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Abstract

This paper features an analysis of volatility spillover e�ects from the US market, represented by
the S&P500 index to the Australian capital market as represented by the Australian S&P200 for
a period running from 12th September 2002 to 9th September 2012. This captures the impact of
the Global Financial Crisis (GFC). The GARCH analysis features an exploration of whether there
are any spillover e�ects in the mean equations as well as in the variance equations. We adopt a
bi-mean equation to model the conditional mean in the Australian markets plus an ARMA model
to capture volatility spillovers from the US. We also apply a Markov Switching GARCH model to
explore the existence of regime changes during this period and we also explore the non-constancy
of correlations between the markets and apply a moving window of 120 days of daily observations
to explore time-varying conditional and �tted correlations. There appears to be strong evidence of
regime switching behaviour in the Australian market and changes in correlations between the two
markets particularly in the period of the GFC. We also apply a tri-variate Cholesky-GARCH model
to include potential e�ects from the Chinese market, as represented by the Hang Seng Index

Keywords: Volatility spillovers, Markov-switching GARCH, Cholesky-GARCH, Time-varying
correlations.

1. Introduction

The Global Financial Crisis (GFC) had a major impact on the world's �nancial markets. This
paper examines whether there is evidence of spillovers of volatility from the US stock market to
the Australia stock market, as represented by the S&P500 index and the Australian S&P200 index
. The paper features an application of regime switching model to assess the impact of the GFC
on Australian market volatility and then a number of multivariate analyses are applied to explore
the impact of spillovers from the US market. We apply a Cholesky-GARCH trivariate model and
include the in�uence of China in the system, as represented by the Hang Seng index.The analyses
include a bi-mean equation to model the conditional mean in the individual markets plus an ARMA

∗Corresponding author. Email d.allen@ecu.edu.au. Acknowledgements: For �nancial support, the �rst author
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model to capture volatility spillovers from the US to the other �ve markets. The non-constancy of
correlations between the markets is explored using a moving window of 120 days of daily observations
to explore time-varying conditional and �tted correlations.

The recent GFC crisis commencing in 2007 and continuing through to the European sovereign
debt crisis. Alan Greenspan (2010) takes the view that: �The bubble started to unravel in the
Summer of 2007. But unlike the debt-like de�ation of the earlier dotcom boom, heavy leveraging
set o� serial defaults, culminating in what is likely to be viewed as the most virulent �nancial crisis
ever. The major failure of both private risk management and o�cial regulation was to signi�cantly
misjudge the size of tail risks that were exposed in the aftermath of the Lehman default.�

The U.S. subprime mortgage and credit crisis was characterized by turbulence that spread from
subprime mortgage markets to credit markets more generally, and then to short-term interbank
markets as liquidity evaporated, particularly in structured credit then on to stock markets globally.

Gorton (2010) suggested that the GFC was not particularly di�erent from previous crises except
that, prior to 2007, most investors had never heard of the markets that were involved. Concepts such
as subprime mortgages, asset-backed commercial paper conduits, structured investment vehicles,
credit derivatives, securitization, or repo markets were not common knowledge. Gorton (2010)
suggests that the securitized banking system is a real banking system that is still vulnerable to a
panic. He argues that the crisis beginning in August 2007 can best be understood as a wholesale
panic involving institutions, where large �nancial �rms "ran" on other �nancial �rms, making the
system insolvent.

In this paper we focus on how the GFC impacted on volatility spillovers across the world to the
Australian equity market. Even though the Australian �nancial markets were spared the major
e�ects of the GFC in terms of distress to major �nancial institutions the Australian �nancial
market was still impacted by the major global events. The degree to which the Australian market
is in�uenced by extreme events in the US has implications for portfolio optimization by investors
and fund managers alike and e�ects the degree to which it is possible to hedge risk during times
of �nancial turbulence. We examine how volatility spillovers and correlations changed between the
Australian market and the US during the �nancial crisis. We also include the impact of the Chinese
market in some of our analyses, though the main focus of the paper is on the in�uence of the US
market on the Australian one.

2. Research Method

2.1. Data set and econometric models

The data set includes daily data for each index from 12th September 2002, until 9th September
2012. The indexes are total market indexes, based on market capitalizations and are taken from
Datastream. Daily returns are calculated as follows:

yit = ln(pit)− ln(pit−1) (1)

The data sets used are shown in Table 1.
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Country Symbol Abbreviation for

USA USRET AMERICAN market

AUSTRALIA AUSRET AUSTRALIAN market
CHINA HANGSENGRET CHINESE market

Table 1: List of countries and indices

There are a variety of models used to test for the existence of time-varying volatility and for
spillover e�ects in returns and volatility across markets. Manganelli and Engle [24] claim that the
main di�erence between models is how they deal with the return distribution, and classify these
models into three distinct groups:

� Parametric, such as RiskMetrics and GARCH;
� Nonparametric, such as Historical simulation and the Hybrid Model;
� Semiparametric, such as CAViaR, Extreme Value Theory, and Quasi-Maximum Likelihood

GARCH.

In this paper, we adopt a variety of parametric techniques. We commence our analysis with
a vanilla GARCH model, before moving on to a regime switching model, as developed by Gray
(1996). We also use various multivariate models including a Cholesky-GARCH model for the
empirical analysis.

2.2. Univariate conditional volatility models

Engle (1982) developed the Autoregressive Conditional Heteroskedasticity (ARCH) model that
incorporates all past error terms. It was generalised to GARCH by Bollerslev (1986) to include
lagged term conditional volatility. In other words, GARCH predicts that the best indicator of future
variance is the weighted average of long-run variance, the predicted variance for the current period,
and any new information in this period, as captured by the squared residuals (Engle, (2001)).

The framework is developed as follows: consider a time series yt = Et−1(yt)+εt, where Et−1(yt)is
the conditional expectation of yt at time t − 1 and εt is the error term. The GARCH model has
the following speci�cation:

εt =
√
htηt , ηt ∼ N(0, 1) (2)

ht = ω +

p∑
j=1

αε2t−j +

q∑
j=1

βjht−j (3)

in which ω > 0, αj ≥ 0 and βj ≥ 0, are su�cient conditions to ensure a positive conditional
variance, ht ≥ 0. The ARCH e�ect is captured by the parameter αj , which represents the short
run persistence of shocks to returns. βj captures the GARCH e�ect, and αj + βj measures the
persistence of the impact of shocks to returns to long-run persistence. A GARCH(1,1) process is
weakly stationary if αj + βj ≤ 1.

Ling and McAleer (2003) and Harris, Stoja and Tucker (2007) claim that the GARCH model is
�perhaps the most widely used approach to modeling the conditional covariance matrix of returns�,
and Engle (2001) states it has been successful, even in its simplest form, in predicting conditional
variance. The main advantage of this model is that it allows �a complete characterization of the
distribution of returns and there may be spacefor improving their performance by avoiding the
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normality assumption� (Manganelli and Engle, (2001, p.9)). However, Engle (2001) , Nelson (1991)
, Zhang and Li (2008) and Harris, Stoja and Tucker (2007) also outline some of the disadvantages
of the GARCH model as follows:

� GARCH can be computationally burdensome and can involve simultaneous estimation of a
large number of parameters.

� GARCH tends to underestimate risk (when applied to Value-at-Risk, VaR) as the normality
assumption of the standardized residual does not always hold with the behaviour of �nancial
returns.

� The speci�cation of the conditional variance equation and the distribution used to construct
the log-likelihood may be incorrect.

� GARCH rules out, by assumption, the negative leverage relationship between current returns
and future volatilities, despite some empirical evidence to the contrary.

� GARCH assumes that the magnitude of excess returns determines future volatility, but not
the sign (positive or negative returns), as it is a symmetric model. This is a signi�cant problem
as research by Nelson (1991) and Glosten, Jagannathan and Runkle (GJR) (1993) shows that
asset returns and volatility do not react in the same way for negative information, or `bad
news', as they do for positive information, or `good news', of equal magnitude.

In order to deal with these problems, a large number of variations on the basic GARCH model have
been created, each one dealing with di�erent issues. Bollerslev (1990) developed a multivariate
GARCH (MGARCH) model that asumes Constant Conditional Correlation (CCC). In other words,
it assumes independence of asset returns' conditional variance. Multivariate GARCH (MGARCH)
models have recently been used widely in risk management and sensitivity analysis.

Bauwens, Laurent and Rombouts (2003) suggest that the most appropriate use of multivariate
GARCH models is to model the volatility of one market with regard to the co-volatility of other
markets. In other words, these models are used to see if the volatility of one market leads the
volatility of other markets (the `Spillover E�ect'). They also assert that these models can be used
to model the tangible e�ects of volatility, such as the impact of changes in volatility on exports and
output growth rates. Bauwens, Laurent and Rombouts (2003) suggest that these models are also
e�cient in determining whether volatility is transmitted between markets through the conditional
variance (directly) or conditional covariances (indirectly), whether shocks to one market increase the
volatility of another market, and the magnitude of that increase, and whether negative information
has the same impact as positive information of equal magnitude.

Nelson (1991) developed the Exponential GARCH (EGARCH) model. This model uses loga-
rithms to ensure that the conditional variance is non-negative, and captures both the size and sign
e�ects of shocks, capturing the e�ect of asymmetric returns on conditional volatility. This model
was the �rst to capture the asymmetric impact of information. A second model, which is compu-
tationally less burdensome then Nelson's EGARCH, is the Glosten, Jagannathan and Runkle GJR
model (1993). They found signi�cant evidence of seasonal e�ects on the conditional variance in the
NYSE Value-Weighted Index. Engle and Ng (1993) claim that the GJR forecasts of volatility are
more accurate than those of the EGARCH model.

The GJR model is speci�ed as:
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ht = ω +

r∑
j=1

(αj + γjI(ε2t−j))ε
2
t−j +

s∑
j=1

βjht−j (4)

where

Iit =

{
0, εit ≥ 0
1, εit < 0

}
where Iit is an indicator function that distinguishes between positive and negative shocks of equal
magnitude. In this model, when there is only one lag, that is, when r = s = 1, the su�cient
conditions to ensure that the conditional variance is positive (ht > 0) are that ω > 0, α1 ≥
0, α1 +γ1 ≥ 0,and β1 ≥ 0; where α1 and (α1 +γ1) measure the short run persistence of positive and
negative shocks, respectively. These models can be estimated by maximum likelihood techniques
when the errors follow a joint normal distribution. If this is not the case, quasi-maximum likelihood
estimation (QMLE) can be used.

Necessary and su�cient conditions for the second order stationarity of the GARCH model

are
r∑
i=1

αi +
s∑
i=1

βi < 1 , as demonstrated by Bollerslev (1986). The necessary and su�cient

conditions for the GJR (1,1) model were developed by Ling and McAleer (2003), who showed that
E(ε2t ) <∞ if α1+ γ1

2 +β1 < 1. Subsequently, McAleer et al. (2007) demonstrated the log-moment
condition for the GJR(1,1) model, which is su�cient for consistency and asymptotic normality of
the QMLE, namely E(log(α1 + γ1I(ηt)η

2
t + β1)) < 0.

2.3. Markov switching model

We presume that the asset return rt follows a simple two-state Markov switching model with
di�erent risk premiums and di�erent GARCH dynamics:

rt =

{
β1
√
ht +

√
htεt, ht = α10 + α11ht−1 + α12a

2
t−1 if st = 1

β2
√
ht +

√
htεt, ht = α20 + α12ht−1 + α22a

2
t−1 if st = 2,

}
(5)

where at =
√
ht,{εt}is an i.i.d. Gaussian sequence with mean zero and variance 1, and the

parameters of αijsatisfy regularity conditions so that the unconditional variance of atexists. The
transition from one state to another is governed by the following probability:

P (st = 2 | st−1 = 1) = e1, P (st = 1 | st−1 = 2) = e2 (6)

where 0 < ei < 1. A small value of eimeans that the return series has a tendency to stay in the
ith state with an expected duration 1/ei. To identify the model it is frequently assumed that one
state is associated with greater risk, i.e β2 > β1. The model in expression (2) is a Markov-switching
GARCH-M model. In the next subsection of the paper we will brie�y consider the properties of
GARCH models before proceeding to a discussion of the multivariate GARCH models utilised.

2.4. Multivariate conditional volatility models

We adopt a bi-mean equation to model the conditional mean in the individual markets plus
an ARMA model to capture volatility spillovers from the US to the �ve markets considered. We
commence by adopting a vector ARMA structure with exogenous variables for the conditional mean
equation µt as shown below:
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ut = Υxt +

p∑
i=1

Φirt−i −
q∑
i=1

Θiat−i (7)

where xt denotes an m-dimensional matrix of explanatory variables, Υis a k ×m matrix and p
and q are nonnegative integers.

We have considered univariate models of single assets in the previous section. However, in
�nance the behaviour of portfolios of assets is of primary interest. If we want to forecast the
returns of portfolios of assets, we must consider the correlations and covariances between individual
assets. A common approach adopted to the speci�cation of multivariate conditional means and
conditional variances of returns is as follows:

yt = E(yt | Ft−1) + εt (8)

εt = Dtηt

In (5) above, yt = (y1t, ....., ymt)
′
, ηt = (ηit, ......, ηmt)

′
, a sequence of (i.i.d) random vectors,

Ft is a vector of past information available at time t, Dt = diag(h
1/2

1 , ......., h
1/2

m ), m is the
number of returns, and t = 1, ...., n. (For a full exposition, see Li, Ling and McAleer (2003),
McAleer (2005) and Bauwens et al (2003). The Bollerslev (1990) constant conditional correlation
(CCC) model assumes that the conditional variance of each return, hit, i = 1, ....,m, follows a
univariate GARCH process:

hit = ω +

r∑
j=1

αijε
2
i,t−j +

s∑
j=1

βijhi.t−j (9)

In (6) above, αij represents the ARCH e�ect, or the short run persistence of shocks to return i,
and βij captures the GARCH e�ect; the impact of shocks to return i on long run persistence, given
by:

r∑
j=1

αij +

s∑
j=1

βij .

It follows that the conditional correlation matrix of CCC is Γ = E(ηtη
′

t | Ft−1) = E(ηtη
′

t), where
Γ = {ρit} for i, j = 1, ....,m. From (5), εtε

′

t = Dtηtη
′

tDt, Dt = (diagQt)
1/2, and E(εtε

′

t | Ft−1) =
Qt = DtΓDt, where Qt is the conditional covariance matrix, Γ = D−1t QtD

−1
t is the conditional

correlation matrix and the individual conditional correlation coe�cients are calculated from the
standardised residuals in equations (5) and (6). This means that there is no multivariate estimation
required in CCC, which involves m univariate GARCH models, except in the case of the calculation
of conditional correlations.

2.5. Model speci�cations

Our goal in this paper is to model spillover e�ects. In the context of measuring asymmetric
shocks and spillover e�ects, the following models have been proposed:

1. We begin with simple univariate models before advancing to more complex multivariate
ones. In the context of measuring asymmetric shocks and spillover e�ects, the following models are
adopted. The GARCH model is estimated with an auxiliary term added to capture spillover e�ects:
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hAUS,t = ω + αε2AUS,t−1 + β1hAUS.t−1 + β2ε
2
US,t−1 (10)

The null hypothesis is that there is no conditional volatility or a spillover e�ect. The alpha
and �rst beta test for GARCH e�ects in Australia. The second beta is an additional term used
to capture the e�ect of the lagged squared residuals of a GARCH (1,1) on the US S&P500 index,
and added to the Australian market equation to test for spillover e�ects, as suggested by Hamao,
Masulis and Ng (1990). If the coe�cients are statistically signi�cant then there is a spillover e�ect
of volatility from the US to Australia.

2. We then apply a Markov switching model as considered in section 2.3. This is followed by a
variety of multivariate speci�cations.

3. The �rst multivariate model we apply is an exponentially weighted moving average model to
estimate the covariance matrix as shown below:

Given the innovations Ft−1 = {a1, ....′at−1}, the (unconditional) covariance matrix of the inno-
vation can be estimated as:

ˆ∑
=

1

t− 1

t−1∑
j=1

aja′j ,

where it is assumed that the mean of aj is zero. To accommodate a time-varying covariance
matrix and to put greater weight on recent innovations we can use exponential smoothing and
estimate the covariance matrix of at as shown below:

ˆ∑
=

1− λ
1− λt−1

t−1∑
j=1

λj−1at−ja
′
t−j (11)

where 0 < λ < 1 and the weights (1− λ)λj−1/(1− λt−1) sum to 1.
4. We utilise Cholesky decompositions to build a higher dimensional GARCH model. We write

the vector return series as rt = µt + αt and use a vector AR model for modelling the behaviour of
the mean. We then proceed in stages.

� First we build a univariate GARCH model of the US S&P500 index series.

� Then we add the Australian S&P200 index series to the system,perform an orthogonal trans-
formation on the shock process of the Australian return series, and build a bivariate volatility
model for the system. The parameter estimates for the US model developed in step one can
be used as staring values in the bivariate estimation.

� Given that Australia is a major trading partner of China it is possible that links with the
Chinese markets also impact upon volatility. A third component of the system is a Chinese
index, in this case the Hang Seng index. The shock process for this third return series is
subjected to an orthogonal transformation and a three-dimensional volatility model is then
constructed. Once again the parameter values from the bivariate system can be used as
starting values.

The application of Cholesky decompositions to GARCH models is discussed in Tsay (2005), Chang
and Tsay (2010) and Dellaportos and Pourahmadi (2011). This type of model is closely related to
factor models; see for example, the discussion of orthogonal GARCH models in Alexander (2001).
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The advantage of the approach is that the multivariate conditional covariance estimation can be
reduced to estimating the 3N parameters of univariate GARCH models and a few 'dependence'
parameters. The advantage of this approach is that the Cholesky-GARCH models have correla-
tion matrices that are time-varying, and can be more �exible than Bollerslev's (1990) constant-
correlation GARCH models. The main disadvantage of the approach is that the stocks have to be
ordered to construct the model.

The results from the empirical application of these three models are presented in the next section
together with some further analysis using a moving window to examine time-varying correlations.

5. We commence again by adopting a vector ARMA structure with exogenous variables for the
conditional mean equation µt as shown below:

ut = Υxt +

p∑
i=1

Φirt−i −
q∑
i=1

Θiat−i (12)

where xt denotes an m-dimensional matrix of explanatory variables, Υis a k ×m matrix and p
and q are nonnegative integers. We then adopt a constant-correlation GARCH(1,1) for the mean
equation and a VARMA format for the variances to produce a time-varying correlation model. In
the tables below the �rst four row entries refer to the mean equation, the next eleven rows to the
variance equation and the �nal row to the correlation between the two series.

3. Empirical results

The characteristics of the basic index series used in our data set presented in Table 2 suggest
the existence of non-normality and fat tails. The Jarque-Bera Lagrange Multiplier test rejects the
null hypothesis that the data are normally distributed: the p-values for all indexes above are zero.
This is also evident from the skewness and excess kurtosis of the data. In order to estimate the
parameters in the GARCH models, the Quasi-Maximum Likelihood Estimator (QMLE) will be
used.

USRET AUSRET HANGSENGRET

Mean 0.00017557 0.00037129 0.00049530
Median 0.00051042 0.0011360 0.00016735

Maximum 0.10957 0.085091 0.12959
Minimum -0.094695 -0.16002 -0.10018
Skewness -0.24979 -0.92324 0.13466

Excess Kurtosis 9.6286 9.0803 4.3952
Standard Deviation 0.013216 0.016900 0.018857

Coe�cient of Variation 75.275 45.517 38.072
Jarque-Bera 10039.7 9273.05 2094.12
Probability 0.000000 0.000000 0.000000

Table 2: Descriptive statistics

The two returns series are clearly non-normal as re�ected in their QQ plots shown in Figure I
which also shows their return plots.
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Figure 1: Return Series and QQ plots for Australia and the US

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 2004  2006  2008  2010  2012

AU
SR

ET

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 2004  2006  2008  2010  2012

U
SR

ET

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 2004  2006  2008  2010  2012

H
AN

G
SE

N
G

R
ET

-10

-8

-6

-4

-2

 0

 2

 4

 6

-4 -3 -2 -1  0  1  2  3  4

Normal quantiles

Q-Q plot for AUSRET

y = x

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-4 -3 -2 -1  0  1  2  3  4

Normal quantiles

Q-Q plot for USRET

y = x

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

Normal quantiles

Q-Q plot for HANGSENGRET

y = x

Before we conduct the GARCH tests we test for the existence of ARCH e�ects in the data sets.
The results are shown below in Table 3 and display clear evidence of signi�cant ARCH e�ects in
all of the index series.

Market Test Statistic (Chi-Square) p value ARCH e�ect

USRET 977.931 0.000000 Yes
AUSRET 961.123 0.000000 Yes

HANGSENGRET 131.512 0.0019 Yes

Table 3: Test results for ARCH e�ects

The results in Table 3 mean we can proceed with con�dence to the GARCH analysis; which is
broken down into several parts. First we apply the vanilla GARCH(1,1) model and then augment
the results with shocks to the US GARCH(1,1) model and lagged forecasts of US volatility. The
results are shown in Table 4.

Table 4: GARCH(1,1) model of Australian returns augmented with spillovers from US GARCH(1,1) model

Coe�cients t statistic probability

ω 0.00000328 5.71 0.0000
ε2t−1,AUS 0.063053 8.77 0.0000

ht−1,AUS 0.921555 109.0255 0.0000
ε2t−1,US -0.0000847 -7.571791 0.0000

Durbin Watson 1.9498
ARCH Test F-Statistic 0.118628 0.7306

The results are quite satisfactory in that shocks to the US index returns do have a signi�cant
in�uence on Australian volatility, though when lagged forecasts of US volatility were added to this
vanilla GARCH speci�cation they had no signi�cance and are not reported. The model appears to
perform satisfactorily in terms of the Durbin Watson statistic and the absence of any signi�cant
ARCH e�ects in the residuals. However, this simple model assumes that the average volatility is
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constant throughout the entire period which is not probable given the massive shocks to returns
experienced during the GFC. We explored this issue suing a Markov-switching GARCH Model.
The results of which are presented in the next section.

3.1. Markov switching GARCH model to the Australian returns.

Table 4 presents the results of the Regime Switching GARCH model applied to the Australian
returns.

Table 5: Parameter estimates and related statistics for single regime and regime-switching GARCH Models

Single regime Regime switching

Parameter Estimate t-statistic p-value Estimate t-statistic p-value
a01 0.00089 4.1108 0.0000 0.0001784 3.83009 0.0001
a02 -0.0003732 -0.69961 0.48417
a11 0.04474 2.13329 0.0329 -0.0340 -0.83748 0.402324
a12 0.1214 3.23636 0.001210
b01 0.00000304 3.77095 0.0001 0.00000484 1.57742 0.114699
b11 0.0874 7.42459 0.0000 -0.0180 -0.94672 0.34378
b21 0.89872 66.9935 0.0000 0.9512 24.84656 0.0000
b02 -0.0000014 -0.43980 0.66008
b12 0.1510 4.72127 0.00000
b22 0.8709 20.9993 0.00000

The �rst column of Table 4 shows the estimates for the single regime version of the model. The
mean reversion parameter (a1) is positive and signi�cant. The implied long run mean is 0.0199.
The GARCH terms are signi�cant.

The second set of columns report estimates of the regime-switching GARCH model. The con-
ditional mean is positive and signi�cant in regime 1, the high volatility regime. The implied long-
run mean in this regime is 0.52% and in the low volatility regime is 0.31%. The high volatility
regime appears to be less sensitive to recent shocks (b11 < b12) and shows evidence of greater
persistence (b21 > b22) than the low volatility regime. It seems like the high volatility regime
is non-stationary with explosive variance whilst this is not the cas for the low volatility regime
(to be stationary the requirement is (b1i + b2i < 1)).

Figure 2 shows the regime probabilities and the conditional volatility for the two states for the
Australian set of returns.
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Figure 2: Regime switching GARCH Australian returns

It is apparent that Australia, despite faring relatively well in comparison to other developed
nations during the GFC, has not been immune from its e�ects and has spent much of the time since
2007 in the 'high' volatility regime.

3.2. EWMA

The EWMA model is set up as follows.

3.3. VARMA-GARCH models

In the next subsection we present the results from the VARMA-GARCH models. Table 4
presents the results for the VARMA-GARCH model for the full period.

the mean equation:
rAUSt

= 0.09359 + 0.0301rAUSt−1
+ a1t

rUSt
= 0.054032 + 0.00230rAUSt−1

+ 0.02176rUSt−1
+ a2t

The t statistics for the �rst equation above are 3.93 and 3.65, whilst for the second equation are
3.44, 0.41 and 5.17 respectively.

The ARCH e�ects are as follows�
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σAUSt

σUSt

=


0.0895
(4.11)
−0.0290
(−1.121)

+


−0.057 −0.0109

(−0.0357) (−1.492)
−0.0126 0.1191
(−0.644) (8.631)

[ a21,t−1
a22,t−1

]

+


0.8999
(63.82)
0.694 0.8736

(2.041) (68.79)


where the numbers in parenthesis are the t-statistics. The Ljung-Box tests on the two residual

series cannot reject their independence for up to 40 lagged terms. There is evidence of signi�cant
impacts of both US shocks and lagged variance terms on the Australian market in the coe�cients
reported above.

3.3.1. Trivariate model based on Cholesky decompositions.

We estimate a univariate GARCH model for the US S&P500 index return series. We then add
the Australian S&P 200 index return series to the system, perform orthogonal transformation on
the shock process for the Australian return series, and then build a bivariate volatility model for the
system. We then augment the system further and add in a return series for the Hang Seng Index
to capture co-dependencies with China. The system then becomes a trivariate one.The parameter
estimates for the GARCH model of the US return series are used as the commencement values in
the bivariate estimation, and the estimation is augmented in a stepwise fashion, �rst adding in the
Australian index and then the Hang Seng index. The components of the return series are ordered
as rt = (USRETLt, AUSRETt, HANGSENGRETt). The sample means, standard errors and
correlation matrix of the data are:

µ̂ =

 0.00017
0.00037
0.00049

 .
 σ̂1
σ̂2
σ̂3

 =

 0.0132
0.0169
0.0188

 . ρ̂ =

 1.00 −0.0337 −0.0278
−0.0337 1.00 0.6074
−0.0278 0.6074 1.00

 .
Tests of serial correlation in the three return series applying Ljung-Box statistics we obtain

Q3(1) = 223.61037, Q3(4) = 1075.17373, andQ3(8) = 1177.05173,and all are highly signi�cant
with p values close gto zero in terms of chi-squared distributions with 9, 36, and 72 degrees of
freedom respectively. There is also signi�cant evidence of dependencies in cross-correlation matrices
of returns up to six lags.

The initial estimate of the GARCH model for the US S&P 500 index return series yields the
mean equation r1t = 0.000568(0.0005)+−0.0781rt−1(0.0002)+a1t with signi�cance levels in paren-
these. The GARCH equation for the US S&P 500 index return series is h1t = 0.0000014(0.000) +
0.0796α2

1,t−1(0.000)+0.9087h1,t−1+e1t. The system is then augmented by adding in the Australian
S&P 200 index returns series. The model is re-estimated and �nally the Hang Seng Index return
series is added to the system. Our �nal model is estimated as shown in Table 6.

Our �nal mean equations are shown below:

rUSRETL,t = C1 − P3USRETLt−1 + a1t
rAUSRET,t = C2 + P21USRETLt−1 − P22AUSRETt−1 + a2t

rHANGSENGRET,t = C3 + P31USRETLt−1 − P33HANGSENGRETt−1 + a3t

(13)

It can be seen in Table 6 that all coe�cients on lagged returns in the US market are signi�cant
in all three mean equations but the lagged terms on the Australian and Chinese markets are not
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signi�cant in the mean equations. Manipulation of the above equations provides the three residual
series a1t, a2t, a3t.

The three dimensional time-varying volatility model can be obtained as follows:

g11,t = A0 +A1b
2
1,t−1 +A2g11,t−1

q21,t = T0 + T1q21,t−1 − T2a2,t−1
g22,t = B0 +B1b

2
2,t−1 +B2g22,t−1

q31,t = U0 + U1q31,t−1 + U2a3,t−1
q32,t = W0 +W1q31,t−1 +W2a2,t−1

g33,t = D0 +D1b
2
3,t−1 +D2g33,t−1 +D5g22,t−1

(14)

Where b1t = a1t, b2t = a2t − q21,tb1t, b3,t = a3,t − q31,tb1t, − q32,tb2t.
It can be seen in Table 6 that all terms except P22,P33,D5, and U0are signi�cant.

Table 6: Tri-variate GARCH model based on Cholesky decompositions, US, Australia, and China

Variable Coe�cient t statistic signi�cance

C1 0.000572238 3.35732 0.00078702
P3 -0.084374441 -3.57811 0.00034609
C2 0.000748640 3.09502 0.00196797
P21 0.230690975 10.07234 0.00000
P22 -0.009400782 -0.52871 0.59700942
C3 0.000659586 2.21778 0.02657005
P31 0.151604359 5.51762 0.00000003
P33 0.004369145 0.24146 0.80919677
A0 0.000001407 6.50968 0.00000000
A1 0.079632189 10.52727 0.00000000
A2 0.908621578 110.17086 0.00000000
B0 0.000003361 4.65290 0.00000327
B1 0.086424831 8.56456 0.00000000
B2 0.897410480 75.97968 0.00000000
D0 0.000001370 2.55333 0.01066987
D1 0.043078355 6.83477 0.00000000
D2 0.947017611 131.73776 0.00000000
D5 0.002884550 1.33700 0.18122414
T0 0.000048328 2.34697 0.01892678
T1 1.000860811 674.33104 0.00000000
T2 -0.176761984 -1.90135 0.05725663
U0 -0.000051104 -0.44351 0.65739525
U1 0.997767261 415.29082 0.00000000
U2 -0.184299002 -1.63769 0.10148659
W0 0.276093430 2.04615 0.04074154
W1 0.568365592 2.72744 0.00638286
W2 -1.617510386 -2.30356 0.02124744

The model diagnostics appear to be reasonably satisfactory, the Ljung-Box Q statistics for the
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three sets of residual series are insigni�cant for series RES1, RES2 and RES3 for 4, 8 and 12 lags
respectively. There is evidence of an increased degree of correlation between the markets during
and after the �nancial crisis, as shown in Figure 3 below.

Figure 3: Time-varying correlations between the USA, Australia and China index series

3.4. Further analysis

Given that the evidence of spillover e�ects during the period of the GFC was fairly weak in
the context of the VARMA-GARCH and VARMA-AGARCH speci�cations we decided to augment
the analysis further. We commence again by adopting a vector ARMA structure with exogenous
variables for the conditional mean equation µt as shown below:

ut = Υxt +

p∑
i=1

Φirt−i −
q∑
i=1

Θiat−i (15)

where xt denotes an m-dimensional matrix of explanatory variables, Υis a k ×m matrix and p
and q are nonnegative integers.

4. Conclusion
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