase

HDAC histone deacetylase

HMT histone methyltransferase

ICSI intra cellular sperm injecƟ on

ICM inner cell mass

IF immune fl uorescence

IVF In vitro ferƟ lizaƟ on

LH luteinizing hormone

Me methylaƟ on

MI metaphase I

MII metaphase II

MSCI meioƟ c sex chromosome 
inacƟ vaƟ on

MTOC microtubule organizing centers

NHEJ non-homologous end-joining

PAR pseudo-autosomal region

PGC primordial germ cell

Phos phosphorylaƟ on

PN proncleus (singular), pronuclei 
(plural)

PMSC post-meioƟ c sex chromaƟ n

PrE primiƟ ve endoderm

PSCS premature sister chromaƟ d 
separaƟ on

PTM post-translaƟ onal modifi caƟ on

RNA ribonucleic acid

SAC spindle assembly checkpoint

TE trophectoderm

Xa acƟ ve X chromosome

XCI X chromosome inacƟ vaƟ on

XCR X chromosome remodeling

Xi inacƟ ve X chromosome

XIC X chromosome inacƟ vaƟ on 
center

Xist/
XIST

X chromosome inacƟ ve specifi c 
transcript

Xm maternal X chromosome

Xp paternal X chromosome

ZP zona pellucida
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Curriculum Vitae 

Ilse Maria van den Berg was born on the 23rd of December 1982 in Roosendaal and 

Nispen, The Netherlands. In 2002 she graduated from secondary school at the “Katholieke 

Scholengemeenschap EƩ en-Leur”. AŌ er her graduaƟ on she started her study “Biologie en 

Medisch Laboratorium Onderzoek (HLO)” at the Avans University of applied Science. The 

internships at the Erasmus MC at the Department of Clinical GeneƟ cs, supervised by Dr. 

Diane Van Opstal, and the Department of Obstetrics & Gynaecology, supervised by Dr. Esther 

Baart and Dr. Elena MarƟ ni, raised her interest in chromosome segregaƟ on and human pre-

implantaƟ on development. AŌ er fi nishing her Bachelor of Applied Science (B AS) in 2004, she 

started working as a research technician on the project Pre-implantaƟ on GeneƟ c Screening 

(PGS) at the Departments of Clinical GeneƟ cs and Obstetrics & Gynaecology at the Erasmus 

MC. In august 2007, she started her Ph.D. project “EpigeneƟ c reprogramming during human 

oocyte maturaƟ on and early human development” under supervision of Dr. Hikke van Doornink 

and Dr. Robert-Jan Galjaard. In June 2011, she obtained a travel grant from the KNAW/Ter 

Meulen Fund and she is currently visiƟ ng the lab of Dr. Nobuaki Kudo at the IRDB insƟ tute 

at Imperial College, London to study the fi rst meioƟ c division in mouse wild type and Dicer 

deleted oocytes using the techniques of micro-injecƟ on and live imaging.
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Ilse Maria van den Berg werd geboren op 23 december 1982. In 2002 voltooide zij het VWO 

aan de Katholieke Scholengemeenschap EƩ en-Leur. Daarna begon zij de opleiding Biologie 

en Medisch Laboratorium Onderzoek (HLO) aan de Avans Hogeschool (voorheen Hogeschool 

Brabant). Tijdens haar stages aan het Erasmus MC op de afdeling Klinische GeneƟ ca, onder 

supervisie van Dr. Diane Van Opstal, en op de afdeling Verloskunde & Gynaecologie, onder 

supervisie van Dr. Esther Baart en Dr. Elena MarƟ ni, werd haar interesse gewekt in de 

chromosoomsegregaƟ e en de ontwikkeling van humane pre-implantaƟ e embryo’s. Na het 

behalen van haar Bachelor of Applied Science (B AS) diploma in 2004 begon zij als research analist 

op het project Pre-implantaƟ e GeneƟ sche Screening op de afdelingen Klinische GeneƟ ca en 

Verloskunde & Gynaecologie van het Erasmus MC. In augustus 2007 starƩ e zij als onderzoeker 

in opleiding (o.i.o) haar promoƟ eproject geƟ teld “EpigeneƟ sche reprogrammering gedurende 

de humane eicel-maturaƟ e en vroege embryonale ontwikkeling” onder supervisie van Dr. 

Hikke van Doorninck en Dr. Robert-Jan Galjaard. Momenteel bezoekt zij met een reisbeurs van 

het KNAW/Ter Meulen Fonds de onderzoeksgroep van Dr. Nobuaki Kudo van het IRDB van het 

Imperial College te Londen, waar zij bezig is met het opzeƩ en van de technieken micro-injecƟ e 

en live-imaging van oocyten voor het bestuderen van de eerste meioƟ sche deling in wildtype 

en Dicer knock-out muizen.
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PhD Porƞ olio

Summary of PhD training and teaching 

Name PhD student: Ilse M. van den Berg
Erasmus MC Department: Obstetrics & 
Gynaecology, subdivision ReproducƟ ve 
Medicine and Dept of Clinical GeneƟ cs
Research School: MGC/Molmed

PhD period: 1-8-2007 / 1-3-2012
Promotor(s): Prof. Dr. F. Grosveld and 
Prof. Dr. J.S.E. Laven
Supervisor(s): Dr. J.H. van Doorninck and 
Dr. R-J Galjaard

1. PhD training

Year Workload
(Hours/

ECTS)

General courses 
 − Reading and Discussing Literature 
 − Molecular Cell Biology
 − Laboratory animal science
 − Biomedical English WriƟ ng and CommunicaƟ on

2008
2008
2009
2010

4 ects
6 ects
4 ects
4 ects

Specifi c courses (e.g. Research school, Medical Training)
 − InformaƟ cs/Pubmed search
 − Veilig werken in het laboratorium (MGC)
 − Exam Anatomy and Physiology ( tutorial)
 − From Development To Disease (MGC)
 − EpigeneƟ cs and ChromaƟ n (MGC)
 − Basic introducƟ on course on SPSS (MolMed)
 − Huygens DeconvoluƟ on Workshop
 − WriƟ ng succesful Grant Proposals (MolMed)
 − Photoshop & Indesign (MolMed)

2008
2008
2009
2009
2009
2009
2010
2011
2011

16 hrs
8 hrs

200 hrs
24 hrs

6 hrs
8 hrs
8 hrs

10 hrs
8 hrs

Seminars and workshops
 − OIC Hires workshop
 − ESHRE Pre congress course
 − NWO talent class Moving on in your Career 

2010
2008
2011

8 hrs
8 hrs
8 hrs
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PresentaƟ ons and (inter)naƟ onal conferences 
 − MGC Research School annual meeƟ ng: oral presentaƟ on
 − Gordon Research Seminar on Meiosis 

(poster contribuƟ on)
 − Annual meeƟ ng of the BriƟ sh Society of ferƟ lity 

(invited lecture)
 − Annual research meeƟ ng of the department of 

Obstetrics & Gynaecology: oral presentaƟ on
 − MolMed Research School annual meeƟ ng: 

poster presentaƟ on/oral presentaƟ on
 − VFS meeƟ ngs: oral presentaƟ on 

(award best presentaƟ on 2010)
 − ESHRE annual meeƟ ng 
 − SGI annual meeƟ ng (oral presentaƟ on)
 − ESHRE annual meeƟ ng (oral presentaƟ on) 
 − EMBO annual meeƟ ng (poster contribuƟ on(s))
 − Gordon Research Conference on Meiosis (poster 

contribuƟ on)
 − EMBO conference on Meiosis (poster contribuƟ on)

2007
2010

2010

2008/2011

2009/2011

2007/2010/2011

2008
2009
2009
2009
2010

2011

12 hrs
12 hrs

8 hrs

24 hrs

24 hrs

36 hrs

24 hrs
40 hrs
40 hrs
32 hrs
60 hrs

32 hrs

Other acƟ viƟ tes
 − Member of PhD commiƩ ee
 − Member of the PhD-day organizing commiƩ ee

2009-2011
2009-2011

1 ects
1 ects 

Scholarships & awards
 − Award for best oral presentaƟ on at Alpha meeƟ ng, 

Istanbul, Turkey
 − Annual BFS/VFS exchange award for best presentaƟ on, 

Antwerp, Belgium
 − Basic science award at the internaƟ onal ESHRE 

conference
 − Research Fellowship Department Obstetrics & 

Gynaecology
 − Simonsfonds travel grant for the aƩ endance of 

aƩ endance of the GRS/GRC, New London, USA
 − Ter Meulen Fonds KNAW travel grant, for a work visit 

of 3 months at London Imperial College
 − Trust Fonds travel grant for the aƩ endance of the 

EMBO conference on Meiosis, Paestum Italy

2008

2009

2009 

2010

2010

2011

2011

1 ects

1 ects
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2. Teaching 

 − Supervision of Junior Science project
 − Supervision of HBO laboratory students 
 − Supervision of Medical Student for period of 5 months

2008-2010
2008-2010
2009-2010

12 hrs
2 ects
1 ects

 − Supervision of Junior Science project
 − Supervision of HBO laboratory students 
 − Supervision of Medical Student for period of 5 months

2008-2010
2008-2010
2009-2010

12 hrs
2 ects
1 ects
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Dankwoord

Ik schrijf dit hoofdstuk terwijl ik in Londen ben en dus op redelijke afstand van iedereen die 

mij geholpen heeŌ  met het bereiken van deze mijlpaal. Maar misschien is dit wel de beste 

manier om terug te kijken naar mijn periode als onderzoeker in opleiding. In dit hoofdstuk wil 

ik iedereen bedanken die op zijn of haar manier heeŌ  bijgedragen aan dit proefschriŌ .

 Dr. J.H. van Doorninck, Hikke, bedankt dat je alƟ jd in mij hebt geloofd. In het begin toen 

niet iedereen er van overtuigd was dat ik promovendus-waardig was en op het eind wanneer 

ik het zelf niet alƟ jd meer zag ziƩ en. Je hebt me leren onderzoeken (focus!), en dankzij jou ben 

ik enorm gegroeid (stel nu eens een vraag!). Je was alƟ jd weer geïnteresseerd in mijn nieuwe 

hersenspinsels en je liet mij zelfs meeschrijven aan een nieuw onderzoeksproject (wat we nog 

toegewezen kregen ook!). Hoewel ik het niet alƟ jd besef en laat blijken, ik waardeer het enorm 

hoe wij met elkaar omgaan. Je hebt een enorm gevoel voor humor en daardoor voelde ik mij 

alƟ jd op me gemak (en soms iets te). Bedankt voor al je Ɵ jd, energie en toewijding. Ik hoop dat 

ik ook in de toekomst met je mag blijven samenwerken. 

 Dr. Galjaard, Robert-Jan, hoewel we geen regelmaƟ ge werkbesprekingen hadden, 

maakte je toch alƟ jd Ɵ jd voor me vrij wanneer ik je weer eens een mailtje stuurde. Bedankt 

voor het meedenken en schrijven aan de manuscripten, Ɵ jd en zorgen. 

 Beste Prof. Dr. F. Grosveld en Prof. Dr. Laven, hartelijk dank dat jullie mij als HLO-er de 

kans hebben gegeven om te promoveren. Frank, elke keer als ik bij je langskwam voor advies 

ging ik weer vol inspiraƟ e verder. Je weet alƟ jd door te dringen tot de kern en zo mij op het 

juiste onderzoekspad te houden.

 Joop, bedankt voor je steun en advies. Hoewel mijn project niet geheel in je vakgebied 

lag, wist je toch me alƟ jd weer verder te helpen. Je hebt me in zekere zin vrijgelaten Ɵ jdens 
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en op de kamer. Maar natuurlijk ook voor de mooie resultaten die we samen hebben behaald. 

Marjan, bedankt voor al je steun, ik waardeer je eerlijkheid en oprechtheid enorm. Ik kon alƟ jd 

bij je terecht wanneer ik er weer helemaal doorheen zat. Cindy, jij was er van het begin bij. Jut 

en Jul (wie is nu ook alweer wie?). Eerst de PGS en daarna mijn (ons) promoƟ e-onderzoek. Wij 

hebben heel wat ups en downs meegemaakt! Ik weet dat ik (soms) onuitstaanbaar kan zijn 

(nogmaals sorry) maar het komt alƟ jd weer goed. Samen in het donker heeŌ  op een lab een 

hele andere betekenis. Ik hoop dat we nog vaak samen van mijn moeders pasteitjes mogen 

genieten! Dear Joana, you joined our lab in June and then I leŌ  in October. It was a pleasure 

to work/have fun with you these few months. You made me appreciate my own country again 

(Bloemencorso in Zundert, jaarmarkt in het Ginnneken). Is Carla Perez sƟ ll shaking?

 Ik wil alle co-auteurs bedanken voor de preƫ  ge samenwerking en de mooie publicaƟ es.

De meiose-groep uit Nijmegen: Peter, Godfried, Alwin en Maud, bedankt.

 Natuurlijk wil ik alle medewerkers van het VoortplanƟ ngscentrum bedanken, alle 

analisten, artsen, medewerkers van het secretariaat, mede-onderzoekers en embryologen. Ik 

ben bang dat ik hier mensen vergeet te noemen. Dit is geen kwade opzet, jullie zijn gewoon 

met velen. Het IVF-lab, het lab waar nieuw leven ontstaat. Esther en Wouter, bedankt voor 

jullie samenwerking/begeleiding. Ik heb veel van jullie geleerd, als stagiaire, analist en O.I.O. Ik 

wil iedereen bedanken voor de inzet (de roze sƟ ckers!! ), jullie betrokkenheid en natuurlijk het 

verzamelen van al het materiaal: Jeroen, Diana, Amy, Sanne, Samantha, Karin en Karin, Nel, 

Shirley, Lydia, Linda, Hans en Miranda. Ook de vorige medewerkers: Elena, Helineth, Jaqueline, 

MarƟ n, Heidi, Pieter en Carla. De medewerkers van het secretariaat, alle IVF artsen, alle 

verpleegkundigen en de stafl eden; bedankt voor jullie medewerking. Erwin Berni en FaƟ ma, 

bedankt voor jullie hulp bij de staƟ sƟ ek. Het wordt langzaam duidelijk. 

 Alle (vorige) medewerkers van Klinische GeneƟ ca, ik werk nu al een aantal jaren met 

veel plezier op jullie afdeling en ik kan alƟ jd rekenen op jullie hulp. Julie zijn met zovelen dat 

ik bang ben dat ik iemand vergeet. Daarom bedank ik jullie als een groep, maar mijn dank 

is zeer groot! Prenatale CytogeneƟ ca, daar waar het allemaal begon. In 2003 begon ik als 

stagiaire en leerde ik karyotyperen, FISH en CGH. Daarna kwam ik nog regelmaƟ g langs voor 

“kweekbakjes”. Bedankt voor al jullie hulp en gezelligheid op het FISH-lab. Diane en Petra, 

nogmaals bedankt voor de begeleiding Ɵ jdens mijn stage. Alle medewerkers van de Postnatale 

en Tumor CytogeneƟ ca, DNA diagnosƟ ek, ook hier kwam ik regelmaƟ g langs en jullie waren 

alƟ jd bereid mij te helpen. Bedankt hiervoor. (Andere) Ilse, wij kennen elkaar nog van het 

HLO. Jij, Gaby en ik samen naar RoƩ erdam. Sindsdien is er veel gebeurd en zien we elkaar wat 

minder. Laten we toch maar weer eens lunchen!
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Research groep Klinische GeneƟ ca/Oogheelkunde, Annelies en Bert, Hannie en Jolanda, 

Liesbeth, Daan, Thomas, Erwin en Anna. Bedankt voor al jullie hulp en de gezellige (afscheid)

lunches en het dobbelspel.
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vragen of te “lenen”. Joost en Willy bedankt voor jullie begeleiding langs de “zijlijn”. Stefan, 

Iris, Evelien en Evelyne, Akiko, Sam, Bas, Godfried, Catherine en Maureen. Bedankt voor jullie 

Ɵ jd en hulp. 

 Niels Galjart en Frank Sleutels, hoewel ons projectje helaas geen succes werd, wil 

ik jullie toch bedanken voor jullie Ɵ jd en enthousiasme (en anƟ lichamen). Misschien in de 

toekomst toch een bespreking?

 Om de een of andere reden trok ons onderzoek alleen maar vrouwelijke studenten. 

Charlène, Mary, ArleƩ a, Shimaira, Khatera, Marjon en Arewika. Ook jullie hebben bijgedragen 

aan mijn proefschriŌ . Bedankt voor jullie inzet. Ook voor mij was het begeleiden een zeer 

leerzame ervaring. Ook wil ik al mijn mede-o.i.o’s bedanken (gedeelde smart is halve smart): 

Daan, ChrisƟ ne, Margarida, Liesbeth, Thomas, Erwin, Anna en alle promovendi van V&G: 

Olivier, Sharon, Yvonne, Wendy, John, FaƟ ma, Sam, Bas en Marijana (en iedereen die ik vergeet 

te noemen, ook jullie zijn met velen). 

 De mannen van de confocale, Alex en Gert, alƟ jd weer bereid om mij te helpen met 

mijn onmogelijk onderzoeksmateriaal. Dankzij jullie heb ik heel wat mooie foto’s en fi lmpjes 

kunnen maken!! Bedankt. Tom en Ruud, jullie hebben mijn microscoop-plaatjes bewerkt tot 

publicaƟ e-waardige foto’s. De 7de verdieping. Ook hier kwam ik regelmaƟ g voor hulp. MariëƩ e, 

Mhernaz, Jeff rey, Ton, Josef, Leo en Mario, Melle , Leo en Koos, bedankt voor al jullie hulp. 

 John, Iris en Alex, bedankt voor jullie hulp bij de dierexperimenten. Iris, bedankt voor 

je fl exibele instelling (ook op het laatste moment). John, met jou is het nooit saai op het EDC! 

Bedankt voor al je Ɵ ps en hulp. Het Biomics-team, Wilfred, Antoine, Zeliha, Christel en Edwin. 

Bedankt voor jullie hulp.

 Dr. Kudo, Kaisa, Ben, Dafni, Gemma, Anne, Ruth and all my other Londen colleagues. 

Thanks for these last months. Biba en Zoë, thanks for your help with the micro-injecƟ on.

 Dear prof. Gough and miss Suzuki, David and Erico, I was almost afraid that I couldn’t 

fi nd a reasonable room in London. Thanks for your warm welcome and making me feel at 

home. Dear David, thanks for your input on my thesis. Next Ɵ me, I’ll beat you with chess!
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Meiden van de trein: Jojanneke, Jolanda, Sanne en Wendy. Bedankt voor alle gezelligheid die 

soms ook na de trein werd voortgezet (Pecannoten-kalua cake/ Sangria!). De reis verliep niet 

alƟ jd even vlekkeloos (waterbus) en geen onderwerp bleef onbesproken. De lange reisƟ jd 

werd dankzij jullie een stuk dragelijker. 

 ECS computers: Eddy, Stefan, Jaap, Gerry, Bjorn, Sjoerd, Heidi, Ingrid en mijn Eddy. 

Bedankt voor jullie gastvrijheid. Eddy Mouws, bedankt dat ik bij jullie in “afzondering” mocht 

schrijven. 

 Jeroen, een hele Ɵ jd geleden heb ik je al gevraagd om mijn paranimf te zijn. Jij bent 

iemand van het bredere perspecƟ ef. Bedankt voor alle discussies, boekenƟ ps en advies die je 

me hebt gegeven (heb je dat stuk gelezen in het NRC? Wat zijn hoogopgeleide mensen toch 

onnozel en kortzichƟ g!). Ik hoop dat we het nog vaak met elkaar (on)eens gaan zijn! Evelien, 

bedankt voor het ontwerpen van de omslag. Mijn proefschriŌ  is in ieder geval een arƟ sƟ ek 

meesterwerk.

 Denise en Marjolein, wij gaan ver terug. Hoewel we elkaar wat minder vaak zien dan 

toen (door drukte en afstand), het voelt alƟ jd weer als vanouds. Of we nu gaan carnavallen 

(waar is mijn snor?), wadlopen (arme Eddy) of Madrid bezichƟ gen (heerlijk die Paëlla!), we 

maken er alƟ jd iets bijzonders van. Ik hoop dat we nog vaak samen erop uit gaan.

 Jan en Willy, Wendy en Gremar. Mijn tweede familie. Jullie zorgen voor de juiste 

afl eiding. Of we nu gamen, joggen of kamperen, met jullie is het alƟ jd een gezellig avontuur. 

Volgend jaar gewoon weer met Sint surprise??

 Mijn thuisbasis: Papa, Mama. Bedankt voor al jullie steun, talloze knuff els, heerlijke 

pasteitjes, luisterende oren en zorgen (zelfs over zee)! Ik weet dat ik alƟ jd bij jullie terecht kan. 

Saar en Cris, en natuurlijk de jongens, Thijs en Lucas. Bedankt voor jullie steun en begrip. Lieve 

Saar, deze smurf kan zich geen betere zus wensen! Niet voor niets ben jij mijn paranimf. We 

hebben al heel wat meegemaakt, weet dat ik er ook alƟ jd voor jou ben!

 Lieve, lieve Eddy (TW). Waar zal ik beginnen. Zonder jouw steun was dit boekje er niet 

geweest. Hoe vaak heb ik je in het weekend niet kunnen verleiden tot het maken van een 

motorritje naar RoƩ erdam. Je kent alle smaken van het koffi  ezetapparaat op de 22ste en was 

thuis (en soms ook op het werk) mijn ICT-redder-in-nood! Hoewel we beiden zeiden er nooit 

aan te beginnen is het je toch gelukt een van Opdorp van mij te maken. En dan twee weken 

daarna weer uit elkaar. Jij in Breda en ik in Londen. Maar: Ik hou van jou, alleen van jou. Ik kan 

niet leven in een wereld……. (PW).
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Colour fi gures

Chapter 2

Figure 1. Histone acetylaƟ on in human GV oocytes. An early-stage human GV oocyte with a non-surrounding 
nucleus (NSN)(A-C) stained for chromaƟ n (blue, DAPI); (A) and histone acetylaƟ on (red, anƟ -H4K12ac) (B). Some 
chromaƟ n regions have intense staining, whereas other (dense) regions showed no acetylaƟ on (overlay C). A 
more developed human GV oocyte with a surrounding nucleus stained for chromaƟ n (blue, DAPI; D) and histone 
acetylaƟ on (red, anƟ -H4K12ac; E) has chromaƟ n that is far more condensed (D) than the NSN GV, but it sƟ ll has 
acetylated chromaƟ n (E), as shown by the overlay (F). Scale bar represents 10 μm (see page 49).
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Figure 2. Histone deacetylaƟ on during human oocyte maturaƟ on. GV, MI and MII oocytes were stained for H4K5ac 
(A1–A15), H4K8ac (B1–B15), H4K12ac (C1–C15) and H4K16ac (D1–D15). RepresentaƟ ve images are shown for the 
indicated groups. GV oocytes showed intense staining for all four lysine residues (A2, B2, C2 and D2) and were not 
analyzed for a-tubulin because no spindle is present at this stage. At the MI stage, the majority of oocytes had no 
staining for H4K5ac (A4–6), H4K8 (B4–6) and H4K12ac (C4–6). H4K16ac was posiƟ ve in all tested MI oocytes (D7–9). 
In oocytes of the MII stage, a variable part of the oocytes showed no staining for the four tested lysine acetylaƟ ons 
(A11–D11). In oocytes with residual acetylaƟ on, histone lysine staining was observed (A14–D14) overlapping with 
the DAPI-stained chromosomes (A13–A15 to D13–D15). Scale bar for A1–A3, B1–B3, C1–C3 and D1–D3 represents 
30 μm. Scale bar for A4–A15, B4–B15, C4–C15 and D4–D15 represents 10 μm (see page 50).
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Figure 3. Metaphase alignment and residual acetylaƟ on in human MII oocytes. RepresentaƟ ve immunofl uorescence 
of an MII oocyte without staining of H4K12ac and with properly aligned chromosomes in the equatorial plane 
(A–C). Residual acetylaƟ on of H4K12ac in an MII oocyte is associated with chromosome misalignment of a single 
chromosome (D–F) or congression failure (G–I). Scale bar represents 10 μm (see page 53).

Chapter 3

Figure 1. Diploid mouse mono-pronuclear zygotes. Examples of pre S-phase (A-G) and mitoƟ c (H) mono-pronuclear 
zygotes A-D: Zygote stained for H3K9me3 (blue) and the H3K9me2,3 binding protein HP1-β [43]. (green) Dapi labels 
DNA (red). E-G) zygote stained for H3K4me3 (green), Dapi labels DNA (red). H) zygote stained for H4K20me3 (green), 
Dapi labels DNA (red). Histone H4K20me3 marks 20 maternal chromosomes at the consƟ tuƟ ve heterochromaƟ n. It 
has been reported that chromosomes in the mouse zygote are interconnected via their α-satellite sequences [38]. 
This causes some chromosomes to be posiƟ oned in a head to head posiƟ on. Arrowheads indicate head-to-head 
posiƟ on of maternal and paternal chromosomes (see page 69).
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Figure 2. DistribuƟ on of H3K4me3, H3K9me3 and H3K27me3 in human tri-pronuclear zygotes. A) A light microscopic 
image of a tri-pronuclear zygote prior to removal of zona pellucida and fi xaƟ on. B) Symmetrical distribuƟ on of 
trimethylated histone H3 lysine 4. DoƩ ed line indicates posiƟ on of the maternal PN, which can be disƟ nguished 
from the paternal PN by size. C) Asymmetrical localizaƟ on of histone H3K9me3. A tri-pronuclear zygote obtained 
aŌ er convenƟ onal inseminaƟ on and therefore likely the result of polyspermia. This histone modifi caƟ on is absent 
from the two larger paternal pronuclei. D-E) Absence of histone H3K27me3 from paternal chromaƟ n. In tri-
pronuclear zygotes obtained aŌ er inseminaƟ on, H3K27me3 was present in the smaller maternal PN (D). A rare 
case of a tri-pronuclear zygote aŌ er ICSI (E). In these zygotes failure of second polar body extrusion is responsible 
for the extra PN. Therefore two PNs show this maternal mark (see page 71).

Figure 3. DistribuƟ on of H3K9me3 in human mono-pronuclear zygotes A) A mono-pronuclear zygote prior to 
removal of zona pellucida and fi xaƟ on. B) A mono-pronuclear zygote with a clear fusion of the chromaƟ n domains 
alike the mouse mono-pronuclear zygotes in Figure 1. Two out of focus sperm heads are overlying the pronucleus. 
Higher magnifi caƟ on shows a diff use region in between parental chromaƟ n domains. C) The mono-pronuclear 
zygote depicted in 3a aŌ er staining. Two not overlapping chromaƟ n domains in close proximity are observed. 
Higher magnifi caƟ on shows a clear separaƟ on of the parental domains. D) A mono-pronuclear zygote obtained 
aŌ er ICSI in which the oocyte is acƟ vated by the sperm (indicated by arrow) but no further nuclear decondensaƟ on 
of the sperm has occurred. E) A mono-pronuclear zygote obtained aŌ er ICSI which contains paternally derived 
chromaƟ n only. The posiƟ ve domain in proximity of the PN is a polar body (see page 72).
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Figure 1. XIST expression in male and female human pre-implantaƟ on embryos. RNA and DNA FISH staining with 
probes to detect XIST RNA (green) ,the X (red) and Y chromosome (yellow) and DAPI counterstain. Human male 
embryos (A-C) do not generally show XIST signals at the 8-cell stage (A) or at the morula stage (B). A minority of 
male cells at the morula stage show a pinpoint of XIST staining (C). Female embryos (D-F) show an XIST pinpoint 
in the majority of embryos at the 8-cell stage (D). (E) Two cells at the morula stage each show a beginning cloud 
of XIST on one of their two X chromosomes. (F) At the blastocyst stage this has further accumulated to a full cloud 
on one of the two X chromosomes. A third diff use red signal is an X chromosome from an adjacent cell that is in a 
diff erent focal plane (see page 87).

Figure 2. TranscripƟ onal changes on the inacƟ ve X chromosome. (A-F) Cot1 exclusion around XIST. (A-C) Cells of a 
female blastocyst embryo with staining for Cot1 RNA (red in A) and XIST RNA (green in B) showing depleted regions 
of Cot-1 RNA around the XIST signals indicaƟ ng the posiƟ on of the inacƟ vated X (merged in C). (D-F) RepresentaƟ ve 
cell of a female blastocyst with staining for the X centromeres and XIST RNA (D, Xcen in magenta, XIST in green) 
together with Cot1 (red in E). TranscripƟ on of Cot1 RNA was absent in a region that overlaps with XIST RNA staining 
(F), while the acƟ ve X without XIST staining overlaps with a Cot1-posiƟ ve region. (G-J) Female blastocyst cell 
with two X centromeres (cyan in G) has a single XIST cloud on one X chromosome (green in H) and monoallelic 
expression of CHIC1 on the other X chromosome (red in I, merged in J). A dust spot is visible in all colors and is 
therefore nonspecifi c staining (see page 89).
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Figure 3. EpigeneƟ c changes on the inacƟ ve X chromosome. (A-C) Three adjacent blastocyst cells show H3K27Me3 
hypermethylaƟ on (arrowheads in J and enlarged panels 1-3) and staining for H3K9 acetylaƟ on (B, 1-3) shows 
a H3K9ac-depleted region overlaying the H3K27Me3 accumulaƟ on (C, 1-3) indicaƟ ng the posiƟ on of the Xi 
chromosome. (D-F) RepresentaƟ ve blastocyst cell shows H3K27 hypermethylaƟ on (green, D) and enrichment for 
macroH2A (red, E) with a clear overlap (yellow, F) analogous to the signal around an Xi chromosome (see page 90). 

Figure S1. Single cell RNA/DNA FISH analysis of human embryos. (A) Diploid blastomere from a female 8-cell embryo 
displaying two X centromeres (red), two chromosome 15 centromeres (aqua), and an XIST pinpoint (green). (B) 
Diploid male blastomere from a 12-cell male embryo with an X chromosome (red), a Y chromosome (yellow) and 
two chromosomes 15 (aqua). XIST RNA was absent (see page 99).
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Figure S2. Examples of diff erent paƩ erns of XIST RNA signals in female embryos. (A) Single pinpoint of XIST (green) 
near the X centromere (red) at the 8-cell stage. (B) Two pinpoint signals of XIST at morula stage. (C) Single cloud 
signal in blastocyst. (D) double cloud signals of XIST in late morula embryo. (E) Two cells from a morula, one with a 
pinpoint XIST signal and the other with an intermediate cloud of XIST RNA (see page 99).
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Figure S3. EpigeneƟ c changes on the inacƟ ve X chromosome in human cumulus cells (A-G, L-O) and female 
amniocytes (H-K, P-S). RNA FISH and immunocytochemistry of human female cumulus cells with probes and 
anƟ bodies commonly used to characterize the inacƟ ve X chromosome. Cot1 RNA FISH staining of cumulus cells 
(red in A) shows an excluded area (indicated with arrowheads), that overlaps with XIST RNA staining (green in 
B) as shown in the overlay in (C). The third nucleus is not in focus and the Cot1 depleted region can thus not be 
seen. Inverted DAPI staining reveals the posiƟ on of the inacƟ ve X/Barr body (arrowhead in D) in cumulus cells that 
overlaps with macroH2A staining (red in E) and H3K27Me3 (green in F), merged in G. (H-K) In female amniocytes, 
XIST RNA (H) shows a complete overlap with the accumulated nuclear domains of macroH2A (red in I) and 
H3K27me3 (green in J) as shown in the overlay (merged in K). (L) Cumulus cell with Barr body that is indicated with 
an arrowhead in the inverted DAPI image . H3K9 acetylaƟ on staining shows exclusion of the Barr body area (red 
in M) and H3K27Me3 gives a strong localized signal staining (green in N) that overlaps exactly with the exclusion 
of H3K9ac and the posiƟ on of the Barr body (merged in O). In female amniocytes the Barr body (arrowheads in P) 
overlaps the XIST cloud (green signal in Q) and at this area H3K9ac is depleted (red in R) as shown in the overlay 
(merged in S) (see page 100).
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Figure 1. SchemaƟ c overview of the three diff erent steps of XCI in mouse and man. 
Mouse: In the mouse 2-cell stage embryo, imprinted XCI begins with pinpoint Xist expression from the paternal X. 
At the 8-cell stage the Xp chromosome is remodeled (XCR, see text for details) with COT-1 exclusion and epigeneƟ c 
marks; this remodeled X chromosome generally becomes inacƟ vated (XCI) at the blastocyst stage. Mouse blastocyst 
ICM cells reacƟ vate the paternal X while the TE and PrE retain the imprinted form of XCI (see text for more detailed 
descripƟ on). The imprinted form of XCI is maintained in the placenta while the epiblast converts to a random XCI 
mechanism. Human: No data are available for single human 2-cell stage embryos regarding the level and locaƟ on 
of XIST expression. At the 8-cell stage most cells have a single pinpoint of XIST expression but whether this is an 
imprinted XCI is not yet known. Human blastocysts have a full cloud of XIST, COT1 exclusion, epigeneƟ c marks and 
mono-allelic expression of a gene adjacent to XIST in a porƟ on of the cells indicaƟ ve of XCR and the iniƟ aƟ on of XCI 
[47]. Data on XCI in human placenta point towards a preferenƟ al silencing of the paternal allele, although random 
XCI paƩ erns are oŌ en observed. The model hES cell lines to study random XCI are not as good in humans as they 
are in mice: undiff erenƟ ated mouse ES cells have two acƟ ve X chromosomes and upon diff erenƟ aƟ on one X is 
randomly silenced. However, undiff erenƟ ated human ES cells are extremely variable in XIST expression and so far 
three classes have been described (see text). ICM = inner cell mass, TE = trophectoderm, PrE = primiƟ ve endoderm 
(see page 109).
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Chapter 5

Figure 1. Stepwise cleavage of the cohesion complex in meiosis. The cohesion complex holds the two sister 
chromaƟ ds together. At the transiƟ on from MI to AI the REC8 cohesin between the arms of the chromaƟ ds 
is cleaved by Separase to allow the homologues to be separated. Centromeric cohesion is protected by the 
Shugoshin proteins which prevents unƟ mely cleavage of the sister chromaƟ ds at the MI-AI transiƟ on. At the MII 
stage the sister chromaƟ ds are now bi-orientated to the spindle poles. This orientaƟ on creates tension on the 
centromeres which relocates Shugoshin from cohesin and allows REC8 to be cleaved by Separase at the MII to 
AII transiƟ on (adapted from [18]) (see page 129).
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Figure 2. SchemaƟ c overview of the experimental approach of our study on human tri-pronuclear and mono-
pronuclear zygotes (see page 135).
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