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1 Introduction

Measuring and forecasting the volatility of asset returns plays a key role in various areas

of financial economics, including portfolio management, risk management and the pricing

of derivatives. The increasing availability of high-frequency asset price data has triggered

a vast amount of academic studies proposing volatility estimators that exploit intraday

prices to estimate and forecast daily volatility measures.

The realized variance (RV) estimator sums squared non-overlapping intraday returns

to estimate the daily variance, see e.g. Andersen et al. (2001). In a frictionless market

with continuous trading, RV converges to the integrated variance (IV) as the sampling

frequency of the intraday returns increases. In practice, however, high-frequency asset

prices are contaminated with market microstructure noise. This causes potentially severe

problems in terms of consistent estimation of the daily IV by means of realized measures,

see McAleer and Medeiros (2008) for a review. For RV estimators based on intraday returns

obtained from transaction prices the dominant source of market microstructure noise is

bid-ask bounce. Transactions take place at bid and ask prices causing an upward bias in

the RV estimator. The magnitude of the bias increases with the sampling frequency.

A pragmatic solution to circumvent the problems arising from bid-ask bounce is to

sample returns more sparsely by using longer intraday intervals; examples include the

popular 5- and 30-minute frequencies. While lowering the sampling frequency reduces the

bias in RV estimators, it also increases the variance. The use of sparse sampling frequencies

aims to strike a balance between these two aspects. More formal approaches to correct for

the effects of bid-ask bounce and other types of microstructure noise also exist. Among

the most popular bias-correction methods is the two time scales RV (TSRV) estimator of

Zhang et al. (2005). In this approach the variance of the difference between the observed

transaction prices and the latent efficient prices is estimated using the highest sampling

frequency available and this is then subtracted from each of the intraday squared returns.

Martens and Van Dijk (2007) and Christensen and Podolskij (2007) propose the realized

range (RR) estimator as a more efficient measure of ex-post volatility. The RR estimator

replaces the squared intraday returns in the RV estimator by squared intraday ranges.

The results of Martens and Van Dijk (2007) illustrate that in a frictionless market the RR

estimator is indeed more efficient than the RV estimator when comparing similar sampling

frequencies. These results continue to hold in settings where market microstructure noise,
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in particular bid-ask bounce, is present.

The use of intraday ranges for volatility measurement is further complicated by a

different source of market microstructure noise, namely infrequent trading. Trading does

not occur continuously, that is, in practice we observe transactions at irregularly spaced

points in time, see e.g. Engle (2000) or Griffin and Oomen (2008). For the RV estimator,

non-trading increases the variance but does not cause a bias. In contrast, infrequent

trading introduces a downward bias in RR estimators as the observed intraday high and

low prices are likely to be below and above their ‘true’ values, respectively.1 Christensen

and Podolskij (2007) propose an adjustment of the standard RR estimator to account for

the effects of non-trading.

Returning to the issue of bid-ask bounce, Christensen et al. (2009) propose a ‘two time

scales’ RR (TSRR) estimator that aims to correct the upward bias due to bid-ask bounce

along the same lines as the TSRV estimator of Zhang et al. (2005). The two time scales

RR is implemented by estimating the bid-ask spread using the highest sampling frequency

available and subtracting this quantity from each of the intraday ranges.

In this paper we extend the bias-adjustment for the realized range presented in Chris-

tensen et al. (2009) by relaxing their assumption that the observed high (low) price in

each intraday interval originates from a transaction taking place at the ask (bid) quote.

While this may be the most likely situation, in practice the high (low) price may also

be observed as a transaction at the bid (ask) quote, such that an intraday range is not

necessarily upward biased. Intuitively, the likelihood of an intraday range being upward

biased decreases when the noise-to-volatility ratio becomes smaller or when the trading

intensity of the asset becomes lower. We propose a heuristic adjustment of the RR that

utilizes simulation-based estimates of the probabilities of an intraday range being upward

biased, downward biased or unbiased. For the heuristic adjustment we need three inputs

that are readily available from a sample path of tick data for a full trading day for which

one wants to estimate the daily volatility. These inputs are estimates of the following

quantities: (i) the daily range that is unaffected by noise, (ii) the non-trading probability

and (iii) the half-spread. Using these inputs we simulate a geometric Brownian motion

with variance (i) and implement noise with settings (ii) and (iii). For the simulated geo-

metric Brownian motions we keep count of how many intraday ranges are upward biased,

1Note that a possible advantage of the ‘standard’ realized range estimator is that the positive bias due

to bid-ask bounce and the downward bias due to non-trading offset each other to a certain extent.
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unbiased or downward biased. By averaging over simulation runs we estimate probabilities

for the three cases that can be attached to the ranks of sorted intraday ranges. We apply

these probability ranks to the sorted vector of initial high-low ranges for which we are now

able to indicate whether an intraday range is expected to be upward biased, unbiased or

downward biased.

We study the proposed heuristic bias-adjustment for the realized range estimator in a

simulation setting with plausible levels of bid-ask bounce and non-trading. Using Monte

Carlo simulations with several different stochastic volatility models as data generating

process we find that the heuristically adjusted realized range estimator TSRRh provides

volatility estimates that compare favorably, in terms of bias and variance, with the (TS)RV

and (TS)RR estimators studied in Christensen et al. (2009) and the (TS)RV estimators in

Aı̈t-Sahalia and Mancini (2008). In an empirical forecasting application for the relatively

liquid IBM stock and Zimmer Holdings (ZMH), a relatively illiquid constituent of the

S&P500 belonging to the health care sector, we also find encouraging results. For IBM

the heuristically adjusted RR volatility estimator provides more efficient one-step ahead

forecasts. For ZMH the TSRRh outperforms (TS)RV and TSRR and competes with the

RR estimator.

Our paper is related to several recent articles examining the relative performance of

different realized measures in terms of measuring and forecasting the daily integrated

variance. Among the studies that focus on out-of-sample predictive ability, Liu et al.

(2012) recently consider the model confidence set approach to test for 350 assets, selected

from several asset classes, whether alternative volatility forecasts can beat RV forecasts.

They conclude that there are better forecasts but that it is difficult to significantly improve

upon the RV forecasts. Their study includes the realized range which is implemented in

the form proposed by Christensen and Podolskij (2007), which takes non-trading into

account but is not unadjusted for other forms of microstructure noise. They find that

the realized range forecasts compare favorably, especially for interest rate futures. Aı̈t-

Sahalia and Mancini (2008) put forward forecasting results for TSRV and RV measures

in the presence of jumps, noise correlated with the efficient price, autocorrelated noise,

long-memory in volatility and leverage effects in volatility. In addition they compare

TSRV and RV forecasts for the relatively liquid DJIA stocks. They find that TSRV

forecasts are more efficient than RV forecasts. Andersen et al. (2011) evaluate out-of-

sample volatility forecasts in a simulation setting that uses stochastic volatility diffusions.
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The resulting efficient price processes are contaminated with microstructure noise. Their

analysis is extended in several dimensions such as an implementation where the noise

is serially correlated. They find that a combination of the TSRV and a RV estimator

constructed by weighting different sampling frequencies performs best. Ghysels and Sinko

(2011) evaluate volatility forecasts in the Mixed Data Sampling (MIDAS) framework and

include results for iid-distributed noise and dependent noise. Consistent with Aı̈t-Sahalia

and Mancini (2008) they find that at high sampling frequencies TSRV forecasts achieve

the highest efficiency. Christensen et al. (2009) compare (TS)RV and (TS)RR estimators

and find that in the presence of bid-ask bounce TSRR and TSRV compete in terms of

statistical efficiency and that TSRR is more efficient when more than 300 observations are

available. In an empirical application Christensen et al. (2009) estimate the volatility of

two highly liquid IT stocks, Microsoft and INTEL, and find that (TS)RV estimators have

a smaller variance than RR. The TSRR they propose, however, has a smaller variance

than the (TS)RV estimators.

The remainder of this paper is structured as follows. In Section 2 we develop the

heuristic bias-adjustment for the RR estimator and discuss the (two time scales) realized

volatility and (two time scales) realized range estimators. The simulation results are

discussed in Section 3. Empirical forecasting results are presented in Section 4. We

conclude in Section 5.

2 Volatility estimators, noise and bias-corrections

2.1 Volatility estimators

We assume that the logarithmic asset price Pt follows a driftless diffusion

dPt = σtdWt, (1)

where σ is a strictly positive stochastic volatility process and Wt is a Wiener process. The

daily interval is standardized to unity, such that the daily integrated variance (IV) is given

by

IVt =

∫ t

t−1
σ2
sds. (2)

Let r∆
t,j = logPt+j∆ − logPt+(j−1)∆ denote the log-return over the j-th intra-day interval

of length ∆ on day t, for a given interval length 0 < ∆ < 1 such that we have J = 1/∆
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intervals in a given day.2 The realized variance estimator is calculated by summing squared

intraday returns that are sampled from non-overlapping intervals of length ∆,

RV ∆
t =

J∑
j=1

r2
t,j . (3)

The realized range replaces the squared returns in RV by squared intraday ranges,

RR∆
t =

1

4 log 2

J∑
j=1

(logHt,j − logLt,j)
2, (4)

where Ht,j = sup(j−1)∆≤i≤j∆ Pt+i and Lt,j = inf(j−1)∆≤i≤j∆ Pt+i denote the high and

low prices during the j-th interval on day t. In a frictionless market environment with

continuous trading, both RVt and RRt are consistent estimates of the integrated variance

IVt when the sampling frequency J → ∞. In the constant volatility case σt = σ the

variance of RV is 2σ4∆2 and the variance of RR is approximately3 0.407σ4∆2, which

renders the RR about 5 times more efficient.

2.2 Market microstructure noise

Market microstructure noise refers to imperfections in the trading process of financial assets

causing observed prices to deviate from the underlying ‘true’ price process. Microstructure

noise generally implies that realized volatility and realized range measures are inconsistent

estimators for the integrated variance, with the impact becoming more pronounced as the

sampling frequency increases. We focus on bid-ask bounce and non-trading since these are

the two most relevant sources of noise that affect range-based volatility estimates based

on high-frequency intra-day transaction prices.

Bid-ask bounce

Observed transactions take place at bid and ask quotes causing negative autocorrelation

in high-frequency returns as the observed price jumps transiently from ask to bid and vice

versa, see e.g. Roll (1984). Hence, at the micro level bid-ask bounce introduces volatility in

the observed price process that is unrelated to the volatility of the ‘true’ price process. For

this reason bid-ask bounce causes an upward bias in high-frequency volatility estimates.

2For convenience we assume that ∆ is such that J is an integer.
3The exact variance of the RR is ( 9ζ(3)

(4 log 2)2
− 1)σ4∆2 where ζ(x) =

∑∞
m=1 1/mx is Riemann’s zeta

function.
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A general representation of bid-ask bounce and the relationship between the ‘efficient’

price Pt and the ‘noisy’ transaction price P ∗t is given by:

P ∗t = Pt + ωt, (5)

where bid-ask bounce is represented by ωt which follows an i.i.d. distribution with support

on +ω and −ω, such that ω represents the half-spread.

Infrequent trading

Strictly speaking, non-trading does not fall under the heading of microstructure noise

as defined above, in the sense that observed transaction prices are (or can be) equal to

the efficient price. As the price process is not observed continuously though, non-trading

does affect the RR estimator. As the observed high and low prices in a given intra-

day interval are likely to be below and above their ‘true’ values, respectively, infrequent

trading introduces a downward bias in the ‘standard’ RR estimator in (4). Effectively,

in the presence of non-trading the scaling parameter 4 log 2, which is the variance of a

continuously observed Brownian motion, is not appropriate. Following Christensen and

Podolskij (2007), we therefore use

RR∆
t =

1

λm

J∑
j=1

(logHt,j − logLt,j)
2, (6)

where m is the number of observations in an intraday range. The appropriate scaling pa-

rameter λm = E[ max
0≤s,t≤m

(Wt/m−Ws/m)2] is determined through simulating an infrequently

observed Brownian motion W and estimating the second moment of its range. Note that

this adjustment destroys the possibility that the upward bias due to bid-ask bounce and

the downward bias due to infrequent trading (partly) offset each other, necessitating a

further adjustment of (6) to account for the effects of microstructure noise.

2.3 Correcting for bid-ask bounce

Subsampling aims at at improving the accuracy of realized measures by using multiple

intraday sample paths through shifting the point at which a sample starts. Assuming one

has access to 1-minute price observations at 9:30, 9:31, 9:32, etc. the standard approach to

estimate RV using, for example, 5-minute returns is to use transaction prices at 9:30, 9:35,

9:40 etc. A way to exploit more of the available data is to use a 5-minute price sample

consisting of observations 9:31, 9:36, 9:41 etc. This approach provides five different samples
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giving rise to five different RV estimates. These can be averaged such that more data is

used. The number of subsamples one can compute depends on the ‘intended’ sampling

frequency and on the highest sampling frequency available. Assuming that there are S

subsamples, the subsampled RV S estimator is defined as:

RV ∆,S
t =

1

S

S∑
s=1

RV ∆
t,s. (7)

The two time scales estimator introduced in Zhang et al. (2005) combines the subsam-

pled RV S estimator at a ‘sparse’ frequency, e.g. 5-minutes, with an ultra-high-frequency

estimator that is used to estimate the noise component. At the ultra-high-frequency RV is

estimated using all of the n+ 1 observed price ticks in a trading day and is denoted RV N .

This ‘all returns’ estimator produces a consistent estimate of the quantity 2nE(ω2) such

that E(ω2) = RV N/2n. Combining the sparsely subsampled RV S estimator and the ‘all

returns’ estimate to remove the noise results in a consistent estimator of the integrated

variance, the so-called two-time-scales realized variance (TSRV) estimator:

TSRV ∆
t = RV ∆,S

t − n̄

n
RV N , (8)

where n̄ = n/S. A small sample adjustment is applied to adjust for the fact that the

number of returns in each of the sub-grids may not be equal:

TSRV ∆,adj
t =

1

1− n̄
n

TSRV ∆
t . (9)

For sufficiently large samples the correction term converges to unity. The TSRV estimator

uses all available intraday price observations to estimate the noise component. For the

RV subsampler at sparse frequencies, however, TSRV does not necessarily use all of the

available data. Range-based volatility estimators by construction use all of the available

data to calculate the highs and lows in an interval, and hence, make more efficient use of

the high-frequency data to estimate volatility.

Similar to the TSRV estimator, Christensen et al. (2009) propose the use of a bias-

correction for the realized range estimator based on two time scales. The bias-correction is

derived under the assumption that the noise is represented by bid-ask bounce4, i.e. an iid-

noise distribution centered around zero with support on only two points, see also Equation

4It is hard, if not impossible, to derive a bias-adjustment for the RR estimator under noise distribu-

tions with unlimited support. Christensen et al. (2009) provide extensions to other microstructure noise

distributions with bounded support such as a uniform noise distribution and rounding errors. The focus

in their study, however, is also mainly on bid-ask bounce.
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(5) for a general representation. The highest frequency time scale is used to estimate the

impact of bid-ask bounce. Specifically, a consistent estimate of the half-spread is obtained

using ω̂ =
√
RV all/2n. This quantity is then used to filter out the bid-ask spread ω in

each interval of the sparsely sampled realized range estimator:

TSRR∆
t =

1

λ̃m

J∑
j=1

(logHt,j − logLt,j − γω̂)2, (10)

where Christensen et al. (2009) use γ = 2 which is based on the implicit assumption that

Ht,j is always at the ask-quote and Lt,j is always at the bid-quote. The scaling parameter

λ̃m = E[ max
s:ωs/m=−ω,t:ωt/m=ω

(Wt/m −Ws/m)2] is determined through estimating the variance

of the range of a discretely observed Brownian motion that is contaminated with noise.

The TSRR proposed in Christensen et al. (2009) takes into account that observed prices

are contaminated by bid-ask bounce and that prices are observed infrequently. The latter

is done through the multiplicative scaling parameters λm and λ̃m which take on different

values for RR and TSRR due to microstructure noise. Underlying the additive part of

the bid-ask correction where γ = 2, is the implicit assumption that the high is always an

ask price and the low is always a bid price. In the presence of plausible levels of bid-ask

bounce and non-trading, however, the probabilities of an intraday range being unbiased or

downward biased are non-zero. The assumption of all intraday ranges being upward biased

only holds when an asset trades very frequently throughout the day and a sufficiently large

number of transactions is recorded in each of the intraday sampling intervals. In addition,

the noise-to-volatility ratio should be sufficiently large. For illiquid assets such as stocks

that are traded infrequently this assumption may not always hold. This can be exemplified

by analyzing an artificial price path where in some specific intraday interval the high and

low are equal, i.e. this interval should not contribute to the daily volatility. For the RV

and RR estimators this is the case, as both the intraday return and range are zero for

this interval and do not contribute to the daily volatility estimates. This specific interval

will, however, introduce an upward bias in TSRR of 4ω̂2

λ̃
. This upward bias for a specific

interval also occurs when the high and low are non-equal but both were recorded at the bid

quote (ask quote). For these reasons we relax the assumption that the observed high (low)

price always originates from a transaction executed at the ask (bid) quote. Specifically,

we use simulation-based estimates of the probabilities that a specific intraday range is

unbiased or even downward biased. The underlying idea is that if one would sort all the

observed intraday highs (lows), then the highest high (lowest low) is more likely to be at
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the ask-quote (bid-quote) than is the case for the lowest (highest) observed high (low).

In more detail, we propose the following bias adjustment procedure that is based on

simulation and sorting. Given a trading day of tick data that is contaminated by noise

and infrequent trading:

1. Estimate the non-trading probability using the number of observed transactions on

day t.

2. Use Parkinson (1980)’s daily high-low range estimator to obtain an initial estimate

of the volatility for day t.5

3. Estimate bid-ask bounce, i.e. ω̂ =
√
E(ω̂2) =

√
RV N/2n.

4. Simulate intraday sample-paths based on a geometric Brownian motion with inputs

being the estimated non-trading probability, the initial volatility estimate and the

estimated bid-ask spread.

5. Using the bid-ask and non-trading contaminated simulated sample paths, estimate

the probability of observing (a) no bias, (b) upward bias and (c) downward bias in

the intraday range.6

6. Sort the empirical intraday high-low’s. Based on the estimated probabilities from

the previous step, calculate how many of the intraday ranges are expected to be (a)

unbiased, (b) upward biased or (c) downward biased. Use Equation 11 and apply (a)

γj = 0, (b) γj = 2 and (c) γj = −2 to adjust for (b) upward bias and (c) downward

bias.

Hence, our estimator has the same form as the estimator proposed in Christensen and

Podolskij (2007) with the difference being that we do not use γ = 2 to correct each of the

intra-day ranges. Instead we propose to use

TSRRh∆
t =

1

λ̃

J∑
j=1

(logHt,j − logLt,j − γjω̂)2, (11)

5It is important that this estimator is (almost) not affected by microstructure noise (we will use the

daily range, alternatively one can use another (almost) bias-free measure, e.g. the TSRV or the daily

squared return).
6Case (a) occurs when in an intra-day interval the observed high and low are both executed at a bid

price (or both being an ask), (b) occurs when the observed high is an ask-price and the observed low is a

bid-price (c) occurs when the high is a bid-price and the low is an ask price.
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where we use γj = 2 if after sorting and using the simulated probabilities an intraday range

is expected to be biased upward (b). Assuming that the J intraday ranges are sorted in a

descending manner and the estimated probability of intraday ranges being biased upward is

q, then the first Jq intraday ranges are expected to be biased upward. Similarly, assuming

that the probability of an intraday being unbiased is estimated to be v, we use γj = 0 (a)

for the subsequent Jv intraday ranges and for the remaining J(1− q − v) intraday ranges

γj = −2 (c) is used.7

3 Monte Carlo Simulation

In the following Monte Carlo simulation experiments we compare ex-post volatility esti-

mates using the (TS)RV and (TS)RR estimators with the newly proposed TSRRh estima-

tor. The estimators are compared in terms of bias, variance and efficiency. We simulate

the integrated variance using several stochastic volatility diffusions that were also used

in Aı̈t-Sahalia and Mancini (2008), among others. Returns and integrated volatilities are

simulated from a Heston Jump-Diffusion, a Fractional Ornstein-Uhlenbeck process and a

discrete-time log-volatility model. We simulate 1,000 trading days of 6.5 hours, i.e. 23,401

prices are simulated per day to match a time step of 1 second. Subsequently non-trading

is implemented by assuming a trade is observed with probability 0.10 such that on average

2,340 ‘clean’ prices are observed during the day. Microstructure noise is implemented by

contaminating the prices with a half-spread of ω = 0.025% on the asset price. Bid and ask

prices are assumed to occur equally likely. In all experiments we use 100 sub-sample grids

to calculate TSRV. For each daily TSRRh estimate 500 simulations are used to estimate

the impact of bid-ask bounce for rank-sorted intraday ranges in order to implement the

proposed bias-adjustment as in Equation (11).

3.1 Heston stochastic volatility jump-diffusion

The data generating process for returns and volatility under the Heston (1993) stochastic

volatility jump-diffusion model is specified by

dPt = (µ− σ2
t /2)dt+ σtdW1,t,

dσ2
t = −κ(σ2

t − α)dt+ γσtdW2,t + Jtdqt,

7Assuming Jq and Jv are integer.
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with drift parameter µ = 5%, a long term average volatility α = 3.5%, and mean reversion

parameter κ = 5. The volatility of volatility parameter γ = 0.5 facilitates leverage effects

as the two Brownian motions are negatively correlated with ρ = −0.5. The occurrence

of jumps in the volatility process has distribution qt ∼ Poi(φ) and the jump magnitude

follows an exponential distribution Jt ∼ Exp(ζ). Following Aı̈t-Sahalia and Mancini (2008)

we set λ = 1/2, ζ = 0.0007. Empirical stylized facts are taken into account by the inclusion

of jumps in the volatility process and a leverage effect to allow for the empirically plausible

negative relation between returns and volatility shifts.

3.2 Fractional Ornstein-Uhlenbeck process

Following Aı̈t-Sahalia and Mancini (2008) we simulate IV using a fractional Brownian

motion,

dPt = (µ− σ2
t /2)dt+ σtdWt,

dσ = −κ(σt − α)dt+ γdWH,t,

where dWt is a Wiener process and dWH,t is a fractional Brownian motion with Hurst index

H ∈ (0, 1). A fractional Brownian motion is a continuous mean zero Gaussian process

with stationary increments and covariance E(WH,tWH,s) = 1
2(s2H + t2H − |s − t|2H).

The covariance structure illustrates that the increments are positively correlated when

1
2 < H < 1 and exhibit long-memory, for H = 1

2 the increments are independent and

correspond to a standard Brownian motion. To simulate the fractional Brownian motion

we use the Davies and Harte (1987) algorithm with Hurst effect H = 0.7.

3.3 Discrete-time log-volatility model

In many applications the logarithm of volatility is used because the logarithm of (realized)

volatility is empirically found to be closer to a Gaussian distribution (see e.g. Figure

1 in Andersen et al. (2001)). The discrete time model we use is the model employed in

Andersen et al. (2003) and Aı̈t-Sahalia and Mancini (2008). The daily integrated volatility

lt follows an AR(5) process

lt =
1

2
log(IVt) = φ0 +

5∑
i=1

φilt−id + et, (12)

where IVt is the daily integrated variance and et is white noise. Intraday efficient returns

are obtained using rt =
√
IVtzt with zt ∼ NID(0, 1). For the parameters we use those

11



reported by Aı̈t-Sahalia and Mancini (2008), φ0 = −0.0161, φ1 = 0.35, φ2 = 0.25, φ3 =

0.20, φ4 = 0.10, φ5 = 0.09 and σe = 0.02.

3.4 Monte Carlo results

Volatility estimation results using Monte Carlo simulations for the three stochastic volatil-

ity models8 discussed above are summarized in Table 1. The microstructure noise settings

used are a probability equal to 0.10 of observing a trade9, which results in 2,340 observa-

tions per day on average and a half-spread of 0.025% of the asset price.

Under the Heston jump-diffusion the bias for the RV estimator (0.093) is somewhat

smaller than would be expected based on using a half-spread of 0.025% of the asset price

(0.0975 = 2∗390/5∗0.025%2)10. This is due to the quadratic variation being larger because

of jumps in the volatility process. The variance of all the volatility estimators considered

under the Heston jump-diffusion models is considerably larger than in models that do not

incorporate jumps since the volatility estimators discussed here are not designed to be

jump-robust. Theoretically the RR estimator is expected to have a substantially smaller

variance than the (TS)RV estimators. It is interesting to compare the competing estimators

in the presence of noise, non-trading and jumps in the volatility process. Indeed we find

that at the 5-minute sampling frequency the variance of RR (0.071) is still more than 3

times smaller than the variance of RV (0.253) and less than half the variance of TSRV

(0.170). In terms of RMSE the RR (0.460) performs better than RV (0.511) but in turn

it is outperformed by the TSRV (0.414) because the latter is approximately unbiased

(−0.038). The bias of the RR (0.374) estimator is substantially larger than the bias in the

RV estimator. Bias-correcting the realized range as proposed by Christensen et al. (2009)

successfully reduces the bias from 0.374 to−0.263 at the cost of an increase in variance from

0.071 for RR to 0.108 for TSRR. Despite the reduced bias, the TSRR (0.421) still does not

improve upon TSRV (0.414). Taking into account that not all intraday ranges are upward

biased and that the largest intraday ranges in a day are more likely to be upward biased

8Results for a Brownian motion with constant volatility are similar in the sense that TSRRh improves

upon (TS)RV because of having a smaller variance leading to a smaller RMSE. The TSRRh also improves

upon (TS)RR because of a smaller bias that comes at the cost of a modest increase in variance. This bias-

variance trade-off results in TSRRh having a smaller RMSE than (TS)RR as well. Results are available

upon request.
9The trading probability is in line with the results presented in Table 1 in Hansen and Lunde (2006).

10Errors are multiplied with 104 to improve readability.
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than the smallest intraday ranges is exemplified by TSRRh (−0.239) having a smaller bias

than TSRR (−0.263). As a result the RMSE of TSRRh (0.407) is also smaller than the

RMSE (0.414) of the unbiased TRSV estimator. At the 30-minute sampling frequency the

impact of noise is substantially smaller as expected11 and for this reason it is optimal to

use the RR without bias-correction.

Across models we find that using 5-minute intervals to estimate daily volatility out-

performs the lower 30-minute and daily sampling frequencies in terms of variance and

statistical efficiency. Under the fractional Brownian motion model the TSRV estimator

minimizes the bias (−0.023) at the 5-minute sampling frequency as was the case under the

Heston model. Again the realized range-based estimators achieve a smaller variance than

(TS)RV. However, it is also the most biased estimator and for this reason the least efficient

with a RMSE of 0.422. The TSRV (−0.023) successfully reduces the bias of RV (0.098)

and achieves a RMSE of 0.219. Similarly the TSRR is very successful in reducing the bias

of RR (0.395) to −0.138 and also has a smaller RMSE (0.208) than the (TS)RV estimators.

By using the informational content contained in the size of the intraday ranges through

implementing the TSRRh the bias is further reduced from −0.138 for TSRR, down to

−0.120 for TSRRh which results in TSRRh having the smallest RMSE (0.199).

For the discrete-time log-volatility model we find similar results in the sense that at

the 5-minute sampling frequency the TSRV estimator minimizes the bias (−0.037) but has

a variance (0.048) that is inferior to that of the RR (0.022), TSRR (0.024) and TSRRh

(0.025) estimators. The TSRRh (−0.134) is less biased than the TSRR (−0.151) which

in turn is less biased than RR (0.380). The result is that, similar to the results under the

Heston Jump-Diffusion and the fractional Brownian motion model, the TSRRh at the 5-

minute sampling frequency achieves the smallest RMSE in the discrete-time log-volatility

model.

11For instance the expected RV bias is now only 0.01625.
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4 Empirical application

For a relatively liquid (IBM) and illiquid (Zimmer Holdings, ZMH) stock we obtain intra-

day transaction prices and quotes from the TAQ database for the 1/1/2006 – 12/31/2008

period. The data are cleaned following the procedures documented in Barndorff-Nielsen

et al. (2009) with the exception that we do not use moving-average rules to judge the ade-

quacy of observed transactions.12 Using the cleaned data we estimate the bid-ask spreads,

following Roll (1984), to be 2.13 basis points (bps) for IBM and 4.93 bps for ZMH. The

daily and intra-daily variation in bid-ask spreads through our sample period is, however,

quite substantial. This particularly applies to the financial market turmoil in 2008. The

trading probabilities are estimated to be 0.084 for ZMH and 0.201 for IBM on a 1-second

time-grid.13

We evaluate the out-of-sample forecasting performance of the heuristically bias-adjusted

RR, (TS)RV and (TS)RR estimators. For each realized measure we use an AR(1) model

(with intercept) to construct one day ahead volatility forecasts, using a rolling window

of one year to estimate the AR(1) coefficients. The out-of-sample period is 1/1/2007–

12/31/2008. We compare volatility forecasts using the commonly used 5-minute sampling

frequency. This choice is motivated by the Monte-Carlo results described in Section 3. We

report Mincer-Zarnowitz and encompassing regression results to evaluate the predictive

accuracy. In the Monte Carlo simulation we illustrated that for several stochastic volatil-

ity models the TSRRh is a highly efficient volatility estimator in the presence of noise and

non-trading. Since for empirical data the integrated variance is unknown we compare the

volatility forecasts using forecast comparison regressions rather than bias, variance and

RMSE.

12Transactions and quotes are cleaned as follows: 1: Delete observations not originating from the NYSE

2: Delete all implausible data, e.g. negative quotes/prices those equal to 0, 0.01 or e.g. 999.9., observations

associated with a negative spread (ask<bid) etc. 3: Delete observations with sale condition other than

”E”/”F”. 4: Delete observations with time stamps outside the 9:30–16:00 hours. 5: Delete all corrected

observations (corr 6= 0) 6: When multiple transaction prices have the same time stamp use the median,

do the same for bid-quotes and ask-quotes. 7: Delete transactions that traded more than a spread size

outside the bid-ask spread.
13For IBM the number of observed transactions before data cleaning procedures is substantially larger

with 29,923 observations per day. We follow the convention to limit ourselves to the 1-second time grid, as

described in the footnote above, we take the median of those transactions and this dramatically reduces

the resulting number of transactions that are used to estimate the volatility.
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We run Mincer-Zarnowitz and encompassing regressions to evaluate the competing

forecasts and following Aı̈t-Sahalia and Mancini (2008) we use the two-time-scales realized

variance TSRV as the ex-post volatility measure. Hence, the Mincer-Zarnowitz regressions

are of the form

TSRVt = α+ βxt|t−1 + εt, (13)

where xt|t−1 is the volatility forecast for day t conditional on the data available at day

t − 1. In the encompassing regressions the realizations are regressed on two competing

forecasts (being, e.g., the realized range and realized volatility forecast),

TSRVt = α+ β1x1,t|t−1 + β2x2,t|t−1 + εt. (14)

For these regressions we report the coefficient estimates and their corresponding t-statistics

based on Newey-West HAC robust standard errors (20 lags).

4.1 Empirical forecast results

Table 2 summarizes the Mincer-Zarnowitz regression results for volatility forecasts based on

the (TS)RV, (TS)RR and TSRRh estimators. We find for both stocks that the differences

in forecast accuracy are small due to the high correlation between volatility forecasts. For

the relatively liquid IBM stock, we find that the realized variance forecasts have a Mincer-

Zarnowitz R2 of 49.6%. The two-time-scales realized volatility manages an R2 of 50.8%.

It slightly underperforms the unadjusted realized range forecasts which explain 50.9% of

the variation in the ex-post TSRV estimates. This finding is quite remarkable, in the

sense that the TSRV serves as proxy for the integrated variance in the Mincer-Zarnowitz

regressions. Forecasts based on the bias-adjusted realized range proposed by Christensen

et al. (2009) achieves an R2 of 50%, hence the bias-adjusted realized range performs slightly

worse compared to its unadjusted counterpart. Consistent with the volatility estimation

results in the Monte Carlo simulations, the empirical forecasts based on the heuristically

adjusted realized range outperform the forecasts based on other estimators as the TSRRh

achieves an R2 of 51.0%.

For the relatively illiquid stock, Zimmer Holdings (ZMH), we find that the R2’s are

substantially lower than for IBM volatility forecasts. Interestingly, the advantage of a

bias-correction almost vanishes. This may be due to the fact that most corrections, in

contrast to TSRR(h), are derived under continuous-time assumptions that do not hold for

illiquid stocks. For example, the standard realized volatility has a Mincer-Zarnowitz R2

16



Table 2: Mincer-Zarnowitz Forecast Regressions

Panel A: IBM 5m Panel C: IBM 5m with outlier correction

RV TSRV RR TSRR TSRRh RV TSRV RR TSRR TSRRh

α 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

tstat 1.311 1.471 1.531 1.523 1.398 1.494 1.642 1.668 1.660 1.539

β 1.231 1.222 1.010 1.196 0.914 1.164 1.147 0.946 1.123 0.858

tstat 23.801 19.853 18.282 19.448 17.546 21.980 16.745 11.509 12.612 11.182

R2 0.496 0.508 0.509 0.500 0.510 0.685 0.687 0.686 0.681 0.689

Panel B: ZMH 5m Panel D: ZMH 5m with outlier correction

α 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

tstat -0.928 -0.879 -0.242 -1.022 -0.988 -1.076 -1.030 -0.372 -1.230 -1.150

β 1.736 1.820 1.562 2.054 1.250 1.691 1.779 1.522 2.003 1.220

tstat 9.124 7.295 10.921 9.995 8.812 10.019 7.740 12.244 11.040 9.517

R2 0.331 0.328 0.335 0.328 0.333 0.433 0.432 0.437 0.430 0.436

Note: The table summarizes the results of Mincer-Zarnowitz forecast regressions with and without an

outlier-correction applied to 10/10/2008. The (TS)RV, (TS)RR and TSRRh forecasts are generated

using a AR(1) process that is dynamically re-estimated using a moving window with window length

100 days. The sampling-frequencies reported are 5-minutes and daily. The imperfect volatility proxy

used is the TSRV at the 5-minute sampling frequency.

of 33.1%, being somewhat higher than that of the TSRV (32.8%). Again we expected the

latter to actually have a small advantage since it is the ex-post quantity used to evaluate

the forecasts. Unreported simulation results indicate that TSRV does not outperform the

standard RV estimator due to the noise estimate RV N/2N being inaccurate when N is

small in practice, whereas in the theory outlined by Zhang et al. (2005) it is assumed that

N → ∞. When N is large we can assume that the volatility signal in RV N is dwarfed

by the noise signal. It is easy to see, however, that when N is small the volatility signal

in RV N increases. For this reason it causes a downward bias due to overcorrecting for

noise.14 The (TS)RV and TSRR forecasts are outperformed by the unadjusted realized

range (R2 = 33.5%) and the novel heuristic adjustment (R2 = 33.3%). The bid-ask adjust-

ment of Christensen et al. (2009) is at par with the two-time-scales estimator (32.8%). The

heuristic bias-adjustment for the realized range (33.3%) outperforms (TS)RV and TSRR.

Hence, for the relatively illiquid ZMH stock we find that bias-adjustments do not pay-off

14See e.g. also Zhang et al. (2005) or Aı̈t-Sahalia and Mancini (2008) who report a very small negative

bias in TSRV in a setting where 23,401 transactions per day are observed, if we move to more realistic

settings and the number of observations decreases, this negative bias becomes more pronounced. Of course,

using a lower sampling frequency for TSRV could reduce the impact of non-trading.
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in terms of forecasting performance, it is in this case better to just use the RR volatility

estimator without applying a bias-correction and if we insist on using intraday data, then

the TSRRh is preferred based on its forecast regression R2.

Table 3 summarizes the results for encompassing forecast regressions. We find that for

IBM the forecasts obtained from the TSRV estimator encompass those from the unadjusted

RV estimator, as expected based on the results in Aı̈t-Sahalia and Mancini (2008). The

coefficient on TSRV (1.570) is statistically significant (t = 3.500) whereas the coefficient

on RV is negative (-0.357) and statistically insignificant (t = −0.846). Similarly, the

unadjusted realized range encompasses the unadjusted realized variance with coefficients

being 1.909(1.692) and −0.100(−0.134), respectively. Adding RR or TSRV forecasts to

unadjusted RV forecasts results in the same R2 of 50.9%. When we add the forecasts

based on the TSRR estimator to RV forecasts we find that the R2 shrinks to 50.1% and

both coefficients are statistically insignificant. However, adding the forecasts based on the

heuristic bias-adjustment for realized range (TSRRh) to unadjusted RV forecasts actually

improves the R2 to 51.0% with its coefficient being 0.992 (1.709) and the coefficient on

RV being −0.107(−0.145). In addition we report encompassing regression results for all

other (bi-variate) forecast combinations and find that adding the unadjusted RR forecasts

to the TSRV forecasts results in similar and statistically insignificant coefficients being

0.562(0.733) and 0.546(0.599), respectively, and an R2 of 51.0%. Hence, combining RV

and TSRRh forecasts results in the same R2 as combining TSRV and RR. When we add

the TSRR forecasts to TSRV forecasts we again find statistically insignificant coefficients

being 1.633(1.053) on TSRV and −0.408(−0.269) on TSRR. In contrast, we find that

TSRV 6.143(4.891) and TSRRh −6.139(−3.857) compete, having statistically significant

coefficients of similar absolute size but opposite signs, due to a high correlation between

the forecasts. Running an encompassing regression for TSRR and TSRRh forecasts results

in both forecasts being statistically significant and opposite signs with TSRR having a

coefficient of −3.219(−2.332) and 3.346(3.334) for TSRRh. Looking at the 10 possible

forecast combinations the optimal combination found for the IBM data is that of TSRV

and TSRRh forecasts with an R2 of 52.9%.

A similar analysis for the relatively illiquid stock (ZMH) illustrates that in contrast to

the IBM results now RV 1.652(1.561) forecasts outperform TSRV 0.090(0.084) forecasts.

The RV forecasts 0.254(0.327), however, are outperformed by the RR 1.336(2.321) fore-
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casts, as expected. However, the RV forecasts 1.719(2.007) almost reduce the coefficient on

TSRR 0.021(0.024) to zero. Hence, whereas the bias-adjustments worked for the relatively

liquid IBM data this is not the case for the illiquid ZMH data. We find similar results

when we add the TSRV or TSRR to RR forecasts, that is, the unadjusted RR forecasts

are better than the TSRV and TSRR. If one uses high-frequency data combined with a

bias correction, then the TSRRh is preferred over TSRR and TSRV.
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4.2 Outlier correction

During our out-of-sample period, which contains the height of the recent financial crisis and

the beginning of its aftermath, several trading days exhibited extremely high volatility and

can be regarded as outliers. It is interesting to analyze how an outlier correction would

influence the results. There is a vast literature on how to adjust for outliers, such as

truncating values that are more than several standard deviations away from the (local)

average of the volatility process or incorporating dummy variables etc. Because there

are several ways to go and we do not want to alter the empirical data too much we will

only incorporate a dummy for 10/10/2008 which was found to be an outlier using several

approaches and analyze how this alters the results discussed above.15

The Newey-West t-statistic for the dummy variable on 10/10/2008 is larger than 70 for

all estimators when using Mincer-Zarnowitz regressions and for the IBM data the t-stat

is 145 for the dummy when using RV forecasts. Note the huge increase in the Mincer-

Zarnowitz R2’s for IBM and ZMH by explicitly incorporating this outlier. For the IBM

data the average R2 shifts 18.1% in absolute terms and 35.8% in relative terms and for

ZMH the shifts are 10.3% and 31.0%, respectively.

For the IBM data the conclusions do not change in the sense that if we rank the

forecasts on the Mincer-Zarnowitz regression R2 the TSRRh (R2 = 68.9%) forecasts still

slightly outperform (TS)RV and (TS)RR forecasts. Similarly, for the ZMH data we again

find that the unadjusted RR has the largest R2 being 43.7% and if we insist on using a

bias-adjusted estimator the TSRRh achieves the best result with R2 = 43.6%.

For the encompassing regressions we find that for the IBM forecasts the TSRRh are not

rendered obsolete by the other forecasts. The forecast combination that has the highest

R2 is that of TSRR and TSRRh. The ZMH results illustrate that in the encompassing

regressions with outlier correction the TSRRh performs satisfactorily as it outperforms the

(TS)RV and TSRR and it competes with the unadjusted realized range. Hence, includ-

ing an outlier dummy for the most severe outlier in our sample does not alter the main

conclusions.

15For example, the RV on 10/10/2008 is more than 8 standard deviations away from the unconditional

average.
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5 Conclusion

We have proposed a novel heuristic bias-correction for realized range-based volatility es-

timates. For the heuristic adjustment we use three inputs that are easily and accurately

estimated from high-frequency data. The needed inputs are estimates of the following

quantities: (i) the daily range that is unaffected by noise, (ii) the non-trading probability

and (iii) the half-spread. Using these inputs we simulate a geometric Brownian motion

with variance (i) and implement noise with settings (ii) and (iii). For the simulated Brow-

nian motions we keep count of how many intraday ranges are upward biased (most likely),

unbiased or downward biased (least likely). By averaging over simulation runs we esti-

mate probabilities for the three cases that can be attached to the ranks of sorted intraday

ranges. We apply these probability ranks to the sorted vector of initial high-low ranges

for which we are now able to indicate whether an intraday range is expected to be upward

biased, unbiased or downward biased.

Using three stochastic volatility models for the integrated volatility, which can include

jumps, leverage effects and dependence in the increments of a Brownian motion, we find

that in the presence of bid-ask bounce and non-trading, volatility estimates based on the

new heuristically bias-adjusted realized range estimator (TSRRh) are more efficient than

estimates based on the realized variance, realized range and their two time scales adjusted

counterparts.

In an empirical setting we evaluated out-of-sample volatility forecasts using Mincer-

Zarnowitz and encompassing forecast regressions. For the relatively liquid IBM stock

we find that the heuristically bias-adjusted realized range estimator (TSRRh) compares

favorably to forecasts based on the (TS)RV and (TS)RR estimators. For the relatively

illiquid Zimmer Holdings stock (ZMH), we find that TSRRh improves upon (TS)RV and

TSRR forecasts and is on par with the RR estimator.
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