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Vaccination against measles: 
a neverending story
Koert J Stittelaar†, Rik L de Swart and Albert DME Osterhaus

Measles, a highly contagious viral disease, is a major childhood killer in developing 
countries, accounting for almost 1 million deaths every year globally. Measles virus 
normally does not cause a persistent infection, no animal reservoir for measles virus exists, 
no vector is involved in its spread, only one serotype exists, the virus is antigenically stable 
and vaccination with the currently used live attenuated vaccines proved to be highly 
effective in preventing disease. Therefore, theoretically measles should be considered 
eradicable. This article provides a review of past and current measles vaccination efforts 
and development and need of new generation experimental measles vaccines.
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Inactivated vaccine
In theory, measles should be considered erad-
icable [1]. Large-scale vaccination against mea-
sles started in the 1960s. Children were vacci-
nated with formalin- or tween-ether
inactivated, whole-virus vaccines adjuvated
with alum. Although high seroconversion
rates were observed (>95%), the virus-neu-
tralizing antibody titers were short-lasting,
which necessitated multiple immunizations
[2]. Furthermore, upon natural infection with
measles virus (MV), children vaccinated with
the inactivated vaccine developed enhanced
disease, referred to as atypical measles [3,4].
Atypical measles was characterized by a pro-
longed high fever, an atypical rash and severe
pneumonitis, often requiring hospitalization
[3,5,6]. Abdominal pain, hepatic dysfunction,
headache, eosinophilia, pleural effusions,
hilar adenopathy and edema were also
described [7]. As a result of this apparent
immunopathological predisposition, the use
of inactivated vaccines was abolished. It took
long before the underlying mechanism was
elucidated and even today we do not have a
full understanding of the postulated immune-
pathogenesis. One of the first hypotheses was
that the disease resulted from a lack of func-
tional antibody against the fusion protein [8].
However, reproduction in macaques sug-
gested that atypical measles rather resulted

from previous priming for a MV-specific, but
nonprotective T-helper (Th)2 response, lead-
ing to a strong anamnestic response following
challenge resulting in immune complex for-
mation and a pulmonary hypersensitivity
response associated with eosinophilia [9].

Live attenuated vaccine
Based on the safety and efficacy data obtained
in early studies with live attenuated measles
virus preparations, vaccination against measles
was persued again in the 1970s [10,11]. The
application of live attenuated measles vaccines
(LAV) resulted in an impressive decline of mea-
sles cases, especially in developed countries [12].
Furthermore, recent data suggests that vaccina-
tion against measles also reduces mortality
from many other causes [13,14]. Other merits
but also demerits of LAV are listed in BOX 1.

Alternative strategies for vaccine 
administration
Currently, the first LAV dose is given at an
age between 9 and 15 months. At this age
maternal antibodies, which interfere with
replication of the vaccine virus, have van-
ished in most children. However, in develop-
ing countries, measles frequently occurs at an
early age (< 9 months) [15]. Ideally, a measles
vaccine should be effective when adminis-
tered to very young infants in the presence of



Stittelaar, de Swart & Osterhaus

152 Expert Rev. Vaccines 1(2), (2002)

maternally-derived antibody. In an attempt to overcome vac-
cine neutralization by pre-existing immunity against MV,
LAV has been applied with a dose 100- to 1000-fold higher.
However, this led to a poorly understood increased mortality
in girls in subsequent years as compared with infants vacci-
nated with standard titer LAV [16–19]. The currently used
LAV, when parenterally administered, has proven to be quite
successful. However, vaccine failures may, at least in part, be
attributed to an inadequate vaccine-induced mucosal immu-
nity – the current vaccine protects against measles but not
necessarily against MV infection [20]. Vaccination strategies
that would allow the induction of adequate mucosal immu-
nity may have advantages in this respect. If this could be
combined with the easy, inexpensive and safe administration
of a stable vaccine, the efforts to eradicate MV would be con-
siderably facilitated. Besides the development of new genera-
tions of MV vaccines, the question has been raised whether it
would be feasible to apply the existing LAV via mucosal
routes instead of the currently used parenteral routes. This
could lead to an improved immune response at the site of
virus entry. An additional advantage of this strategy might be

a more effective vaccination in the presence of pre-existing
MV-neutralizing antibody [21,22]. For measles vaccines this
phenomenon was reported years ago by Okune et al. and
Ueda et al. [23,24]. They found that subcutaneously injected
LAV was neutralized in the presence of low levels of neutral-
izing antibody, whereas LAV inhaled as aerosol was not.
Since then, the concept of mucosal vaccination using the cur-
rent LAV has been studied frequently. Different routes of
administration have been explored [25]. Live measles vaccines
for inhalation, already tested in thousands of children, usu-
ally show higher seroconversion rates than the LAV adminis-
tered via a percutaneous injection [26–29]. However, the prep-
aration of the aerosol vaccines requires advanced technologies
to ensure their efficacy. Live measles vaccines for oral admin-
istration using enteric-coated tablets have been tested in lab-
oratory animals with variable degrees of success putting this
approach in arrears [30,31].

Despite the fact that ample experience has been obtained
with the current LAV via the subcutaneous route, the same
preparation but administrated via an alternative route will be
considered a new vaccine according to current regulations [32].
Thus, as for new generation vaccine formulations, LAV admin-
istered via an alternative route would have to go through a
complete process of registration and licensing.

Animal models used in evaluation of experimental vaccines
Over the past decades, several animal models have been used for
studying the pathogenesis of measles as well as the evaluation of
new vaccine candidates and vaccination strategies. Different
rodents including mice [33], rats [34], ferrets [35] and hamsters [36]

have been used to study aspects of experimental MV-induced
encephalitis (EMVIE) as a model for neurologic disease and to
study MV antigen-induced immune responses using EMVIE as
a read-out for protection. These animal species are not suscepti-
ble to infection with wild type MV. However, several MV strains
have been adapted for use in rodents, although virus replication
is in general only detectable after intracerebral inoculation of
very young animals. CBA/N mice, grafted with human PBL,
were used to study MV vaccine-induced protection in transfer
experiments [37]. It needs no explaining that these animals do
not develop measles-like disease.

The most successful rodent model for measles research
appeared to be the cotton rat (Sigmodon hispidus) model [38–42].
Cotton rats can be infected intranasally with LAV and noncul-
ture adapted wild type MV isolates. The interference of pre-
existing virus neutralizing (VN) antibody with vaccination in
cotton rats was addressed by transferring MV-specific antibod-
ies of human- or cotton rat-origin and by vaccination of the
offspring from seropositive dams [41,43,44].

From the earliest days of measles vaccine research, primates
have been used because of their high susceptibility to MV
[45]. Nonhuman primates including marmosets (Saguinus
mystax), cynomolgus- and rhesus macaques (Macaca fascicu-
laris and Macaca mulatta, respectively) and baboons (Papio
hamadryas and Papio hybridus), proved to be most relevant

Box 1. Advantages and disadvantages of live 
attenuated vaccines.

Advantages Ref.
Protective

Inexpensive

Balance immune response

Safe in immunocompetent individuals [69]

More than 30 years of experience [12]

Effective in measles control campaigns [12,65]

Combination vaccine with rubella/mumps

Disadvantages
Less effective at young age [70]

Interference with maternal antibody [71]

Dependent on cold chain [72]

Potential risk in immunocompromised individuals [64]

Contraindication during pregnancy [73]

Needles required

Molecular basis of attenuation is not known

Revertants not excluded

Possible contaminations introduced during 
production

[74,75]

Three components (vaccine, diluent and syringe)

Subclinical measles [76,77]

Second dose required for effective control [78]



Vaccination against measles

www.future-drugs.com 153

for measles research [46,47]. Macaques have been shown to be
highly susceptible to MV infection as illustrated by natural
outbreaks and the fact that intratracheal inoculation with 1
TCID50 is sufficient to cause MV viremia [48]. It has also
been shown that the pathogenesis of MV infection and devel-
opment of specific immunity in macaques is largely similar
to that in humans [48–50]. Upon intratracheal infection with
wild type MV, infectious MV can be quantitatively demon-
strated in peripheral blood mononuclear cells (PBMC), lung
lavage cells (LLC) and PEC, showing kinetics of viral loads
that resemble MV viremia in humans. The macaque models
have allowed research on vaccine efficacy, in the presence and
absence of passively acquired VN antibody [51–53]; vaccine
safety [54], including comparison of the virulence of different
virus strains [48,55]. Today, techniques and reagents to study
immunological mechanisms in nonhuman primates such as
T-cell proliferation assays, methods to detect specific anti-
body and reagents to measure cytokine production and
cytokine producing cells, are to a large extent available.

Conventional mouse- and rat-strains have been used for stud-
ying the antigenicity of MV-derived antigens, candidate vaccines
and the type of immune response induced by these antigens.
However, these studies are complicated by the fact that the type
of immune reaction (Th1/Th2-like responses) varies among
inbred laboratory animals. Transgenic and knockout mice have
been used to study different aspects of MV-specific immune
responses. Transgenic mice expressing human major histocom-
patibility complex (MHC) and CD8 molecules mounted cyto-
toxic T-lymphocyte (CTL) with similar specificities compared
with humans with natural MV infection [56].

Although the pathogenesis of other morbillivirus infections
in several animal species is often quite similar to that of MV
infection in humans, models using other animal morbillivi-
ruses, like canine distemper virus (CDV) in ferrets and dogs,
are not selected for this review.

New generation vaccines
In the mid1980s the scientific community started working on the
development of new generation vaccines. Vaccine effectiveness in
children aged 4–5 months or younger and one-dose immuniza-
tion were part of the new recommendations for MV vaccine
development. The development of more efficacious vaccines and
vaccination strategies for human and animal virus infections is
subject of considerable effort [57]. Here, several approaches to
develop a new generation of measles vaccines are addressed. A
major theme was related to studies aiming at the induction of
both VN antibodies and human lymphocyte antigen (HLA) class
I-restricted CTL responses. The latter are considered to play a
major role in the clearance of MV [58] – their role in the elimina-
tion of MV infected cells during infection is considered essential.
To induce CTL or activate memory CTL, MV antigens have to
enter the endogenous antigen processing and presentation path-
way in an antigen-presenting cell (APC), which generally requires
de novo protein synthesis [59]. Certain nonreplicating vaccine for-
mulations however, may allow exogenous protein to enter this

pathway. Developments in organic chemistry, biochemistry and
molecular biology in the past decades have boosted efforts to for-
mulate new generations of vaccines, which indeed allow the effi-
cient induction of both VN antibodies and HLA class I-restricted
CTL responses.

The new generation of candidate measles vaccines include:
inactivated virus, live viral vectors, live bacterial vectors, subu-
nit vaccines, synthetic vaccines and nucleic acid vaccines.
TABLE 1 provides an enumeration of experimental measles vac-
cines showing the route of administration, the model and the
parameters that were addressed. In addition, it is indicated
when the vaccine candidate was tested in the presence of pre-
existing MV-neutralizing antibodies. Given the diversity of the
experimental set-up for instance in terms of immunization
dose, number of immunizations, time interval between differ-
ent immunizations, time interval between immunization and
challenge and the kind of challenge infection, it is difficult to
venture expressing which vaccine candidate would be the best
to take part in future vaccination strategies against measles.

Synthetic vaccines have been shown to be efficient activators of
CTL and to induce protective immune responses. However, such
vaccines will most likely be unsuitable for vaccination of large pop-
ulations because they would have to be ‘tailor-made’. Epitope vac-
cines are designed for the individual on the basis of MHC restric-
tion, which might be a stumbling block. Peptides are weak
immunogens that will require further immunopotentiation if they
are to be effective in vivo. The use of adjuvants may also reduce the
amount of purified antigen required for successful immunization,
thus making vaccine production more economical and practically
feasible. At present the only adjuvants registered for human use are
still aluminum hydroxide and aluminum phosphate. Synthetic
vaccines would of course have several advantages, such as the
option that their effectiveness would not necessarily be hampered
by pre-existing immunity against measles, the option to orchestrate
the type of immune responses (immunomodulation) and good
possibilities to be produced under GMP conditions [60,61]. Fur-
thermore, they are relatively stable and cheap and sequence varia-
tions can easily be implemented whenever required. Although VN
antibodies induced by different MV strains are known to be cross-
reactive, the reductionistic approach of a peptide-based vaccine
may lead to mismatch between the vaccine and the wild type MV.

For measles, the only subunit and inactivated candidate vac-
cines that have been extensively studied are the Quil A-based
preparations. MV-ISCOMS based on semipurified Quil A have
been shown to induce both strong MV-specific VN antibody,
which are long lasting and CMI responses both in the absence
and presence of pre-existing VN antibody. These vaccine candi-
dates have been tested in different preclinical models and it
would now be interesting to test them for their ability to induce
protective immune responses in early life. In addition, because
of the history of atypical measles associated with inactivated vac-
cines it will be necessary to test these Quil A-based preparations
in the macaque model for atypical measles.

Another novel vaccination approach which has been studied
quite extensively for measles is nucleic acid vaccination (also
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Table 1. Enumeration of experimental measles vaccines.

Category Type MV antigen Admin. Model MV Ab 
transfer

Readout Ref.

Synthetic Lipopeptide
Peptide + CTB, IFA
Peptide + CTB
Peptide + Freund

F CTL epitope
N, F CTL epitope
F T- B-cell epitope
H T- B-cell epitope

-
in., ip.
in.
ip.

In vitro
Mouse
Mouse
Mouse

-
-
-
Yes

CTL
CTL, protection
IgG, proliferation, protection
VN, Ig

[79]
[80]
[81]
[82]

Subunit ISCOM

Liposome

F, H
F, H
F, H
F, H
F, H
F, H
H

-
im.
im.
im.
im.
im.
sc.

In vitro 
Mouse
Macaque
Cotton rat
Macaque
Mac., mouse, rab.
Mouse, in vitro

-
-
-
-
Yes
-
-

CTL
IgG subclasseses, IgM, VN
VN
VN, protection
IgG, IgM, VN, CTL, proliferation, protection
DTH, VN, HI, IgG, T-cell clones
Proliferation

[83]
[83]
[66]
[41]
[51]
[84]
[85]

DNA Plasmid 

(± DOTAP)

N, F, H
N
F, H
N, F, H
H
N
H
N (epitope)
H
F, H
N
H
H

Gene gun
Oral, PLGA
Gene gun, id.
?
Gene gun, im.
im., in.
?
id.
ib., in., oral, ij.
Gene gun
im.
im.
ip.

Macaque
Mouse
Macaque
Cotton rat
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse

-
-
-
-
-
-
Yes
-
-
-
-
-
-

IFN-γ, IgG, IgM, VN, protection
IgG
CTL, VN, Ig, protection, AMS
IgG, protection
IgG subclasses
IFN-γ, IL4, CTL, IgG subclasses, IgA
Ig, IFN-γ, IL5, CTL, proliferation
CTL, protection
CTL
VN, IgG
IgG, protection
IgG subclasses, CTL, IL5, IFN-γ, Ig
IFN-γ, IL5, CTL, Ig

[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]

Inactivated Quil A-adjuvated

Alum-adjuvated

BPL-inact. MV
BPL-inact. MV
BPL-inact. MV
BPL-inact. MV
formalin-inact. MV

-
im.
im.
im.
im.

In vitro
Mouse
Macaque
Cotton rat
Macaque

-
-
-
-
-

CTL
IgG subclasses, IgM, VN
VN
CTL, IgG, IgM, VN, protection
IgG, IgA, IgE, VN, CTL, protection, AMS

[83,88]
[83]
[66]
[41]
[9]

Live Attenuated MV Chicago-1
MV Schwarz
MV Schwarz
MV E-M, MV E-Z
MV Schwarz
MV L-16
MV-Moraten
MV-Moraten

sc.
?
im.
im.
ip.
im., in., oral
im.
sc.

Macaque
Mouse
Macaque
Cotton rat
Mouse
Macaque
Macaque
Macaque

-
Yes
Yes
Yes
-
-
-
-

IgG, IgA, IgE, VN, CTL, protection, AMS
IFN-γ, IL5, CTL, Ig, proliferation
IgG, IgM, VN, CTL, proliferation, protection
VN, protection
IgG subclasses, CTL, IL5, IFN-γ, Ig
VN, IgG, IgM, CD69, IL4, IFN-γ, protection
VN
VN, CTL, Ig, protection

[9]
[92]
[51]
[41]
[97]
[31]
[99]
[88]

Recombinant Vaccinia virus

NYVAC
ALVAC

MVA

PIV3

VSV
Adenovirus

Protein
Streptococcus gordonii
Shigella flexneri
Salmonella typhi

Escherichia coli
BCG

N, F, H
F, H
F, H
F, H
N, P, M, F, H
N, P, M, F, H
N, P, M, F, H
H
H
F, H, N, M
H
H
F, H
F, H
H
H
H
H
N
F, H
N
N
N
F, H
N, F, H
N
F, N (minigene)
F (minigene)
F (minigene)
N

id.
id.
id.
id., im.
ip.
ip.
ip.
ip.
?
im.
ip.
ip.
im., in.
im., in.
ip.
in., it.
in.
in., ip.
oral
oral, ip.
ip.
oral
in., ip.
sc.
in.
ip.
oral
-
-
in., id.

Mouse
Mouse
Macaque
Macaque
Cotton rat
Rat
Rat
Mouse
Mouse
Cotton rat
Mouse
Mouse
Macaque
Macaque
Mouse, cotton rat
Macaque
Hamster
Cotton rat
Mouse
Mouse, cotton rat
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
In vitro
In vitro
Macaque

-
-
-
Yes
-
-
-
-
Yes
Yes
-
-
Yes
Yes
Yes
-
-
Yes
-
-
-
-
-
-
-
-
-
-
-
-

VN, protection
HI, VN, protection
Ig, VN, CTL, protection
IgG, IgM, VN, CTL, proliferation, protection
IgG, VN, protection
Ig, DCD8, VN, proliferation, protection
Ig, DCD8, proliferation, protection
IFN-γ, IL5, CTL, Ig
IFN-γ, IL5, CTL, Ig, proliferation
VN, protection
IgG subclasses, CTL, IL5, IFN-γ, Ig
IFN-γ, IL5, CTL, Ig
IgG, VN, CD69, protection
Ig, VN, CTL, protection
IgG subclasses, DCD4, protection
VN, protection
HI, VN
IgG, VN, protection
IgG
IgG, VN, protection
CTL, IgG, protection
CTL, IgG
IgG subclasses, proliferation, protection
IgG, VN
IFN-γ, IL4, CTL, IgG subclasses, IgA
IFN-γ, IL4, CTL, IgG subclasses, IgA
IgG, proliferation, protection
Proliferation, CTL
Proliferation, CTL
CTL, proliferation, IgG, IgM, protection

[100]
[101]
[52]
[51]
[44]
[102]
[34]
[98]
[92]
[41]
[97]
[98]
[53]
[52]
[44]
[99]
[103]
[43]
[87]
[104]
[105]
[106]
[107]
[108]
[91]
[91]
[109]
[110]
[110]
[111]

ALVAC: Strain of canarypox virus; BCG: Bacille Calmette-Guérin; BPL: β-propiolactone; CD69: T-cell transmembrane activation marker; CTL: Cytotoxic T-cell assay; DCD4: In vivo 
depletion of CD4+ lymphocytes; DCD8: In vivo depletion of CD8+ lymphocytes; E-M: Edmonston-Moraten strain; E-Z: Edmonston-Zagreb strain; F: Measles virus fusion protein; 
H: Measles virus hemagglutinin; ib.: Transepithelial injection reaching the buccal mucosa; ic.: Intracutan; id.: Intradermal; ij.: Intrajejunal; im.: Intramuscular; in.: Intranasal; ip.: 
Intraperitoneal; ISCOM: Immune stimulating complex; it.: Intratracheal; L-16: Leningrad-16 strain; MVA:  Modified vaccinia virus  Ankara; N: Measles virus nucleoprotein; 
NYVAC: Highly attenuated strain of vaccinia virus; PIV3: Parainfluenza virus Type 3; sc.: Subcutaneous; VN: Measles virus-specific virus neutralizing antibody; VSV: Vesicular 
stomatitis virus.
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referred to as DNA vaccination). Plasmid DNA is very stable
and the possibility of transdermal delivery, avoiding the use of
needles, may improve overall compliance rates. A point of con-
cern with regard to DNA vaccination is the possibility that plas-
mid DNA integrates into genomic material of the host [62].
Whether or not plasmid DNA integration is a real safety issue
remains elusive. The outcomes of different studies listed here are
not unambiguous but generally it appears that the DNA measles
candidate vaccines can efficiently prime the immune system.
Although DNA vaccination against measles does not warrant
protection, it may be further potentiated in heterologous prime-
boost vaccination regimens as has recently been demonstrated in
combination with an edible candidate measles vaccine [63].

A completely different approach to induce a broadly reactive
immune response, including VN antibody and CTL responses,
is the use of bacterial and viral vectors, each with their own
advantages and disadvantages. Of this group, recombinant pox-
viruses have been studied most extensively and currently the
most interesting vector is the replication-deficient poxvirus,
modified vaccinia virus Ankara (MVA). Due to its application
in hundreds of thousands of people as a smallpox vaccine in the
end-phase of the eradication of variola virus and studies in
immunocompromised laboratory animals, it has developed an
impressive efficacy and safety record.

Finally, we may contemplate the global eradication of MV.
Although the complete elimination of MV from whole conti-
nents was achieved with the currently used LAV, global eradica-
tion might demand alternative vaccination strategies, such as
those being effective in the presence of maternal antibody and
waning vaccine-induced immunity. Since the major burden of
measles is in developing countries, the vaccination strategy must
be able to overcome major logistical problems. A strategy that is
based on two doses, or prime-boost regimens, will probably not
be possible in certain areas. An initial immunization that only
primes the immune system, which probably prevents severe dis-
ease, will be sufficient to reduce mortality and morbidity but
may allow the virus to continue to circulate. Optimally, at a very
young age, one vaccine dose should induce long-lasting protec-
tive immunity that may not require an additional booster later
in childhood. Due to the HIV epidemic, which is ongoing in
certain target populations, safety in immunocompromised indi-
viduals must be guaranteed, although recent data showed no
evidence for increased adverse events during a measles vaccina-
tion campaign in millions of African children [64,65]. In this
respect inactivated vaccine candidates, such as the Quil A-adju-
vanted preparations, which show long-lasting high levels of VN
antibody after one dose and the poxvirus vector MVA, which is
safe and proved to induce protection in the presence of pre-
existing VN antibody hold promise [53,54,66]. Since one-dose
human neonatal vaccines have not been described before, future
experiments should address the potential of such vaccine candi-
dates in an immature immune system in the absence or presence
of variable amounts of maternal-acquired measles antibody. Fur-
thermore, the safety with regard to atypical measles can now be
tested in the macaque model [9]. In addition the effectiveness
and safety of this candidate measles vaccine should be addressed

in LAV-vaccinated individuals and people that have had measles.
Vaccination against measles is a neverending story because if
measles is eradicated the human population should stay
matched for reintroduction of MV via bioterroristic acts and
other morbilliviruses via contacts with infected animals [67,68].

Expert opinion
There is a growing opposition against vaccination due to
reports and noises about adverse events associated with vaccina-
tion. Furthermore, the public support for vaccination against
measles may weaken with the disappearance of cases with severe
disease. Upon eradication of MV the necessity for continuing
vaccination against measles will be even more unclear. There-
fore, important issues are to provide the public with informa-
tion and to keep the total number of vaccinations restricted.
Today, the LAV vaccine is available as part of the combination
vaccine MMR but if the vaccine will be exchanged for a non-
replicating vaccine, which would result in dismantling the
MMR vaccine, vaccine developers will need to work on other
vaccine cocktails such as combination with DTP or a recombinant
MVA containing multiple foreign genes.

Five-year view
In the next 5 years, no new vaccine against measles will be
licensed. There are at this moment some promising candidate
vaccines. The focus will be on Quil A-adjuvanted prepara-
tions and MVA-MV recombinants, which will be further
tested in the preclinical models and subsequently in Phase I/II
clinical trials in humans. More effort should be invested into
testing these vaccine candidates for their ability to induce pro-
tection in early life. After having shown the efficacy of a can-
didate vaccine in adolescent or adult macaques, in the absence
and presence of passively transferred MV neutralizing anti-
body, the efficacy should also be tested in newborn macaques
with true maternal antibody.

Despite global efforts to control measles, a satisfactory level
of control has not been reached. Therefore, key players in the
fight against measles including the following organizations
and/or partnerships: International American Red Cross, The
International Federation of Red Cross and Red Crescent Soci-
eties, The United Nations (UN) Foundation, Centers for Dis-
ease Control and Prevention (CDC), World Health Organiza-
tion (WHO), United Nations Children’s Fund (UNICEF),
Pan American Health Organization (PAHO), Global Alliance
for Vaccines and Immunization (GAVI), World Health
Assembly, World Summit for Children, collectively have
appointed strategic milestones for vaccination against measles.
Currently, boosting vaccination coverage is attempted through
massive ‘catch-up’, ‘keep-up’ and ‘follow-up’ campaigns, of
which the effect will be evaluated between 2005–2010,
depending on the country/region [112,113]. Application of this
strategy has substantially reduced measles transmission in the
industrialized world. For this approach the LAV were selected,
postponing questions such as: ‘do we need new measles vac-
cines’ or ‘can the present vaccine be used more efficiently’ [114].
The global health partners will determine, on the basis of
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regional results (interruption of transmission etc.), whether
the goal in vaccination against measles will finally be the
achievement of a sustainable reduction of measles mortality,
maintaining measles elimination or the global eradication of
measles. This decision may be compromised by the fact that
the feasibility for global eradication of measles dimishes with
time, due to the increasing proportion of the human popula-
tion that has been vaccinated instead of having experienced
natural measles as a child.

Information resources

Useful websites:
• www.measlesinitiative.org

• www.who.int/vaccines-documents/DoxNews/h4meas.htm

• www.who.int/vaccines-diseases/research/nva.shtml
• www.cdc.gov/health/measles.htm

• www.unicef.org/pubsgen/measles-statement

• www.measles.nl

Key issues

•  Vaccination against measles can and will never be 
discontinued.

•  In order to eliminate endemic circulation of measles virus 
(MV), a very high (≥95%) level of vaccination coverage 
should be achieved.

•  The current live attenuated vaccine against measles is safe, 
cheap and effective but alternative application routes may 
increase effectivity (compliance, seroconversion rate, cold 
chain maintenance) and safety (injection safety and waste 
disposal).

•  In the long run, the current live attenuated vaccine against 
measles should be replaced by a nonreplicating vaccine.

•  A vaccine against measles that is effective when administered 
at a young age in the presence of MV-specific neutralizing 
antibody would add significantly to the control of MV.
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