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Abstract

Earnings forecasts can be useful for investment decisions. Research on
earnings forecasts has focused on forecast performance in relation to firm
characteristics, on categorizing the analysts into groups with similar behaviour
and on the effect of an earnings announcement by the firm on future earnings
forecasts. In this paper we investigate the factors that determine the value
of the forecast and also investigate to what extent the timing of the forecast
can be modeled. We propose a novel methodology that allows for such an
investigation. As an illustration we analyze within-year earnings forecasts
for AMD in the period 1997 to 2011, where the data are obtained from the
I/B/E/S database. Our empirical findings suggest clear drivers of the value
and the timing of the earnings forecast. We thus show that not only the
forecasts themselves are predictable, but that also the timing of the quotes is
predictable to some extent.
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1 Introduction

Earnings forecasts can provide useful information for investors. When investors in
part rely on such forecasts, it is important to have more insights into how such
earnings forecasts are created. What drives forecasters to give their quotes, that is,
when do they do so and what value will they quote? Answers to these questions are
relevant as the part that can be predicted from factors that are also observable to the
user of the forecast is perhaps not the most interesting part of an earnings forecast.
In fact, it is the unpredictable component of the earnings forecast that amounts to
the forecaster’s true added value, based on latent expertise and knowledge. Hence,
the evaluation of the quality of earnings forecasts should also mainly focus on that
unpredictable part, as that is truly the added value of the professional forecaster.

There is much literature on the properties and performance of earnings forecasts,
but interestingly enough, there is almost no research available on the drivers of the
timing of such forecasts. What makes it that forecasters give their quotes today and
not on any other day, and is the timing perhaps linked with the forecast quote itself?
In this paper we fill this gap by proposing two models for earnings forecasts, one
for the forecast itself and, more importantly, one for the timing of the quote. We
illustrate the methodology for AMD earnings forecasts. Even though this concerns
only a single firm, we are tempted to draw a few generalizing conclusions. Two key
drivers of the timing of earnings forecasts appear to be the time since or to earnings
announcements and the forecasting behavior of other individual forecasters. For
example, the longer ago the forecast was given, the more likely it becomes that a
new quote will be released. All in all, we document that earnings forecasts are to
some extent predictable.

The outline of our paper is as follows. In Section 2 we concisely review the
relevant literature. In Section 3 we discuss the AMD data. In Section 4 and 5
we present the models for the forecast quotes and for the timing. Estimation will
be based on Bayesian Gibbs techniques as we also want to incorporate the days
when no forecasts are quoted, and hence for which some of the relevant variables

are unobserved. Section 6 explores if these two models can somehow be connected.



Finally, Section 7 concludes with various avenues for further research.

2 Literature review

Earnings forecasts have been the topic of interest for many researchers. For an
extensive discussion of research on earnings forecasts in the period 1992-2007, see
Ramnath et al. (2008). For earlier overviews we refer to Schipper (1991) and Brown
(1993).

One stream of earnings forecast research has focused on relationships between
forecast performance and forecaster characteristics. Performance can be measured
in several ways, such as forecast accuracy and forecast impact on stock markets. The
characteristics of these performance measurements have been related to timeliness
(Cooper et al., 2001; Kim et al., 2011), the number of firms that the analyst follows
(Kim et al., 2011; Bolliger, 2004), the firm-specific experience of the analyst (Bolliger,
2004), age (Bolliger, 2004), the size of the firm being followed and of the firm at which
the analyst works (Kim et al., 2011; Bolliger, 2004), and whether the analyst works
individually or in a team (Brown and Hugon, 2009).

There has also been an interest to document how the value of an earnings forecast
is related to what other analysts have forecasted. In particular, herding behavior is
considered, which occurs when forecasters produce forecasts that converge towards
the average of the other forecasters. In this line, there has been an effort to cate-
gorize earnings forecasters into two groups, corresponding to leaders and followers
or to innovators and herders (Jegadeesh and Kim, 2010; Clement and Tse, 2005).
This is interesting as different types of forecasters might have different amounts of
information which can be useful for investors to incorporate into their investment
decisions. A leading or innovating forecast might on average be more useful than
a herding forecast, as the latter will be close to what is already known. This does
not directly imply that leading forecasts are also more accurate, as accuracy and the
type of forecast are not necessarily related. In fact, aggregation of leading forecasts
seems to be a fruitful tactic to produce accurate forecasts (Kim et al., 2011).

Recently, Clement et al. (2011) have studied the effect of stock returns and other



analysts’ forecasts on what analysts do. In contrast to Jegadeesh and Kim (2010)
and Clement and Tse (2005), Clement et al. (2011) do not consider grouping the
forecasters. Instead, they consider how the first forecast revision after a forecast
announcement has been affected by how the stock market and other analysts have
reacted to that forecast announcement. Landsman et al. (2012) also look at how
earnings announcements affect the stock market, where these authors focus on how
mandatory IFRS adoption has influenced this effect. Sheng and Thevenot (2012)
propose a new earnings forecast uncertainty measure, which they use to demonstrate
that forecasters focus more on the information in the earnings announcement if there
is high uncertainty in the existing set of earnings forecasts.

In sum, the value of an earnings forecast has been studied concerning its per-
formance and some of its drivers. Concerning the timing of a forecast, there has
been some theoretical research (Guttman, 2010). An application to empirical data
has been limited to investigating the effect of timing on performance (Kim et al.,
2011). There are no studies which jointly consider the drivers of either the value
or the timing of the earnings forecast. In the present paper we provide such an

examination.

3 Data

We analyze the unadjusted forecasts for yearly earnings per share for the firm Ad-
vanced Micro Devices, Inc. (which is better known by its acronym AMD). A stylized
version of the data format is shown in Figure 1. In this figure, an x corresponds
to the occurence of a forecast on a particular day by an analyst, while one of the
explanatory variables (returns) is observed each day. EA indicates the earnings an-
nouncements, and these are the targeted events of the forecasts. After each EA,
the next EA is the new target of the forecasts, as we limit ourselves to within-year
forecasts, which are the forecasts that are produced for the yearly earnings announce-
ment of the current year. The figure further shows several typical properties of the
data, that is (i) the occurence of forecasts is irregular; (ii) some forecasters produce

forecasts more often than others; (iii) some forecasters produce on a more regular



basis than others; (iv) some forecasters only become active at a later stage; and (v)
some forecasters stop making forecasts.

We only use within-year data, so we discard forecasts that target at future yearly
earnings announcements instead of the first upcoming announcement. We do so to
avoid additional (and complicated) correlation between several forecasts from the
same forecaster for different earnings announcements.

For AMD, we investigate the period from January 9th 1997 to September 14th
2011. In this period 129 forecasters have produced at least one yearly earnings fore-
cast for AMD. The period amounts to 5373 days for which we observe whether a
forecaster produces a forecast or not. In total 2589 forecasts have been produced.
Figure 2 shows the distribution of the number of the forecasts per forecaster. The
minimum number of forecasts per single forecaster is 1, while the maximum number
is 92. The number of forecasts produced by a forecaster is heavily skewed. Many
forecasters produce few forecasts, while a few forecasters produce many. The fore-
casts and their dates have been taken from the I/B/E/S database. The time it takes
to convert the data from this source into daily observed variables is the main reason
that we only consider AMD in the present study.

We also use stock market related variables, which are based on the NYSE quotes,
normalized to 1 on the first day of the sample, January 9th 1997. As a measure of

returns, we use log-returns.

4 Modeling the value of earnings forecasts

In this section we present a model for the value of the earnings forecasts. We
also present the explanatory variables and then apply the model to our data as an

llustration.

Model specification

Let y;; denote the forecast of forecaster ¢ quoted on day ¢, if actually observed. This
indicates that we have different time series with forecasts for every forecaster. As

new information becomes available only gradually over time, the forecasts also will



differ over time. And, contemporaneous forecasts produced by different forecasters
will most likely not be the same, see Figure 3. To visually highlight which forecasts
are produced by the same forecaster, we interpolate linearly between two subsequent
forecasts produced for the same earnings announcement. Figure 3 seems to show that
the different forecasters follow a similar pattern over time. This seems to suggest
that most of the variation in the forecasts might be captured by variables that only
change over time, and not by individual-specific variation.

We propose a simple model relating ¥, + to other variables Z;_;, that is,

Yig = V-1 + Mig (1)

with 7;; ~ N(0,07) denoting the ideosyncratic shock. Z,_; contains an intercept
and relevant regressors that are highly correlated with the forecast and which are
the same for all forecasters. Our choice of regressors will be discussed below.

If the parameter estimates for the model are known, the model can also be used
to construct estimates of forecasts for days when no forecasts are quoted. For this,
we use the notation y;,. The forecast revision for the same target is the difference
Yi 1 — Yi,s, when the last available forecast by forecaster ¢ on day ¢ has been produced
on day s;. This estimated variable will be used later as a regressor in the timing
model, to be discussed in Section 5.

We will estimate the parameters of this model using a Bayesian approach (Gibbs
sampling), using a diffuse prior on v and a degenerate inverted Gamma-2 prior on

o7 (p(o7) o 0,%). Using the draws of v and o we can then construct draws of y;,.

Choice of regressors in the value model

We now discuss which regressors we will use in the vector Z;_;. We decide to consider
the average of the forecasts that are observed and the stock price. Figure 4 seems to
confirm our choice of regressors as the patterns are rather similar. As the individual
interpolated forecasts are similar to each other and thus also to their average, the
individual forecasts could very well be modeled using these regressors.

In sum, we define Z;_; as

Zi = [1 MF,_, ptfl] (2)



with MF,_; = %Z?:l Yi.s,_, denoting the average of the relevant forecasts of the
forecasters at time ¢ — 1 (which are the most recent forecasts made for the same
earnings report) and with p;_; denoting the stock price at time ¢ — 1.

This means that (1) can be written as y;; = yo+71MFi_1 +vepi—1+nip. Iy =
v2 = 0 and y; = 1, then new forecasts are on average equal to the previous averaged
forecasts for the same earnings announcement. When ~; # 1, the forecasts are on
average moving away from their previous average values. For example, if 7 > 1,
this would mean that new forecasts are on average higher than previous forecasts in
the same year. If the new forecasts are also better forecasts, this information could
be used to improve the previous forecasts. A similar situation occurs if 74 = 1, but

Yo > 0 (while o = 0).

Empirical results for AMD

As an illustration, we will now present results of the Gibbs sampling to estimate the
parameters of (1). Details can be found in Appendix A.1, which also contains the
convergence criteria.

Results on the posterior density of the parameters are in Table 1. The estimated
mean of the M F;_; coefficient shows that (ceteris paribus) an increase in the average
observed forecast results in about a similar-sized increase in the individual forecasts.
Interestingly, this parameter of MF; ; seems to be quite in excess of 1 (at least
when using the 95% HPD region), indicating that for this data the forecast updates
were on average positive. This could be due to an upward trend in the forecasts
throughout the year, but it could also be that the more positive forecasters have
updated their forecasts more often. Another possibility is that this v; > 1 is only
due to 79 < 0. The interpretation of this result of 5 is that a higher stock price is
related to a decrease in the forecast, while keeping the average forecast constant.

In sum, the parameter estimates are not too far off from the case with vy = 0
and v; = 1. Apparently, earnings forecasters produce new forecasts that are about
equal to the previous average observed forecast plus a negative effect of previous-day

stock returns.



5 Modeling the timing of earnings forecasts

In this section, we present a model for the timing of the earnings forecasts. We also

discuss the explanatory variables and then we apply the model to our data.

Model specification

Let g;; be a binary variable indicating whether or not forecaster 7 has quoted a new
forecast at time ¢. For modeling this ¢, ;, we will use a dynamic probit model, which

uses variables contained in a vector X;; as regressor, that is,
P(gir = 1) = ©(Xif8), (3)
where @ is the CDF of the normal distribution. This model can also be written as

Wiy = X8+ iy (4)

Gy = Tw;y > 0] (5)

with &;; ~ N(0,02) the ideosyncratic shock and I[.] the indicator function which is
equal to 1 if its argument is true and 0 otherwise.

For identification reasons, o2 will be set equal to 1. The elements of 3 are
estimated using a Gibbs-sampling procedure with a diffuse prior on £, just like for ~

in Section 4. Data Augmentation will be applied to obtain simulated values of w; ;.

Choice of regressors in the timing model

As regressors in X, we use various types of variables. We use general timing vari-
ables, stock market information for the firm under study, aggregate information from
all analysts, individual track record of forecaster ¢, and the forecast update compared
to the previous forecast by forecaster i. We will now discuss each of the regressors
and hypothesize expected signs of their coefficients. An overview of all regressors
can be found in Table 2.

Considering the general timing variables, we choose to incorporate the time dis-
tance of ¢ to the previous and forthcoming yearly earnings report (TSR and TUR)
and also the intermediate quarterly reports (TQ1, TQ2 and TQ3). Their corre-

sponding variables have all been constructed as a measure of distance (in contrast
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to closeness) to the respective event, namely by using log(|number of days|+1). The
absolute value reflects that we expect a similar forecasting probability just before
the event as just after. The logarithm reflects that the difference in effect between,
for example, 2 and 3 days before the next event will be larger than between 45 and
46 days. We expect to see a larger forecasting probability in the vicinity of a new
report, which corresponds to a negative sign for these regressors.

For the stock market, we consider the daily returns of the AMD stock on the
NYSE and its absolute value as a measure of volatility. We expect large returns (in
absolute sense) to be a conveyor of new information on the firm, so we expect a pos-
itive sign for AbsRET. The sign of the coefficient of RET then depends on whether
positive or negative returns have a larger impact on the updating probability. Due
to optimism (Easterwood and Nutt, 1999), we expect the forecasters to react more
to positive shocks, and hence we conjecture a positive sign.

Concerning the aggregate actions of all analysts, we make use of the total number
of forecasts on the previous day, together with the change in the mean of all the
available forecasts and the absolute value of the change in mean. It could be that
forecasters respond more due to general activity of others (which corresponds with
SQL, the number of forecasts on the previous day), but it could also be that they
only react more if these actions are of a large size (corresponding with AbsDMF,
the absolute change in the mean forecast). In either case, we expect both of these to
have positive coefficients. For DMF it could go either way, but as before for RET,
we expect a positive sign due to optimism.

For the variables related to the track record of the forecaster, we include whether
a forecaster has already been active for this firm this year (ACT). We expect that
forecasters may eventually stop following a firm after following it during previous
years. In such a situation, the associated parameter is negative. Also, if a forecaster
has already produced a forecast yesterday (QL), he will not be inclined to do it
again today since that would make him seem unreliable. In general, the effect of
the time since the last forecast (TSU) is less clear. It could be a positive effect as
the forecaster might want to regularly update his forecast, but it could also be a

negative effect if after a long time (but still within the same year) the forecaster



decides to stop following the firm. Given the irregularity of the forecasts, we expect
the latter option to be more likely and thus we expect a negative sign for TSU.
The variables corresponding to the forecast updates of the forecaster are both
based on our conjecture that forecasters are more likely to update their forecasts if
their current forecast is very different from the one that is now publicly available.
This would be reflected by a positive sign for AbsDYY, while for DYY we again
expect a positive sign due to optimism. The forecast update will be based on the

draws of y;, as discussed in Section 4, which makes the update equal to y;, — v,

Empirical results for AMD

As an illustration, we will now present the results of the Gibbs sampling to estimate
the parameters of (4). Details can be found in Appendix A.2, which also contains
the convergence criteria.

Table 3 contains the results of the Gibbs estimation. We present the mean and
several other properties of the distribution of the parameters. Values of the mean
in boldface indicate that 0 is outside the 95% HPD region and that the sign is as
expected. If the values of the mean are in italics, then 0 is outside the HPD region,
but the sign is not as expected.

Also shown in the figure is a column with the header StCoef. This standardized
coefficient would have been the mean of the distribution of the coefficient if we
would have standardized the regressors beforehand. This is needed to compare
the explanatory power of the different regressors, as larger values of StCoef (in an

absolute sense) correspond to more explanatory power.

Parameter estimates and fit

The results show that there is no single variable that explains the bulk of the varia-
tion. The two variables with the largest coefficient estimates (StCoef) are ACT and
TSU, which are two of the three variables that associate with the individual track
record. The estimates confirm our expectation (i) that forecasters that have not yet
been active in this current year have a smaller probability of producing a forecast

than those who have been active already and (ii) that the more time has passed
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since the last forecast, the smaller is the probability of a new forecast.

Other variables with much explanatory power are the general timing variables
that are the same for all forecasters. These are the time since the last report and
until the next report, and the time distance to the quarterly reports. These all have
negative posterior estimates as we expected, which shows that forecasters become
more active just before and after an official firm event.

The other variables have varying explanatory power. SQL and QL have almost
opposite estimates (with signs as expected). This shows that the day after his own
forecast a forecaster will not quickly produce a new forecast, but he will produce
a new forecast the day after many forecasts by all other forecasters. This might
be due to reacting to the other forecasters, but it could also occur because there
has been some unexpected firm information and that some forecasters are a bit
slower to respond than others. Both stock market related variables do not contain
much explanatory power. It can be seen that large returns tend to be followed by a
forecast a day later, in particular when large returns are positive. The change in the
aggregate forecast has a significant but small effect on the probability of producing
a new forecast. The parameter of DMF is the only (significant) estimate that has
an unexpected sign.

Surprisingly, the two variables for which 0 is contained in the HPD region (DYY
and AbsDYY) are the two forecast update variables. This indicates that forecasters
ignore the value of their own past forecast in deciding when to produce a new one,
even though they do not ignore the timing of their past forecast (indicated by the
coefficients for ACT, TSU and QL).

Overall, the highest value of McFadden R? across all draws is equal to 0.118,
which is high for probit models, certainly for sample sizes like ours. We conclude

that the timing of the earnings forecasts can be modeled quite well.
Fit per category

Table 4 shows the joint explanatory power per cluster of variables, calculated by
summing the absolute values of the standardized coefficients. It can be seen that

the majority of the explained timing of the forecasts is explained by general timing
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variables and variables corresponding to the individual track record (together 82.7%).
The activity of all forecasters and the stock market contain only little information,

and the effect of the forecast update itself is negligible.

6 Correlations between the shocks of both models

In the previous sections, we have discussed a linear model for the value of a forecast
(yir = vZi—1+m;¢) and a dynamic probit model for the timing of a forecast (slightly
rewritten to ¢;; = Ifw;;y = X;;5 > —ei4]). These models have been discussed
independently, but it might well be that they are related. In this section, we discuss
two extensions that both capture an interaction between the two models. The first is
a correlation between the shocks in both models and the second is a relation between

the occurence of tail values for both models.

Correlation between the errors

In this subsection we allow for correlation between 7;, and ¢;, using a joint model.
If this correlation is positive, this suggests that optimistic forecasts (forecasts above
what is to be expected on the basis of (1)) are faster quoted than pessimistic fore-
casts. If the correlation is negative, the reverse is true: pessimistic forecasts will
have a larger probability of being quoted than optimistic forecasts.

Allowing for a correlation p between both shocks is equivalent to defining the

2
. . o o : : o
covariance matrix ¥ = [ © 5277} with 0., = po.o, the covariance. Similar as
Oy O
"

in Section 5, we need to restrict o. to 1 for identification. This suggests using
Y= {‘71?7 (Z}:’} , but as it is not obvious how to sample the covariance matrix using
this specification, we instead follow the reparametrization of McCulloch, Polson and
Rossi (2000): X = E qbf,oQ]' In the sampling routine, we use the degenerate
inverted Wishart prior p(X) oc |%|73/2. Details can be found in Appendix A.3.

As can be seen in Table 5, the results show that there is no clear evidence of a
correlation between the two models, that is, 0 is almost in the center of the HPD

region of p,.. This means that positive and negative forecasts are produced with the

same probability.
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As there is not much correlation, the results of the other parameters are also

almost the same as in the two separate models.

A posteriori evaluation of correlation of tails

Another possibility is that tail forecasts are produced with a different probability
than forecasts that do not differ much from the general expectation. To see whether
this is the case, we calculate the correlation between 77, and &7, Alternatively,
we also calculate the correlation between |n;;| and |g;;|. In both cases, a positive
correlation indicates that the tail forecasts are produced at unexpected moments,
while normal forecasts are produced more often at normal forecasting moments.
A negative correlation indicates that tail forecasts tend to be produced at normal
forecasting moments, while normal forecasts would occur more often at unexpected
forecasting moments.

We do not incorporate this possibility directly into the model, but calculate these
correlations a posteriori for each iteration in the Gibbs sampler. This means that we
base this measure on the estimated residuals. As we calculate it for each iteration,
this procedure provides us with a density of the tail correlations.

We calculate the above measure only for ¢;; = 1, as for ¢;; = 0 the 7, is not
observed but simulated instead. This simulation is of course independent of the ¢, ;
as we do not model this type of correlation. Because of this, we only focus on the
values of n;; and €;; for when ¢;; = 1.

Table 6 contains the correlations between the tails of the two forecast residuals.
It can be seen that there is virtually no correlation between the size of the residuals
of the two models, no matter if one uses the absolute or the squared measure. This
means that tail values of the forecasts do not coincide with unexpected timing of the
forecasts. It is also not the case that they are contrasting each other, such as would
be the case if unexpected timing results in forecasts that are closer to the general
expectation than otherwise.

Next, there is also no significant autocorrelation in the residuals (bottom row
of Table 6. This means that there is no sign that extreme-valued or unexpected

observations occur two days in a row.
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7 Conclusion

The methodology that we presented in this paper can be used to elicit the drivers of
earnings forecast values and of the timing of such quotes. We illustrated our models
for earnings forecasts for AMD, and we found that both value and timing are quite
predictable.

Of course, our findings concerned only a single firm, and future work should
indicate whether our current findings hold true more in general. A second issue for
further research concerns the models themselves. At present, we have assumed that
the model parameters are the same across all forecasters. However, it might well
be that there are clusters of forecasters who display similar behavior, and for who
different drivers might prevail. This would build on the recent studies in Jegadeesh
& Kim (2010) and Clement & Tse (2005).

A third, and more involved, avenue for further research relates to the evaluation of
the quality of earnings forecasts. As we have demonstrated in this paper, apparently
an earnings forecast can be decomposed into a part that is predictable using an
econometric model which includes publicly available information, and a part that is
not predictable as such. Intuitively, one would reward the qualities of an earnings
forecaster more if higher accuracy is associated with a larger unpredictable part.
This leads to a new look at evaluating the accuracy of earnings forecasts, and we

relegate this to future research.
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A Additional results of the Bayesian inference

In this appendix we present additional results of the Bayesian inference, including

the relevant Gibbs samplers and the convergence criteria.

A.1 The model for the value of the forecast
Gibbs steps

For the model for the value of the forecast, we need to draw 7|0, y;; and o,|7, y;..
Additionally, we also want to construct draws of y;,|v, o, for the cases in which we
do not observe y; ;.

As the formulation of (1) is that of a linear regression model, we can use stan-
dard results, such as documented in (Zellner, 1971). This means that v|o,, y;: ~
N(¥,0,(Z2'Z)~1) with 4 the OLS estimate of (1) and Z the matrix containing the
regressors. Also, o,|7,y;; is distributed as IG(Y (viy — Ziyy)?, nobs), with IG de-
noting the Inverted Gamma distribution, with Z;; containing the regressors and
with nobs = ) ¢;; equal to the number of observations that we have for y; ;.

To simulate values of y;, given v and o,,, we just simply use y;;, ~ N(Zv,0,),

which follows directly from the formulation of (1).

Convergence criteria

Table A1 shows the convergence criteria for the value model. To find out whether the
draws have converged, we split the data into two parts and test whether the means
are equal. Due to the Markovian nature of the draws, one needs to include an AR(1)
term in the testing equation and/or use standard errors that are consistent when
there is serial correlation. As can be seen, for none of the parameters convergence
is rejected at any reasonable significance level.

Also shown are the effective sample sizes for the different parameters, which
corrects for the fact that new draws do not contain 100% information if there is
autocorrelation. Due to the low autocorrelation in the draws, the effective sample
size is equal to the true sample size in this case. In fact, one can see from the Gibbs

steps for this model that the draws of + are also in theory uncorrelated.
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A.2 The model for the timing of the forecast
Gibbs steps

For the model for the timing of the forecast, we need to draw B|o.,y;;, ¢ and
0|8, Y5y, ¢i With y, taken directly from the draws of Appendix A.1. To do this,
we apply Data Augmentation (Dempster et al., 1977), which means that we also
construct draws of w;|3, 0., y;, ¢y and use these to draw Blo.,y;,, wis, ¢y and
er,yf,t,wi,t,%,t-

Given w;,, the formulation of (4) is that of a linear regression model, so we
can use standard results from (Zellner, 1971). This means that Blo., y;;, wis, Giz ~
N(B3,0.(X'X)~") with § the OLS estimate of (4) and X;, the matrix of regressors as
in Table 2. Also, o.|83,y;;, Wiy, ¢y is then distributed as IG() (wis — XiB)%, N),
with X, containing the values of X for forecaster 7 at time ¢t and with N equal to
the total number of observations.

To simulate values of w; |3, o<, ¥, Git, we use the formulation of (4): if ¢;; =1,
this means that w;; > 0 which is equivalent to €;; > —X; ;8. This means that in this
case we need to draw ¢;; from N (0, 0.), truncated from below by —X; .. Similarly,
if ¢+ =0, w;y < 0 and thus ¢;; < —X,;;4. In this case, we need to draw ¢;; from
N(0,0.) truncated from above by —X,,5. Using these draws of ¢;; we can then

construct draws of w;; = X; 5 + €.

Convergence criteria

Table A2 shows the convergence criteria for the timing model. As above, we have
split the data into two parts and tested whether the means are equal to find out
whether the draws have converged, using again an AR(1) term in the testing equa-
tion. As can be seen, for one of the sixteen parameters, convergence is rejected at
the 5% level. This is not directly a sign that the total system has not converged, as
the probability of rejecting one of sixteen hypotheses at the 5% level is quite large.

Also shown are the effective sample sizes for the different parameters. The auto-
correlation in the draws is quite high (between 0.74 and 0.97), so the effective sample

size is quite a bit smaller than the number of draws. Still, the distributions of all
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parameters are effectively based on at least 1500 almost-independent observations,

which is large enough to have a satisfactory sample distribution.

A.3 The combined model with correlation

Gibbs steps

For the combined model with correlation, we again apply Data Augmentation. This
means that we need draws of 38, v|3, y;';, wis; of X8, 7, yiy, wis; of yiyly, X, wiy; and
of wi|B,7, %, Y5y, ¢ir- Most of the Gibbs steps are obvious extensions of the steps in
the separate models.

First, § and v can be drawn simultaneously, as shown in for example (Zellner
and Ando, 2010). Define B = [5 } To combine X and Z into one large regressor
matrix, we need to incorporate the correlation between both models, which can be

done using the Cholesky decomposition L'L = X~!. This results in the definition

of X — {L1,1X Li2Z Lijw+ Loy ] Then, B’Ew;’t’wi,t -

Ly X L2,2Z} Stmilarly, § = [L271w+L272y*
N(B,(X'X)~") with 3 the OLS estimator (X'X)~'X".

A

For X|8,7,y;, wis, the situation is not standard as the element correspond-

ing to 02 needs to be restricted to 1. We follow the solution of McCulloch et al.
L »p
p o+p

P|¢75a%y;tawi,t ~ N((Zi,t 512,75)71(21‘,15 EitTit)s cb(Zzt 51271:)_1)- To obtain a value
for (b? use ¢’p7 67 s y:ﬁ Wit ~ IG(Zz,t (Th,t - pgi,t)27 N)

To draw values of the distribution of w; |5, 7, %, Y71 i, we first calculate the

(2000), who propose the reparametrization 3 = { } Using their results,

full conditional distribution, which is N(u%,0%) with pf = X' + %(y* — Z'y)

2
and o) = (/1 — Ug";, using the conditional expectation and standard deviation in
n

case of two normals and the indication assumption o, = 1. Then, this conditional
distribution is truncated using the information in ¢;; as in the separate timing model,
making sure that w;; > 0 if ¢;; = 1 and w;; < 0 otherwise.

Finally, to obtain draws of the distribution of y;, given v and o,, we again use
a conditional normal distribution y* ~ N(uy,o0y), with uy = Z'y + oy (w — X'3)

2 — g2 again using that o, = 1.

[ —
and oy = \/o, — 0p,
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Convergence criteria

Table A3 shows the convergence criteria for the combined model. As before, we have
split the data into two parts and tested whether the means are equal to see if the
draws have converged, using again an AR(1) term in the testing equation. As can
be seen, for one of the 21 parameters, convergence is rejected at the 5% level (as p
is a function of 0727 and o0,.). This is not directly a sign that the total system has
not converged, as the probability of rejecting one of 21 hypotheses at the 5% level
is quite large.

Also shown are the effective sample sizes for the different parameters. For the co-
efficients, the autocorrelation in the draws is quite high (between 0.74 and 0.97), so
the effective sample size is quite a bit smaller than the number of draws. Still, the dis-
tributions of all parameters are effectively based on at least 1500 almost-independent
observations, which is large enough to have a satistfactory sample distribution. For
the covariance, the autocorrelation of the draws is even higher (almost 1), indicating

that for this parameter the number of draws might have been too low.
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