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1 Introduction

Accurate measures and forecasts of asset return covariances are important for financial risk

management and portfolio management. Recent academic research in these areas has focused on

two different issues. First, intraday data has been shown to render more precise measures and

forecasts of daily asset return volatilities and covariances. Second, for the practically relevant

case of portfolios consisting of a large number of assets, factor structures have been found useful

to tackle the “curse of dimensionality”. In this paper we put forward a novel approach for

accurate measurement and forecasting of the covariance matrix of vast dimensional portfolios by

combining the use of high and low-frequency data with a linear factor structure. Specifically, we

introduce a “mixed-frequency” factor model (MFFM), where high-frequency data on relatively

liquid factors is used for precise estimation of the factor covariance matrix and idiosyncratic risk

whereas the factor loadings are estimated from low-frequency data.

In recent years, a substantial body of literature has emerged on the use of high-frequency

data for obtaining more accurate measures and forecasts of financial risk, see e.g. Andersen

et al. (2006a) and McAleer and Medeiros (2008) for recent reviews. For the multivariate case

Barndorff-Nielsen and Shephard (2004) introduced the so-called realized covariance, summing

the cross-products of intraday returns. Market microstructure, however, poses two challenges:

First, transactions take place against bid and ask prices, causing overestimation of the volatility.

Second, non-synchronous trading of stocks biases covariance estimates towards zero. Several co-

variance estimators have been proposed that are robust to microstructure frictions. Focussing on

the bi-variate case Bandi and Russell (2005) illustrate how to choose the optimal sampling fre-

quency for the realized covariance in the presence of microstructure noise. Hayashi and Yoshida

(2005) propose an “all overlapping” returns estimator that is robust to non-synchronous trading.

Griffin and Oomen (2011), Martens (2006), and Voev and Lunde (2007) provide further insights

into the properties of the Hayashi-Yoshida and lead-lag adjusted realized covariance estimators

in the presence of non-trading and microstructure noise. Zhang (2011) extends the two-scales

estimator of Zhang et al. (2005) to covariance estimation. Moving beyond a bi-variate setting,

Barndorff-Nielsen et al. (2011) introduce multivariate realized kernels which deliver consistent

and positive semi-definite covariance matrix estimates. For these multivariate kernels so-called

refresh time-sampling discards a substantial part of the available high-frequency data, although

Hautsch et al. (2012) propose a block approach to reduce this problem. None of the aforemen-

tioned approaches, however, can empirically cope with a universe consisting of hundreds or even

thousands of stocks that make up most stock market indices used to benchmark fund managers.

Recently Fan et al. (2008) have revisited the use of factor models for covariance estimation

in case of a large number of assets, in order to reduce the dimensionality of the problem. They
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show that the factor model approach improves over the sample covariance matrix (based on

daily data) in particular when the portfolio optimization problem requires the inverse of the

covariance matrix. The reason is that in the factor model approach only the factor covariance

matrix needs to be inverted, which typically is of much lower dimension. In addition, using the

covariance matrix based on a factor structure reduces the problem of error maximization for

portfolio construction applications, see for example Jagannathan and Ma (2003).

With the MFFM we introduce a novel methodology that exploits the advantages of both high-

frequency data and the factor model approach: It enables more efficient estimation of covariances

whilst still being able to cope with a very large number of stocks. The covariance matrix based on

the factor model requires three estimates: The covariance matrix of the factor returns, the factor

loadings, and the stock-specific variances. Without compromising the consistency and positive-

definiteness of the resulting covariance matrix we can choose different sampling frequencies for

each of these three estimates.

First, in the MFFM approach we use realized covariances obtained from high-frequency in-

traday returns to estimate the daily factor covariance matrix. This is motivated by the fact

that nowadays highly liquid financial contracts such as index futures and exchange-traded funds

(ETFs) are available as proxies for the most commonly used factors. This further increases the

added value of high-frequency data because microstructure frictions are relatively small. For this

reason the factor covariance matrix can be estimated with high precision from intraday data.

Second, we estimate the factor loadings using daily data for the reason that single-day betas

based on high-frequency data are very noisy due to the non-synchronicity between factor returns

and stock returns, see for example Andersen et al. (2006b), Todorov and Bollerslev (2010) or

Hansen et al. (2010) for related discussions.

Finally, although intraday data is also available for individual stocks, these are generally less

liquid than index futures and ETFs. Hence, we can use intraday data for stock-specific variances,

but possibly at a lower frequency than the one used for the factor covariance matrix.

We provide theoretical, simulation-based and empirical evidence that the MFFM offers a

useful approach for estimating vast dimensional covariance matrices. In the theoretical part of

this paper we show that, assuming i.i.d. microstructure noise and a Poisson arrival process for

non-synchronous trading, the covariance estimates of the MFFM are unbiased and we obtain

a closed form expression for the variance of these covariance estimates. Based on analytical

expressions for the variance of the estimators, we show that the MFFM improves substantially

in terms of efficiency over that of the popular Hayashi and Yoshida (2005) and realized covariance

(lead-lag) estimators.

Next, we use Monte Carlo simulations to show that also when we relax several of the assump-
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tions underlying the theoretical results and move from the bi-variate case to a realistic setting

of 500 assets, the MFFM estimator is superior to the realized covariance estimator.

We empirically evaluate the MFFM estimator by comparing its performance to the (sample)

realized covariance and a factor model based on daily returns. We consider three stock universes:

The S&P 500 (large caps, most liquid), the S&P 400 (mid caps), and the S&P 600 (small caps,

illiquid). To the best of our knowledge, we are the first in the literature to consider such high

dimensional problems involving high-frequency data. Of course, in the empirical case unlike for

the theory and simulations we do not know the true covariances. For this reason we analyze two

empirical applications. First, we use Mincer-Zarnowitz and forecast encompassing regressions to

obtain insights in the ability of the MFFM to forecast the volatility of vast dimensional portfolios

out-of-sample. Second, we evaluate the performance of minimum tracking error portfolios.1 We

find that in each of the three S&P universes the out-of-sample MFFM portfolio volatility forecasts

improve upon realized covariance and daily factor model forecasts when we rank the forecasts

on their Mincer-Zarnowitz R2. Using encompassing regressions, in which we add the realized

covariance or daily factor model forecasts to MFFM we find that the coefficient on realized

covariance and the daily factor model is negative. Adding these forecasts to the MFFM forecasts

improves the MFFM forecasts only marginally. When the objective is to track a benchmark using

out-of-sample covariance matrix forecasts, the MFFM provides smaller tracking errors and much

smaller portfolio turnover than the realized covariance. Conventional factor models based on

daily data manage to achieve a similar tracking error as the MFFM, but only if a long historical

data period is used. This is due to the fact that it needs a substantial amount of smoothing,

whereas the MFFM can manage the same performance with a very short span of historical data.

In addition, the portfolio turnover of the daily factor model is about three times larger than the

MFFM turnover. For forecasting portfolio volatility and for minimizing the tracking error we

find that differences between the MFFM and realized covariance increase as we move from the

most liquid stock universe to the least liquid universe, as expected.

In recent work Hansen et al. (2010) and Noureldin et al. (2012) advocate the use of high-

frequency data in a parametric GARCH framework. Related to our idea of using a mixed-

frequency sampling approach for modeling vast dimensional covariance matrices several authors

have recently implemented subcases and modifications of the mixed-frequency (factor model)

methodology. Kyj et al. (2009) study a single-factor model, which is a special case of the MFFM,

to forecast covariance matrices in the absence of noise and non-trading. Halbleib and Voev

(2011) propose to use mixed-frequency sampling for predicting covariance matrices by using high-

1Chan et al. (1999) show that differences between covariance estimators are small for minimum variance
portfolios because the market factor dominates.
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frequency data for realized volatilities and low-frequency data for correlations. Hence, without

using a factor structure, by using mixed-frequency sampling they successfully circumvent the issue

of non-trading for estimating correlations. Combining the Hautsch et al. (2012) blocking and

regularization kernel estimator with the MFFM, Hautsch et al. (2011) propose to select factors

in a data driven way where mixed-sampling frequencies can be used for volatilities, correlation

eigenvalues and eigenvectors. In contrast to our study they use a multi-time-scale approach

for reducing the impacts of noise, non-trading and estimation error, rather than studying these

frictions explicitly.

The remainder of this paper is structured as follows. In Section 2 we derive the theoretical

properties of the MFFM and provide a theoretical comparison with the bi-variate Hayashi and

Yoshida (2005), realized covariance and lead-lag estimators. Section 3 contains an extensive

Monte Carlo study in which we replicate the S&P500 universe to evaluate the realized covariance

and the MFFM covariance matrix estimates. In Section 4 we study the empirical performance

of the MFFM and compare it to the realized covariance and a factor model based on daily data.

We conclude in Section 5.

2 The Mixed-Frequency Factor Model

Consider a linear factor structure for the return on asset i, that is

ri = µi + β′if + εi (1)

where f is a K×1 vector of common factors, βi is a K×1 vector of factor loadings measuring the

exposure to f , and εi is the idiosyncratic component. We assume that E[f ] = 0 and E[εi] = 0,

such that µi is the expected return. Furthermore, we assume that the idiosyncratic component is

orthogonal to the common factors, i.e. εi ⊥ f . Under these assumptions the covariance between

asset i and asset j can be expressed as

γij ≡ Cov[ri, rj] = β′iΛβj + σij (2)

where Λ = E[ff ′] is the factor covariance matrix and σij = E[εiεj] is the covariance between

the assets’ idiosyncratic components. Throughout, we consider a “strict” factor structure in the

spirit of Ross (1976), i.e. we assume that the factor structure exhausts the dependence among

the assets so that σij = 0 for i 6= j. Approximate factor models where σij can be non-zero but

small are considered in Chamberlain and Rothschild (1983), Ingersoll (1984) and Connor and

Korajczyk (1994).
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Using hats to denote estimates of unknown quantities, the covariance estimator is given by

γ̂ij = β̂′iΛ̂β̂j for i 6= j. (3)

The properties of this generic covariance estimator are characterized in the theorem below, where

we use the notation X̂ = X +Xε.

Theorem 2.1 Assuming (i) E[σij] = 0 for i 6= j, (ii) E[βε] = 0, (iii) E[Λε] = 0, and (iv) βε ⊥ Λε

element-by-element, then

E[γ̂ij] = γij, (4)

for i 6= j with

V[γ̂ij] = β′iΛΣβ,jΛβi + β′jΛΣβ,iΛβj + tr(Σβ,iΛΣβ,jΛ)

+ g(βiβ
′
i, βjβ

′
j,Φ) + g(βiβ

′
i,Σβ,j,Φ) + g(βjβ

′
j,Σβ,i,Φ) + g(Σβ,i,Σβ,j,Φ), (5)

where Σβ,i = V[β̂i] and Φ = E[vech(Λε)vech(Λε)′] and

g(A,B,Φ) =
N∑

m,n,p,q

AmpBnqΦf(p,n),f(q,m),

and f(p, q) = N(min{p, q} − 1) + 1
2
(min{p, q} −min{p, q}2) + max{p, q}.

Proof See Appendix A. �

It is useful to note that the assumptions in this Theorem are not unreasonable for the mixed-

frequency approach developed in this paper. Specifically, we propose to estimate betas using

low-frequency data, such that it is plausible to assume that betas are unbiased, whereas the

factor covariance matrix is estimated from high-frequency data. The factors are essentially free

of microstructure noise since the ETFs we propose as factors are very liquid, see Table 1. This

justifies the assumption that the factor covariance estimates are unbiased and that possible

sources of noise in low-frequency betas and factors observed at high sampling frequencies are

independent2.

The linear factor decomposition of asset returns in (1) has a long and established history in the

theoretical and empirical finance literature. Three types of factor models can be distinguished,

depending on how the factors f and the associated exposures β are constructed. Specifically, the

2In Section 3 we analyze the impact of estimation errors in betas for the MFFM.
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model in (1) can be categorized as (i) a statistical factor model (Ross 1976) when both β and

f are unspecified and inferred from the panel of asset returns, (ii) a characteristic-based factor

model (Rosenberg 1974) when β is fixed and determined by asset-specific characteristics while

f is inferred from the data, or (iii) a macro-economic factor model (Chen et al. 1986) when f

is observable and derived from macroeconomic or asset pricing theory while β is estimated from

the data. See Grinold and Kahn (2000) or Connor et al. (2012) for further discussion.

The factor model we develop in this paper can be classified as a traditional macro-economic

model in the sense that the factors are observable and their loadings are estimated from the

data. However, its construction is designed to make efficient use of high-frequency data while

simultaneously avoiding the potentially severe biases induced by market micro-structure noise.

Specifically, our “mixed-frequency factor model” involves the use of liquid assets as factors for

precise estimation of the factor covariance matrix using high-frequency data, while factor loadings

are estimated using lower-frequency returns of the, possibly illiquid, individual assets. The use of

liquid factors in the MFFM is motivated by the empirical observation that a growing number of

highly liquid exchange traded funds (ETFs) and futures contracts are now available that proxy

commonly used country, industry, and style factors. With minimal spreads and accurate real-time

pricing for many of these contracts, the effects of market microstructure noise are of little concern

and the use of high-frequency data is justified. Particularly for a large and heterogeneous asset

universe, however, many of the individual assets may be illiquid and contaminated by market

microstructure effects at high sampling frequencies. To support this point Table 1 shows statistics

on the ETFs we use in our empirical application. The average number of observations for these

ETFs is over 54,000 per day. In contrast the average number of observations for a constituent

of the S&P500 is just over 19,000 per day, and this drops to about only 2,000 per day for the

constituents of the S&P600, i.e. the small cap index.

– INSERT TABLE 1 ABOUT HERE –

We now specialize the rather general result in Theorem 2.1. to the MFFM setting to gain

further insights into its properties. We define F and F as the matrices of low- and high-frequency

factor return observations with dimensions (T ×K) and (M ×K). Similarly, Ri and Ri denote

the vectors of low- and high-frequency returns of asset i of length T and Ni, and τi the (Ni × 1)

vector of time-stamps associated with Ri.

Assumption N The factor returns F are jointly normal with zero mean, serially uncorrelated

and observed without friction3. The (integrated) factor covariance matrix is estimated using the

high-frequency factor returns as Λ̂ = F ′F .
3Given the highly liquid ETFs we propose as factors, see Table 1, it is justified to assume that factor returns

are serially uncorrelated and observed without friction.
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Assumption O The asset return dynamics at low frequency are governed by a linear factor

model as in (1) with i.i.d. normal residuals εi. The factor loadings are estimated by means of

linear regression using the low-frequency returns β̂i = (F ′F )−1F ′Ri.

Corollary 2.2 Let assumption N, O, and those in Theorem 2.1. hold. Then for i 6= j

E[γ̂ij] = γij (6)

and

V[γ̂ij] =
A

T
+
B

M
, (7)

where

A = σ2
jβ
′
iΛβi + σ2

i β
′
jΛβj + σ2

i σ
2
j

K

T
,

B =
K∑

m,n,p,q

(βi(m)βi(p) + Σβ,i(m, p)) (βj(n)βj(q) + Σβ,j(n, q)) (ΛpqΛnm + ΛpmΛnq)

Proof See Appendix A. �

The above corollary provides insights into the properties of the MFFM covariance estimator. In

particular, it is unbiased with a variance that can be attributed to the measurement error in

factor loadings (i.e. A/T ) and to the measurement error in the factor covariance matrix (i.e.

B/M).4

– INSERT FIGURE 1 and 2 ABOUT HERE –

To illustrate the efficiency of the MFFM in a bi-variate setting, we compare it to the (i)

Hayashi and Yoshida (2005) estimator, (ii) realized covariance and (iii) realized covariance lead-

lag estimator. For this purpose, we assume that intraday price observations for asset i (from which

the returns Ri are computed) arrive according to a Poisson process with intensity λi = E[Ni].

Further, we assume that prices are contaminated with i.i.d. microstructure noise with variance

ξ2i = πiγ
2
i /λi. We use closed-form expressions for the efficiency of the popular aforementioned

estimators (see Griffin and Oomen (2011) for details) and compare these with the variance of the

MFFM covariance estimator. To compute the variance of the MFFM covariance estimator, we

need to make some assumptions about the underlying factor structure. Here, we use a setting

4Note that in some circumstances β is (assumed to be) known so that V (γ̂ij) = B/M , see e.g. Grinold and
Kahn (2000, Ch. 3).
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with K = 5 factors, factor loadings βi = (0.5,−0.1, 0, 0.2, 0.6)′, βj = (0.7,−0.2,−0.3, 0.4, 0.2)′,

and factor covariance matrix Λ = IK + 1
2
(1− IK). The specific or idiosyncratic risk component

is σ2
h = β′hΛβh for h ∈ {i, j} so that the R2 of the factor regression is around 50% and the assets

have a correlation of ρij ≈ 40% with:

V (r) = (βi, βj)
′Λ(βi, βj) + Σ =

(
2.075 0.765

0.765 1.584

)

In Figures 1 and 2 the efficiency of the estimators is plotted against the number of returns

an estimator has access to. Figure 1 displays the performance for asynchronously traded assets i

and j that are observed without additive microstructure noise. Figure 2 shows the performance

when the asynchronous returns are contaminated with microstructure noise.

From these graphs, we observe that for reasonable scenarios the MFFM comfortably outper-

forms the HY estimator unless a large number of intraday return observations on the individual

assets is available. For instance, using 5-minute (M = 78) factor returns to estimate the 5 × 5

factor covariance matrix and 1 year (T = 250) of daily asset returns to estimate the 5× 1 factor

loading vector β, the MFFM delivers better estimates unless the HY estimator has access to

more than 500 clean or 1250 noisy intraday (asynchronous) observations. The MFFM is also

substantially more efficient than the realized covariance (lead–lag) estimator.

3 Monte Carlo Simulation

The theoretical results presented in the previous section demonstrate the superior properties

of MFFM compared to existing covariance estimators in a bi-variate setting. An important

additional feature of the MFFM is that its factor structure ensures stable and positive definite

covariance matrices in higher dimensional settings. In this section we provide further insights

into this property of the MFFM by means of an extensive simulation study. In addition to

increasing the dimension of the covariance matrix to realistic magnitudes of several hundreds of

assets, we relax some of the assumptions made in the previous section to study the effects of

estimation errors in the factor exposures for individual stocks.

3.1 Simulation design

We simulate returns for asset i at high frequency as

Ri,tj = Ftjβi + εi,tj + ηi,tj − ηi,tj−1
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where i = 1, 2, . . . , S (number of stocks), j = 1, 2, . . . , Ni (number of observations in a day), 0 ≤
tj−1 < tj ≤ 1, and Ftj denotes the factor return between tj−1 and tj. To ensure a realistic setup,

we calibrate the data generating process (DGP) based on characteristics of the data used in the

empirical application in Section 4. Specifically, the common factor F is a tri-variate Brownian

motion with a covariance structure Λ as estimated for the daily Fama and French three-factor

(market, size, and value) returns5 over the period January 1998 through December 2007. The

3×1 vector of factor exposures βi are obtained from regressing daily (corporate action adjusted)

excess returns for each of the S&P500 constituents on the Fama and French three-factor returns,

using the same sample period.

The idiosyncratic component εi,tj ∼ i.i.d. N (0, σ2
i (tj− tj−1)/Ni) where σ2

i is the residual vari-

ance of the Fama and French regression for the ith S&P500 constituent, the market microstructure

noise component ηi,tj ∼ i.i.d. N (0, ω2
i ) where ω2

i = 1
4
(β′iΛβi+σ2

i )/Ni,
6, and the observation times

tj are based on a Poisson process with intensity λi set to the average number of daily trades for

the ith S&P500 constituent, Ni.

This simulation setup ensures a realistic covariance structure of the 500-dimensional returns

process at low frequency. At the same time, it incorporates non-synchronous trading and market

microstructure noise at high frequency. We simulate second-by-second factor prices for a 6,5 hour

trading day (23,400 seconds) and residuals to generate stock returns according to the DGP. The

Poisson process in combination with the market microstructure noise then provide the simulated

stock price paths.

3.2 Covariance models

For the simulated asset returns we estimate the covariance matrix using either MFFM or the

realized covariance matrix.

3.2.1 Realized covariance

The realized covariance is a popular and efficient estimator of the latent integrated covariance.

RC converges in probability to the integrated covariance in the absence of noise, see Barndorff-

Nielsen and Shephard (2004). The RC is estimated as the cross-product of intraday returns:

RC = R′R
5Data available from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
6As shown in Oomen (2009), this level of noise is representative for the S&P500 universe.
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whereR is a N×S matrix of intraday returns. Here N is the number of non-overlapping intraday

intervals where in each interval we take the last observed price. In case an interval has no price

the last price of the previous interval is used, resulting in a zero return for that interval.

3.2.2 Mixed-frequency factor model

For the MFFM we need to estimate the factor loadings, the factor covariance matrix, and the

residual variances. This will give us the MFFM-based covariance matrix as

MFFM = β̃′Λ̂β̃ + ∆̂ (8)

where Λ̂ = F ′F is the estimated K×K realized factor covariance matrix, β̃ is the K×S matrix

of factor loadings contaminated with i.i.d. measurement errors, and ∆̂ is a S × S matrix with

the estimated residual variances on the diagonal and zeroes elsewhere.

In empirical applications the factor covariances, residual variances and factor loadings can

be estimated at different sampling frequencies. First, we propose to estimate the betas at the

daily frequency. The main problem with estimating betas with intraday returns is that they can

become severely biased towards zero due to the non-synchronicity of the relatively liquid factors

and the considerably less liquid stocks. Also, Todorov and Bollerslev (2010) illustrate that

jumps can cause single-day realized betas to exhibit erratic time-series behavior. We therefore

propose a simple moving window history of 2.5 years of daily returns data that combined with

OLS delivers betas that are smooth and by construction exhibit a much smaller variance than

single-day realized betas while improving upon using monthly data.7

Second, the realized factor covariance matrix can be estimated at very high frequencies due

to the high liquidity of ETF factor proxies. Third and finally, the residual variances can also

be estimated using intraday data, but possibly at a lower frequency than the factor covariance

matrix. This is to reduce the impact of the noise terms (η). We first compute the residuals, using

εi,tj = Ri,tj − Ftj β̃i. Then we compute the variances of these residuals. While it is possible to

use all intra-day returns for asset i for this purpose, due to market microstructure noise and the

difference between the observation frequency for the factors and the stock prices these residual

variances will be biased upwards. Below we examine to what extent lowering the sampling

frequency to compute these residual variances reduces this bias.

7We have empirically experimented with the use of intraday data to estimate beta’s. For sampling frequencies
ranging from 15s to 65m we find that using intraday data to estimate beta’s substantially increases the variance
of the MFFM estimator. Aggregating realized betas to monthly or quarterly data and then applying EWMA
smoothing helps to decrease the variance but the performance is inferior compared to using low-frequency beta’s.
Detailed results are available upon request.

10



3.3 Simulation results

As a measure of relative accuracy of the covariance estimates, we compute their distance to the

true covariance matrix using the Frobenius norm. We do this separately for the diagonal and

off-diagonal elements to disentangle the variance and covariance terms, i.e. we compute

S∑
i=1

|Γ̂ii − Γii|2 and 2
S∑
i=1

S∑
j=i+1

|Γ̂ij − Γij|2 (9)

where Γ = β′Λβ + Σ, with Σ the diagonal matrix with the residual variances on the diagonal,

and Γ̂ being either the MFFM or the RC covariance matrix estimate.

Non-synchronous prices, no noise

Figure 3 illustrates the performance of the RC and the MFFM when prices are non-synchronous

but market microstructure noise is absent (i.e. ωi = 0). The covariance results illustrate that

the MFFM has an excellent performance and is very robust across sampling frequencies. Fur-

thermore, in contrast to RC, its performance is not affected by non-synchronicity.

– INSERT FIGURE 3 ABOUT HERE –

Non-synchronicity, however, does affect the MFFM variance estimates. This may seem coun-

terintuitive at first as non-synchronicity usually affects the covariances and not so much the

variances. The reason for the upward bias in the MFFM variances is caused by a mismatch

between the very frequently observed factor returns and less frequently observed stock returns,

which results in an additional quadratic bias term in the MFFM diagonal. The mismatch be-

tween liquid factors and less liquid stocks disappears when sampling at the 5-minute frequency

or lower. Also note that with an increasing number of assets in a portfolio, the variance elements

play a more limited role as the covariances become more dominant. For example, in the simu-

lation with 500 stocks we only have 500 variances in contrast to 249,500 covariances. However,

in some circumstances it may be interesting to introduce a third sampling frequency, that is, we

can sample the residual returns at a lower sampling frequency than the sampling frequency for

factor returns used to estimate the factor covariance matrix. We examine this possibility below.

Non-synchronous prices and market microstructure noise

Figure 4 illustrates the more practically relevant case where prices are non-synchronous but also

contaminated by additive market microstructure noise.

– INSERT FIGURE 4 ABOUT HERE –
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Market microstructure noise does not deteriorate the performance of both covariance esti-

mators as the noise is (assumed to be) cross-sectionally independent. However, the noise does

affect the variances computed with the MFFM (through the residual variances) and RC. For

both estimators the diagonal elements perform fairly similar at the 5min and lower sampling

frequencies while the MFFM covariances are substantially more efficient.

Lower frequency for residual variances to reduce MFFM variance bias

Finally, we examine the effects of introducing a third sampling frequency, that is, sampling the

residual returns at a lower sampling frequency than the sampling frequency for factor returns

used to estimate the factor covariance matrix.

Note that for the MFFM we use the assumption that the common factors fully capture the

correlation among asset returns thus the residual returns only enter the MFFM by adding the

diagonal residual variances to the systematic variances. Hence introducing a third frequency still

delivers a well conditioned positive semi-definite covariance matrix.

Figure 5 illustrates how reducing the sampling frequency of the residual variances relative to

the frequency used for the factor covariances can improve the efficiency of the variance elements

in the MFFM. If the sampling frequency for the factor returns is ultra-high (sampling more

frequently than once a minute) we use the 1-minute frequency to sample the residual variances

to restore the efficiency of the variance elements in the MFFM. At sampling frequencies lower

than the 1-minute frequency we use the same frequency for the factor covariances and residual

variances. Using a lower sampling frequency than the 1-minute frequency to calculate residual

risk is of course also possible to eliminate the bias but would deteriorate the performance of the

MFFM as it also increases the variance of the estimates. This is the well-known trade-off in the

efficiency of high-frequency data estimates between bias and precision.

– INSERT FIGURE 5 ABOUT HERE –

4 Empirical applications

We apply the MFFM approach to three universes of stocks with different levels of market capi-

talization to assess its empirical performance compared to the realized covariance and the factor

model based on daily data. Whereas in the simulation experiments reported in the previous

section we evaluated the (relative) accuracy of measurements of daily covariances, here we focus

on the performance in terms of out-of-sample forecasts. In empirical applications the “true”

covariances are unobservable. For this reason we focus on forecasts instead of covariance mea-

surements. We do this in two ways. First, we evaluate the forecasting performance of the MFFM

12



and RC for the volatility of vast dimensional equally-weighted portfolios. Second, we compare

the out-of-sample performance by constructing minimum tracking error portfolios.

4.1 Data

Our data sets comprises the constituents of the S&P500 (large caps), S&P400 (mid caps) and

S&P600 (small cap) indexes. For each index we only use those stocks that were included in the

index during the complete sample period, which runs from May 1, 2004 until April 30, 2009.

This leaves 442 large-caps, 342 mid-caps and 491 small-caps. We collect high-frequency data

from November 1, 2006 onwards. Specifically, we sample National Best Bid Best Offer (NBBO)

mid-points, originating from NYSE and NASDAQ only, at the 15-seconds sampling frequency.

The first 2.5 years of the sample period are used only to obtain estimates of the factor loadings

in the MFFM, for which we require only daily (close-to-close) returns.

4.2 Covariance estimators

Volatilities and correlations of stock returns typically are time-varying. We incorporate this

feature explicitly in the methodology that is used to obtain covariance forecasts, as described in

detail below.

4.2.1 Realized Covariance

In the portfolio volatility forecasting exercise with S stocks we use the traditional RC estimator

to obtain an estimate of the covariance matrix on day t, that is,

RCt = R′tRt, (10)

where Rt is the N × S matrix of (intraday) stock returns on day t.

In the minimum tracking error application we employ intraday excess stock returns net of

the relevant benchmark, which for each of the three universes is taken to be the corresponding

S&P index. The active realized covariance estimator is then computed as

RCA
t = (Rt −RMte)

′(Rt −RMte), (11)

where RMt is a N × 1 vector of intraday returns on the corresponding index, and e is an S × 1

vector of ones. In both cases we include overnight returns by adding the outer product of the

vector of close-to-open (active) returns.
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Finally, we consider the RCt and RCA
t estimators for a range of intra-day sampling frequen-

cies, equal to 15 seconds, 1, 5, 15, 30, 65 and 130 minutes. We also include the sample realized

covariance based on daily close-to-close returns.

4.2.2 Mixed-frequency factor models

For the MFFM approach we employ a 12-factor model based on the Fama and French (1993)

size and value factors and ten industry factors. The motivation to use 10 industry factors is that

many stocks have activities in (and thus exposure to) multiple sectors, see Grinold and Kahn

(2000), page 60. We allow for time-varying factor loadings, which are estimated using a moving

window of 2.5 years (632 days) of daily close-to-close returns8 by means of the regression

Ri,t−j = Ft−jβi,t + εi,t−j, for j = 0, 1, . . . , L− 1, (12)

where Rit is a vector of daily returns on stock i, Ft = [SMBt HMLt I1 . . . I10] is a matrix

of factor returns on the size (Small-Minus-Big), value (High-Minus-Low) and industry factors,

and L denotes the length of the moving window. The intraday residuals needed to compute

idiosyncratic variances are obtained as

ε̂t = Rt −Ftβ̂t−1, (13)

Finally the MFFM covariance matrix estimate for day t is then computed as

MFFMt = β̂′t−1Λ̂tβ̂t−1 + diag(ε̂′tε̂t), (14)

where Λ̂t = F ′tFt is the factor covariance matrix. The motivation to use ‘lagged’ factor loading

estimates β̂t−1 (that is, based on the moving window that ends on day t − 1) rather than β̂t

stems from assumption (iv) in Theorem 2.1. stating that the measurement errors in the factor

loadings and in the factor covariance matrix are orthogonal, i.e. βε ⊥ Λε. By lagging the beta

estimates in (13) and (14) we avoid the possibility that measurement errors in factor loadings

are correlated with the measurement errors in the factor covariance matrix.9 For the minimum

tracking error application we follow the same approach, except that we use stock returns in excess

of the returns on the relevant market index. Hence, we obtain estimates of the factor loadings

8In earlier studies on factor models the number of observations used for estimating betas is usually 3 to 5
years. Here we use 2.5 years as using a longer history would limit the number of constituents that survived our
sample period, thereby reducing the dimension of the covariance matrix.

9We have experimented with using β̂t instead of β̂t−1, finding that this deteriorates the performance of the
MFFM forecasts (although the differences are small).
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from the regression

Ri,t−j −RM,t−j = Ft−jβ
A
t + εAi,t−j, j = 0, 1, . . . , L− 1, (15)

while we compute the active intraday residuals as

ε̂At = Rt −RM,t −Ftβ̂At−1, (16)

and the MFFM estimator for day t using (14). We include overnight returns in the factor covari-

ance matrix Λ̂t by adding the outer product of the vector of close-to-open factor returns, similar

to including overnight stock returns in the realized covariance. For the idiosyncratic variances

we also include the (active) residual overnight returns throughout the empirical analysis.

In the MFFM estimator in (14), we consider the same range of intra-day sampling frequencies

for the factor covariance matrix and the idiosyncratic variances as used for the realized covariance

estimator given in the previous subsection. Also, we include a conventional ‘low-frequency’ factor

model where all parts of (14) are based on daily close-to-close returns.

4.3 Covariance matrix forecasts

We consider forecasts based on an exponentially weighted moving average (EWMA) scheme,

motivated by the work of Foster and Nelson (1996) and Andreou and Ghysels (2002). In this

framework, the covariance matrix forecast for day t, denoted Σt|t−1, is given by

Σt|t−1 = αΣt−1|t−2 + (1− α)Σ̂t−1, (17)

where the scalar α is a fixed decay parameter and Σ̂t−1 is the covariance matrix estimate for

day t − 1 as given by either the RC estimator in (10) (or (11) in the minimum tracking error

application) or the MFFM estimator in (14). We consider several weighting schemes with α ∈
{0.94, 0.75, 0.50, 0.25}. The value of 0.94 for α is the optimal decay parameter for daily data

documented by RiskMetrics (see e.g. Zumbach (2006)). The use of smaller decay parameters

allows us to examine the effects on the forecasting performance when putting more weight on

more recent data. Smaller levels of α are also closer to our simulation study where in fact

α = 0. Further, using smaller values of α provides more insight in the quality of the covariance

estimator itself rather than the ‘smoothed’ forecast. Less smoothing can be important also from

an economic point of view, as it enables the forecasts to adjust more rapidly to important changes

in (co)variance dynamics, which for example occur at turning points between periods of high and

low volatility.

15



We use the period from November 1, 2006 until December 31, 2006 as ‘burn-in period’ for

the covariance dynamics in (17) and exclude these two months in the performance evaluations

below. The out-of-sample period therefore runs from January 3, 2007 until April 30, 2009.

4.4 Equally-weighted portfolios

In our first forecasting exercise, we consider equally-weighted portfolios for the S&P500, S&P400

and S&P600 stock universes. As noted before, we only use the S constituents that were included

in a single index during the complete sample period. For each universe the daily equally-weighted

portfolio return is computed as rp,t = e′rt where rt is an S × 1 vector of close-to-close returns

on the individual stocks and e is the equal-weight vector with entries 1/S. We obtain one-day

ahead forecasts of the volatility of these equally-weighted portfolios as σ̂2
P,t|t−1 = e′Σt|t−1e, using

the MFFM- and RC-based covariance matrix forecasts from (17).

We evaluate the accuracy of the volatility forecasts in two ways. First, we run Mincer-

Zarnowitz (MZ) regressions, in which the portfolio volatility proxy σ̂2
p,t|t is regressed on a constant

and one of the volatility forecasts, that is,

σ̂2
p,t|t = γ + δσ̂2

p,t|t−1 + εt. (18)

Here we use the squared daily return r2p,t as the volatility proxy. Although this proxy is known

to be noisy, at least it is unbiased. Obvious alternatives would be to use the RC or MFFM

estimates of the covariance matrix for day t, but this might bias the MZ regression towards one

of the forecasts. Using the squared daily return avoids this issue.10

In addition we report results for forecast encompassing regressions where the squared daily

return is regressed on the MFFM-based forecast σ̂2
p,MFFM,t|t−1 and a competing forecast σ̂2

p,X,t|t−1,

that is,

r2p,t = γ + δ1σ̂
2
p,MFFM,t|t−1 + δ2σ̂

2
p,X,t|t−1 + εt. (19)

These regressions can be used to obtain insights in how well the MFFM approach empirically

competes with existing forecast methods. We consider two competing forecasts X, namely the

RC at the same intraday sampling frequency as used for the MFFM and the daily factor model,

10Using the RC and the MFFM estimator based on a 5 min sampling frequency as the volatility proxy does not
alter the main conclusions as reported here. The main difference is that we obtain higher regression R2’s that
are about 10 to 15% higher than the R2 for the daily squared return. In addition, we have considered the MZ
regression using the absolute return as dependent variable (which then is regressed on a constant and the square
root of σ̂2

p,t|t−1. This also results in higher R2 values than those reported here (by about 5%), mostly because
the absolute return is more robust to outliers. However, using this transformation of the variance does not lead
to consistent forecast rankings when the forecast target is the conditional variance, see Patton (2011).
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denoted FM. Regression R2’s and coefficients are reported and statistically significant coefficients

at the 5% level are displayed in bold fonts.

Figures 6–8 illustrates that the RC and MFFM provide very similar dynamics at the 5 min

sampling frequency. In addition we observe that the estimates obtained with high-frequency

data for the RC and MFFM are much more precise than their daily counterparts. The daily

sample covariance and daily factor model estimates are “noisy”. The equally-weighted portfolio

volatility estimates are all plotted against the (scaled) daily absolute return.

We run Mincer-Zarnowitz and encompassing regression results with decay parameter α =

{0.94, 0.75, 0.50, 0.25, 0.00}. For space considerations we only report results for α = 0.94 since

the results for the other settings of α lead to similar conclusions. The only exception is that the

performance of the daily factor model deteriorates rapidly for smaller α. This occurs because the

daily factor model is based on only one observation per day and therefore require a longer history

of covariance estimates to compete with the estimators based on higher sampling frequencies.

– INSERT FIGURES 6–8 ABOUT HERE –

Table 2 summarizes the results for the S&P500 Mincer-Zarnowitz and encompassing regres-

sions. Based on the Mincer-Zarnowitz regressions we find that the EWMA forecasts for the

volatility of the equally-weighted portfolio have statistically significant coefficients. The con-

stants, frequently interpreted as forecast bias, are statistically insignificant across all sampling

frequencies. From the regression R2’s we learn that the results for RC and MFFM are very close,

indicating that our factor structure indeed does a good job, and for both the RC and the MFFM

we find that using high-frequency data improves the R2 by about 3%.11

– INSERT TABLE 2 ABOUT HERE –

For the relatively liquid S&P500 encompassing regressions we find that the RC and MFFM

forecasts do not encompass each other. The bias and loadings on the forecast have statistically

insignificant Newey-West t-statistics at the 5% level. Using similar encompassing regressions,

but now for the MFFM sampled at each intraday frequency against the daily factor model (FM),

we find that the daily factor model forecasts are encompassed by the MFFM forecasts at each

intraday sampling frequency. The improvement in regression the regression R2 compared to

regressing on MFFM only (see Panel B in Table 2) is also small.

11By lowering α the forecasting performance of the daily counter parts of the RC and MFFM deteriorates
rapidly and regression coefficients become close to zero if we do not apply EWMA to generate forecasts due to
the high variance of estimators based on daily data as displayed in Figure 6. The differences in R2 between daily
and high-frequency data when using non-smoothed estimates (α = 0) are about 15%.
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– INSERT TABLE 3 ABOUT HERE –

For the S&P400 mid-cap universe Table 3 summarizes the forecast regression results. Using

Mincer-Zarnowitz regressions we find that the forecasts based on RC and MFFM are statistically

significant at each sampling frequency and the forecast bias is not significant. The regression R2’s

for the MFFM regressions are higher than for the RC regressions. In the encompassing regression

results for MFFM and RC (Panel C) we observe that, at high sampling frequencies, between 15

sec and 30 min, the MFFM forecasts encompass the RC forecasts if we use the squared daily

return as proxy. Differences increase by moving from the relatively liquid S&P500 stocks to the

less liquid S&P400 stocks where non-synchronicity plays a more important role. In line with the

results for the S&P500 we find for the S&P400 universe that the daily factor model forecasts

are encompassed by MFFM and this holds at every intraday sampling frequency, and adding the

daily factor model forecasts to MFFM forecasts only improves the regression R2 by about a half

percent.

– INSERT TABLE 4 ABOUT HERE –

When we move to the relatively illiquid S&P600 constituents we observe in Table 4 that for the

Mincer-Zarnowitz regressions the forecasts of RC and MFFM are significant at every frequency

and the forecast bias is not. Similar to the S&P400 results we find that the regression R2 for

MFFM is higher than for RC. Using encompassing regressions we find that the MFFM forecasts

are favored over the RC forecasts at very high frequencies between 15s and 1m. Consistent with

the results for the S&P500 and S&P400 the MFFM forecasts obtained using intraday sampling

encompass the factor model based on daily data.

4.5 Minimum tracking error portfolios

Given the one day ahead EWMA forecasts of the covariance matrices we construct minimum TE

portfolios by calculating the standard fully-invested minimum variance portfolios (when using

the active covariance matrix as we do here, then the minimum TE portfolio is the minimum

variance portfolio):

wt =
Σ−1t|t−1e

e′Σ−1t|t−1e
(20)

where e is a S × 1 vector of ones and Σt is the EWMA conditional covariance matrix forecast of

RC or MFFM. The daily minimum TE portfolio returns are obtained by computing RPt = w′trt

where rt is the vector of daily stock returns. We calculate the ex-post tracking error using daily

returns TE = Std(RP −RM) and compare the results for the RC and the MFFM.
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In this application we keep track of the daily turnover in the portfolio weights wt which is

directly associated with the transaction costs that an investor faces who wishes to re-balance his

or her portfolio daily. We compute turnover by summing the absolute daily weight changes over

the stock names,

TOt = |wt − wt−1|′e. (21)

We expect that a covariance estimator that is well-conditioned and numerically stable will result

in smaller daily portfolio turnover. The daily turnover will also be related to the decay parameter

α in (17) which is used to generate EWMA forecasts. A large decay parameter implies that more

weight is assigned to historical estimates whereas a smaller decay parameter corresponds to

assigning more weight to the most recent estimate(s). More weight on historical estimates will

make an estimator more stable and cause less portfolio turnover but on the other hand, recent

shifts in for example market volatility will be picked up at a slower pace.

4.6 Minimum tracking error results

Table 5 illustrates the performance in terms of annualized minimum tracking errors for the

S&P500 large caps. Consistent with the simulation results we find that the MFFM covariance

matrix estimator is remarkably robust across sampling frequencies indicating that, in contrast

to RC, the factor covariance matrix can be estimated at very high frequencies as the level of

market microstructure noise and non-synchronicity in the factors is relatively small compared to

individual stocks. At almost each of the considered sampling frequencies and forecast weights α,

the MFFM produces better results than RC. However, for the relatively liquid S&P500 universe

the RC competes with the MFFM if we use a sampling frequency between 15s and 15m combined

with α = 0.94 for RC but deteriorates rapidly by putting more weight on the most recent

estimates (lower α’s). The difference between the MFFM and RC are small when we choose

the best sampling frequency and forecasts weights for RC, but the differences are substantial on

average across these settings. The covariance matrices considered here have a dimension of 442

and we find that at sampling frequencies of 30min and lower the RC is not well-conditioned and

therefore not invertible, we indicate this with “NA”. The näıvely diversified equally-weighted

portfolio, advocated recently by DeMiguel et al. (2009), achieves a tracking error equal to 0.099

and is outperformed by the MFFM in each of the parameter settings and by most parameter

settings for the RC given that these settings result in an invertible covariance matrix forecast.

– INSERT TABLE 5 ABOUT HERE –

Important differences in numerical stability of the covariance matrix forecasts are exemplified

by the very large differences in portfolio turnover. At most of the sampling frequencies the
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difference is at least 8 times larger. This indicates, as noted by Fan et al. (2008), that using

(sample) realized covariances for portfolio optimization can be “tricky” for vast dimensional

portfolios. In contrast, due to its factor structure and the use of relatively liquid factors, the

MFFM delivers exceptionally small levels of turnover associated with tracking errors that are

at par with the best results for the realized covariance and outperform the realized covariance

at all other settings without having to resort to putting a lot of weight on historical estimates.

In fact the MFFM is found to be relatively insensitive to the choice of α and the sampling

frequency. It is interesting to observe that on average the MFFM tracking errors are fairly

constant across sampling frequencies and decay parameters. This is due to the factor structure

which ensures stability of the covariance matrix. The level of turnover, however, does depend

on the sampling frequency and decay parameter. The highest sampling frequencies produce very

small levels of turnover because the (factor) covariance estimates are very precise. Applying a

higher decay parameter, i.e. less weight on recent data, further smooths the covariance matrix

and therefore reduces turnover. The lower sampling frequencies produce less precise (factor)

covariance estimates and therefore higher levels of turnover. For lower sampling frequencies the

covariance estimates are accurate on average due to the factor structure but they are less precise

than when higher sampling frequencies are used.

For the S&P400, see Table 6, we decrease the näıve equally-weighted portfolio tracking error

of 9.3% to 8.3% with RC and this result depends heavily on the forecast weighting scheme and

sampling frequency. Using the MFFM further decreases the tracking error to 7.8% with results

being robust. As expected, the tracking errors have increased for the S&P400 mid caps compared

to the S&P500 large caps, see also Table 1 for the average number of trades per day in each S&P

universe. Higher levels of non-synchronicity and microstructure noise in individual stocks explain

this result. Similar to the portfolio turnover results for the S&P500 universe we find that the

RC portfolios cause a daily turnover which is at least a factor 10 times larger than the turnover

in the MFFM portfolios.

– INSERT TABLE 6 ABOUT HERE –

For the S&P600 small caps, where the level of non-synchronicity plays a more important role

than for mid- and large-caps, we find larger tracking errors when using the RC because it is

sensitive to market microstructure frictions and the increased portfolio dimension. The tracking

errors for the RC are in fact larger, for every combination of sampling frequency and forecast

weighting scheme, than that of the näıve 1/N portfolio which achieves a tracking error of 8.9%.

The MFFM, however, achieves smaller tracking errors than it achieves for the S&P400 mid-caps,

indicating that its performance is not compromised by the illiquidity of the S&P600 universe.
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The MFFM comfortably decreases the best RC tracking error, being 9.1%, to 7.0% and the

MFFM easily outperforms the näıve portfolio for all combinations of sampling frequencies and

forecast weighting schemes. In line with the turnover results for the S&P500 and S&P400 we

find that the RC portfolios have a turnover that is 12 times larger.

– INSERT TABLE 7 ABOUT HERE –

Note that outperforming the equally-weighted portfolio is not necessarily an easy task. DeMiguel

et al. (2009) analyze various advanced methods consisting of Bayesian estimation, shrinkage,

robust allocation etc. and find that none of the 14 models they implement can consistently out-

perform the 1/N portfolio. Hence, the fact that the MFFM consistently outperforms the 1/N

and RC portfolios is encouraging support. Further, the results in Madhavan and Yang (2003)

illustrate that using the sample (realized) covariance matrix for unrestricted optimization, results

in a performance that is worse than the equally-weighted portfolio.
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5 Conclusion

Recently there has been great interest in the use of high-frequency data to estimate variances

and covariances. The advantage is that the use of high-frequency data results in more accurate

covariance estimates, but on the other hand it also brings problems such as microstructure noise

which reduces the efficiency of covariance estimators based on intraday data and non-synchronous

trading leading to covariance estimates being biased towards zero. What so far has been lacking

is to bring the merits of high-frequency data to factor models. With the introduction of exchange-

traded funds important factors are now traded much more actively than individual stocks. For

example the S&P500 ETFs (Spiders) have on average traded 18 times more frequently than the

average individual stock in the S&P500. In this study we have proposed the Mixed Frequency

Factor Model. In particular we can use ultra high-frequency data for ETFs to obtain a very

accurate estimate of the factor covariance matrix, as prices are observed essentially free of noise.

We use daily data to estimate the factor loadings conservatively to avoid problems inherent in

the use high-frequency data for illiquid stocks and non-synchronicity biases between the returns

on factors and stocks. Furthermore we take advantage of the facts that factor models can easily

be applied to vast numbers of assets and that covariance matrices from factor models are less

prone to error maximization in portfolio construction problems. Using Mincer-Zarnowitz and

encompassing regressions we find that the MFFM portfolio volatility forecasts improve upon

the daily factor and realized covariance forecasts when the forecasts are ranked on R2 and as

indicated by the positive weights on the MFFM versus negative weights on the RC and daily

factor model. Adding a RC or daily factor model forecast to a MFFM forecast only improves

the regression R2 marginally. In a minimum tracking error application we reduce the tracking

errors by using the MFFM rather than RC for computing the covariance matrix. The differences

between RC and MFFM increase with the level of non-synchronicity between individual stocks,

i.e. we find a larger difference when considering the S&P600 small caps than when we consider the

S&P500 large caps. The RC outperforms the näıvely diversified equally-weighted 1/N portfolios

when considering large- and mid-caps but fails by a substantial margin for the illiquid S&P600

small caps. The MFFM comfortably outperforms the 1/N portfolios regardless of the universe

considered. For realized covariance the results in the tracking error applications depend severely

on the sampling frequency and the weighting scheme applied to the past daily covariance matrices.

In contrast, the performance of the MFFM is robust across sampling frequencies and weighting

schemes and consistently outperforms RC and the näıve 1/N portfolios.
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A Proofs

Proof of Theorem 2.1 Using the notation X̂ = X +Xε, we have for i 6= j:

γ̂ij = β′iΛβj + β′iΛβ
ε
j + β′iΛ

εβj + β′iΛ
εβεj + βε′i Λβj + βε′i Λβεj + βε′i Λεβj + βε′i Λεβεj .

Assumption (i) implies βεi ⊥ βεj so that E(βε′i Λβεj ) = 0. All other terms, except β′iΛβj, are zero

in expectation by assumptions (ii-iv). Hence, we have unbiasedness. To compute the variance of

this estimator, note that all terms are mutually uncorrelated, so that the variance of the sum is

the sum of the variances.

V (β′iΛβ
ε
j ) = β′iΛΣβ,jΛ

′βi

V (β′iΛ
εβj) = E(β′iΛ

εβjβ
′
jΛ

ε′βi) = E(tr(βiβ
′
iΛ

εβjβ
′
jΛ

ε′)) = g(βiβ
′
i, βjβ

′
j,Φ)

V (β′iΛ
εβεj ) = E(β′iΛ

εβεjβ
ε′

j Λε′βi) = E(β′iΛ
εΣβ,jΛ

ε′βi) = E(tr(βiβ
′
iΛ

εΣβ,jΛ
ε′)) = g(βiβ

′
i,Σβ,j,Φ)

V (βε′i Λβj) = β′jΛ
′Σβ,iΛβj

V (βε′i Λβεj ) = E(βε′i Λβεjβ
ε′
j Λ′βεi ) = E(βε′i ΛΣβ,jΛ

′βεi ) = tr(Σβ,iΛΣβ,jΛ
′)

V (βε′i Λεβj) = E(β′jΛ
εΣβ,iΛ

ε′βj) = E(tr(βjβ
′
jΛ

εΣβ,iΛ
ε′)) = g(βjβ

′
j,Σβ,i,Φ)

V (βε′i Λεβεj ) = E(βε′i Λεβεjβ
ε′
j Λε′βεi ) = E(βε′i ΛεΣβ,jΛ

ε′βεi ) = E(tr(Σβ,iΛ
εΣβ,jΛ

ε′)) = g(Σβ,i,Σβ,j,Φ)

All terms involving Λε are of the form E(tr(AZBZ)) where A, B, and Z are square symmetric

matrices of equal dimension with A and B fixed and Z random with E(vech(Z)vech(Z)′) = Φ.

Define A = AZ and B = BZ with

Aij =
∑
k

AikZkj and Bij =
∑
m

BimZmj.

Then

E(tr(AZBZ)) = tr(E(AB)) =
∑
i,j

E(AijBji) =
∑
i,j,k,m

AikBjmE(ZkjZmi) =
∑
i,j,k,m

AikBjmΦf(k,j),f(m,i).

�

Proof of Corollary 2.2 Given the assumptions, we have Σβ,i = 1
T
σ2
i Λ
−1 (asymptotically).

Thus, β′jΛΣβ,iΛ
′βj = 1

T
σ2
i β
′
jΛβj and tr(Σβ,iΛΣβ,jΛ

′) = 1
T 2σ

2
i σ

2
j tr(IK) = K

T 2σ
2
i σ

2
j . Combining this,
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gives term A. For term B, note that

g(A,B,Φ) =
N∑

m,n,p,q

AmpBnqE((Λ̂pn − Λpn)(Λ̂qm − Λqm))

=
N∑

m,n,p,q

AmpBnq(E(Λ̂pnΛ̂qm)− ΛpnΛqm)

=
1

M

N∑
m,n,p,q

AmpBnq(ΛpqΛnm + ΛpmΛnq)

using that for a multivariate normal random variable x with characteristic function lnφ(ξ) =

−ξ′Σξ/2 we have

E(σ̂mnσ̂pq) = σmnσpq +
σmpσnq + σmqσnp

M

where

σ̂mn ≡
1

M

M∑
i=1

x
(m)
i x

(n)
i
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B Tables

Table 1: Description of ETF contracts

sector / style # trades
ticker description classification per day

XLE.A Energy Sector SPDR Fund Energy 76,392
XLB.A Materials Sector SPDR Fund Materials 16,708
XLI.A Industrial Sector SPDR Fund Industrials 12,207
XLY.A Consumer Discretionary Sector SPDR Fund Consumer Discretionary 9,731
XLP.A Consumer Staples Sector SPDR Fund Consumer Staples 6,153
XLV.A Health Care Sector SPDR Fund Health Care 6,697
XLF.A Financial Sector SPDR Fund Financials 112,191
XLK.A Technology Sector SPDR Fund Information Technology 9,243
IYZ.N iShares Telecommunications Sector Fund Telecommunications 762
XLU.A Utilities Sector SPDR Fund Utilities 11,753

SPY.A SPDR Trust Series 1 Large Cap 356,876
IWM.A iShares Russell 2000 Index Fund Small Cap 140,192
IVE.N S&P 500 Value Index Fund Value 3,030
IVW.N S&P 500 Growth Index Fund Growth 3,912

Average across ETFs 54,703
Average across S&P400 constituents 4,898
Average across S&P500 constituents 19,395
Average across S&P600 constituents 1,990

Note: This table lists the ETF contracts used in the empirical analysis, together with the average
number of trades per day over the period January 2007 through April 2009. The “SMB” (“HML”)
factor is specified as IWM.A - SPY.A (IVE.N - IVW.N).
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Table 2: S&P500 Portfolio volatility, Mincer-Zarnowitz and encompassing regressions
15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RC 1.599 1.350 1.233 1.226 1.154 1.136 1.010 0.906
R2 0.241 0.242 0.244 0.246 0.244 0.245 0.229 0.205

Panel B: MFFM Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.490 1.366 1.299 1.311 1.253 1.233 1.120 1.036
R2 0.242 0.244 0.247 0.249 0.248 0.247 0.232 0.208

Panel C: MFFM + RC Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.236 4.353 4.179 3.745 3.591 2.091 1.841 2.230
RC 0.272 -2.968 -2.752 -2.296 -2.174 -0.795 -0.656 -1.056
R2 0.242 0.246 0.250 0.252 0.250 0.248 0.232 0.209

Panel D: MFFM + FM Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 3.315 3.284 3.288 3.470 3.157 2.445 1.656
FM -1.396 -1.609 -1.762 -1.904 -1.753 -1.141 -0.536
R2 0.257 0.264 0.271 0.277 0.272 0.261 0.234

Note: This Table summarizes the results for Mincer-Zarnowitz and encompassing regressions using the daily squared
portfolio return as unbiased proxy for the latent portfolio variance. The evaluation is based on 442 of the S&P500
constituents to forecast the variance of the equally-weighted portfolio one day ahead using EWMA covariance matrix
forecasts with decay parameter α = 0.94. Compared are the volatility forecasts generated with the MFFM, RC
and the daily factor model. The out-of-sample period is Jan. 2007 – Apr. 2009. Coefficients that are statistically
significant at the 5% level, based on Newey-West standard errors with 20 lags, are displayed in bold fonts.
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Table 3: S&P400 Portfolio volatility, Mincer-Zarnowitz and encompassing regressions
15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RC 2.105 1.594 1.369 1.365 1.257 1.220 1.064 0.915
R2 0.250 0.249 0.255 0.258 0.254 0.259 0.244 0.221

Panel B: MFFM Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.488 1.363 1.283 1.304 1.231 1.196 1.081 0.993
R2 0.259 0.259 0.262 0.266 0.266 0.266 0.252 0.230

Panel C: MFFM + RC Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 9.158 8.508 5.035 4.407 4.207 2.469 2.362 3.429
RC -11.051 -8.535 -4.070 -3.310 -3.119 -1.322 -1.287 -2.300
R2 0.279 0.284 0.272 0.275 0.277 0.268 0.255 0.240

Panel D: MFFM + FM Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 2.355 2.333 2.324 2.527 2.457 1.923 1.355
FM -0.630 -0.768 -0.881 -1.027 -1.087 -0.669 -0.271
R2 0.263 0.266 0.271 0.278 0.278 0.272 0.253

Note: This Table summarizes the results for Mincer-Zarnowitz and encompassing regressions using the daily squared
portfolio return as unbiased proxy for the latent portfolio variance. The evaluation is based on 342 of the S&P400
constituents to forecast the variance of the equally-weighted portfolio one day ahead using EWMA covariance matrix
forecasts with decay parameter α = 0.94. The out-of-sample period is Jan. 2007 – Apr. 2009. Coefficients that
are statistically significant at the 5% level, based on Newey-West standard errors with 20 lags, are displayed in bold
fonts.
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Table 4: S&P600 Portfolio volatility, Mincer-Zarnowitz and encompassing regressions
15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RC 2.878 2.080 1.656 1.590 1.406 1.306 1.125 0.916
R2 0.229 0.232 0.235 0.237 0.236 0.240 0.225 0.209

Panel B: MFFM Mincer-Zarnowitz
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.188 1.191 1.167 1.198 1.114 1.068 0.957 0.924
R2 0.241 0.241 0.241 0.244 0.243 0.241 0.228 0.216

Panel C: MFFM + RC Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 2.226 3.397 2.275 1.875 1.475 0.686 0.682 2.254
RC -2.601 -3.942 -1.599 -0.918 -0.466 0.475 0.329 -1.345
R2 0.244 0.247 0.243 0.245 0.243 0.242 0.228 0.220

Panel D: MFFM + FM Encompassing
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MFFM 1.523 1.543 1.442 1.576 1.497 1.184 0.783
FM -0.284 -0.298 -0.239 -0.322 -0.348 -0.111 0.180
R2 0.242 0.242 0.242 0.246 0.245 0.241 0.229

Note: This Table summarizes the results for Mincer-Zarnowitz and encompassing regressions using the daily squared
portfolio return as unbiased proxy for the latent portfolio variance. The evaluation is based on 491 of the S&P600
constituents to forecast the variance of the equally-weighted portfolio one day ahead using EWMA covariance matrix
forecasts with decay parameter α = 0.94. The out-of-sample period is Jan. 2007 – Apr. 2009. Coefficients that
are statistically significant at the 5% level, based on Newey-West standard errors with 20 lags, are displayed in bold
fonts.
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Table 5: Annualized tracking errors S&P500 (large cap) universe

α 15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC tracking error
0.94 0.060 0.058 0.056 0.060 0.066 0.211 NA NA
0.75 0.062 0.062 0.061 0.075 0.088 0.178 NA NA
0.50 0.064 0.068 0.077 0.102 0.122 NA NA NA
0.25 0.068 0.077 0.099 0.127 NA NA NA NA

Panel B: MFFM tracking error
0.94 0.059 0.059 0.058 0.058 0.059 0.059 0.058 0.058
0.75 0.059 0.058 0.058 0.058 0.058 0.059 0.058 0.058
0.50 0.059 0.058 0.058 0.057 0.058 0.058 0.058 0.059
0.25 0.059 0.058 0.058 0.057 0.058 0.058 0.058 0.064

Panel C: RC turnover
0.94 0.236 0.292 0.357 0.458 0.582 7.922 NA NA
0.75 0.844 1.041 1.379 1.875 2.435 6.842 NA NA
0.50 1.728 2.222 3.115 4.229 5.450 NA NA NA
0.25 2.861 3.960 5.748 7.668 NA NA NA NA

Panel D: MFFM turnover
0.94 0.028 0.032 0.037 0.042 0.046 0.051 0.057 0.079
0.75 0.089 0.101 0.120 0.141 0.158 0.182 0.209 0.297
0.50 0.162 0.185 0.225 0.269 0.307 0.361 0.420 0.603
0.25 0.239 0.275 0.339 0.414 0.478 0.573 0.675 0.986

Note: This table reports the ex-post annualized minimum tracking errors in percent-
ages and the daily average portfolio turnover using 442 of the S&P500 constituents.
The results are based on RC and MFFM to forecast the active covariance matrix one
day ahead using EWMA forecasts over the sample period 3/1/2007 - 30/4/2009 with
decay parameter α. For the MFFM we use a 12-factor model specification (size, value,
and 10 industry factors). The “NA” entries indicate that the RC is not-invertible at
certain combinations of sampling frequencies and weighting schemes.
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Table 6: Annualized tracking error S&P400 (mid cap) universe

α 15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC tracking error
0.94 0.089 0.085 0.083 0.087 0.091 0.275 NA NA
0.75 0.095 0.095 0.096 0.114 0.122 0.305 NA NA
0.50 0.102 0.104 0.118 0.156 0.174 NA NA NA
0.25 0.107 0.120 0.154 0.211 NA NA NA NA

Panel B: MFFM tracking error
0.94 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078
0.75 0.078 0.078 0.078 0.078 0.078 0.077 0.078 0.079
0.50 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.081
0.25 0.078 0.078 0.078 0.078 0.079 0.078 0.079 0.086

Panel C: RC turnover
0.94 0.251 0.341 0.411 0.484 0.597 3.397 NA NA
0.75 0.915 1.183 1.520 1.939 2.427 6.485 NA NA
0.50 1.869 2.429 3.403 4.364 5.357 NA NA NA
0.25 3.071 4.197 6.217 8.000 NA NA NA NA

Panel D: MFFM turnover
0.94 0.023 0.025 0.027 0.031 0.033 0.037 0.040 0.075
0.75 0.083 0.089 0.101 0.115 0.126 0.141 0.160 0.282
0.50 0.160 0.172 0.198 0.229 0.254 0.291 0.335 0.580
0.25 0.245 0.265 0.309 0.363 0.407 0.475 0.560 0.963

Note: This table reports the ex-post annualized minimum tracking errors in percent-
ages and the daily average portfolio turnover using 342 of the S&P400 constituents.
The tracking errors are based on RC and MFFM to forecast the active covariance
matrix one day ahead using EWMA forecasts over the sample period 3/1/2007 -
30/4/2009 with decay parameter α. For the MFFM we use a 12-factor model spec-
ification (size, value, and 10 industry factors). The “NA” entries indicate that the
RC is not-invertible at certain combinations of sampling frequencies and weighting
schemes.
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Table 7: Annualized tracking error S&P600 (small-cap) universe

α 15s 1m 5m 15m 30m 65m 130m C2C

Panel A: RC tracking error
0.94 0.098 0.091 0.091 0.095 0.105 NA NA NA
0.75 0.109 0.114 0.126 0.157 0.200 NA NA NA
0.50 0.121 0.135 0.183 0.249 NA NA NA NA
0.25 0.136 0.162 NA NA NA NA NA NA

Panel B: MFFM tracking error
0.94 0.073 0.072 0.072 0.071 0.071 0.071 0.071 0.070
0.75 0.072 0.072 0.071 0.070 0.070 0.071 0.071 0.070
0.50 0.072 0.071 0.071 0.070 0.070 0.070 0.071 0.070
0.25 0.072 0.071 0.071 0.070 0.070 0.071 0.072 0.077

Panel C: RC turnover
0.94 0.367 0.503 0.658 0.806 1.018 NA NA NA
0.75 1.393 1.885 2.649 3.389 4.219 NA NA NA
0.50 2.901 4.043 6.035 7.636 NA NA NA NA
0.25 4.842 7.230 NA NA NA NA NA NA

Panel D: turnover
0.94 0.030 0.033 0.039 0.044 0.049 0.056 0.062 0.085
0.75 0.090 0.100 0.121 0.145 0.164 0.192 0.221 0.308
0.50 0.164 0.181 0.224 0.274 0.315 0.374 0.435 0.613
0.25 0.244 0.270 0.338 0.421 0.490 0.589 0.690 1.000

Note: This table reports the ex-post annualized minimum tracking errors in percent-
ages and the daily average portfolio turnover using 491 of the S&P600 constituents.
The tracking errors are based on RC and MFFM to forecast the active covariance
matrix one day ahead using EWMA forecasts over the sample period 3/1/2007 -
30/4/2009 with decay parameter α. For the MFFM we use a 12-factor model spec-
ification (size, value, and 10 industry factors). The “NA” entries indicate that the
RC is not-invertible at certain combinations of sampling frequencies and weighting
schemes.
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C Figures

Figure 1: Comparison of MFFM to Hayashi-Yoshida, RC and RC-LL in terms of ln MSE without
microstructure noise
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Figure 2: Comparison of MFFM to Hayashi-Yoshida, RC and RC-LL in terms of ln MSE with
microstructure noise
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Figure 5: This Figure displays the Frobenius norm for the variance elements of the MFFM
when a bias adjustment is used by introducing a lower 3rd sampling frequency for calculating
idiosyncratic risk. The MFFM with small measurement errors in the betas (T = 10 years) is
bias-adjusted while the case with larger measurement errors (T = 1 year) is not bias-adjusted.
The sampling frequency used for residual risk is the 1m frequency if we use factor covariances
sampled at higher frequencies. When the sampling frequency for the factor covariances is 1m or
lower, then we use the same sampling frequency for residual risk.
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