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Abstract

In a decentralized two-stage supply chain where a supplier serves a retailer who, in turn, serves
end customers, operations decisions based on local incentives often lead to suboptimal system
performance. Operating decisions based on local incentives may in such cases lead to a degree of
system disorder or anarchy, wherein one party’s decisions put the other party and/or the system
at a disadvantage. While models and mechanisms for such problem classes have been considered
in the literature, little work to date has considered such problems under nonstationary demands
and fixed replenishment order costs. This paper models such two-stage problems as a class
of Stackelberg games where the supplier announces a set of time-phased ordering costs to the
retailer over a discrete time horizon of finite length, and the retailer then creates an order plan,
which then serves as the supplier’s demand. We provide metrics for characterizing the degree of
efficiency (and anarchy) associated with a solution, and provide a set of easily understood and
implemented mechanisms that can increase this efficiency and reduce the negative impacts of
anarchic decisions.

1 Introduction

1.1 Background and motivation

This paper considers a two-stage supply chain system containing a supplier who serves a retailer

with a single product, where costs as well as external demand parameters are nonstationary. Such

systems are often not centrally managed by a single decision maker. Rather, the supplier and

retailer are separate parties with conflicting objectives. To avoid unnecessary costs (or loss of
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potential profits) from the perspective of the entire two-stage system, the decision makers could, in

principle, explicitly agree a priori on the application of a globally optimal planning policy with an

associated agreement on revenue sharing. However, such explicit coordination is often undesirable

or impractical (if not impossible) since it is deemed to be too costly, too risky, or too cumbersome.

Therefore, such explicit coordination is often absent in practice, and the individual decision makers

tend to make decisions that they perceive to be in their best interest, solely based on a local

perspective and in response to local incentives. In particular, the supplier will generally quote

ordering costs (or prices) to the retailer and make production output decisions, while a retailer

must make ordering decisions.

The past fifteen years has witnessed a high volume of activity in supply chain coordination

research, with the overwhelming majority of the high-impact results applying to systems with either

time-invariant costs and demand parameters, or situations where the time dimension is ignored (for

example, similar assumptions to those made for newsvendor or economic order quantity problems

are employed). Analysis of supply chain coordination in such systems has led to relatively simple

coordination mechanisms and policies that are especially attractive and valuable from a practical

point of view. However, due to the large number of degrees of freedom in the nonstationary systems

that we will study, coordination mechanisms can quickly become complex and too cumbersome to

implement in practice. Therefore, we will focus on the development and analysis of mechanisms

that can be easily explained, understood, and implemented. For example, by manipulating per-unit

wholesale price, a supplier directly affects the local incentives of retailers. This naturally leads to

questions as to how a supplier can use wholesale prices to improve both its own performance and that

of the supply chain as a whole. Wholesale price manipulation provides a supplier just one source

of flexibility in affecting a retailer’s local incentives and, therefore, global system performance.

The supply chain coordination literature contains a number of additional contractible parameters

that a supply chain member can use to affect its partners incentives and operations policies (e.g.,

side payments, rebates, holding cost subsidies), each providing a source of flexibility in influencing

supply chain performance. We are particularly interested in mechanisms for manipulating anarchy

in the supply chain that draw on as few of these sources of flexibility as possible, in order to ensure

ease of implementation, while at the same time achieving desirable supply chain performance.

We will consider a setting in which (i) the retailer faces an economic lot-sizing problem to find a
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sequence of order quantities to minimize the total cost required to satisfy all external demands; and

(ii) the supplier faces an economic lot-sizing problem to find a sequence of procurement quantities

that minimizes the total cost required to fulfill the retailer’s orders. Assuming that the supplier has

some wholesale pricing flexibility, the supplier can essentially set some of the cost parameters that

impact the ordering decisions of the retailer; these decisions then, in turn, affect the procurement

decisions by the supplier. The supplier should therefore consider this dynamic when taking its initial

action. In this case, a Stackelberg game arises where the supplier is the Stackelberg leader and

the retailer is the follower. A solution to such a game is characterized by the well-known concept

of a Nash Equilibrium, wherein no agent can improve its position by choosing to unilaterally

deviate from the equilibrium solution. Assuming that the supplier has complete information on

the retailer’s decision problem, the supplier attempts to solve the game using backward induction.

That is, the supplier may characterize the retailer’s optimal response to its initial action and then

optimize this initial action. The resulting problem falls in the general class of so-called bilevel

programming problems. Due to the presence of an economic lot-sizing cost structure at both the

supplier and the retailer level, we in fact obtain a mixed-integer bilevel optimization problem.

Since bilevel linear optimization has been shown to be NP-Hard (Ben-Ayed and Blair [2]), mixed-

integer bilevel programming is, in general, NP-Hard as well. However, due to the attractiveness

of efficiently implementable simple coordination mechanisms, we will consider practical classes of

so-called leader action-space restrictions, i.e., subsets of the leader’s action space. We will show that

many of these mechanisms will make identifying a Nash Equilibrium solution for the Stackelberg

leader-follower game tractable, with the problem often even solvable in polynomial time.

1.2 Literature review

Although the concepts of double marginalization and competition for channel profits are quite old

(Cournot [9]), the work of Monahan [19] and Lal and Staelin [16] appear to be some of the early

works to consider differing supplier-buyer incentives in a supply chain operations context, with

Monahan [19] focusing on the buyer’s perspective, and Lal and Staelin [16] justifying the use of

quantity discounts by considering both buyer and supplier costs. Lee and Rosenblatt [18] subse-

quently generalized Monahan’s model to violate the lot-for-lot ordering assumption, while Weng

[27] extended the analysis to multiple homogenous buyers and price-dependent demand. Corbett
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and de Groote [8] then considered this problem class under information asymmetry, while Klastorin,

Moinzadeh, and Son [15] used price discounts to provide incentives for customers to coordinate or-

der timing with the supplier. This latter approach is similar in spirit to the model of Viswanathan

and Piplani [24], who applied price incentives to entice retailers to order in common replenish-

ment periods. Chen, Federgruen, and Zheng [6, 7] considered multiple non-identical retailers with

price-dependent demands, and showed how the system-optimal solution can be achieved under

decentralized management using a discount scheme based on annual volume, order quantity, and

order frequency. This stream of literature focuses on the tension between supplier and buyer pref-

erences under the standard EOQ cost and demand assumptions. Beyond the multi-echelon work

that employs standard EOQ assumptions, little work exists considering supply chain coordination

under dynamic demands and costs, which serves as one of the focus areas of our work. An exception

is the recent work of Sahin and Robinson [22], who considered the impacts of varying degrees of

explicit cooperation and information sharing among partners in a make-to-order supply chain. Our

work is fundamentally different from this, as we consider settings in which explicit coordination is

infeasible, and where mechanisms are required to influence anarchy in the system.

While we have discussed supply chain coordination models under deterministic demand as-

sumptions, a substantial segment of the literature in this area considers uncertain demand where,

in addition to marginalization issues, supply chain partners also face risk allocation issues. Just

as decentralized models under deterministic demand are hampered by failing to consider overall

supply chain margin, decentralized models under stochastic demand do not consider the overall

supply chain risk picture (see Cachon [4] for a discussion of risk allocation in supply chains). A

great deal of the work in this area uses the one-period newsvendor setting to demonstrate the

need for and benefits of coordination mechanisms under uncertain demand, and proposes a num-

ber of contract mechanisms to achieve coordination. Cachon [3] provides an in-depth literature

survey on the use of contract mechanisms to coordinate multiple stages in a newsvendor setting,

discussing past work on buy-back contracts, quantity flexibility contracts, and revenue sharing con-

tracts, among others. Toptal and Çetinkaya [23] extend this analysis to explicitly incorporate the

impacts of realistic transportation cost structures. While a number of past works (e.g., Lariviere

and Porteus [17], Cachon and Lariviere [5]) have illustrated the inability of price-only contracts

to lead to coordinated supply chain operations in decentralized systems, Perakis and Roels [20]
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recently quantified the loss of efficiency, or price of anarchy, of price-only contracts in decentralized

supply chains in a single-period setting. The metrics we will define for measuring supply chain

efficiency (and the price of anarchy) are similar in spirit to theirs. However, our focus will expand

beyond the newsvendor context, and we will introduce coordination mechanisms that can be used

to manipulate the anarchy in complex systems.

2 Anarchy and efficiency

Following recent work in transportation systems, we will refer to the cost resulting from individual

decision makers following locally optimal decisions in decentralized systems as the cost of anarchy in

the supply chain (for discussions on the cost, or price, of anarchy in transportation and supply chain

systems, please see Roughgarden [21] and Perakis and Roels [20], respectively). We will denote the

centralized system optimal cost in the supply chain by C∗ and the total cost under anarchy incurred

when individual decision makers make locally optimal decisions by CA. In general, we expect to

have C∗ < CA, so that anarchy is costly in terms of the entire supply chain, and we define the cost

of anarchy as follows:

Definition 2.1. The cost of anarchy in a supply chain system is defined as the difference between

the optimal cost under anarchy and the system optimal cost:

cost of anarchy = CA − C∗.

When the cost of anarchy is large, supply chain partners may be able to provide local incentives

to improve the efficiency of the supply chain. We will refer to the application of such incentives

in order to change local decision making as manipulated anarchy. Such levers can be viewed

as somewhat analogous to using toll pricing to manipulate anarchy in transportation systems.

Denoting the total cost under manipulated anarchy by CM , we should then have C∗ ≤ CM ≤ CA.

We will define the efficiency of a coordination mechanism as the fraction of the cost of anarchy

that it avoids:

Definition 2.2. The efficiency of a supply chain system under a particular coordination mechanism
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is defined to be the fraction by which cost of anarchy can be reduced:

coordination mechanism efficiency =
CA − CM

CA − C∗ .

Finally, we will define the potential of a coordination mechanism as the fraction of the cost of

anarchy that is avoided if a central decision maker were to optimize the sum of the local objectives

of both parties (using the mechanism), leading to a supply chain cost of CP satisfying

C∗ ≤ CP ≤ CM ≤ CA.

Definition 2.3. The efficiency potential of a supply chain system under a particular coordination

mechanism is defined as:

coordination mechanism potential =
CA − CP

CA − C∗ .

Of course achieving a cost of CP would require some limited coordination which, perhaps even

to a greater extent than full coordination, is unlikely to be encountered in practical situations.

However, the coordination mechanism potential does provide insight into the extent to which a

coordination mechanism is able to reach its full potential without actually requiring some form of

coordination.

In the remainder of this paper, we are particularly interested in mechanisms for manipulating

anarchy in the supply chain that are easy to implement while at the same time achieving a desirable

supply chain performance.

3 Two-stage supply chain system

Recall that the two-stage serial supply chain system that we consider in this paper consists of a

supplier and a retailer, where the retailer faces a sequence of deterministic and dynamic demands

for a single product over a finite planning horizon. Each player in the system wishes to minimize

their cost over the planning horizon. We assume for convenience that both the supplier and the

retailer have unlimited procurement capacities in all order periods.
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3.1 Preliminaries

3.1.1 Notation and solution structure

We denote the sequence of external demands by dt (t = 1, . . . , T ), where T is the length of the

planning horizon. We assume that the structure of procurement and inventory holding costs for

both parties are such that, in both centralized and decentralized systems, we can restrict ourselves to

solutions that satisfy the zero-inventory ordering (ZIO) property at both the supplier and retailer

level. In other words, it suffices to consider binary decision variables ys
t and yr

t (t = 1, . . . , T ),

where these variables take the value 1 in a setup or order period and 0 in the other periods. We

will denote the corresponding binary vectors by ys and yr. Since we will focus on coordination

mechanisms between the two parties, we will pay particular attention to the costs at the retailer

level. For convenience, we will assume that the cost functions at the retailer can be characterized

by a finite parameter vector v, the elements of which can be (to some extent to be characterized

later) influenced or set by the supplier.

Although some of our results hold in the very general setting described above, most of our

concrete algorithmic contributions apply to the following cost structure at the retailer level. In

each period t (t = 1, . . . , T ), the retailer incurs fixed ordering costs F r
t if it places an order with

the supplier in period t, and variable net production and inventory costs gr
tτ per unit produced in

period t and used to satisfy external demand in period τ . We use the following general form to

represent the variable net production and inventory costs:

gr
tτ = ps

t + ar
t +

τ−1∑

j=t

hr
j + (ps

t + ar
t )

τ−1∑

j=t

ρr
j , τ = t + 1, . . . , T ; t = 1, . . . , T,

where ps
t denotes the unit price charged by the supplier, ar

t denotes a unit transportation and

handling cost, hr
t denotes the holding cost per unit in inventory at the end of the period, and ρr

t

denotes the cost rate of capital in period t (t = 1, . . . , T ). If ρr
t = 0 (t = 1, . . . , T ), then the cost

structure is equal to the standard form often used in economic lot-sizing models, which we refer

to as Cost Structure I. Alternatively, if hr
t = 0 (t = 1, . . . , T ), then holding costs are viewed as

an opportunity cost of the capital invested in inventory, and we refer to this structure as Cost

Structure II. Whenever convenient, we use ρr
tτ as a shorthand notation for

∑τ−1
j=t ρr

j . Furthermore,

in case the cost rate of capital is modeled in a compounded way, we should replace
∑τ−1

j=t ρr
j by
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∏τ−1
j=t (1 + ρj) − 1. In any case, the vector v consists of elements F r

t and gr
tτ (for τ = t + 1, . . . , T

and t = 1, . . . , T ).

3.1.2 Centralized decision making

Under centralized decision making, the decision maker should seek the joint supplier-retailer plan

that minimizes total system costs. Zangwill [28] presents a dynamic programming approach to solve

this two-echelon lot-sizing problem, which was shown by Van Hoesel et al. [14] to have a running

time of O(T 3). We will denote the centralized cost function by C(ys, yr), noting that the optimal

solution value of this problem equals C∗, the centralized system optimal cost.

3.1.3 Decentralized decision making

Under decentralized decision making (i.e., anarchy), the retailer starts by optimizing its procure-

ment plan by solving a standard single-level dynamic production planning problem. Subsequently,

the supplier solves a similar problem, where the supplier’s observed demand pattern is given by the

retailer order quantities (or, equivalently, by the retailer order periods). The supplier and retailer

cost functions can be written as Cs(ys|yr) and Cr(yr). Note that the total system costs satisfy

C(ys, yr) = Cs(ys|yr) + Cr(yr).

It is well-known that each supply chain partner’s optimization problem can be solved in O(T 2) time

(see, e.g., Wagner and Whitin [26]). Under additional assumptions on the cost structures these

problems can even be solved in O(T log T ) or O(T ) time (see Aggarwal and Park [1], Federgruen

and Tzur [11], and Wagelmans et al. [25]). The sum of the optimal solution values of these problems

is CA, the total cost under anarchy.

3.2 Stackelberg game to improve supplier profit

In order to mitigate the cost of anarchy, the supplier can choose to manipulate the retailer’s cost

coefficients in an attempt to reduce the total system cost by reducing (or, at least, not increas-

ing) either party’s cost. In particular, the supplier may offer any combination of wholesale price

discounts, fixed and variable cost rebates, and holding cost subsidies (in the remainder, we will

often refer to any such offering from the supplier to the retailer as a promotion or incentive). This
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then leads to a Stackelberg game in which the supplier plays the role of Stackelberg leader and the

retailer becomes the Stackelberg follower. Clearly, the supplier must ensure that its actions do not

make the retailer worse off than under the current prices, since otherwise the retailer may choose

another supply source (thus we assume some prevailing market wholesale prices exist that serve

as the planned ps
t values for t = 1, . . . , T ). The objective is then to determine the incentives the

supplier should offer in order to achieve minimum cost, while ensuring that the retailer is at least

as well off as under the current prevailing market wholesale prices.

More formally, let θ denote a parameter (or parameter vector) characterizing the supplier’s

manipulation of the cost coefficients v (incentives), and Θ the set of feasible incentives. We will

discuss this set in more detail later, but for now it suffices to say that this set will be characterized

by (i) concavity of the retailer’s cost function; (ii) the retailer being no worse off under the incentive;

and (iii) convenience or intuitive nature. The retailer will now incur costs characterized by v(θ).

For convenience, we will let θ = 0 correspond to the case of unchanged parameter values, i.e.,

v(0) = v, where 0 is a vector of all zeroes of the same dimension as θ.

This framework provides for a potentially very large degree of flexibility in the supplier’s action

space, depending on how the cost functions are parameterized. However, we will pay particular

attention to far more realistic settings where, for clarity, convenience, and ease of communication,

the supplier’s flexibility is reduced. For example, it seems reasonable to expect the supplier to

be able to provide rebates to the retailer in order periods to help defray the retailer’s fixed order

costs, or to be able to offer a discounted price in some or all periods. In many cases, it would seem

reasonable to restrict attention to schemes in which the supplier focuses on cost parameters of a

single type, and/or on highly structured rebates, such as stationary absolute or relative rebates

of, for example, fixed ordering costs or the purchase price. Such structured rebates would be

characterized by a low dimension of the set Θ.

We next discuss the follower and leader problems in the Stackelberg game, as well as the set of

feasible incentives and mechanism efficiency in more detail.

3.2.1 Retailer problem

As in the case of independent decision making under the prevailing market (wholesale) prices,

the retailer independently determines an optimal order schedule, but now based on the new cost
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parameters. We will denote the corresponding cost function by Cr(yr|θ), and the optimal value

function to the retailer problem as a function of θ by

Ĉr(θ) ≡ min
yr∈{0,1}T

Cr (yr|θ) .

Let Θ(yr) denote the set of incentives that lead the retailer to select plan yr, i.e.,

Ĉr(θ) = Cr(yr|θ) if θ ∈ Θ(yr). (1)

Of course each set of incentives yields a retailer order plan so that, by definition,

⋃

yr∈{0,1}T

Θ(yr) = Θ.

However, property (1) alone does not guarantee that the sets Θ(yr) form a partition of Θ, i.e.,

that Θ(yr) ∩ Θ(ȳr) = Ø whenever yr 6= ȳr, since the retailer problem may have alternate optimal

solutions. If we assume that the retailer makes the choice that is least costly for the supplier we can

simply redefine Θ(yr) to denote the set of incentives for which yr is an optimal retailer order plan,

i.e., through equation (1). Otherwise, we should assume that we have a partition that implicitly

characterizes which order plan the retailer selects in case of multiple optima. A conservative choice

would assume that the retailer makes the choice that is most costly for the supplier. We will

consider both of these alternatives in more detail later.

3.2.2 Supplier problem

The supplier problem is substantially more challenging to solve, as is often the case for the leader’s

problem in such games. Given a vector of incentives θ ∈ Θ and the resulting retailer order plan yr,

the supplier wishes to optimize its total costs Cs (ys|yr). However, the supplier is also responsible

for covering the difference between the true retailer cost and the cost charged to the retailer under

the incentives. This means that the optimal supplier cost as a function of θ ∈ Θ is given by

Ĉs(θ) ≡ min
ys∈{0,1}T

Cs (ys|yr) +
[
Cr(yr)− Ĉr(θ)

]
θ ∈ Θ(yr), yr ∈ {0, 1}T

= min
ys∈{0,1}T

C (ys, yr)− Ĉr(θ) θ ∈ Θ(yr), yr ∈ {0, 1}T .
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The supplier then chooses the incentives that minimize its cost:

inf
θ∈Θ

Ĉs(θ). (2)

(Note that, at this point, we do not know whether this problem has an optimal solution, hence the

use of “inf” instead of “min”.) This problem can be reformulated as

inf
θ∈Θ

Ĉs(θ) = inf
θ∈Θ

[
min

ys∈{0,1}T
C (ys, yr)− Ĉr(θ)

]
= min

yr∈{0,1}T
inf

θ∈Θ(yr)

[
min

ys∈{0,1}T
C (ys, yr)− Ĉr(θ)

]

= min
yr∈{0,1}T

[
min

ys∈{0,1}T
C (ys, yr)− sup

θ∈Θ(yr)
Ĉr(θ)

]

= min
yr∈{0,1}T

[
min

ys∈{0,1}T
C (ys, yr)− sup

θ∈Θ(yr)
Cr(yr|θ)

]
. (3)

In principle, we could solve this problem by enumerating all 2T potential retailer order plans

yr ∈ {0, 1}T and solve the following problem for each of these:

min
ys∈{0,1}T

C (ys, yr)− sup
θ∈Θ(yr)

Cr(yr|θ). (4)

The first term in equation (4) can be evaluated relatively easily for any given yr by solving a single-

level lot-sizing problem. The second term is, in general, much more challenging. In Section 3.3 we

will study this problem in more detail for practical special cases.

3.2.3 Feasible incentives

Let Θ0 denote the set of incentives that ensures that the retailer’s cost function is concave and Θ1

the set of incentives that ensures that the retailer is no worse off under the incentives than under

the market prices. Furthermore, let Θ2 be some set of incentives that is convenient, intuitive, and

easy to justify to the retailer; for example absolute cost discounts that are nonnegative, or relative

rebates that are between 0 and 1. Then Θ = Θ0 ∩Θ1 ∩Θ2 and clearly we have that

Θ1 =
{

θ : Ĉr(θ) ≤ Ĉr(0)
}

. (5)
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Observe that the supplier will only make such an offer to the retailer (and choose to initiate the

Stackelberg game) if the supplier is better off as a result of the supplier’s optimal offer, which is

guaranteed if 0 ∈ Θ. It is easy to see that 0 ∈ Θ0 ∩ Θ1, and it seems reasonable to assume that

0 ∈ Θ2 as well, which means that any feasible offer by the supplier will improve (or, at least, not

deteriorate) the system performance.

3.2.4 Mechanism efficiency

For a given incentive vector θ ∈ Θ, we can define the corresponding total system costs as

Ĉ(θ) = Ĉs(θ) + Ĉr(θ). (6)

The system costs under optimal manipulated anarchy costs are then given by

CM (Θ) = inf
θ∈arg minθ′∈Θ Ĉs(θ′)

Ĉ(θ).

Moreover, we can express the optimal system costs under (non-manipulated) anarchy as

CA = CM ({0}) = Ĉ(0).

Finally, the mechanism cost under limited coordination, which is used to evaluate mechanism

potential, is equal to

CP = inf
θ∈Θ

Ĉ(θ).

3.3 Lot-sizing costs and linear incentive mechanisms

Considering the specific cost structures from Section 3.1.1, we note that many convenient incentive

mechanisms, such as absolute or relative cost rebates or subsidies, can be represented linearly as

v(θ) = v + V θ, where V 6= 0 is a matrix of appropriate dimensions. (Note that, as desired, we

have v(0) = v.) For convenience, let xr
tτ denote the quantity ordered by the retailer in period t for

satisfying demand in period τ using order plan yr, and let xr be the vector of these elements (note

that yr uniquely determines xr). It is then easy to see that

Cr(yr|θ) = (yr, xr)>v(θ) = (yr, xr)> (v + V θ) = Cr(yr) + (yr, xr)>V θ, θ ∈ Θ(yr),
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i.e., Cr(yr|θ) is linear in θ ∈ Θ(yr), and thus Ĉr(θ) is piecewise-linear in θ ∈ Θ. In fact, it now

follows that

Ĉr(θ) = min
yr∈{0,1}T

(
Cr(yr) + (yr, xr)>V θ

)
, θ ∈ Θ, (7)

so that Ĉr is piecewise-linear and concave in θ. In fact, under the assumption that, in case of

multiple optima, the retailer selects the order plan that is least costly to the supplier, the sets Θ(yr)

are closed polyhedra (where the values of θ for which two such polyhedra intersect correspond to

cases where the retailer solution is nonunique). This has the attractive computational side-effect

that the supplier’s optimum is attained, so that we can replace “inf” and “sup” by “min” and

“max” in equations (2), (3), and (4).

Now a potentially tractable solution approach to the supplier problem can be developed if we

can efficiently identify the closed polyhedra representing Ĉr. Recall that the application of action-

space restrictions can often be of significant practical value. Therefore, we will in the remainder of

this section study action spaces of dimension one and two. In these cases, a significant reduction

in the number of retailer order plans that need to be considered can be achieved, sometimes even

leading to polynomial-time solvability of the supplier problem. Section 4 will then discuss and

study examples of specific incentive mechanisms.

3.4 Single-parameter case

We first consider the case where θ is a scalar parameter (so that both v and V are vectors of the

same dimension as (yr, xr)). By equation (3), the supplier’s problem is to minimize a piecewise-

linear function that is obtained by subtracting a piecewise-linear concave function (Ĉr) from a

step-function whose value only depends on the appropriate retailer order plan yr. The piecewise-

linearity of Ĉr means that we can limit consideration to a finite set of incentives, say Θ̂, to be

determined later. The heart of our approach to the supplier’s problem will therefore be to (i)

obtain an explicit characterization of the function Ĉr, (ii) identify the appropriate retailer order

plan for each candidate incentive θ ∈ Θ̂, and (iii) identify the optimal incentive. We will use

the well-known method usually attributed to Eisner and Severance [10] to achieve (i), a slight

modification of a standard dynamic programming approach to the economic lot-sizing problem for

(ii), and simple enumeration for (iii).
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3.4.1 Characterizing the function Ĉr

We will focus on the (common) situation where Θ0 ∩ Θ2 =
[
θL, θU

]
(where θL ≤ 0 ≤ θU ). The

following method, due to Eisner and Severance [10], can then be used to construct the function Ĉr

on this set as follows:

0. Find an optimal retailer order plan corresponding to both θL and θU ; each of these yields a

line, and the lower envelope of these yields an upper bound on Ĉr on Θ.

1. Let θ̄ be a breakpoint of the current upper bound on Ĉr that has not been investigated yet.

If such a breakpoint does not exist: stop; the current upper bound is Ĉr.

2. Find an optimal retailer order plan under incentives θ̄ and update the upper bound on Ĉr.

Return to Step 1.

Note that if Θ0 ∩ Θ2 =
[
θL,∞)

then in Step 0 the optimal retailer plan corresponding to θU is

replaced by the one that optimizes the retailer problem with cost vector V + defined as

V + = lim
θ→∞

v(θ)
θ

.

Similarly, if Θ0 ∩ Θ2 =
(−∞, θU

]
then in Step 0 the optimal retailer plan corresponding to θL is

replaced by the one that optimizes the retailer problem with cost vector V − defined as

V − = lim
θ→−∞

v(θ)
θ

.

(And of course both in the uncommon situation that Θ0 = Θ2 = R.) Eisner and Severance [10]

show that the running time of this algorithm is O(BR) time, where B is the number of segments

of Ĉr on Θ0 ∩Θ2 and R is the running time required to solve the retailer problem for a fixed value

of θ. Finally, let Θ̂ be the set of breakpoints of Ĉr on Θ (including θL and θU provided these are

in Θ1), supplemented by θ = 0 and the nonzero value of θ satisfying Ĉr(θ) = Ĉr(0) (provided such

a value exists). (Note that if there are more than two solutions to this equation, then Θ1 = R and

no supplemental breakpoints are needed.)
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3.4.2 Identifying the optimal incentive

The supplier’s cost function Ĉs is a piecewise linear function on Θ in which discontinuities and/or

slope changes occur only at values of θ ∈ Θ̂. If we can assume that, in case of alternative optima,

the retailer chooses the order plan that is least costly for the supplier, we also have that Ĉs is lower

semi-continuous, which implies that the minimum of Ĉs is attained for some θ ∈ Θ̂. Alternatively,

if the supplier does not know which alternative optimal solution the retailer will choose and hence

takes a worst-case approach by assuming that the retailer will choose the order plan that is most

costly for the supplier, then Ĉs is upper semi-continuous, which implies that the minimum of

Ĉs is either attained for some θ ∈ Θ̂ or it is not attained and the supplier will choose a value

arbitrarily close to an element of Θ̂. Let us therefore limit our attention to this finite set of values.

As the retailer’s problem for any fixed θ is an economic lot-sizing problem (which can be solved

by dynamic programming, i.e., as a shortest path problem in an acyclic network), we can easily

identify all retailer order plans that are optimal for any θ ∈ Θ̂. Let Y r(θ) denote the set of optimal

retailer order plans for θ ∈ Θ. For a given θ ∈ Θ̂ and an optimal retailer order plan ŷr ∈ Y r(θ), the

supplier then solves an economic lot-sizing problem as well with demands implied by the retailer

order plan. Again assuming that the retailer chooses the order plan that is best for the supplier we

have

Ĉs
1(θ) = min

ŷr∈Y r(θ)

{
min

ys∈{0,1}T
C (ys, ŷr)− Ĉr(θ)

}
θ ∈ Θ, (8)

so that an optimal incentive is θ∗ ∈ arg minθ∈Θ̂ Ĉs
1(θ) and minθ∈Θ Ĉs

1(θ) = Ĉs
1(θ

∗). If, on the other

hand, the supplier does not know which alternative optimal solution the retailer will choose and

takes a worst-case approach we have

Ĉs
2(θ) = max

ŷr∈Y r(θ)

{
min

ys∈{0,1}T
C (ys, ŷr)− Ĉr(θ)

}
θ ∈ Θ,

so that

inf
θ∈Θ

Ĉs
2(θ) = min

θ∈Θ̂
min

{
lim
θ′↑θ

Ĉs
2(θ

′), lim
θ′↓θ

Ĉs
2(θ

′)
}

. (9)

Then the supplier will wish to choose a value of θ arbitrarily close to an element θ∗ ∈ Θ̂ for which

the outer minimum in the right-hand-side of equation (9) is attained, in the direction indicated by
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which of the two expressions attains the inner minimum. For convenience, albeit with a slight abuse

of notation in the latter case, let Ĉs(θ∗) = Ĉs
1(θ

∗) or Ĉs(θ∗) = min
{

limθ↑θ∗ Ĉs
2(θ), limθ↓θ∗ Ĉs

2(θ)
}

,

depending on the assumptions about the retailer behavior.

Finally, this typically means that the system costs under optimal manipulated anarchy are equal

(or very close) to

CM (Θ) = Ĉs(θ∗) + Ĉr(θ∗).

In case θ∗ is not unique we can refine this by assuming that the supplier uses total system cost

(and hence retailer costs) as its secondary objective.

3.4.3 Running time

It follows immediately from the discussion in Section 3.4.1 that the running time required to solve

the supplier problem depends on the number of breakpoints of the continuous concave piecewise

linear function Ĉr. This function is obtained by solving a (1-dimensional) parametric economic lot-

sizing problem where the cost parameters are linear functions of the parameter θ. It is well-known

that a T -period economic lot-sizing problem can be solved as a shortest path problem on a complete

acyclic directed graph with T +1 nodes. Therefore, it suffices to analyze a parametric shortest path

problem in order to bound the number of line pieces and hence the number of breakpoints of Ĉr.

Theorem 3.1. The optimal value function of a one-dimensional parametric shortest path problem

on a complete acyclic directed graph with n ∈ N nodes is no more than 1
2(2n− 1)log2(2n−1).

Proof. Our analysis is based on Gusfield [13], who analyzes a parametric shortest path problem

on general graphs. We start the analysis by considering a one-dimensional parametric shortest

path problem on a complete acyclic directed graph with n ∈ N nodes. Let `n be the maximum

number of segments of the optimal value function of such a problem with n nodes. First, we only

consider values of n that are powers of 2, i.e., n = 2k nodes for some k ∈ N. We will derive an

upper bound on `2n by considering the concave piecewise linear function corresponding to all paths

using arc (i, j) with 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n (see Figure 1). Since the sum of 2 continuous

piecewise linear functions with p and q segments is a continuous piecewise linear function with at

most p + q − 1 segments, this function consists of at most `i + `2n−j+1 − 1 segments. Moreover,
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since every path uses some arc (i, j), it follows that

`2n ≤
n∑

i=1

2n∑

j=n+1

(`i + `2n−j+1 − 1) ≤
n∑

i=1

2n∑

j=n+1

2`n = 2n2`n.

Furthermore, taking n = 2k (so k = log2 n), using `2 = 1, and applying induction on k we obtain

`n = `2k ≤
k−1∏

i=1

2(2i)2 =
k−1∏

i=1

22i+1 = 2
∑k−1

i=1 (2i+1) = 2k2−1 =
1
2
2k2

=
1
2
2log2

2 n =
1
2
nlog2 n.

- - - -

- -

- -

--

1 2 n− 1 n n + 1 n + 2 2n− 1 2n

. . . . . . . . . .
i j

-

Figure 1: Analysis of the parametric shortest path problem

Finally, consider a graph with an arbitrary number of nodes n. In that case, let k = dlog2 ne
and m = 2k, so that m ≤ 2n − 1. Clearly, a complete acyclic directed graph with n nodes is

embedded in a complete acyclic directed graph with m nodes and hence the latter graph can be

used to determine an upper bound on the number of segments. Using the previous results, it follows

that the number of line segments corresponding to the parametric shortest path problem on a graph

with n nodes is bounded by 1
2(2n− 1)log2(2n−1).

(Note that this bound is a slight improvement on the one derived by Gusfield [13], which is equal

to 1
2(2n + 1)1+log2(n).) Applying the result of Theorem 3.1 to the parametric lot-sizing problem

yields the following corollary:

Corollary 3.2. The function Ĉr consists of at most 1
2(2T + 1)log2(2T+1) linear segments.

Note that the bound from Corollary 3.2 grows subexponentially in T , that is, while it grows faster

than any polynomial function it grows more slowly than any exponential function in T . Since the

number of breakpoints and line pieces are of the same order, the supplier problem can be solved in

subexponential time as well. This is summarized in the following corollary.
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Corollary 3.3. The running time required to solve the supplier problem under a linear single-

parameter incentive mechanism is O((2T + 1)log2(2T+1)T 2).

The term T 2 represents the running time required solve a lot-sizing problem with the general cost

structure presented in Section 3.1.1. In Section 4 we will show that the supplier problem can be

solved in polynomial time under some practical coordination mechanisms.

3.5 Two-parameter case

We next consider the case where θ is a two-dimensional parameter vector, i.e., θ = (θ1, θ2). The sup-

plier problem can be solved in a similar way as outlined for the single-parameter case in Section 3.4.

The main difference is in the characterization of the function Ĉr. Note that, in the two-dimensional

case, Ĉr is the lower envelope of a finite number of planes. Hence, Ĉr is a piecewise linear and

concave function in two dimensions and so it is represented by faces, edges (the intersection of two

planes), and vertices (the intersection of three or more planes). Similar to the single-parameter

case, it is not difficult to see that the optimal solution to the supplier problem is found at or near

one of the vertices of Ĉr. Steps (ii) and (iii) remain unchanged except that the term ‘breakpoint’

needs to be replaced by ‘vertex’. Therefore, we will only focus on determining the function Ĉr in

(i).

Let us assume that, as will often be the case, Θ0∩Θ2 = {(θ1, θ2) : θL
1 ≤ θ1 ≤ θU

1 , θL
2 ≤ θ2 ≤ θU

2 }.
The method of Fernández-Baca and Srinivasan [12] can be used to find the vertices of Ĉr. In fact,

they show how to partition Θ0∩Θ2 into convex polygonal regions such that every region corresponds

to a face of Ĉr. The main steps of the procedure are as follows:

0. Find an optimal retailer order plan corresponding to (θL
1 , θL

2 ), (θL
1 , θU

2 ), (θU
1 , θL

2 ) and (θU
1 , θU

2 );

each of these yields a plane, and the minimum of these yields an upper bound on Ĉr.

1. Let (θ̄1, θ̄2) be a vertex of the current upper bound on Ĉr that has not been investigated yet.

If such a vertex does not exist: stop, and the current upper bound is in fact Ĉr.

2. Find an optimal retailer order plan under (θ̄1, θ̄2) and update the upper bound on Ĉr, i.e.,

find the intersection of the new plane and the current upper bound. Return to Step 1.

As shown by Fernández-Baca and Srinivasan [12], the running time of this algorithm isO(FR + F 2)

with F the number of faces of Ĉr and R the running time to solve the lot-sizing problem for a
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fixed value of θ. It remains to intersect Θ0 ∩ Θ2 with Θ1 which, through the application of the

same algorithm, leads to both the addition and removal of a set of breakpoints. Then let Θ̂ be

the set of incentives corresponding to the vertices of Ĉr on Θ (including (θL
1 , θL

2 ), (θL
1 , θU

2 ), (θU
1 , θL

2 )

and (θU
1 , θU

2 ) provided these are in Θ1). In order to determine the running time to solve the

supplier problem, we need an upper bound on the number of vertices. By using Euler’s formula

F +V = E +1 with V and E the number of vertices and edges of Ĉr, respectively, Fernández-Baca

and Srinivasan [12] argue that E = O(F ). In turn, this implies that V = O(F ). This leads to the

following theorem:

Theorem 3.4. The running time required to solve the supplier’s problem under a linear 2-parameter

mechanism is O(FT 2 + F 2) with F the number of faces of Ĉr.

The final step of the algorithm is to determine the optimal incentive. This is straightforward

when we can assume that, in case of multiple retailer optima, the retailer chooses the order plan

that is best for the supplier. As in the case of a single parameter, if the supplier must assume the

worst-case behavior by the retailer, the optimal incentive is not necessarily attained, but a value

with cost that is close to optimal can be found analogously to the procedure outlined in Section

3.4.2.

4 Practical coordination mechanisms

This section describes a set of potential single-parameter mechanisms that may be easily imple-

mented in practice, and which allow characterizing optimal mechanism parameter values. These

mechanisms apply discounts or rebates to various cost types, for the two cost structures discussed

in Section 3.1.1. We first consider mechanisms that apply for all periods in a planning horizon and

later discuss the implications of limiting these mechanisms to particular time windows, or subsets

of the planning horizon.

4.1 Constant discounts and rebates over the full planning horizon

It will be convenient to define the aggregate demand in a sequence of consecutive periods: dtτ =
∑τ

s=t ds. Moreover, throughout this section we will represent a retailer procurement plan by a

sequence of periods t1 < · · · < tn < tn+1 ≡ T + 1 in which an order is placed. In other words, such
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a sequence corresponds to the retailer order plan yr
t = 1 if t ∈ {t1, . . . , tn} and yr

t = 0 otherwise.

The cost of a retailer order plan (t1, . . . , tn) as a function of the incentive parameter θ is then given

by
n∑

i=1


F r

ti(θ) +
ti+1−1∑

j=ti

gr
ti,j(θ)dj


 . (10)

We will discuss practical coordination mechanisms of the following form:

F r
t (θ) = F r

t − φtθ t = 1, . . . , T (11)

gr
tτ (θ) = gr

tτ − γtτθ τ = t + 1, . . . , T ; t = 1, . . . , T (12)

with φt, γtτ ≥ 0 (τ = t + 1, . . . , T ; t = 1, . . . , T ). Although such combined single-parameter

mechanisms are possible, we will limit ourselves to fixed-cost–based mechanisms of the form (11)

(i.e., with γtτ = 0 for τ = t + 1, . . . , T , t = 1, . . . , T ) and variable-cost–based mechanisms of the

form (12) (i.e., with φt = 0 for t = 1, . . . , T ). For mechanisms of the form (11)–(12) the cost of a

particular retailer order plan can be written as a linear function of the incentive parameter θ:

Cr(yr|θ) = C0(t1, . . . , tn)− θC1(t1, . . . , tn) (13)

where the intercept is equal to

C0(t1, . . . , tn) =
n∑

i=1


F r

ti +
ti+1−1∑

j=ti

gr
ti,jdj




and the slope function for the two cases is equal to

C1(t1, . . . , tn) =
n∑

i=1

φti +
n∑

i=1

ti+1−1∑

j=ti

γtijdj .

Moreover, it is easy to see that, in these cases, we have Θ0 = [0, θU
0 ] where

θU
0 = min

{
min

t=1,...,T

F r
t

φt
, min
τ=t+1,...,T ; t=1,...,T

gr
tτ

γtτ

}

(where we interpret the ratio to be ∞ if the denominator is 0). For absolute discounts and rebates,

a choice of Θ2 = R+ seems reasonable. Furthermore, we will parameterize relative discounts in
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such a way that it is intuitive to let Θ2 = [0, 1]. In all of the cases that we will study it turns out

that θU
0 ≥ 1, so that in those cases we could then simply set θU

0 = 1 without loss of generality.

In Table 1, we introduce gr
tτ (θ) and F r

t (θ) associated with several relevant mechanisms, and

identify the corresponding parameters φt (t = 1, . . . , T ) and γtτ (τ = t + 1, . . . , T ; t = 1, . . . , T ). It

is interesting to note that, for some incentive schemes, the slope function takes on a very special

form that allows us to analyze these in more detail. Firstly, for absolute transportation cost

rebates as well as for absolute price discounts in Cost Structure I the slope function reduces to

C1(t1, . . . , tn) = d1T , so that these incentives will not change the optimal retailer order plan since

the cost of any retailer order plan will decrease by the same amount. In other words, these

incentives are not useful for the supplier. Secondly, for absolute order cost discounts we have

C1(t1, . . . , tn) = n. This means that, among all plans with exactly n order periods, the ones that

have a minimum value for the intercept C0(t1, . . . , tn) dominate the others. In other words, the

retailer’s cost as a function of θ has just O(T ) segments, which ensures that the running time of

our algorithm is polynomial in the planning horizon T .

Coordination mechanism gr
tτ (θ) γtτ

Absolute transportation cost rebate
∑τ−1

j=t hr
j + ((ar

t − θ) + ps
t ) (1 + ρr

tτ ) 1 + ρr
tτ

Absolute price discount
∑τ−1

j=t hr
j + (ar

t + (ps
t − θ)) (1 + ρr

tτ ) 1 + ρr
tτ

Absolute holding cost rebate (ar
t + ps

t ) +
∑τ−1

j=t (hr
j + (ar

t + ps
t )ρ

r
j − θ) τ − t

Relative transportation cost rebate
∑τ−1

j=t hr
j + ((1− θ)ar

t + ps
t ) (1 + ρr

tτ ) ar
t (1 + ρr

tτ )

Relative price discount
∑τ−1

j=t hr
j + (ar

t + (1− θ)ps
t ) (1 + ρr

tτ ) ps
t (1 + ρr

tτ )

Relative holding cost rebate (ar
t + ps

t ) +
∑τ−1

j=t (1− θ)(hr
j + (ar

t + ps
t )ρ

r
j ) hr

tτ + (ar
t + ps

t )ρ
r
tτ

Coordination mechanism F r
t (θ) φt

Absolute order cost discount F r
t − θ 1

Relative order cost discount (1 − θ)F r
t F r

t

Table 1: Overview of relevant mechanisms

4.2 Constant price discounts and rebates in a time window

The incentive mechanisms we have discussed thus far have somewhat limited flexibility, because

they require offering the proposed discount or rebate in each period. In this section we will assume

that a particular incentive is only offered in periods T ⊆ {1, . . . , T} (which, although the elements

of T need not be consecutive, we will refer to as a time window) and consider practical fixed-cost

and variable-cost–based coordination mechanisms of the form in equation (11) (where φt = 0 for
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t 6∈ T ) or the following slight generalization of that in equation (12):

gr
tτ (θ) = gr

tτ − γTtτθ τ = t + 1, . . . , T ; t = 1, . . . , T ; T ⊆ {1, . . . , T}

where we are now able to set certain coefficients γTtτ = 0 depending on the time window. For

example, we could have a base set of values γtτ as in Section 4.1 and then define

γTtτ = γtτ1{t∈T } τ = t + 1, . . . , T ; t = 1, . . . , T ; T ⊆ {1, . . . , T}

where 1A denotes an indicator function having the value 1 if event A occurs and 0 otherwise. This

would correspond to a case where a time window based incentive is applied whenever an item is

procured in a period in the time window. We then again obtain equation (13) with

C0(t1, . . . , tn) =
n∑

i=1


F r

ti +
ti+1−1∑

j=ti

gr
ti,jdj




and

C1(t1, . . . , tn) =
n∑

i=1

1{ti∈T }φti +
n∑

i=1

ti+1−1∑

j=ti

γTtijdj . (14)

Clearly there are O(2T ) possible time window choices. In order to ensure that the incentive

scheme remains easily implemented and communicated to the retailer and that the supplier can

identify optimal incentive parameters with reasonable computational effort, the following classes of

time windows could be relevant in practice:

(i) fixed period time window : time window of the form T = {t} for some 1 ≤ t ≤ T ;

(ii) initial periods time window : time window of the form T = {1, . . . , t} for some 1 ≤ t ≤ T ;

(iii) remaining periods time window : time window of the form T = {t, . . . , T} for some 1 ≤ t ≤ T ;

(iv) general time window : time window of the form {t, . . . , τ} for some 1 ≤ t ≤ τ ≤ T ;

(v) periodic time window : time windows of the form ∪m−1
k=0 {t + kT ′, . . . , τ + kT ′} ∩ {1, . . . , T} for

1 ≤ t ≤ τ ≤ T ′, where m = b(T − 1)/T ′c+ 1.
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It is easy to see that there are O(T ) time windows in classes (i)–(iii), O(T 2) time windows in class

(iv), and O(T 3) time windows in class (v). We can apply the procedure developed in Section 3.4

for each potential time window in order to identify the supplier’s best combination of time window

and incentive. However, for some incentive mechanisms applied with a fixed-period time window

(i), as well as for absolute order cost discounts, price discounts, and transportation cost rebates, it

can be shown that our algorithm runs in polynomial time in the planning horizon T (see also the

discussion at the end of Section 4.1). We will discuss these in the remainder of this section.

4.2.1 Fixed period time windows

Under fixed period time windows we assume the incentive is offered only in a single period of the

time horizon, i.e., T = {t̂}.

Fixed-cost–based incentives Under an order cost discount in a single period we obtain that

C1(t1, . . . , tn) =
n∑

i=1

1{ti∈T }φti =





φt̂ if t̂ ∈ {t1, . . . , tn}
0 otherwise

so that, for a given fixed period time window, there are only 2 slope values associated with pro-

duction plan cost as a function of θ, which in turn implies that Ĉr contains at most two line

segments.

Variable-cost–based incentives When the time window based incentive is applied whenever

an item is procured in period t̂, i.e., the values γTtτ are of the form γTtτ = γtτ1{t=t̂} with the values

of γtτ as in Section 4.1, we have that

C1(t1, . . . , tn) =
n∑

i=1

ti+1−1∑

j=ti

γTtijdj =





∑ti+1−1

j=t̂
γt̂jdj if t̂ = ti

0 otherwise

so that, for a given fixed period time window there are no more than T slope values associated with

production plan cost as a function of θ, which in turn implies that Ĉr contains at most O(T ) line

segments.

Similarly, when a holding cost rebate is applied for all items in inventory in period t̂ under Cost
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Structure I we have that γTtτ = hr
t̂
1{t≤t̂<τ}, which yields

C1(t1, . . . , tn) =
n∑

i=1

ti+1−1∑

j=ti

γTtijdj = hr
t̂

ti+1−1∑

j=t̂+1

dj if ti ≤ t̂ < ti+1

so that, once again, for a given fixed period time window there are no more than T slope values

associated with production plan cost as a function of θ, which in turn implies that Ĉr contains at

most O(T ) line segments.

4.2.2 Absolute order cost and price discounts

In this section we consider an arbitrary but fixed time window T .

Absolute order cost discount As noted above, an absolute order cost discount is character-

ized by φt = 1 for t ∈ T . Combining this with equation (14) we obtain that C1(t1, . . . , tn) =

|{t1, . . . , tn} ∩ T |. Analogously to the discussion at the end of Section 4.1 this means that, among

all plans with exactly n′ order periods in time window T , the ones that have a minimum value for

the intercept C0(t1, . . . , tn) dominate the others. In other words, the retailer’s cost is a piecewise

linear and concave function with at most |T | = O(T ) segments.

Absolute price discount (Cost Structure I) or transportation cost rebate Let T be a

general time window of the form {t, . . . , τ}. As mentioned previously, an absolute price discount

(under Cost Structure I) or transportation cost rebate is characterized by γtτ = 1 for t ∈ T .

Combining this with equation (14) we obtain that

C1(t1, . . . , tn) =
n∑

i=1

1{ti∈T }dti,ti+1−1

which implies that the retailer’s cost is a piecewise linear and concave function withO(T 2) segments.
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5 Computational results

5.1 Experimental design

In order to investigate the effectiveness of different coordination mechanisms on the system effi-

ciency, we have implemented and tested the algorithms of Section 3 on five sets of problem instances

with all parameters drawn from an integer uniform distribution over some interval [a, b]. For every

problem set, demands are generated from the interval [1, 20]. The distributions of the other pa-

rameters can be found in Table 2. A single value means that the parameter is time-invariant, and

pw
t is the price charged by a wholesaler to the supplier. Note that the first two sets are equivalent

since the parameters are time-invariant. The retailer faces Cost Structure I in sets A–C and Cost

Structure II in sets A, D, and E. We assume that the supplier faces Cost Structure I for all sets.

Note that the mean values of the parameters of sets B and D are equal to the values of the param-

eters of set A. For comparative purposes, the mean values of sets C and E are set 2 times higher

than the mean values of Sets B and D, respectively.

Set F s
t pw

t hs
t F r

t ps
t ar

t hr
t ρt

A 50 2 2 50 3 3 3 0
A 50 2 2 50 3 3 0 1

2
B 5× [5, 15] [1, 3] [1, 3] 5× [5, 15] [1, 5] [1, 5] [1, 5] 0
C 10× [5, 15] [1, 7] [1, 7] 10× [5, 15] [1, 11] [1, 11] [1, 11] 0
D 5× [5, 15] [1, 3] [1, 3] 5× [5, 15] 3 3 0 1

6 [1, 5]
E 10× [5, 15] [1, 7] [1, 7] 10× [5, 15] 3 3 0 1

6 [1, 11]

Table 2: Characteristics of the problem instances

For every problem set, we generated 100 instances with planning horizons T ∈ {5, 10, 15} for

which the optimal system cost under full coordination is strictly smaller than the system cost

under anarchy, i.e., C∗ < CA (so that system efficiency was well-defined). Overall, for 77% of

all generated instances this was the case, with the corresponding number rapidly increasing in

the planning horizon: the corresponding fractions for T = 5, 10, 15 were 60%, 85%, and 95%,

respectively.

We consider 6 different single-parameter coordination mechanisms including fixed rebates, price

discounts and holding cost subsidies, both in absolute and in relative terms; these are denoted by

Fa, pa, ha, Fr, pr, and hr, respectively. Since ps
t and ar

t are generated from the same distribution in
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our test bed, price discounts and transportation cost promotions will have the same effect on the

system efficiency. Therefore, we only use price discounts as a coordination mechanism and we do

not consider transportation cost discounts.

The lower bounds on the coordination parameter θ are set to zero, which means that the retailer

is not worse off under the coordination scheme. Moreover, the upper bounds on θ are chosen such

that the adjusted cost parameters are non-negative. If this does not hold, the retailer may make an

infinite profit and hence the supplier an infinite loss. For instance, this happens in case ps
t − θ < 0,

in which case the retailer will order an infinite amount in period t.

Besides single-parameter coordination mechanisms, we also test two-parameter mechanisms.

The two-parameter mechanisms consist of all feasible combinations of two single-parameter mech-

anisms as presented before, and hence are still relatively easy to implement in practice. Note that

not all combinations lead to feasible mechanisms. For example, the combination of an absolute

and relative price discount is not feasible in case of time-invariant supplier prices ps
t . All feasible

combinations lead to 12 mechanisms in total.

We assume that the supplier does not know which optimal solution the retailer will choose in

case of multiple alternatives and hence takes a worst-case approach by assuming that the retailer

will choose the order plan that is most costly for the supplier (see equation (9)). Finally, we compare

the single and two-parameter mechanisms when they are either valid over the whole horizon or in a

periodic time window (see Section 4.2). In the latter case, the supplier solves problem (3) for each

time window, and chooses the time window with the lowest cost.

5.2 The results

Table 3 shows the mechanism efficiency (ME) and mechanism potential (MP) when coordination

occurs over the whole horizon (WH) or in a time window (TW) in the case of single-parameter

coordination. We see that holding cost subsidies lead to the largest mechanism efficiency in general.

As already observed in Section 4.1, absolute price discounts over the whole horizon do not lead to

a positive efficiency in the case of Cost Structure I (sets A–C). Under whole horizon coordination,

fixed rebates hardly lead to any efficiency improvements either: no more than 5% on average.

The efficiency improves significantly when coordination occurs in a time window instead of over

the whole horizon. Time window coordination leads to an average efficiency between 56% and 85%
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for at least one of the 6 coordination mechanisms. We observe that the holding cost subsidies lead

to the largest mechanism efficiency in case of Cost Structure II, while this maximum is attained for

either price discounts or holding cost subsidies in case of Cost Structure I. The increase in efficiency

can be explained by the increased flexibility of the supplier; that is, the supplier can set the discounts

in the periods where needed. This leads to higher supplier profits and a higher mechanism efficiency

in general. We also observe that the efficiency under time window coordination is less sensitive to

the length of the horizon than under whole horizon coordination. While the mechanism efficiency

decreases over time under whole horizon coordination, it remains rather stable under time window

coordination.

When comparing the mechanism efficiency to the mechanism potential, we observe small gaps.

Especially when the mechanism potential is relatively low (under 30%), the mechanism efficiency

differs by no more than 2 percentage points. This means that not much efficiency is lost due to the

profit maximizing supplier, but the system as a whole benefits from the coordination mechanism.

We may conclude from Table 3 that the cost of anarchy can be reduced considerably by employing

single-parameter mechanisms.

T = 5 T = 10 T = 15
Set Fa pa ha Fr pr hr Fa pa ha Fr pr hr Fa pa ha Fr pr hr

A WH ME 0.00 0.00 0.74 0.00 0.00 0.74 0.00 0.00 0.63 0.00 0.00 0.63 0.00 0.00 0.56 0.00 0.00 0.56
A WH MP 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
A TW ME 0.04 0.63 0.81 0.04 0.63 0.81 0.09 0.63 0.85 0.09 0.63 0.85 0.13 0.60 0.85 0.13 0.60 0.85
A TW MP 0.04 0.96 1.00 0.04 0.96 1.00 0.10 0.94 1.00 0.10 0.94 1.00 0.13 0.87 1.00 0.13 0.87 1.00

B WH ME 0.03 0.00 0.29 0.05 0.15 0.32 0.02 0.00 0.16 0.03 0.17 0.18 0.02 0.00 0.14 0.03 0.15 0.15
B WH MP 0.06 0.00 0.36 0.09 0.34 0.55 0.07 0.00 0.28 0.09 0.45 0.34 0.05 0.00 0.26 0.07 0.53 0.31
B TW ME 0.24 0.59 0.62 0.24 0.59 0.64 0.30 0.58 0.53 0.30 0.58 0.55 0.27 0.59 0.55 0.26 0.62 0.58
B TW MP 0.24 0.81 0.69 0.24 0.81 0.74 0.31 0.77 0.58 0.32 0.82 0.63 0.27 0.76 0.62 0.28 0.85 0.67

C WH ME 0.04 0.00 0.13 0.04 0.19 0.22 0.02 0.00 0.18 0.02 0.13 0.18 0.02 0.00 0.10 0.02 0.11 0.10
C WH MP 0.08 0.00 0.18 0.10 0.44 0.35 0.05 0.00 0.27 0.07 0.48 0.30 0.05 0.00 0.15 0.07 0.53 0.23
C TW ME 0.25 0.56 0.46 0.25 0.56 0.48 0.27 0.62 0.49 0.26 0.64 0.52 0.24 0.63 0.46 0.25 0.66 0.50
C TW MP 0.25 0.82 0.51 0.25 0.83 0.53 0.28 0.76 0.52 0.28 0.85 0.56 0.25 0.79 0.50 0.27 0.91 0.58

D WH ME 0.01 0.11 0.45 0.02 0.11 0.51 0.01 0.11 0.40 0.01 0.11 0.39 0.00 0.07 0.30 0.01 0.07 0.29
D WH MP 0.02 0.59 0.57 0.03 0.59 0.69 0.02 0.62 0.62 0.05 0.62 0.68 0.01 0.53 0.52 0.02 0.53 0.56
D TW ME 0.22 0.63 0.81 0.22 0.63 0.83 0.21 0.70 0.80 0.21 0.70 0.85 0.22 0.64 0.79 0.23 0.64 0.81
D TW MP 0.22 0.99 0.91 0.22 0.99 0.95 0.22 1.00 0.91 0.22 1.00 0.96 0.23 0.99 0.90 0.23 0.99 0.97

E WH ME 0.03 0.14 0.27 0.04 0.14 0.39 0.01 0.14 0.30 0.01 0.14 0.38 0.01 0.07 0.23 0.02 0.07 0.25
E WH MP 0.05 0.48 0.38 0.07 0.48 0.61 0.04 0.57 0.42 0.06 0.57 0.66 0.03 0.45 0.33 0.05 0.45 0.53
E TW ME 0.27 0.70 0.77 0.28 0.70 0.79 0.24 0.73 0.80 0.24 0.73 0.82 0.28 0.70 0.77 0.28 0.70 0.80
E TW MP 0.27 0.98 0.86 0.28 0.98 0.90 0.25 0.99 0.86 0.25 0.99 0.95 0.29 0.98 0.86 0.31 0.98 0.93

Table 3: Mechanism efficiency and potential for single-parameter coordination

Table 4 shows the mechanism efficiency and potential for two-parameter coordination mecha-
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nisms. For space reasons, we have selected four combinations out of the twelve combinations that

perform well in terms of efficiency. It turned out that an incentive combination consisting of either

holding cost subsidies and price discounts, or holding cost subsidies and fixed rebates performed

best on all data sets. Note that there are no results for the combination consisting of relative

holding cost subsidies and relative price discounts under Cost Structure II (the same holds for

the combination with relative holding cost subsidies and absolute price discounts). The reason is

that the function Ĉr is bilinear in the coordination parameters instead of linear, and hence the

methodology of Section 3.5 can no longer be applied.

As in the single-parameter case, we observe that time window coordination leads to much better

results than whole horizon coordination: in some cases the mechanism efficiency is even twice as

high. Although there is no efficiency improvement under whole horizon coordination for set A

when compared to single-parameter coordination, there is a reasonable efficiency improvement in

the other cases. Time window coordination leads to an average efficiency between 63% and 88% for

at least one of the four selected coordination mechanisms. Furthermore, we see that the mechanism

potential is close to or equal to 100% for at least one coordination mechanism in all cases. This

means that a relatively simple two-parameter coordination mechanism can potentially result in an

(almost) fully coordinated supply chain in terms of system cost.

So far, Tables 3 and 4 have shown that simple coordination mechanisms may lead to considerable

efficiency improvements. However, it is not clear that both the supplier and retailer benefit from

this. Therefore, we report the average retailer share (ARS), maximum retailer share (MRS) and

maximum supplier share (MSS) for a subset of the instances in Table 5. Given a problem instance

and a coordination mechanism, the retailer (supplier) share is defined as the relative part of the

difference between the system cost under anarchy and the optimal system cost under the mechanism,

that comes as a benefit to the retailer (supplier). The average (maximum) retailer share is the

average (maximum) over all instances. A similar definition holds for the average/maximum supplier

share. Note that the average retailer and supplier share add up to 1 and hence we only report the

average retailer shares. Furthermore, Table 5 also shows the number of instances for which an

efficiency improvement (NEI) occurs, i.e., the number of times that a coordination mechanism

leads to a reduction of the cost of anarchy.

It follows from Table 5 that the average retailer share is higher under whole horizon coordination
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T = 5 T = 10 T = 15
Fa, hr ha, pr Fr, hr pr, hr Fa, hr ha, pr Fr, hr pr, hr Fa, hr ha, pr Fr, hr pr, hr

A WH ME 0.74 0.74 0.74 0.74 0.63 0.63 0.63 0.63 0.56 0.56 0.56 0.56
A WH MP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A TW ME 0.81 0.81 0.81 0.81 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
A TW MP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

B WH ME 0.35 0.42 0.37 0.44 0.20 0.27 0.21 0.31 0.17 0.25 0.17 0.25
B WH MP 0.65 0.71 0.64 0.89 0.44 0.70 0.46 0.79 0.35 0.78 0.36 0.84
B TW ME 0.79 0.84 0.79 0.84 0.72 0.77 0.72 0.79 0.69 0.75 0.69 0.77
B TW MP 0.90 0.97 0.90 0.99 0.83 0.97 0.85 0.99 0.83 0.98 0.84 0.99

C WH ME 0.27 0.31 0.27 0.40 0.21 0.27 0.20 0.31 0.12 0.20 0.12 0.22
C WH MP 0.46 0.67 0.45 0.80 0.35 0.74 0.36 0.82 0.29 0.70 0.31 0.82
C TW ME 0.68 0.82 0.68 0.84 0.69 0.77 0.68 0.82 0.63 0.76 0.65 0.79
C TW MP 0.73 0.96 0.74 0.97 0.79 0.98 0.81 0.99 0.76 0.97 0.80 0.99

D WH ME 0.53 0.45 0.53 - 0.41 0.41 0.39 - 0.29 0.29 0.30 -
D WH MP 0.77 0.74 0.71 - 0.71 0.77 0.69 - 0.62 0.64 0.57 -
D TW ME 0.88 0.85 0.88 - 0.88 0.85 0.88 - 0.83 0.82 0.83 -
D TW MP 0.99 0.99 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 -

E WH ME 0.41 0.29 0.42 - 0.39 0.32 0.39 - 0.26 0.26 0.27 -
E WH MP 0.71 0.61 0.66 - 0.71 0.68 0.68 - 0.60 0.59 0.55 -
E TW ME 0.87 0.86 0.88 - 0.87 0.86 0.87 - 0.83 0.80 0.84 -
E TW MP 1.00 0.98 1.00 - 1.00 0.99 1.00 - 0.98 0.99 0.99 -

Table 4: Mechanism efficiency and potential for two-parameter coordination

than under time window coordination. The average retailer share is not more than 22% under time

window coordination, while this quantity is often around 40% under whole horizon coordination.

Apparently, the supplier benefits from the fact that he/she can choose the time window and he/she

gets a bigger share of the total savings. However, the fact that both the maximum retailer and

supplier shares are close to or equal to 1 shows that there is quite some variability in these statistics.

Finally, we see that time window coordination often leads to an efficiency improvement for at least

one coordination mechanism: more than 81 times in the case of single-parameter coordination and

more than 93 times in the case of two-parameter coordination. Again, this suggests that the cost

of anarchy can be reduced considerably by applying the simple mechanisms.

Finally, we report some statistics on the observed running times of the algorithms. For a given

problem instance and a coordination mechanism, the supplier problem is solved in a fraction of a

second. Therefore, we report the number of line segments of the retailer’s optimal value function

Ĉr in the case of single-parameter coordination and the number of faces of Ĉr in the case of

two-parameter coordination. In particular, we counted the (possibly non-unique) production plans

corresponding to line segments under single-parameter coordination, or equivalently, the number

of retailer plans that are optimal for at least two different values of θ. In the case of two-parameter
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Fa pa ha Fr pr hr Fa, hr ha, pr Fr, hr pr, hr

A WH ARS - - 0.42 - - 0.42 0.42 0.42 0.42 0.42
A WH MRS - - 1.00 - - 1.00 1.00 1.00 1.00 1.00
A WH MSS - - 0.97 - - 0.97 0.97 0.97 0.97 0.97
A WH NEI 0 0 70 0 0 70 70 70 70 70

A TW ARS 0.01 0.22 0.11 0.01 0.22 0.11 0.11 0.11 0.11 0.11
A TW MRS 0.27 0.90 0.59 0.16 0.90 0.59 0.59 0.59 0.59 0.59
A TW MSS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A TW NEI 37 86 97 37 86 97 97 97 97 97

C WH ARS 0.32 - 0.30 0.17 0.50 0.44 0.42 0.42 0.40 0.48
C WH MRS 0.86 - 0.75 0.38 0.94 0.96 0.96 0.93 0.96 0.96
C WH MSS 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C WH NEI 4 0 17 4 19 18 22 31 21 34

C TW ARS 0.01 0.15 0.06 0.02 0.16 0.10 0.06 0.10 0.08 0.10
C TW MRS 0.45 0.90 0.56 0.26 0.86 0.88 0.88 0.51 0.88 0.74
C TW MSS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
C TW NEI 60 92 81 60 92 83 93 96 94 96

E WH ARS 0.64 0.27 0.43 0.52 0.27 0.41 0.40 0.45 0.42 -
E WH MRS 0.78 0.98 0.99 0.84 0.98 1.00 1.00 0.99 1.00 -
E WH MSS 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
E WH NEI 2 14 34 5 14 38 38 38 40 -

E TW ARS 0.01 0.17 0.09 0.02 0.17 0.12 0.12 0.10 0.12 -
E TW MRS 0.21 0.80 0.77 0.65 0.80 0.82 0.82 0.77 0.82 -
E TW MSS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
E TW NEI 66 92 97 66 92 98 99 97 99 -

Table 5: Retailer/supplier shares and number of efficiency improvements for T = 15

coordination, we counted the number of (possibly non-unique) production plans corresponding

to faces, or equivalently, the number of retailer plans that are optimal for at least three linearly

independent points θ = (θ1, θ2).

Table 6 shows the number of line segments and faces of a subset of the mechanisms for Set E.

In the time windows case, the averages and maxima are taken over all possible time windows.

Furthermore, the lines denoted by ‘All’ give the maxima over all problem sets. It follows from the

table that the average number of line segments is somewhat lower than T , while the maximum

just exceeds T . The figures show a linear behavior as opposed to the subexponential behavior that

was derived in Corollary 3.2. Clearly, since we have only tested a limited number of instances, no

general conclusions can be drawn. The number of faces seem to increase somewhat faster than

a linear function in T , although the numbers are still relatively small. For example, the possible

number of retailer plans for a 15 periods instance is 214 = 16,384, while the maximum number of

faces encountered equals 84. We conclude that running time is not an issue when applying the

methodology to the instances of our test bed.
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T = 5 T = 10 T = 15

mechanism Fr pr hr Fr pr hr Fr pr hr

E WH Avg 3.2 2 3.2 6 2.9 6.3 8.8 3.2 9.1
E WH Max 5 4 6 8 6 11 12 7 14
E TW Avg 2.1 2.1 2.2 3.4 2.7 3.5 4.8 3.2 4.6
E TW Max 6 5 6 16 9 11 22 15 19

All TW Max 7 6 6 16 11 11 22 18 20

mechanism Fa, hr ha, pr Fr, hr Fa, hr ha, pr Fr, hr Fa, hr ha, pr Fr, hr

E WH Avg 5.2 3.1 6 13.1 5.2 12.1 21.5 6.8 17.8
E WH Max 9 6 8 27 13 17 42 18 24
E TW Avg 3.5 2.9 4.1 7.1 5 9.7 10.9 6.9 15.9
E TW Max 11 10 13 34 23 46 54 36 76

All TW Max 11 10 13 36 24 46 62 50 84

Table 6: Number of line segments/faces

6 Concluding remarks

While a great deal of attention has justifiably been given to two-stage supply chain coordination

problems in the operations literature, to our knowledge, this literature does not account for the

effects of dynamic demands or economies of scale in inventory replenishment. This paper provides

a modeling framework that addresses these complexities, as well as mechanisms that permit a

supplier to improve operations efficiency in a two-stage supply chain when explicit coordination is

not possible. We model this problem as a Stackelberg game in which the supplier sets coordination

parameter values that guarantee that neither party is worse off (when compared to prevailing

wholesale prices). As our computational tests showed, relatively simple and easily implemented

mechanisms involving one or two parameters can indeed lead to non-trivial efficiency improvements

without the need for explicit coordination.
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