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Chapter 1

Introduction
1

It is usually agreed that financial markets do not only reflect the conditions of the

real economy but are also an important determinant of the level of economic activity.

The idea that the financial sector can be a powerful amplifier of the business cycle

(the concept of pro-cyclicality usually adopted) dates back at least to Fisher (1933).

In Fisher’s view, however, financial factors play an asymmetric role: financial fric-

tions limit the availability of external finance to firms and households, worsening

downturns, but they do not have a symmetric positive role during upturns.

A vast macroeconomic literature, developed over the last 20 years, has removed

this asymmetry with the introduction of the modern theory of the financial accel-

erator (FA).2 The FA works mainly through the value of collateral: a rise in asset

prices makes it easier for households and firms to obtain loans, while a decline makes

it more difficult. This mechanism is pro-cyclical since asset prices tend to be pos-

itively correlated with the business cycle and because credit availability feeds back

positively onto investment and consumption, and hence onto economic growth.3

An equally vast literature has ascertained the empirical importance of the FA.

Many papers have studied how changes in net worth affect investment by financially

constrained firms.4 Evidence of financing constraints has also been documented

for households and for the functioning of housing markets.5 Most analyses have

1Parts of this chapter are based on Panetta et al. (2009).
2The seminal work in this field is Bernanke and Gertler (1989).
3Studies have shown that there are several ways of explaining the FA (Bernanke et al., 1996).

One group of models links the FA to fluctuations in the value of collateral assets (e.g., Ia-
coviello, 2005, and Iacoviello and Neri, 2010, for housing wealth): rising prices allow financially
constrained agents to expand borrowing and thus consumption and investment; conversely, col-
lateral devaluations force agents to cut expenditure. A second group of models emphasizes how
endogenous changes to firm balance sheets amplify the business cycle (Carlstrom and Fuerst, 1997,
and Bernanke et al., 1999). A third line of research directly analyzes banks’ contribution to real
fluctuations (Goodfriend and McCallum, 2007, and Gerali et al., 2010).

4See Fazzari et al. (1988) and the review in Hubbard (1998).
5See Campbell and Mankiw (1989), Jappelli and Pagano (1989), Zeldes (1989), and Carroll

1



2 Sect. 1.1 – The new financial accelerator

focused on the way in which financial market imperfections influence the business

cycle indirectly, via their impact on the non-financial sector (firms and households).

Much less effort has been devoted to analysis of the direct role of financial firms in

amplifying shocks to the real economy.6

1.1 The new financial accelerator

A mechanism similar to the FA affects banks’ balance sheets: a negative shock to

asset prices depletes capital and increases leverage. Since raising new capital is

difficult in a downturn, banks tend to react by reducing credit and selling assets.

Disposals feed back onto asset prices, propagating the initial shock. This may have

a strong impact on economic activity, especially when shocks hit several banks si-

multaneously as is typical of systemic events. In this framework, which is usually

referred to as the new financial accelerator (NFA),7 the propagating factor is lever-

age: when banks are highly leveraged, the initial shock and the ensuing reduction

in asset prices will induce massive asset liquidations, accentuating the price fall

and possibly triggering a vicious circle, especially if banks want to restore a target

leverage level. In principle, the mechanism is symmetric: an initial positive shock

(e.g., a technological breakthrough, actual or expected) may lead to a broad rise in

asset prices and hence to an expansion of intermediaries’ balance sheets, starting a

positive circle.

The mechanism, which is complementary to the FA, works as follows.8 Suppose

a bank has assets and liabilities worth 100 and 90, respectively. Hence, the value of

equity net worth, that is assets less liabilities is 10. Then its leverage, defined

as the ratio of assets to equity, is equal to 10. Suppose an exogenous shock reduces

the value of assets by 5% (to 95) so that equity drops to 5. Then leverage almost

doubles to 19. Assume the bank targets some level of leverage say 10, the pre-

shock value. To restore the desired level, the bank could issue equity or sell assets.

When losses are large, however, banks tend to liquidate assets, since equity-raising

tends to be sluggish and costly, especially in unfavorable market conditions, due

and Dunn (1997) for research on households. Almeida et al. (2002) find that house prices are more
sensitive to income shocks in countries with higher loan-to-value ratios, so the credit multiplier has
greater impact on household spending in those countries.

6A notable exception is the research activity carried out at the Bank for International Set-
tlements on the inherent pro-cyclicality of post-Bretton Woods financial arrangements. See Borio
et al. (2001), Borio and White (2004), and White (2006).

7The term “new” is not completely correctly used here as the functioning of this mechanism
has been well known at least since Kindleberger (1978). See Caballero and Krishnamurty (2008),
Brunnermeier (2009), Brunnermeier and Pedersen (2009), and Adrian and Shin (2010).

8The example is adapted from Adrian and Shin (2010).
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to market frictions.9 Note that, assuming constant prices, to restore the desired

leverage value of 10 the bank will have to liquidate assets and liabilities until, in

the new equilibrium, its balance sheet will be 50% smaller than before. This is an

enormous effect that is amplified even more if the initial shock hits a sufficiently

large number of intermediaries. In this case, the simultaneous wave of asset sales

will put further downward pressure on asset prices, generating a vicious circle.

This scheme generates pro-cyclicality as a chain reaction triggered by an ex-

ogenous shock (for example, a fall in house prices) and amplified by the interplay

between the shock and asset market dynamics. The propagating factor is leverage:

when banks are highly leveraged, the initial shock and the ensuing reduction in as-

set prices induce massive asset liquidation, accentuating the price fall and possibly

starting a vicious circle.

Clearly, the empirical strength of the NFA depends on whether banks actually

target an optimal leverage value. If banks did not target leverage, letting equity

absorb shocks, the vicious circle would be dampened. The actual behavior of leverage

over the cycle is therefore crucial for analytical purposes. Adrian and Shin (2010)

show that the relationship between increases in leverage and rises in asset prices

in the United States differs according to groups of investors. For households it is

negative, denoting passive behavior (that is, when the value of their assets falls,

households passively accept an increase in leverage, and conversely when it rises).

For non-financial firms there is no clear relationship. Commercial banks do appear

to target leverage levels.10 The relationship is also positive for security brokers and

dealers (which used to include investment banks). These operators increase leverage

when asset prices go up and reduce it when prices go down, making the greatest

contribution to the vicious circle described above. Adrian and Shin (2010) argue

that for commercial banks the supply curve for assets is downward sloping and

the demand curve is upward sloping, generating market instability. For instance,

a shock that causes a price drop reduces demand and increases supply, triggering

further price declines. The International Monetary Fund (2008b, chap. 4) confirms

9See Basel Committee on Banking Supervision (2004, para. 757). Kashyap et al. (2008) em-
phasize two frictions that contribute to this sluggishness: (1) equity issues increase the value of
existing debt, thus generating an externality in favor of debt-holders and harming existing share-
holders; (2) equity issues may signal forthcoming losses. Kashyap et al. (2008) also note that
under Basel II the pressure to liquidate assets is stronger in crisis periods, when risk and hence
risk-weighted capital requirements increase. Repullo and Suarez (2004) emphasize that the market
for seasoned offerings is plagued by informational frictions, which may entail prohibitive costs of
raising new capital.

10Targeting of leverage could be induced by market discipline: investors consider leverage an
important gauge of firm behavior and health and so monitor it closely (Gropp and Heider, 2010).
For banks, leverage targeting may also be induced by capital regulation or, in some countries, by
specific limits on leverage.
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this evidence for the top investment banks of 17 advanced economies and for the top

commercial banks in the United States and Germany. It also finds that commercial

bank leverage tends to be more pro-cyclical in financial systems characterized by a

prevalence of arm’s length finance, such the United States and the United Kingdom.

However, Panetta et al. (2009) argue that over long periods and broad number of

countries the evidence in line with such mechanisms is not so clear-cut.

The above arguments point to the great relevance of the leverage of financial

institutions for financial stability and for economic welfare more generally. It is

worth noting that leverage in modern financial markets does not only mean that

some investments are financed by borrowed money. More generally, leverage is the

capacity of being able to take risky positions without necessarily making an upfront

payment that can cover all possible outcomes of those risks. This result usually arises

from the usage of particular financial contracts that often have a build-in leverage

factor. Due to their characteristics, the risk-return profiles of these instruments are

somewhat difficult to understand. The consequences of this lack of knowledge can

be severe for investors. This thesis is devoted to the analysis of several aspects of the

risks involved in a few leveraged financial instruments, such as collateralized debt

obligations (CDOs), credit default swaps (CDSs), and hedge funds.

1.2 Outline

After this introductory section, the thesis analyzes some aspects of the risks related

with leveraged instruments. In particular, Chapters 2 and 3 analyze the role of secu-

ritization on the risk of incurring large losses for banks. More specifically, Chapter 2

emphasizes the fundamental role of the reinvestment policy of the proceeds of the se-

curitizations, while Chapter 3 focusses on the role of extreme macroeconomic shocks.

Chapter 4 studies the determinants of CDS spreads, focussing in particular on the

analysis of their changes from before to after the onset of the global financial cri-

sis in 2007. In Chapter 5 we study the impact that the serial correlation of hedge

fund returns has on several measures of individual and systemic risk calculated for

those financial intermediaries. Finally, Chapter 6 summarizes the main results and

concludes.

1.2.1 Chapter 2

Chapter 2 is based on Di Cesare (2009) and studies the impact of securitization on

the risk for a bank of incurring large losses. The financial products generated from

the securitization processes are interesting instruments that can allow investors to
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trade risks (in particular, credit risk) multiple times higher than those of traditional

instruments with the same face value. In this sense, securitization products represent

leveraged financial instruments.

The first part of the chapter analyzes the consequences for a bank of retaining

the most junior tranches of the securitizations, as is often required by market prac-

tices and some regulatory frameworks. We rely on a slightly generalized version of

the model used by Krahnen and Wilde (2006) to show that there can be several

effects on the bank risk as measured by the value-at-risk (VaR). The risk that a

bank faces large losses can either increase or decrease, depending on the individual

characteristics (in terms of default probabilities and correlation coefficients) of the

loans that are securitized and the new loans that are granted with the proceeds of

the securitizations. However, we also show that the final effect on the VaR is usually

small as long as the securitizations involve only reasonable shares of the total loan

portfolio of the bank.

Because of the importance of the reinvestment process in determining the overall

effects on the bank risk, the second part of the chapter provides empirical evidence on

how the securitization activity has contributed to changes in the overall composition

of the asset side of the bank balance sheets. This part focusses on Italian banks

and shows that the banks that securitized their assets have relatively lower shares

of both well performing and bad loans to total assets. At the same time, those

banks also increased their reliance on investments in the interbank market and in

securities other than shares (mainly bonds). Overall, our estimates suggest that the

broad changes in the balance sheets involved by the securitization activities have

probably reduced the expected credit losses of the Italian banks. We also devote

further analysis to individual loan data to compare the default risk of the loans

that have been securitized with that of the new loans that have been granted with

the proceeds of the securitizations. We show that the Italian banks have usually

securitized loans with a better average quality than that of the new loans, thus

suggesting that the credit risk embedded in their loan portfolios has increased as a

consequence of securitizations (as the securitized loans have been removed from the

bank balance sheets).

1.2.2 Chapter 3

Chapter 3 takes the view that painful economic events tend to happen and are

inherent to any socio-economic system. The chapter analyzes how common macroe-

conomic shocks can impact the riskiness of a loan portfolio and the risk of the banks

that securitize their assets.
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The chapter is based on Di Cesare (2012) and uses a one-factor model to describe

the default risk of bank assets that are linked to an underlying macroeconomic

factor which can face negative shocks (see Vasicek, 1987, 1991, 2002). The shocks

are described by the outcomes of random variables that are either Gaussian or

Student’s t-distributed (see Lucas et al., 2002, Lucas et al., 2003, and Hull and

White, 2004). Using Monte Carlo simulations, we show how the VaR of a bank

at high confidence levels is influenced by the presence of common shocks and what

happens to the VaR of a bank that securitizes its loan portfolio when the economy

is subject to extreme macroeconomic shocks. Given that even borrowers with very

low individual default probability are severely affected by extreme macroeconomic

shocks, we show that the individual characteristics of the bank assets have only a

modest impact on the bank risk. Moreover, the exposure of the bank to credit risk

is only slightly influenced by the fact that the bank can securitize its riskiest assets

and reinvest the proceeds of the securitizations in assets with lower credit risk.

We thus show that the consequences of extreme negative macroeconomic shocks

for the banking system are broadly independent of the quality of the bank assets.

For this reason, in order to increase the resilience of individual banks and the whole

banking system, banks should focus on holding sufficient capital to absorb the losses

resulting from the shocks. Trying to limit the negative consequences of the shocks

by securitization practices that are perceived as safer may not be enough in the

worst-case events.

As is well known, in the Basel II framework each bank has to satisfy a capital

requirement that provides a buffer against unexpected losses at a specific level of

statistical confidence, set by regulators at 99.9% (see Basel Committee on Banking

Supervision, 2004, 2005). Our results show that reasonable statistical models can

easily generate outcomes for which a VaR level that is considered acceptable at

that confidence level can suddenly become much larger at slightly higher confidence

levels, that is when rare events materialize as a crisis unfolds.

1.2.3 Chapter 4

Credit default swaps (CDSs) are the prototype example of credit derivates and rep-

resent one of the main instruments for taking leveraged credit exposures. Chapter 4

is based on Di Cesare and Guazzarotti (2010) and analyzes empirically the deter-

minants of CDS spreads for a sample of US non-financial firms. Special attention is

devoted to comparing results for the periods before and after the onset of the global

financial crisis. In addition to the variables that the literature has found to have

a theoretical and empirical impact on CDS spreads, we also include the theoretical
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spread implied by the Merton (1974) model as a regressor to deal with the non-linear

relationships between the individual characteristics of the firms and CDS spreads.

Our results show that the inclusion of this additional term improves the capacity

to explain the CDS spread changes by the changes in the fundamental variables. The

extended model is able to explain more than a half of the variations in CDS spreads

in both the pre-crisis and the crisis periods, which is higher than previous findings

of studies on corporate bond or CDS spread changes. When the theoretical spread

calculated using the Merton model is introduced in the regressions, the coefficient

of the equity volatility decreases significantly, because of the high sensitivity of the

Merton model to this parameter. On the contrary, leverage, which has only second-

order effects on the theoretical spreads, maintains its usefulness in explaining CDS

spread changes.

The chapter is useful to understand how the global financial crisis has changed

the way in which the credit risk is priced in the CDS market for non-financial

firms. The contribution of the firm leverage to the explanation of the CDS spread

changes is much higher during the crisis than before as investors appear to have

become more aware of individual risk factors. At the same time, the impact of the

equity volatility substantially decreases possibly because the large swings in implied

volatility during the crisis period have made this indicator a poor proxy for the long-

term asset volatility which is the volatility that the theory predicts to be relevant

for the pricing of default risk. The overall capacity of the model to explain the

CDS spread changes is almost the same before and during the global turmoil, thus

highlighting that the underlying risk factors identified by the literature as relevant

for the pricing of the credit risk have maintained their explanatory power even in a

period of remarkable stress for the CDS market.

Finally, the chapter shows that during the crisis CDS spreads appear to have been

moving increasingly together, driven by a common factor that the model was only

partly able to explain. Given that the model includes general indicators of economic

activity, uncertainty, and risk aversion, our results point to the presence of a market-

specific factor that hit the CDS market during the crisis in forms not fully reflected

in other markets. The exact identification of this factor is an interesting topic for

further research.

1.2.4 Chapter 5

Hedge funds frequently use leverage to optimize their risk-return profiles. Chapter 5,

based on Di Cesare et al. (2011), analyzes several risk measures related to the

performance of hedge funds.
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Due to investments in illiquid assets, and probably also to reporting issues,

hedge fund returns frequently exhibit a strong degree of serial correlation. As a

consequence, the economic risks of an investment in hedge funds are easily underes-

timated, and investment decisions may be biased. In the chapter, the seminal work

of Getmansky et al. (2004) on the Sharpe ratio (SR) and market beta is extended,

by developing a number of smoothing-adjusted downside risk measures and by al-

lowing for heavy tailed return distributions. In particular, the VaR, the expected

shortfall, the correlation coefficient, and an extreme linkage measure (ELM) reflect-

ing downside systemic risk are adjusted for the autocorrelation present in reported

returns.

We show that unadjusted risk measures tend to understate the true level of risk.

An exception is the ELM, for which the direction of the impact of the correction

cannot be established a priori. We also show that the adjustment of the downside

risk measures for autocorrelation is usually more relevant when returns are fat tailed

than when they are normally distributed.

A hedge fund case study reveals that the unadjusted risk measures considerably

underestimate the true extent of individual and multivariate risks. It is worth noting

that, although the risk-adjustment is applied to hedge funds only, the same frame-

work can also be used to evaluate the risks of other alternative investment strategies.

Investments in real estate, art, collectible stamps, and other illiquid or opaque se-

curities are also known to exhibit strong serial correlation in reported returns. Also

for these assets, conventional risk measures need adjustments to correctly reflect the

true level of investment risk.

1.3 Conclusion

Leveraged investments have become a fundamental feature of modern economies.

The new financial products allow people to take greater-than-usual exposures to

risk factors.

This thesis analyzes several different aspects of the risks involved by some fre-

quently used leveraged products: CDOs, CDSs, and hedge funds. It is shown that

these risks have indeed several facets, and that their misunderstanding can have se-

vere effects, for both individual investors and the global financial stability. However,

although leveraged products can be more complex than other traditional instru-

ments, their characteristics in terms of risks and returns can usually be understood

rather well by disciplined scholars.
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When correctly understood and used, leveraged products can greatly expand the

investment and hedging opportunities, and thus the welfare, of economic agents. In

this sense, the statement of Buffett (2003) that “derivatives are financial weapons

of mass destruction, carrying dangers that, while now latent, are potentially lethal”

is at most partial. Hopefully, this thesis contributes to a better understanding of

some of the features of the leveraged products and provides useful insights on how

to use these new instruments in the best way.





Chapter 2

Securitization and Bank Stability

2.1 Introduction

Before the onset of the subprime financial crisis in the United States, the use of

new financial instruments for credit risk transfer, usually called credit derivatives,

was increasing tremendously.1 The exceptional growth of the market for instru-

ments such as credit-linked notes (CLNs), credit default swaps (CDSs), indices on

CDSs (CDXs), and collateralized debt obligations (CDOs) has stimulated an intense

debate on the effects of credit derivatives on the entire economic system.

In principle, the use of credit derivatives may have large beneficial effects on

both single institutions and the overall financial system as credit derivatives make

the dispersion of credit risk among economic sectors easier and more efficient. The

risk transfer from the banking sector to less leveraged and more long-term oriented

financial institutions, such as insurance companies and pension funds, may con-

tribute to strengthen the whole financial system (Greenspan, 2005). Even sectors

that are not net sellers of credit risk may still benefit from a wider dispersion of

that risk among their members. However, as Fitch Ratings (2006) pointed out and

the recent financial crisis confirmed, the extensive use of credit derivatives may also

lead to an extremely high concentration of risks among a few primary dealers, with

the consequence that the exit or the failure of one of them has the potential to harm

the market liquidity and can result in huge counterpart credit losses for market

participants.2

1See Committee on the Global Financial System (2003) for an overview of several techniques
used for credit risk transfer. JPMorgan (1999) contains a vast, although admittedly incomplete,
taxonomy of credit derivatives.

2It has to be emphasized that one of the main drawbacks in most available statistics on the
exposure of investors to credit derivatives is that only gross and net positions measured on notional
values are available. However, notional values can be misleading since they do not take into account
the true economic exposure to the underlying risk factors, that is the sensitivity of the value of
the instruments to changes in the underlying risk factors (Cousseran and Rahmouni, 2005). As

11
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During the years before the global financial crisis, it was common practice for

banks, especially large banks, to use CDOs to transfer part of the credit risk asso-

ciated with their loan portfolios to other investors. CDOs are securities issued in

tranches with different seniority that are backed by the payoffs of the underlying

assets.3 If some of the underlying loans are not repaid at maturity, the correspond-

ing losses are borne by the tranches with lower seniority up to their notional values.

The most senior tranches are affected only in case of very large losses for which the

provisions of the other tranches are not sufficient.

Banks that transfer their risks may have less incentives to use sound credit

standards and their efforts in that regard cannot be easily verified by the final

investors in CDOs. To reduce these moral hazard issues, it is common practice

for a bank that securitizes its loans to retain the most junior and riskiest tranche

(called the equity tranche). However, Krahnen and Wilde (2006) argue that this

practice can represent a source of concern for financial stability. Under very plausible

assumptions, the two authors show that selling loans by issuing CDOs and retaining

the equity tranche can increase the risk that banks suffer extreme large losses, thus

increasing the probability of bank defaults.

In the first part of this chapter, we slightly modify the framework used by Krah-

nen and Wilde (2006) and show that their results are rather sensitive to the initial

hypotheses. Our analysis shows under which conditions the CDO issuance increases

or decreases the risk for the issuer to incur large losses and highlights the fundamen-

tal role that the reinvestment of the proceeds of the securitization has in this regard.

In particular, we show that the level of risk of a bank decreases when the proceeds

of the securitization are reinvested in loans with an individual default probability

sufficiently smaller than that of the loans that are securitized. Similarly, the secu-

ritization can be beneficial for a bank when it is used to increase the diversification

of the loan portfolio. This happens, for instance, when the loans that are securi-

tized have a positive correlation with a common risk factor and the proceeds are

reinvested in new loans with sufficiently lower correlation with the same risk factor.

Hence, our analysis shows that the assessment of the effects of CDO issuance on the

risk of incurring large losses for banks is mainly a matter of empirical research.

a consequence, apparently balanced positions in terms of notional amounts can hide large risk
exposures while apparently unbalanced positions can instead be the result of well-hedged portfolios.

3“Collateralized debt obligation” is a generic term for this kind of securities. Depending on
whether the assets in the underlying portfolio are loans, bonds or CDSs, one can have collater-
alized loan obligations (CLOs), collateralized bond obligations (CBOs) or collateralized synthetic
obligations (CSOs). CDOs of ABS and CDOs of CDOs (CDO2) were also common. In a CDO of
ABS the underlying assets consist of other securities (more precisely, asset backed securities) that
are in turn backed by assets such as consumer loans or credit card debts. In a CDO2 the collateral
consists of other CDOs. More details about the CDO market can be found in the appendix.
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There are three main streams of empirical research on the relationship between

banks and securitization. The first one is concerned with the determinants of secu-

ritization. In this regard, Bannier and Hänsel (2007) use data on European banks

and find that securitizations are more likely to be realized by larger, less liquid, less

profitable, and riskier banks. Affinito and Tagliaferri (2010) confirm those results

for Italian banks and also find evidence of a role played by regulatory capital relief

as a determinant of the securitization activity.

Other papers focus on the empirical effects of CDO issuance on the banking

business. Jiangli et al. (2007) and Jiangli and Pritsker (2008), using data that do

not include the most recent unfavorable developments for the banking industry, find

that securitization was beneficial to US banks in terms of increased profitability and

reduced risks. Altunbas et al. (2009) show that the use of securitization shelters

loan supply by banks from the effects of monetary policy and strengthen the capac-

ity of banks to supply new loans. The latter capacity depends upon business cycle

conditions and banks’ risk positions. Kara et al. (2011) explore the link between

securitization and lending standards by examining the pricing behavior of European

banks involved in the securitization market when extending credit through syndi-

cated loans. They find that banks more active in originating securitized assets are

also more inclined to lower their pricing of credit risk when extending new loans.

Pricing standards also change over the business cycle: during an expansionary pe-

riod, banks more active on funding via securitization are also more likely to relax

their pricing standards, probably relying on the possibility of offloading the loans

through the financial markets.

A few other papers look at the relationship between securitization and systematic

risk for banks. Franke and Krahnen (2006) provide evidence that stock betas rise

around the announcement of a CDO issue, thus signaling a perception of increased

systematic risk by the market. Also Uhde and Michalak (2010), using a wider

sample of securitizations issued by European banks, provide empirical evidence that

credit risk securitization has a positive impact on the increase of European banks’

systematic risk.

The second part of this chapter is related to the first two streams of empirical

research. First, using data for Italian banks we look for changes in the composition

of the asset side of the balance sheets of the banks that have securitized their loans.

We provide evidence that the securitization activity has been a relevant factor in

explaining those changes. Our results also show that those balance sheet changes

have probably contributed to lower the expected credit losses of Italian banks, mainly

because of the reduction of the share of bad loans over total assets.



14 Sect. 2.2 – CDO issuance and bank stability

Second, we verify whether Italian banks used, maybe involuntarily, securitiza-

tions to modify the overall quality of the most important item of their balance

sheets, that is the loan portfolio. To this end, we use loan-by-loan data to compare

the default rates of the loans that were securitized with the default rates of the new

loans that were granted in the same months by the banks that made the securi-

tizations. Our results show that, on average, the new loans were riskier than the

loans that were securitized, thus leading to an increase in the amount of risk borne

by the Italian banks as a consequence of the reinvestment of the proceeds of the

securitizations. To the best of our knowledge this is the first attempt to measure

the effects of securitization on the risks borne by the issuers using loan-by-loan data.

The chapter is organized as follows. Section 2.2 introduces the model used to

analyze the effects of CDO issuance on bank stability and discusses the results

arising from applying that model. Section 2.3 focuses on the empirical investigation

of the impact of securitizations on the risks incurred by Italian banks. Section 2.4

concludes. A short appendix provides some details on the CDO market.

2.2 CDO issuance and bank stability

Due to the growing importance that the CDO market had in the global financial sys-

tem before the onset of the crisis, it is surprising that, to the best of our knowledge,

only the paper by Krahnen and Wilde (2006) has devoted attention to the effects

that issuing those instruments can have on the risks of incurring large losses for

the originators. Following that paper, we use Monte Carlo simulations to generate

the return distribution of a loan portfolio and study how the risk of incurring large

losses of the originator changes, depending on the different assumptions regarding

the characteristics of the loans that are securitized and the characteristics of the

new loans that are granted using the proceeds of the securitization.4

2.2.1 The basic model

We assume that a bank owns a portfolio of N loans granted to N different borrowers.

The capacity of each borrower i to pay back the loan at maturity T is described by

the variable

Vi = sgn(ρi)
√
|ρi|X +

√
1− |ρi| εi, (2.1)

4See Longstaff and Rajan (2008) for an analytical approach to the pricing of CDOs.



Chap. 2 – Securitization and Bank Stability 15

with i = 1, . . . , N , where ρi ∈ (−1, 1) and sgn(x) is the sign function

sgn(x) =


−1, if x < 0

0, if x = 0

1, if x > 0.

(2.2)

This definition of the model allows ρi, the individual correlation coefficient of

loan i, to be negative and different for each i, and encompasses the model used by

Krahnen and Wilde (2006) that requires ρi to be positive and equal for all borrowers.5

The variable Vi can be interpreted as a normalized measure of the value of the

assets of borrower i and depends on the returns of a common risk factor X and an

idiosyncratic risk factor εi which is borrower specific. Both the common and the

idiosyncratic risk factors are assumed to have standard normal distributions. They

are also assumed to be pairwise independent. Due to these assumptions, Vi has a

standard normal distribution as well. Moreover, the correlation between Vi and the

common risk factor X is equal to sgn(ρi)
√
|ρi| and the correlation between Vi and

Vj, with i 6= j, is equal to sgn(ρiρj)
√
|ρiρj|.

All loans are assumed to have the same face value. The loans pay a coupon

yield ci at maturity and have an individual default probability di. The value of

di implicitly defines the default threshold Di = Φ−1(di),
6 so that the default of

borrower i takes place when the value of Vi is lower than Di. In that case, only

the recovery rate R, which is the same for all loans, is paid back to the lender. As

in Krahnen and Wilde (2006), we also assume that all loans have a maturity of

one year and that defaults can only occur at the maturity of the loans.7 Finally, a

constant interest rate r for (continuously) discounting the future payoffs is used.

Without loss of generality, the total face value of the N loans can be normalized

to 1, so that the relative weight of each loan is 1/N . The coupon yield of the loans

is set equal to

ci =
exp(r)−Rdi

1− di
− 1, (2.3)

which is the value that makes the discounted expected value of each loan equal to

its face value. More generally, we assume that the assets considered in this section

(loans and CDOs) are priced in a risk-neutral way. In doing so, we keep outside of

our analysis the issues related to the degree of risk aversion of the investors that

could influence the valuation of the securities.
5Krahnen and Wilde (2006) use the model developed by Vasicek (1987, 1991, 2002).
6Φ is the standard normal cumulative distribution function.
7Although assuming a maturity of one year may appear rather simplistic, we point out that,

qualitatively, our results are little influenced by assuming different maturities as long as the other
assumptions are unchanged. Actually, allowing for different maturities would only have an impact
on the discount factors.
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Following Krahnen and Wilde (2006), we assume that the bank decides to sell

n of the N loans by putting them in the underlying portfolio of a CDO with seven

tranches. The sizes of the six more senior tranches are defined by their default

probabilities, which are set equal to 1%, 2%, 5%, 10%, 20%, and 30%. That means

that some losses are suffered by the first tranche in order of seniority with at most a

1% probability, by the second tranche with at most a 2% probability, and so on. The

default probability of the last tranche, that bears all the initial losses and is retained

by the bank, is not pre-defined but can be calculated given the previous assumptions

on the characteristics of the loans. Immediately after the securitization, the bank

reinvests the proceeds of the sale of the six tranches in new loans.

It turns out that the reinvestment strategy is the critical factor determining

whether the overall level of risk of the bank increases or decreases when the secu-

ritization process has been completed, that is when the tranches are sold and the

proceeds are reinvested. Krahnen and Wilde (2006) assume that the new loans have

the same characteristics of the loans that are securitized in terms of correlation co-

efficients and default probabilities. Moreover, they assume that the correlation coef-

ficients and default probabilities are equal for all loans and that the bank securitizes

its loan portfolio completely (that is n = N). Under these hypotheses, reasonable

but somewhat simplistic, Krahnen and Wilde (2006) show that the probability that

the bank face large losses increases substantially after the securitization.

To study the impact of the reinvestment strategy on the risk of the bank when

the assumptions made by Krahnen and Wilde (2006) are relaxed, we estimate the

return distribution of the original portfolio (i.e., the loan portfolio of the bank before

the starting of the securitization process) and compare it with the return distribu-

tion of a new portfolio made of: (1) the loans in the original portfolio that are

securitized, (2) the retained equity tranche of the CDO that is issued, (3) the new

loans that the bank grants using the proceeds of the sale of the other six tranches

of the CDO.

Table 2.1 introduces the notation that is used to describe analytically the payoffs

generated by the mechanism just described. The returns associated with those

payoffs can be calculated by comparing the payoffs with their initial fair values and

are represented, respectively, by Rold, Rn, RN−n, Reqt, Rrnv, and Rnew.

Using the indicator function

1{x} =

{
0, if {x} is false

1, if {x} is true,
(2.4)

the probability distributions of the payoffs, and associated returns, are estimated

with the following steps:
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Table 2.1 – List of symbols
Symbols used in the chapter to refer to the payoffs of loan portfolios

Symbol Definition

Pold total payoff of the original loan portfolio of the bank
Pn total payoff of the n loans that are securitized
PN−n total payoff of the N − n loans that are not securitized
Peqt payoff of the equity tranche of the CDO
Prnv total payoff of the loans in which the bank reinvests the proceeds of the

securitization
Pnew total payoff of the new portfolio

1. Generate a random value for the common risk factor X;

2. Generate N random values for the idiosyncratic risk factors εi, i = 1, . . . , N ;

3. For given ρi, calculate Vi, i = 1, . . . , N , as defined in Eq. (2.1);

4. For given default probability pi for borrower i, calculate the default threshold

Di = Φ−1(pi);

5. Calculate the total payoff and return of the original portfolio:8

Pold =
1

N

[
R

N∑
i=1

1{Vi≤Di} +
N∑
i=1

(1− 1{Vi≤Di})(1 + ci)

]
, (2.5)

Rold = Pold − 1; (2.6)

6. Calculate the total payoff and return of the n loans that are securitized:9

Pn =
1

N

[
R

n∑
i=1

1{Vi≤Di} +
n∑
i=1

(1− 1{Vi≤Di})(1 + ci)

]
, (2.7)

Rn = NPn
/
n− 1; (2.8)

7. Calculate the total payoff and return of the N−n loans that are not securitized:

PN−n = Pold − Pn, (2.9)

RN−n = NPN−n
/

(N − n)− 1; (2.10)

8. Reiterate the previous steps 100,000 times to calculate the empirical distribu-

tions of payoffs and returns;

8Remember that the initial total face value of the original portfolio has been normalized to 1,
so that the initial face value of each loan is 1/N . Moreover, given the definition of the coupon
yield ci in Eq. (2.3), also the fair values of the original portfolio and each loan are equal to 1 and
1/N , respectively.

9Without loss of generality, it is assumed that the first n loans are those that are securitized.
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9. Using the empirical distribution of Pn, calculate the detachment point of the

equity tranche:

Deqt = max{x : P(Pn < x) ≤ 0.3}; (2.11)

10. Calculate the payoff of the equity tranche and its distribution:

Peqt = max(Pn −Deqt, 0); (2.12)

11. Using the distribution of Peqt, calculate the fair value of the equity tranche

and the distribution of its return:

Veqt = exp(−r)E[Peqt], (2.13)

Reqt = Peqt
/
Veqt − 1; (2.14)

12. Given that the CDO is priced in a risk-neutral way, its total initial value is

equal to that of the underlying loans, which is n/N . As a consequence, the

proceeds of the sale of the CDO, after retaining the equity tranche, are equal

to n/N−Veqt. That sum is reinvested by the bank in a portfolio of n new loans

with characteristics that are potentially different from those of the loans in the

original portfolio. The payoff of the reinvested portfolio (Prnv) is calculated in

the same way as for Pold, steps 2 to 5, except for using different values for the

parameters of the new loans, and its distribution is determined by reiterating

those steps 100,000 times;

13. Finally, calculate the payoff and return, and their distributions, of the portfolio

that the bank owns after the securitization and reinvestment processes have

taken place:

Pnew = PN−n + Peqt + Prnv, (2.15)

Rnew = Pnew − 1. (2.16)

2.2.2 The return distribution of a loan portfolio

To analyze the effects of the securitization process on the risk profile of a bank, we

study the return distribution of a loan portfolio as a function of three underlying

parameters: the number of loans, the individual default probability of the loans,

and the individual correlation coefficient of the loans.

Figure 2.1 shows the probability density function (PDF), the cumulative density

function (CDF), and the value-at-risk (VaR) for several confidence levels, for the

returns of five loan portfolios with different numbers of loans. Admittedly, the
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PDF, the CDF and the VaR contain the same information, but each indicator is

particularly useful to highlight specific aspects of the return distributions of the

portfolios. All the loans in the five portfolios have the same characteristics. As in

Krahnen and Wilde (2006), we assume that the loans have an individual annual

default probability equal to 20%, an individual correlation coefficient equal to 30%,

and a recovery rate equal to 47.5%. We also assume that the risk-free interest rate

is equal to 4%. Using Eq. (2.3), the coupon yield of the loans is set to about 18.2%.

Panel A of Figure 2.1 shows that the PDFs of the portfolio returns are rather

similar when the number of loans varies from 100 to 10,000.10 Therefore, a fairly

high level of diversification can be achieved even with a relatively small number

of loans. Panel B of Figure 2.1 shows the CDFs of the portfolio returns, that is

the probabilities that returns are lower than given levels.11 For all portfolios, the

probability of incurring a loss (i.e., a negative return) is equal to about 30% and the

probability of having, for instance, a loss greater than 20% is about 5%. Finally,

Panel C of Figure 2.1 reports the VaRs of the portfolios returns for confidence levels

from 90.0% to 99.9%.12 This panel shows that, for instance, there is a 1% probability

that the losses can be greater than about 31% and that with probability 0.1% the

losses can be greater than about 42%.

Other interesting results arise when considering portfolios of loans with differ-

ent individual annual default probabilities. In this case, the number of loans is set

to 1,000 for all portfolios and the assumptions on the individual correlation coef-

ficients, recovery rates, and risk-free interest rate are the same as above. Panel A

of Figure 2.2 reports the PDFs of the returns of five portfolios with loans that

have individual default probabilities in the 10%–50% range. It is worth noting that

the PDFs associated with the portfolios with loans with greater individual default

probabilities have both left and right tails much fatter than those of the PDFs of

portfolios with loans with smaller individual default probabilities. This result is due

to the fact that portfolios with loans with greater individual default probabilities

are more likely to incur both large losses (because many defaults can happen) and

large positive returns (because loans with greater individual default probabilities

earn higher coupon yields when they do not default). From Panel B of Figure 2.2 it

10The PDFs are calculated by simply counting the relative number of outcomes over small
intervals of the returns. This numerical approximation is the source of the raggedness of the curve
that arises when the number of loans is very small.

11Formally, Panel B of Figure 2.1 reports the functions FNi
(x) = P(RNi

≤ x), where RNi
is the

return of the portfolio with Ni loans.
12Formally, Panel C of Figure 2.1 reports the function VaR = F−1

Ni
(1 − x), where FNi is the

cumulative distribution function of the returns of a portfolio with Ni loans, and x is the confidence
level.
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Panel A: Probability density function
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Figure 2.1 – Characteristics of the returns of a loan portfolio for several values
of the number of loans
The legend shows the number of loans in the portfolio. All loans have the same face value,
an individual correlation coefficient equal to 30%, an individual annual default probability
equal to 20%, and a coupon yield such that the fair value of each loan is equal to its face
value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest rate is
equal to 4%.
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Panel A: Probability density function
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Figure 2.2 – Characteristics of the returns of a loan portfolio for several values
of the individual default probability of the loans
The legend shows the individual annual default probability of the loans. The portfolio
is made of 1,000 loans. All loans have the same face value, an individual correlation
coefficient equal to 30%, and a coupon yield such that the fair value of each loan is equal
to its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest
rate is equal to 4%.
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Panel A: Probability density function
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Figure 2.3 – Characteristics of the returns of a loan portfolio for several values
of the individual correlation coefficient of the loans
The legend shows the individual correlation coefficient of the loans. The portfolio is made
of 1,000 loans. All loans have the same face value, an individual annual default probability
equal to 20%, and a coupon yield such that the fair value of each loan is equal to its face
value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest rate is
equal to 4%.
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can be seen that the probability of having losses greater than 10% is in the 5%–30%

range or, said in a slightly different way, Panel C of Figure 2.2 shows that when

the individual annual default probability increases from 10% to 50% one can expect

to have losses greater than about 10% and 35%, respectively, with the same 5%

probability.

It is also worth to examine the case in which the individual correlation coefficient

varies across portfolios. In this case, the assumptions on the recovery rate and risk-

free interest rate are still the same as before, and also the number of loans is kept

fixed at 1,000. Moreover, the individual default probability is set to 20%. As shown

by Figure 2.3, the effect of changing the individual correlation coefficient from zero

(the case of a perfectly diversified portfolio where all loans are independent of each

other) to 50% is to transform the return distribution from a normal-like distribution

to a distribution with very fat tails. Raising the individual correlation coefficient

prompts the return distribution of the portfolio to be more and more concentrated

towards the extreme values. This effect is even more noticeable than in the previous

case of increasing individual default probabilities. In the limit case in which ρ = 1,

the loans either default all together or none defaults, so that there is exactly a 20%

probability that all loans default and a 80% probability that none of the loans

defaults. In the first case, the portfolio records a 52.5% loss (as only the recovery

rate is received back) while in the second case there is a positive return of 18.2%

(which is equal to the coupon yield).

To conclude this section, we point out that there is another important effect of

the individual correlation coefficients on the return distribution of a loan portfolio.

This effect is crucial to understand the impact that securitizing loans with a CDO

can have on the level of risk of a bank. Remember that in Eq. (2.1) we assumed

ρi to be a variable with values in the interval (−1, 1). However, until now we only

analyzed the effects of ρi on the return distribution of a loan portfolio for positive

values of that variable. This was done because we were assuming, as in Krahnen and

Wilde (2006), that all loans have the same individual correlation coefficient ρ. In

fact, the effect of ρ on the return distribution of a loan portfolio depends on how it

affects the behavior of the variable Vi in Eq. (2.1). As the common risk factor X has

a symmetric distribution with zero mean, the results described above are actually

independent of the sign of ρ.

In the following section we assume that the bank can reinvest the proceeds of the

securitization in new loans that have an individual correlation coefficient which is

different from that of the loans that are securitized, thus creating a portfolio in which

loans with different individual correlation coefficients coexist. In that framework the
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sign of the individual correlation coefficients is relevant as, for instance, the effect

of a negative return of X on the value of a loan which is positively correlated with

it can be partially offset by the smaller effect on a loan which is less correlated (or

possibly negatively correlated) with it.

2.2.3 The effects of securitization on bank stability

We use once again the assumptions made by Krahnen and Wilde (2006) as the

benchmark case. Hence, we set ρi = 30% and di = 20% for all loans. Moreover,

R = 47.5% and r = 4%. The continuous line in Panel A of Figure 2.4 shows the

PDF of the returns of a portfolio made of 1,000 loans with those characteristics. The

other lines in the same panel show the PDFs of the returns of new portfolios that

are obtained by securitizing the old loans using a CDO, retaining the equity tranche,

and investing the proceeds of the remaining tranches in loans with individual default

probabilities as shown in the legend.

It is interesting to notice that the PDFs of the new portfolios are bimodal (see

Panel A of Figure 2.2). This result is due to the fact that the new portfolios are a

combination of the equity tranche and a portfolio of new loans. The peaks on the

left, in particular, reflect the fact that the returns of the equity tranche tend to be

negative when the returns of the whole loan portfolio are not large enough. The

peaks on the right, on the other hand, reflect the fact that the returns of the equity

tranche tend to be extremely large when the returns of the whole portfolio are good,

thus compounding the two effects.

As shown by Krahnen and Wilde (2006), the risk for the bank of incurring

large losses increases if the bank fully securitizes its loan portfolio by issuing a

CDO, retaining the equity tranche, and reinvesting the proceeds in new loans with

the same characteristics of the loans that are securitized. This result can be seen

clearly from Panels B and C of Figure 2.4, by comparing the lines corresponding to

the original portfolio with those of the cases in which the new loans have also an

individual default probability of 20%. However, if the bank reinvests the proceeds

in loans of better quality, that is with smaller individual default probability, the

overall level of risk of the bank can decrease significantly. For instance, if the new

loans have an individual default probability of 5%, the VaR at the 99% confidence

level goes from −31% for the original portfolio to −18% for the new portfolio.

Other interesting results appear if one assumes that the new loans in which

the proceeds of the securitization are reinvested have the same individual default

probability of the loans that are securitized but a different individual correlation

coefficient. Panel C of Figure 2.5 shows that the bank can sharply reduce its VaR
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Panel A: Probability density function
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Figure 2.4 – Characteristics of the returns of a loan portfolio, before and after
the securitization of 100% of the loans, for several values of the individual
default probability of the new loans
All the loans in a portfolio of 1,000 loans, with the same face value and individual annual
default probability equal to 20%, are securitized using a CDO of which the bank retains
the equity tranche. The remaining proceeds are reinvested in new loans with an individual
annual default probability as specified in the legend. All loans have an individual correla-
tion coefficient equal to 30% and a coupon yield such that the value of each loan is equal
to its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest
rate is equal to 4%.



26 Sect. 2.2 – CDO issuance and bank stability

Panel A: Probability density function
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Figure 2.5 – Characteristics of the returns of a loan portfolio, before and after
the securitization of 100% of the loans, for several values of the individual
correlation coefficient of the new loans
All the loans in a portfolio of 1,000 loans, with the same face value and individual cor-
relation coefficient equal to 30%, are securitized using a CDO of which the bank retains
the equity tranche. The remaining proceeds are reinvested in new loans with an individ-
ual correlation coefficient as specified in the legend. All loans have an individual annual
default probability equal to 20%, and a coupon yield such that the value of each loan is
equal to its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free
interest rate is equal to 4%.
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Figure 2.6 – Characteristics of the returns of a loan portfolio, before and after
the securitization of 20% of the loans, for several values of the individual
default probability of the new loans
The 20% of the loans in a portfolio of 1,000 loans, with the same face value and individual
annual default probability equal to 20%, are securitized using a CDO of which the bank
retains the equity tranche. The remaining proceeds are reinvested in new loans with
an individual annual default probability as specified in the legend. All loans have an
individual correlation coefficient equal to 30% and a coupon yield such that the value of
each loan is equal to its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the
risk-free interest rate is equal to 4%.
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Panel A: Probability density function
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Figure 2.7 – Characteristics of the returns of a loan portfolio, before and after
the securitization of 20% of the loans, for several values of the individual
correlation coefficient of the new loans
The 20% of the loans in a portfolio of 1,000 loans, with the same face value and individual
correlation coefficient equal to 30%, are securitized using a CDO of which the bank retains
the equity tranche. The remaining proceeds are reinvested in new loans with an individual
correlation coefficient as specified in the legend. All loans have an individual annual default
probability equal to 20%, and a coupon yield such that the value of each loan is equal to
its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest
rate is equal to 4%.
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for any confidence level if it reinvests in loans with a smaller individual correlation

coefficient. For instance, in the case of a reinvestment in loans with ρ = −10%, the

VaR at the 99% confidence level drops from −31% to −3%. By reinvesting in loans

that are negatively correlated with the common macro factor, the bank can diversify

the residual exposure to the initial portfolio which is positively correlated with

the common risk factor that it implicitly retains by holding the equity tranche of

the CDO.

Although it may appear unusual for a loan to be negatively correlated with a

broad macro risk factor, it is worth noting that a bank could obtain the diversifi-

cation effect described above by buying credit protection in the CDS market or by

taking long positions in safe haven assets such as high-rated government bonds or

commodities. Finally, it is remarkable that it is not actually necessary to reinvest

in instruments with a negative correlation with the common risk factor to reduce

the VaR. Sometimes it is sufficient to buy instruments that are just less correlated

with the same risk factor than the loans that are securitized (as shown by the blue

line in Panel C of Figure 2.5).

Assuming that a bank completely securitizes its portfolio looks like an extreme

hypothesis, so we also calculate what happens when only a fraction of the original

portfolio is securitized. Figures 2.6 and 2.7 show that the previous results still hold

when only 20% of the original portfolio is securitized. However, as one would expect

the results are now much less sharp. In this more reasonable case, it is interesting to

notice that the overall level of risk of the bank increases by only a negligible amount

even if the bank reinvests the proceeds of the securitization in loans with the same

characteristics of the loans that it has sold.

According to these results, it is unlikely that CDO issuance may increase the

risks for the stability of the financial system through the mechanism highlighted

by Krahnen and Wilde (2006). This finding is apparently at odds with the widely

accepted opinion that the use of CDOs has been one of the main drivers of the

global financial crisis that started in 2007. However, one has to distinguish between

the effects coming from the securitization activity by its own which are analyzed

in this paper and the difficulties in correctly pricing and hedging these complex

instruments which the financial turmoil proved to be rather tough. It is worth to

point out once again that one of the main assumptions we have made in this section

is that CDOs are correctly priced by both issuers and investors in a risk neutral way.

Finally, Tables 2.2–2.5 report the VaR changes under several hypotheses about

the characteristics of the loans that are securitized and the new loans that are

granted with the proceeds of the securitization. For instance, Table 2.2 reports that
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Table 2.2 – VaR changes for a loan portfolio in case of securitization of 100%
of the loans as a function of the individual default probability of the loans
The table shows the changes, in percentages, of the VaR at 99.9%, 99%, and 95% con-
fidence levels, for a portfolio of 1,000 loans (with the same face value and individual
correlation coefficient equal to 30%) when the 100% of the loans is securitized using a
CDO of which the bank retains the equity tranche. The remaining proceeds are reinvested
in new loans with the same characteristics of the loans that are securitized, except for the
individual annual default probability. The individual annual default probabilities of the
loans in the original portfolio and the new loans are reported in the left column and top
row, respectively. All loans have a coupon yield such that the value of each loan is equal
to its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest
rate is equal to 4%.

Default
prob. old

loans

Default prob. new loans Memo:
VaR

old port.5 10 15 20 25 30 35 40 45 50

5 3.5 41.5 61.8 76.1 87.9 95.8 102.0 106.1 110.1 112.6 −23.8

9.1 73.4 117.8 153.0 180.1 203.4 221.7 237.0 251.2 262.1 −12.7

34.4 177.8 296.2 400.3 487.3 567.2 640.5 705.2 766.9 819.1 −4.1

10 −19.7 6.0 22.1 32.2 40.3 46.2 50.4 53.6 56.5 58.6 −32.6

−26.9 11.3 38.1 58.4 75.2 88.0 99.5 108.7 117.1 124.1 −21.0

−30.0 27.6 74.8 115.6 150.9 182.6 210.9 237.5 261.1 284.0 −10.1

15 −27.7 −5.9 7.7 16.7 23.5 27.7 31.2 34.1 36.8 38.3 −37.9

−37.3 −7.5 13.1 29.0 41.6 52.0 60.4 67.7 73.9 79.2 −26.8

−41.7 −4.2 27.6 54.0 77.2 98.1 116.7 134.2 149.7 164.8 −15.0

20 −30.1 −9.5 2.4 10.1 15.9 19.7 23.2 26.1 28.0 29.4 −41.2

−40.6 −15.6 1.5 15.1 25.6 34.3 41.6 48.1 53.0 57.6 −31.1

−44.5 −15.6 7.9 28.6 46.8 63.3 77.6 90.7 103.1 113.7 −19.1

25 −31.4 −11.8 −1.7 5.8 10.7 15.0 17.9 20.3 22.3 24.0 −44.0

−41.7 −19.9 −4.5 7.1 16.5 24.0 30.4 35.9 40.4 44.7 −34.7

−45.8 −22.2 −2.4 14.6 29.2 42.4 54.2 65.2 75.4 84.0 −22.8

30 −31.1 −13.6 −3.0 4.1 8.8 12.5 15.6 17.4 19.4 21.0 −45.9

−41.6 −22.0 −8.4 2.2 10.4 17.6 23.4 28.5 32.4 36.0 −37.6

−45.5 −25.2 −8.3 5.9 18.7 30.0 40.3 49.8 58.2 65.9 −26.1

35 −29.2 −12.6 −3.3 3.6 8.2 11.5 14.2 16.5 18.0 19.7 −47.2

−41.2 −23.3 −10.6 −0.9 6.9 13.2 18.7 23.2 26.8 30.4 −40.1

−44.8 −26.8 −12.2 0.5 11.5 21.4 30.2 38.5 46.2 52.6 −29.2

40 −28.1 −12.5 −3.4 3.1 7.4 10.3 13.2 15.2 16.8 18.0 −48.6

−39.8 −23.0 −11.3 −2.0 5.0 10.9 15.7 20.0 23.6 26.6 −42.1

−43.3 −27.2 −14.1 −2.9 7.1 15.9 23.8 31.2 37.8 44.2 −31.8

45 −25.7 −11.3 −2.3 3.4 7.9 11.3 13.5 15.5 17.1 18.3 −49.4

−38.0 −22.1 −11.2 −2.8 4.1 9.6 14.2 18.1 21.4 24.3 −43.8

−41.5 −27.0 −15.0 −5.0 3.7 11.9 19.0 25.7 31.9 37.1 −34.4

50 −23.6 −9.3 −1.3 4.8 8.7 11.9 14.5 16.1 17.5 18.8 −50.1

−35.8 −21.2 −10.7 −2.6 3.8 8.9 13.4 17.1 20.0 22.7 −45.4

−39.5 −26.2 −15.6 −6.2 2.1 9.4 16.1 22.0 27.4 32.4 −36.6



Chap. 2 – Securitization and Bank Stability 31

Table 2.3 – VaR changes for a loan portfolio in case of securitization of 100%
of the loans as a function of the individual correlation coefficient of the loans
The table shows the changes, in percentages, of the VaR at 99.9%, 99%, and 95% confi-
dence levels, for a portfolio of 1,000 loans (with the same face value and individual annual
default probability equal to 20%) when the 100% of the loans is securitized using a CDO
of which the bank retains the equity tranche. The remaining proceeds are reinvested in
new loans with the same characteristics of the loans that are securitized, except for the
individual correlation coefficient. The individual correlation coefficients of the loans in
the original portfolio and the new loans are reported in the left column and top row, re-
spectively. All loans have a coupon yield such that the value of each loan is equal to its
face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest rate
is equal to 4%.

Correl.
coef. old

loans

Correlation coef. new loans Memo:
VaR

old port.-40 -30 -20 -10 0 10 20 30 40

-40 8.4 −2.1 −19.0 −41.6 −87.2 −80.9 −57.3 −40.7 −29.7 −47.3

12.4 −3.8 −22.6 −45.3 −85.9 −92.5 −69.9 −51.1 −34.9 −37.9

23.2 3.6 −16.3 −39.1 −81.3 −99.3 −87.9 −68.1 −48.7 −24.4

-30 22.0 9.7 −9.1 −36.5 −87.5 −79.3 −52.1 −33.5 −21.3 −41.8

34.8 14.7 −8.4 −36.5 −85.6 −92.2 −64.5 −41.8 −21.5 −31.3

52.8 27.8 2.1 −27.0 −80.6 −102.8 −84.4 −58.4 −33.9 −19.3

-20 49.8 34.7 11.3 −22.4 −87.8 −74.1 −40.7 −17.3 −1.2 −33.5

76.4 48.9 18.5 −19.0 −85.7 −88.5 −51.5 −20.6 6.3 −23.5

106.4 71.2 35.4 −5.6 −81.1 −107.7 −71.3 −35.7 −0.9 −13.8

-10 131.0 105.6 69.5 15.5 −88.3 −54.6 −1.4 36.7 61.4 −21.4

184.4 138.2 87.3 24.3 −87.7 −69.3 −7.6 44.5 89.3 −14.2

248.0 185.1 119.7 47.2 −87.2 −95.4 −24.4 40.4 102.0 −7.9

0 −3, 847 −3, 417 −2, 735 −1, 807 −30.4 −1, 784 −2, 711 −3, 403 −3, 828 1.3

−2, 010 −1, 680 −1, 287 −814.2 −16.1 −816.9 −1, 282 −1, 675 −2, 015 2.0

−1, 031 −831.9 −631.7 −401.7 −9.6 −400.9 −628.1 −830.5 −1, 025 2.6

10 62.0 36.4 −1.4 −53.9 −88.2 13.4 68.6 105.1 130.5 −21.4

93.1 46.6 −5.2 −68.7 −87.3 25.9 89.3 143.6 188.1 −14.0

104.4 40.5 −23.3 −95.7 −86.7 49.0 122.1 188.4 251.1 −7.8

20 1.1 −15.0 −38.6 −73.1 −87.6 −22.0 12.2 35.9 52.5 −33.0

7.6 −19.4 −50.8 −88.2 −86.0 −19.3 18.6 49.6 76.1 −23.4

−0.1 −35.1 −71.5 −107.7 −81.1 −6.2 34.9 70.7 106.0 −13.8

30 −20.4 −32.6 −51.6 −77.7 −87.3 −35.8 −9.1 9.3 22.0 −41.5

−21.2 −41.0 −63.9 −92.1 −85.5 −35.9 −8.2 14.7 34.6 −31.1

−33.0 −57.9 −83.8 −102.8 −80.1 −26.7 2.7 28.2 53.4 −19.1

40 −29.3 −40.4 −56.4 −80.1 −86.9 −42.0 −18.5 −2.3 8.5 −47.1

−34.8 −50.7 −69.9 −92.5 −85.8 −45.6 −22.5 −4.1 12.7 −37.8

−47.9 −67.7 −87.8 −99.0 −81.0 −38.9 −15.9 4.3 23.8 −24.2
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Table 2.4 – VaR changes for a loan portfolio in case of securitization of 20%
of the loans as a function of the individual default probability of the loans
The table shows the changes, in percentages, of the VaR at 99.9%, 99%, and 95% con-
fidence levels, for a portfolio of 1,000 loans (with the same face value and individual
correlation coefficient equal to 30%) when the 20% of the loans is securitized using a CDO
of which the bank retains the equity tranche. The remaining proceeds are reinvested in
new loans with the same characteristics of the loans that are securitized, except for the
individual annual default probability. The individual annual default probabilities of the
loans in the original portfolio and the new loans are reported in the left column and top
row, respectively. All loans have a coupon yield such that the value of each loan is equal
to its face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest
rate is equal to 4%.

Default
prob. old

loans

Defaults prob. new loans Memo:
VaR

old port.5 10 15 20 25 30 35 40 45 50

5 0.1 7.7 12.4 15.2 16.5 18.2 18.8 20.4 21.5 21.8 −24.5

1.4 14.8 24.0 30.6 36.5 40.5 45.0 47.8 50.8 53.2 −12.6

5.0 33.9 57.5 77.7 95.5 111.2 124.8 138.2 150.3 161.2 −4.1

10 −4.0 1.3 4.9 6.8 8.2 8.8 10.0 10.7 11.4 11.7 −32.9

−5.5 2.4 7.4 11.4 15.1 17.9 20.0 22.0 23.6 24.9 −20.9

−6.6 5.2 14.1 22.6 29.3 36.2 41.0 46.7 51.8 56.2 −10.1

15 −5.6 −0.7 1.7 3.4 4.8 5.6 6.2 6.5 7.6 7.9 −38.4

−7.4 −1.0 3.0 6.0 8.5 10.7 12.3 13.7 15.0 16.1 −26.7

−8.6 −1.0 5.4 10.5 15.3 19.8 23.3 27.0 30.2 32.8 −15.0

20 −5.6 −1.9 0.6 2.2 3.0 4.4 4.9 5.3 5.6 5.7 −41.8

−8.3 −3.4 0.2 2.9 5.0 6.5 8.3 9.2 10.6 11.5 −31.2

−9.1 −3.3 1.4 5.5 8.9 12.1 15.0 17.8 20.1 22.7 −19.2

25 −6.0 −2.8 −0.5 1.4 2.1 2.9 3.4 3.8 4.2 4.6 −44.2

−8.3 −4.3 −1.3 1.2 3.2 4.6 6.0 6.9 8.0 8.7 −34.7

−9.4 −4.7 −0.7 2.6 5.7 8.2 10.8 12.8 14.8 16.7 −22.9

30 −5.8 −2.5 −0.6 0.8 1.9 2.5 3.3 3.5 3.8 4.1 −46.0

−8.4 −4.3 −1.6 0.5 2.3 3.6 4.6 5.7 6.4 7.2 −37.7

−9.3 −5.2 −1.8 1.0 3.5 5.9 7.7 9.6 11.4 13.0 −26.2

35 −5.9 −2.6 −0.9 0.5 1.5 2.0 2.7 3.1 3.3 3.7 −47.5

−8.4 −4.6 −2.2 −0.2 1.3 2.5 3.8 4.5 5.4 6.0 −40.1

−9.0 −5.3 −2.4 0.1 2.4 4.4 6.2 7.7 9.2 10.6 −29.1

40 −5.5 −2.4 −0.5 0.7 1.7 2.2 2.7 3.2 3.3 3.7 −48.6

−8.2 −4.8 −2.2 −0.5 0.8 2.0 3.0 3.9 4.6 5.4 −42.2

−8.8 −5.6 −2.9 −0.7 1.4 3.0 4.7 6.0 7.6 8.7 −31.9

45 −5.3 −2.2 −0.4 0.7 1.7 2.2 2.7 3.0 3.4 3.6 −49.4

−7.8 −4.7 −2.6 −0.7 0.5 1.7 2.5 3.4 4.0 4.6 −43.9

−8.4 −5.6 −3.2 −1.0 0.8 2.3 3.8 5.1 6.3 7.5 −34.3

50 −4.8 −2.2 −0.4 0.8 1.6 2.1 2.5 3.0 3.5 3.5 −50.3

−7.3 −4.4 −2.2 −0.5 0.7 1.7 2.5 3.3 3.9 4.5 −45.4

−8.1 −5.5 −3.3 −1.5 0.2 1.7 3.1 4.3 5.3 6.3 −36.7
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Table 2.5 – VaR changes for a loan portfolio in case of securitization of 20%
of the loans as a function of the individual correlation coefficient of the loans
The table shows the changes, in percentages, of the VaR at 99.9%, 99%, and 95% confi-
dence levels, for a loan portfolio of 1,000 loans (with the same face value and individual
annual default probability equal to 20%) when the 20% of the loans is securitized using a
CDO of which the bank retains the equity tranche. The remaining proceeds are reinvested
in new loans with the same characteristics of the loans that are securitized, except for
the individual correlation coefficient. The individual correlation coefficients of the loans
in the original portfolio and the new loans are reported in the left column and top row,
respectively. All loans have a coupon yield such that the value of each loan is equal to its
face value (see Eq. 2.3). The recovery rate is set to 47.5% and the risk-free interest rate
is equal to 4%.

Correl.
coef. old

loans

Correlation coef. new loans Memo:
VaR

old por.-40 -30 -20 -10 0 10 20 30 40

-40 1.5 −0.9 −3.7 −8.6 −18.8 −23.3 −24.0 −24.1 −24.1 −47.3

2.7 −0.7 −4.6 −9.3 −18.0 −23.1 −24.3 −24.7 −24.9 −37.7

4.7 0.9 −3.3 −7.8 −16.9 −23.6 −25.7 −26.8 −27.4 −24.2

-30 4.2 1.6 −1.9 −7.0 −18.5 −23.9 −24.9 −24.9 −25.1 −41.8

6.8 3.0 −1.6 −7.2 −18.1 −24.6 −25.9 −26.5 −26.7 −30.9

10.7 5.5 0.6 −5.4 −16.9 −25.5 −28.1 −29.7 −30.4 −19.1

-20 10.2 7.1 2.7 −4.7 −18.8 −26.2 −26.8 −27.2 −27.2 −33.1

15.4 9.9 3.8 −3.5 −18.7 −27.1 −28.8 −29.6 −29.6 −23.3

21.2 14.3 6.9 −1.2 −17.4 −29.5 −33.0 −35.0 −36.3 −13.8

-10 26.3 21.4 14.1 2.8 −19.7 −30.9 −32.5 −32.8 −32.8 −21.3

37.3 27.8 17.6 5.0 −19.7 −33.8 −36.7 −38.1 −38.6 −14.0

49.3 37.2 24.3 9.5 −19.2 −40.8 −47.0 −50.6 −53.1 −7.8

0 −615.8 −526.9 −398.3 −230.1 −2.1 −236.2 −413.6 −537.6 −632.5 1.2

−325.9 −261.6 −186.7 −103.9 −1.6 −104.8 −189.9 −265.2 −329.2 2.0

−163.2 −127.2 −89.3 −49.3 −1.2 −49.2 −89.7 −127.3 −164.9 2.6

10 −31.5 −31.5 −31.2 −30.2 −19.6 2.8 12.9 20.4 25.9 −21.7

−38.5 −38.0 −37.1 −34.1 −19.0 5.3 17.7 28.4 37.2 −14.2

−52.6 −50.2 −46.7 −40.5 −19.0 9.6 24.3 37.2 49.7 −7.9

20 −26.6 −26.6 −26.2 −25.8 −19.1 −4.4 2.1 7.2 9.9 −33.3

−29.5 −29.2 −28.6 −26.9 −18.4 −3.9 3.8 10.1 15.3 −23.6

−36.0 −35.0 −33.1 −29.3 −17.5 −1.1 7.0 14.2 21.2 −13.9

30 −24.7 −24.7 −24.5 −23.6 −18.7 −6.8 −1.7 2.1 4.5 −41.8

−26.5 −26.2 −25.8 −24.4 −18.2 −7.5 −1.9 2.9 6.7 −31.5

−30.4 −29.7 −28.3 −25.8 −17.3 −5.7 −0.1 4.9 10.3 −19.3

40 −24.1 −24.1 −23.9 −23.2 −18.6 −8.5 −3.9 −0.7 1.6 −47.4

−25.0 −24.9 −24.4 −23.5 −18.2 −9.5 −4.9 −0.8 2.3 −38.2

−27.3 −26.8 −25.6 −23.8 −17.0 −8.0 −3.5 0.6 4.6 −24.4
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the VaR at the 99.9%, 99%, and 95% confidence levels would increase by 10%, 15%,

and 29%, respectively, if a bank securitized loans with an individual default proba-

bility of 20% and reinvests in loans with the same individual default probability. On

the other hand, the VaR at the same confidence levels would decrease by 10%, 16%,

and 16%, respectively, if the bank reinvested in loans with an individual default

probability of 10%.

As a general result, Tables 2.2–2.5 show that a bank can reduce its VaR if it

reinvests in loans with sufficiently better credit quality. At the same time, the bank

can reduce its VaR also by investing in loans with the same credit quality but with

a different correlation with the common risk factor. In particular, the VaR usually

decreases when a bank securitizes, in whole or in part, a portfolio of loans that

are positively correlated with a common risk factor and reinvests in loans, or other

assets, that are less correlated with the same risk factor.

2.3 An empirical investigation on Italian banks

In the previous section, we showed that the overall level of risk of a bank can

increase or decrease when it sells part of its loan portfolio by issuing a CDO of

which it retains the equity tranche. The final result critically depends on the way in

which the proceeds of the securitization are reinvested. The level of risk of a bank

tend to decrease (increase) when the bank reinvests in loans with smaller (greater)

individual default probability or in loans that are less (more) correlated with the

common risk factor than the loans that are securitized. As a consequence of the

previous analysis, it is not possible to assess on a general basis the real effects of

CDO issuance on the risk of incurring large losses for banks. It is thus necessary

to rely on case-by-case studies. In this section we provide some empirical evidence

on the effects that securitizations had both on balance sheets and loan portfolios of

Italian banks.

Securitization can effect the balance sheet structure of a bank either directly

or indirectly. We have a direct effect when some assets are securitized and then

replaced with different assets, as assumed in the previous section. For instance, the

securitization of bad loans and the investment in new loans automatically tends to

reduce the share of the first kind of loans over total assets and to increase the share

of performing loans. The indirect effect is instead related to the potential effects

that securitization can have on bank balance sheets. As an example, a bank could

decide to increase the share of loans granted to particular categories of borrowers

because it knows that, if needed, it would be relatively easy to get rid of the new
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loans by securitizing them. This is probably what happened to many American

banks that decided to increase their exposure to subprime loans before 2007.

The empirical analysis developed in this section is twofold. First, we analyze

whether the overall structure of Italian bank balance sheets has changed as a con-

sequence of securitizations. To this end, we examine a few balance sheet items to

verify whether their relative shares with respect to total assets have changed during

the years, possibly due to the securitization activities of the banks.

Second, we focus on the characteristics of individual loans and carry out an anal-

ysis which is, in some sense, more in line with the theoretical framework provided

in the previous section. Using supervisory loan-by-loan data, we compare the indi-

vidual default probabilities of the loans that were securitized by Italian banks with

those of the new loans that were granted by the same banks during the same months.

In this way, we can verify whether Italian banks had a tendency to replace the loans

that they securitized with riskier or safer new loans. Unfortunately, for reasons

that will be explained later, the information available in the Italian databases is not

suitable for estimating also whether the correlation with the default probabilities of

the loans that were kept in the bank portfolios was higher or lower for the default

probabilities of the new loans than for the default probabilities of the loans that

were securitized. In this sense, a complete empirical assessment of the theoretical

framework presented in the previous section remains still an interesting subject for

future research.

2.3.1 Analysis of Italian bank balance sheets

We analyze the evolution of Italian bank balance sheets between 1999 (the year in

which the Italian law on bank loan securitization was passed) and 2007 (the last year

before bank balance sheets were hardly hit by the global financial crisis). During

that period, Italian banks securitized assets for e 170 billion. About 75% was

represented by performing loans, that is loans not considered as troublesome by the

banks. Out of the 218 banks that made at least one securitization, 140 securitized

only performing loans, 40 only bad loans, and 38 both types of loans. The market

has been rather concentrated, with only 10 banks accounting for about a half of the

total value of Italian securitizations. That number further declines to 5 if one takes

into account that some banks merged during the period.

Our analysis is based on monthly data on balance sheet items and securitization

proceeds from the Supervisory Reports to the Bank of Italy. Supervisory Reports

permit to distinguish between securitizations concerning performing or bad loans.

According to the Italian regulation, banks are required to classify outstanding loans
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to borrowers that are not expected to meet their obligations as bad loans. Clearly,

this definition allows banks some discretion in judging whether a loan is bad or not.

We will return on this issue later.

We focus on four balance sheet items: performing loans to non-bank customers

(i.e., interbank loans and deposits to monetary authorities are excluded), bad loans

to non-bank customers, loans to other subjects (i.e., banks), securities other than

shares. Overall, these items accounted for about 80% of total assets, both in 1999

and 2007.13 For each of the items we take into account, we calculate the annual

average of their monthly share over total assets.

Before running the econometric analysis, we performed a series of controls on

the data. First, we dropped data on branches of foreign banks. There are two

reasons for this choice. The first motivation is that, due to the increasing open-

ness of the Italian banking system, there has been a huge increase in the role of

foreign banks between 1999 and 2007, both in terms of number of banks and to-

tal assets (from 50 to 80 and from e 86 to e 275 billion, respectively). These

developments are likely to be independent of the role of securitization in deter-

mining bank capital structures. The second reason for dropping foreign banks is

that the Italian law on securitization in 1999 probably did not represent an in-

novation for most of them as they could already securitize their assets in their

home countries.

Then, we take into account mergers and acquisitions by considering all entities

involved in those operations as a single entity for all the period under analysis. We

do so by summing the values of the corresponding balance sheet items for the banks

that were involved in mergers or acquisitions. As we use annual averages of monthly

balance sheet data in our estimations, we also dropped the banks for which less than

six monthly data are available for either 1999 or 2007. Finally, to get rid of some

outliers, we dropped 1% of the observations from the dataset (the best and worst

0.5% of all balance sheet ratios).14

The final database consists of 537 banks, about 80% of which are either local

mutual or cooperative banks (see Table 2.6). At the end of 2007, the coverage of the

sample was about 70% of all Italian banks in terms of number of banks, total assets,

loans to non-bank customers and proceeds from securitization (see Table 2.7).

13Other important items of the asset side of Italian bank balance sheets are repo contracts,
equity and other shares, and other assets. We decided not to include those items in the analysis
because repo contracts are only used by a minority of banks (although for some of them they
represent an important investment), equity and other shares are very volatile due to evaluation
effects, and other assets represent a miscellany of residual sub-items.

14Keeping the outliers does not modify the signs or the significance levels of the estimated
coefficients but the measures of fit are sometimes lower than those reported here.
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Table 2.6 – Number of banks in the sample by type
The numbers take into account mergers and acquisitions. All banks involved in those
operations are considered as a single bank. The bank type is that resulting in 2007.

Bank type Number Percentage

Mutual banks 401 74.7%
Limited company banks 106 19.7%
Cooperative banks 30 5.6%

Total 537 100.0%

Table 2.7 – Descriptive statistics of the banks included in the sample as a share
of all Italian banks
The data on securitizations refer to all operations that took place between 1999 and 2007.

Statistic 1999 2007

Number of banks 81% 69%
Total assets 86% 70%
Loans to non-bank customers 89% 72%
Value of securitizations 72%

To verify how the main items of the Italian bank balance sheets changed be-

tween 1999 and 2007 and whether there were significant differences between banks

that securitized their assets and banks that did not, we use a difference-in-difference

approach. In particular, we estimate pooled equations of the following type for each

of the four asset items we are interested in:

yi,t = β0 + β1δt,2007 + β2δi,sec + β3δi,secδt,2007 + β4xi,t + εi,t, (2.17)

where i = 1, . . . , N are the banks included in the sample, t ∈ {1999, 2007},

δt,2007 =

{
0, if t = 1999

1, if t = 2007
(2.18)

δi,sec =

{
0, if bank i did not securitize anything between 1999 and 2007

1, if bank i securitized something between 1999 and 2007
(2.19)

and xi,t is a vector of variables that control for size, capitalization, and proprietary

structure.15

Given that the balance sheet shares that we calculated are bounded between zero

and one, we use their logistic transformation as dependent variable yi,t.
16 Then, we

15Results are qualitatively the same when including fixed effects for individual banks.
16The logistic transformation of x is log(x/(1− x)).
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estimate Eq. (2.17) using the weighted least-squares logistic regression for grouped

data described in Greene (2003, pp. 686–689).

As size, capitalization, and proprietary structure have been identified as rele-

vant determinants of the securitization of loans by Italian banks (see Affinito and

Tagliaferri, 2010), we include in our regressions the logarithm of the annual average

of total assets (in millions of euros), an indicator of capitalization defined as the

logistic transformation of the annual average of the ratio of banks’ own capital to

total assets, and a dummy variable indicating whether the bank is either a mutual

or cooperative bank or not.

As in any difference-in-difference estimation, the most interesting coefficients are

those of the dummy variables. In particular, if one excludes the role of the control

variables, β0 is a measure of the average value of the dependent variable in 1999

for the banks that did not securitize, β1 is a measure of the average additional

contribution in the value of the dependent variable in 2007 for the banks that did

not securitize, β2 is a measure of the average additional contribution in the value of

the dependent variable in 1999 for the banks that securitized, and β3 is a measure

of the average additional contribution in value of the dependent variable in 2007

for the banks that securitized some of their loans. Said in other words, β1 captures

the average structural changes in the Italian bank balance sheets between 1999

and 2007 for the banks that did not securitize, β2 measures the average differences

in 1999 between banks that securitized and banks that did not, and β3 measures

the additional average changes in the capital structure of the banks that securitized

their loans between 1999 and 2007.

The choice to focus the analysis on just two years deserves some explanation

as it may be argued that more data, with the same of higher frequency, should be

used. For instance, one could use all yearly or quarterly data available between 1999

and 2007, and not just the first and last yearly data of the period. Although those

choices would be fairly reasonable, we prefer to look for structural changes in bank

balance sheets only by performing a comparison over a longer period of time. By

definition, structural changes are hard to identify in the short-term and, moreover,

using data with higher frequency would increase the relevance of the short-term

effects of the securitizations. For a bank that securitizes bad loans, for instance, it

is not obvious whether, over longer horizons, the bank should have a lower share of

bad loans (because it securitizes them) or a higher share of them (because the bank

may decide to invest in riskier activities as it knows that it can easily get rid of the

bad loans, if needed). By using short-term data, it is very likely to end up with

results that give undue relevance to the direct effects of the securitizations only.
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Table 2.8 – Shares of some asset items over total assets for the banks included
in the sample
Data refer to simple averages across all banks included in the sample.

Year
Performing

loans
Bad
loans

Loans
to banks

Securities other
than shares

All banks
1999 45.9% 3.0% 10.3% 29.6%
2007 63.1% 2.2% 7.6% 17.8%
Variation +37.6% −24.5% −26.6% −40.1%

Banks that securitized their loans
1999 49.8% 3.3% 9.3% 25.3%
2007 66.7% 1.9% 7.3% 14.1%
Variation +34.0% −42.7% −22.3% −44.3%

Banks that securitized performing loans only
1999 53.0% 1.9% 7.8% 25.9%
2007 70.9% 1.6% 5.6% 12.9%
Variation +33.8% −13.5% −28.3% −50.2%

Banks that securitized bad loans only
1999 37.4% 7.6% 15.2% 28.0%
2007 53.9% 2.5% 11.0% 21.8%
Variation +44.2% −66.9% −28.0% −22.1%

Banks that did not securitize their loans
1999 44.2% 2.8% 10.7% 31.4%
2007 61.7% 2.4% 7.7% 19.3%
Variation +39.4% −15.8% −28.1% −38.7%

Table 2.8 shows how the four balance sheet items that we analyze changed be-

tween 1999 and 2007. Italian banks increased considerably the average share of

performing loans over total assets and decreased their loans to other banks and

their investments in securities other than shares. The increase of the relative size

of performing loans was larger for the banks that securitized bad loans only. For

those banks, the share of bad loans in their portfolios decreased by about two thirds.

Banks that securitized performing loans only were also those with the higher share

of that kind of loans in their portfolios, both in 1999 and 2007. The same banks

also decreased significantly the relative size of their investments in securities other

than share. Finally, it is interesting to notice that the banks that securitized their

loans were also more willing to lend to non-bank customers and less inclined to in-

vest in other banks or securities other than shares. This probably reflects the fact

that those banks were also technically more advanced and had better credit scoring
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Table 2.9 – Effects of securitization on Italian bank balance sheets: 1
The dependent variable is the logistic transformation of the annual average of the monthly
shares of the balance sheet items indicated in the first row over total assets. As for the
explanatory variable: δ2007 is a dummy variable indicating whether the data refer to 2007,
δsec is a dummy variable indicating whether the data refer to a bank that securitized
some of its loans between 1999 and 2007, assets is total assets (in millions of euros), cap
is a measure of capitalization defined as the ratio of banks’ own capital to total assets,
δmcb is a dummy variable indicating mutual or cooperative banks. The equations are
estimated using the weighted least-squares logistic regressions for grouped data described
in Greene (2003, pp. 686–689). Significance levels at 1%, 5%, and 10% are denoted
by ∗, ∗∗, and ∗∗∗, respectively.

Parameter
Performing

loans
Bad
loans

Loans to
banks

Securities other
than shares

δ2007 0.809∗∗∗ 0.061 −0.379∗∗∗ −1.091∗∗∗

δsec 0.686∗∗∗ 0.880∗∗∗ −0.886∗∗∗ −0.152∗∗

δ2007δsec −0.658∗∗∗ −0.958∗∗∗ 0.806∗∗∗ 0.224∗∗∗

log(assets) −0.152∗∗∗ −0.007 0.269∗∗∗ −0.069∗∗∗

log(cap) −0.275∗∗∗ 0.058 −0.223∗∗∗ 0.438∗∗∗

δmcb −0.069∗∗ −0.456∗∗∗ 0.103∗∗ 0.357∗∗∗

constant 0.326∗∗ −3.694∗∗∗ −4.665∗∗∗ 0.104

R2 (adjusted) 0.405 0.448 0.524 0.480

systems, whereas lending to other banks or investing in securities other than shares

usually require less sophisticated risk-management tools.

Table 2.9 reports the first results of the econometric analysis. As expected from

the previous review of the data, the coefficients for both δ2007 and δsec are positive

and significant for performing loans. The positive coefficient of δ2007 reflects the fact

that, on average, the share of performing loans over total assets increased markedly

for the banks that did not securitize between 1999 and 2007. The positive coefficient

of δsec is due to the fact that the banks that securitized their loans had, on average, a

higher share of performing loans in 1999 than the banks that did not securitize. The

negative sign of the dummy variable that interacts year and securitization (δ2007δsec)

highlights that the banks that securitized their loans had a lower growth of the share

of performing loans than the other banks. The negative signs of the control variables

related to size and capitalization show that larger and more capitalized banks had

lower shares of performing loans.

Overall, the signs of δ2007δsec show that there was, on average, a negative rela-

tionship between the decisions of the banks to securitize some of their loans and the

shares of their assets invested in performing or bad loans. At the same time, the

relationship was positive for the loans to banks and securities other than shares. As
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highlighted by the signs of δsec, in 1999 the banks that securitized had also signifi-

cantly higher average levels of bad loans and lower average levels of loans to banks

and securities other than share. Given that the dummy variables δsec and δ2007δsec

have opposite signs for all balance sheet items, it turns out that the banks that

securitized their loans reduced the differences in the composition of their balance

sheets with respect to the other banks. In the end, the average composition of the

balance sheets of the banks that securitized their loans was more similar to that of

the other banks in 2007 than in 1999.

To verify the robustness of these results, it is worth to notice that in the first

econometric exercise we do not distinguish between banks that relied substantially

on securitizations and banks that only securitized a very small part of their assets.

Since it seems reasonable that there is some relationship between the size of the

securitizations and the effects on the structure of bank balance sheets, we now add

the dummy variable δsec high that spots those banks that securitized more than the

median (in terms of value of the securitizations over total assets) among the banks

that securitized some of their loans between 1999 and 2007.

Table 2.10 shows that the results obtained without taking into account the level

of the securitizations are now partially reversed. The dummy variables δ2007δsec and

δ2007δsec high have always opposite signs, meaning that the banks that made more use

of securitization had usually smaller changes (in absolute values) in the composition

of their balance sheets than the banks that made less use of securitization. While

the structure of the balance sheets of the latter banks tended to converge towards

that of the banks that did not securitized their loans, the balance sheets of the

banks that used securitization widely tended to maintain the differences that they

had in 1999 with respect to the banks that did not securitize. These findings are

coherent with the results by Affinito and Tagliaferri (2010), who find that one of the

main motivations for Italian banks to securitize their loans was to have additional

resources for financing their investments, and Altunbas et al. (2009), who find that

the use of securitization strengthened the capacity of the banks to supply new loans.

Finally, in Table 2.11 we introduce additional dummy variables to distinguish

between possible differences arising from the securitization of performing or bad

loans. It turns out that the effects in 2007 for the banks that made little use

of securitization (given by the coefficients of the dummy variables δ2007δsec pl and

δ2007δsec bl) were usually very similar to those that we have already seen. For the

banks that made greater use of securitization, the additional effects (given by the

coefficients of the dummy variables δ2007δsec pl high and δ2007δsec bl high) were significant

only for the case in which the banks securitized performing loans and for the impact
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Table 2.10 – Effects of securitization on Italian bank balance sheets: 2
The dependent variable is the logistic transformation of the annual average of the monthly
shares over total assets of the balance sheet items indicated in the first row. As for the
explanatory variable: δ2007 is a dummy variable indicating whether the data refer to 2007,
δsec is a dummy variable indicating whether the data refer to a bank that securitized some
of its loans between 1999 and 2007, δsec high is a dummy variable indicating whether the
data refer to a bank that securitized more than the median (as a share over total assets),
assets is total assets (in millions of euros), cap is a measure of capitalization defined as the
ratio of banks’ own capital to total assets, δmcb is a dummy variable indicating mutual or
cooperative banks. The equations are estimated using the weighted least-squares logistic
regressions for grouped data described in Greene (2003, pp. 686–689). Significance levels
at 1%, 5%, and 10% are denoted by ∗, ∗∗, and ∗∗∗, respectively.

Parameter
Performing

loans
Bad
loans

Loans to
banks

Securities other
than shares

δ2007 0.808∗∗∗ 0.053 −0.376∗∗∗ −1.084∗∗∗

δsec 0.713∗∗∗ 0.775∗∗∗ −0.795∗∗∗ −0.071

δsec high −0.207∗∗∗ 0.109∗ −0.100 −0.062

δ2007δsec −0.837∗∗∗ −1.096∗∗∗ 0.907∗∗∗ 0.376∗∗∗

δ2007δsec high 0.554∗∗∗ 0.316∗∗∗ −0.226∗∗∗ −0.414∗∗∗

log(assets) −0.139∗∗∗ 0.021∗ 0.244∗∗∗ −0.096∗∗∗

log(cap) −0.154∗∗∗ 0.223∗∗∗ −0.352∗∗∗ 0.325∗∗∗

δmcb −0.084∗∗ −0.445∗∗∗ 0.098∗∗ 0.345∗∗∗

constant 0.517∗∗∗ −3.511∗∗∗ −4.776∗∗∗ 0.052

R2 (adjusted) 0.452 0.469 0.534 0.502

on the share of performing loans for the banks that securitized bad loans. These

results are driven by the greater relevance of the securitization of performing loans

for Italian banks, that has been three times larger than the securitization of bad

loans in the period under analysis.

We conclude this section with a few back-of-the-envelope calculations to verify

whether the changes in the composition of their balance sheets have increased or

decreased the expected losses of the Italian banks. To make the comparisons across

years and banks feasible, we use the results of the previous regressions to estimate

the predicted values of the shares of the four balance sheet items for the average

Italian bank in terms of assets and capitalization. Since in a logistic regression

for grouped data it is not possible to interpret the regression coefficients as partial

derivatives of the expected value of the balance sheet share with respect to the inde-

pendent variables, we follow the approach suggested by Bofondi and Gobbi (2006)

and estimate the predicted values using the smearing estimate of Duan (1983). The

procedure requires to: (1) calculate the residuals as the difference between the de-
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Table 2.11 – Effects of securitization on Italian bank balance sheets: 3
The dependent variable is the logistic transformation of the annual average of the monthly
shares over total assets of the balance sheet items indicated in the first row. As for the
explanatory variable: δ2007 is a dummy variable indicating whether the data refer to 2007,
δsec pl is a dummy variable indicating whether the data refer to a bank that securitized some
of its performing loans between 1999 and 2007, δsec pl high is a dummy variable indicating
whether the data refer to a bank that securitized performing loans more than the median
(as a share over total assets), δsec bl is a dummy variable indicating whether the data refer
to a bank that securitized some of its bad loans between 1999 and 2007, δsec bl high is a
dummy variable indicating whether the data refer to a bank that securitized bad loans
more than the median (as a share over total assets), assets is total assets (in millions
of euros), cap is a measure of capitalization defined as the ratio of banks’ own capital
to total assets, δmcb is a dummy variable indicating mutual or cooperative banks. The
equations are estimated using the weighted least-squares logistic regressions for grouped
data described in Greene (2003, pp. 686–689). Significance levels at 1%, 5%, and 10% are
denoted by ∗, ∗∗, and ∗∗∗, respectively.

Parameter
Performing

loans
Bad
loans

Loans to
banks

Securities other
than shares

δ2007 0.841∗∗∗ −0.085 −0.459∗∗∗ −1.067∗∗∗

δsec pl 0.609∗∗∗ 0.156∗∗ −0.666∗∗∗ −0.225∗∗∗

δsec pl high −0.160∗∗∗ −0.266∗∗∗ −0.050 −0.034

δsec bl 0.048 0.709∗∗∗ −0.201∗∗ 0.259∗∗∗

δsec bl high 0.063 0.785∗∗∗ −0.236∗∗∗ −0.141

δ2007δsec pl −0.590∗∗∗ −0.232∗∗ 0.564∗∗∗ 0.320∗∗∗

δ2007δsec pl high 0.477∗∗∗ 0.253∗∗∗ −0.201∗∗ −0.380∗∗∗

δ2007δsec bl −0.360∗∗∗ −0.703∗∗∗ 0.542∗∗∗ 0.063

δ2007δsec bl high 0.226∗∗∗ 0.026 −0.063 −0.144

log(assets) −0.124∗∗∗ −0.002 0.246∗∗∗ −0.112∗∗∗

log(cap) −0.081∗ 0.186∗∗∗ −0.462∗∗∗ 0.320∗∗∗

δmcb −0.133∗∗∗ −0.306∗∗∗ 0.161∗∗∗ 0.391∗∗∗

constant 0.593∗∗∗ −3.401∗∗∗ −5.051∗∗∗ 0.147

R2 (adjusted) 0.487 0.634 0.589 0.521

pendent variables and the linear predictions; (2) calculate the predicted values as the

sum of the linear predictions evaluated at the mean values, except for the variable

of interest, and the residuals; (3) calculate the inverse of the logistic transformation

of the predicted values and take the mean.

Once the predicted values of the balance sheet items are calculated, we can

associate to each balance sheet item a given level of expected losses and calculate

a measure of the overall level of expected losses as the weighted average of the

expected losses for the individual items. Table 2.12 reports the result of this exercise

for the average limited company bank for the case in which the expected losses for
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Table 2.12 – Impact of the balance sheet changes on the expected losses of
Italian banks
The table reports the estimated predicted values for the shares of balance sheet items over
total assets obtained using the coefficients reported in Tables 2.9 and 2.10. Data refer
to the average limited company bank in terms of assets and capitalization. Given the
non-linearities involved by the logistic regressions, predicted values are calculated using
the smearing estimate of Duan (1983). Expected losses are calculated using the estimated
predicted values for balance sheet shares and assuming the following expected losses for
the different asset items: performing loans, 2.27%; bad loans, 60%; loans to banks, 0.04%;
securities other than shares, 0.17%.

Year
Performing

loans
Bad
loans

Loans
to banks

Securities other
than shares

Expected
losses

Banks that securitized their loans

1999 59.9% 7.2% 5.4% 24.7% 5.7%

2007 63.2% 3.2% 7.9% 12.6% 3.4%

Banks that securitized less than the median value

1999 60.9% 6.7% 5.8% 26.1% 5.4%

2007 60.3% 2.6% 9.2% 15.3% 2.9%

Banks that securitized more than the median value

1999 56.3% 7.4% 5.3% 25.0% 5.7%

2007 67.7% 3.8% 7.0% 10.3% 3.8%

Banks that did not securitize their loans

1999 44.2% 3.2% 11.6% 27.4% 3.0%

2007 62.6% 3.4% 8.4% 11.8% 3.5%

performing loans, bad loans, loans to banks, and securities other than shares are

equal to 2.27%, 60%, 0.04%, and 0.17%. These numbers correspond, under the usual

hypothesis of a 40% recovery rate, to the one-year default probabilities of issuers

with ratings B, D, AA, and BBB, respectively (see Ou et al., 2011, Exhibit 26).

Under these assumptions, between 1999 and 2007 the level of expected losses

decreased by about 40% for the banks that securitized some of their loans, while

increased by more than 15% for the banks that did not securitize. These results

are mainly driven by the fact that the share of bad loans, which represents by

far the part of the bank balance sheets with the higher expected losses, dropped

for the banks that securitized while increased moderately for the banks that did

not securitize. It is interesting to notice that the greatest beneficial effects were

associated with the banks that made only little use of securitization. Those banks

kept the share of performing loans almost unchanged and decreased significantly the

share of bad loans. By doing so, they decreased their expected losses much more
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than the banks that relied more on securitization. The banks that made greater use

of securitization increased substantially their share of performing loans but at the

cost of not being able to reduce the share of bad loans to the same extent as the

banks that securitized less.

2.3.2 Comparing securitized loans with new loans

In this section we compare, for a sample of Italian banks, the individual default prob-

abilities of the loans that were securitized in each semester between 2004 and 2007

with the individual default probabilities of the loans that were granted during the

same semesters by the same banks. In particular, for each bank in the sample we

calculate the default rate in semester s of all loans that were securitized or granted

in semester t, where s is any semester between t and the second half of 2007. The

default rate is defined as the ratio of the total face value of the loans that were

securitized or granted by each bank at time t that run into default at time s to

the total face value of the loans that were securitized or granted by the same banks

at time t. The definition of default that we use is that of bad loan, as defined

by the Italian regulation. We also consider a borrower to be in default on all the

loans she received when at least one of her loans is classified as bad by one of

her lenders. The reason for using this extended definition of default is that the

Italian databases identifies the individual borrowers but not the individual loans,

thus making extremely difficult to keep track of the transferring of the loans among

financial institutions.

As already mentioned, the Italian regulation requires banks to classify the out-

standing loans to borrowers that are not expected to meet their obligations as bad

loans. Undoubtedly, this definition allows banks to have a certain degree of arbi-

trariness as they have to judge when the loans are likely to be repaid to not. It

turns out that monthly default rates show a strong seasonality, probably reflecting

the policies applied by the main Italian banks to review the quality of their loans.

To mitigate the seasonal effects, we use semi-annual data. Moreover, we believe

that six months is a period of time long enough to allow the banks to reinvest the

proceeds of their securitizations but not excessively long to permit banks to make

their investments using predominantly other sources of financing.

To asses the level of risk of a bank, in Section 2.2 we showed that the character-

izing features of the loans are the individual default probability and the correlation

with the other loans in the bank portfolio. Unfortunately, as mentioned before, we

are actually only able to provide empirical evidence on the first characteristic of the

loans granted or securitized by Italian banks. In fact, it is extremely difficult to say
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anything on the correlation between the loans that remained in the bank balance

sheets and the new loans, or the loans that were securitized, because of the arbi-

trariness with which Italian financial institutions can classify a loan as performing

or bad. What happens in practice is that a loan that is securitized is defined as

performing or bad by the special purpose vehicle (SPV) that buy it, whereas the

loans that remain in the portfolio of the bank are classified as performing or bad

by the bank itself. The fact that loans are classified by different institutions, which

potentially use different criteria, makes the calculation of any correlation coefficient

for defaults strongly unreliable. In principle, this problem could be circumvented by

using a sufficiently large period of time, say six months, that is deemed to capture

most of the possible differences in the timing with which loans are classified as per-

forming or bad by different institutions. However, using semi-annual windows with

only four years of data available would lead to having only eight triples of default

rates (eight default rates for each group of new loans, securitized loans, and loans

that remained in the portfolio of the bank), thus leading to completely unreliable

estimations of the correlation coefficients.

For our analysis, we rely on two sources of data with loan-by-loan details. We

gather the individual data on defaults and loans that were securitized from the

Italian Central Credit Register (Centrale dei Rischi).17 The second source of data is

the Sample Survey of Active and Passive Rates (Rilevazione Campionaria dei Tassi

Attivi e Passivi) which contains individual information on the new loans, and the

corresponding borrowers, granted from a sample of Italian banks since 2004.18

Given that our primary interest is to know when a loan goes into default, we

only take into account the loans securitized through institutions reporting to the

Italian Central Credit Register, thus excluding foreign SPVs. We also use data

on securitizations of performing loans only as bad loans are already in default by

definition when they are securitized. Given that particularly small or large loans

can sometimes be treated in special ways by banks, we dropped from the dataset the

loans with an outstanding amount smaller than e 75,000 or greater than e 1,000,000.

Finally, for each semester we consider only the new loans that were granted by the

banks that made at least one securitization during the same period. Overall, the

final dataset includes about 493,000 new loans and about 346,000 securitized loans.

17The Central Credit Register is a department of the Bank of Italy that collects data on bor-
rowers from their lending banks. Reporting banks file detailed information for each borrower with
total loans or credit lines of more than e 75,000. Banks are required to report smaller exposures
only if the borrower goes into default. Bad loans are defined on a customer basis and therefore
include all the outstanding credit extended by a bank to a borrower considered insolvent.

18The survey covers about 70% of the total amount of the new loans granted during the sample
period.
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Figure 2.8 – Average default rates of the old loans that remained in the Italian
bank balance sheets after a securitization and of the new loans that were
granted with the proceeds of the securitization
The panels show the simple averages of the semi-annual default rates across all banks
included in the sample. The legends report the semesters in which the securitizations took
place and the new loans were granted. The horizontal axes show the number of semesters
following the securitization and the granting of the new loans.

Figure 2.8 shows the evolution over time of the default rates of the loans that

were securitized or granted in each semester for the overall banking system. Data

refer to simple averages across all banks included in the sample. The first interesting

aspect highlighted by the figure is that the overall quality of securitized and new

loans did not change significantly as a function of the semester in which they were

securitized or granted. This result appears from the fact that the lines corresponding

to the different semesters tend to cross each other repeatedly and do not stand

on clearly defined different levels. This finding suggests the absence of a credit

cycle during the sample period, at least when all kinds of loans are taken into
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account and the analysis is limited to banks that used securitization to finance

their investments.19

The second relevant aspect of the figure is that the new loans were, on average,

riskier than the securitized loans. Overall, the new loans had an average default

rate of 0.41%, against 0.28% for securitized loans. The significance of the positive

difference between the default rates of the new loans and the loans that were securi-

tized, for the whole sample period, is confirmed by the t-test reported in Table 2.13.

The table also reports the averages of the differences across all banks included in

the sample for all semesters of inception and default. Positive values appear for

almost all possible combinations of semesters of inception and default and several of

them are statistically significant. Overall, these findings show that the banks that

securitized their loans were also increasing their risks.

These results deserve a few last comments. It may be argued that one should

control for other variables when comparing the level of risk of the loans that were

securitized with that of the new loans. In principle, it could be possible that the

different levels of risk of the two categories of loans were due to the fact that the

loans were granted to different sets of borrowers (with possible different credit wor-

thiness) or had different characteristics in terms of yield (fixed or variable), ma-

turity (shorter or longer), or anything else that could influence the probability to

run into default. It may also be argued that one should control for the time in

which new and securitized loans were initially granted as Ioannidou et al. (2009)

and Jiménez et al. (2010) show that the loans that are granted when the inter-

est rates are low (high) have higher (lower) probability to run into default when

interest rates increase (decrease). Hence, the previous results could be explained

with the argument that, say, securitized loans are less risky only because they were

granted when interest rates were higher. While explaining the determinants of the

differences among default rates is a very interesting issue, we feel that it is out-

side of the scope of the present analysis. As shown in Section 2.2, what matters

for the risk of a bank of incurring large losses is the difference between the level

of risk of the loans that are securitized and the level of risk of the new loans, no

matter where that difference comes from. Whatever the reason, securitizing good

loans and substituting them with loans with lower quality is not a good deal for

the stability of a bank.

19Bonaccorsi di Patti and Felici (2008) use a larger sample of banks, that includes banks that
did not use securitizations, to analyze mortgages to Italian households and find that default rates
tended to rise during the same sample period as a function of the semester of inception (the
semester in which the loans were granted or securitized).
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2.4 Conclusion

This chapter analyzes the effects of CDO issuance on the risk of incurring large losses

for a bank. Using Monte Carlo simulations, we show that the practice for a bank

to securitize part of its loans using CDOs, of which it retains the equity tranches,

and reinvest the proceeds of the securitization in other loans can increase as well as

decrease the risk that the bank faces large losses. The final result depends on the

different characteristics of the loans that are securitized and the new loans that are

granted in terms of individual default probabilities and correlations with the loans

that the bank do not securitize. We also document that the final effect on the VaR

of a bank is usually almost negligible as long as the securitization involves only a

reasonable share of the total loan portfolio.

We then focus on Italian banks and provide evidence that the use of securitization

has contributed to change the overall composition of the asset side of the bank

balance sheets. The Italian banks that securitized their assets had lower increases in

their shares of performing and bad loans over total assets and increased their reliance

on investments in loans to other banks and securities other than shares. However,

the Italian banks that made greater use of securitization recorded greater increases

in their shares of performing and bad loans. Overall, the changes in the balance

sheets involved by the use of securitization have probably reduced the expected

credit losses of Italian banks, mainly because of the reduction in the share of bad

loans. Finally, we examine loan-by-loan data to compare the default risk of the loans

that were securitized with that of the new loans that were granted by the same banks

during the same months. We show that, on average, Italian banks securitized loans

with less default risk than the new loans, thus suggesting that the risks embedded

in the loan portfolios of the banks that securitized their loans have increased during

the years before the onset of the global financial crisis.
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2.A Appendix: The CDO market

Collateralized debt obligations are securities backed by the cash flows of portfolios

of different financial instruments (called underlying assets). The main characteristic

of CDOs is tranching. A CDO is actually made by several different securities with

given seniorities in terms of rights on the cash flows generated by the underlying

assets. In this respect, senior, mezzanine, and junior tranches rank in a decreasing

order. Risks and returns offered by those tranches vary accordingly. The splitting

of CDOs into different tranches dictates a sequential allocation of the losses that

the underlying portfolio can incur. The structure of a CDO guarantees that the

holders of each tranche, with the exception of the equity tranche, are protected

from the risk of incurring losses by one or more of the other tranches. The most

junior tranche, called equity tranche, is the first to absorb the losses deriving from

one or more defaults of the assets in the underlying portfolio. If the losses exceed

the notional value of the equity tranche, they are absorbed by the other junior and

mezzanine tranches. The senior tranches are affected only if the losses in the under-

lying portfolio are very large. In that case, they sustain the remaining part of the

losses that cannot be absorbed by the other tranches. Usually, senior and mezzanine

tranches are also protected by other specific credit enhancement techniques, such as

overcollateralization, reserve accounts, and the trapping of excess spreads.20

Collateralized debt obligations are usually classified according to the final aim

of the transaction and the way in which the credit risk of the underlying portfolio is

transferred. With respect to the first dimension, one can have balance sheet CDOs

and arbitrage CDOs depending on whether the main purpose of the transaction is to

modify the composition of the balance sheet of the seller (also named originator) or

to carry out an arbitrage transaction by exploiting the potential differences between

the returns required from the investors in the tranches of the CDOs and the returns of

the assets included in underlying portfolio.21 In a balance sheet CDO the originator

is usually a financial institution (most of the times, a bank) that wants to get rid of

some of its assets in order to have additional resources for other investments, increase

its profitability, or reduce the regulatory capital.22 Balance sheet CDOs determine a

transferring of the risks traditionally taken by the banking system to other investors.

20See Melennec (2000) for a description of several credit enhancement techniques.
21Carlstrom and Samolyk (1995), Gorton and Pennacchi (1995), and DeMarzo and Duffie (1999)

provide alternative explanations for the growth in securitization activity based on the fact that
certain institutions have a natural comparative advantage in originating, but not holding, illiquid
assets.

22Jones (2000) describes several securitization techniques used by banks to reduce their regula-
tory capital requirements.
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The aim of arbitrage CDOs is instead to carry out a market arbitrage by putting

together a portfolio of underlying assets and a CDO structure such that the overall

return of the underlying portfolio (the arbitrageurs cash-in-flows) is greater than the

overall return of the CDO tranches (the arbitrageurs cash-out-flows).23

The credit risk can be transferred with CDOs either through a true sale of the

assets (cash flow CDOs) or using credit derivatives (synthetic CDOs). In a cash

flow CDO the property rights on the assets in the underlying portfolio are actually

transferred from the originator to a special purpose vehicle (SPV) which in turn

finances the purchase using the proceeds of the issuance of the CDO. A synthetic

CDO has a more complex structure as the transferring of risk is not achieved with

the true sale of risky assets but by using CDSs.24 In a synthetic CDO the originator

gets rid of the credit risk by buying protection from the SPV using CDSs and the

SPV in turn buys protection from the holders of the CDO tranches. If some of

the underlying assets default, the originator asks the SPV to be compensated for

the losses. Then, the SPV transfers the losses to the final investors in the CDO

according to the tranching structure. Given that there is not any initial sale of

assets from the originator to the SPV, there is not even the necessity for the SPV

to raise cash when issuing the CDO. That means that the buyers of the tranches of

the CDO can be required to pay nothing at the inception of the contract (unfunded

synthetic CDO). The buyers of the tranches eventually pay what is due according

to the tranching structure only when there is some default among the underlying

assets. In an unfunded CDO the ability of the SPV to compensate the originator

if a credit event occurs depends only on the creditworthiness of the buyers of the

CDOs. Therefore, the risks for the originator are higher. However, the fact that

the buyers of the CDO pay nothing at inception makes this product more attractive

for investors.25 On the other side, in a funded synthetic CDO the final investors

are required to pay the notional amounts of their tranches to the SPV, which then

invests the proceeds in high-rated bonds (usually, AAA-rated government bonds)

and eventually use them to compensate the originator for the losses recorded in the

underlying portfolio.

Usually, the overall compensation paid to CDO investors is significantly smaller

than the returns of the underlying assets as the difference goes to pay the profession-

23Amato and Remolona (2005) use evidence from the market of arbitrage CDOs to argue that
the high level of the spreads on corporate bonds relative to expected losses from default is due to
the difficulty of fully diversify a credit portfolio.

24In a CDS the protection seller agrees to pay to the protection buyer some amount of money
in case of default of the reference entity, in exchange of a periodic fee. See JPMorgan (1999) and
Chapter 4 for more details.

25Tranches of CDS indices such as ITraxx or IBoxx are examples of unfunded synthetic CDOs.
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als involved in the transaction (originators, security firms, asset managers, trustees,

rating agencies, attorneys, and accountants). Hence, one might ask why investors

are interested in products with returns smaller than those of the underlying assets.

The answer is that CDOs can create customized exposures that investors desire and

cannot achieve in any other way. Using CDOs it is possible to fit into investors’ var-

ious risk appetites and capital constraints. For instance, less risk-averse investors,

such as hedge-funds and investment banks, usually prefer to be exposed to the riskier

tranches, whereas pension funds and insurance companies prefer to invest in more

senior tranches. CDOs slice the overall credit risk of the underlying assets into dif-

ferent tranches and sell each of them to the investors that feel more confident with

the corresponding risk-return profile.

Due to the characteristics of the CDOs, it should not be surprising if the rate of

growth of CDO issuance has been exceptionally high in the years before the onset of

the global financial crisis. Worldwide CDO issuance was about $500 billion in 2007,

in spite of a strong decrease in the second half of the year, or more than three

times greater than in 2004 (see Panel A of Figure 2.9).26 As in previous years, the

bulk of the issues was represented by cash flow CDOs (about 70% of the total).

A breakdown by purpose shows that arbitrage CDOs accounted for about 85% of

the total issues (see Panel B of Figure 2.9). About 50% of the total issues were

backed by other structured products such as residential mortgage backed securities

(RMBS), commercial mortgage backed securities (CMBS), other CDOs, CDSs, and

other securitized/structured products and 30% were backed by high-yield loans.27

New issues were mainly denominated in US dollars (70%) and euros (25%).

26Data are from the Securities Industry and Financial Markets Association (SIFMA), an orga-
nization born of the merger between The Securities Industry Association and The Bond Market
Association. SIFMA represents more than 650 member firms of all sizes, in all financial markets
in the United States and around the world. Data do not include unfunded synthetic tranches.

27High-yield loans are defined as transactions of borrowers with senior unsecured debt ratings
below Baa3 from Mooody’s or BBB- from S&P.
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Figure 2.9 – Global CDO market issuance in 2004–07
Source: Securities Industry and Financial Markets Association (SIFMA). Data do not
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Chapter 3

Securitization and Extreme Events

Just as on the Titanic,

not even first class passengers can save themselves

Mr. Giulio Tremonti

(Former Italian Treasury Minister)

3.1 Introduction

Is there a best way to protect against a tsunami? Common sense reasonings can

offer some guidance. First, the tsunamis cannot be avoided and cannot be foreseen,

as the earthquakes that generate them cannot be avoided and foreseen either. Sec-

ond, a complete ex ante physical protection against tsunamis is unfeasible, either

technically or economically, because it would involve suspending human activities

along coasts. However, the destructive consequences of the tsunamis can certainly

be reduced by using swift information systems and building refuge places. The bot-

tom line is: you may not be able to avoid the disaster, but you can manage it in

order to limit its negative consequences.

Not only natural disasters occur, but also economic history is full of unpredicted

extreme events that had significant negative impact on human lives. For instance,

one may think of the unprecedented reduction in residential property prices that

occurred in the last few years in several industrial countries. Because of the impor-

tance of housing as a collateral for bank financing, the reduction of property prices

led close to the collapse of the worldwide banking system. Global output decreased

sharply and unemployment surged in many countries.1

1See Panetta et al. (2009) for a review of the analyses of the causes that led to the over-
valuation of residential and commercial properties in several countries around the world, to the
burst of the housing bubble, and to the quick spread of the negative consequences of those events
all around the world.
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This chapter takes the view that painful economic events tend to happen and

are inherent to any socio-economic system. In this framework, we study the conse-

quences that such events may have on the banking system, especially when banks

securitize their assets. To this end, bank assets are described by a standard one-

factor model in which the underlying macroeconomic factor faces negative shocks,

possible quite severe, as described by the realization of a random variable with a

Student’s t-distribution. Using Monte Carlo simulations, this chapter documents

several interesting results obtained from that model. First, at very high confidence

levels, the value-at-risk (VaR) of a bank is little influenced by the quality of its

assets, especially when macroeconomic shocks can be very severe (i.e., when the

Student’s t-distribution has a lower number of degrees of freedom). Second, in most

of the cases the securitization of loans with poor credit rating and the reinvestment

in loans of much better quality do not improve the tail risk exposure of the bank to

macroeconomic shocks. Third, the most extreme consequences of negative macroe-

conomic shocks have to be studied at confidence levels that are higher than those

usually used for management and regulatory purposes.

This chapter shows that even the best borrowers are negatively affected and

defaults tend to cluster when severe macroeconomic shocks occur. To increase the

resilience of the banking system to extreme macroeconomic shocks banks should

therefore strengthen their capital base to survive when a shock occurs. Steering

banking activities towards investments and management practices deemed to be

safer is usually not useful to protect banks against extreme events.

The chapter is organized as follows. Section 3.2 describes the model that is used

to simulate numerically the behaviour of the economy and the impact of macroeco-

nomic shocks on the level of risk of the bank. Section 3.3 discusses the results and

Section 3.4 concludes.

3.2 The model

To study the impact that extreme macroeconomic shocks may have on the risk of a

bank to incur large losses, especially when the bank securitizes its assets, we use a

simple one-factor model. Li (2000) suggests to model the default correlation among

N borrowers, or issuers, using a Gaussian copula approach.2 A common way to

implement this framework is to assume the existence of N +1 independent standard

2See Appendix 3.A for a brief review of the main properties of copulas and numerical methods
to simulate copulas.
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normal random variables X and εi, i = 1, . . . , N , and define

Vi =
√
ρX +

√
1− ρ εi, (3.1)

for some ρ ∈ [0, 1] (see Vasicek, 1987, 1991, 2002). Given these assumptions, the

random variable Vi has a standard normal distribution as well. Then, issuer i is

assumed to default when Φ(Vi) ≤ pi, where Φ is the cumulative distribution func-

tion for the standard normal distribution and pi is the individual default probabil-

ity of issuer i. It is easy to verify that ρ measures the linear correlation between

two issuers.

Equation (3.1) can be interpreted as a measure of the asset returns of a borrower.

A default occurs when returns are particularly negative. The factors that determine

the performance of the borrower are of two kinds: the random variable X describes

the common shocks that hit all issuers contemporaneously, and can be interpreted as

a macroeconomic factor; the variables εi are issuer specific, and can be interpreted as

idiosyncratic risk factors. The parameter ρ determines the exposure of the borrowers

to macroeconomic shocks.

Building on this interpretation, we modify Eq. (3.1) in two directions to better

meet the needs of this chapter. First, the standard normal random variables are

replaced with t-distributed random variables that allow for extreme shocks that

are not possible in the normal framework (this model is usually called double t-

distribution copula).3 Second, to fully exploit the diversification properties of a

portfolio of assets, we assume that the parameter ρ can be issuer-specific and non-

positive.4 The asset returns of the borrowers are thus described by

Ṽi = sgn(ρi)
√
|ρi| X̃ +

√
1− |ρi| ε̃i, (3.2)

where sgn(x) is the sign function

sgn(x) =


−1, if x < 0

0, if x = 0

1, if x > 0,

(3.3)

the random variables X̃ and ε̃i are independent and t-distributed with unit variance,

and ρi ∈ [−1, 1], i = 1, . . . , N . In this framework, the correlation between two

borrowers, i and j, is given by sgn(ρiρj)
√
|ρiρj|. Notice that the correlation between

pairs of borrowers can also be negative, but it is always positive and equal to |ρ| if

3Early studies on the double t-distribution copula include Lucas et al. (2002), Lucas et al. (2003)
and Hull and White (2004).

4For an example of negative correlation, one may think of the relationship that takes place
between stock and risk-free government bonds during periods of distress.
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ρi = ρj = ρ.5 Given that the distribution of Ṽi in Eq. (3.2) is unknown, we use Monte

Carlo simulations to calculate Ψ, the cumulative distribution function of Ṽi. Issuer i

is assumed to default when Ψ(Ṽi) is below the individual default probability pi.

We also assume that the loans granted by the bank have the same notional

value, interest rate, and recovery ratio R. This means that, for a given individual

default probability pi that implicitly defines the default threshold di = Φ−1(pi) for

the normal case and di = Ψ−1(pi) for the Student’s t case, only the share R of

the notional value of the loan is paid back when the value of Ṽi drops below di and

borrower i is considered to default. We discount future payoffs at a constant interest

rate r. Finally, all loans are assumed to have a maturity of one year and defaults

can only occur at the end of the year.6

Without loss of generality, the total notional value of the N loans are normalized

to 1, so that the size of each loan is 1/N . The interest amount (coupon) that has

to be paid by borrower i on its loan at the end of the year is set equal to

Ci =
1

N

r + pi(1−R)

1− pi
, (3.4)

which is the value that makes the discounted expected value of the loan equal to

its face value. More generally, to get rid of the issues related to investors’ degree of

risk aversion, we assume that all assets are priced in a risk-neutral way.

Following Krahnen and Wilde (2006) and Di Cesare (2009), we assume that the

bank sell n of the N loans by putting them in the underlying pool of a CDO. The

CDO has 7 tranches with attachment points defined by their default probabilities.

The attachment points of the tranches are set at the 1st, 2nd, 5th, 10th, 20th, and

30th percentiles of the distribution of the losses of the pool of loans, which means

that the first tranche (the most senior) only suffers losses with a 1% probability,

the second tranche has a 2% probability of not being repaid in full, and so on. The

default probability of the last tranche (the most junior) is not pre-defined but can

be calculated given the previous assumptions on the characteristics of the loans and

taking into account that it bears all initial losses.7 The last tranche is retained by

the bank and immediately after the securitization the bank reinvests the proceeds

of the sale of the other six tranches in new loans. It turns out that the reinvestment

5An alternative version of Eq. (3.2) is Ṽi = ρiX̃ +
√

1− ρ2i ε̃i, which implies a correlation
of ρ2 between borrowers with the same parameter ρ. Equation (3.2) has been preferred to the
alternative version to maintain the interpretation of ρ as the correlation between borrowers with
the same positive parameter.

6Allowing for loans with longer maturities and for defaults that can occur before the maturity
of the loans would make the notation and empirical implementation more cumbersome, without
changing the overall quality of the results.

7Because of its high level of risk, the last tranche is also called equity tranche.
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Table 3.1 – List of symbols
Symbols used in the chapter to refer to the payoffs of several assets, or pool of assets

Symbol Definition

Pold total payoff of the original loan portfolio of the bank

Pn total payoff of the n loans that are securitized

PN−n total payoff of the N − n loans that are not securitized

Peqt payoff of the equity tranche of the CDO

Prnv total payoff of the loans in which the bank reinvests the proceeds of the
securitization

Pnew total payoff of the new portfolio, obtained after the securitization and
the reinvestment process

strategy is the critical factor determining whether the overall level of risk of the bank

(i.e., the risk of incurring large losses) increases or decreases after the securitization

process has been completed.

Krahnen and Wilde (2006) show that, due to a leverage effect of the risk, the

securitization of the assets and the retaining of the most junior tranche tend to

increase the level of risk of the bank under the assumption that the new loans have

the same characteristics as the loans that have been securitized in terms of ρ, p, and

R. Following the lead of Krahnen and Wilde (2006), Di Cesare (2009) shows that

the risk of the bank of incurring large losses can also decrease when the proceeds of

the securitization are reinvested in safer assets or in assets that are less correlated

with the assets retained in the bank portfolio. In the end, what happens with the

risk level of a bank after a securitization depends on the reinvestment strategy.

The return distribution of the original portfolio (i.e., the loan portfolio held

by the bank before the securitization process starts) can be calculated using Monte

Carlo simulations, and then compared with the return distribution of a new portfolio

made of: (1) the N−n loans in the original portfolio that are not securitized; (2) the

equity tranche of the CDO that has been used for the securitization; (3) the new

loans that the bank has granted using the proceeds of the sale of the other tranches

of the CDO.

To describe in detail how the simulations work, it is useful to refer to the symbols

described in Table 3.1. The returns associated with the payoffs listed in the table are

indicated by substituting R to the corresponding P (i.e., one has Rold, Rn, RN−n,

Reqt, Rrnv, and Rnew) and are calculated by comparing the payoffs with their initial

fair values (i.e., the discounted expected values of the payoffs). The probability

distributions of the returns are estimated using the following steps:
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1. Generate a random value for the common risk factor X;8

2. GenerateN random values for the idiosyncratic risk factors εi, for i = 1, . . . , N ;

3. For given ρi, compute Ṽi as defined in Eq. (3.2), for i = 1, . . . , N ;

4. For given default probability pi for borrower i, calculate the default threshold

di = Φ−1(pi) for the normal case or di = Ψ−1(pi) for the Student’s t case;

5. Calculate the total payoff and return of the original portfolio:9

Pold =
1

N

[
R

N∑
i=1

1{Ṽi≤di} + (1 + C)

(
N −

N∑
i=1

1{Ṽi≤di}

)]
, (3.5)

Rold = Pold − 1; (3.6)

6. Calculate the total payoff and return of the n loans that are securitized (as-

suming that the first n in the portfolio are those that are securitized):

Pn =
1

N

[
R

n∑
i=1

1{Ṽi≤di} + (1 + C)

(
n−

n∑
i=1

1{Ṽi≤di}

)]
, (3.7)

Rn = NPn
/
n− 1; (3.8)

7. Calculate total payoff and return of the N − n loans that are not securitized:

PN−n = Pold − Pn, (3.9)

RN−n = NPN−n
/

(N − n)− 1; (3.10)

8. Repeat the previous steps 1 million times to calculate the distributions of Pold,

Rold, Pn, Rn, PN−n, and RN−n;

9. Using the estimated distribution for Pn, calculate the detachment point of the

equity tranche in terms of total payoff of the underlying portfolio:

Deqt = max
(
x : P(Pn < x) ≤ 0.3

)
; (3.11)

10. Using the estimated distribution for Pn, calculate the distribution of the payoff

of the equity tranche:

Peqt = max
(
Pn −Deqt, 0

)
; (3.12)

8Here and in step 2 we use the term “random value” to refer to the outcome of independent
normal or t-distributed random variables, depending on the case we want to analyze.

9Remember that the total notional value of the N loans has been normalized to 1, so that the
size of each loan is 1/N . Moreover, because of the risk-neutral assumption and Eq. (3.4), the fair
value of the loan portfolio is equal to its notional value.
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11. Using the estimated distribution of Peqt, calculate the fair value of the equity

tranche and the distribution of its return:

Veqt = E[Peqt]/(1 + r), (3.13)

Reqt = Peqt
/
Veqt − 1; (3.14)

12. Given that the CDO is priced in a risk-neutral framework, its total initial

value is equal to that of the underlying loans, which is n/N . This implies that

the proceeds of the sale of the CDO, after retaining the equity tranche, are

equal to n/N − Veqt. That amount of money is reinvested by the bank in a

portfolio of n new loans with characteristics potentially different from those

of the loans in the original portfolio. The distribution of the payoff of the

reinvested portfolio Prnv is calculated by repeating 1 million times the steps 2

to 5 used to calculate Pold (setting N = n);

13. Using the estimated distributions for PN−n, Peqt, and Prnv, calculate the dis-

tributions of the payoff and return of the new portfolio that the bank owns

after the securitization and reinvestment process have taken place:

Pnew = PN−n + Peqt + Prnv, (3.15)

Rnew = Pnew − 1. (3.16)

Once the previous steps have been done and the distributions of the returns of

both the original and new portfolios have been estimated, one can calculate and

compare synthetic indicators of tail risk for the two portfolios, such as the value-

at-risk (VaR) and the expected shortfall (ES). The rest of the chapter focusses on

the VaR, which is the most common tail risk measure, but results using the ES are

qualitative the same.10

3.3 Analysis of the numerical results

To shed light on the potential effects of extreme macroeconomic shocks on a loan

portfolio, before and after a securitization process takes place, the numerical simula-

tions described in the previous section have been performed using standard normal

and t-distributed random variables (with 5 and 3 degrees of freedom).11 The choice

10Detailed results for the ES are available from the author on request.
11Lucas et al. (2002) use the same degrees of freedom for the t-distributed random variables.

Lucas et al. (2001) claim that the return series of the S&P index can best be described by a
Student’s t-distribution with 5 degrees of freedom. For comparability reasons, the t-distributed
random variables have been normalized to have unit variance. To this end, the stochastic realiza-
tions of the random variables have been divided by

√
ν/(ν − 2), which is the standard deviation

of a t-distributed random variable with ν degrees of freedom.
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of three types of random variables permits to compare the results obtained using a

distribution with thin tails, for which all moments exists, with those arising from

two distributions with fat tails, for which only the first 4 and 2 moments exist,

respectively. The three types on random variables permit to simulate economies in

which extreme random events are progressively more likely to occur.

For instance, the first percentile of a standard normal random variable is −2.326,

while the same percentile for t-distributed random variables with 5 and 3 degrees of

freedom and unit variance is equal to −2.606 and −2.622, respectively. The differ-

ences are even larger for lower quantiles. However, the fact that low quantiles are

smaller for the t-distributed random variables than for the normal random variable

is of minor importance in our framework, because also the default thresholds of the

loans that are used in the simulations are modified accordingly.12

To understand the role that common shocks have on the default risk of individual

loans, the magnitude of the expected values of the three random variables conditional

on the variables being smaller than their respective first percentiles is of fundamental

importance. This conditional expected value is equal to −2.665 for a standard

normal random variable and to−3.449 and−4.043 for t-distributed random variables

with 5 and 3 degrees of freedom and unit variance, respectively. So, while the

conditional expected value is about 15% smaller than the first percentile for the

normal case, it is about 32% and 54% per cent smaller for the other two distributions.

This means that, while for the normal case one can be rather confident that when the

outcomes are lower than a given low threshold they are actually not much smaller

than that threshold, this is not the case for the t-distributed random variables.13

The latter distributions can thus be used to mimic economies in which really bad

things can happen once the outlook is ugly enough.

In the following numerical analysis there are some characteristics that we keep

fixed. First, we assume that the bank owns a portfolio of 1,000 loans,14 with the

same notional value and recovery rate (set equal to 40%).15 Second, the risk-free

rate, which is used to discount the expected payoffs, is set equal to 4%.

12See step 4 on page 60.
13Appendix 3.B shows that, when the threshold goes to minus infinity, the ratio of the con-

ditional expected value to the threshold goes to 1 for the normal case and to ν/(ν − 1) for the
Student’s t case, where ν is the number of degrees of freedom.

14Further increasing the number of loans does not lead to any appreciable difference, except for
taking more computational time.

15According to Ou et al. (2011, Exhibit 7), the average corporate debt recovery rate measured
by post-default trading prices for senior unsecured bank loans has been equal to 39.9% over the
period 1982–2010.
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Table 3.2 – Average one-year letter rating default rates, 1920–2010
Source: Ou et al. (2011, Exhibit 26)

Rating (Moody’s scale) Rating (S&P’s and Fitch’s scales) Default rate

Aaa AAA 0.000%
Aa AA 0.068%
A A 0.092%
Baa BBB 0.280%
Ba BB 1.292%
B B 3.781%
Caa CCC 12.358%
Ca–C CC–C 23.350%

3.3.1 The riskiness of the original loan portfolio

To analyze the risk properties of a loan portfolio, we use Eq. (3.2) to model the

correlation between loan defaults. The risk of the portfolio is described through the

VaR, which is the function

VaR(x) = −F−1(1− x), (3.17)

where F is the cumulative distribution function of the portfolio returns, and x is the

confidence level.

In a first exercise, we calculate the VaR of a loan portfolio for several levels

of the individual default probability of the loans. For the moment, the individual

default probability is assumed to be the same for all the loans, as in Krahnen and

Wilde (2006). The values of the individual default probabilities that are used in

our analyses correspond approximately to the average annual default probabilities

of borrowers to whom the rating agency Moody’s assigned its credit ratings over the

period 1920–2010 (see Table 3.2, taken from Exhibit 26 of Ou et al., 2011). We also

assume that the loans have the same individual correlation coefficient, set equal to

15%. The individual correlation coefficient is a key parameter, as it determines the

exposure to the common macroeconomic factor. The higher the individual correla-

tion coefficient the higher the impact on the portfolio of a macroeconomic shock. A

correlation coefficient equal to 15% is a conservative choice that nonetheless high-

lights several interesting results.16

16Under the assumption of normality for the risk factors, Krahnen and Wilde (2008) and Mann
and Metz (2011) also use a correlation coefficient of 15%, while Krahnen and Wilde (2006) and
Di Cesare (2009) use a value of 30%. Hull and White (2004) use correlations of 0, 0.3 and 0.6,
for normal and Student’s t risk factors. For Student’s t copulas, Wanitjirattikal and Kiatsu-
paibul (2007) use values of 0.1, 0.5 and 0.9.
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Panel A: Normal distribution
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Panel B: Student’s t-distribution with 5 degrees of freedom
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Panel C: Student’s t-distribution with 3 degrees of freedom
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Figure 3.1 – Value-at-risk of a loan portfolio for several levels of the individual
default probability of the loans
The figure reports the VaR of a loan portfolio as a function of the confidence level. The
dependence among loans is modeled using Eq. (3.2), where the common and idiosyncratic
factors have the distribution mentioned in the title of the panels. The VaR is measured
as a percentage of the initial value of the portfolio. The legend shows the individual an-
nual default probability of the loans and, between parenthesis, the corresponding credit
rating according to Ou et al. (2011). Number of loans: 1,000; individual correlation co-
efficient: 15%; recovery rate: 40%; risk-free rate: 4%. Each loan pays an interest amount
given by Eq. (3.4) if it does not default.
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Panel A of Figure 3.1 reports the VaR, from 99.0% to 99.999% confidence lev-

els, for the case in which both the macroeconomic and idiosyncratic shocks follow

standard normal distributions. As one intuitively would expect, the VaR levels for

the different default probabilities differ from each other at any confidence level. For

instance, the VaR for Caa-rated loans is about 2 to 3 times larger than the VaR for

B-rated loans between 99% and 99.95% confidence levels. It is worth noting that,

in this framework, the VaR is always smaller than 40% at the highest confidence

level, even in the worst scenario in which the portfolio is made of loans with the

lowest rating and the highest level of individual default probability. The fact that

the VaR is always significantly lower than the maximum attainable VaR (which is

equal to 60% as the recovery rate is 40%) means that even in the worst case there

is a significant share of loans that do not default.

The picture changes radically when distributions with fat tails are used. In this

case, the VaR is much higher than in the case of normal returns at high confidence

levels. Moreover, the VaR tends to converge to the highest admissible value of 60%

at the highest confidence levels, independently on the rating of the individual loans

(see Panels B and C of Figure 3.1). For instance, in Panel B the VaR at the 99.99%

confidence level for A-rated loans is just 10%, but it jumps to 56.5% at the 99.999%

confidence level. This result is due to the fact that, as mentioned above, for high

confidence levels the expected outcomes are much larger when the distributions are

fat-tailed. At high confidence levels, there is always a chance that the outcome of

the common macroeconomic shock is so negative that even very good idiosyncratic

returns are not enough to avoid the default of almost all of the borrowers.

It is also worth noting that the differences between thin- and fat-tailed distribu-

tions are only clearly visible at very high confidence levels. For instance, with the

exception of the loans with the lowest rating, the VaR at the 99% confidence level

is broadly the same for all of the three distributions that we are examining. The

severe consequences of extreme macroeconomic shocks can thus be fully evaluated

only when looking deeply in the tails of the loss distributions.

As is well known, in the Basel II framework each bank has to satisfy a capital

requirement that provides a buffer against unexpected losses at a specific level of

statistical confidence, set by regulators at 99.9% (see Basel Committee on Banking

Supervision, 2004, 2005). The previous results show that reasonable statistical mod-

els can easily generate outcomes for which a VaR level that is considered acceptable

at that confidence level can become much larger at slightly higher confidence levels.
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Panel A: Normal distribution
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Panel B: Student’s t-distribution with 5 degrees of freedom
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Panel C: Student’s t-distribution with 3 degrees of freedom

-10%
0%

10%
20%
30%
40%
50%
60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

correlation coef. = 0%
correlation coef. = 5%
correlation coef. = 15%
correlation coef. = 30%
correlation coef. = 50%

Figure 3.2 – Value-at-risk of a loan portfolio for several levels of the individual
correlation coefficient of the loans
The figure reports the VaR of a loan portfolio as a function of the confidence level. The
dependence among loans is modeled using Eq. (3.2), where the common and idiosyncratic
factors have the distribution mentioned in the title of the panels. The VaR is measured
as a percentage of the initial value of the portfolio. The legend shows the individual
correlation coefficient of the loans. Number of loans: 1,000; individual annual default
probability: 1.3%; recovery rate: 40%; risk-free rate: 4%. Each loan pays an interest
amount given by Eq. (3.4) if it does not default.
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In Figure 3.2, the individual correlation coefficient of the borrowers varies while

the individual default probability is kept fixed at 1.3% (which is the average annual

default rate for BB-rated borrowers). The BB rating is the median rating for which

Moody’s provides the information on default rates, after excluding the AAA rating

for which the average annual default probability is essentially null (see Table 3.2).

The results of our simulations under this new framework are somewhat similar to

those obtained when only the individual default probability is allowed to change. In

that case, even a small default probability was enough to cause severe portfolio losses

in the worst scenarios when t-distributed random variables were used. In this case,

when the same fat-tailed distributions are used, even a very small (but not null)

individual correlation coefficient is enough to determine very high default rates in

the most extreme cases. Continuing with our interpretation of the model described

by Eq. (3.2), macroeconomic shocks can be so large that any non-null exposure to

them is enough to determine extremely high default rates in the worst scenarios.

Once again, the differences between normal and t-distributed random variables are

only apparent for confidence levels higher than 99%.

Notice that the VaR is always negative when the individual correlation coefficient

is null, that is the portfolio always record a positive return for both normal and t-

distributed random variables. This result is due to the fact that, in this case, the

returns of the loans are independent of the return of the macro factor, and are thus

independent of each other. Using the Gaussian approximation for binomial random

variables, it can be calculated that the probability of having more than 30 defaults in

a portfolio of 1,000 loans with individual default probability equal to 1.3% is almost

null, and even in that case the return of the portfolio is positive (about 2.9%).

The model described by Eq. (3.2) with t-distributed random variables can be

interpreted as a stylized version of an economy in which macroeconomic shocks

happen rarely, but when they occur they can be extremely severe. Under these

conditions, many borrowers tend to default together in spite of their low individual

default probabilities and their low exposures to macroeconomic shocks.

These findings seem to mimic reasonably well what happened in the housing

market in the United States in 2007–08. When house prices stopped to increase, the

so-called subprime borrowers started to default because they had the lowest capacity

to repay their loans (that is, they had the highest individual default probabilities).

However, when house prices started to decrease, that is when a mild shock turned

into a severe macroeconomic shock, higher-rated borrowers started to default as

well, with dreadful consequences for the world economy (see Gorton, 2008, and

Mishkin, 2010).
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Panel A: Normal distribution
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Panel B: Student’s t-distribution with 5 degrees of freedom
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Panel C: Student’s t-distribution with 3 degrees of freedom

0%

10%

20%

30%

40%

50%

60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

Original portfolio (def. pr. = 12.4% – Caa)

New portfolio (def. pr. = 0.1% – A)
New portfolio (def. pr. = 0.3% – Baa)

New portfolio (def. pr. = 1.3% – Ba)
New portfolio (def. pr. = 3.8% – B)

Figure 3.3 – Value-at-risk of a loan portfolio, before and after the securitiza-
tion, for several levels of the individual default probability of the new loans
granted with the proceeds of the securitization
The figure reports the VaR of a loan portfolio as a function of the confidence level, both be-
fore and after the securitization. The dependence among loans is modeled using Eq. (3.2),
where the common and idiosyncratic factors have the distribution mentioned in the title
of the panels. The VaR is measured as a percentage of the initial value of the portfolio.
The legend reports between parenthesis the individual annual default probability of the
original loans (for the original portfolio) and new loans (for the new portfolios) granted
with the proceeds of the securitization, after retaining the equity tranche. The legend
also reports the credit rating corresponding to the quality of the loans according to Ou
et al. (2011). Number of loans: 1,000; individual correlation coefficient: 30%; recovery
rate: 40%; risk-free rate: 4%. Each loan pays an interest amount given by Eq. (3.4) if it
does not default.
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3.3.2 The riskiness of the loan portfolio after a securitiza-
tion process

The same framework used before can be applied to study how the risk of incurring

large losses for a bank changes when the bank decides to securitize part of its assets

and reinvest the proceeds in new loans. According to market practices and to recent

regulatory requirements, the bank is assumed to retain the equity tranche of the

CDO that is used to securitize its loans. In a similar framework, Krahnen and

Wilde (2006) show that the risk of the bank tends to increase when the proceeds

of the securitization are reinvested in loans with the same characteristics of the

loans the have been securitized. Di Cesare (2009) shows that the level of risk of the

bank may decrease when the proceeds of the securitization are reinvested in loans

with lower individual default probabilities or lower individual correlation coefficients.

Both Krahnen and Wilde (2006) and Di Cesare (2009) use standard normal random

variables for their analysis.

To sharpen the results of this section, we now assume that the individual corre-

lation coefficient of the loans is higher than before (30%, instead of 15%). We also

assume that the quality of the original loans is rather poor, with an expected annual

default rate of 12.4% (corresponding to CCC-rated borrowers), while the new loans

are granted to borrowers with better creditworthiness. Finally, we assume that the

bank securitizes 50% of its loans. These assumptions are clearly rather extreme but

they are useful to highlight that the following results hold even when a very large

share of extremely bad loans is replaced with loans of much better quality.

Under the previous assumptions, Figure 3.3 reports the VaR as a function of the

confidence level, for both the original portfolio and the new portfolios made of the

loans that are not securitized, the equity tranche of the resulting CDO, and the new

loans that are granted with the proceeds of the securitization.

Because the new loans are of much better quality than the original loans, Panel A

of Figure 3.3 shows that, under the normality assumption, the level of risk of the

bank is substantially reduced after the securitization, for any confidence level. How-

ever, based on what we said before, it should not be surprising now to see that the tail

risk of the bank, at the highest confidence levels, remains broadly unchanged from

before to after the securitization when extreme macroeconomic events are allowed

to happen (see Panels B and C of Figure 3.3). When fat-tailed random variables

are used, the securitization of bad loans and the reinvestment in high-quality loans

can reduce the level of risk of the bank at high confidence levels more than for the

normal case. However, this is not the case for the highest confidence levels. Indeed,

extreme tail risk is unaffected by the securitization process.
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Panel A: Normal distribution
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Panel B: Student’s t-distribution with 5 degrees of freedom
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Panel C: Student’s t-distribution with 3 degrees of freedom
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Figure 3.4 – Value-at-risk of a loan portfolio, before and after the securitiza-
tion, for several levels of the individual correlation coefficient of the new loans
granted with the proceeds of the securitization
The figure reports the VaR of a loan portfolio as a function of the confidence level, both be-
fore and after the securitization. The dependence among loans is modeled using Eq. (3.2),
where the common and idiosyncratic factors have the distribution mentioned in the title of
the panels. The VaR is measured as a percentage of the initial value of the portfolio. The
legend reports between parenthesis the individual correlation coefficient of the original
loans (for the original portfolio) and new loans (for the new portfolios) granted with the
proceeds of the securitization, after retaining the equity tranche. Number of loans: 1,000;
individual annual default probability: 12.4%; recovery rate: 40%; risk-free rate: 4%. Each
loan pays an interest amount given by Eq. (3.4) if it does not default.
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Similar results also hold when the new loans are assumed to have the same

individual default probability of the original loans (which is set equal to 12.4%)

but have a different individual correlation coefficient. As long as the individual

correlation coefficient of the new loans is positive, even if much lower than that

of the original loans, the tail risk of the bank at the highest confidence levels is

unaffected by the securitization process when the underlying risk factors have fat

tails (see Panels B and C of Figure 3.4).

The only way to reduce the level of risk of the bank in this case is to reinvest

in assets that are uncorrelated with the macroeconomic factor, or are negatively

correlated with it. Both strategies allow for a greater diversification of the risk in

the portfolio, so that a significant share of the loans does not default even at the

highest confidence levels. Whether or not one or both of the two strategies is feasible

for a bank is an interesting topic for empirical research.17

3.3.3 Further analyses of the riskiness of the loan portfolio

One may wonder how much of the previous results is due to the fact that normal

and t-distributed random variables are used or to the specific model that is used

(in which the firm value is represented as a linear combination of common and

idiosyncratic factors). In other words, our previous results were dependent on the

fact that we used either Gaussian or double t-distribution copulas. In this section

we use alternative copulas to model the dependence among loans and check whether

the previous results still hold.

In particular, one may wonder what happens when one uses Gaussian and Stu-

dent’s t copulas with different marginal distributions (for instance, a Gaussian copula

with Student’s t marginals or a Student’s t copula with Gaussian marginals). It turns

out that, in our framework, the choice of the marginal distributions is completely ir-

relevant, as only the functional form of the copula has an impact on the final results.

This feature of the approach that we are using is due to the fact that the only thing

that matters to establish whether a loan is in default or not is whether the asset

return of the borrower is below the value Ψ−1(p) or not (where Ψ is the marginal

cumulative distribution function of the asset returns and p is the individual default

probability). Hence, using a different Ψ is actually unimportant, as the individual

probability of default is kept fixed and changing Ψ would only change the threshold

under which the loan is deemed to default.

17Actually, the desired assets may not exist.
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Figures 3.5-3.8 are equivalent to Figures 3.1-3.4 except for the fact that now

Gaussian and Student’s t copulas are used. The Gaussian cases in the new exercises

are obtained using a different numerical approach (described in Appendix 3.A), but

not surprisingly the results are the same as before (as shown by the comparison of

the Panels A of Figures 3.5-3.8 with the Panels A of Figures 3.1-3.4, respectively).

The comparison of Panels B and C of Figures 3.5-3.6 with the corresponding

panels of Figures 3.1-3.2 highlights several interesting differences:

• In Figures 3.5-3.6 the tail behavior of the VaR is much smoother than in

Figures 3.1-3.2, where it tends to increase sharply at the highest confidence

levels;

• The VaR is often lower in Figures 3.1-3.2 for several values of the confidence

level, but it is always higher at the highest confidence levels. In Figures 3.5-3.6

the VaR often does not reach the highest admissible value (60%);

• In Figure 3.6 the VaR is positive also when the individual correlation coefficient

is zero. This result is due to the fact that, as shown by Embrechts et al. (2002),

the tail dependence of jointly t-distributed random variables is positive even

when the variables are uncorrelated or negatively correlated (provided that

ρ > −1). In the double t-distribution copula instead, zero correlation implies

independence.

These results broadly hold true also when comparing Panels B and C of Fig-

ures 3.7-3.8 with the corresponding panels of Figures 3.3-3.4. It is worth noticing

that, because of the tail dependence of jointly t-distributed random variables, in

case of a securitization in which the proceeds are reinvested in loans which are un-

correlated or negatively correlated with the original loans, the diversification effect

is much lower when Student’s t copulas are used than when double t-distribution

copulas are used. In the former cases, the VaR of the new portfolio is usually higher

at the highest confidence levels.

Using different copulas to model the dependence among loans in a portfolio is

thus particularly relevant at the highest confidence levels, which are probably those

where the financial stability of an economic system has to be evaluated. Modeling

correctly the dependence among loans is thus important not only for pricing credit

derivatives (as shown by Wanitjirattikal and Kiatsupaibul, 2007, and Burtschell

et al., 2009) but also for policy and risk management purposes.
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Panel A: Gaussian copula

-10%
0%

10%
20%
30%
40%
50%
60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

default prob. = 0.1% (A)
default prob. = 0.3% (Baa)
default prob. = 1.3% (Ba)

default prob. = 3.8% (B)
default prob. = 12.4% (Caa)

Panel B: Student’s t copula with 5 degrees of freedom

-10%
0%

10%
20%
30%
40%
50%
60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

default prob. = 0.1% (A)
default prob. = 0.3% (Baa)
default prob. = 1.3% (Ba)

default prob. = 3.8% (B)
default prob. = 12.4% (Caa)

Panel C: Student’s t copula with 3 degrees of freedom
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Figure 3.5 – Value-at-risk of a loan portfolio for several levels of the individual
annual default probability of the loans
The figure reports the VaR of a loan portfolio as a function of the confidence level. The
dependence among loans is modeled using the copula mentioned in the title of the panels.
The VaR is measured as a percentage of the initial value of the portfolio. The legend
shows the individual annual default probability of the loans and, between parenthesis,
the corresponding credit rating according to Ou et al. (2011). Number of loans: 1,000;
individual correlation coefficient: 15%; recovery rate: 40%; risk-free rate: 4%. Each loan
pays an interest amount given by Eq. (3.4) if it does not default.
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Panel A: Gaussian copula
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-10%
0%

10%
20%
30%
40%
50%
60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

correlation coef. = 0%
correlation coef. = 5%
correlation coef. = 15%

correlation coef. = 30%
correlation coef. = 50%

Figure 3.6 – Value-at-risk of a loan portfolio for several levels of the individual
correlation coefficient of the loans
The figure reports the VaR of a loan portfolio as a function of the confidence level. The
dependence among loans is modeled using the copula mentioned in the title of the panels.
The VaR is measured as a percentage of the initial value of the portfolio. The legend
shows the individual correlation coefficient of the loans. Number of loans: 1,000; individual
annual default probability: 1.3%; recovery rate: 40%; risk-free rate: 4%. Each loan pays
an interest amount given by Eq. (3.4) if it does not default.



Chap. 3 – Securitization and Extreme Events 75

Panel A: Gaussian copula

0%

10%

20%

30%

40%

50%

60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

Original portfolio (def. pr. = 12.4% – Caa)

New portfolio (def. pr. = 0.1% – A)
New portfolio (def. pr. = 0.3% – Baa)

New portfolio (def. pr. = 1.3% – Ba)
New portfolio (def. pr. = 3.8% – B)

Panel B: Student’s t copula with 5 degrees of freedom

0%

10%

20%

30%

40%

50%

60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

Original portfolio (def. pr. = 12.4% – Caa)

New portfolio (def. pr. = 0.1% – A)
New portfolio (def. pr. = 0.3% – Baa)

New portfolio (def. pr. = 1.3% – Ba)
New portfolio (def. pr. = 3.8% – B)

Panel C: Student’s t copula with 3 degrees of freedom

0%

10%

20%

30%

40%

50%

60%

V
al

u
e-

at
-R

is
k

99.0% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100.0%
Confidence level

Original portfolio (def. pr. = 12.4% – Caa)

New portfolio (def. pr. = 0.1% – A)
New portfolio (def. pr. = 0.3% – Baa)

New portfolio (def. pr. = 1.3% – Ba)
New portfolio (def. pr. = 3.8% – B)

Figure 3.7 – Value-at-risk of a loan portfolio, before and after the securitiza-
tion, for several levels of the individual annual default probability of the new
loans granted with the proceeds of the securitization
The figure reports the VaR of a loan portfolio as a function of the confidence level, both
before and after the securitization. The dependence among loans is modeled using the
copula mentioned in the title of the panels. The VaR is measured as a percentage of
the initial value of the portfolio. The legend reports between parenthesis the individual
annual default probability of the original loans (for the original portfolio) and new loans
(for the new portfolios) granted with the proceeds of the securitization, after retaining the
equity tranche. The legend also reports the credit rating corresponding to the quality of
the loans according to Ou et al. (2011). Number of loans: 1,000; individual correlation
coefficient: 30%; recovery rate: 40%; risk-free rate: 4%. Each loan pays an interest amount
given by Eq. (3.4) if it does not default.
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Panel A: Gaussian copula
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Figure 3.8 – Value-at-risk of a loan portfolio, before and after the securitiza-
tion, for several levels of the individual correlation coefficient of the new loans
granted with the proceeds of the securitization
The figure reports the VaR of a loan portfolio as a function of the confidence level, both
before and after the securitization. The dependence among loans is modeled using the
copula mentioned in the title of the panels. The VaR is measured as a percentage of
the initial value of the portfolio. The legend reports between parenthesis the individual
correlation coefficient of the original loans (for the original portfolio) and new loans (for the
new portfolios) granted with the proceeds of the securitization, after retaining the equity
tranche. Number of loans: 1,000; individual annual default probability: 12.4%; recovery
rate: 40%; risk-free rate: 4%. Each loan pays an interest amount given by Eq. (3.4) if it
does not default.
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3.4 Conclusion

This chapter takes the view that painful economic events tend naturally to happen

and studies the consequences that those events may have on the banking system.

In doing so, bank assets are described by a standard one-factor model in which

the underlying macroeconomic factor can face negative shocks, as described by the

realization of normal or t-distributed random variables.

Using Monte Carlo simulations, we analyze what happens to the VaR of a bank

that securitizes part of its loan portfolio when the economy is subject to extreme

macroeconomic shocks. Since usually there is no way for individuals to be protected

against those macroeconomic shocks, this chapter shows that the individual charac-

teristics of the loans of the bank have only a very limited impact on the risk of the

bank of incurring large losses. Moreover, the level of risk of the bank is only slightly

influenced by the fact that the bank securitizes its loans and reinvest the proceeds

of the securitization in new loans with different characteristics. We also show that

the behaviour of the VaR of a bank at the highest confidence levels can change sig-

nificantly when different kinds of copulas are used to model the dependence among

loans.

Overall, the results of this chapter suggest that, in order to increase the resilience

of the banking system to extreme macroeconomic shocks, banks should focus on how

to increase their capital base to survive when a shock occurs. Looking for investment

and risk management practices that are perceived as safer is usually of little help

when the worst is coming.
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3.A Appendix: A brief review of copulas

In this appendix we recall a few definitions and properties regarding copulas. For

the sake of clarity, we limit our review to the bivariate case, although the extension

to the multivariate case is usually straightforward. We also assume that the random

variables have invertible distribution functions. For more details and technicalities

about copulas and their applications in finance, see Jäckel (2002) and Cherubini

et al. (2004).

A copula is the joint distribution function of two standard uniform random vari-

ables:

C(u1, u1) = P(U1 ≤ u1, U2 ≤ u2). (3.18)

Denoting with F the distribution function of the random variable X, it is well

known that F (X) = U , or X = F−1(U), where U is a standard uniform random

variable:

P
(
F (X) ≤ x

)
= P

(
X ≤ F−1(x)

)
= F

(
F−1(x)

)
= x. (3.19)

Using this result and the definition of a copula, it is easy to see that a copula

computed at
(
F1(x1), F2(x2)

)
gives a joint distribution function at (x1, x2):

C
(
F1(x1), F2(x2)

)
= P

(
U1 ≤ F1(x1), U2 ≤ F2(x2)

)
(3.20)

= P
(
F−11 (U1) ≤ x1, F

−1
2 (U2) ≤ x2

)
(3.21)

= P
(
X1 ≤ x1, X2 ≤ x2

)
(3.22)

= F (x1, x2) (3.23)

Sklar (1959) shows that the converse also holds true. For every joint distribution

function F with marginal distribution functions F1 and F2, there exists a copula

C such that F (x1, x2) = C
(
F1(x1), F2(x2)

)
. Moreover, if the marginal distribution

functions are continuous, then C is unique.

Elliptical copulas are commonly used in finance, and among them we have:

• The Gaussian copula

CGa(x1, x2; ρ) = Φρ

(
Φ−1(x1),Φ

−1(x2)
)
, (3.24)

where Φρ(x1, x2) is the distribution function of a bi-dimensional standard nor-

mal random variable, with linear correlation coefficient ρ, and Φ is a standard

normal distribution function;

• The Student’s t copula

Ct(x1, x2; ρ, ν) = tρ
(
t−1(x1; ν), t−1(x2; ν); ν

)
, (3.25)
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where tρ(x1, x2; ρ, ν) is the distribution function of a bi-dimensional Student’s t

random variable, with linear correlation coefficient ρ and ν degrees of freedom,

and t is a Student’s t distribution function.

It is possible to simulate numerically a Gaussian copula18 by generating random

variables X̃1 and X̃2 with a joint standard normal distribution with correlation ρ and

then setting Ũ1 = Φ(X̃1) and Ũ2 = Φ(X̃2), where Φ is a standard normal distribution

function (see Jäckel, 2002, p. 46, for details). Actually, the joint distribution of

(Ũ1, Ũ2) is given by

F (ũ1, ũ2) = P
(
Ũ1 ≤ ũ1, Ũ2 ≤ ũ2

)
(3.26)

= P
(
Φ(X̃1) ≤ ũ1,Φ(X̃2) ≤ ũ2

)
(3.27)

= P
(
X̃1 ≤ Φ−1(ũ1), X̃2 ≤ Φ−1(ũ2)

)
(3.28)

= Φρ

(
Φ−1(ũ1),Φ

−1(ũ2)
)

= CGa(ũ1, ũ2; ρ). (3.29)

It is also possible to simulate a Gaussian copula with arbitrary marginal distri-

bution functions F1 and F2.
19 In this case, one has to follow the same procedure as

before and then set Ỹ1 = F−11 (Ũ1) and Ỹ2 = F−12 (Ũ2). In fact, the joint distribution

of (Ỹ1, Ỹ2) is given by

F (ỹ1, ỹ2) = P
(
Ỹ1 ≤ ỹ1, Ỹ2 ≤ ỹ2

)
(3.30)

= P
(
F−11 (Ũ1) ≤ ỹ1, F

−1
2 (Ũ2) ≤ ỹ2

)
(3.31)

= P
(
F−11 (Φ(X̃1)) ≤ ỹ1, F

−1
2 (Φ(X̃2)) ≤ ỹ2

)
(3.32)

= P
(
X̃1 ≤ Φ−1(F1(ỹ1)), X̃2 ≤ Φ−1(F2(ỹ2))

)
(3.33)

= Φρ

(
Φ−1(F1(ỹ1)),Φ

−1(F2(ỹ2))
)

= CGa
(
F1(ỹ1), F2(ỹ2); ρ

)
. (3.34)

3.B Appendix: Some tail properties of normal

and t-distributed random variables

It is possible to show that the limit of the ratio of the expected value of a standard

normal random variable conditional on the random variable being greater than a

given threshold x to the same threshold is equal to 1, for x going to infinity. The

same ratio for a t-distributed random variable with ν degrees of freedom is equal to

ν/(ν − 1), as long as ν > 1. Because of the symmetry of the normal and Student’s

t distributions, of course the same results holds when the threshold goes to minus

18A similar procedure holds for simulating a Student’s t copula.
19Analogously, it is possible to simulate a Student’s t copula with arbitrary marginal distribution

functions.
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infinity and the expected values of the random variables are calculated conditional

on the variables being smaller than the threshold.

In fact, the expected value of a standard normal random variables X, conditional

on the variable being greater than x, is equal to E[X|X ≥ x] = φ(x)/
(
1−Φ(x)

)
. As

x goes to infinity, it is possible to use the Laplace approximation 1−Φ(x) ' φ(x)/x,

so that one has

E[X|X ≥ x] = φ(x)/
(
1− Φ(x)

)
→ φ(x)/

(
φ(x)/x

)
= x. (3.35)

For the case of a t-distributed random variable T with ν degrees of freedom, it

is possible to use the approximation P(T > t) ' At−ν , for some constant A, when t

goes to infinity. Then,

E[T |T ≥ t]→ −
∫∞
t
s dAs−ν

At−ν
=
At1−ν ν

ν−1

At−ν
= t

ν

ν − 1
. (3.36)



Chapter 4

The Determinants of CDS Spread
Changes

4.1 Introduction

Empirical work on the determinants of credit risk – the risk of default of borrowers –

has traditionally looked at corporate spreads, that is spreads between corporate

and government bonds.1 The common finding has been that only a small share of

observed spreads can be actually considered as a compensation for the risk of default

of borrowers, whereas the greatest share can be traced back to taxes and liquidity

issues, and to the presence of other systematic risk factors (e.g., Elton et al., 2001;

Amato and Remolona, 2005; Driessen, 2005).

Although the bond market has traditionally been regarded as the best place in

which the creditworthiness of a borrower can be evaluated, in recent years there has

been a huge development of financial instruments, called credit derivatives, that are

specifically designed to make credit risk easily tradable.2 Among these innovative

instruments, credit default swaps (CDSs) have proved particularly successful. Es-

sentially, a CDS works like an insurance contract: the policy holder (i.e., the buyer

of protection) pays a premium to the insurer (i.e., the seller of protection) in order

to receive compensation if a particular event, called credit event, occurs. In the case

of CDSs, this event usually includes bankruptcy, failure to pay, and restructuring.

For sovereign issuers, repudiation and moratoria are considered as well. Generally

speaking all these events are subsumed in the term “default”. The main difference

between a CDS and an insurance contract is that, while in the case of insurance

1We use the terms “credit spreads” and “credit premiums” as synonyms of “corporate spreads”
and “CDS spreads”. By “corporate spreads” or “bond spreads” we mean the differential between
the yields of bonds issued by private companies and the yields of government bonds with similar
characteristics. We also use the term “risk-free yields” as a synonym of “government bond yields”.

2See Committee on the Global Financial System (2003).
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the policy holder gets a reimbursement only for the damages that he has actually

suffered, with a CDS it is possible to buy or sell protection against credit events

independently from the real exposure to the risk of default of the reference entity.

A CDS can thus be used not only for hedging credit risk but also for taking pure

speculative positions, as with forward and futures contracts. This aspect clearly

distinguishes the CDS market from the bond market. In the bond market the short

selling of credit risk requires the short selling of bonds, which is usually limited by

the low level of liquidity of the repo market, especially for high-yield bonds, and

by the short maturity of repo contracts. On the contrary, CDSs allow investors to

short sell credit risk easily.

The CDS market has been growing dramatically during the last few years. Ac-

cording to the International Swap and Derivatives Association (ISDA), the notional

value of outstanding CDSs has increased from 1 to 62 trillion USD between 2001

and 2007. The notional amount of outstanding CDSs was so large that it turned out

to be a serious potential source of instability during the financial turmoil triggered

by the subprime crisis in the United States because of the corresponding counter-

party risks. In order to reduce these risks, CDS market dealers started entering

multilateral netting of CDS contracts, thus reducing the notional amount of out-

standing CDS to 39 trillion by the end of 2008 (European Central Bank, 2009b).

According to Fitch Ratings (2006), CDSs represent more than a half of the whole

credit derivatives market.3

Because of its particular features, the CDS market is potentially much more ef-

ficient than the bond market in signaling the creditworthiness of borrowers. The re-

lationship between bond and CDS markets has been the subject of several academic

papers. Blanco et al. (2005) find that CDS and bond markets reflect firm-specific

characteristics equally in the long run, while in the short run CDS prices appear to

be more efficient than bond spreads in the price discovery process. Zhu (2004) con-

firms that credit risk tends to be priced equally in the two markets in the long run

and that the derivatives market seems to lead the cash market in anticipating rating

events and in price adjustments. Other literature which analyzes the relationship

between CDS spreads and credit ratings show that the CDS market is usually very

effective in anticipating rating changes (Hull et al., 2004; Norden and Weber, 2004;

Di Cesare, 2005).

The development of the CDS market has also attracted the interest of researchers

to analyze whether factors that determine corporate spreads are also relevant for

CDS spreads. As said before, there are differences between corporate spreads and

3More detailed information about the CDS market can be found in European Central
Bank, 2009a.
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CDSs that make this question not obvious. The aim of this chapter is to contribute

to this literature by analyzing how the global financial turmoil has changed the way

that credit risk is priced in the CDS market. Most of existing literature use data

from the early stage of the CDS market only, thus not taking into account more

recent developments. To the best of our knowledge, only Annaert et al. (2009) and

Raunig and Scheicher (2009) analyze the period following the onset of the current

financial turmoil in July 2007, but they focus on the banking sector. Moreover, with

the exception of Alexander and Kaeck (2008) and Pires et al. (2009), the issue of

the non-linear relationship between CDS spreads and default factors is usually not

taken into account.

In this chapter, we use a large data set of CDS quotes on US non-financial com-

panies from January 2002 to March 2009. This data set allows us to analyze the

effects of the global financial turmoil on the determinants of CDS spread changes.

We also take care explicitly of the issue of non-linearity in our regressions by using

a theoretical CDS spread calculated using the Merton model. In this respect, this

chapter is similar in spirit to Byström (2006) which uses the CreditGrades model

to calculate theoretical CDS spreads and compare these with empirically observed

spreads for CDS indices (iTraxx) covering Europe. Byström (2006) finds that the-

oretical and empirical spread changes are significantly correlated. Given that the

specific functional form provided by a theoretical model could misspecify the true

relationship between CDS spreads and default factors, we also add in our regres-

sions the default factors separately. We also include other factors that theory and

empirical evidence found to be significant in explaining credit spreads.

The main results of this chapter are: (i) the inclusion of a theoretical CDS spread

in the regressions improves the explanatory power of the fundamental variables. The

extended model is able to explain 54% of the variations in CDS spreads in the pre-

crisis period (from January 2002 to June 2007) and 51% in the crisis period (from

July 2007 to March 2009), which is higher than most previous findings of studies on

corporate bond and CDS spread changes; (ii) when the theoretical spread calculated

from the Merton model is introduced in the regressions, the coefficient of equity

volatility decreases significantly; that of leverage, on the contrary, maintains its

usefulness in explaining CDS spread changes; (iii) the contribution of leverage to

the explanation of CDS spread changes is much higher during the crisis, as investors

appear to have become more aware of individual risk factors; at the same time,

the impact of equity volatility substantially decreases, possibly because the large

swings in implied volatility that have characterized the crisis period have made this

indicator a poor proxy for long-term asset volatility; (iv) the overall capacity of the
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model to explain CDS changes is almost the same before and during the turmoil, thus

highlighting that the underlying risk factors identified by the literature as relevant

for the pricing of the credit risk have maintained their explanatory power also in a

period of remarkable stress for the CDS market; (v) during the crisis CDS spreads

appear to have been moving increasingly together, driven by a common factor that

our model was able to explain only in part.

This chapter is organized as follows. The following section surveys the theoretical

and empirical literature on the determinants of credit spreads. Section 4.3 describes

the model introduced by Merton (1974) and the way in which it can be used to

estimate model-based CDS spreads. Section 4.4 summarizes the characteristics of

the data set and describes the statistical methodology that we use to analyze the

determinants of CDS spread movements. The results are reported in Section 4.5.

Section 4.6 concludes.

4.2 A review of the literature on credit spreads

In this section we briefly review the main contributions to the literature on the

determinants of credit spreads. Early research on this topic has focused on assessing

how much of observed bond spreads can be explained by structural default factors,

that is by factors that are suggested to be linked to credit risk by theoretical models

of default. The results usually showed that bond spreads predicted by theoretical

models were much lower than observed spreads. Thus, the academic research has

turned its attention to testing for alternative hypotheses to investigate the origins

of these unexplained extra yields.

4.2.1 Main determinants of credit spreads

Credit risk models are usually divided into structural and reduced-form models.4

Under the strutural approach, the liabilities of a firm are seen as a contingent claim

on the assets of the firm itself. Default occurs when the market value of the assets,

which is modeled as a stochastic process, reaches some limit. The reduced-form

approach, instead, postulates that default occurs randomly, due to one or more

exogenous factors. These factors can occur with a probability, dubbed the “inten-

sity”, which is modeled and calibrated using market data. Models belonging to this

latter class are also called intensity-based models. Reduced-form models have been

praised by practitioners because of their capacity to fit market data by construction.

On the contrary, structural models have been usually seen by academics as better

4Giesecke (2004) contains a survey of both approaches.
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suited to analyzing the determinants of credit risk. The capacity of individual struc-

tural models to describe the actual behavior of credit risk is still a matter of debate

(e.g., Anderson and Sundaresan, 2000; Eom et al., 2004; Tarashev, 2005; Ericsson

et al., 2007). During the last few years there has been a new strand of literature

that, departing from any specific model, aimed at measuring the explanatory power

for observed credit spreads of the variables that structural models predict to be

theoretically linked to credit risk.

The first structural model on credit risk was introduced by Merton (1974). Be-

cause of its importance, the Merton model is described in detail in the next section.

For the moment it will suffice to say that in the Merton model a default occurs

when the market value of a firm, which is assumed to be described by a random

process, turns out to be below the face value of the outstanding debt at the maturity

of the debt. In case of default, the shareholders give the assets of the firm up to

the bondholders. Merton’s intuition was that a bond subject to credit risk can be

seen as a combination of a long position in a risk-free bond and short position in

a European put option that the bondholders sell to the shareholders. The strike

price of this option is equal to the face value of the risky bond. In this setting, the

price of the risky bond can be determined through standard option pricing methods.

These methods link the value of the bond to the parameters of the stochastic process

driving the firm value and to the level of outstanding debt. The prediction of the

Merton model is that credit spreads are a function of the following variables:

• risk-free interest rate: the risk-free interest rate represents the drift of the

process describing the value of the assets of the firm under the risk-neutral

measure. Higher interest rates increase the future expected value of the assets,

thus reducing credit spreads;

• nominal outstanding amount of debt: the nominal value of the debt represents

the threshold at which default is triggered. A higher amount of debt makes

default more likely so that higher credit spreads are expected;

• firm value: higher values for the assets of the firm make the regular payment

of the debt more likely and credit spreads are expected to be lower;

• asset volatility : higher asset volatility increases the value of the put option

granted to the shareholders, thus increasing the compensation required by the

bondholders through higher credit spreads.

Merton model and other structural models aim at explaining bond spreads using

a small number of factors such as those just described. However, there are other
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factors, not linked to credit risk, that have been shown to have a non-negligible

impact on bond spreads. These include:

• taxes, to the extent that credit instruments and government bonds are subject

to different tax rates;

• liquidity, as risky credit instruments usually have lower volumes and higher

transaction costs than government bonds;

• supply and demand shocks, which can affect both corporate and government

bond markets;

• systematic risk factors, such as those prevailing in the equity and in the cor-

porate bond markets (e.g., Elton et al., 2001).

During the last few years, a growing empirical literature on credit spreads has

used the CDS market as the object of its research. Actually, working on CDS quotes

has at least three advantages with respect to using bond spreads. First, the CDS

market already quotes in terms of a “spread”, so that it is not necessary to introduce

another market in the analysis, like that of government bonds, which can be subject

to its own specific factors. Second, CDS contracts are rather standardized, while

bonds are characterized by a high level of non-homogeneity in terms of coupons,

maturities, outstanding amounts, embedded options, and so on. All these features

make comparisons among bonds difficult. Finally, because of the nature of CDSs as

derivatives contracts, CDS quotes should be less prone to supply and demand effects

than the bond market. In fact, transactions in the bond market are often affected

by the physical nature of the instruments.

4.2.2 Empirical studies

Given the relatively recent development of the CDS market, empirical work on the

determinants of credit risk has traditionally looked at corporate spreads. A first

group of empirical studies identifies factors that can explain why corporate spreads

are much larger than what would be predicted by historical rates of default and

recovery rates (the so-called “credit spread puzzle”). Elton et al. (2001) identify the

main components of credit spreads in the expected default loss, a tax premium, and

a risk premium for the systematic, and thus not diversifiable, part of the risk on

corporate bonds. Following the same line of research, Driessen (2005) shows that

risk premiums for liquidity and jump-to-default risks are also important components

of bond spreads.
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Amato and Remolona (2005) propose an alternative explanation for the “credit

spread puzzle” arguing that, while previous studies mostly focused on the expected

loss component of credit risk, extra spreads may actually compensate for non-

diversifiable credit risk. Their argument is that the high degree of skewness in

bond returns makes diversification more difficult. The size of the portfolio required

to reduce the probability of extreme losses by diversification is actually very large,

and thus difficult to attain in practice. Due to this difficulty, investors in corporate

bonds would require additional premiums in the form of higher spreads.

A second group of studies on corporate spreads departs from trying to recon-

cile historical default losses with observed credit premiums and instead aims at

explaining credit spreads in a purely statistical way by regressing observed spreads

on factors that theoretical models suggest are relevant in determining both default

and non-default components of credit spreads. The main advantage of this approach

is that it allows the impact of any single fundamental factor on credit spreads to

be estimated directly. Collin-Dufresne et al. (2001) initiate this strand of research.

They show that factors that should represent the main explanatory variables for

credit spreads, according to structural default models, actually explain only 25% of

observed bond spread changes. They also show that the missing component is repre-

sented by a common risk factor which is independent of equity, swap, and Treasury

returns. Collin-Dufresne et al. (2001) conclude that bond spread changes are mostly

driven by supply and demand shocks which are specific to the corporate bond market

and independent of both default and liquidity factors. Campbell and Taksler (2003)

focus on the effect of equity volatility on corporate bond yields. They show that

idiosyncratic firm-level volatility can explain as much cross-sectional variation in

yields as can credit ratings.

In the same vein, Guazzarotti (2004) investigates the determinants of changes in

individual credit spreads of non-financial European corporate bonds by looking at

the relevance of both structural default factors (like leverage, asset volatility, and

the level and slope of the risk-free yield curve) and of some non credit-risk factors

(e.g., market liquidity and market risk). He finds that: (i) default risk factors ac-

count for less than 20% of total variation of credit spreads; (ii) liquidity risk and

aggregate market risk factors, although significant, explain only an additional 10%;

(iii) the remaining part of credit spread changes remains unexplained. More recently,

Avramov et al. (2007) analyze the capacity of structural models to explain changes

in corporate credit risk using a set of common factors and company-level fundamen-

tals. They are able to explain more than 54% and 67% of the variation in credit

spread changes for medium-grade and low-grade bonds, respectively, with no clearly
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dominant latent factor left in the unexplained variation. Cremers et al. (2008) in-

troduce measures of volatility and jump risks that are based on individual stock

options. They show that implied volatilities of individual options contain useful

information for credit spreads and improve on historical volatilities when explaining

the cross-sectional and time-series variations in a panel of corporate bond spreads.

Turning to the empirical analysis on CDS spreads, one of the first papers on the

topic is that by Aunon-Nerin et al. (2002). As the credit derivatives market was

still in its infancy when that paper was written, the authors use a sample of CDSs

which is rather small and with a predominance of financial companies. Moreover,

the analysis is conducted on the levels of the variables thus leaving the door open

to econometric problems related to the non-stationary nature of the data. Abid and

Naifar (2006) perform an analysis on CDS spread levels as well. Greatrex (2008)

digs deeper into the relevance of the econometric issues for the study of the deter-

minants of CDS spreads and shows that variables commonly used in this analysis

are usually non-stationary in levels but stationary in first differences. Running re-

gressions on non-stationary variables could result in high values for the R2 statistics

but also in inefficient coefficient estimates, sub-optimal forecasts, and invalid sig-

nificance tests (Granger and Newbold, 1974). Ericsson et al. (2009) use data for

the period 1999–2002 and show that estimated coefficients of a limited number of

theoretical determinants of default risk are consistent with the theory. Among these

factors, volatility and leverage have substantial explanatory power. Moreover, a

principal component analysis of spreads and residuals indicates limited evidence for

a residual common factor, confirming that the variables can explain a significant

amount of the variation in the data.

Zhang et al. (2005) focus on information arising from the equity market. They

show that volatility and jump risk measures derived from the equity market using

high frequency data, together with credit ratings, macroeconomic conditions, and

firms’ balance sheet information, can explain up to 77% of the total variation of

CDS spreads. However, their results are obtained using variables in levels and

are subject to the same econometric problems mentioned above. More recently, a

few papers have focussed on CDSs on banks and on the differences between the

periods before and after the global financial crisis. Annaert et al. (2009) show

that: (i) the determinants of changes in bank CDS spreads exhibit significant time

variation; (ii) variables suggested by structural credit risk models are not significant

in explaining bank CDS spread changes, either in the period prior to the crisis or

in the crisis period itself; (iii) some of the variables used as proxies of the general

economic conditions are significant, but the magnitude of the coefficient estimates
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and their sign have changed over time. Raunig and Scheicher (2009) also find the

crisis had an impact on the pricing of CDSs on banks. In particular, they show that

the perception of bank credit risk by market participants approaches the level of the

most risky non-bank companies.

4.3 Merton model

As already mentioned, Merton (1974) introduces the first model of credit risk based

on the structural approach. Merton assumes that the whole debt of a firm is rep-

resented by a zero-coupon bond maturing at time T , with face value D. Moreover,

the market value at time t of the assets of a firm, denoted by Vt, follows a geometric

Brownian motion given by

dVt = rVtdt+ σVtdWt, (4.1)

with t ∈ [0, T ], where r and σ are constants representing, respectively, the risk-free

interest rate and the volatility of the process. Merton assumes that a default occurs

if the value of the firm at time T is lower than D. In that case the ownership of

the firm is transferred from the shareholders to the bondholders. In the framework

introduced by Merton (1974), the bondholders of the firm can be seen as holding a

long position in a risk-free zero-coupon bond and a short position in a European put

option that they granted to the shareholders. The underlying asset of the option is

represented by the assets of the firm, the strike price is equal to D and the maturity

is T . The spread between corporate and government yields is the compensation

required by the bondholders for granting the put option to the shareholders.

Similarly, the equity value of the firm can be seen as the value of a European

call on the assets of the firm, with strike price and maturity equal to D and T ,

respectively. The equity value at time T is thus given by ET = max(0, VT − D).

Using standard option valuation tools (Black and Scholes, 1973), one obtains

Et = Vt Φ(d1)− e−r(T−t)DΦ(d2), (4.2)

at time t < T , where

d1 =
log(Vt/D) + (r + σ2/2)(T − t)

σ
√
T − t ,

d2 = d1 − σ
√
T − t,

(4.3)

and Φ(x) is the standard normal cumulative distribution function evaluated at x.

The value of the debt at time t is thus equal to Dt = Vt − Et. It is also possible to
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recover the expected costs of default Ct as the difference between the face value of

the debt, discounted at the risk-free rate, and the actual value of the debt, that is

Ct = e−r(T−t)D −Dt. (4.4)

In this framework, in which the default can occur only at the maturity of the

debt, the annual spread s of a CDS with quarterly payments and T years to maturity

is such that it makes C0 equal to the present value of the premiums paid by the

CDS,

C0 = D
s

4

4T∑
n=1

exp
(
−rn

4

)
, (4.5)

that is

st =
4C0/D∑4T

n=1 exp
(
−rn

4

) . (4.6)

In order to use the Merton model to estimate the CDS spread it is necessary

to have four ingredients: the level of the risk-free interest rate, the face value of

the total debt of the firm, the market value and the volatility of the assets of the

firm. Although the last two variables are not directly observable, for listed firms

it is nonetheless possible to observe the market value of equity and to estimate the

historical volatility. When there are options written on the shares of the firm, it is

also possible to use the volatility implied by stock option prices, which is a forward-

looking measure of the equity volatility. The equity value and equity volatility can

be used as proxies for the asset value and asset volatility. However, they can also

be used to obtain more direct estimates of the asset value and asset volatility. In

fact, using Ito’s lemma it can be shown that the dynamics of Et is given by a

geometric Brownian motion with diffusion coefficient equal to σVt
dEt
dVt

. The term dEt
dVt

is the derivative of the equity with respect to the value of the assets (a quantity

commonly called “the delta”), and is equal to Φ(d1). Under the further assumption

that the dynamics of the equity can be described by a geometric Brownian motion

with diffusion coefficient σEEt, one has that

Et = VtΦ(d1)
σ

σE
. (4.7)

Given the observable variables r, D, Et, and σE, it is thus possible to use numerical

methods to solve the system of non-linear equations (4.2) and (4.7) for the values

of the two unknown variables Vt and σ.

Figure 4.1 shows the theoretical spread s on a 5-year CDS calculated using the

Merton model as a function of the equity volatility (Panel A) for three different

levels of the leverage (the ratio of total assets At = D + Et to equity Et) and as a
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Panel A: CDS spreads as a function of equity volatility
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Panel B: CDS spreads as a function of leverage
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Figure 4.1 – Theoretical CDS spreads generated by the Merton model
Theoretical CDS spreads on the debt of firms with different leverage (Panel A) or equity
volatility (Panel B) as a function of equity volatility or leverage. The spreads are calculated
using the Merton model assuming that they are paid with a quarterly frequency, that the
risk-free interest rate is constant and equal to 4%, and that the maturity of the debt
is 5 years. Leverage is defined as the ratio of total assets (total liabilities plus market
capitalization) to market capitalization. Equity volatility and leverage are in percentages;
CDS spreads are in basis points.

function of the leverage (Panel B) for three different levels of equity volatility. The

risk-free interest rate is assumed to be fixed at 4%. The figure shows clearly that the

main driver of the CDS spread in the Merton model is the level of equity volatility.

When the equity volatility falls below 30%, the CDS spread is almost negligible for

any level of leverage. For instance, when σE = 30% the theoretical CDS spread is

still below 10 basis points even when the debt is twice as large as the equity value

(so that the leverage is equal to 300%). As the level of equity volatility increases, the

theoretical CDS spread surges sharply and the differences among firms with different

levels of leverage tend to decrease in relative terms (although the differences increase

in absolute terms). Panel A shows that the relationship between the theoretical CDS
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spread and the equity volatility is non-linear. An even stronger non-linearity arises

when the theoretical CDS spread is expressed as a function of the leverage. In fact,

Panel B not only confirms the relevance of the equity volatility for the level of the

theoretical spread but also shows a non-monotone relationship between the CDS

spread and the leverage of the firm. This pattern arises from the fact that Eqs. (4.2)

and (4.7) imply that higher levels of debt are associated with lower levels of asset

volatility. This is because the higher the leverage the lower the weight that the

equity volatility receives as an estimator of the volatility of the whole value of the

firm. Hence, at some point the negative impact that the higher debt has on the

credit risk of the firm starts to be more than compensated by the positive impact

of a decreasing asset volatility.

The Merton model provides a nice tool for understanding how fundamental vari-

ables, such as leverage and asset volatility, affect credit spreads. However, there

are several features of real financial markets that are not taken into account by the

model and that have led to many other extensions.5 The three main drawbacks of

the model are:

• There is only one kind of debt securities. In the Merton model only the

case of a single zero-coupon bond is considered. However, most corporate

bonds pay coupons and firms usually issue several kinds of bonds with different

characteristics;

• Default occurs only at the maturity of the debt and if and only if the value

of the assets is below the face value of the debt. In the real world default can

occur at any time before the maturity of the debt if the firm fails to meet any

kind of obligation, such as the payment of coupons. Moreover, bankruptcy

is a process that usually involves several forms of cost which can result in

models with default barriers which are different from the face value of the

debt (e.g., Leland and Toft, 1996);

• Volatility is assumed to be constant for all maturities. Empirical work on

option pricing shows that implied volatility is not constant, neither for different

strikes nor for different maturities. This means that volatility implied by

equity options, which have maturity usually up to one year, could be a biased

estimator of the equity volatility over longer horizons.

All these caveats have to be borne in mind when evaluating the results of any

empirical application of the Merton model like the one described in the next section.

5See Cossin and Pirotte (2001) for several extensions of the Merton model.
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4.4 Methodology

In this section we describe the data, the model, and the statistical methodology

used in our empirical analysis.

4.4.1 Data description

We built the data set by selecting all CDS contracts in US dollars available from

Bloomberg written on the senior debt of US non-financial firms and with maturity

equal to 5 years (the maturity which is usually associated with the most liquid

contracts). We used end-of-day mid quotes for CDS spreads. In order to have

data on market capitalization, the sample is restricted to listed firms. For each

company, we gathered from Bloomberg quarterly data on current liabilities, non-

current liabilities, and cash and equivalents, for the period between January 2002

and March 2009. For each company, we collected daily data on market capitalization,

stock returns, and implied volatility derived from equity options. We then selected

the companies for which we were able to find all data for at least 3 years. The final

sample is made of 167 companies. We used the zero-coupon curve calculated by

Datastream on US government bonds as our risk-free interest rate curve. We also

collected daily data on the average levels of credit spreads for AA and BBB-rated US

industrial companies (the option-adjusted spreads for the Merrill Lynch corporate

industrial indices for US companies with AA and BBB ratings), a broad US equity

market index (the S&P Composite index), and a broad index of US market implied

volatility (the VIX index).

In the regressions, we used monthly averages for CDS spreads and for all other

daily financial indicators. Quarterly balance sheet data were linearly interpolated.

In order to control for the quality of CDS data, we dropped daily observations

whenever equal to the value of the previous day. We also dropped the monthly

observations based on less than 5 daily data. The final data set, after dropping any

firm-month observation with one or more missing values, includes 11,084 firm-month

observations: 8,140 in the pre-crisis period (from January 2002 to June 2007) and

2,944 in the crisis period (from July 2007 to March 2009).

The historical behavior of a few of the variables used in the analysis is shown

in Figure 4.2. The plot shows the huge increase of the average CDS spread after

the onset of the financial crisis. It also makes apparent the negative relationships

of CDS spreads with stock returns and government bond yields as well as the pos-

itive relationship with the level of volatility. All these facts are coherent with the

theory underlying the Merton model. Some descriptive statistics of the data set are

reported in Tables 4.1–4.3. As highlighted earlier, average CDS spreads increase
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Panel A: Average CDS spread and S&P Composite
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Panel B: Equity market volatility and risk-free interest rates
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Figure 4.2 – Time series of the average CDS spread and of other financial
variables
Monthly averages. The CDS spread is the average value of all CDS spreads included in
the sample. The risk-free interest rate is the zero-coupon 5-year rate on US government
bonds. The CDS spread is in basis points; the risk-free interest rate is in percentages.

sharply in the crisis period, from 87 to 199 basis points (Table 4.1). They are much

higher for firms in the Consumer cyclical and the Communication/Technology sec-

tors (respectively, 137 and 93 basis points before the crisis and 392 and 200 basis

points in the crisis period; Table 4.2). As expected, average CDS spreads increase

with leverage (Table 4.3). The theoretical spreads derived from the Merton model

are consistently much lower than the observed ones (the average values in the whole

sample period are 71 and 116, respectively). However, it is noteworthy that theoret-

ical spreads appear to replicate rather well variations in observed spreads through

sectors and leverage classes. Leverage and implied volatility also rise drastically

during the crisis. Leverage is highest in the Utilities and Consumer cyclical sectors,

lowest in Communication/Technology. Volatility is highest in the Consumer cyclical

sector and lowest in the Consumer non-cyclical and Utilities sectors.
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Table 4.1 – Descriptive statistics of the data set
CDS spreads are end-of-day mid quotes. The theoretical spread is the spread calculated
using the Merton model. Leverage is defined as the ratio of total assets (total liabilities
plus market capitalization) to market capitalization. Volatility is the mean of implied
volatilities on call and put stock options. CDS spreads and theoretical spreads are in basis
points; leverage and volatility are in percentages; market capitalization is in millions of
US dollars.

Mean Median
Standard
deviation

Min. Max.

Whole period (January 2002 – March 2009)

CDS spreads 116 54 221 6 7,995

Theoretical spreads 71 3 213 0 1,862

Leverage 219 175 190 94 6,044

Volatility 35 30 19 7 369

Market capitalization 25,939 13,616 39,549 58 420,623

Pre-crisis period (January 2002 – June 2007)

CDS spreads 87 47 122 6 2,811

Theoretical spreads 31 1 108 0 1,793

Leverage 214 174 162 94 4,420

Volatility 31 28 13 7 369

Market capitalization 25,951 13,555 39,810 481 386,416

Crisis period (July 2007 – March 2009)

CDS spreads 199 89 366 10 7,995

Theoretical spreads 184 23 348 0 1,862

Leverage 234 179 252 104 6,044

Volatility 47 39 25 7 223

Market capitalization 25,906 14,086 38,824 58 420,623

4.4.2 Empirical models and testing methodology

As described in Section 4.3, the Merton model posits that credit spreads are a

function of the asset value, asset volatility, face value and maturity of the debt and

risk-free interest rate. As discussed in that section, the Merton model also implies

that the relationship between CDS spreads and default factors is highly non-linear.

In order to test for the capacity of the Merton model to explain observed CDS

spreads, we run the following univariate regression:

s(i, t) = β0 + β1s̄(i, t) + ε(i, t), (Model 1)

where i = 1, . . . , N denotes a specific firm and t = 1, . . . , T a specific time period.

The variable s̄ is the theoretical spread on a 5-year CDS calculated using the Merton



96 Sect. 4.4 – Methodology

T
a
b

le
4
.2

–
D

e
sc

ri
p

ti
v
e

st
a
ti

st
ic

s
o
f

th
e

fi
rm

s:
b

re
a
k
d

o
w

n
b
y

se
c
to

r
T

h
e

ta
b

le
re

p
o
rt

s
th

e
m

ea
n

va
lu

es
of

th
e

in
d

ic
at

ed
va

ri
ab

le
s,

ex
p

ec
t

fo
r

th
e

n
u

m
b

er
of

ob
se

rv
at

io
n

s.
C

D
S

sp
re

ad
s

ar
e

en
d
-o

f-
d
ay

m
id

q
u

o
te

s.
T

h
e

th
eo

re
ti

ca
l

sp
re

a
d

is
th

e
sp

re
a
d

ca
lc

u
la

te
d

u
si

n
g

th
e

M
er

to
n

m
o
d

el
.

L
ev

er
ag

e
is

d
efi

n
ed

as
th

e
ra

ti
o

of
to

ta
l

as
se

ts
(t

ot
al

li
a
b

il
it

ie
s

p
lu

s
m

ar
ke

t
ca

p
it

a
li

za
ti

o
n

)
to

m
a
rk

et
ca

p
it

al
iz

at
io

n
.

V
ol

at
il

it
y

is
th

e
m

ea
n

of
im

p
li

ed
v
ol

at
il

it
ie

s
on

ca
ll

an
d

p
u

t
st

o
ck

op
ti

on
s.

C
D

S
sp

re
ad

s
an

d
th

eo
re

ti
ca

l
sp

re
a
d

s
ar

e
in

b
as

is
p

oi
n
ts

;
le

v
er

ag
e

an
d

vo
la

ti
li

ty
ar

e
in

p
er

ce
n
ta

ge
s;

m
ar

ke
t

ca
p

it
al

iz
at

io
n

is
in

m
il

li
on

s
of

U
S

d
ol

la
rs

.

L
ev

er
a
ge

q
u

a
rt

il
es

N
u

m
b

er
of

ob
se

rv
at

io
n

s
C

D
S

sp
re

ad
s

T
h

eo
re

ti
ca

l
sp

re
ad

s
L

ev
er

ag
e

V
ol

at
il

it
y

M
ar

ke
t

ca
p

it
al

iz
at

io
n

W
h

o
le

p
e
ri

o
d

(J
a
n

.
2
00

2
–

M
ar

.
2
00

9)
11

,0
84

11
6

71
21

9
35

25
,9

39
In

d
u

st
ry

1,
98

4
83

69
20

6
34

27
,9

91
C

om
m

u
n

ic
at

io
n

s/
T

ec
h

n
o
lo

gy
1,

73
8

11
8

66
17

8
35

41
,4

76
B

as
ic

m
a
te

ri
a
ls

/
E

n
er

gy
1,

97
3

76
57

18
6

35
20

,0
86

C
on

su
m

er
cy

cl
ic

al
2,

75
2

20
4

12
7

27
9

42
18

,7
46

C
on

su
m

er
n

o
n

-c
y
cl

ic
al

1,
75

2
74

31
18

5
29

31
,7

90
U

ti
li

ti
es

88
5

88
24

28
5

27
14

,6
56

P
re

-c
ri

si
s

p
e
ri

o
d

(J
a
n

.
2
00

2
–

J
u

n
.

2
00

7)
8,

14
0

87
31

21
4

31
25

,9
51

In
d

u
st

ry
1,

41
6

65
36

20
2

30
28

,0
25

C
om

m
u

n
ic

at
io

n
s/

T
ec

h
n

o
lo

gy
1,

32
8

93
42

17
0

32
41

,6
61

B
as

ic
m

a
te

ri
a
ls

/
E

n
er

gy
1,

43
2

57
14

18
6

30
18

,4
75

C
on

su
m

er
cy

cl
ic

al
2,

02
6

13
7

48
26

8
35

19
,0

98
C

on
su

m
er

n
o
n

-c
y
cl

ic
al

1,
28

5
61

11
17

7
26

32
,5

29
U

ti
li

ti
es

65
3

80
18

29
2

25
14

,2
12

C
ri

si
s

p
e
ri

o
d

(J
u

l.
2
00

7
–

M
ar

.
2
00

9)
2,

94
4

19
9

18
4

23
4

47
25

,9
06

In
d

u
st

ry
56

8
12

7
15

2
21

4
45

27
,9

05
C

o
m

m
u

n
ic

a
ti

o
n

s/
T

ec
h

n
ol

og
y

41
0

20
0

14
4

20
5

43
40

,8
79

B
a
si

c
m

at
er

ia
ls

/E
n

er
g
y

54
1

12
7

17
1

18
4

48
24

,3
52

C
o
n

su
m

er
cy

cl
ic

a
l

72
6

39
2

34
9

30
9

60
17

,7
64

C
o
n

su
m

er
n

on
-c

y
cl

ic
a
l

46
7

11
0

87
20

8
38

29
,7

56
U

ti
li

ti
es

23
2

11
1

41
26

6
32

15
,9

04



Chap. 4 – The Determinants of CDS Spread Changes 97

T
a
b

le
4
.3

–
D

e
sc

ri
p

ti
v
e

st
a
ti

st
ic

s
o
f

th
e

fi
rm

s:
b

re
a
k
d

o
w

n
b
y

le
v
e
ra

g
e

T
h

e
b

re
a
k
d

ow
n

re
fe

rs
to

th
e

av
er

ag
e

le
ve

ra
g
e

of
th

e
fi

rm
s

in
th

e
w

h
ol

e
p

er
io

d
.

T
h

e
ta

b
le

re
p

or
ts

th
e

m
ea

n
va

lu
es

of
th

e
in

d
ic

at
ed

va
ri

ab
le

s,
ex

p
ec

t
fo

r
th

e
n
u

m
b

er
of

o
b

se
rv

at
io

n
s.

C
D

S
sp

re
ad

s
ar

e
en

d
-o

f-
d

ay
m

id
q
u

ot
es

.
T

h
e

th
eo

re
ti

ca
l

sp
re

ad
is

th
e

sp
re

ad
ca

lc
u

la
te

d
u

si
n

g
th

e
M

er
to

n
m

o
d

el
.

L
ev

er
ag

e
is

d
efi

n
ed

as
th

e
ra

ti
o

of
to

ta
l

as
se

ts
(t

ot
al

li
ab

il
it

ie
s

p
lu

s
m

ar
ke

t
ca

p
it

al
iz

at
io

n
)

to
m

ar
ke

t
ca

p
it

al
iz

at
io

n
.

V
o
la

ti
li

ty
is

th
e

m
ea

n
o
f

im
p

li
ed

vo
la

ti
li

ti
es

on
ca

ll
an

d
p

u
t

st
o
ck

op
ti

on
s.

C
D

S
sp

re
ad

s
an

d
th

eo
re

ti
ca

l
sp

re
ad

s
ar

e
in

b
as

is
p

oi
n
ts

;
le

ve
ra

g
e

an
d

vo
la

ti
li

ty
a
re

in
p

er
ce

n
ta

ge
s;

m
ar

k
et

ca
p

it
al

iz
at

io
n

is
in

m
il

li
on

s
of

U
S

d
ol

la
rs

.

L
ev

er
a
ge

q
u

a
rt

il
es

N
u

m
b

er
of

ob
se

rv
at

io
n

s
C

D
S

sp
re

ad
s

T
h

eo
re

ti
ca

l
sp

re
ad

s
L

ev
er

ag
e

V
ol

at
il

it
y

M
ar

ke
t

ca
p

it
al

iz
at

io
n

W
h

o
le

p
e
ri

o
d

(J
a
n

.
2
00

2
–

M
ar

.
2
00

9)
11

,0
84

11
6

71
21

9
35

25
,9

39
10

8–
14

8
2,

78
9

59
27

13
2

32
43

,9
72

14
8–

18
6

2,
80

9
82

62
16

6
33

24
,7

19
18

6–
24

2
2,

89
4

10
1

71
21

0
35

18
,0

69
24

2–
1,

52
7

2,
59

2
23

3
12

8
38

0
40

16
,6

43

P
re

-c
ri

si
s

p
e
ri

o
d

(J
a
n

.
2
00

2
–

J
u

n
.

2
00

7)
8,

14
0

87
31

21
4

31
25

,9
50

10
8–

14
8

2,
00

9
45

7
13

1
28

44
,1

97
14

8–
18

6
2,

02
3

59
26

16
1

29
24

,7
52

18
6–

24
2

2,
17

4
77

25
20

6
31

17
,7

64
24

2–
1,

52
7

1,
93

4
17

0
66

36
4

35
17

,4
51

C
ri

si
s

p
e
ri

o
d

(J
u

l.
2
00

7
–

M
ar

.
2
00

9)
2,

94
4

19
9

18
4

23
4

47
25

,9
06

1
08

–1
48

78
0

96
79

13
5

41
43

,3
91

1
48

–1
86

78
6

14
2

15
6

18
0

44
24

,6
35

1
86

–2
42

72
0

17
2

21
3

22
3

49
18

,9
90

2
42

–1
,5

27
65

8
41

6
31

1
42

8
55

14
,2

65
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model with the following assumptions: the face value of the debt, whose maturity

is assumed to be equal to 5 years, is equal to the total of balance sheet liabilities

net of cash; the value of the equity is equal to the market capitalization of the firm;

the equity volatility is equal to the mean of implied volatilities calculated from call

and put options; the risk-free interest rate is given by the 5-year zero-coupon rate

on US government bonds.

Model 1 may not be able to fully describe the relationship between observed

CDS spreads and default factors because of its simplifying assumptions. So, we

also estimate the following three-factor linear model which has been used in other

empirical works on the determinants of CDS spreads (e.g., Ericsson et al., 2009):

s(i, t) = β0 + β1σE(i, t) + β2L(i, t) + β3r(t) + ε(i, t). (Model 2)

As for the explanatory variables, σE is the implied volatility calculated as the mean

of implied volatilities derived from call and put options, L is the leverage calculated

as the ratio of total assets (current and non-current liabilities, net of cash and

equivalents, plus market capitalization) to market capitalization, and r is the 5-year

zero-coupon rate on US government bonds. We opted to use implied volatility as

a proxy of equity volatility to avoid the backward-looking nature of the historical

equity volatility.

If the non-linearities implied by the Merton model had some additional explana-

tory power, one would expect that the portion of total variation explained by the

model increases and the linear terms lose significance when the theoretical spread is

added to the linear model. So, we also estimate a third model which is a combination

of the previous two models:

s(i, t) = β0 + β1s̄(i, t) + β2σE(i, t) + β3L(i, t) + β4r(i, t) + ε(i, t). (Model 3)

Finally, we estimate an extended model in which we include other variables usu-

ally used in the literature on the determinants of credit spreads. These variables

are the (log) stock values of the firms, the slope of the yield curve (the difference

between the 10-year and the 1-year zero-coupon rates on US government bonds),

an index of the premium required by investors to hold riskier assets (the difference

between the average OASs of the Merrill Lynch indices for US industrial compa-

nies with BBB and AA ratings), the (log) value of a broad equity index (the S&P

Composite index), and an index of market uncertainty (the VIX index). Thus, the

specification of the fourth model is:

s(i, t) = β0 + β1s̄(i, t) + β2σE(i, t) + β3L(i, t) + β4r(i, t)

+ β5STOCK(t) + β6SLOPE(t) + β7OAS(t)

+ β8SPCI(t) + β9V IX(t) + ε(i, t).

(Model 4)
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The additional variables have the following expected signs:

• STOCK: a negative sign is expected, as higher stock values should signal

higher future profitability and higher capacity of the firms to meet their obli-

gations;

• SLOPE: the sign is uncertain. On the one hand, higher values for the slope

should predict higher future risk-free rates, which should have a negative im-

pact on CDS spreads. On the other hand, the increase in expected future

interest rates may reduce the number of profitable projects available to the

company and, in turn, increase credit spreads. Moreover, it has to be pointed

out that we are already including a 5-year interest rate in the regressions.

In this setting, a higher level for the slope is more likely associated, ceteris

paribus, with a lower level for the short-term interest rate which is usually

associated with worsening economic conditions and higher credit spreads;

• OAS: a positive sign is expected, as the higher the premium required by

investors to hold riskier securities the higher should be the compensation re-

quired to hold credit risk;

• SPCI: the sign is uncertain. On the one hand a broad market increase of

equity values should signal better economic conditions and a lower probability

of default for the companies, and have a negative impact on CDS spreads. On

the other hand, in our regressions we have already included individual stock

returns that should take into account firm-specific expectations about prof-

itability much better than broad market measures. In our setting, a broad

market increase of equity values signals, ceteris paribus, a relatively bad per-

formance of individual firms, so that a positive effect on CDS spreads can be

expected;

• V IX: a positive sign is expected, as the higher the uncertainty in the market

the higher the value of the put option that the bondholders implicitly sell to

the shareholders when buying credit risk.

The four models are estimated in first-differences by running pooled OLS regres-

sions with standard errors that allow for time correlation at firm level. Models in

first-differences are preferred to those in levels in order to isolate unobserved indi-

vidual factors which do not vary over time and account for the possible problem of

non-stationarity of the processes for CDS spreads.6 As a robustness check, Model 4

is also estimated with a panel regression with fixed effects.7

6We found that the augmented Dickey-Fuller test, run separately for each CDS time series,
does not reject the null hypothesis of the presence of a unit-root in almost all cases.

7The test by Hausman (1978) implies that the model with random effects cannot be rejected;
a panel data analysis with random effects did not result in appreciable differences.
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We compare the results across groups of firms defined according to the level of

leverage or the economic sector. Generally, we abstract from factors not linked to

credit risk which the literature has documented are significant in the corporate bond

market (such as taxes, liquidity and supply and demand shocks) on the assumption

that for the CDS market they are less relevant. However, we recognize that the lack

of liquidity in the CDS market following the onset of the crisis could have an impact

on our estimates and so we try to control for that by using the CDS bid-ask spread

change as an instrument to distinguish between contracts that were hit by different

liquidity shocks during the crisis.8 We were not able to estimate directly the effect

of liquidity on spreads as we found that changes in both CDS spreads (defined as the

average between bid and ask prices) and bid-ask spreads were mainly determined

by changes in ask quotes. So, changes in CDS spreads and bid-ask spreads were

often extremely correlated and resulted in a misspecified model. For this reason, we

prefer to run a set of regressions for subgroups of contracts defined according to the

size of the change in the average bid-ask spread on CDS contracts from before to

after the onset of the crisis.

Finally, we perform a principal component analysis on CDS spread changes and

regression residuals from Model 4 in order to assess to what extent the model reduces

the weight of the main principal components of spread variations. This analysis is

conducted on a balanced sub-sample of 34 firms with complete monthly data from

January 2003 to December 2008.

4.5 Results

In this section we report the results of our estimates. To have a comparison with the

previous literature, which was mainly concentrated in the pre-crisis period, we first

discuss the results for the four models presented in Section 4.4 in the pre-crisis period

(January 2002 to June 2007) and then we asses how those results have changed after

the onset of the crisis (July 2007 to March 2009).

4.5.1 The pre-crisis period

As shown in Table 4.4, by regressing the observed CDS spreads on the theoretical

spreads obtained using the Merton model for the period before the onset of the crisis

we find that, as expected, the coefficient of the theoretical spread is positive (0.32)

and highly significant. Moreover, the explanatory power of the model, measured by

the adjusted R2 statistics, is comparable to previous studies on the determinants

8For a study on the determinants of CDS bid-ask spreads, see Meng and ap Gwilym (2008).
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of CDS spread changes (e.g., Ericsson et al., 2009). However, the coefficient is

significantly different from the value of one that is predicted by theory.

Turning to Model 2, all the estimated coefficients have the expected signs and

are highly significant. In particular, a one percentage point increase in the levels of

volatility and leverage raises the average CDS spread by 2.72 and 0.35 basis points,

respectively. A similar increase in the interest rate level determines a drop of 3.56

basis points for the CDS spread. The adjusted R2 statistics is significantly higher

than in Model 1; this aspect suggests that the Merton model constrains the effects of

the single factors on CDS spreads in ways that are not fully consistent with market

data.

In Model 3, where the theoretical spread is added to the more traditional three-

factors model, the coefficients of the theoretical spread, volatility and interest rate

are all lower in absolute terms when compared with the previous models. Moreover,

the coefficient of volatility shows a large loss of significance, which is probably due

to the high level of correlation with the theoretical spread (70 per cent). The linear

contribution of leverage, on the contrary, remains basically unchanged and highly

significant; this could be due to the fact that the Merton model is not very sensitive

to changes in leverage (see Figure 4.1). The adjusted R2 statistics increases further

from 0.48 to 0.52, highlighting the positive contribution to the model of the theo-

retical spread, which should take into account the non-linearities embedded in the

pricing of CDSs.

In Model 4, the other explanatory variables that the literature has indicated as

important determinants of credit spreads (the individual stock returns, the slope of

the yield curve, an indicator of risk aversion in the bond market, and a broad market

stock index return) have the expected signs and all but the indicator of broad market

uncertainty (the VIX index) have significant effects on CDS spreads.9 However,

their overall contribution to the explanatory power of the model is marginal, as the

adjusted R2 statistic only rises from 0.52 to 0.54.

Table 4.5 shows that the results obtained running a panel regression with fixed

effects confirm those obtained with the pooled OLS regression, both in terms of

absolute values and the significance of the coefficients. We also checked that the

results are robust to the filtering procedures applied to the original data such as

the dropping of stale quotations and of observations referring to months with few

CDS quotes. We also verified that the results remain basically unchanged when the

analysis is limited to a balanced data set including only a subset of companies with

complete data in the period from 2003 to 2008.

9The coefficients of SLOPE and SPCI, whose signs are theoretically uncertain, are positive.
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Table 4.5 – The determinants of CDS spread changes: pooled and panel re-
gressions
The table compares the results from pooled OLS and panel fixed-effect regressions run
on the same sample. Standard errors allow for time correlation at firm level. Monthly
data from January 2002 to March 2009; the pre-crisis period goes from January 2002 to
June 2007; the post-crisis period from July 2007 to March 2009. The explanatory variables
are changes in the monthly averages of: the estimated theoretical spread for firm i at time
t; the implied volatility of options written on the stocks of firm i at time t; the leverage
ratio of firm i at time t; the 5-year zero-coupon interest rate on the US government bond
at time t; the log of the stock value of firm i at time t; the slope of the zero-coupon curve
on US government bonds (10-1 yrs) at time t; the Merrill Lynch industrial bond average
spread (BBB-AA) at time t; the log of the S&P Composite stock index at time t; the
VIX volatility index at time t; a constant term. Observed and theoretical spreads and the
corporate spread are in basis points, all other variables are in percentages. Significance
levels: ∗∗∗ = 1%; ∗∗ = 5%; ∗ = 10%.

Pre-crisis Crisis Difference

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

Pooled OLS regression
Theoretical spread 0.16∗∗∗ 2.63 −0.03 −0.25 −0.20 −1.29
Volatility 0.99 1.25 1.67 0.60 0.68 0.24
Leverage 0.35∗∗∗ 9.65 0.91∗∗∗ 5.19 0.56∗∗∗ 3.16
Interest rate −3.19∗∗ −2.52 −15.61 −1.61 −12.42 −1.26
Stock return −0.42∗∗∗ −3.57 −0.17 −0.32 0.26 0.51
Slope yield curve 3.29∗ 1.84 9.44∗∗ 2.27 6.15 1.34
Corporate spreads 0.56∗∗∗ 8.22 0.65∗∗∗ 4.37 0.09 0.61
S&P Composite 1.01∗∗∗ 4.27 1.01 1.64 0.00 −0.01
VIX 0.27 0.65 −0.53 −0.44 −0.79 −0.61
Intercept 0.44∗ 1.76 −3.10∗∗ −2.02 −3.54∗∗ −2.33
Adjusted R2 0.54 0.51

Panel fixed effect regression
Theoretical spread 0.16∗∗∗ 2.63 −0.04 −0.28 −0.20 −1.31
Volatility 0.96 1.22 1.62 0.61 0.69 0.24
Leverage 0.34∗∗∗ 9.59 0.93∗∗∗ 5.21 0.57∗∗∗ 3.18
Interest rate −2.95∗∗ −2.28 −15.76∗ −1.73 −12.90 −1.35
Stock return −0.44∗∗∗ −3.59 0.05 0.09 0.34 0.68
Slope yield curve 3.04∗ 1.66 9.13∗∗ 2.18 6.60 1.46
Corporate spreads 0.56∗∗∗ 8.26 0.67∗∗∗ 4.56 0.10 0.64
S&P Composite 1.05∗∗∗ 4.29 0.70 1.10 −0.12 −0.20
VIX 0.30 0.75 −0.50 −0.43 −0.80 −0.62
Intercept 0.41∗ 1.82 −3.56 −1.30 −3.38∗∗ −2.22

Adjusted R2 0.54 0.50
No. obs. 8,140 2,944
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Overall, our results suggest that factors predicted by the theory as being relevant

for credit spreads have indeed a good explanatory power before the onset of the

crisis. Moreover, the theoretical spread calculated using the Merton model does

convey specific information on credit risk that cannot be captured by the linear

models, supporting the hypothesis that non-linearities are important in explaining

credit spreads.

4.5.2 The crisis period

The financial crisis has disrupted credit markets, causing spreads and volatility to

surge and market liquidity to evaporate (e.g., International Monetary Fund, 2008a).

The impact of these events on the pricing of credit risk is a matter of debate. On the

one hand, one could expect that the crisis, by amplifying the importance of systemic

risk factors, has caused a generalized increase of spreads (almost) independently from

the fundamental characteristics of firms. On the other hand, the crisis could have

exacerbated the differences between firms belonging to different classes of risk, as

investors have become more aware of idiosyncratic risk factors.

In order to assess the impact of the financial crisis on the pricing of risk, we

compare the results in the pre-crisis period with those obtained during the crisis

period. Table 4.4 reports the results of the regressions for the four models in both

periods, as well as the tests on the differences between the two periods.

As for Model 1, the striking fact is the drop in both the coefficient of the the-

oretical spread and the explanatory power of the model, from 0.32 and 25% before

the start of the crisis, to 0.20 and just 7%, respectively. This indicates that during

the crisis the empirical relationship between CDS spreads and default factors is no

longer described by the specific functional form of the Merton model.

This interpretation is confirmed by looking at the results from Model 2, where

the default factors are included in the regression separately and the functional form

between the default factors and the CDS spreads is not determined by the theoretical

model. In this case, we actually find a moderate increase in the explanatory power of

the model from before to during the crisis. Moreover, all the coefficients maintain the

expected signs and are highly significant. However, the impact of equity volatility on

CDS spreads more than halves, suggesting that the wide swings in implied volatility,

which have characterized the crisis period, have probably made this indicator a

poor proxy for long-term asset volatility. This fact could also explain the loss of

importance in Model 1 of the theoretical spread, which is mostly driven by volatility

changes (see Figure 4.1). At the same time, during the crisis spreads have become

much more sensitive to changes in leverage (from 0.35 to 0.92) and interest rates
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(from −3.56 to −41.21). On the one hand, the increased importance of leverage

may reflect a greater awareness by investors of firm-specific characteristics. On the

other hand, the increased relevance of interest rates probably reflects the fact that

during the crisis risk-free interest rates have been interpreted as better proxies of

economic activity: lower interest rates should signal worse economic conditions and

higher credit risks.

Changes in the results of Model 3 from the pre-crisis period to the crisis period

are rather similar to those of Model 2, given the negligible impact of the theoretical

spread during the crisis.

In Model 4, the interest rate coefficient also loses its significance during the crisis,

possibly in favor of the slope of the yield curve. Given the negative relationship

between the slope of the yield curve and short-term interest rates, for a given level

of longer term yields – for which our regressions already control for – the positive

coefficient on the slope of the yield curve seems to indicate that the CDS market has

been looking at short-term interest rates as a better indicator of economic activity

than longer-term interest rates. Lower short-term rates (and a higher slope) are

associated with worsening economic conditions and greater CDS spreads.

Overall, during the crisis the proportion of explained variations decreases only

slightly, from 54% to 51% in Model 4, confirming that the model works rather well

also in this case. This result highlights that the underlying risk factors identified

by the literature as relevant for the pricing of credit risk have maintained their

explanatory power also in a period of remarkable stress for the CDS market. In this

regard, the CDS market appears to have continued to price credit risk in much the

same fashion as it did before the crisis.

Table 4.5 shows that the estimates for the crisis period are confirmed by a panel

regression with fixed effects.

Finally, we perform a principal component analysis on CDS spread changes and

regression residuals from Model 4. The analysis shows that during the crisis CDS

spreads appear to have been moving increasingly together, as reported in Figure 4.3.

The fraction of CDS variations explained by the first component increases from 45%

to 62% during the crisis period. When the analysis is repeated using the residuals

of Model 4, the two values drop to 25% and 41%, respectively, thus confirming the

ability of the model to capture a substantial part of the common factors underlying

the spread changes. This result suggests that spread changes during the crisis are

increasingly driven by common or systematic factors and less by firm-specific factors.

In order to take into account time-varying factors, we repeated the analysis including

monthly dummy variables, but the findings were mostly unchanged. Given that
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Panel A: Pre-crisis period: January 2003 – June 2007
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Panel B: Crisis period: July 2007 – December 2008
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Figure 4.3 – Principal component analysis
The principal component analysis has been conducted on a balanced sub-sample of 34
firms with complete data from January 2003 to December 2008 for the CDS changes and
the regression residuals of Model 4. The explained variations by the first 5 components
are in percentages.

general indicators of economic activity, uncertainty, and risk aversion are already

included in our model, these results seem to point to the presence of a market-

specific factor that hit CDSs during the crisis in forms that are not fully reflected in

other markets. A large part of CDS spread variations during the crisis is thus still

to be explained.

4.5.3 Further analyses

In order to dig deeper into previous results, we repeat the analysis based on Model

4 on sub-groups of firms defined according to the level of leverage, the economic

sector, and the size of the change in the average bid-ask spreads for CDSs from

before to during the crisis.
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Analysis by leverage quartiles

Table 4.6 reports the results for an analysis based on the average level of leverage of

the firms. First of all, we note that the explanatory power of the model is highest

for the companies with leverage in the highest quartile (0.63 in the pre-crisis period)

and lowest for the companies in the lowest quartile (0.25). As the two groups are also

associated with the highest and lowest levels of CDS spreads, these results confirm

previous findings that structural models can better explain the credit spreads for

firms with relatively lower credit quality (e.g., Collin-Dufresne et al., 2001, for an

analysis on corporate spreads, and Greatrex, 2008, for comparable results on CDSs).

We also note that the explanatory power of the model increases substantially

during the crisis for firms with low leverage, to 0.35. The increased explanatory

power of the model for firms with low levels of leverage does not derive from factors

related to firm-specific characteristics (such as leverage and volatility), but from

market-wide factors such as the interest rate and the market price of risk (as captured

by the significant increase of the coefficient of the corporate bond spread). For

firms with the highest levels of leverage, the leverage itself is the variable whose

coefficient increased more significantly during the crisis, pointing to the fact the

investors became more concerned about the particular weaknesses of the balance

sheets of those firms.

Analysis by economic sector

Table 4.7 reports the results for the sectoral analysis. We notice that, across sectors,

the model explains the highest proportion of variation for companies in the Utilities

and Consumer Cyclical sectors, which are also the ones with the highest levels of

leverage. During the crisis model performance sharply increases for firms in the

Basic materials/Energy and Consumer non cyclical sectors, which are characterized

by relatively low levels of leverage, volatility, and CDS spreads, probably reflecting

the fact that these firms have been perceived as relatively riskier than before the

crisis. Actually, for these sectors the theoretical spreads calculated using the Merton

model show the highest levels of relative increase from before to after the onset of

the crisis (see Table 4.2). Overall, this is further evidence of the capacity of the

model to price CDSs of riskier companies better.

Analysis by liquidity change

In order to check whether the change of liquidity in the CDS market had any impact

on the capacity of the model to explain CDS spread variations, we repeat our anal-

ysis on the basis of the bid-ask spread on CDS contracts. In particular, we group
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firms into four quartiles according to the change in the average bid-ask spread they

experienced from before to after the onset of the crisis. The results are reported

in Table 4.8. The interesting result is that the overall explanatory power of the

model remains broadly the same during the crisis period for both the contracts in

the lowest and highest quartiles of bid-ask spread changes. For firms in the highest

quartile, moreover, all coefficients of the regression, except for that related to lever-

age, do not show any significant change during the crisis. These results suggest that

the lack of liquidity experienced in the CDS market during the crisis, as proxied by

larger bid-ask spreads, did not modify the basic relationships between CDS spread

changes and their explanatory factors.

4.6 Conclusion

In this chapter we analyze the determinants of CDS spread changes (based on a

sample of 167 US non-financial firms over the period between January 2002 and

March 2009), using the variables that the literature has found to have a theoretical

and empirical impact on CDS spreads. We include in our regressions the theoretical

spread implied by the Merton model in order to deal with the non-linear relation-

ships between the individual characteristics of the firms and CDS spreads. We find

that the inclusion of this additional term improves the capacity of changes in the

fundamental variables to explain changes in CDS spreads. When the theoretical

spread calculated using the Merton model is introduced in the regressions, the coef-

ficient of the equity volatility decreases significantly, because of the high sensitivity

of the Merton model to this parameter. On the contrary, leverage, which has only

second-order effects on the theoretical spreads, maintains its usefulness in explaining

CDS spread changes. The extended model is able to explain 54% of the variations

in CDS spreads in the pre-crisis period and 51% in the crisis period, which is higher

than previous findings of studies on corporate bond and CDS spread changes.

We also analyze how the financial crisis has changed the way in which credit

risk is priced in the CDS market. We find that the contribution of the leverage

of the firms to the explanation of CDS spread changes is much higher during the

crisis, as investors appear to have become more aware of individual risk factors.

At the same time, the impact of equity volatility substantially decreases, possibly

because the large swings in implied volatility during the crisis period have made

this indicator a poor proxy for long-term asset volatility. We also find that the

overall capacity of the model to explain CDS changes is almost the same before

and during the turmoil, thus highlighting that the underlying risk factors identified
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by the literature as relevant for the pricing of the credit risk have maintained their

explanatory power even in a period of remarkable stress for the CDS market.

Finally, we show that during the crisis CDS spreads appear to have been moving

increasingly together, driven by a common factor that our model was only partly able

to explain. Given that the model includes general indicators of economic activity,

uncertainty, and risk aversion, our results point to the presence of a market-specific

factor that hit the CDS market during the crisis in forms not fully reflected in other

markets. The exact identification of this factor is an interesting topic for further

research.





Chapter 5

Risk Measures of Autocorrelated
Hedge Fund Returns

5.1 Introduction

After two decades of strong growth, hedge funds have developed into a mature

and widely accepted asset class. On the back of relatively high historical returns,

the hedge fund industry has enjoyed a near-continuous inflow of new money, with

the credit crisis period being the exception. Moreover, hedge fund risk levels are

frequently reported to be lower than those of the more traditional investments in

equities. These performance characteristics of hedge funds have also attracted con-

siderable academic attention.1

One particular feature of hedge fund returns is the strong autocorrelation. Fung

and Hsieh (2001), Brooks and Kat (2002), and Agarwal and Naik (2004) demon-

strate that this feature invalidates standard mean-variance analysis for hedge funds.

Getmansky et al. (2004) argue that the autocorrelation stems from the illiquidity

of the assets held by hedge funds and the smoothing of the returns because of re-

porting practices. Based on a moving average representation of reported returns,

they show how this process affects the Sharpe ratio (SR) and beta in a standard

single index market model. As the smoothing lowers the variance of the returns

and the covariance (with the market index), but leaves the mean unaffected, the

standard risk measures tend to underestimate the actual risk (SR is overstated). In

Chan et al. (2006), this framework is used to evaluate the systemic risk posed by

hedge funds for the banking sector. Bollen and Pool (2009) use this autocorrelation

1For research on the risk and return characteristics of hedge funds, see Fung and Hsieh (1997),
Ackermann et al. (1999), Agarwal and Naik (2000, 2004), Amin and Kat (2003), Morton
et al. (2006), Bali et al. (2007), Eling and Schuhmacher (2007), Kosowski et al. (2007), Fung
et al. (2008), Bollen and Whaley (2009), Ding et al. (2009), Sadka (2010), and Dichev and
Yu (2011).

115



116 Sect. 5.1 – Introduction

structure to detect misreporting. Recently, Avramov et al. (2011) and Teo (2011)

use the algorithm of Getmansky et al. (2004) to unsmooth hedge fund returns.

This chapter extends the lead taken by Getmansky et al. (2004) along three

dimensions. First, whereas Getmansky et al. (2004) consider two global measures

of risk (SR and market beta), here the scope is broaden by evaluating also popular

downside measures of risk. There is considerable evidence from behavioral finance

that individuals do not symmetrically treat the upside potential and the downside

risk. Moreover, regulatory frameworks such as Solvency II and Basel II focus on

downside risk measures.

The second dimension is the distinction between univariate (or individual) and

multivariate (or systemic) measures. SR is a univariate measure of risk, while beta

measures the interdependency with the market. As variance and covariance are

global concepts, covering the upside and the downside, SR and beta are global risk

measures. This chapter provides for two individual and one systemic risk measures

that are focused on the downside.

Finally, the third dimension adds the distinction between light tails and heavy

tails. The measures considered by Getmansky et al. (2004) fully characterize the

risk aspects in the case that the noise is multivariate normally distributed, that is,

in the case of light tails. In practice, it is known that return distributions of most

assets are heavy tailed. An example of a heavy tailed distribution is the Student’s

t-distribution. Such distributions exhibit hyperbolic or power-like decline in the

tails, whereas light tailed distributions have exponential declining tails. While the

SR and beta measures also apply in case of heavy tails (as long as second moments

are finite), the downside risk measures do respond quite differently to smoothing

depending on whether the returns are light or heavy.

More specific, what are the risk measures that are studied in this chapter? Apart

from the univariate global SR measure considered by Getmansky et al. (2004), we

also investigates the value-at-risk (VaR) and expected shortfall (ES) measures. The

VaR and ES downside measures play a central role in risk management practices of

the financial sector and are also sensitive to the type of tail behavior (light or fat) of

the returns under consideration. As for the multivariate risk measures, we examine

the correlation coefficient ρ, which is a global measure of risk, and a multivariate

measure that focuses on the downside systemic risk. The latter measure reflects the

amount of interdependence among two or more returns deep into the joint tail loss

area. It exclusively picks up the extreme linkages in crisis situations and is termed

the Extreme Linkage Measure (ELM). Most of these measures are well known, except

perhaps ELM, which is explained in Section 5.2.2. ELM is one of the measures used
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Table 5.1 – Risk measures analyzed in the chapter

Dimension
Scope

Global Downside

Individual SR VaR, ES

Systemic ρ ELM

to capture the systemic risk (see, e.g., International Monetary Fund, 2009, chap. 2).

One of the lessons of the credit crisis is that supervisory frameworks should pay more

attention to the risk exposures of the entire financial sector. Table 5.1 summarizes

the investigation of this chapter for both light and heavy tails.

After investigating how these risk measures are affected by the kind of smoothing

proposed by Getmansky et al. (2004), the smoothing-adjusted risk measures are

applied on four broad-based hedge fund indices between 1990 and 2009. The results

show that the smoothing-adjusted hedge fund investment returns indicate levels of

risk that can be considerably higher than the risk measures based on reported returns

would suggest. This finding holds in particular for the downside risk measures. The

size of these distortions corresponds to the findings by Getmansky et al. (2004,

p. 551) for the global SR measure.

Using the smoothing-adjusted economic risk measures is important both for in-

vestors trying to determine the proportion to invest in hedge funds and for investors

constructing a hedge fund portfolio based on the relative risks of those funds. Cor-

rect risk measures are instrumental to prevent overpaying for an investment in hedge

funds caused by overestimating the attractiveness of hedge funds. Finally, the ELM

results can be of interest for policy makers and regulators who are concerned about

the effects that hedge funds could have on financial stability.

The chapter proceeds as follows. Section 5.2 models the impact of smoothing and

derives the adjusted risk measures. Section 5.3 presents the empirical methodology.

In Section 5.4, the adjusted risk measures are applied to a sample of hedge fund

indices. Section 5.5 concludes.

5.2 Modeling the impact of smoothing

In this section it is derived how smoothing affects the risk measures introduced

before. Following Getmansky et al. (2004), the reported or observed returns are

considered to be a weighted average of the fund’s actual returns over a number of

the most recent periods, including the current period. This assumption turns the

observed returns into a moving average of the actual returns. Consider two hedge
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funds with actual returns X1,t and X2,t in period t, and assume that these returns

adhere to a single factor market model. Thus, if Rt is the market return in period t

and if ε1,t and ε2,t are idiosyncratic risk factors in period t, then

Xi,t = βiRt + εi,t, (5.1)

for i = 1, 2. For the sake of the presentation, it is assumed that both β1 and β2 are

strictly positive constants, except when indicated otherwise, and that Rt, ε1,t and

ε2,t are independent and identically distributed (i.i.d.) with distributions that are

defined in Section 5.2.1. The following results are subsequently generalized to the

case in which there are multiple market factors. The corresponding equations are

reported in Appendix 5.A. Further, the results can be easily generalized to allow

for negative beta, that can be important for certain hedge fund strategies, such as

Dedicated Short Bias.

As in Getmansky et al. (2004, eqs. 21–23), it is assumed that the actual returns

Xi,t cannot be observed directly and that reported returns Si,t are governed by the

following MA(K) process

Si,t =
K∑
k=0

θi,kXi,t−k, (5.2)

θi,k ∈ [0, 1], k = 0, . . . , K, (5.3)

K∑
k=0

θi,k = 1, (5.4)

for i = 1, 2. We refer to the MA coefficients θi,k as the “smoothing coefficients”.

5.2.1 Smoothing effects on univariate risk measures

In this subsection, the smoothing-adjusted formulae for the univariate risk measures

SR, VaR, and ES are derived. For each measure, the thin tail case is first treated,

followed by the fat tail case. What is meant by the thin tail case is focused on the

normal distribution, which is the standard fare in finance. It provides a benchmark

against which the case of heavy tails is judged. Considering the normal distribution

as representative for the thin tail case is sometimes overly restrictive. For example,

in the case of the SR analysis, this it is only required that the first two moments

exist, so that the results for the normal case also apply to other distributions such

as the uniform, the exponential, and heavy tailed distributions with the first two

moments bounded.
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A distribution is said to be (symmetrically) heavy tailed if it is regularly varying

at infinity, that is to say, the tails of the distribution satisfy

lim
t→∞

F (−tx)

F (−t) = lim
t→∞

1− F (tx)

1− F (t)
= x−α, (5.5)

for all x > 0 and some α > 0. Somewhat loosely formulated, this definition

means that to a first order at infinity the distribution follows the Pareto distri-

bution P(|X| > x) = x−α. The tail index α determines how heavy the tails are, as

only the moments up to α are bounded. For example, it is readily verified that the

Student’s t-distribution with v degrees of freedom has regularly varying tails with

α = v. Moreover, it will be assumed that the following first order condition holds

P(|X| > x) = 2Ax−α + o
(
x−α

)
, (5.6)

where A > 0, although Eq. (5.5) also permits A not to be constant (but requires

slow variation, that is limt→∞A(tx)/A(t) = 1 for any x > 0).

To derive the implications of the MA(K) process for the mentioned risk measures,

one needs to know the distribution of the convolution of the random variables in

Eq. (5.2). How to do this exercise for the normal distribution is well known as the

square root rule. For example, assuming that the market factor R ∼ N(µR, σR) and

the idiosyncratic factor ε ∼ N(µε, σε) in Eq. (5.1), it follows (omitting subindices i

whenever no confusion is possible)

X ∼ N
(
βµR + µε,

(
β2σ2

R + σ2
ε

)1/2)
. (5.7)

For the case of heavy tailed distributions there does not generally exist such a

simple rule. For our purposes, however, it suffices to know what happens to the tail

probabilities under summation, which is a considerably simpler problem. To derive

the results, we use the celebrated convolution theorem by Feller (1971, chap. VIII.8,

see Appendix 5.B). The flavor of the convolution theorem is demonstrated for the

case of the single index model from Eq. (5.1). Suppose, for example, that both the

market factor R and the idiosyncratic risk ε have a Student’s t-distribution with v

degrees of freedom, and hence satisfy Eq. (5.6). Then, the Feller convolution result

holds that

lim
t→∞

P(X > t)

(βv + 1)At−v
= 1. (5.8)

It transpires that one can just add the tails if these are of equal order, provided that

one scales the weights with the tail index. If the tail indices are unequal, then the

tail with the lowest index dominates the sum. Note that the convolution changes

the scale factor, but leaves the power v unaffected. In other words, if one studies
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the convolution of two independent heavy tail distributed random variables with

the same tail index at large quantiles, then it suffices to take the sum of the scales

divided by the quantile to the power of tail index. To a first order, all mass in the

plane concentrates along the axes and this property determines the sum. With these

preparations at hand, we can now turn to the specific measures and investigate the

effects of the moving average feature of reported returns.

Sharpe ratio

Given the single index model in Eq. (5.1) for the MA(K) process in Eq. (5.2),

and assuming that the market factor R ∼ N(µR, σR) and the idiosyncratic factor

ε ∼ N(µε, σε), it readily follows that

σS =

(
K∑
k=0

θ2k

)1/2(
β2σ2

R + σ2
ε

)1/2
=

(
K∑
k=0

θ2k

)1/2

σX . (5.9)

Thus, σS ≤ σX , as Eqs. (5.3) and (5.4) imply that
∑K

k=0 θ
2
k ≤ 1. On the other hand,

the mean is unaffected

µS =

(
K∑
k=0

θk

)
(βµR + µε) = βµR + µε = µX . (5.10)

These results are used to determine how the SR measure is affected by smoothing

SRX =
µX −Rf

σX
≤ µX −Rf

σS
= SRS, (5.11)

where Rf is the risk-free rate. In other words, as SRS = (
∑
θ2k)

1/2SRX , smoothing

understates the (global) risk and hence SR is overstated. This finding is the same

as Proposition 1 in Getmansky et al. (2004).

Next, consider the case that R and ε do not follow the normal distribution, but

rather have distributions with heavy tails as defined above. Then Eq. (5.11) nev-

ertheless applies as long as α > 2, meaning that the second moments are bounded.

Hence, under the mild restriction that the variance is bounded, this result merely

corroborate Getmansky et al. (2004) for the SR measure. But things will be different

for the downside risk measures.

Value-at-risk

VaR is probably the most widely used univariate measure in risk management. It

has numerous applications in banking and insurance. Jorion (2007) provides an

extensive overview of the VaR measure. VaR is sometimes criticized for its lack
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of subadditivity. Such criticism is why we also treat the globally subadditive ES

measure below. Nevertheless, for the normal distribution VaR is subadditive below

the mean. This result also holds, for example, for the Student’s t-distribution.

In fact, Dańıelsson et al. (2010) show that for all fat tailed distributions, the VaR

measure is subadditive in the tail area.2 So both for practical and theoretical reasons

it is of interest to analyze how VaR is affected by the presence of autocorrelation in

hedge fund returns.

For the random variable Yt with a continuous distribution, VaR with confidence

level 1− p is defined as the unique real number VaR(Yt, p) for which

P
(
Yt > VaR(Yt, p)

)
= p, (5.12)

or

VaR(Yt, p) = ϕ−1Yt (1− p), (5.13)

where ϕ−1Yt (x) is the inverse of the cumulative density function of Yt evaluated at x.

Note that VaR usually is a loss return and hence a positive number. Therefore, the

focus is on the right hand tail of the loss distribution.

— Normal case

Let VaR(St, p;N) denote VaR at the confidence level 1− p for the reported return

St under the assumption that the i.i.d. random variables Rt and εt have normal

distributions Rt ∼ N(µR, σR) and εt ∼ N(µε, σε). Under these assumptions, one

has from the above that St ∼ N(µS, σS). So that

p = P
(
St > VaR(St, p;N)

)
= 1− Φ

(
VaR(St, p;N)− µS

σS

)
, (5.14)

where Φ(x) is the standard normal cumulative distribution function evaluated at x.

VaR is given by

VaR(St, p;N) = σSΦ−1(1− p) + µS. (5.15)

Since µS = µX and σS ≤ σX (see Eqs. 5.9 and 5.10), VaR calculated on the

smoothed returns, VaR(St, p;N), is always smaller than or equal to VaR calculated

on the actual returns, VaR(Xt, p;N). In particular, from Eqs. (5.9) and (5.15) we

have:

Proposition 5.1 If the market factor R and idiosyncratic risk are independently

normally distributed, then VaR of the reported returns is related to VaR of the actual

2See Appendix 5.C for the case in which returns behave according to a Pareto law.
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returns in the following way

VaR(St, p;N)− µS
VaR(Xt, p;N)− µS

=
σS
σX

=

(
K∑
k=0

θ2k

)1/2

. (5.16)

Under the assumption of a normal distribution, the presence of autocorrelation

in the actual hedge fund returns reduces the reported VaR by the reduction in the

volatility of the returns. The square root rule applies again (cf. Eq. 5.11).

— Heavy tails case

Suppose now that the distributions of Rt and εt are heavy tailed as in Eq. (5.6). As

a slight generalization, allow the scale A in Eq. (5.6) to be different for R and ε, as

γR and γε, respectively. Let VaR(St, p;H) denote VaR at confidence level 1− p for

the case of heavy tailed distributions. Invoking Feller’s convolution theorem gives

lim
p↓0

P(St > VaR(St, p;H))

(γRβα + γε)
(∑K

k=0 θ
α
k

)
VaR(St, p;H)−α

= 1. (5.17)

On first order inversion, for small p approximately

VaR(St, p;H) '
(
γRβ

α + γε
p

K∑
k=0

θαk

)1/α

. (5.18)

Similarly, it is shown that for the actual returns

VaR(Xt, p;H) '
(
γRβ

α + γε
p

)1/α

. (5.19)

we thus obtain the following:

Proposition 5.2 If the market factor and idiosyncratic factor exhibit heavy tails

as in Eq. (5.6), then

lim
p↓0

VaR(St, p;H)

VaR(Xt, p;H)
=

(
K∑
k=0

θαk

)1/α

. (5.20)

Proposition 5.2 is readily generalized to allow for negative betas, by taking the

absolute value of beta.

Given that Eqs. (5.3) and (5.4) imply
∑K

k=0 θ
α
k ≤ 1 for any α ≥ 1, VaR calculated

on smoothed returns deep into the tail area is always smaller than or equal to VaR

calculated on actual returns. The latter condition just requires that the mean is
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bounded. In case of the Cauchy distribution, which has α = 1, VaR calculated on

smoothed returns is equal to VaR calculated on actual returns.

As the first derivative of (
∑
θαk )1/α in Eq. (5.20) with respect to the tail index α is

negative, this result implies that the presence of autocorrelation affects the smoothed

returns’ VaR relatively less when the reported return distribution has fatter tails.

In general, for any given value of the tail index α > 1, VaR of the smoothed returns

VaR(St, p;H) is minimized when the smoothing coefficients θk equal 1/(K + 1) for

all k = 0, . . . , K. In that case, the current and past true economic returns are

equally weighted and together make up the reported returns. As a result, the ratio

of VaR(St, p;H) to VaR(Xt, p;H) equals (K + 1)
1−α
α . For K = 2 and α = 5 this

finding implies, for instance, that the reported VaR could be equal to just about

40% the true VaR.

Finally, note that the term on the right-hand side of Eq. (5.20) for the heavy

tail case looks exactly like the correction term in Eq. (5.16) for the normal case, but

with 2 replaced by α. This result implies that the correction term for the heavy tail

case is always smaller than the correction term for the normal case as long as α > 2.

In other words, the impact of smoothing is usually larger in the heavy tail case than

in the normal case.

Expected shortfall

Artzner et al. (1999) argue that monotonicity, subadditivity, homogeneity and trans-

lation invariance are desirable properties for a risk measure. VaR satisfies three of

the four criteria, but can fail subadditivity. For this reason Artzner et al. (1999)

advance the ES measure as it satisfies all four criteria (provided that α > 1 in

the heavy tail case). For a given loss return threshold y, the ES measure is the

conditional expectation

ES(Yt, y) = E[Yt|Yt > y]. (5.21)

In general, the ES measure is difficult to compute for the convolution induced by

the MA(K) process. Fortunately, for the normal case and the heavy tail case at

sufficiently large y, we can obtain explicit results.

— Normal case

Using the previous assumptions, Eqs. (5.9) and (5.10) give ES as

ES(St, y;N) =

∫ ∞
y

xφ

(
x− µS
σS

)
dx∫ ∞

y

φ

(
x− µS
σS

)
dx

=
σSφ

(
y−µS
σS

)
1− Φ

(
y−µS
σS

) + µS, (5.22)
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where φ(x) is the standard normal probability density function evaluated at x. It

can be shown that the first derivative of ES in Eq. (5.22) with respect to σS is

positive3 so that, given that σS ≤ σX , ES calculated on smoothed returns is always

lower than or equal to ES calculated on actual returns. Furthermore, when y equals

the VaR that corresponds to the confidence level 1− p, one has

ES(St,VaR(St, p;N);N) =
σSφ

(
VaR(St,p;N)−µS

σS

)
p

+ µS

=
φ
(
Φ−1(1− p)

)
pΦ−1(1− p) (VaR(St, p;N)− µS) + µS.

(5.23)

The last equation shows that ES is proportional to VaR. Given this proportionality

result, it is not so surprising that the following is obtained:

Proposition 5.3 If the market factor R and the idiosyncratic risk are independently

normally distributed, then ES of the reported returns is related to ES of the actual

returns as follows

ES(St,VaR(St, p;N);N)− µS
ES(Xt,VaR(Xt, p;N);N)− µS

=
σS
σX

=

(
K∑
k=0

θ2k

)1/2

. (5.24)

As in the case of VaR, we find that after the correction for the mean, the

smoothed ES is proportional to the actual ES. The presence of autocorrelation

3To show that the first derivative of

f(σ) =
σφ
(
y−µ
σ

)
1− Φ

(
y−µ
σ

)
is positive, notice that

d

dσ
σφ

(
y − µ
σ

)
=

(
σ2 + (y − µ)2

)
σ2

φ

(
y − µ
σ

)
d

dσ

(
1− Φ

(
y − µ
σ

))
= −y − µ

σ2
φ

(
y − µ
σ

)
,

so that the sign of the derivative of f with respect to σ is equal to the sign of(
σ2 + (y − µ)2

)(
1− Φ

(
y − µ
σ

))
+ (y − µ)σφ

(
y − µ
σ

)
,

or, setting θ = (y − µ)/σ, to the sign of g(θ) =
(
1 + θ2

)
(1 − Φ(θ)) + θφ(θ). When θ ≥ 0 the last

equation is clearly positive, so that only the sign for θ < 0 has to be checked. Notice that for θ = 0
the last equation is equal to 0.5, so that it is sufficient to show that its derivative is negative when
θ < 0. This is indeed the case, as

d

dθ
g(θ) = 2θ(1− Φ(θ))− 2θ2φ(θ).
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in the reported hedge fund returns reduces the estimated ES, and the reduction is

proportional to the ratio of the two volatility estimates.

— Heavy tails case

Under the same assumptions as before, we have that

lim
x→∞

P(St > x)

(γRβα + γε)
(∑K

k=0 θ
α
k

)
x−α

= 1. (5.25)

If the distribution function is monotonic in the tail area, it holds furthermore that

the density satisfies the following asymptotic expansion (see Bingham et al., 1987)

lim
x→∞

fSt(x)

α(γRβα + γε)
(∑K

k=0 θ
α
k

)
x−α−1

= 1. (5.26)

Hence, for a sufficiently large threshold y and if α > 1, the ES measure is approxi-

mately equal to

ES(St, y;H) '
α(γRβ

α + γε)
(∑K

k=0 θ
α
k

)∫∞
y
xx−α−1 dx

(γRβα + γε)
(∑K

k=0 θ
α
k

)
y−α

=
α

α− 1
y. (5.27)

This result shows that ES is independent of the smoothing coefficients θk and of

the sensitivity to the market risk β, as well as of the scale parameters γR and γε.

The reason for this independence is that the scale parameters γR and γε affect the

expected value of the exceedances and the probability of exceeding the threshold

in the same proportion. As a result, both effects cancel each other out. For heavy

tails, ES is therefore invariant to smoothing of the returns as well as to the extent

to which the returns are sensitive to movements of the stock market.

In the event that y = VaR(St, p;H), it can be obtained from Eq. (5.27) that

ES(St,VaR(St, p;H);H) ' α

α− 1
VaR(St, p;H). (5.28)

Dańıelsson et al. (2006) already obtained the analogous result for the unsmoothed

returns. In Eq. (5.28), ES does depend on the smoothing coefficients, the market

exposure, and the scale parameters. The reason for this dependence is that the VaR

depends on these parameters as well (cf. Eq. 5.18). Consequently, the properties of

ES exactly match those of the VaR. In particular, one has:

Proposition 5.4 If the market factor and idiosyncratic factor exhibit heavy tails

as in Eq. (5.6), then

lim
p↓0

ES(St,VaR(St, p;H);H)

ES(Xt,VaR(Xt, p;H);H)
=

(
K∑
k=0

θαk

)1/α

. (5.29)
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This last result shows that ES calculated on smoothed returns is always smaller

than or equal to ES calculated on actual returns. This result mimics the one found

for the VaR metric in Eq. (5.20).

To conclude, both in the case of normally distributed returns and in case of heavy

tails, the VaR and ES measures are proportional to each other and are similarly

affected by the smoothing because of reporting.

5.2.2 Smoothing effects on multivariate risk measures

In this subsection we investigate two systemic risk measures. Getmansky et al. (2004)

already consider how the estimate of the market beta for the single index model is

reduced because of smoothing. As their results apply for the normal case and the

heavy tail case as long as α > 2, those results are not reproduced here. Instead, we

focus on the correlation coefficient ρ and the downside systemic risk measure ELM.

Pairwise correlation

We investigate the effects of smoothing on the correlation between the reported

returns (S1,t, S2,t) of two hedge funds. The case of a hedge fund and an equity index

would be similar to the case of beta studied by Getmansky et al. (2004) and is

therefore not analyzed here. The correlation is defined as

ρ(S1,t, S2,t) =
Cov(S1,t, S2,t)(

Var(S1,t)Var(S2,t)
)1/2 . (5.30)

Assume, as before, that the market return Rt and the idiosyncratic risk factors

ε1,t, ε2,t are i.i.d. and independent at any point in time, with variances given by,

respectively, σ2
R, σ2

ε1
, and σ2

ε2
. In this rather general framework only the second

moments of the relevant random variables are required to exist. Standard results

imply

ρ(X1,t, X2,t) =
β1β2σ

2
R(

(β2
1σ

2
R + σ2

ε1
)(β2

2σ
2
R + σ2

ε2
)
)1/2 . (5.31)

For the reported hedge fund returns one has

Cov(S1,t, S2,t) = β1β2σ
2
R

K∑
k=0

θ1,kθ2,k = Cov(X1,t, X2,t)
K∑
k=0

θ1,kθ2,k, (5.32)

and it can be easily shown that

ρ(S1,t, S2,t) =

∑K
k=0 θ1,kθ2,k((∑K

k=0 θ
2
1,k

)(∑K
k=0 θ

2
2,k

))1/2ρ(X1,t, X2,t). (5.33)
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To compare ρ(X1,t, X2,t) from Eq. (5.31) with ρ(S1,t, S2,t) from Eq. (5.33), recall

the Cauchy-Schwarz inequality which holds that for real numbers θ1,k and θ2,k, k =

0, . . . , K, (
K∑
k=0

θ1,kθ2,k

)2

≤
(

K∑
k=0

θ21,k

)(
K∑
k=0

θ22,k

)
. (5.34)

This result is used to show:

Proposition 5.5 Suppose that the second moments of the factors of the market

model are bounded. Then for the correlation coefficients

ρ(S1,t, S2,t) =

∑K
k=0 θ1,kθ2,k((∑K

k=0 θ
2
1,k

)(∑K
k=0 θ

2
2,k

))1/2ρ(X1,t, X2,t)

≤ ρ(X1,t, X2,t).

(5.35)

Note that the correlation calculated on the reported returns ρ(S1,t, S2,t) equals

the correlation calculated on the actual returns ρ(X1,t, X2,t) if the actual returns of

the two hedge funds show exactly the same pattern of autocorrelation, thus when

θ1,k = θ2,k for all k. Except for this rather exceptional case, the Cauchy-Schwarz

inequality implies that the correlation calculated on the smoothed returns is always

strictly smaller than the correlation calculated on the actual returns. Therefore,

the correlation calculated on reported returns is likely to underestimate the true

correlation calculated on actual returns.4

The extreme linkage measure

For policy makers and risk managers, it is of utmost interest to understand the de-

pendence of financial institutions when extreme events occur. Although the behavior

under normal market circumstances is also of interest, most insight is gained when

the greatest shocks occur. Contingency planning and hedging are most relevant

when the markets and institutions are in extreme turmoil.

The correlation measure is often criticized as an inappropriate measure of de-

pendence as it is well-known that it performs well for normally distributed variables

but much less so when returns are heavy tailed. The concept of correlation is very

much tied to the specifics of the multivariate normal distribution but, from the per-

spective of systemic risk, it tends to give too much weight to observations in the

4If the smoothing coefficients are allowed to be negative, there could also be the extreme case in
which

∑K
k=0 θ1,kθ2,k = 0, so that ρ(S1,t, S2,t) = 0 irrespective of the value of ρ(X1,t, X2,t). Hence,

the reported returns would always appear to be uncorrelated even if, for example, the correlation
between the actual returns equals one.
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middle of the distribution. For example, suppose that Q and W are two i.i.d. asset

classes and that a hedge fund is long in both exposures while a second hedge fund

is long in Q and short in W (such as in a market neutral fund). Then the portfolios

Q+W and Q−W have zero correlation and would be independent under normality.

However, in the case of the Student’s t-distribution the two portfolios are dependent

(albeit uncorrelated) because of the outliers of the two portfolios that line up along

the two diagonals. Bae et al. (2003) give a clear explanation of the shortcomings of

the pairwise correlation measure. Therefore, to study the systemic dependence of

hedge fund returns requires turning to another measure.

ELM is a nonparametric measure of dependence based on Extreme Value The-

ory (EVT). It was introduced by Huang (1992) and has been applied in several

empirical studies of systemic risk (see, e.g., Hartmann et al., 2004; Straetmans

et al., 2008). ELM is defined as the probability that two hedge funds face losses

above a threshold s, given that at least one of the funds faces a loss in excess of that

same threshold s,

ELM(S1,t, S2,t; s) =
P(S1,t > s, S2,t > s)

1− P(S1,t ≤ s, S2,t ≤ s)
. (5.36)

For theoretical purposes, ELM is evaluated in the limit as s tends to infinity,

ELM(S1,t, S2,t) = lim
s→∞

ELM(S1,t, S2,t; s). (5.37)

EVT then shows that the value obtained has (empirical) relevance at finite levels, as

long as s is very large. If desired, the threshold levels can be easily scaled differently

to account for differences in capital or size of the institution.

It can be shown that this measure is equal to the expected number of hedge

funds that are stressed, n, given that at least one of the hedge funds is stressed,

minus one:

E[n|n ≥ 1] = 1
P(S1,t > s, S2,t ≤ s) + P(S1,t ≤ s, S2,t > s)

1− P(S1,t ≤ s, S2,t ≤ s)

+ 2
P(S1,t > s, S2,t > s)

1− P(S1,t ≤ s, S2,t ≤ s)

=
P(S1,t > s) + P(S2,t > s)

1− P(S1,t ≤ s, S2,t ≤ s)

= 1 + ELM(S1,t, S2,t; s).

(5.38)

In fact, E[n|n ≥ 1] readily applies to higher dimensions, by extending Eq. (5.38). In

the bivariate case, moreover, ELM can also be expressed as

ELM(S1,t, S2,t; s) =
P
(
min(S1,t, S2,t) > s

)
P
(
max(S1,t, S2,t) > s

) , (5.39)



Chap. 5 – Risk Measures of Autocorrelated Hedge Fund Returns 129

where the variables min(S1,t, S2,t) and max(S1,t, S2,t) denote the minimum and the

maximum values of the variables S1,t and S2,t. By counting the number of excesses

in the numerator and denominator of Eq. (5.39) at high levels of s, a simple non-

parametric count estimator of ELM is obtained.

— Normal case

Given the previous assumptions for the single index model, the X1,t and X2,t are

multivariate normally distributed with correlation ρ and standard deviations σ1 and

σ2, respectively. To derive ELM, we adopt the proof of Sibuya (1960). Note that

by elementary manipulations

E[n|n ≥ 1] =
P(S1,t > s) + P(S2,t > s)

1− P(S1,t ≤ s, S2,t ≤ s)

=
1

1− P(S1,t>s,S2,t>s)

P(S1,t>s)+P(S2,t>s)

≤ 1

1− P(S1,t+S2,t>2s)

P(S1,t>s)+P(S2,t>s)

,

(5.40)

as the line S1,t + S2,t = 2s cuts the slab (S1,t > s, S2,t > s) from below. Note

that (S1,t + S2,t) /2 has variance equal to (σ2
1 + σ2

2 + 2σ1σ2ρ)/4, which is strictly

smaller than max(σ2
1, σ

2
2) as long as ρ < 1. The classical Laplace’s tail expansion

of a standard normal distribution Φ(s) with density φ(s) holds that, for large s,

1− Φ(s) ' φ(s)/s. It then follows that

lim
s→∞

P
(
(S1,t + S2,t)/2 > s

)
P(S1,t > s) + P(S2,t > s)

= 0, (5.41)

as the rate of the exponential decay of the density of the sum (divided by two),

dictated by the inverse of its variance, is greater than the rate of the exponential

decay of at least one of the individual probabilities. Hence, E[n|n ≥ 1] = 1 for large

s and ELM(S1,t, S2,t) = 0. As the proof does not depend on the particular values

of the variances and correlation, it immediately follows that ELM(X1,t, X2,t) = 0 as

well. In summary:

Proposition 5.6 In the case of normally distributed returns, the correlation mea-

sure summarizes the interdependency and is reduced because of smoothing. ELM

tends to be nondiscriminatory and is not affected by smoothing.

Thus in the case of light tails, ELM is uninformative, as it does not depend on

the particular values of the variances and the correlation, nor does it hinge on the
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moving average parameters.5 The global correlation measure is more informative in

the case of light tails. ELM simply pierces too deeply into tails. This outcome is in

sharp contrast with the case of fat tails.

— Heavy tails case

For the heavy tail case, assume again that

lim
s→∞

P(Rt > s)

γRs−α
= lim

s→∞

P(ε1,t > s)

γε1s
−α = lim

s→∞

P(ε2,t > s)

γε2s
−α = 1, (5.42)

where the scale parameters γR, γε1 , γε2 are strictly positive constants. For val-

ues of the threshold s high enough such that Feller’s theorem provides for a good

approximation for the convolution of the random variables, one has

P(Xi,t > s) ' (βαi γR + γεi)s
−α, (5.43)

1− P(X1,t ≤ s,X2,t ≤ s) ' (γε1 + γε2 + (max(β1, β2))
αγR)s−α. (5.44)

The first expression in Eq. (5.43) is a straightforward application of Feller’s

theorem as used in Eq. (5.17) and explained above in Eq. (5.8). With equal tail

indices, Feller’s theorem basically states that sufficiently far from the origin the

probability mass above a hyperplane or a multidimensional figure of any shape that

separates the space into two parts, is determined by the mass along the axes above

this hyperplane or multidimensional figure. So one can just add the univariate

probability mass loaded on these axes above the points where the figure cuts the

axes.

For the second expression in Eq. (5.44), the three axes with univariate probability

mass are the two idiosyncratic risk factors and the one with market risk. The

boundary of 1 − P(X1,t ≤ s,X2,t ≤ s) is a pyramid shaped figure with respective

boundaries of γε1s
−α, γε2s

−α and max(β1, β2)
αγRs

−α. Summation then yields the

right-hand side of Eq. (5.44).6

From Eq. (5.38) we then have

ELM(X1,t, X2,t) =
βα1 γR + γε1 + βα2 γR + γε2

γε1 + γε2 +
(
max(β1, β2)

)α
γR
− 1

=

(
min(β1, β2)

)α
γR

γε1 + γε2 +
(
max(β1, β2)

)α
γR
.

(5.45)

5This conclusion is true also in the case in which ρ = 1. It is easy to verify that even in
that special case, the previous results still hold as long as σ1 6= σ2. Moreover, if σ1 = σ2 then
E[n|n ≥ 1] = 2 for large s and ELM(S1,t, S2,t) = 1. These results imply that ELM is uninformative
anyway.

6See Proposition 5.10 in Appendix 5.B for a formal proof of Eq. (5.44).
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For the actual hedge fund returns S1,t and S2,t the following equations apply

P(Si,t > s) = P(Xi,t > s)
K∑
k=0

θαi,k = (βαi γR + γεi)s
−α

K∑
k=0

θαi,k, (5.46)

1− P(S1,t ≤x, S2,t ≤ x) =

=
K∑
k=0

(
θα1,kγε1 + θα2,kγε2 +

(
max(β1θ1,k, β2θ2,k)

)α
γR

)
s−α,

(5.47)

so that

ELM(S1,t, S2,t) =
(βα1 γR + γε1)

∑K
k=0 θ

α
1,k + (βα2 γR + γε1)

∑K
k=0 θ

α
2,k∑K

k=0

(
θα1,kγε1 + θα2,kγε2 +

(
max(β1θ1,k, β2θ2,k)

)α
γR
) − 1

=

∑K
k=0

(
min(β1θ1,k, β2θ2,k)

)α
γR∑K

k=0

(
θα1,kγε1 + θα2,kγε2 +

(
max(β1θ1,k, β2θ2,k)

)α
γR
) . (5.48)

Note that Eq. (5.48) simplifies to Eq. (5.45) when both of the hedge funds’ actual

returns are smoothed in exactly the same way, that is, when θ1,k = θ2,k for all k.

In this case, as in the pairwise correlation, the measure of linkage calculated on

reported returns is equal to that calculated on actual returns.

We have already shown that the presence of autocorrelation reduces SR, VaR,

ES, and pairwise correlation, both in the case of normally distributed returns and in

case of heavy tails. In the case of heavy tails, we have the following corresponding

result for ELM (proven in Appendix 5.D):

Proposition 5.7 Suppose that the hedge fund returns X1,t and X2,t have the same

market exposure as β1 = β2 = β. Moreover, the smoothed S1,t and S2,t both fol-

low MA(K) processes, possibly with different coefficients. Then, ELM based on the

reported returns is lower than the true ELM if not all smoothing coefficients are

equal.

However, if the market betas of the hedge funds are sufficiently different, then

ELM of the smoothed returns can be larger than ELM of the true underlying returns.

To show this outcome, consider the case in which the scale parameters γR, γε1 , γε2
all equal one and β1θ1,k < β2θ2,k for all k. In this case, Eq. (5.48) implies

ELM(S1,t, S2,t) =
βα1
∑K

k=0 θ
α
1,k∑K

k=0 θ
α
1,k + (1 + β2)

∑K
k=0 θ

α
2,k

=
βα1

1 + (1 + β2)
∑K

k=0 θ
α
2,k

/∑K
k=0 θ

α
1,k

.

(5.49)
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Equation (5.49) shows that ELM depends on the ratio
∑
θα2,k
/∑

θα1,k. The presence

of autocorrelation can either increase or decrease the estimated ELM as compared

with the no-smoothing case when θ1,0 = θ2,0 = 1 and θ1,k = θ2,k = 0 for k = 1, . . . , K.

Therefore, we have:

Proposition 5.8 If the factors of the market model for two series of returns exhibit

heavy tails as in Eq. (5.6), then it is not possible to establish ex-ante the impact of

smoothing on ELM of the two series.

In summary, if the market betas of the hedge funds are very similar, then it

can be expected that the reported returns induce a lower measure of systemic risk

than is factual. However, in general, the sign of the impact of smoothing cannot be

established a priori for ELM and the smoothing coefficients must be estimated to

determine which direction the reported returns bias the systemic risk measure.

5.3 Empirical methodology

The theory developed in Section 5.2 is applied using data from Hedge Fund Re-

search (HFR). HFR identifies four primary strategy classes of hedge funds: Equity

Hedge, Event-Driven, Macro, and Relative Value. We use HFR’s equally weighted

total return indices denominated in US dollars for each of these four classes, which

together include around 2,000 hedge funds. The HFR’s web site contains additional

information on these indices.7 For the empirical analysis, monthly returns across

the period January 1990 to August 2009 are used, which amounts to 236 months in

total.

Figure 5.1 reports the cumulative returns of the four indices and the Standard

and Poor’s 500 (S&P 500) total return index. It illustrates the main reason for the

success and growth of the hedge fund industry. Over the last two decades, each

of the four indices has outperformed the S&P 500 index by showing higher returns

as well as lower volatility. The most striking period is the last decade where the

cumulative return of the S&P 500 index since 1999 has been negligible, while the

four hedge fund indices have delivered large positive cumulative returns. It can also

be gleaned from Figure 5.1 that the recent financial crisis has affected the main

hedge fund indices markedly less than the S&P 500 index. The key statistics are

reported in Table 5.2.

Table 5.2 shows that the hedge fund indices have SRs that are four to six times

larger than that of the S&P 500 index. Table 5.2 also illustrates that volatility is

7See www.hedgefundresearch.com.
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Figure 5.1 – Cumulative monthly log-returns of four hedge fund indices for
the period January 1990 to August 2009
Source: Hedge Funds Research and Thomson Reuters Datastream.

Table 5.2 – Descriptive statistics of hedge fund index returns
All statistics are based on monthly log-returns for the period January 1990 to August 2009.
Mean, standard deviation and Sharpe ratio are annualized. The Sharpe ratio is calculated
using the USD 3-month Libor as the risk-free rate. The Jarque-Bera statistic tests the
hypothesis of normality of the returns, which is the joint hypothesis that skewness = 0 and
kurtosis = 3; significance levels are denoted by ∗∗ for 1% (critical value = 11.69) and ∗ for
5% (critical value = 5.72).

Investment
strategy

Mean
Standard
deviation

Sharpe
ratio

Skewness Kurtosis
Jarque-Bera

statistic

Equity hedge 13.19 9.22 0.96 −0.38 5.08 48.43∗∗

Event-driven 11.56 7.02 1.03 −1.50 7.89 323.64∗∗

Macro 13.14 7.70 1.15 0.35 3.79 11.02∗

Relative value 10.00 4.55 1.25 −2.46 18.45 2, 586.47∗∗

S&P 500 7.54 15.23 0.21 −0.84 4.74 57.79∗∗

not an appropriate risk indicator for hedge fund indices. For instance, the Relative

Value index has the lowest standard deviation and the highest SR, but it has also

an extremely negative skewness and a very large kurtosis. Next, Figure 5.2 shows

the monthly returns of the four indices.

The four plots in Figure 5.2 highlight two other features of hedge fund returns

that are particularly important when studying systemic risk. First, although returns

are stable and mostly positive, outliers occasionally do occur. In most cases these

outliers are negative. Second, the negative outliers tend to occur simultaneously.

An example is found in August 1998, caused by the Russian crisis and the LTCM
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collapse. Another example of strong negative co-movement of hedge funds occurs in

the last quarter of 2008, after the failure of Lehman Brothers.

This kind of extreme dependence is seen more clearly in Figure 5.3 which reports

a scatter plot of the returns of the Equity Hedge and Event-Driven indices. In

Figure 5.3, the hedge fund total return series have been transformed to have uniform

marginal distributions. The elliptical shape of the plot indicates that the returns

of the two indices tend to move together. More important, the greater density of

points in the lower-left part of the plot highlights that the most negative extreme

returns of the two indices tend to occur simultaneously.

5.3.1 Estimation of the smoothing coefficients

In this subsection, the smoothing coefficients θk are estimated. Before doing this,

we first inspect the raw returns data and their squares for their autocorrelation

properties. All four series exhibit significant MA behavior. The Macro index only

displays MA(1), while the other three strategy indices display significant MA(2)

behavior, as in Getmansky et al. (2004). Some ARCH effects are also present in the

raw series. Following Getmansky et al. (2004), we therefore applied both maximum

likelihood and linear regression estimations to an MA(2) smoothing model. More

precise, in the maximum likelihood estimation we assume the process of observed

returns to be St = θ0Xt + θ1Xt−1 + θ2Xt−2, with Xt i.i.d., θ0 + θ1 + θ2 = 1 and

θk ∈ [0, 1], for k = 0, 1, 2. In our numerical procedures, we do not explicitly impose

the additional restrictions θ1 < 1/2 and θ1 < 1− 2θ2, which ensure that the MA(2)

process is invertible (cf. Proposition 3 in Getmansky et al., 2004). However, our

estimates satisfy these restrictions in all cases. Furthermore, Xt is not required to

be normally distributed, as in Getmansky et al. (2004). Nevertheless, we are still

allowed to exploit the asymptotic normality of the maximum likelihood estimator

(cf. Paragraph 8.8 in Brockwell and Davis, 1991).

Getmansky et al. (2004) also argue that consistent, although not efficient, es-

timates of the smoothing coefficients θk, k = 0, 1, 2, can be obtained by running

ordinary least squares regressions of the equation

St = µ+ β(θ0Rt + θ1Rt−1 + θ2Rt−2) + ut

= µ+ γ0Rt + γ1Rt−1 + γ2Rt−2 + ut,
(5.50)

where ut = θ0εt + θ1εt−1 + θ2εt−2, with εt i.i.d., θ0 + θ1 + θ2 = 1 and θk ∈ [0, 1],

for k = 0, 1, 2. In this case, β̂ = γ̂0 + γ̂1 + γ̂2 and θ̂k = γ̂k/β̂.8 Adding additional

8To have efficient estimates, Getmansky et al. (2004) suggest using the maximum likelihood
estimator. However, in our case the results are almost identical for both the OLS and the maximum
likelihood estimators.
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Figure 5.2 – Monthly log-returns of four hedge fund indices for the period
January 1990 to August 2009
Source: Hedge Fund Research.
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Figure 5.3 – Normalized monthly returns of two hedge fund indices

Scatter plot of the pairs (y1,t, y2,t)t=1,...,236, where y1,t = F̂X1(x1,t), y2,t = F̂X2(x2,t), and
F̂X1 and F̂X2 are the empirical cumulative distribution functions of the monthly log-returns
of the Equity Hedge and Event-Driven indices for the period January 1990 to August 2009.
The plot shows the empirical joint distribution of the returns of the two indices that have
been normalized to have uniform marginal distributions.

factors to the hedge fund model could increase the model’s explanatory power (see

Hasanhodzic and Lo, 2007). However, our focus is to investigate the proposed

methodological improvements to hedge fund risk measures, for which a direct com-

parison with Getmansky et al. (2004) gives the most clarity. Therefore, we use the

S&P 500 index as the only underlying factor in the regressions.

After applying the MA(2) correction, we find that using the maximum likelihood

estimation eliminates the linear correlation structure. But the OLS estimates in case

of the Event-Driven strategy, for example, still display some MA(1) behavior, while

this is not the case for the Equity Hedge strategy. The reason is that the S&P500

index is not necessarily the most appropriate factor for all strategies. For the Equity

Hedge index, some non-linear dependence in the squared unsmoothed returns was

present as well. But since our downside risk measures are unconditional and the

estimation procedure is consistent under ARCH effects, this should not thwart our

results.

Table 5.3 reports the estimated smoothing coefficients for the four indices and

the S&P 500 index using both the maximum likelihood and the linear regression

estimators.

The estimates of both methods are similar. Moreover, the results are comparable

with those in Getmansky et al. (2004), even though they use different indices. It can

be gleaned from Table 5.3 that the estimated smoothing coefficients θ̂1 and θ̂2 are
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Table 5.3 – Estimates of the smoothing coefficients
All estimates are based on monthly log-returns for the period January 1990 to August 2009.
The table shows maximum likelihood and linear regression estimates of an MA(2) smooth-
ing process St = θ0Xt + θ1Xt−1 + θ2Xt−2. In the linear regression case, the underlying
hypothesis is that Xt is defined by a linear single-factor model in which the factor is the
Standard and Poor’s 500 (S&P 500) index. Significance levels for the maximum like-
lihood estimates are calculated using the asymptotic result of Theorem 3 in Getmansky
et al. (2004) (significance levels are denoted by ∗∗ for 1% and ∗ for 5%). The null hypothesis
for θ̂0 is that it is equal to one, those for θ̂1, θ̂2 are that they are equal to zero.

Investment
strategy

Maximum likelihood Linear regression

θ̂0 θ̂1 θ̂2 θ̂0 θ̂1 θ̂2 β̂
Adj.
R2

Equity hedge 0.743∗∗ 0.172∗∗ 0.085∗ 0.722 0.154 0.124 0.587 0.54
Event-driven 0.665∗∗ 0.253∗∗ 0.082∗ 0.631 0.277 0.092 0.480 0.58
Macro 0.860∗ 0.144∗∗ −0.004 0.657 0.116 0.228 0.251 0.11
Relative value 0.602∗∗ 0.262∗∗ 0.136∗∗ 0.551 0.331 0.118 0.259 0.34

S&P 500 0.923 0.089 −0.012 1.000 0.000 0.000 1.000 1.00

statistically different from zero for all four hedge fund indices. The only exception

is parameter estimate θ̂2 for the Macro index. Conversely, parameter estimate θ̂0

is always statistically different from one. The linear regression estimation approach

allow also to estimate the parameter β, which measures the sensitivity of the hedge

fund index returns to the market index returns.

These estimates are now used to determine how smoothing affects SR. Table 5.2

reports that the uncorrected SRs for the Equity Hedge and Event-Driven indices

equal 0.96 and 1.03, respectively. The correction for smoothing effects takes the same

approach as Proposition 1 in Getmansky et al. (2004). We use the parameter values

obtained through the maximum likelihood estimation method. After unsmoothing

the returns, SRs drop approximately 20% and 30%, respectively, to a value of 0.74

for both indices. Although results are not directly comparable, it is worth noting

that this large change in SR exceeds the impact of unsmoothing found by Getmansky

et al. (2004, p. 588).9

Next, two hedge fund indices are selected to illustrate the empirical relevance of

the risk measurement correction methodology presented in this chapter. Table 5.3

shows that the adjusted R2 is highest for the Equity Hedge and Event-Driven indices

at 0.54 and 0.58, respectively. The R2 is much lower for the Macro and the Relative

9One difference between this empirical exercise and Getmansky et al. (2004) is that we use
data from HFR for the period 1990–2009 while Getmansky et al. (2004) use data from TASS for
the period 1977–2001. Moreover, we run the estimators on indices while the other authors use
data on individual funds. Finally, our SR is calculated with respect to the USD 3-month Libor
rate while Getmansky et al. (2004) use a zero interest rate benchmark.



138 Sect. 5.3 – Empirical methodology

Value indices at 0.11 and 0.34, respectively. For reasons of brevity, the empirical

applications in the remainder of the chapter are limited to the Equity Hedge and

Event-Driven indices only.

Because hedge funds change their investment exposures frequently, it is likely

that the smoothing coefficients are not constant over time. As a result the calculation

of the risk measures could be affected as well. For this reason we also estimate the

smoothing coefficients using rolling windows of 60 months. Figures 5.10 and 5.11

in Appendix 5.E report the parameter estimates for both the Equity Hedge and

Event-Driven indices, using the maximum likelihood as well as the linear regression

approach.

We find that the coefficients tend to remain fairly stable across the sample period

1995–2009. Furthermore, the resulting parameter levels are quite similar across the

two estimation methods. These results provide support to the choice of the S&P

500 index as underlying risk factor in the estimates.

5.3.2 Estimation of the tail index and scale parameters

How does the presence of autocorrelation affect the various downside risk measures

when the market return and the idiosyncratic risk factors follow a heavy tail distri-

bution? To answer this question, we first estimate the tail index (α) and the scale

parameters (γR, γε1 , γε2). Thereafter, we calculate VaR using Eqs. (5.18) and (5.19)

and ELM from Eqs. (5.45) and (5.48).

To estimate the tail index, we use the standard Hill (1975) estimator

1

α̂
=

1

m

m∑
i=1

log

(
X(i)

X(m+1)

)
, (5.51)

where the X(i) are the largest descending order statistics X(1) ≥ X(2) ≥ · · · ≥ X(m) ≥
X(m+1) ≥ X(m+2) ≥ · · · ≥ X(n) of the sample of n return observations X1, . . . , Xn.10

Parameter m equals the number of extreme returns exceeding X(m+1), which is the

threshold return level above which the Pareto approximation applies (see Jansen

and de Vries, 1991; Embrechts et al., 1997).

The scale parameter γ is estimated as

γ̂ =
m

n

(
X(m+1)

)α̂
. (5.52)

The idea behind Eq. (5.52) is to approximate the probability P(S > Xm+1) '
γ(Xm+1)

−α by its empirical value m/n.

10The Hill estimator is consistent in the presence of autocorrelation in the returns or their
squares; see, e.g., Drees (2008).
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For the market factor R, the estimates of its tail index and its scale parameter

are obtained by inserting the order statistics of the S&P 500 index into Eqs. (5.51)

and (5.52). Before the tail index and the scale estimates for the residuals εi can be

obtained, the residuals themselves need to be estimated first. Accordingly, we first

calculate the values

ût = St −
(
µ̂+ β̂

(
θ̂0Rt + θ̂1Rt−1 + θ̂2Rt−2

))
, (5.53)

where µ̂, β̂, θ̂0, θ̂1, θ̂2 are estimates obtained by the linear regression method described

in Section 5.3.1. Given the assumption that ut = θ0εt+θ1εt−1 +θ2εt−1, the residuals

are obtained recursively using

ε̂t = (ût − θ̂1ε̂t−1 − θ̂2ε̂t−2)
/
θ̂0. (5.54)

Hence, tail indices and the scale parameters for the residuals are estimated by in-

serting the order statistics of the estimated residuals from Eq. (5.54) into the Hill

estimator from Eq. (5.51) and the scale estimator from Eq. (5.52).

Given the relatively small sample size of only 236 monthly observations, Hill

plots are used to determine the number of higher left tail order statistics to be used

in the estimators from Eqs. (5.51) and (5.52). A Hill plot depicts the value of the

Hill estimator of α as a function of the number m of extreme returns above the

threshold Xm+1. It is used to select the number of higher order statistics such that

the variance and bias squared are balanced in order to minimize the mean squared

error (see Embrechts et al., 1997, for a description). The Hill plots for the hedge fund

and stock indices returns and hedge fund indices residuals are shown if Figure 5.4.

In all cases the tail index seems to hover around three for reasonably high levels

of the threshold. This value is similar to the estimates provided by Jansen and

de Vries (1991) and Hyung and de Vries (2005) for individual US stocks. So, α = 3

is set for both the S&P 500 index and the residuals of the hedge-fund indices in the

calculations that follow.

To estimate the scale parameters, we use a method analogous to the Hill plot,

but with the γ estimates on the vertical axis (fixing α at 3; see Figure 5.5). As the

plots for the tail indices turn out to be relatively stable for m ≤ 24 (corresponding

to 10% of the observations) the scale parameters are set equal to the average of their

estimates obtained using Eq. (5.52) across all m ≤ 24 extreme returns

γ̂ =
1

24

24∑
k=1

k

n

(
X(k+1)

)3
. (5.55)
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Panel A: Hedge fund and stock indices returns
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Panel B: Hedge fund indices residuals
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Figure 5.4 – Hill plot of the tail index of hedge fund and stock indices returns
and of hedge fund indices residuals
Estimates of the tail index, obtained using the Hill estimator, as a function of the number
of extreme returns used in the estimation. The vertical lines correspond to the 97.5, 95.0
and 90.0 percentile of the whole dataset, respectively. Estimates are based on data from
the left tail of the distribution of the returns (i.e., only negative returns are taken into
account).

For the scale parameters γR (for the stock index), γε1 (for the idiosyncratic term of

the Equity Hedge index), and γε2 (for the idiosyncratic term of the Event-Driven

index), these mean estimates equal 48.0, 5.0, and 2.6, respectively.

This section can be concluded with a few remarks regarding the reliability of the

methodology and the results that will be presented in Section 5.4. Following the

previous discussion, it could be argued that the approach used in this chapter suffers

from a potential small sample bias. Usually EVT estimates are based on relatively

large amounts of data. Per contrast, our sample contains only 236 observations which

can leave the results vulnerable to biases. Moreover, the statistical significance of

the results could be weak because of the limited number of observations available.

Therefore in Appendix 5.F, we investigate how the adjusted EVT estimators are
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Panel B: Hedge fund indices residuals
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Figure 5.5 – Estimates of the scale index of hedge fund and stock indices
returns and of hedge fund indices residuals
Estimates of the scale index as a function of the number of extreme returns used in the
estimation. The reported scale parameters are calculated under the assumption that the
tail index is always equal to 3. The vertical lines correspond to the 97.5, 95.0 and 90.0
percentile of the whole dataset, respectively. The straight lines represent the average
values of the estimates across the worst 10% of the observations. Estimates are based on
data from the left tail of the distribution of the returns (i.e., only negative returns are
taken into account).

affected by the small sample size. In short, two main conclusions are drawn from

the Monte Carlo simulation analysis. First, the simulations show that the estimates

for VaR and ELM indeed tend to be biased in small samples. The study shows

that the bias is very small for VaR and somewhat larger for ELM. In both cases,

the bias tends to disappear as the sample size increases. Second, the confidence

intervals tend to be fairly wide in small samples but they significantly decrease in

larger samples. Hence, we conclude that our empirical estimates could be somewhat

affected by the small size of the sample but any potential bias will likely be fairly

small and will not affect the main findings.
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5.4 Effects of autocorrelation on risk measures

This section analyzes how autocorrelation affects various risk measures. As hedge

funds frequently modify their investment exposures, it is likely that the smoothing

coefficients change over time as well. To capture these time-varying changes, rolling

windows of 60 months are used in most of the following calculations.

5.4.1 Univariate measures of risk

We start with calculating VaR. Figure 5.6 reports the time series estimates of the

reported and uncorrected VaR(S, p) as well as the true and unobservable VaR(X, p)

for the Equity Hedge and Event-Driven indices, calculated under the hypothesis that

returns are normally distributed (cf. Eq. 5.15). Figure 5.7 depicts similar estimates,

but instead of assuming normal returns, fat tailed returns are assumed (cf. Eq. 5.19).

A comparison of the Figures 5.6 and 5.7 yields a number of interesting conclu-

sions. First, the uncorrected and corrected VaRs often increase at the same points

in time. Apparently the dynamics of the two VaR series are fairly similar, although

the corrected VaR shows larger jumps. It is intuitive that the estimates of VaR for

unsmoothed returns exhibit larger jumps.

Second, the levels of the two measures of VaR are substantially different. On

several occasions the corrected VaR exceeds the uncorrected VaR by 50% or more.

For both indices the differences between the uncorrected and corrected VaR levels

increase substantially in 2009. The reason for these increases is that the presence

of smoothing becomes stronger at the end of the sample period. This effect is also

evident in Figure 5.10, which shows that the value of θ0 decreases in 2008 and 2009.

Third, VaRs are markedly higher when hedge fund returns are assumed to be

fat tailed in comparison with the case of a normal distribution. The levels of VaRs

in Figure 5.7 clearly exceed the corresponding VaRs under normality in Figure 5.6.

Both the corrected and uncorrected series show such an effect. The normal distri-

bution underrepresents the mass in the tails of the returns distributions.

Finally, our fourth conclusion is that the difference between the corrected and un-

corrected VaR series is larger when the distribution is fat tailed (see, e.g., Figure 5.6,

Panel A, and Figure 5.7, Panel A), although the adjustment factors in Eqs. (5.24)

and (5.29) at the parameters values that we estimated are not so much different.

For example, using the values for the mean and the standard deviation over the

entire sample period from Table 5.2 and the corresponding regression-based point

estimates for the smoothing coefficients θk from Table 5.3, for the Equity Hedge

index the difference between the smoothed and unsmoothed VaR is 2.09 percentage
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Figure 5.6 – Value-at-risk for the Equity Hedge and Event-Driven indices at the
99% confidence level under the assumption of normally distributed monthly
returns
The uncorrected VaR, which is based on reported returns, and the corrected VaR, which
is based on the true unobservable returns, are equal, respectively, to σSΦ−1(1 − p) + µS
and σXΦ−1(1 − p) + µS , where 1− p is the confidence level, σS is the volatility of the
reported returns, µS is the mean of the reported returns, and σX = σS(

∑2
k=0 θ

2
k)

1/2. The
maximum likelihood estimate (MLE) of the smoothing coefficients (θk) is based on the
model St =

∑2
k=0 θkXt−k in which returns reported by hedge funds (St) are weighted

averages of current and past unobservable returns (Xt) that are assumed to be i.i.d. The
linear regression estimates (ordinary least squares [OLS]) make the additional assumption
that Xt = βRt + εt, where Rt is the market return and εt is an i.i.d. idiosyncratic risk
factor. In both cases, the smoothing coefficients are assumed to satisfy the constraints
θk ∈ [0, 1], for k = 0, 1, 2, and

∑2
k=0 θk = 1. In the OLS estimation, the Standard and

Poor’s 500 total return index is used as market factor. The estimations are based on
rolling windows of 60 months ending in the reference month.
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Panel B: Event-Driven index
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Figure 5.7 – Value-at-risk for the Equity Hedge and Event-Driven indices at the
99% confidence level under the assumption of fat tailed distributed monthly
returns
The uncorrected VaR, which is based on reported returns, and the corrected VaR,
which is based on the true unobservable returns, are equal, respectively, to ((γRβ

α +
γε)(

∑2
k=0 θ

α
k )/p)1/α and ((γRβ

α + γε)/p)
1/α, where 1− p is the confidence level. The

smoothing coefficients (θk) and the market exposure (β) are estimated by linear regres-
sions (ordinary least squares [OLS]) of the model St =

∑2
k=0 θkXt−k in which returns

reported by hedge funds (St) are weighted averages of current and past unobservable re-
turns (Xt). Unobservable returns are assumed to be of the form Xt = βRt + εt, where Rt
is the market return and εt is an i.i.d. idiosyncratic risk factor. The smoothing coefficients
are assumed to satisfy the constraints θk ∈ [0, 1], for k = 0, 1, 2, and

∑2
k=0 θk = 1. The

estimations use the Standard and Poor’s 500 total return index as market factor and are
based on rolling windows of 60 months ending in the reference month. The tail index (α)
and the scale parameter of the market factor (γR), estimated using Hill plots, are kept
fixed at 3 and 48.0, respectively. The scale parameters (γε) of the idiosyncratic terms of
the Equity Hedge and Event-Driven indices are estimated using Hill plots and kept fixed
at 5.0 and 2.6, respectively.
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Figure 5.8 – Correlation between the Equity Hedge and Event-Driven indices
The uncorrected correlation is the usual Pearson’s correlation between reported returns
whereas the corrected correlation, which is based on the true unobservable returns, is

adjusted by the factor
(∑2

k=0 θ1,kθ2,k
)/(

(
∑2

k=0 θ
2
1,k)(

∑2
k=0 θ

2
2,k)
)1/2

. The smoothing coef-
ficients (θ1,k) and (θ2,k) are estimated by a maximum likelihood estimation of the model
St =

∑2
k=0 θkXt−k in which returns reported by hedge funds (St) are weighted averages

of current and past unobservable returns (Xt). Unobservable returns are assumed to be
i.i.d. and the smoothing coefficients are assumed to satisfy the constraints θk ∈ [0, 1], for
k = 0, 1, 2, and

∑2
k=0 θk = 1. The estimations are based on rolling windows of 60 months

ending in the reference month.

points in the case of normal returns (from 5.09 to 7.18 percent), and 3.12 percent-

age points for the fat tail case (from 8.25 to 11.37 percent). However, the normal

correction term is 0.75 and the fat tail correction term is 0.73.

In this subsection, the focus is on the VaR metric. However, for the other

univariate risk metric, the ES, similar conclusions can be drawn. The difference

between the true unobservable ES and its unreported counterpart mimics that of

VaR (see Eqs. 5.23 and 5.28). Thus, also for ES it is highly relevant to adjust the

fat tailed hedge fund returns for smoothing effects.

5.4.2 Bivariate measures of risk

Next, we discuss how autocorrelation impacts on the bivariate measures of risk.

First, consider the correlation measure. Figure 5.8 depicts the development over time

of the uncorrected and corrected correlations between the two hedge fund indices.

Figure 5.8 shows that the impact of smoothing on correlation is almost negligible.

The reason for the limited difference is that the correction term in Eq. (5.35) has a

value close to one for our sample. Note that this correction term can be interpreted

as the raw correlation between the smoothing coefficients. Thus, the similarity in
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Figure 5.9 – Extreme linkage measure between the Equity Hedge and Event-
Driven indices
The uncorrected ELM, which is based on reported returns, and the cor-
rected ELM, which is based on the true unobservable returns, are equal,
respectively, to

(
(min(β1, β2))

αγR
)/(

γε1 + γε2 + (max(β1, β2))
αγR

)
and(∑

k(min(β1θ1,k, β2θ2,k))
αγR

)/(∑
k(θ

α
1,kγε1 + θα2,kγε2 + (max(β1θ1,k, β2θ2,k))

αγR)
)
.

The smoothing coefficients (θk) and the market exposure (β) are estimated by linear
regressions of the model St =

∑2
k=0 θkXt−k in which returns reported by hedge funds (St)

are weighted averages of current and past unobservable returns (Xt). Unobservable
returns are assumed to be of the form Xt = βRt + εt, where Rt is the market return
and εt is an i.i.d. idiosyncratic risk factor. The smoothing coefficients are assumed to
satisfy the constraints θk ∈ [0, 1], for k = 0, 1, 2, and

∑2
k=0 θk = 1. The estimations use

the Standard and Poor’s 500 total return index as market factor and are based on rolling
windows of 60 months ending in the reference month. The tail index (α) and the scale
parameter of the market factor (γR), estimated using Hill plots, are kept fixed at 3 and
48.0, respectively. The scale parameters (γε) of the idiosyncratic terms of the Equity
Hedge and Event-Driven indices, estimated using Hill plots, are kept fixed at 5.0 and 2.6,
respectively.

the autocorrelation structure of the Equity Hedge and Event-Driven indices (see

Table 5.3) shows that the estimated correlation is hardly affected by the smoothing

effects of the reported data.

Given the presence of fat tails, a better measure for the tail dependence is ELM.

Equation (5.48) shows that the parameter values determine how the presence of au-

tocorrelation affects ELM, and in particular whether the smoothing-adjusted mea-

sure is greater or smaller than its unadjusted counterpart (recall Propositions 5.7

and 5.8). Using the regression-based point estimates over the entire sample pe-

riod for the smoothing coefficients θ and the exposure to the market factor β from

Table 5.3 and the scale parameters γ reported above, we calculate the two ELM

measures as ELM(S1,t, S2,t) = 0.21 and ELM(X1,t, X2,t) = 0.31. Thus, the true
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measure of systemic risk is almost 50% higher than ELM based on smoothed returns.

Figure 5.9 depicts ELM estimates for the Equity Hedge and Event-Driven indices

based on rolling windows of 60 months. It shows that, on average, the smoothing-

adjusted ELM significantly exceeds its unadjusted counterpart, confirming the esti-

mates based on the whole sample. The relative size of the adjustment can, at times,

even exceed the 50% estimation error that was found above. For instance, at the

beginning of 2005 the corrected probability of one hedge fund index being under

stress given that the other index is under stress, is more than 80% higher than the

uncorrected probability. Also, at the end of the sample period the corrected mea-

sure exceeds the uncorrected measure by about 55%. Per contrast, the corrected

and uncorrected correlation estimates in Figure 5.8 are of a very comparable level

and nearly indistinguishable.

The large difference between the correlation and ELM estimates underscores

the relevance of our proposed adjustments to the tail dependence metric ELM.

Evidently, unsmoothing the observed hedge fund returns is especially important

when studying the extreme tail dependence. This part of the distribution is of

most interest to policy makers and risk managers because of its relevance for finan-

cial stability issues and loss prevention. Our empirical analysis illustrates the eco-

nomic importance of adjusting the metrics of extreme co-movement risks to prevent

autocorrelation-induced distortions. Otherwise, a potentially serious underestima-

tion error is a likely consequence.

5.5 Conclusion

Hedge fund returns frequently exhibit a strong degree of autocorrelation. As a

result, the economic risks of an investment in hedge funds are easily underestimated

and investment decisions can become biased. In this chapter we extend the seminal

work of Getmansky et al. (2004) on SR and market beta, by developing a number

of smoothing-adjusted downside risk measures and by allowing for nonnormal fat

tailed return distributions. In particular, VaR, ES for individual risk exposures,

correlation coefficient, and ELM reflecting downside systemic risk, are adjusted for

the autocorrelation present in reported returns. We show that the adjustment of

the downside risk measures for autocorrelation is more relevant when returns are fat

tailed than when they are normally distributed. A hedge fund case study reveals

that the unadjusted risk measures can considerably underestimate the true extent of

individual and multivariate risks. Finally, note that, although the risk-adjustment
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introduced in this chapter is applied to hedge funds only, the framework can also be

used to evaluate the risks of other alternative investment strategies. Investments in

real estate, art, collectible stamps, and other illiquid or opaque securities are also

known to exhibit strong autocorrelation in the reported returns.11 Also for these

assets, conventional risk measures need adjustments to correctly reflect the true level

of risk.

11See, for example, Ross and Zisler (1991), Campbell (2008), and Dimson and Spaenjers (2011).
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5.A Appendix: A more general framework

In the main text it is assumed that the hedge funds’ actual returns are a function

of only one market factor. In this appendix, it is shown that the results can also

be generalized to multiple factor models. See Fung and Hsieh (2004), Kosowski

et al. (2007), and Teo (2011) for examples of the use of such multi-factor models.

Assume that the actual returns of the two hedge funds have the following structure

X1,t =
N∑
n=1

β1,nRn,t + ε1,t and X2,t =
N∑
n=1

β2,nRn,t + ε2,t, (5.56)

where the variables Rn,t, n = 1, . . . , N , denote different factors. Furthermore, the

idiosyncratic risk factors ε1,t, ε2,t and the factors Rn,t are i.i.d. and the reported

returns are smoothed according to Eqs. (5.2)–(5.4). It can be shown that the results

of the previous cases are generalized into the following equations

• Value-at-risk

– Normal case

VaR(St, p) = σSΦ−1(1− p), (5.57)

where σ2
S =

(
σ2
R

∑N
n=1 β

2
n + σ2

ε

)∑K
k=0 θ

2
k.

– Heavy tail case

VaR(St, p) =

(
γR
∑N

n=1 β
α
n + γε

p

K∑
k=0

θαk

) 1
α

. (5.58)

• Expected shortfall

– Normal case

ES(St, y) =
σSφ

(
y
σS

)
1− Φ

(
y
σS

) , (5.59)

where σ2
S =

(
σ2
R

∑N
n=1 β

2
n + σ2

ε

)∑K
k=0 θ

2
k.

– Heavy tail case

ES(St, y) =
α

α− 1
y. (5.60)

• Correlation

ρ(S1,t, S2,t) =

∑K
k=0 θ1,kθ2,k((∑K

k=0 θ
2
1,k

)(∑K
k=0 θ

2
2,k

))1/2
∑N

n=1 β1,nβ2,nσ
2
Rn(

Var(X1)Var(X2)
)1/2 , (5.61)

with Var(Xi) =
∑N

n=1 β
2
i,nσ

2
Rn

+ σ2
εi

, i = 1, 2.
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• Extreme linkage measure

ELM(S1,t, S2,t) =

= 1 +

∑K
k=0

∑N
n=1

(
min(β1,nθ1,k, β2,nθ2,k)

)α
γR∑K

k=0

(
θα1,kγε1 + θα2,kγε2 +

∑N
n=1

(
max(β1,nθ1,k, β2,nθ2,k)

)α
γR

) . (5.62)

These results facilitate the estimation of the various risk measures when the

hedge fund returns are best modeled by more than one (market) factor alone.

5.B Appendix: Feller convolution theorem

This appendix recall a simplified version of the convolution theorem by Feller (1971)

and prove a related result.

Theorem 5.9 For n = 1, . . . , N , let (Xn) be independent random variables for

which

lim
s→∞

P(Xn > s)

γns−α
= 1, (5.63)

for some positive scale parameters (γn) and exponent α, and let (λn) be non-negative

constants (with at least one positive λn), then

lim
s→∞

P
(∑N

n=1 λnXn > s
)

∑N
n=1 λ

α
nγns

−α
= 1. (5.64)

The proof of Theorem 5.9 can be found in Feller (1971, chap. VIII.8). According

to this theorem, the probability that the convolution of independent random vari-

ables with Pareto tails and the same exponent is greater than some high threshold

can be approximated with the corresponding probability for a random variable which

has Pareto tails and the same exponent as well, but a different scale parameter.

The following proposition defines formally the result used in Eq. (5.44).

Proposition 5.10 For n = 1, . . . , N , let (Xn) be independent random variables for

which

lim
s→∞

P(Xn > s)

γns−α
= 1, (5.65)

for some positive scale parameters (γn) and exponent α, and let (λ1,n) and (λ2,n) be

non-negative constants (with at least one positive λ1,n and one positive λ2,n), then

lim
s→∞

1− P
(∑N

n=1 λ1,nXn ≤ s,
∑N

n=1 λ2,nXn ≤ s
)

∑N
n=1 λ̃

α
nγns

−α
= 1, (5.66)

where λ̃n = max(λ1,n, λ2,n).
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Proof First of all notice that

1− P

(
N∑
n=1

λ1,nXn ≤ s,

N∑
n=1

λ2,nXn ≤ s

)

≤ 1− P

(
N∑
n=1

λ̃nXn ≤ s,

N∑
n=1

λ̃nXn ≤ s

)

= 1− P

(
N∑
n=1

λ̃nXn ≤ s

)

= P

(
N∑
n=1

λ̃nXn > s

)
(5.67)

so that, using Theorem 5.9,

lim
s→∞

1− P
(∑N

n=1 λ1,nXn ≤ s,
∑N

n=1 λ2,nXn ≤ s
)

∑N
n=1 λ̃

α
nγns

−α
≤ 1. (5.68)

Only to simplify the notation in the remaining part of the proof, let us assume that

N = 3. In this case,

1− P

(
3∑

n=1

λ1,nXn ≤ s,
3∑

n=1

λ2,nXn ≤ s

)
≥ P(λ̃1X1 > s) + P(λ̃2X2 > s) + P(λ̃3X3 > s)

− P(λ̃1X1 > s, λ̃2X2 > s)

− P(λ̃1X1 > s, λ̃3X3 > s)

− P(λ̃2X2 > s, λ̃3X3 > s)

+ P(λ̃1X1 > s, λ̃2X2 > s, λ̃3X3 > s)

= P(λ̃1X1 > s) + P(λ̃2X2 > s) + P(λ̃3X3 > s)

− P(λ̃1X1 > s)P(λ̃2X2 > s)

− P(λ̃1X1 > s)P(λ̃3X3 > s)

− P(λ̃2X2 > s)P(λ̃3X3 > s)

+ P(λ̃1X1 > s)P(λ̃2X2 > s)P(λ̃3X3 > s),

(5.69)

so that

lim
s→∞

1− P
(∑3

n=1 λ1,nXn ≤ s,
∑3

n=1 λ2,nXn ≤ s
)

s−α

≥ lim
s→∞

(
3∑

n=1

P(λ̃nXn > s)

s−α
+ o(s−α)

)

=
3∑

n=1

λ̃αnγn,

(5.70)
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or

lim
s→∞

1− P
(∑N

n=1 λ1,nXn ≤ s,
∑N

n=1 λ2,nXn ≤ s
)

∑N
n=1 λ̃

α
nγns

−α
≥ 1, (5.71)

which completes the proof. �

Note that equation (5.66) implies

1− P(βX1 + λ1X3 ≤ s, θX2 + λ2X3 ≤ s) '(
βαγ1 + θαγ2 + (max[λ1, λ2])

αγ3
)
s−α.

(5.72)

for β, θ, λ1, λ2 strictly positive and s sufficiently large. This result has been used in

Eq. (5.44).

5.C Appendix: Subadditivity of VaR

This appendix shows that the VaR is subadditive when the tails of the distribution

of the returns of the assets behave according to a Pareto law.12

Proposition 5.11 For n = 1, 2, let (Xn) be independent random variables for

which, for any s sufficiently large,

P(Xn > s) = γns
−α, (5.73)

for some positive scale parameters (γn) and α ≥ 1, then the VaR measure is subad-

ditive, that is

VaR(λ1X1, p) + VaR(λ2X2, p) ≥ VaR(λ1X1 + λ2X2, p), (5.74)

for any λ1, λ2 ≥ 0 and any p sufficiently small.

Proof: For any p sufficiently small for the VaR to fall in the tail of the distribution,

one has

p = P
(
λnXn > VaR(λnXn, p)

)
= λαnγnVaR(λnXn, p)

−α, (5.75)

or,

VaR(λnXn, p) = θnp
−1/α, (5.76)

where θn = λnγ
1/α
n . Hence,

VaR(λ1X1, p) + VaR(λ2X2, p) = (θ1 + θ2)p
−1/α. (5.77)

12See Dańıelsson et al. (2010) for a more general framework.



Chap. 5 – Risk Measures of Autocorrelated Hedge Fund Returns 153

On the other hand, denoting Y = λ1X1 + λ2X2 and using Theorem 5.9, it follows

that

p = P
(
Y > VaR(Y, p)

)
= (θα1 + θα2 )VaR(Y, p)−α, (5.78)

or

VaR(Y, p) = (θα1 + θα2 )1/αp−1/α. (5.79)

The final result follows directly from the fact that (
∑n

i=1 xi)
θ ≥ ∑n

i=1 x
θ
i when all

xn ≥ 0 and θ ≥ 1. �

The previous arguments can be easily generalized to the case of N independent

random variables (Xn) with Pareto tails, with scale parameters (γn) and the same

exponent α ≥ 1,
N∑
n=1

VaR(λnXn, p) ≥ VaR

(
N∑
n=1

λnXn, p

)
. (5.80)

Notice that when the exponent α is not the same for all the random variables

(Xn), then the previous calculations are still valid, but one has to take into account

only the random variables with the heaviest tails, that is the ones with the smallest α.

5.D Appendix: Proof of Proposition 5.7

Given the equal betas, the true ELM(X1,t, X2,t) from Eq. (5.45) reduces to

ELM(X1,t, X2,t) =
βαγR

γε1 + γε2 + βαγR

=
1

γε1+γε2
βαγR

+ 1
.

(5.81)

The corresponding measure for the smoothed returns from Eq. (5.48) becomes

ELM(S1,t,S2,t) =

=

∑K
k=0

(
min(θ1,k, θ2,k)

)α
γε1
βαγR

∑K
k=0 θ

α
1,k +

γε2
βαγR

∑K
k=0 θ

α
2,k +

∑K
k=0

(
max(θ1,k, θ2,k)

)α . (5.82)

Comparing the two measures ELM(X1,t, X2,t) R ELM(S1,t, S2,t) shows

γε1
βαγR

K∑
k=0

θα1,k+
γε2
βαγR

K∑
k=0

θα2,k +
K∑
k=0

(
max(θ1,k, θ2,k)

)α
R

γε1 + γε2
βαγR

K∑
k=0

(
min(θ1,k, θ2,k)

)α
+

K∑
k=0

(
min(θ1,k, θ2,k)

)α
,

(5.83)
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or

K∑
k=0

((
max(θ1,k, θ2,k)

)α − (min(θ1,k, θ2,k)
)α)
R

γε1
βαγR

K∑
k=0

((
min(θ1,k, θ2,k)

)α − θα1,k)+
γε2
βαγR

K∑
k=0

((
min(θ1,k, θ2,k)

)α − θα2,k).
(5.84)

The elements on the left-hand side are all nonnegative (and some are strictly positive

if not all smoothing coefficients are equal), while the terms on the right-hand side

are all nonpositive (and some are strictly negative if not all smoothing coefficients

are equal). Hence, the left-hand side is always at least as large as the right-hand

side, or ELM(X1,t, X2,t) ≥ ELM(S1,t, S2,t). �
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5.E Appendix: Estimates of the smoothing coef-

ficients

Panel A: Equity Hedge index
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Panel B: Event-Driven index
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Figure 5.10 – Maximum likelihood estimates for the Equity Hedge and Event-
Driven indices of the smoothing coefficients (θk)
Returns reported by hedge funds (St) are weighted averages of current and past unobserv-
able returns (Xt), according to the model St =

∑2
k=0 θkXt−k. Unobservable returns are

assumed to be i.i.d. and the smoothing coefficients are assumed to satisfy the constraints
θk ∈ [0, 1], for k = 0, 1, 2, and

∑2
k=0 θk = 1. The estimations are based on rolling windows

of 60 months ending in the reference month.
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Panel A: Equity Hedge index
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Panel B: Event-Driven index
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Figure 5.11 – Linear regression estimates for the Equity Hedge and Event-
Driven indices of the smoothing coefficients (θk) and the market exposure (β)
Returns reported by hedge funds (St) are weighted averages of current and past unob-
servable returns (Xt), according to the model St =

∑2
k=0 θkXt−k. Unobservable returns

are assumed to be of the form Xt = βRt + εt, where Rt is the market return and εt
is an i.i.d. idiosyncratic risk factor. The smoothing coefficients are assumed to satisfy
the constraints θk ∈ [0, 1], for k = 0, 1, 2, and

∑2
k=0 θk = 1. As suggested by Getmansky

et al. (2004), consistent estimates of the parameters are obtained by running ordinary
least squares (OLS) regressions of the equation St = µ+β(θ0Rt+θ1Rt−1 +θ2Rt−2)+ut =
µ+ γ0Rt + γ1Rt−1 + γ2Rt−2 + ut, where ut = θ0εt + θ1εt−1 + θ2εt−2 and εt is i.i.d. In this
case, β̂ = γ̂0 + γ̂1 + γ̂2 and θ̂k = γ̂k/β̂. The estimations use the Standard and Poor’s 500
total return index as market factor and are based on rolling windows of 60 months ending
in the reference month.
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5.F Appendix: Small sample effects

This appendix analyzes how the EVT estimators used in this chapter are affected

by the small size of the sample. The reason for conducting this analysis is that

EVT estimators are usually applied to large data samples. Per contrast, our data

set is relatively small as it contains only 236 return observations. Therefore, it is

uncertain how reliable the parameter estimates presented in this chapter are.

To analyze this issue, Monte Carlo simulations of the market and idiosyncratic

components of hedge funds returns are used. First, a random sample from a standard

normal distribution is generated. Next, the outcomes in both the first and last

deciles of the sorted return observations are replaced by the corresponding random

numbers drawn from a Pareto distribution with tail index α = 3 and scale parameter

γ = 48.0.13 The result is a random sample normally distributed in the middle of the

distribution but with Pareto tails. A similar approach is used by Dańıelsson and

de Vries (2000). The parameter values are chosen to mimic the estimated S&P 500

index tail behavior.

Next, the same method is applied to generate two other samples. The scale

parameters are set equal to 5.0 and 2.6, respectively, which mimic the estimated

series of the idiosyncratic factors. With these random samples, Eqs. (5.1) and (5.2)

are used to simulate the behavior of the unobservable true returns of two hedge fund

indices as well as those of the corresponding reported smoothed returns. The betas

are set equal to 0.61 and 0.53, respectively. The thetas are set equal to 0.79, 0.10,

and 0.11, respectively, for the Equity Hedge index and to 0.67, 0.18, and 0.15 for

the Event-Driven index. These values equal the estimates for the two hedge fund

indices at the end of the sample (cf. Figure 5.11). This procedure is repeated 5,000

times to estimate the mean, as well as confidence bands, for the parameters.

Then, linear regressions are used to estimate the market sensitivity parameter

(β) and the smoothing coefficients (θ). We use moving windows of 60 observations

of random samples of 261 observations. Actually, the length of the moving windows

equals 62, but two observations are lost in the estimation process because of the

MA(2) nature of the model. Moreover, the random samples are chosen to slightly

exceed the length of our data set, which has 236 observations. As a result, we have

exactly 200 parameters estimates obtained from 200 moving windows of 62 obser-

vations. The results, reported in Table 5.4, show that all parameter estimates are

unbiased. However, because of the small size of the sample (only 60 observations),

the confidence intervals and the mean absolute errors are rather large.

13We also performed Monte Carlo simulations using Student’s t-random variables with three
degrees of freedom. The results are qualitatively similar.



158 Sect. 5.F – Appendix: Small sample effects

Table 5.4 – Monte Carlo simulations: Descriptive statistics of the estimates of
the market exposure and the smoothing coefficients
The table reports the true values and some descriptive statistics of the distributions of their
estimates of the market exposure (β·) and the smoothing coefficients (θ·,·) of the Equity
Hedge and Event-Driven indices. The calculations are based on ordinary least squares
regressions on 5,000 random samples designed to mimic the behavior of the negative tails
of the returns of the Standard and Poor’s 500 index and the idiosyncratic components of
the returns of the hedge fund indices. The true values of the parameters for the two hedge
fund indices are set equal to the estimates at the end of the sample (cf. Figure 5.11).

Parameter
True
Value

Mean
5th

percentile
10th

percentile
90th

percentile
95th

percentile

Mean
absolute

error

β1 0.61 0.619 0.464 0.498 0.743 0.790 0.078
θ1,1 0.79 0.790 0.644 0.678 0.910 0.949 0.072
θ1,2 0.10 0.102 0.000 0.000 0.187 0.216 0.054
θ1,3 0.11 0.109 0.000 0.003 0.194 0.223 0.054
β2 0.53 0.532 0.394 0.429 0.635 0.672 0.065
θ2,1 0.67 0.677 0.562 0.588 0.775 0.818 0.059
θ2,2 0.18 0.176 0.072 0.104 0.242 0.263 0.043
θ2,3 0.15 0.147 0.035 0.070 0.217 0.240 0.046

We find that the Hill estimates are quite stable. The simulations show that the

Hill estimates are very close to the true values (i.e., the values used to generate

the random samples). The average absolute difference found for the range between

the tenth and 25th observation equals 0.64. Furthermore, the confidence intervals

considerably reduce in size when the number of observations is increased. The scale

parameter estimates are also unbiased and show confidence intervals that decrease

in size with the number of observations used.

Subsequently, we calculate Hill estimates of the idiosyncratic term of the hedge

fund returns, and find that this Hill plot strongly resembles the one generated for

the S&P 500 index. The reason for this similarity is that the tail index of the market

index equals that of the idiosyncratic terms. Additionally, it is noted that the width

of the confidence intervals found for the idiosyncratic term estimates exceeds that

found for the market index. The reason is that the idiosyncratic terms are not

directly observable but need to be estimated. This estimation procedure increases

the statistical uncertainty. Next, the scale parameter of the idiosyncratic terms is

estimated. The results are very similar to those found for the Hill estimates of the

idiosyncratic terms.

Given that the tails of the systematic and idiosyncratic risk factors are Pareto

distributed, we use Eqs. (5.19) and (5.45) to calculate the exact values of VaR and

ELM and compare them with the Monte Carlo outcomes. Figure 5.12 depicts the
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Table 5.5 – Monte Carlo simulations: Bias and mean absolute error of the
estimates of the value-at-risk and extreme linkage measure
The table reports the bias and the mean absolute error of the estimates of VaR of the
Equity Hedge index and ELM between the Equity Hedge and Event-Driven indices, for a
few values of the size of the sample. The calculations are based on 5,000 random samples
designed to mimic the behavior of the negative tails of the returns of the Standard and
Poor’s 500 index and the idiosyncratic components of the returns of the hedge fund indices.
In the simulations, we set the values of the market exposure and the smoothing coefficients
for the two indices equal to the estimates at the end of the sample (cf. Figure 5.11). Based
on the estimates for the market exposures and the smoothing coefficients, the true values of
the risk measures are VaR = 11.7 and ELM = 0.39 (cf. Figure 5.7, Panel A, and Figure 5.9)

Number of
observations

VaR ELM

Bias
Mean

absolute error
Bias

Mean
absolute error

60 0.181 1.019 −0.046 0.110
150 0.055 0.658 −0.014 0.080
300 0.019 0.468 −0.002 0.064

estimated and true values of both VaR and ELM of the Equity Hedge index. Panel A

of Figure 5.12 shows that the procedure generates a minor positive bias of around

1.5% in the estimate of the true unobservable VaR.14 The bias is caused by the

functional form of Eq. (5.19) that can be shown to be convex in β. Given that β is

imprecisely estimated around its true value in small samples, the estimate for VaR

tends to be larger than the true value of VaR because of Jensen’s inequality.15 Of

course, the larger the sample used in the estimation, the more precise the estimate

of β and the smaller the bias. Our results show that the bias is about 0.5% when

estimations are performed on samples of 150 observations and it is smaller than

0.2% on samples of 300 observations (see Table 5.5). Although the bias is almost

negligible even in our small samples of 60 observations, the mean absolute errors are

somewhat larger and equal to about 10% of the true VaR. Similar to the case of the

bias, we find that mean absolute errors are much smaller in greater samples.

Compared with the above VaR results, our findings are less favorable for ELM

(see Figure 5.12, Panel B). In the ELM’s case, the bias is negative and approximately

10% of the true ELM. Moreover, the mean absolute error is much larger than that

14We also tried an alternative method to estimate the true VaR by running a linear regression
of a log-transformed version of Eq. (5.18). For this procedure the mean estimate is close to the
true value although it also appears to be biased. Moreover, the confidence intervals are wider than
those found through the method described above.

15Eq. (5.19) can be written as f(β) = (aβα + c)1/α, where a = γR/p and c = γε/p are both
positive. It can be shown that the second derivative of f(β) with respect to β is positive when

β > 0 and α > 1, so that Jensen’s inequality implies E[f(β̂)] ≥ f(E[β̂]) = f(β).
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for VaR, and equals around 30% of the true ELM. However, note that results of the

Monte Carlo simulations further reinforce the conclusions in Section 5.4 for ELM.

Unreported simulations show that the estimated ELM for smoothed returns is un-

biased. Hence, the true difference between ELM calculated on smoothed observable

returns and that calculated on true unobservable returns even exceeds the difference

reported in Figure 5.9. The simulation analysis further underscores the importance

of correcting the risk measures when returns are smoothed.
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Panel A: VaR of the Equity Hedge index
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Panel B: ELM between Equity Hedge and Event-Driven indices
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Figure 5.12 – Monte Carlo simulations: Bias and confidence intervals of the
estimates of the value-at-risk of the Equity Hedge index and of the extreme
linkage measure between the Equity Hedge and Event-Driven indices
The figure shows the mean values, and the real values as well, of the estimates of VaR
(Panel A) and ELM (Panel B) based on 200 moving windows of 60 observations of 5,000
random samples of 261 datapoints. The random samples are designed to mimic the be-
havior of the negative tails of the returns of the Standard and Poor’s 500 index and the
idiosyncratic components of the returns of the Equity Hedge and Event-Driven hedge fund
indices. In the simulations we set the values of the market exposure and the smoothing
coefficients for the two indices equal to the estimates at the end of the sample (cf. Fig-
ure 5.11). Based on the estimates for the market exposures and the smoothing coefficients,
the true values of the risk measures are VaR = 11.7 and ELM = 0.39 (cf. Figures 5.7
and 5.9). The dotted lines represent 80% confidence intervals.





Chapter 6

Summary and General
Conclusions

Leverage is an important element of financial activities. It is present in essentially

any field of the economy, from house financing to innovative financial instruments for

hedge funds. A large literature has analyzed the positive and negative effects that

leverage can have on economic growth and financial stability. This thesis studies

the characteristics of some of the financial instruments that are designed specifically

to exploit a leverage effect. The analysis aims at improving the understanding of

leveraged products and their role in modern financial markets. Proper insights into

the risks and benefits of leverage for the whole society may help to design a balanced

institutional framework in which these novel instruments can operate properly.

Securitization represented an important source of financing for banks before the

onset of the global financial crisis in 2007 and will likely return to be so in a few years.

The main driver of securitization was initially the diversification of risk, but at some

stage it also enabled leverage. Thus, a major question is whether the securitization

process is a factor that tends to increase or decrease the riskiness of the banks that

securitize. Nowadays, the tendency for regulators is to ask banks that securitize

their assets to retain a share of the issued bonds to mitigate moral hazard problems.

This requirement was often already satisfied in the past due to market practices.

However, the practice to retain the most junior tranches of the securitizations could

actually increase the risks of banks to incur large losses, because of the high level of

credit risk that is retained in those highly leveraged instruments. The first part of

Chapter 2 analyzes this issue and shows the relevance of the reinvestment process

on the final impact of securitization on bank risk. Because of the importance of

the reinvestment process, the second part of Chapter 2 looks at the impact that

securitizations had on the composition of the asset side of the balance sheets of

Italian banks. The analysis is also extended to data on individual loans, to study

163
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whether the loans that were securitized by Italian banks were more or less risky

than the new loans that were granted with the proceeds of the securitizations. The

results show that, on average, securitizations helped Italian banks to reshape their

balance sheets towards investments that were usually safer from the point of view

of credit risk (such as, interbank deposits and securities other than shares). At the

same time, the new loans that were granted with the proceeds of the securitizations

had higher average default rates than the loans that were securitized, thus signaling

that the loan portfolios of Italian banks were made riskier by securitizations.

Following the global financial crisis, many regulatory reforms have been adopted

worldwide. Broadly speaking, as a result of these overhauls banks are now required

to hold more capital and are incentivized to invest in safer and more liquid assets.

Holding more capital should help banks to face economic downturns, while holding

safer assets should reduce the likelihood that large losses materialize in bank balance

sheets. Chapter 3 analyzes the impact that extreme macroeconomic shocks can

have on bank losses and studies whether securitization can help to reduce the effects

of these common shocks. Because extreme macroeconomic shocks have significant

consequences even for the borrowers with the lowest default risk, it is shown that the

tail risk for banks is broadly independent of the quality of the assets in which the

banks invest. In addition, the securitization of riskier assets and the reinvestment in

safer instruments has only a mild impact on the tail risk of banks. The main drivers

are the macro shocks, not so much the portfolio composition. Given that having

less risky portfolios cannot mitigate the impact of extreme macroeconomic shocks,

this chapter highlights the importance of bank capital for financial stability.

Credit default swaps (CDSs) are the prototype example of credit derivates and

they represent one of the main instruments for taking leveraged credit exposures.

The determinants of CDS prices have been the subject of broad analyses, both

theoretical and empirical. Chapter 4 analyzes empirically whether the factors that

have been identified in the literature as important determinants of CDS spreads

have changed their role from before to after the onset of the global financial crisis.

The results show that CDS spreads have recently become much more sensitive to

the amount of leverage while volatility has lost its importance. Since the beginning

of the crisis, CDS spread changes have also been increasingly driven by a common

factor that our model was able to explain only in part. The exact identification of

this factor is an interesting topic for future research.

This thesis also studies the characteristics of downside and global measures of

individual and systemic risks for hedge funds. Since hedge funds invest in illiquid

assets and possibly also due to reporting issues the returns of this asset class
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usually exhibit serial dependence. Given that hedge fund returns are autocorrelated,

standard measures of risk are biased. Moreover, the distribution of hedge fund

returns tend often to show fat tails, thus making some common measures of risk

not appropriate. Chapter 5 provides for a methodology to correct risk measures

in order to deal with both problems of serial correlation and heavy-tailness. This

methodology is applied to global measures of risk, such as the Sharpe ratio and

pairwise correlation, and also to downside measures of risk, such as the value-at-

risk, the expected shortfall, and the extreme linkage measure. The latter measure

reflects the amount of interdependence among two or more returns deep into the

joint tail loss area. Corrected risk measures are found to be usually larger than

uncorrected measures. Hence, uncorrected measures tend to understate the true

risks for hedge funds. An empirical analysis shows that the correction can actually

be rather sizable. Moreover, correcting for autocorrelation is more relevant when

returns also exhibit heavy tails than in the usual setup based on normally distributed

returns.

Overall, this thesis sheds light on several aspects related to the riskiness of lever-

aged products, such as CDOs, CDSs, and hedge funds. In doing so, this thesis

possibly contributes to achieving better investment and regulatory practices.
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Summary in Dutch
Nederlandse Samenvatting

Financiële instellingen maken bij de exploitatie van hun activiteiten in grote mate

gebruik van de financiering door middel van vreemd vermogen (ook wel “leverage”

of het hefboomeffect genoemd). Financiële instellingen ontwikkelen in rap tempo

nieuwe producten om dit hefboomeffect optimaal uit te buiten en op deze wijze

ogenschijnlijk goedkopere financiering te bewerkstelligen. In de literatuur is reeds

veel onderzoek gedaan naar de positieve en negatieve effecten van deze vorm van

financiering door financiële instellingen op de economische groei en financiële sta-

biliteit in het vestigingsgebied van deze instelling. Dit proefschrift levert een bijdrage

aan deze literatuur door de kenmerken van een gedeelte van deze nieuwe producten

te analyseren. De analyse is gericht op het vergroten van de kennis ten aanzien

van deze producten en de invloed van deze producten op de economische omgeving

vast te stellen. Inzicht in de risico’s, kosten en baten van deze nieuwe financiële pro-

ducten is essentieel voor het bewerkstelligen van een evenwichtig economisch klimaat

binnen financiële instellingen en hun economische omgeving.

Een specifieke vorm van financiering welke een sterke opkomst heeft gekend in

de afgelopen jaren binnen financiële instellingen betreft de securisatie. Securisatie

is ontstaan uit de behoefte van financiële instellingen om de risico’s te diversifiëren.

Echter securisatie is ook verantwoordelijk voor het in grote mate verschuiven van

financiële producten naar afzonderlijke instituties om het hefboomeffect verder te

kunnen exploiteren. Een belangrijke vraag is of dat securisatie het aanwezige risico

binnen een financiële instelling heeft verkleind of juist vergroot. Toezichthouders

zijn geneigd financiële instellingen te verplichten een gedeelte van de gesecuriseerde

producten zelf aan te houden op haar balans, om aangepast gedrag (“moral hazard”)

te voorkomen. Financiële instellingen komen in de praktijk tegemoet aan deze eis

door de laagste tranches van de securisatie producten zelf aan te houden. Echter,

dit heeft tot gevolg dat banken de grootste kredietrisico’s, ondanks de securisatie,

nog steeds op hun balans houden. Deze werkwijze kan tijdens een crisis mogelijk

grote verliezen tot gevolg hebben. In het eerste gedeelte van Hoofdstuk 2 wordt
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dit probleem geanalyseerd en wordt aangetoond dat het achterhouden van de gese-

curiseerde producten op de balans van een bank van grote invloed is op het risico

profiel van de betreffende bank. Het tweede gedeelte van Hoofdstuk 2 bestudeert

de impact van securisatie op de samenstelling van de activazijde van de balans van

Italiaanse banken. Tevens worden data ten aanzien van individuele leningen geanal-

yseerd om vast te stellen of dat de gesecuriseerde leningen een hoger risicoprofiel

hebben dan de leningen welke tot stand zijn gekomen door de herinvestering van de

vrijgekomen gelden uit de securisatie. De resultaten tonen aan dat de securisatie

Italiaanse banken in staat heeft gesteld de vrijgekomen gelden uit de securisatie te

besteden aan veiligere activa uit het oogpunt van kredietrisico, zoals bijv. interban-

caire deposito’s en andere niet-risicodragende effecten. Maar omdat juist de betere

leningen werden securiseerd, is het afbetalingsrisico in de bestaande portefeuille wel

toegenomen.

Naar aanleiding van de huidige financiële crisis zijn veel hervormingen op het

gebied van wet- en regelgeving doorgevoerd over de gehele wereld. Eén van deze

maatregelen betreft de verplichting van banken om meer kapitaal aan te houden,

om op deze wijze banken weerbaarder maken tegen negatieve economische schokken.

Een andere maatregel betreft het stimuleren van banken om te investeren in veiligere

en meer liquide producten, om op deze wijze zorg te dragen voor een lagere kans op

grote verliezen. Hoofdstuk 3 analyseert de invloed van extreme macro-economische

schokken op de resultaten van banken en onderzoekt of dat de toepassing van se-

curisatie deze effecten van macro-economische schokken kan verminderen. Wij to-

nen aan dat de extreme resultaten van banken (een groot verlies) grotendeels on-

afhankelijk zijn van de kwaliteit van de activa waarin the banken investeren. Dit

wordt veroorzaakt door het feit dat macro-economische schokken niet alleen de

activa met een lage kredietstatus treffen, maar ook de meer kredietwaardige ac-

tiva. Investeren in velligere en meer liquide producten door banken, heeft dan ook

een zeer beperkt effect op de extreme resultaten van banken als gevolg van macro-

economische schokken. Extreme resultaten zijn een gevolg van macro-economische

schokken en niet zozeer van de samenstelling van de activa-portefeuille van een bank.

Dit onderbouwt het belang van het aanhouden van meer kapitaal.

Credit Default Swaps (CDS’s) zijn derivaten, welke veelvuldig door financiële in-

stellingen worden gebruikt voor het afdekken van kredietrisico. In de literatuur zijn

zowel empirische als ook theoretische onderzoeken beschikbaar die de determinanten

voor een CDS prijs analyseren. In Hoofdstuk 4 wordt geanalyseerd of de in de liter-

atuur aangeduide determinanten van de prijs van een CDS, tijdens de financiële crisis

dezelfde waarde behouden. Deze analyse toont aan dat de CDS prijzen gevoeliger
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zijn gebleken voor de financiering met vreemd vermogen (hefboomeffect), terwijl de

volatiliteit van minder invloed lijkt te zijn. Tevens lijkt de CDS prijs sinds het be-

gin van de crisis ook te worden bepaald door een gemeenschappelijke factor, welke

door het model slechts gedeeltelijk is te verklaren. Het is interessant om vervolg

onderzoek te doen naar deze gemeenschappelijke factoren.

Hoofdstuk 5 analyseert de karakteristieken van hedge fondsen en de invloed van

deze hedge fondsen en gëımplementeerde wet- en regelgeving op diversificatie en sys-

teemrisico. Hedge fondsen investeren voornamelijk in illiquide activa, welke meestal

in hoge mate serie correlatie vertonen. Deze hoge mate van serie correlatie tussen

de rendementen van hedge fondsen en het feit dat de rendementen grote uitschieters

(extreme waarden) vertonen, heeft tot gevolg dat het toepassen van de standaard

risico management praktijk die is gebaseerd op de normale verdeling niet voldoende

is om deze risico’s te beheersen. Hoofdstuk 5 voorziet in een nieuwe vorm van risico

management om aan deze karakteristieken, grote uitschieters en een hoge mate van

correlatie tussen de extreme waarden, tegemoet te komen. Naast de meetinstru-

menten van het standaard risico management, zoals bijv. de Sharpe ratio en de

paarsgewijze correlatie, worden ook specifieke neerwaarts risico maatstaven, zoals

de Value-at-Risk maatstaf, expected shortfall en de extreme samenhang maatstaf

geanalyseerd. De extreme samenhang maatstaf maakt de mate van wederzijdse

afhankelijkheid van twee of meer financiële producten voor de grootste uitschieters

zichtbaar. Het gebruik van specifieke risico meetinstrumenten geeft een beter inzicht

dan het aanpassen van de standaardmeetinstrumenten, daar deze vaak een onder-

schatting van het daadwerkelijke risico binnen de activaportefeuille van hedge fond-

sen weergeeft. Het empirische onderzoek wijst uit dat de invloed van correlatie en de

extreme waarden in de opbrengstenverdeling van grote invloed zijn op de gebruikte

meetinstrumenten.

Dit proefschrift levert een bijdrage aan meer inzicht in het gebruik van inno-

vatieve producten, zoals CDO’s en CDS’s, door financiële instellingen op het risi-

coniveau van een financiële instelling. Tevens wordt de invloed van hedge funds op de

economische omgeving geanalyseerd. Met deze analyses wordt beoogd een bijdrage

te leveren aan de creatie van een transparanter investeringsklimaat en effectievere

wet- en regelgeving.







Leveraged investments have become a fundamental feature of modern
economies. The new financial products allow people to take
greater-than-usual exposures to risk factors. This thesis analyzes
several different aspects of the risks involved by some frequently used
leveraged products: CDOs, CDSs, and hedge funds. It is shown that
these risks have indeed several facets and that misjudging them can
have severe effects for both individual investors and the global
financial stability. However, although leveraged products can be more
complex than other financial instruments, their characteristics in
terms of risks and returns can usually be understood rather well by
careful scholars. The aim of this thesis is to contribute to a better
understanding of some of the features of leveraged products and
provide useful insights on how to best use these new instruments.
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