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Abstract

This paper documents that speed is crucially important for high frequency trading strategies
based on U.S. macroeconomic news releases. Using order level data of the highly liquid S&P500
ETF traded on NASDAQ from January 6, 2009, to December 12, 2011, we find that a delay
of 300 milliseconds (1 second) significantly reduces returns by 3.08% (7.33%) compared to
instantaneous execution over all announcements in the sample. This reduction is stronger
in case of high impact news and on days with high volatility. In addition, we assess the
effect of algorithmic trading on market quality around macroeconomic news. Increases in
algorithmic trading activity have a positive (mixed) effect on market quality measures when
we use algorithmic trading proxies that capture the top of the orderbook (full orderbook).
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1. Introduction

News arrivals in financial markets are a driving force behind asset price

changes. In the early days of organized exchange-based trading a telex and

telephone, combined with good analytical skills, were enough for a competitive

edge. More recently, a basic internet connection would suffice. Nowadays, the

first trades based on new information arrive in the market before any human

trader can glance at a news feed. How is this possible? First of all, in to-

day’s markets about two-thirds of all (NASDAQ) dollar volume traded can be

attributed to fully automated, high frequency trading (Brogaard, 2010). Second,

the current round-trip latency for these high frequency traders (in case of co-

location) is less than 100 microseconds.1 Combine this with an ultra low-latency

(machine readable) news feed and it is clear that no human market participant

is able to compete purely based on speed.

It is not surprising that computers outperform humans in terms of speed.

More interesting is that within the universe of high frequency traders large dif-

ferences exist in trading speed that have a substantial day-to-day impact on

performance. Hasbrouck and Saar (2009) and Scholtus and van Dijk (2012)

describe the speed differences for interval-based high frequency traders. They

find that the fastest group of traders acts in 5 milliseconds (ms), whereas other

groups of relatively fast traders can be identified at speed levels of 50 ms and 150

ms. Scholtus and van Dijk (2012) further find that trading speed significantly

affects technical trading rule performance when traders are more than 200 ms

slower compared to instantaneous execution. Furthermore, the economic impact

of trading speed on performance increases over time.

This paper makes two important contributions to the literature on high fre-

quency trading around macroeconomic news announcements. First, the main

contribution of this paper is to examine the importance of speed on event-based

trading profitability around scheduled U.S. macroeconomic news announcements

with millisecond precision. This extends the work of Scholtus and van Dijk (2012)

1http://www.nasdaqtrader.com/Trader.aspx?id=colo
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who analyze the effect of speed using technical trading rules. Speed is most im-

portant when there are many traders making the same decisions. Not all mar-

ket participants, however, obtain identical technical trading signals at the same

time. By focusing on speed during macroeconomic news announcements we iden-

tify moments when the competition for good quotes is, without a doubt, fierce.

Second, we analyze the effect of algorithmic trading activity on market quality

during the periods with macro news. This is achieved by providing a detailed

analysis of market activity and market quality measures around macroeconomic

news arrivals.

We investigate the importance of speed for the profitability of strategies that

trade on news releases of 20 different U.S. macroeconomic variables by using

the highly liquid State Street S&P500 Exchange Traded Fund (ETF) traded on

NASDAQ. The period under consideration is January 6, 2009 up to December 12,

2011 (736 trading days and 800 macroeconomic news announcements of which

707 occur at different intraday moments). The exact moment the news becomes

available in the market is, with millisecond precision, obtained from the SIRCA

Global News Database. By randomizing the perfect foresight strategy (obtained

based on the value of the S&P500 index 1 minute after the news release) with pre-

determined degrees of error we are able to create different trading strategies. For

all strategies we measure the importance of speed by comparing the performance

of a strategy when signals are executed instantaneously with the performance

of the same strategy when signal executions are delayed by a certain amount of

time.

We find that trading speed is very important around macroeconomic news

announcements, both in economic and statistical terms. For success ratios of 60%

and higher, any delay from 10 ms up to 1 second leads to a statistically significant

decrease in performance. The economic significance of speed increases with the

degree to which trade direction is predicted accurately. Traders that can identify

the correct trade direction for 80% of the news announcements experience a

reduction in return of 0.26 (0.61) bps per event when trades are delayed with
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300 ms (1 second) compared to instantaneous execution. The corresponding

decline over all 707 announcements is 1.86% for a 300 ms delay and 4.31% for

a delay of 1 second. In case of a trader with perfect foresight (a success rate

of 100%), the loss for a delay of 300 ms (1 second) increases to 0.44 (1.04) bps

per event, or 3.08% (7.33%) over all 707 announcements. In relative terms (with

respect to the total return of a strategy), the loss of a strategy with a success

ratio of 80% that is delayed with 1 second is 12.64%. This is substantially higher

than the 2.03% relative decrease in performance when the execution of interval-

based technical trading strategies is delayed with 1 second (Scholtus and van

Dijk, 2012). The impact of speed on returns is higher in case of, for example,

announcements at 10:00 a.m., on days with high volatility, and for high impact

news, with declines in returns for a 1 second delay of 1.94, 1.61, and 2.08 bps

per event, respectively.

The impact of algorithmic trading on market quality during macroeconomic

news arrivals is analyzed by looking at message activity, spreads, orderbook

depth, trading volume, and realized volatility measures.2 We find that the pe-

riod around macroeconomic news is characterized by large (quoted) spreads, an

increase in volatility, a decrease in depth, and an increase in the algorithmic

trading proxies. By means of a regression analysis we find that the effect of algo-

rithmic trading on market quality during news depends on the type of algorithm

that is active. For algorithms active in the whole orderbook, increases in algo-

rithmic activity have a mixed effect on market quality. We find a positive effect

on, for example, depth and trading volume, whereas for the quoted half-spread

and volatility we find a negative effect. During macroeconomic news arrivals,

increases in algorithmic trading proxies that focus on the top of the book have a

positive effect on all market quality measures, except trading volume.

This paper is related to the rapidly growing literature on high frequency trad-

ing, algorithmic trading, and the effect of high speed trading on market quality,

2We cannot directly observe the activity of algorithmic traders during macroeconomic news
announcements. Therefore, we use message activity and several types of fleeting orders as
proxies for algorithmic trading activity.
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including Erenburg and Lasser (2009), Hasbrouck and Saar (2011), Hendershott,

Jones and Menkveld (2011), and Brogaard (2012).3 Erenburg and Lasser (2009)

find that 7 out of the 16 different types of macroeconomic announcements lead

to an increase in volatility. Furthermore, in the minutes surrounding macroeco-

nomic news there is an increase in the bid-ask spread and order aggressiveness and

a decrease in several measures of orderbook depth. Hasbrouck and Saar (2011)

conclude that increases in low latency (high frequency) activity improve market

quality measures such as intraday volatility, the quoted spread, and depth. The

results of Hasbrouck and Saar (2011) for intraday volatility and depth (spreads)

are confirmed by Brogaard (2012) (Hendershott et al. (2011)). In addition, Bro-

gaard (2012) finds, for 200 individual stocks traded on NASDAQ, an increase

in high frequency activity within 10 seconds of a macroeconomic news release,

which can be attributed to an increase in liquidity taking. We extend these pa-

pers by focusing specifically on the effect of an increase in algorithmic trading

on market quality during moments with macroeconomic news.

In addition to the aforementioned papers there exists a large literature con-

cerning the effect of macroeconomic news announcements on financial markets.

Whereas most early work finds that monetary news has an impact on stock mar-

ket returns (see Pearce and Roley (1985) and Hardouvelis (1987)), the evidence

with respect to real variables, such as industrial production, is mixed (compare

Jain (1988) with Pearce and Roley (1985)). However, when accounting for the

state of the economy (see McQueen and Roley (1993) and Boyd, Hu and Jagan-

nathan (2005)), looking at sufficiently small intraday intervals (Adams, Mcqueen

and Wood (2004) and Andersen, Bollerslev, Diebold and Vega (2007)), or in-

cluding additional information from news headlines (Birz and Lott Jr., 2011) the

stock market does show a price reaction to real macroeconomic news. Macroe-

conomic news not only affect stock prices, but also, equity volatility (Andersen

et al., 2007) and intraday price jumps (Evans, 2011). We extent this literature by

3For a more complete list on papers related to high frequency and algorithmic trading see
the literature overview provided in Gomber, Arndt, Lutat and Uhle (2011).
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documenting the impact of macroeconomic news announcements on (midpoint)

returns, volatility, and other market quality measures with millisecond precision.

The outline of this paper is as follows. Section 2 provides an overview of the

S&P500 ETF and macroeconomic news announcement data. Methods concern-

ing measures of market quality, algorithmic activity, and the importance of speed

are provided in Section 3. The results in Section 4 are followed by concluding

remarks in Section 5.

2. Data

2.1. Orderbook Level Data

In this study we use full orderbook information for the State Street S&P 500

Exchange Traded Fund (ETF) traded on NASDAQ over the period January 6,

2009 up to December 12, 2011.4 We discard trading days before Christmas or

following Thanksgiving as liquidity is low and trading is only possible in the

morning. We also remove May 6, 2010, the day of the flash crash. The total

number of trading days that remains in the sample period is 736.

Because NASDAQ does not directly provide the full orderbook we construct

this by means of the daily NASDAQ TotalView ITCH files. The TotalView ITCH

files contain recordings of a direct data feed product offered by NASDAQ. The

data elements in the file are order level data as well as trade messages, adminis-

trative messages, and net order imbalance data. We make use of order level data

and administrative messages. The order level data consists of messages to add

a new order (type A) and messages to modify existing orders (types E, C, X, D,

and U).5 The administrative messages provide system event messages (includ-

ing, for example, start and end of system and market hours), information about

4From June 5, 2009 to August 31, 2009 it was possible to use flash orders on NASDAQ.
Because flash orders are added to the top of the orderbook they can affect, for example, the
bid-ask spread. The flash order period is included in the analysis but any results that are
potentially affected by the inclusion of flash orders are tested for robustness.

5Message type E and C are execution messages (where E is an execution against the price
of the limit order originally put in and C is execution against a different price). Types X, D,
and U are order cancellations, deletions, and replace messages, respectively.
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trading halts and market participant positions. All messages have a time stamp

with potential nanosecond precision. However, this precision is not supported by

NASDAQ over the whole sample period. Therefore, we use millisecond precision.

2.2. Macroeconomic News Announcements

Table 1 provides an overview of the 20 U.S. macroeconomic news announce-

ments considered in this research. The list of intraday macroeconomic announce-

ments as well as the high, low, and consensus forecasts are obtained from Econ-

oday. News impact classifications (high, medium, and low) are based on the

categories provided at http://www.forexfactory.com.6

We use the SIRCA global news database to identify the exact millisecond

the macroeconomic news is first observed in the market. The SIRCA database

consists of the news messages distributed over the Thomson Reuters real time

network. For 2 macroeconomic releases we cannot find the correct arrival time

in the SIRCA global news database.7 Furthermore, the global news database

contains news up to November 30, 2011, 23:59:59 p.m. Hence, also for the 8

macro announcements that occur from December 1, 2011 up to December 12,

2011 we cannot obtain the exact moment the news was observed by the market.

For all 10 announcements without an exact SIRCA arrival time we use, unless

mentioned otherwise, the official announcement time as exact news arrival time.

Of the 736 days in the sample period 520 days have, in total, 800 intraday

macroeconomic news announcements that occur between 09:45 a.m. and 03:30

p.m. Of the 800 announcements, 707 take place on unique times. The remaining

93 news releases coincide with other announcements. In case multiple news

releases take place at the same official announcement time, the news arrivals

are considered as one announcement, for which we assign the time stamp of the

6Note that ForexFactory employs a news impact scale from 1 (low impact) to 4 (high
impact). We consider category 1 and 2 as low impact, category 3 as medium impact, and
category 4 as high impact news.

7This is the case for the ISM Services announcement on August 4, 2011, 10:00 a.m. and for
the FOMC minutes on November 22, 2011, 02:00 p.m.
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first announcement that takes place and the impact factor of the highest impact

announcement at that moment.

Table 1 shows that the announcements are spread uniformly over the sample

period, with 268 (178), 273 (169), and 259 (173) announcements (days with an-

nouncements) in 2009, 2010, and 2011, respectively. Most announcements occur

at 10:00 a.m. At all other official announcement times only one or two releases

take place. The Crude Oil Inventory statements take place weekly, whereas the

FOMC meetings are irregularly spaced. All other announcements are released

on a monthly basis and occur either 35 or 36 times in the database.

Figure 1 provides an overview of the inverse tangent transformation of the

differences in seconds between the official announcement time and actual news

arrival as observed in the SIRCA global news database. Positive values indicate

an announcement that takes place after the official announcement time. Al-

though, on average, macroeconomic news arrivals are reasonably punctual, large

differences exist. Most reliable are the releases of the preliminary and revised

University of Michigan Consumer confidence data, whereas the FOMC rate de-

cisions can occur far from the officially scheduled time. Macroeconomic news

arrivals before the official announcement time are scarce.8

2.3. Synchronization Issues

The data in this research comes from two different sources, namely NASDAQ,

and Thomson Reuters (TR), that are not necessarily perfectly synchronized. We

use the TR time stamp directly on the NASDAQ data (which we assume is time

stamped with the ‘true’ time). This could lead to some inaccuracy in the exact

8For 13 macroeconomic news announcements the actual SIRCA arrival time is before the
official announcement time. For 3 of the 13 announcement the news arrives in the second
before the official announcement time. For 4 of the 13 announcement the actual arrival time
is more than one minute before the official announcement time. This holds for the FOMC
rate decisions of March 15, 2011 (time difference of -68.71 seconds), March 16, 2010 (time
difference of -110.06 seconds), and June 22, 2011 (time difference of -176.67 seconds). The
most extreme difference of -1164.12 seconds is found for the consumer confidence data on
June 28, 2011 (official announcement time 10:00 a.m.). 3 of the 13 announcements that occur
before the official announcement time coincide with another news arrival at the same official
announcement time.
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time news is observed in the market. For example, when we apply a TR clock that

runs 2 milliseconds (ms) late (early) with respect to the data with a NASDAQ

clock, we will observe the news 2 ms before (after) it is actually available.9

For the analysis of algorithmic trading and market quality around news an-

nouncements the synchronization problem is unlikely to distort the results. The

intervals that we consider around the news event are large compared to a poten-

tial millisecond distortion due to mis-synchronization. The importance of speed

analysis, however, may be affected by mis-synchronization. Both an early and

late TR clock lead to an understimation of the importance of speed because

either news is not yet available (late clock) or news has already arrived (early

clock).

We do not have access to data that would prevent mis-synchronization. There-

fore, we assess the degree of mis-synchronization not only by considering official

announcement times and the news arrival times from SIRCA, but also by includ-

ing refined news announcement times (empirical announcement times). That is,

we search for early or late reactions to news around the SIRCA arrival time. Re-

fined news arrival times are constructed by means of raw message activity 50 ms

before and after the SIRCA event time. The refined news arrival time is the mo-

ment that corresponds to the peak in message activity in the interval around the

SIRCA event time. In case structural mis-synchronization is present we would

expect to observe a systematic relation between the refined announcement times

and SIRCA announcement times.10 Furthermore, in case of mis-synchronization

the importance of speed analysis would lead to different results when we use

empirical arrival times instead of SIRCA arrival times.

Figure 2 presents an overview of the difference between the SIRCA news

arrival time and refined news arrival time (y-axis) against the inverse tangent

9To clarify this confusing issue a bit more. In case the TR clock is 2 ms late w.r.t. the
NASDAQ clock it is 10:00:00.500 a.m. on TR, whereas it is 10:00:00.502 on NASDAQ. Now,
when we use the TR time stamped news on NASDAQ we observe news at 10:00:00.500 that
should not have been available until 10:00:00.502.

10This does not completely rule out mis-synchronization. It is also possible that the degree
of mis-synchronization is time varying due to differences in the accuracy of time stamps during
periods with a lot of news (TR) or high message activity (NASDAQ).
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transformed difference of the official announcement time and SIRCA news arrival

time (x-axis). The vertical dashed lines separate events for which the difference

between the official announcement time and SIRCA time is more than 500 ms.

We observe no clustering of announcements at a certain difference between the

SIRCA announcement time and refined announcement times. In addition, the re-

sults for the analysis of the importance of speed (provided in Section 4.3) are vir-

tually identical when we use refined news arrival times instead of the SIRCA news

arrival times. Hence, there is no evidence of structural mis-synchronization.11

3. Methodology

3.1. Market Activity and Automated Trading Activity

Unlike in Brogaard (2012) or Chaboud, Chiquoine, Hjalmarsson and Vega

(2009) we do not observe whether specific transactions involve high frequency

traders. Therefore, we use several proxies of automated trading activity. The first

proxy for algorithmic trading is total message activity. Total message activity

(NMSGS) is the sum of all messages (orders) send to NASDAQ during a specific

time period. This proxy is not the cleanest measure of algorithmic activity

because it can simply reflect high market-wide activity of a large number of

human traders. The second proxy of algorithmic activity is the percentage of

fleeting orders. The concept of a fleeting order is introduced by Hasbrouck and

Saar (2009) and is defined as an order added and removed from the orderbook

within a short period of time (s milliseconds). The time periods that we consider

are 50 ms and 100 ms and this proxy is denoted as NFLTs.12 We expect that

NFLTs is a reliable proxy for algorithmic activity because it is unlikely that

human market participants can (consistently) submit and cancel orders within

50 or 100 ms.

11We also find no evidence for mis-synchronization when we use empirical announcement
times obtained by searching for the peak in activity in the 25 or 100 ms around the SIRCA
arrival time.

12O’Hara (2010) describes how fleeting orders (but also, for example, flash orders or ‘match
only’ orders) lead to a situation where it is no longer clear what can be considered a quote.
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The remaining proxies for algorithmic trading are all related to the concept of

fleeting orders. The first variant is the number of fleeting executions (NFLTsexe).

This is the number of orders added to the orderbook that are executed within

50 or 100 ms. However, as with the NMSGS proxy, the number of fleeting exe-

cutions can simply be the result of an increase in market-wide (human) market

order submissions. In addition, we include the number of fleeting orders that

improve upon the best bid or ask quote (NFLTsba) and the number of fleeting

orders that improve upon the best bid or ask quote that leave a worse order-

book when removed (NFLTsmo). Scholtus and van Dijk (2012) refer to this

measure as missed opportunities. Both the NFLTsba and the NFLTsmo are

measures of algorithmic trading activity for which it is impossible that these are

systematically affected by human activity.

When discussing the results we will focus on those algorithmic trading proxies

that are not distorted by human activity (NFLTs, NFLTsba, and NFLTsmo).

Of these proxies, the NFLTsba, and NFLTsmo focus mainly on the top of the

orderbook, whereas the NFLTs measure targets the whole orderbook. It is likely

that algorithmic activity that affects the top of the orderbook has a different

effect on market quality than algorithmic activity in the full orderbook for two

reasons. First, because some market quality measures are simply more related to

the top of the orderbook (e.g. quoted half-spread) or full orderbook (e.g. depth).

Second, because algorithms that target the top of the orderbook may be used by

different market participants than algorithms that target the whole orderbook.

3.2. Market Quality

Market quality during macroeconomic news announcements is investigated

by measuring liquidity and volatility. The liquidity measures can be divided into

depth, volume, and spread variables. The orderbook depth measures include the

quoted number of shares at the best bid and ask price (NBBA) and the quoted

number of shares on the bid and ask side up to five cents away from the best

bid or ask quote (DP ). The depth measures are comparable to those used by
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Erenburg and Lasser (2009) and Hasbrouck and Saar (2011). The trading volume

measure we use is the dollar volume traded ($V ).

For the spread measures, we use the quoted half-spread and the 5 and 60

seconds realized spreads. All spread measures use the midpoint at time t, de-

noted mt, which is the the average of the bid (pb,t) and ask (pa,t) price at time

t and are in basis points (bps) relative to the midpoint. The quoted half-spread

at time t and x second realized spread at the time of trade i (ttri) are defined

as QHSt = (pa,t − pb,t) /2mt and RSxttri =
(
qi(pttri −mttri+xsec

)
)
/mttri

, respec-

tively, where pttri is the transaction price of trade i and qi is 1 (-1) if trade i is

buyer (seller) initiated. The realized spread gives an estimate of the revenue of

liquidity providers and assumes that the liquidity provider can close open po-

sitions in x seconds. The losses of liquidity providers, or the profit of liquidity

demanders, is captured by the x second adverse selection costs (ADV x), or price

impact, calculated as ADV xttri =
(
qi(mttri+xsec

−mttri
)
)
/mttri

.13

The volatility measures we consider are the realized variance, RV x =
∑(x/v)

j=1 mr2j ,

and realized bi-power variation, BPx = π
2

∑x/v
j=2 |mrj−1||mrj|. Both measures

are calculated over intervals of 1 (x = 60) and 5 (x = 300) minutes. Each 1

(5) minute interval is divided in subintervals of v = 1 (v = 5) seconds. The

subintervals are indexed by the subscript j (j = 1 . . . (x/v)). At the end of each

subinterval j we calculate the midpoint return, mrj = ln(mj/mj−1). Note that

mj is the midpoint at the change of each v seconds. When j = 1, mj−1 is the

midpoint present at the change of an x second interval.14 By using midpoint

returns we reduce noise in the volatility measures due to the bid-ask bounce.

However, some measurement error remains as a result of midpoint discreteness.

For a continuous price process with martingale properties RV and BP converge

to the same limit (Barndorff-Nielsen and Shephard, 2004).

13Hendershott et al. (2011) use 5 minute and 30 minute realized spreads and adverse selection
costs under the assumption that this is the time market makers, on average, take to neutralize
positions. We assume that fully automated market makers balance their books more frequently.

14In case of the first x minute trading interval of the day and j = 1, mj−1 is the first midpoint
observed on the trading day.
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We also assess the effect of algorithmic activity (AA) on market quality (MQ)

during news. This is done by means of the regression model in Equation (1)

where, for announcement k, MQ is either NBBA (number of shares at the best

bid and ask quote), DP (depth of the orderbook up to 5 cents away from the

best bid or ask), QHS (quoted half-spread), RSx (x second realized spread),

ADV x (x second adverse selection costs), RV x (x second realized variance), or

BPx (x second realized bi-power). The algorithmic activity measures AA include

total message activity (NMSGS), the number of fleeting orders (NFLTs), the

number of fleeting executions (NFLTsexe), the number of fleeting orders that

improve the best bid or ask quote (NFLTsba), and the number of missed op-

portunities (NFLTsmo). All fleeting order variants are considered at the s = 50

and s = 100 ms level.15 The regression model is given by

MQk = α + βAAk + γDN + δ(DNAAk) + ζDF

+
5∑
l=1

ξlIDl,k +
35∑
l=1

νlTTl,k +
2∑
i=1

µlMQk,t−i

+
2∑
i=1

θlRV 300k,t−iI(MQk) + ε.

(1)

Equation (1) also includes a dummy variable that identifies days with macroe-

conomic news (DN) and the interaction variable DNAA, which captures the effect

of algorithmic activity during a macroeconomic news announcement. In addi-

tion, we include a dummy for the period with flash orders (DF ) and correct for

autocorrelation (by means of lagged market quality variables), intraday patterns

(the ID dummy variables), and month-by-month variation in market quality (the

TT dummy variables).16 In case the market quality variables are not related to

15In the remainder of this paper we present and discuss only the results for the 50 ms fleeting
order types. The results of the 100 ms fleeting order proxies, which are very similar to the
results of the 50 ms proxies, can be found in the internet appendix.

16There are 6 moments during the day with macroeconomic news (see Table 1) and our
sample consists of 36 months. Hence, we include 5 dummies to correct for intraday patterns
and 35 dummies to correct for month-by-month variation in market quality.
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volatility we also include two lags of 5 minute realized volatility.17 All variables,

except for the dummy variables, are standardized, and market quality is signed

such that a positive δ always indicates an improvement in market quality.18

The regression is performed for windows of [−5, 5], [0, 5], [−60, 60], and [0, 60]

seconds around the event time 0 with lagged market quality over intervals match-

ing the interval size around the event. In case of the [−5, 5] and [−60, 60] second

windows the dependent realized volatility measure is the average of the 1 (5)

minute realized volatility over the 1 (5) minutes before and after the event. For

the [0, 5] and [0, 60] second windows around the event the dependent realized

volatility is simply the 1 or 5 minute realized volatility over the interval starting

at the official announcement time. The lagged volatility values always relate to

the two 5 minute intervals preceding the event window. Because of the wide win-

dows around the event the regression is estimated only for official announcement

times.

Both Chaboud et al. (2009) and Hendershott et al. (2011) point out that

the regression in Equation (1) has a potential endogeneity problem caused by

traders that base their choice of manual or automatic trading on current market

conditions as liquidity and volatility. This is indeed the case on a daily level.

However, we focus on the short time periods during the day when news arrives.

We assume that the choice of manual or automated trading is made before the

macroeconomic announcement and that traders stick with this decision for at

least a few minutes.

3.3. Trading Procedures and The Importance of Speed

The trading rules considered in this paper are event-based. This means that

all trade signals are based on macroeconomic news that arrives in the market.

17Note that I(MQk) = 1 if MQk ∈ {NBBA, DP, QHS, RSx, ADV x} for all x, and
I(MQk) = 0 otherwise.

18Improvements in market quality are increases in NBBA, DP , and $V and decreases in all
other market quality variables. Decreases in realized spreads around events indicate a reduction
of market power of market makers during news announcements. Decreases in adverse selection
costs (price impact) are also considered favorable and suggest that market makers manage to
reduce losses to liquidity demanders by, for example, fast quote updates.
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The only information we use is the exact millisecond arrival time of the news.

Trade signals are not constructed by means of interpreting the news announce-

ment, but by the value of the S&P500 ETF 1 minute after the announcement.

Buy (sell) signals are provided for announcements which are followed by a price

increase (decrease) in the first minute after the news. No price change leads

to no signal (neutral position). Of course, in reality investors do not have per-

fect foresight and have to determine the trade direction by means of the released

macroeconomic data. Therefore, we re-sample the perfect foresight signals 10,000

times to create success ratios (or hit ratios) for determining trade direction rang-

ing from 50% to 100%. Each success ratio can be considered as a separate trading

strategy.

Returns are based on an investment of $1 in a strategy that buys or sells

(has a capacity level of) 1 ETFs during each announcement.19 The returns of

buy (rbuy,c,t1,t2) and sell (rsell,c,t1,t2) signals of a trade starting at time t1 (the

moment you take a position) to time t2 (the moment a position is unwinded)

for capacity level c are calculated as rbuy,c,t1,t2 =
pbid,c,t2−pask,c,t1

pask,c,t1
and rsell,c,t1,t2 =

−1× pask,c,t2−pbid,c,t1
pbid,c,t1

, respectively. The holding period considered in this paper is

1 minute. Most of the returns during macroeconomic news announcements are

realized in the first seconds. Therefore, the results are robust to (large) changes

in the holding period.

The importance of speed during macroeconomic news announcements is cal-

culated as the difference between the return of a trading strategy (with a certain

success ratio) when signals are executed with small delays (ranging from 10 ms

up to 1 second) and the return of the same trading strategy when signals are ex-

ecuted instantaneously. We assume that the delay captures all potential sources

of speed differences between market participants. These include, for example,

the time it takes from the moment an order is sent to the exchange until it is

19The importance of speed is initially investigated for a buy/sell order involving 1 ETF,
whereas robustness checks are performed for a trade capacity of 100, 200, 500, and 1,000
ETFs. For each capacity level a price-impact price per ETF is calculated as the average price
paid for the capacity level number of ETFs.
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processed, and the (computational) time it takes to construct a trading signal.

We determine the statistical significance of the importance of speed by test-

ing whether the returns in the first part of the holding period are significantly

larger than the returns in the rest of the holding period. Assume we have z

macroeconomic announcements and a strategy with a holding period from t1 to

t2 and a delay δ. We then have z ·
(
t2−t1
δ

)
midpoint returns of which z1 = z

returns occur in the first subinterval of the holding period (from t1 to t1 + δ)

and z2 =
((

t2−t1
δ

)
− 1
)
· z returns occur in the remaining

(
t2−t1
δ

)
−1 subintervals.

Speed is of significant importance if the nonzero returns in the set of z1 returns

that occur in the first subinterval are significantly different from the nonzero

returns in the set of z2 returns that occur in the subintervals from t1 + δ up to

t2. This is tested by means of a Wilcoxon rank-sum test.

4. Results

4.1. Market Quality around News Announcements

Figures 3 to 6 display the market quality measures NBBA, DP , and QHS

during the day. Figures of the remaining market quality variables can be found

in the internet appendix.20 All figures consist of two subplots. In subplot (a) the

market quality measure is provided over the complete trading day. This figure

is constructed by calculating the average market quality measure per minute.21

The market quality measure per minute is averaged separately for days with news

(regardless of the intraday time point of the news) and days without news. By

re-sampling the days without macroeconomic news 10,000 times, we construct a

90% confidence interval around the no-news market quality measure. In subplot

(b) we repeat this exercise for days with news at 10:00 a.m. In this plot days

20Throughout the remainder of this section it holds that all figures and tables of discussed
results without explicit reference to a figure or table number can be found in the internet
appendix. The internet appendix is included in all electronic versions of this paper.

21All spread measures, except for RSx and ADV x are completely time weighted. RSx
and ADV x measures are obtained by (1) calculating the average realized spread and adverse
selection costs per ETF traded within each second, and (2) averaging the spread measures over
the seconds in the minute.
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with news at other intraday time points are not considered as news days (but

as no news days) and the market quality measure is not averaged every minute

but every ten seconds. The realized variance and realized bi-power measure are

constructed over 1 minute and 5 minute intervals, and, therefore, both in subplot

(a) and (b), provided at these frequencies.

The depth measures NBBA (Figure 3) and DP (Figure 4) show a large in-

crease in the number of shares in the (top) of the orderbook when the end of

the trading day approaches. When we compare days with and without macroe-

conomic news it is clear that on news days both the NBBA and DP are lower

than on days without news. In fact, DP is significantly lower throughout the

whole trading day. Apparently market participants reduce their positions in the

orderbook on news days to prevent unintentional executions in case of large news

surprises. Around 10:00 a.m. we observe a macroeconomic news related decline

in both depth measures. The decline (and recovery) is symmetric around the

official announcement time and starts (ends) three minutes before (after) the

event time. All other intraday moments with macroeconomic news are also char-

acterized by a significant decline in DP . Our results for the depth measures are

in line with Erenburg and Lasser (2009) who find, for the NASDAQ 100 ETF

(QQQQ) traded on the Island ECN over the period January 1, 2002 to Septem-

ber 22, 2002, a significant decrease (with respect to no news days) in depth from

2 minutes before to 4 minutes after 10:00 a.m.

Figure 5 provides the quoted half-spread (QHS). As all other spread mea-

sures, the QHS is calculated in basis points (bps) with respect to the midpoint.

From Figure 5 (a) it appears that the QHS on news days is, during the complete

trading day, slightly higher compared to days without news. This difference is

significant for announcements at 10:00 a.m. and 02:15 p.m. In Figure 5 (b) we

focus solely on 10:00 a.m. events and observe that the increase in QHS, from

0.50 bps on no news days to 0.65 bps on days with news, is substantial. This

increase starts (ends) about 3 minutes before (after) 10:00 a.m. Erenburg and

Lasser (2009) also find a significant increase in QHS at 10:00 a.m. that starts
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1 minute minute before 10:00 a.m. and ends within 3 to 4 minutes after 10:00

a.m. Their results also show a small increase in QHS around 10:00 a.m. on days

without news that is not present in our data. For the RS5 (ADV 5) the news

days exhibit low (high) values compared to days with no news. Around 10:00

a.m. the RS5 (ADV 5) are significantly lower (higher) than normal.22

The average trading volume ($V ) over the day is U-shaped and, on average,

higher when the day contains a news arrival. The large spike at 10:00 a.m.

and smaller spikes at, for example, 10:30 a.m. and 02:15 p.m. are significantly

higher than the normal volumes on no news days. The intraday patterns of 5

minute realized variance (RV 300) and 5 minute realized bi-power (BP300) both

exhibit a U-shape over the day with a spike at 10:00 a.m. that coincides with

macroeconomic news. An analysis of the 1 minute realized variance (RV 60) and

realized bi-power (BP60) leads to the same conclusion.

For DP , RS5, ADV 5, and $V we also observe small increases or decreases

around 10:00 a.m. for days without news. In order to analyze this further, we

provide for DP , in Figure 6 (a), an overview of what happens at 10:00 a.m. in

clock time on days without news. Despite the fact that there is no news, there is

still a rapid decrease in depth that starts exactly at 10:00 a.m. and ends at about

175 ms after 10:00 a.m. This move in DP is, most likely, triggered by interval-

based (clock-based) traders that act every hour, minute, or second. Figure 6 (b)

provides DP on days with news. Compared to days without news (Figure 6 (a))

DP is much lower. Furthermore, on days with news we see that in clock time

DP already decreases before 10:00 a.m. up to about 800 ms after 10:00 a.m. In

event time (0 ms is centered on the exact announcement time from the SIRCA

database) this decline reaches its minimum value exactly at the news release. In

the second following the event, DP is quite volatile and increases again.

22The results for the RS1 and ADV 1 are comparable to RS5 and ADV 5, whereas the RS60
and ADV 60 results are more noisy, suggesting that a 60 second window might already be too
long to calculate sensible realized spreads and price impact measures.
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4.2. Algorithmic Activity around News Announcements

Figure 7 displays the NFLT50 algorithmic trading proxy over the day and

around 10:00 a.m. All algorithmic trading proxies are at a higher level on news

days compared to no news days. In addition, all proxies exhibit a U-shape over

the trading day with a spike at 10:00 a.m., which corresponds to the pattern

found for most of the market quality measures. Algorithmic trading proxies that

are restricted to the top of the orderbook (NFLT50ba and NFLT50mo) are less

U-shaped, but show more (and higher) peaks due to macroeconomic news. The

NFLT50 and NMSGS proxies show a reaction before the event with a decrease

that starts about 5 minutes before 10:00 a.m. The decrease is most pronounced

(and significant) for the NMSGS measure.

The results suggest that during macroeconomic news announcements peaks

in algorithmic activity coincide with lower market quality. The effect of increases

(or decreases) in algorithmic trading activity on market quality is formally in-

vestigated by estimating the regression model provided in Equation (1). The

regression is estimated for four windows and five different algorithmic trading

proxies. Table 2 provides the results for the NFLT50 proxy and a 60 seconds

window around the event. The table shows least squares estimates of the coef-

ficients γ and δ from Equation (1) for all intraday moments with news arrivals,

and for news arrivals at 09:55 a.m., 10:00 a.m., 02:00 p.m., and 02:15 p.m.

The estimated γ coefficients in Table 2 for depth (NBBA and DP ) and the

quoted half-spread (QHS) confirm that, over all announcements and all individ-

ual times, a news arrival is characterized by a significantly lower market quality.

With a few exceptions this also holds for volatility (RV x and BPx) and ADV 5.

$V always increases significantly during a macroeconomic news announcement.

Evidence for RS5 is mixed with a significant positive impact over all announce-

ments, macroeconomic news at 09:55 a.m., and announcements at 02:00 p.m.,

whereas we find a significant increase in RS5 (a significant negative impact on

market quality) for 02:15 p.m. announcements. The RS60 and ADV 60 measures

are in most cases not significant.
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The estimates for the δ coefficient from Equation (1) (the effect of algorith-

mic trading during announcement days on market quality) indicate that more

algorithmic trading leads to a significant improvement in NBBA, DP , $V , and

ADV 5 over all announcements and, to a lesser extent, over the four different

individual announcement times. An increase in algorithmic trading leads to a

significant decrease in market quality based on the QHS and RS5. Also here the

observed effect is strongest over all announcements. For the volatility measures

we find that an increase in algorithmic trading leads to an increase in volatility

(decrease in market quality) when one pools all macroeconomic news announce-

ments. For the 10:00 a.m. announcements, however, more algorithmic trading

has a mixed effect on volatility. The regressions with RS60 and ADV 60 as de-

pendent market quality variables only result in significant coefficients (for which

the signs match the estimates of RS5 and ADV 5, respectively) at 10:00 a.m.

To assess whether the results in Table 2 hold in general, we summarize the

regression results for the four windows and five algorithmic trading proxies over

the whole day and for announcements at 10:00 a.m. and 02:15 p.m. in Tables

3 to 6. Positive (negative) δ coefficients significant at the 10% or 5% level are

marked with a + (-), whereas coefficients significant at the 1% level are marked

with a ⊕ (	), respectively. Insignificant coefficients are represented by a dot.

Table 3 provides an overview of the effect of algorithmic trading during an-

nouncement days on market quality for a 60 second window around the event.

The findings for the NFLT50 proxy, as provided in Table 2, hold to a lesser ex-

tent for the NMSGS proxy. Differences between NMSGS and NFLT50 occur

at 10:00 a.m. for RS60, ADV 60, and volatility. Whereas the NMSGS proxy

suggests a negative impact of an increase in algorithmic activity on volatility,

the NFLT50 measure indicates a mixed effect. When we compare the NFLT50

proxy with the alternative algorithmic trading proxies (NFLT50exe, NFLT50mo,

and NFLT50ba) it becomes clear that their effects on the market quality vari-

ables NBBA, DP , RS5, and ADV 5 are similar. Furthermore, for the NFLT50

proxy we find that increases in algorithmic trading lead to a deterioration in
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market quality in terms of the QHS, an improvement in market quality in terms

of $V , and a mixed effect on volatility. When we compare this to the effect of an

increase in algorithmic activity targeted at the top of the orderbook (NFLTba

and NFLTmo) the effect on QHS and volatility now is positive, whereas the ef-

fect on $V becomes negative. Hence, the effect of algorithmic activity on market

quality depends on which algorithms are active. Algorithms that are active on

top of the orderbook have a positive impact on market quality, whereas the effect

of algorithms that target the whole orderbook is more mixed.

By comparing the results of different windows around the event it is possible

to assess when algorithmic trading impacts market quality (before or after the

news event) and whether the impact is short or long lived. The results for the

[−5, 5] seconds window around the event can be found in Table 4. The differ-

ences compared to the [−60, 60] window are small. The impact of algorithmic

trading on the (noisy) RS60 and ADV 60 market quality measures decreases.

Furthermore, we find a more positive (negative) effect of increases in algorithmic

trading on DP ($V and ADV 5) for the [−5, 5] window compared to the [−60, 60]

window.

When we move to the [0, 60] seconds event window, provided in Table 5,

the most noteworthy difference is the large decrease in the number of significant

δ coefficients for the depth variables. For the [0, 5] window around the event

(Table 6) the effect of an increase in algorithmic trading on the NBBA market

quality measure completely disappears. At the same time, the number of positive

relations between algorithmic activity and DP remains unchanged compared to

the [−60, 60] window. Our findings suggest that the impact of an increase in

algorithmic activity on NBBA and DP is more important before the event than

after the event. When the number of algorithmic traders increases, only the

fastest traders might still have an opportunity to update quotes at the news

arrival. Slow algorithmic traders will have to reconsider every position in the

orderbook before the macroeconomic announcement takes place. Shortly after
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macroeconomic news events algorithms do provide liquidity but at a higher price

(not at the best bid or ask quote).

In Tables 2 through 6 we find for the 02:15 p.m. announcements, which

only include the FOMC rate decisions, less significant relations between market

quality and algorithmic trading. One explanation is that with a small number of

announcements statistical relations are harder to detect. Another explanation is

that the FOMC decisions are not very punctual and, therefore, can fall outside of

the event windows around the official announcement time. This can also explain

why for the [−5, 5] and [0, 5] windows the sign of the significant coefficients does

not always match the sign of the (significant) coefficients over the whole trading

day (as is the case for the [−60, 60] and [0, 60] windows).

The results of the regression analysis can be summarized as follows. First,

the choice of the algorithmic trading proxy matters. For the basic proxy over the

full orderbook, NFLT50, we find that an increase in algorithmic activity has a

mixed effect on market quality with, a positive effect on NBBA, DP , $V , and

ADV 5, a negative effect on QHS and RS5, and a mixed effect on the volatility

variables. For proxies that focus on the top of the orderbook we observe a

positive effect on all market quality measures, except for $V . Second, the results

for the depth measures NBBA and DP suggest that algorithmic traders position

themselves in the orderbook before the event and provide liquidity during the

announcement, but at a higher price. Third, most significant relations between

algorithmic trading and market quality are obtained for the regression over all

announcements and the announcements at 10:00 a.m.

It is interesting to relate our results to the findings of Hasbrouck and Saar

(2011), Hendershott et al. (2011), and Brogaard (2012) to see whether their

findings for algorithmic trading and market quality also hold during periods of

macroeconomic news. Hendershott et al. (2011) and Hasbrouck and Saar (2011)

find that, over the whole trading day, the effect of an increase in algorithmic trad-

ing on several spread variables is positive. We show that this effect is the same

for increases in algorithmic trading during macroeconomic news announcements
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for an algorithmic trading proxy that focuses on the top of the orderbook. Using

an algorithmic trading proxy over the full orderbook, the effect of an increase in

algorithmic trading during news on spreads can also be negative.

For depth, Hendershott et al. (2011) (Hasbrouck and Saar (2011)) find that,

over the whole trading day, increases in algorithmic trading are associated with

lower (higher) depth. Our findings indicate that, just before a macroeconomic

news announcement, increases in algorithmic activity lead to more depth which

is in line with Hasbrouck and Saar (2011). Shortly after the macroeconomic

news arrival, the effect of increases in algorithmic trading on quoted depth up to

five cents from the best bid and ask remains positive, whereas the effect on the

number of shares quoted at the best bid and ask dissapears.23 It appears that

algorithms position themselves just before the macroeconomic news, whereas

shortly after the news arrival they only contribute to depth away from the best

bid or ask quote. This could explain why Brogaard (2012) finds that, in the

ten seconds following macroeconomic news, proprietary high frequency traders

significantly reduce the liquidity that they supply for large stocks with 2.4%. The

negative relationship between algorithmic activity and depth (at the best bid or

ask quote), observed by Hendershott et al. (2011), can be explained by the fact

that their data, consisting of NYSE stocks from 2001 up to 2005, is considerably

different from the more recent NASDAQ data in Hasbrouck and Saar (2011) and

this research.

The effect of an increase in high frequency trading activity has a stabilizing

effect on intraday volatility according to both Hasbrouck and Saar (2011) and

Brogaard (2012). This is also the case around macroeconomic news announce-

ments, except if you proxy algorithmic trading over the full orderbook. In this

case the effect of an increase in algorithmic activity on volatility is mixed, with

a positive effect for 10:00 a.m. announcements and a negative effect (increase in

volatility) over all announcements, and macroeconomic news at 02:15 p.m.

23Hasbrouck and Saar (2011) do not consider quoted depth at the best bid and ask quote.
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The results of the regressions including all announcements using the algorith-

mic trading proxies over the full and top of the orderbook differ for $V , QHS,

and volatility. The differences may be explained as follows. When submitting

limit orders investors face the risk of adverse information events that trigger an

undesirable execution and the risk of favourable information events that prevent

the execution of desireable trades (Handa and Schwartz (1996), Foucault (1999),

and Liu (2009)).24 These risks decrease when traders can update quotes faster or

when they are better informed. In case of macroeconomic news announcements

all market participants have access to the same source of information, but differ-

ences exist in the time they need to obtain, process, and act on the news.25 As a

result, some traders are better informed but only for a very short period of time.

Better informed (Menkhoff et al., 2010) and faster (Hendershott and Riordan,

2012) traders are more likely to be active on top of the orderbook, especially dur-

ing periods of news induced volatility. Hence, mainly these traders are captured

by the algorithmic trading proxies that focus on the top of the orderbook.

Cvitanić and Kirilenko (2010), Biais, Foucault and Moinas (2011), Mar-

tinez and Roşu (2011), Foucault, Kadan and Kandel (2012), and Jovanovic and

Menkveld (2012) analyze theoretical consequences of speed differences that arise

due to the introduction of high-frequency traders. It is most natural to classify al-

gorithmic activity on top of the orderbook as middlemen activity (Jovanovic and

Menkveld, 2012) or market making activity (Foucault et al., 2012). Jovanovic

and Menkveld (2012) show that in case adverse selection is present, the introduc-

tion of informed middlemen that update quotes with a speed that prevents being

picked-off, can alleviate this problem. The empirical analysis finds a decrease

in QHS and $V when middlemen get introduced. This is consistent with the

effects that we observe for increases in algorithmic trading on top of the order-

book. In the framework of Foucault et al. (2012) liquidity suppliers and liquidity

24Empirical work on the choice between limit orders and market orders is provided by Bloom-
field, O’Hara and Saar (2005) and Menkhoff, Osler and Schmeling (2010).

25The resulting faster access to information appears to be valuable. Hendershott and Rior-
dan (2012), and Brogaard, Hendershott and Riordan (2012) find that high frequency trading
activity is more informative than the actions of slower traders.
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takers face a tradeoff between costs of monitoring and profits of being the first

to seize new opportunities. The model suggests that increases (decreases) in the

QHS are expected when investments for liquidity takers (market makers) lead

to lower monitoring costs.26 This would mean that our proxies of algorithmic

trading over the top of the orderbook mainly capture algorithmic market making

activity, whereas the proxies over the full orderbook detect algorithmic liquidity

taking. In the model of Biais et al. (2011) an increases in high frequency trad-

ing can arise from different types of financial institutions. This broad approach

is captured better by the more general algorithmic trading proxy over the full

orderbook. The empirical implications of an increase in high frequency activity

over a wide array of market participants include an increase in short term volatil-

ity and both an increase (due to a higher ability to find trade opportunities) or

decrease (due to larger adverse selection costs) in $V .27 The model implications

match our findings for increases in algorithmic activity over the full orderbook.

Our results for the QHS and volatility in case of the algorithmic trading proxy

over the top of the orderbook are also consistent with the empirical analysis of

Menkhoff et al. (2010) who find that more informed traders (in our case algorith-

mic traders active in the top of the orderbook) help to narrow the spread and

dampen increases in volatility by placing more (aggressive) limit orders.

4.3. The Importance of Speed

Figures 8 to 12 provide plots that show the importance of speed for the

performance of event-based trading strategies around macroeconomic news an-

nouncements using SIRCA news arrival times. Figure 8 (a) depicts the average

buy and hold profit for the strategy with perfect foresight in basis points (bps)

for all macroeconomic news announcements, high impact news, news that occurs

26Reductions in monitoring costs are the result of investments in technology.
27Increases in high frequency trading lead to an increase in $V when the fraction of fast

traders is either low or high. In this case, the participation rate of high frequency traders of
68.5% (Brogaard, 2010) can be considered as high.
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on low volatility days, and news in the year 2011.28 The average total cumula-

tive return over the first minute following the announcement is 9.99 bps. High

impact news leads to a stronger overall reaction (13.05 bps), with most of the

difference being realized in the first 5 seconds. News on days with low volatility

and news arrivals in 2011 have, with 6.27 bps and 8.39 bps, respectively, lower

average cumulative returns.

The importance of speed for the perfect foresight strategy during all macroe-

conomic announcements can be found in Figure 8 (b). The delays on the x-axis

indicate the amount of time (in milliseconds) that execution is delayed with re-

spect to instantaneous execution. In case the delay leads to a significant decline

in returns compared to the instantaneous strategy this is indicated by means of

a ∗, �, and •, respectively. It appears that for any delay level returns decrease

significantly. The magnitude of this decrease ranges from 0.02 bps per event for

a delay of 10 ms to 0.44 (1.04) bps per event at the 300 ms (1 second) delay

level. This means that, over all 707 macroeconomic events, an investor who is 10

ms, 300 ms, or 1 second slower compared to instantaneous execution loses 0.13%,

3.08%, or 7.33%, respectively. In relative terms (with respect to the cumulative

returns) the loss at the 300 ms (1 second) delay level is 4.95% (11.76%). This

result shows that trading speed is more important for event-based trading com-

pared to the clock-based technical trading rules in Scholtus and van Dijk (2012)

who find a relative importance of speed for a 1 second delay in execution of about

-2.03%.

In Figure 9 (a) we analyze the importance of speed separately for each year in

the sample period, whereas Figure 9 (b) depicts the importance of speed for days

with high and low volatility.29 Speed appears to be less important for delays of

25 ms up to 150 ms in the year 2011. Furthermore, for delays of 500 ms and up

speed is considerably more important in 2009 compared to the other years. A

28We include cumulative returns for subsamples related to news impact, volatility, announce-
ment year, and intra-day announcement time that are further analyzed in the remainder of
this section.

29We sort the days based on the maximum intraday VIX value and analyze the top and
bottom half separately.
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delay of 1 second in 2009 (2010) leads to a decrease in performance of 1.62 (0.73)

bps per event.30 Aside from these small differences in terms of magnitude and

significance, the importance of speed seems relatively stable during our sample

period. Whereas for the clock-based strategies in Scholtus and van Dijk (2012)

speed is most important on low volatility days, Figure 9 (b) shows that event-

based trading strategies benefit more from high volatility. For all delay levels the

decreases in returns on high volatility days are statistically significant. Up to

300 ms the difference between high and low volatility days is limited. From 400

ms and up speed is much more important on high volatility days. The decrease

in returns is 0.92 bps per event for a delay of 400 ms and 1.61 bps per event for a

1 second delay. The importance of speed on high volatility days can also explain

why speed is more important in 2009 for delays of 500 ms up to 1 second. Of

the total number of 352 high volatility days in our sample, 181 occur in 2009.

From the comparison of the importance of speed for news arriving at different

hours of the day (see Figure 10 (a)) we observe that speed is especially important

for the 10:00 a.m. announcements, with decreases in returns of 0.51 (1.94) bps for

a delay in execution of 150 ms (1 second). For announcements at 09:55 a.m. and

03:00 p.m. we find no significant differences in returns due to delayed execution.

The pronounced importance of speed at 10:00 a.m. could be caused by the

fact that more high impact news announcements occur at this time compared

to the other announcement times (see Table 1). To investigate this in more

detail, Figure 10 (b) shows the importance of speed per news impact category.

The results indicate that speed is indeed more important for high impact news

arrivals. Instead of the 1.04 bps decrease in performance per event, now a 1

second delay leads to a return which is about 2.08 bps lower compared to the

same strategy executed instantaneously. Over all 292 announcements with a high

30In order to investigate whether flash orders can explain the higher importance of speed in
2009 we also analyze the importance of speed in 2009 separately for the 59 (179) announcements
within (outside) the period flash orders are active (June 5, 2009 to August 31, 2009). The
results, provided in the internet appendix, indicate that flash orders do not influence the
results.
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impact during the sample period the total loss would accumulate to 6.06%. For

low impact announcements we find no significant decreases in returns.

Figure 11 provides the importance of speed for announcements grouped by

the time difference between the SIRCA news arrival time and the official an-

nouncement time (subplot (a)) as well as the importance of speed for large and

small news surprises (subplot (b)).31 From the results in Figure 11 (a) can be

concluded that speed is more important when the SIRCA arrival time is close to

the official announcement time. A 1 second delay when trading announcements

with a SIRCA announcement time that is within 250 ms of the official announce-

ment time leads to a return that is 1.53 bps lower compared to instantaneous

execution. The magnitude of the news surprise also influences the importance of

speed. For announcements containing large surprises a 1 second delay leads to

a significant decrease in returns of 1.15 bps per announcement, whereas this is

only 0.67 bps per announcement for small surprise news.

The impact of speed for different trade sizes in Figure 12 (a) indicates that

there is little difference in the importance of speed when the strategy with perfect

foresight is executed with 100, 200, 500, or with 1,000 ETFs. The only exception

occurs when one delays the perfect foresight strategy implemented with a 1,000

ETFs trade size with 1 second. The resulting loss per event is, with 1.75 bps,

higher than the losses of approximately 1.04 bps for the other trade sizes.

The importance of speed for different trading strategies is depicted in Fig-

ure 12 (b). Different trading strategies are created by means of mixing the perfect

foresight strategy with error levels ranging from 10% (a success ratio of 90%) to

50%. The results show that, for traders with lower abilities to determine the

correct trade direction, speed is less important. Strategies with a success rate

of 50% do not generate positive returns and are not impacted by trading speed,

whereas returns significantly decrease for all delay levels for success ratios of 60%

31Note that in subplot (a) announcements with a SIRCA announcement time before the of-
ficial announcement time are ignored. News surprises are calculated as the absolute difference
between the actual number and the consensus forecast, relative to the consensus. Announce-
ments without an actual or consensus number are ignored. Large (small) surprise news are
announcements in the top (bottom) half of news surprises.
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and up. The magnitude of the losses for a trader with a success ratio of 100%

is 0.44 bps (1.04 bps) per event in case trades are executed with a delay of 300

ms (1 second). The decrease in returns due to a delay of 300 ms (1 second) for

traders with success ratios of 90%, 80%, and 70% is 0.35 (0.82), 0.26 (0.61), and

0.17 (0.38) bps, respectively. Whether the effect of being slow has any economic

significance depends on the investor. For example, an investor who considers a

loss of 2% on an event-based trading strategy as significant (this corresponds to

losing 0.28 bps per event over 707 announcements), will find that this threshold

is breached for delays of 150 ms and up for the perfect foresight strategy and for

delays of more than 200 ms, 300 ms, and 500 ms in case of a strategy with a

success ratio of 90%, 80%, and 70%, respectively.

To determine whether the announcement time has an impact on the impor-

tance of speed Figures 13 and 14 show the cumulative returns (a) and importance

of speed (b) for the perfect foresight strategy using the refined (empirical) SIRCA

announcement times and official announcement times, respectively. For the re-

fined announcement times in Figure 13 we find results similar to the normal

SIRCA news arrival times (Figure 8). The main difference is that speed is no

longer statistically significant for the delays of 10 ms and 25 ms. For delays above

25 ms the magnitude of the importance of speed does not change visibly. This

indicates that a small change in the news arrival time has a limited impact on re-

sults and that there is no evidence of mis-synchronization between the Thomson

Reuters and NASDAQ clock.

For the official announcement times in Figure 14 we find higher average cu-

mulative returns that increase faster in the first 5 seconds compared to the cu-

mulative returns based on the SIRCA announcement times. Consequently, the

importance of speed for the official announcement times is higher, with a 0.90

bps decrease in returns per event at a delay of 400 ms up to a 2.40 bps decrease

in returns per event at a delay of 1 second. This is remarkable since in most in-

stances the SIRCA announcement time is well beyond the official announcement

time (see Figure 1).
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The main difference in the importance of speed using official announcement

times compared to the SIRCA announcement times is the inclusion of the pe-

riod which ranges from the official announcement time up to the SIRCA arrival

time (interval 0). We compare interval 0 to the interval with the same length

as interval 0 following the SIRCA news arrival time (interval 1). During interval

0, which is characterized by low depth and large spreads, (clock-based) trades

can lead to relatively large returns. High pre-announcement returns in interval

0 compared to the post-announcement returns in interval 1 will explain the high

importance of speed using official announcement times instead of SIRCA news

arrival times.32 Unless the pre-announcement period contains any information

that can be used for a trading strategy, for example, because some market par-

ticipants receive the news through a more competitive news feed, the importance

of speed using official announcement times is of no practical relevance because

trade direction cannot be determined.

The possibility that the high importance of speed using official announcement

times is caused by (clock-based) pre-announcement trading activity in a low

liquidity environment is investigated by means of Figures 15 and 16. The 10 ms

midpoint returns on days without news (Figure 15 (a)) show a clear increase at

exactly 10:00 a.m. to about 0.09 bps. The increase in midpoint returns lasts

about 200 ms and the most likely explanation is clock-based trading activity. On

days with news (Figure 15 (b)) we observe two interesting differences in clock time

compared to days without news. First, returns already start to increase about

150 ms before 10:00 a.m. Second, at 10:00 a.m. the returns are considerably

larger compared to days without news (0.30 bps versus 0.09 bps) and remain

high for at least 1 second. Figure 16 (a) provides an overview of clock-based

activity on news days separately when the SIRCA announcement time is either

within 1 second or after 1 second of the official announcement time. It appears

that, in both instances, the results are comparable to Figure 15 (b). When the

32When we simply compare the magnitude of the returns in interval 0 and interval 1 we
find that the absolute size of returns is higher in interval 0. The internet appendix provides a
scatterplot with more details of this analysis.
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SIRCA arrival time is more than 1 second after the official announcement time

returns remain high due to the sensitive pre-announcement situation, whereas

for announcements within 1 second of the official announcement time returns are

high due to both activity in the pre-announcement period and the first reactions

to the news.

Finally, in Figure 16 (b) we assess to what extent returns in interval 0 have

information about the cumulative returns up to 30 intervals (with the same length

as interval 0) in the future.33 The analysis is performed separately for news that

arrives within 250 ms of the official announcement time or between 250 and

500 ms, 500 and 750 ms, or 750 and 1000 ms from the official announcement

time. The results in Figure 16 (b) indicate that only for announcements that

occur within 250 ms of the official announcement time, the sign of the return

in interval 0 has a significant relation with the sign of the cumulative return

in interval 5 up to 30 following the SIRCA announcement time. For the other

groups of announcements, we do not find evidence that the return in interval

0 contains any information. It is possible that the longer intervals contain the

same information but, due to additional activity of other market participants,

the information is more difficult to observe.34 Overall, we find little evidence

that market participants can successfully act on information in interval 0 or on

information before the official announcement time. This means that the results

of the high importance of speed using official announcement times is mainly due

to large returns of pre-announcement trading in a period with low depth and

33This is done by comparing the sign of the return in interval 0 with the sign of the cumulative
log return in each of the future intervals, ignoring announcements for which the return in
interval 0 is zero. We test whether the number of times the sign of the return in interval 0
matches the sign of the cumulative return is significantly higher (indicated by means of a •) or
lower (indicated by means of a �) compared to a random benchmark. This is done by means
of the binomial cdf and a probability of success of 50%.

34The internet appendix provides returns of the (in-sample) trading strategy based on the
information in interval 0. In addition, it provides figures with hit ratios (HRs) when we use
the returns in the 200 ms to 50 ms before the SIRCA arrival time or the returns in the 200 ms
to 50 ms before the official time to construct trade signals used at the official time and SIRCA
news arrival time. A surprising result is that HRs based on the 200 ms before the official
announcement time are statistically significant for cumulative returns of the future interval 4
to 30 following the official announcement time. The HRs, however, do not exceed 60% and are
too low for speed to be important.
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large spreads. The high importance of speed using official announcement times

is not relevant, because it is impossible to successfully determine a trade signal.

From this section we can conclude that during macroeconomic news trading

speed is both of statistical and economic significance. We find that, per event,

losses due to trading speed for the perfect foresight strategy range from 0.02 bps

for a 10 ms delay up to 0.44 and 1.04 bps for delays of 300 ms and 1 second,

respectively. Over all 707 announcements this accumulates to a loss of 7.33%

at the 1 second delay level. A trader with a success ratio of 90% loses 0.82

bps per event when he is 1 second slower compared to instantaneous execution,

whereas this is 0.61 (0.38) bps per event in case of a success ratio of 80% (70%).

In addition, we find that speed is more important for high impact news, for

large news surprises, in 2009, on high volatility days, in case the SIRCA arrival

time is close to the official announcement time, and at 10:00 a.m. Although the

importance of speed calculated using the official announcement time is higher

than by using the SIRCA announcement times, it has no practical relevance.

5. Conclusion

This paper investigates the importance of speed for U.S. macroeconomic news

based trading rules as well as the impact of algorithmic trading activity on market

quality around macroeconomic news arrivals. This is done by means of analyzing

full orderbook activity of the highly liquid S&P500 ETF traded on NASDAQ over

the period January 6, 2009 up to December 12, 2011 (736 trading days). Exact

news arrival times are obtained from the SIRCA global news database.

All market quality measures and algorithmic trading proxies, except for the

realized spreads and adverse selection costs, show a clear reaction to news an-

nouncements at 10:00 a.m. When we regress market quality on the algorithmic

trading proxies we find that the effect of algorithmic trading on market quality

depends on the choice of the algorithmic trading proxy. For the basic proxy

that measures algorithmic activity over the whole orderbook, evidence is mixed.

Increases in algorithmic trading during news lead to more depth and trading
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volume, but also larger quoted half-spreads. The effect on volatility is positive

if one considers only announcements at 10:00 a.m., but negative if one pools all

macroeconomic news announcements. When we use a proxy that focuses on the

top of the orderbook, the effect of an increase in algorithmic trading during news

now leads to a decrease in trading volume, but the effect on all other market

quality variables is positive.

We find that trading speed is of statistical and economic importance for the

return of a macroeconomic news based trading strategy. For a success ratio

of 80%, 90%, and 100%, a 300 ms (1 second) delay in execution leads to a

decrease in return of 0.26, 0.35, and 0.44 bps (0.61, 0.82, and 1.04 bps) per event,

respectively. Over all 707 macroeconomic news announcements the losses at the

1 second delay level accumulate to 7.33% in case of the perfect foresight strategy

and 4.31% in case of a success ratio of 80%. The relative loss (with respect to

the total return of the strategy) at a success rate of 100% (80%) and a delay of 1

second is 11.76% (12.64%), which is considerably more compared to the relative

importance of speed of 2.03% for clock-based trading strategies in Scholtus and

van Dijk (2012). In addition, speed is more important for announcements in

2009, at 10:00 a.m., with a high news impact factor, on days with high volatility,

with a SIRCA announcement time that is close to the official announcement

time, or for announcements with a large news surprise. Trade size only impacts

the importance of speed when the trade size is 1,000 ETFs and the delay in

execution is 1 second.
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Cvitanić, J., Kirilenko, A., 2010. High frequency traders and asset prices. Work-

ing paper, California Institute of Technology.

Erenburg, G., Lasser, D., 2009. Electronic limit order book and order submission

choice around macroeconomic news. Review of Financial Economics 18, 172–

182.

Evans, K.P., 2011. Intraday jumps and US macroeconomic news announcements.

Journal of Banking and Finance 35, 2511–2527.

Foucault, T., 1999. Order flow composition and trading costs in a dynamic limit

order market. Journal of Financial Markets 2, 99–134.

Foucault, T., Kadan, O., Kandel, E., 2012. Liquidity cycles and make/take fees

in electronic markets. Journal of Finance, Forthcoming.

Gomber, P., Arndt, B., Lutat, M., Uhle, T., 2011. High-frequency trading.

Working paper, University of Frankfurt.

Handa, P., Schwartz, R.A., 1996. Limit Order Trading. Journal of Finance 51,

1835–1861.

Hardouvelis, G.A., 1987. Macroeconomic Information and Stock Prices. Journal

of Economics and Business 39, 131–140.

Hasbrouck, J., Saar, G., 2009. Technology and liquidity provision: The blurring

of traditional definitions. Journal of Financial Markets 12, 143–172.

Hasbrouck, J., Saar, G., 2011. Low-latency trading. Working paper, Johnson

School Research Paper Series No. 35-2010.

Hendershott, T., Jones, C.M., Menkveld, A.J., 2011. Does algorithmic trading

improve liquidity? Journal of Finance 66, 1–33.

35



Hendershott, T., Riordan, R., 2012. Algorithmic trading and the market for

liquidity. Journal of Financial and Quantitative Analysis, Forthcoming.

Jain, P.C., 1988. Response of Hourly Stock Prices and Trading Volume to Eco-

nomic News. Journal of Business 61, 219–231.

Jovanovic, B., Menkveld, A.J., 2012. Middlemen in limit-order markets. Working

paper, VU University Amsterdam.

Liu, W.M., 2009. Monitoring and limit order submission risks. Journal of Fi-

nancial Markets 12, 107–141.
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Figures and Tables

Table 1: An overview of the number of macroeconomic announcements.

all days 2009 2010 2011

trading days 736 248 250 238

days with news 520 178 169 173

news announcements 800 268 273 259

unique ann. times 707 238 239 230

high impact news ann. 292 95 103 94

medium impact news ann. 334 115 110 109

low impact news ann. 81 28 26 27

09:45 a.m. Chicago PMI (med) 35 12 12 11

09:55 a.m. Mich Sentiment-Prel (high) 36 12 12 12

Mich Sentiment-Rev (med) 35 12 12 11

10:00 a.m. Construction Spending (low) 35 11 12 12

Factory Orders (med) 36 12 12 12

Business Inventories (med) 35 12 12 11

Leading Indicators (low) 35 12 12 11

New Home Sales (high) 35 12 12 11

Consumer Confidence (high) 35 12 12 11

ISM Index (high) 35 11 12 12

ISM Services (high) 36 12 12 12

Pending Home Sales (high) 35 12 12 11

Wholesale Inventories (low) 36 12 12 12

Philadelphia Fed (high) 35 12 12 11

Existing Home Sales (high) 35 12 12 11

10:30 a.m. Crude Inventories (med) 133 46 44 43

11:00 a.m. Crude Inventories (med) 20 6 8 6

12:30 p.m. FOMC Rate Decision (med) 3 0 0 3

Pending Home Sales (high) 1 0 1 0

02:00 p.m. Treasury Budget (med) 34 10 12 12

FOMC Minutes (high) 23 7 8 8

02:15 p.m. FOMC Rate Decision (med) 20 8 8 4

02:30 p.m. Treasury Budget (med) 1 1 0 0

03:00 p.m. Consumer Credit (low) 36 12 12 12

This table provides the number of trading days and news announcements over
the whole sample period (January 6, 2009 up to December 12, 2011). In addi-
tion, the number of news messages are split up per impact category, intraday
moment, and exact macroeconomic announcement. For each macroeconomic
announcement is also indicated whether this is a high, low, or medium (med)
impact announcement.
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Table 2: Regression coefficients of the algorithmic trading proxy NFLT50 on market quality measures using
the [-60,60] window around all intraday moments that potentially have a macroeconomic announcement.

all day, N=7,360 09:55AM, N=736 10:00AM, N=736 02:00PM, N=736 02:15PM, N=736

γ δ γ δ γ δ γ δ γ δ

NBBA -0.690‡ 0.034† -0.842‡ 0.085 -0.821‡ 0.051 -0.647‡ 0.279∗ -0.406‡ -0.024

DP -0.962‡ 0.035‡ -1.099‡ 0.116‡ -0.976‡ 0.106‡ -0.696‡ 0.084 -0.178‡ -0.011

$V 1.458‡ 0.055‡ 1.574‡ 0.037 0.871‡ -0.080 0.751‡ 0.168 0.432‡ 0.187‡
QHS -0.359‡ -0.058‡ -0.171‡ -0.248‡ -0.410‡ -0.109‡ -0.326‡ -0.041 -0.750‡ -0.019

RS5 0.490‡ -0.164‡ 0.884‡ -0.429‡ 0.150 -0.280‡ 0.774‡ 0.250 -0.325‡ -0.072

ADV 5 -0.603‡ 0.141‡ -0.905‡ 0.347‡ -0.288‡ 0.234‡ -0.799‡ -0.271 0.152 0.043

RS60 -0.015 -0.022 0.738‡ -0.540‡ -0.181† 0.056 -0.276 0.156 -0.118 -0.135

ADV 60 -0.026 0.018 -0.757‡ 0.527‡ 0.143 -0.057 0.255 -0.168 0.072 0.128

RV 300 -0.316‡ -0.046‡ -0.422‡ 0.083 -0.168‡ 0.179‡ -0.568‡ -0.173 -1.426‡ 0.017

RV 60 -1.115‡ -0.282‡ -1.086‡ -0.208‡ -0.737‡ -0.139† -0.457‡ -0.230† -0.361‡ -0.600‡
BP300 -0.214‡ 0.001 -0.354‡ 0.089 -0.050 0.218‡ -0.643‡ -0.345‡ -1.507‡ 0.058

BP60 -0.737‡ -0.214‡ -0.599‡ -0.318‡ -0.450‡ 0.071 -0.445‡ -0.334‡ -0.371‡ -0.637‡

This table provides the coefficients γ (news dummy) and δ (interaction term which captures the effect of
algorithmic activity during news announcements) from the regression provided in Equation (1), MQk =
α+ βAAk + γDN + δ(DNAAk) + ζDF + . . .+ ε, using the variables in the first column as the dependent, MQ
variable and NFLT50 as algorithmic trading proxy. The MQ variables and NFLT50 variable are constructed
by means of the 60 seconds before and after the intraday event times (hence, for 10:00 a.m. we use the data
from 09:59 a.m. up to 10:01 a.m.). The regression over the whole day (column all day) uses the 6 intraday mo-
ments that potentially include news on all 736 trading days in the sample, leading to 4,416 observations. The
other regressions are performed per intraday moment and include, therefore, 736 observations per regression.
All regression variables (except the dummy variables) are standardized. Market quality is signed such that a
positive δ always indicates an improvement in market quality. Coefficients significantly different from zero at
the 10%, 5%, and 1% level (tested by means of a two-sided t-test) are marked with a ∗, †, and ‡, respectively.
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Figure 1: Differences between official announcement time and actual SIRCA arrival time of the news release in seconds
(positive values indicate news arrivals after the official announcement time). Time differences are transformed by
means of an inverse tangent transformation. For each announcement time the box provides the median and 25th

and 75th percentile, the whiskers provide the minimum and maximum time difference. The x-labels correspond to
the following announcements: (1) Chicage PMI, (2) Mich. Sent. Prel., (3) Mich. Sent. Rev., (4) Constr. Spending,
(5) Fact. Orders, (6) Bus. Inv., (7) Leading Ind., (8) New Home Sales, (9) Cons. Conf. (10) ISM Index, (11) ISM
Services, (12) Pending Home Sales, (13) Wholesale Inv., (14) Philly Fed, (15) Existing Home Sales, (16) Crude Inv.,
(17) FOMC Rate Dec., (18) Tr. Budget, (19) FOMC Min., (20) Cons. Credit. Announcements without SIRCA time
are ignored in the construction of this plot.
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Figure 2: The difference between refined announcement times and SIRCA news arrival times (y-axis) versus an
inverse tangent transformation of the difference between official announcement time and SIRCA times (x-axis).
Refined announcement times are obtained by searching for the maximum message activity 50 ms before and after
the SIRCA announcement time. Announcements without SIRCA announcement time are ignored in the construction
of this plot. The vertical dashed lines separate events for which the difference between the official announcement
time and SIRCA time is more than 500 ms.
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Figure 3: The average (time weighted) number of quoted shares at the best bid and ask price (NBBA) per minute
over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the NBBA on
days with news, whereas the dashed line is the NBBA on days without news. The light gray lines provide the
90% confidence level of NBBA on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news at 10:00 a.m.
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Figure 4: The average (time weighted) number of quoted shares up to 5 cents away from the best bid and ask price
(DP ) per minute over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is
the DP on days with news, whereas the dashed line is the DP on days without news. The light gray lines provide
the 90% confidence level of DP on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news at 10:00 a.m.
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Figure 5: The average (time weighted) quoted half-spread (QHS) per minute over the whole trading day (a) and
per 10 seconds around 10:00 a.m. (b). The solid dark line is the QHS on days with news, whereas the dashed line
is the QHS on days without news. The light gray lines provide the 90% confidence level of QHS on no news days.
Note that the figure in (a) is constructed without differentiating between news arrival times (a day with news on, for
example, 02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is news on 10:00
a.m.

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

10:00 AM 12:00 AM 02:00 PM 04:00 PM

qh
s 

(b
ps

)

time

(a) whole day

news

no news

conf

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

09:50 AM 10:00 AM 10:10 AM

qh
s 

(b
ps

)

time

(b) 10:00 AM

news

no news

conf

Figure 6: The average number of quoted shares up to 5 cents away from the best bid and ask price (DP ) per
millisecond for 1000 ms around 10:00 a.m. in clock time (and event time) on days without (with) news in subplot
(a) (subplot (b)). The starred observations is the minimum depth within 200 ms of 10:00 a.m. or event time.
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Figure 7: The average aggregate number of fleeting orders at the 50 ms level (NFLT50) per minute over the whole
trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the NFLT50 on days with news,
whereas the dashed line is the NFLT50 on days without news. The light gray lines provide the 90% confidence level
of NFLT50 on no news days. Note that the figure in (a) is constructed without differentiating between news arrival
times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a day as a news
day if there is news at 10:00 a.m.
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Figure 8: Cumulative return perfect foresight signals (a) and importance of speed during macroeconomic news (b)
over all news announcements. Perfect foresight signals are constructed by looking ahead 1 minute. The importance
of speed is calculated by comparing the average return of executing the perfect foresight strategy instantaneously
with the average returns of executing the perfect foresight strategy with the delay levels provided on the x-axis. In
case the importance of speed is significant at the 10%, 5%, or 1% level this is indicated by means of a ∗, �, and •,
respectively.
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Figure 9: The importance of speed during macroeconomic news announcements for the different years in the sample
period (a) and for days with high and low volatility (b). The importance of speed is calculated by comparing the
average return of executing the perfect foresight strategy instantaneously with the average returns of executing the
perfect foresight strategy with the delay levels provided on the x-axis. In case the importance of speed is significant
at the 10%, 5%, or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure 10: The importance of speed during macroeconomic news announcements for different intraday moments (a)
and for different impact levels of the news (b). The importance of speed is calculated by comparing the average
return of executing the perfect foresight strategy instantaneously with the average returns of executing the perfect
foresight strategy with the delay levels provided on the x-axis. In case the importance of speed is significant at the
10%, 5%, or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure 11: The importance of speed during macroeconomic news announcements for different time differences between
the official announcement time (ignoring announcements for which the SIRCA announcement time is before the
official announcement time) and SIRCA announcement time (a) and for announcements with large and small surprises
(absolute difference actual number and consensus forecast relative to the consensus forecast, ignoring announcements
with no actual or consensus number) (b). The importance of speed is calculated by comparing the average return of
executing the perfect foresight strategy instantaneously with the average returns of executing the perfect foresight
strategy with the delay levels provided on the x-axis. In case the importance of speed is significant at the 10%, 5%,
or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure 12: The importance of speed during macroeconomic news announcements for different trade capacity levels
(a) and for different trading strategies (b). The importance of speed is calculated by comparing the average return
of executing the perfect foresight strategy instantaneously with the average returns of executing the perfect foresight
strategy with the delay levels provided on the x-axis. In case the importance of speed is significant at the 10%, 5%,
or 1% level this is indicated by means of a ∗, �, and •, respectively. The trading strategies in (b) differ with respect
to their success ratio and are constructed by randomizing the perfect foresight strategy.
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Figure 13: Cumulative return perfect foresight signals (a) and importance of speed during macroeconomic news
arrivals (b) over all news announcements using the refined SIRCA news arrival time. Perfect foresight signals
are constructed by looking ahead 1 minute. The importance of speed is calculated by comparing the average return
of executing the perfect foresight strategy instantaneously with the average returns of executing the perfect foresight
strategy with the delay levels provided on the x-axis. In case the importance of speed is significant at the 10%, 5%,
or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure 14: Cumulative return perfect foresight signals (a) and importance of speed during macroeconomic news
arrivals (b) over all news announcements using the official announcement time of the news. Perfect foresight
signals are constructed by looking ahead 1 minute. The importance of speed is calculated by comparing the average
return of executing the perfect foresight strategy instantaneously with the average returns of executing the perfect
foresight strategy with the delay levels provided on the x-axis. In case the importance of speed is significant at the
10%, 5%, or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure 15: Absolute midpoint returns over 10 ms intervals around 10:00 a.m. in clock time (and event time) on days
without (with) news in subplot (a) (subplot (b)).
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Figure 16: Subplot (a) depicts (absolute) midpoint returns (in clock time) over 10 ms intervals around 10:00 a.m.
on days with news for announcements where the SIRCA arrival time is within 1 second or after 1 second of the
official announcement time. Announcements with a SIRCA arrival time before the official announcement time are
not included. In subplot (b) we plot the percentage of announcements for which the sign of the return over the
interval from the official announcement time to the SIRCA announcement time (interval 0) matches the sign of
subsequent intervals of the same length (# future periods). We do this separately for announcements with a SIRCA
time that falls within 0-250, 250-500, 500-750, and 750-1000 ms of the official announcement time. If the number
of announcements for which the sign of the return in future periods matches the sign of the return in interval 0 is
significantly higher (lower) than one would expect based on randomness, this is indicated by means of a • and (�).
Announcements with a zero return in interval 0 are ignored. The number of times this occurs is provided in the
legend as n0.
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Appendix A. Internet Appendix
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Figure A.1: The average aggregate trading volume ($V ) per minute over the whole trading day (a) and per 10
seconds around 10:00 a.m. (b). The solid dark line is the $V on days with news, whereas the dashed line is the
$V on days without news. The light gray lines provide the 90% confidence level of $V on no news days. Note that
the figure in (a) is constructed without differentiating between news arrival times (a day with news on, for example,
02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.2: The average (trade volume weighted) 5 second realized spread (RS5) per minute over the whole trading
day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the RS5 on days with news, whereas the
dashed line is the RS5 on days without news. The light gray lines provide the 90% confidence level of RS5 on no
news days. Note that the figure in (a) is constructed without differentiating between news arrival times (a day with
news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is
news on 10:00 a.m.
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Figure A.3: The average (trade volume weighted) 5 second adverse selection costs (price impact) (ADV 5) per minute
over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the ADV 5 on days
with news, whereas the dashed line is the ADV 5 on days without news. The light gray lines provide the 90%
confidence level of ADV 5 on no news days. Note that the figure in (a) is constructed without differentiating between
news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a
day as a news day if there is news at 10:00 a.m.
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Figure A.4: The average (trade volume weighted) 1 second realized spread (RS1) per minute over the whole trading
day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the RS1 on days with news, whereas the
dashed line is the RS1 on days without news. The light gray lines provide the 90% confidence level of RS1 on no
news days. Note that the figure in (a) is constructed without differentiating between news arrival times (a day with
news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is
news at 10:00 a.m.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10:00 AM 12:00 AM 02:00 PM 04:00 PM

re
al

iz
ed

 1
 s

ec
 s

pr
ea

d 
(b

ps
)

time

(a) whole day

news

no news

conf

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

09:50 AM 10:00 AM 10:10 AM

re
al

iz
ed

 1
 s

ec
 s

pr
ea

d 
(b

ps
)

time

(b) 10:00 AM

news

no news

conf

56



Figure A.5: The average (trade volume weighted) 1 second adverse selection costs (price impact) (ADV 1) per minute
over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the ADV 1 on days
with news, whereas the dashed line is the ADV 1 on days without news. The light gray lines provide the 90%
confidence level of ADV 1 on no news days. Note that the figure in (a) is constructed without differentiating between
news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a
day as a news day if there is news on 10:00 a.m.
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Figure A.6: The average (trade volume weighted) 1 minute realized spread (RS60) per minute over the whole trading
day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the RS1 on days with news, whereas the
dashed line is the RS1 on days without news. The light gray lines provide the 90% confidence level of RS1 on no
news days. Note that the figure in (a) is constructed without differentiating between news arrival times (a day with
news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is
news at 10:00 a.m.
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Figure A.7: The average (trade volume weighted) 1 minute adverse selection costs (price impact) (ADV 60) per
minute over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the ADV 1
on days with news, whereas the dashed line is the ADV 1 on days without news. The light gray lines provide the
90% confidence level of ADV 1 on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news on 10:00 a.m.
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Figure A.8: The average 5 minute realized variance (RV 300) per 5 minutes over the whole trading day (a) and
around 10:00 a.m. (b). The solid dark line is the RV 300 on days with news, whereas the dashed line is the RV 300
on days without news. The light gray lines provide the 90% confidence level of RV 300 on no news days. Note that
the figure in (a) is constructed without differentiating between news arrival times (a day with news on, for example,
02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.9: The average 5 minute realized bi-power (BP300) per 5 minutes over the whole trading day (a) and
around 10:00 a.m. (b). The solid dark line is the BP300 on days with news, whereas the dashed line is the BP300
on days without news. The light gray lines provide the 90% confidence level of BP300 on no news days. Note that
the figure in (a) is constructed without differentiating between news arrival times (a day with news on, for example,
02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.10: The average 1 minute realized variance (RV 60) per minute over the whole trading day (a) around 10:00
a.m. (b). The solid dark line is the RV 60 on days with news, whereas the dashed line is the RV 60 on days without
news. The light gray lines provide the 90% confidence level of RV 60 on no news days. Note that the figure in (a)
is constructed without differentiating between news arrival times (a day with news on, for example, 02:00 p.m. is a
news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.11: The average 1 minute realized bi-power (BP60) per minute over the whole trading day (a) and around
10:00 a.m. (b). The solid dark line is the BP60 on days with news, whereas the dashed line is the BP60 on days
without news. The light gray lines provide the 90% confidence level of BP60 on no news days. Note that the figure
in (a) is constructed without differentiating between news arrival times (a day with news on, for example, 02:00 p.m.
is a news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.12: The average aggregate number of messages (NMSGS) per minute over the whole trading day (a) and
per 10 seconds around 10:00 a.m. (b). The solid dark line is the NMSGS on days with news, whereas the dashed
line is the NMSGS on days without news. The light gray lines provide the 90% confidence level of NMSGS on no
news days. Note that the figure in (a) is constructed without differentiating between news arrival times (a day with
news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a day as a news day if there is
news at 10:00 a.m.
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Figure A.13: The average aggregate number of fleeting executions at the 50 ms level (NFLT50exe) per minute over
the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the NFLT50exe on days
with news, whereas the dashed line is the NFLT50exe on days without news. The light gray lines provide the 90%
confidence level of NFLT50exe on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news at 10:00 a.m.
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Figure A.14: The average aggregate number of fleeting orders that improve upon the best bid or ask quote at the
50 ms level (NFLT50ba) per minute over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The
solid dark line is the NFLT50ba on days with news, whereas the dashed line is the NFLT50ba on days without
news. The light gray lines provide the 90% confidence level of NFLT50ba on no news days. Note that the figure in
(a) is constructed without differentiating between news arrival times (a day with news on, for example, 02:00 p.m.
is a news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.15: The average aggregate number of missed opportunities at the 50 ms level (NFLT50mo) per minute over
the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the NFLT50mo on days
with news, whereas the dashed line is the NFLT50mo on days without news. The light gray lines provide the 90%
confidence level of NFLT50mo on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news at 10:00 a.m.
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Figure A.16: The average aggregate number of fleeting orders at the 100 ms level (NFLT100) per minute over the
whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the NFLT100 on days
with news, whereas the dashed line is the NFLT100 on days without news. The light gray lines provide the 90%
confidence level of NFLT100 on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news at 10:00 a.m.
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Figure A.17: The average aggregate number of fleeting executions at the 100 ms level (NFLT100exe) per minute over
the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The solid dark line is the NFLT100exe on days
with news, whereas the dashed line is the NFLT100exe on days without news. The light gray lines provide the 90%
confidence level of NFLT100exe on no news days. Note that the figure in (a) is constructed without differentiating
between news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only
consider a day as a news day if there is news at 10:00 a.m.
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Figure A.18: The average aggregate number of fleeting orders that improve upon the best bid or ask quote at the 100
ms level (NFLT100ba) per minute over the whole trading day (a) and per 10 seconds around 10:00 a.m. (b). The
solid dark line is the NFLT100ba on days with news, whereas the dashed line is the NFLT100ba on days without
news. The light gray lines provide the 90% confidence level of NFLT100ba on no news days. Note that the figure in
(a) is constructed without differentiating between news arrival times (a day with news on, for example, 02:00 p.m.
is a news day), whereas in (b) we only consider a day as a news day if there is news at 10:00 a.m.
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Figure A.19: The average aggregate number of missed opportunities at the 100 ms level (NFLT100mo) per minute
over the whole trading day (a) and around 10:00 a.m. (b). The solid dark line is the NFLT100mo on days with news,
whereas the dashed line is the NFLT100mo on days without news. The light gray lines provide the 90% confidence
level of NFLT100mo on no news days. Note that the figure in (a) is constructed without differentiating between
news arrival times (a day with news on, for example, 02:00 p.m. is a news day), whereas in (b) we only consider a
day as a news day if there is news at 10:00 a.m.
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Figure A.20: The importance of speed during macroeconomic news announcements for the different years in the
sample period and the year 2009 separate for the period with (June 5, 2009 to August 31, 2009) and without
(from January 6, 2009 to June 4, 2009 and from September 1, 2009 to December 31, 2009) flash orders (a) and
the importance of speed for the different years, only considering medium volatility days (b). The medium volatility
days are determined by sorting the maximum intraday VIX values of all announcement days in ascending order
from which we select the announcements in the second and third quartile. The importance of speed is calculated by
comparing the average return of executing the perfect foresight strategy instantaneously with the average returns of
executing the perfect foresight strategy with the delay levels provided on the x-axis. In case the importance of speed
is significant at the 10%, 5%, or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure A.21: The importance of speed during macroeconomic news announcements for the different years, only
considering low volatility days (a) and only considering high volatility days (b). The low (high) volatility days
are determined by sorting, in ascending order, the maximum intraday VIX values of all announcement days from
which we select the announcements in the first and second (third and fourth) quartile. The importance of speed
is calculated by comparing the average return of executing the perfect foresight strategy instantaneously with the
average returns of executing the perfect foresight strategy with the delay levels provided on the x-axis. In case the
importance of speed is significant at the 10%, 5%, or 1% level this is indicated by means of a ∗, �, and •, respectively.
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Figure A.22: Scaled 1 second log returns (in bps) over the interval from the official announcement time up to the
SIRCA news arrival time (IV0) plotted against the return over the interval of the same length following the SIRCA
arrival time (IV1) for all news announcements (a) and news at 10:00 a.m. (b). Because the intervals have different
lengths returns are all rescaled to 1 second returns. Dark (light) dots correspond to returns that have the same
(different) signs in IV0 and IV1. The legend also provides the mean absolute log return (mar) in IV0 and IV1,
respectively. The p-val (z-val) in the title of subplot (a) and (b) correspond to a t-test (Wilcoxon rank-sum test)
with the null hypothesis of equal means (medians) in IV0 and IV1.
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Figure A.23: Subplot (a) provides the percentage of announcements for which the sign of the return over the interval
from the official announcement time to SIRCA announcement time (interval 0) matches the sign of subsequent
intervals of the same length (# future periods), excluding the n0 announcements with a zero return in
interval 0 (the number of excluded announcements, n0, is provided in the legend) for announcements where the
SIRCA time is within 0-250, 250-500, 500-750, and 750-1000 ms of the official announcement time. Hit ratios
significantly (higher) lower than one would expect based on randomness are marked by means of a • and (�).
Cumulative returns per event of trading strategies based on the hit ratios in (a) are provided in (b).
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Figure A.24: Subplot (a) provides the percentage of announcements for which the sign of the return over the interval
from the official announcement time to SIRCA announcement time (interval 0) matches the sign of subsequent
intervals of the same length (# future periods), including announcements with a zero return in interval
0, for announcements where the SIRCA time is within 0-250, 250-500, 500-750, and 750-1000 ms of the official
announcement time. Hit ratios significantly (higher) lower than one would expect based on randomness are marked
by means of a • and (�). Cumulative returns per event of trading strategies based on the hit ratios in (a) are
provided in (b).

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

hi
t r

at
io

 (
%

)

future period #

(a) hit ratios using info in IV0 incl. zeros

0 - 250 ms (n=219)

250 - 500 ms (n=130)

500 - 750 ms (n=126)

750 - 1000 ms (n=71)
 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 5 10 15 20 25 30

pr
of

it 
pe

r 
an

no
un

ce
m

en
t (

bp
s)

future period #

(b) profit using info in IV0 incl. zeros

0 - 250 ms (n=219)

250 - 500 ms (n=130)

500 - 750 ms (n=126)

750 - 1000 ms (n=71)

66



Figure A.25: Subplot (a) provides the percentage of announcements for which the sign of the return over the x=50,
x=100, x=150, and x=200 ms intervals before the official announcement time (OAT) matches the sign of
subsequent 30 intervals of length x following the OAT, excluding announcements with a zero return in the initial
interval (the number of excluded announcements, n0, is provided in the legend). Hit ratios significantly (higher)
lower than one would expect based on randomness are marked by means of a • and (�). Cumulative returns per
event of trading strategies based on the hit ratios in (a) are provided in (b).
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Figure A.26: Subplot (a) provides the percentage of announcements for which the sign of the return over the x=50,
x=100, x=150, and x=200 ms intervals before the official announcement time (OAT) matches the sign of
subsequent 30 intervals of length x following the SIRCA news arrival time, excluding announcements with
a zero return in the initial interval (the number of excluded announcements, n0, is provided in the legend). Hit
ratios significantly (higher) lower than one would expect based on randomness are marked by means of a • and (�).
Cumulative returns per event of trading strategies based on the hit ratios in (a) are provided in (b).
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Figure A.27: Subplot (a) provides the percentage of announcements for which the sign of the return over the x=50,
x=100, x=150, and x=200 ms intervals before the SIRCA arrival time matches the sign of subsequent 30
intervals of length x following the SIRCA news arrival time, excluding announcements with a zero return in
the initial interval (the number of excluded announcements, n0, is provided in the legend). Hit ratios significantly
(higher) lower than one would expect based on randomness are marked by means of a • and (�). Cumulative returns
per event of trading strategies based on the hit ratios in (a) are provided in (b).
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