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Abstract

Accurate prediction of risk measures such as Value at Risk (VaR) and Expected Short-

fall (ES) requires precise estimation of the tail of the predictive distribution. Two novel

concepts are introduced that offer a specific focus on this part of the predictive density:

the censored posterior, a posterior in which the likelihood is replaced by the censored

likelihood; and the censored predictive likelihood, which is used for Bayesian Model Av-

eraging. We perform extensive experiments involving simulated and empirical data. Our

results show the ability of these new approaches to outperform the standard posterior

and traditional Bayesian Model Averaging techniques in applications of Value-at-Risk

prediction in GARCH models.
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1. Introduction

In this paper we consider the issue of accurate estimation of the left tail of the predic-

tive distribution, which is important for obtaining correct forecasts of risk measures such

as Value at Risk (VaR) and Expected Shortfall (ES). We take a Bayesian approach, which

allows us to incorporate parameter uncertainty and to combine forecasts from multiple

models using Bayesian Model Averaging (BMA). Typically, one has no specific focus on

the left tail of the distribution of returns during the estimation of the posterior distri-

butions of the model parameters or during the construction of model weights in cases of

model combinations. The usual likelihood weights the observations in the tail of the distri-

bution and those in the middle part equally. In this paper we present two novel measures

that offer a specific focus on the left tail of the distribution during Bayesian posterior and

predictive estimation and combination of models: the censored posterior, which is defined

as the posterior in which the likelihood is replaced by the censored likelihood; and the

censored predictive likelihood, which is a censored extension of the predictive likelihood.

Note that the predictive likelihood is usually defined as the marginal likelihood when the

first subset of the data is used for updating the prior. The censored likelihood has been

used by Diks et al. (2011), but these authors only consider its use for testing the quality

of (frequentist) left tail forecasts, without incorporating it in the (Bayesian) estimation

or combination of models. We perform extensive experiments, involving simulated and

empirical data. Our results show the ability of the new measures to outperform standard

posterior and traditional Bayesian Model Averaging techniques in applications of Value

at Risk prediction in univariate GARCH models. Our approach is easily applied to dif-

ferent univariate time series models. Extension to multivariate time series models (for

high-dimensional vectors of returns, for which the left tail of the distribution of portfo-

lio returns may be considered) may require additional simulations, since the evaluation

of the Cumulative Distribution Function (CDF) of the portfolio return is needed. The

outline of this paper is as follows. In Section 2 we introduce the concept of the censored

posterior. In Section 3 we consider Bayesian Model Averaging and introduce the concept

of the censored predictive likelihood. In Section 4 we compare the performance of our

proposed forecasts of percentiles in the left tail (i.e., Value at Risk forecasts) with tra-
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ditional Bayesian forecasts for a large number of simulated data sets. In Section 5 we

present a similar comparison for empirical data sets of well-known index returns. Section

6 concludes.

2. The censored posterior

Econometric models may be described by the joint probability distribution, known up

to a parameter vector θ, of the random variables y1:T = {y1, . . . , yT}, where a set of T

observations on these variables is available. Note that the typical element yt may be a

vector itself. Bayesian inference proceeds from the likelihood function p(y1:T |θ), which is

either the density of the data given the parameters in case of a continuous distribution

or the probability function in case of a discrete distribution, and a prior density p(θ)

reflecting prior beliefs on the parameters before the data set has been observed – see e.g.,

Hoogerheide et al. (2009). So, in the Bayesian approach the parameters θ are considered

as random variables whose prior density p(θ) is updated with the information contained in

the data, incorporated in the likelihood function p(y1:T |θ), to obtain the posterior density

of the parameters p(θ|y1:T ). This process is formalized by Bayes’ theorem, stating that

the posterior density is given by:

p(θ|y1:T ) =
p(θ)p(y1:T |θ)

p(y1:T )
. (1)

Note that this is merely a result of rewriting the identity p(y1:T )p(θ|y1:T ) = p(θ)p(y1:T |θ),

the two ways of decomposing the joint density p(y1:T , θ) into a marginal and a conditional

density. Equation (1) can be rewritten as

p(θ|y1:T ) ∝ p(θ)p(y1:T |θ), (2)

where the symbol ∝ means ‘is proportional to’, i.e., the left-hand side is equal to the

right-hand side times a scaling constant (1/p(y1:T ) = 1/
∫
p(θ)p(y1:T |θ)dθ) that does not

depend on the parameters θ. That is, p(θ)p(y1:T |θ) is a kernel (=proportionality function)

of the posterior density of θ, where this kernel merely has to be divided by a constant,

the marginal likelihood p(y1:T ) =
∫
p(θ, y1:T )dθ =

∫
p(y1:T |θ)p(θ)dθ, in order to make it

a proper (posterior) density. The marginal likelihood is the marginal density of the data

y1:T after the parameters θ of the model have been integrated out with respect to their
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prior distribution. In Section 3 we consider how marginal likelihoods can be used for

Bayesian Model Averaging (BMA), where the forecast distribution is a weighted average

of the forecast distributions from different models.

In the likelihood

p(y1:T |θ) =
T∏
t=1

p(yt|y1, . . . , yt−1, θ) (3)

and in the posterior density kernel in formulas (1) and (2) there is no specific focus on a

particular region of interest A1:T = {A1, . . . , AT} for the observations y1:T = {y1, . . . , yT},

where we can have At = {yt|yt ≤ Rt} for some (constant or time-varying) value Rt if we

are interested in the left tail of the distribution of yt. For this purpose we substitute the

likelihood by the censored likelihood

pcs(y1:T |θ) ≡
T∏
t=1

pcs(yt|y1, . . . , yt−1, θ) (4)

with

pcs(yt|y1, . . . , yt−1, θ) = [p(yt|y1, . . . , yt−1, θ)]
I{yt∈At} ×[

P (yt ∈ AC
t |y1, . . . , yt−1, θ)

]I{yt∈AC
t }

, (5)

=

[
p(yt|y1, . . . , yt−1, θ)

]I{yt∈At}

×

[∫
yt∈AC

t

p(yt|y1, . . . , yt−1, θ) dyt

]I{yt∈AC
t }

, (6)

where AC
t is the complement of At, and where we assume that yt has a continuous dis-

tribution in (6). Note that this censored likelihood is typically not equal to the like-

lihood in case of a data set where all values yt in AC
t are censored, since the condi-

tional density p(yt|y1, . . . , yt−1, θ) depends on some of the observations y1, . . . , yt−1, where

observations ys (s = 1, . . . , t − 1) in AC
s are not censored. Only if we would have

p(yt|y1, . . . , yt−1, θ) = p(yt|θ), then the censored likelihood would be equal to the like-

lihood in case of a data set where all values yt in AC
t are censored.

Note that if yt is one-dimensional, then it is straightforward to evaluate the integral∫
yt∈AC

t
p(yt|y1, . . . , yt−1, θ) dyt in (6), using either analytical or deterministic (quadrature)

integration. If yt is a high-dimensional vector, then simulation is required to evaluate this
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integral and the censored likelihood. In this paper we only consider examples where yt is

one-dimensional. In future research we will investigate the application to high-dimensional

yt – for example, a vector of returns in a large portfolio of stocks. We will consider the

parallel implementation on graphics processing units (GPUs), for which the evaluation of

many high-dimensional integrals is a natural application.

The density pcs(yt|y1, . . . , yt−1, θ) in (6) is equal to the exponent of the censored like-

lihood score function of Diks et al. (2011), who consider Diebold-Mariano type tests for

comparing the accuracy of two sequences of density forecasts f̂t and ĝt. Diks et al. (2011)

argue and show that the censored likelihood score function does not lead to biases toward

densities with more probability mass in the region of interest At, unlike score functions

that simply ignore the observations outside At. Moreover, Diks et al. (2011) find that the

test based on the censored likelihood score function is typically more powerful than the

test based on the conditional likelihood score function, where one considers the conditional

density of yt (conditionally upon the fact that yt ∈ At). The latter finding is intuitively

clear, since the censored likelihood contains more information than the conditional likeli-

hood, as the censored likelihood also contains the information of how many observations

occur outside At. For these reasons we consider the censored likelihood/posterior, rather

than a conditional likelihood/posterior (or a likelihood/posterior where the observations

outside At are simply ignored). Diks et al. (2011) also propose a smooth extension of

the censored likelihood score function, where the indicator functions I{yt ∈ At} and

I{yt ∈ AC
t } in (6) are substituted by weight functions w(yt) and 1− w(yt), taking values

in the [0,1] interval. We leave these concepts of a smoothly censored likelihood and a

smoothly censored posterior as topics for future research.

A kernel of the censored posterior density pcs(θ|y1:T ) is obtained by multiplying the

prior density with the censored likelihood:

pcs(θ|y1:T ) ∝ p(θ)pcs(y1:T |θ). (7)

That is, the censored posterior density is given by

pcs(θ|y1:T ) =
p(θ)pcs(y1:T |θ)∫
p(θ)pcs(y1:T |θ)dθ

. (8)
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Typically, the censored posterior pcs(θ|y1:T ) is a proper density in the same cases where the

posterior p(θ|y1:T ) is a proper density (i.e., with finite integral
∫
p(θ)pcs(y1:T |θ)dθ < ∞),

as long as there are enough observations yt ∈ At that are not censored. In this paper, we

consider proper (non-informative) prior distributions, which already ensures the proper-

ness of the censored posterior distributions in the models that we consider.

In most models it is impossible to analytically evaluate the properties of interest of

the censored posterior pcs(θ|y1:T ). Simulation is typically required. Several simulation

methods can be used here. In this paper we use the independence chain Metropolis-

Hastings method (Metropolis et al., 1953; Hastings, 1970), also known as the independent

Metropolis-Hastings method, in order to evaluate the (censored) posterior density. For

the candidate or proposal distribution we use Student’s t-distribution around the mode

with low degrees of freedom parameter to have fat tails, and with covariance matrix

obtained by multiplying the ‘standard choice’ (minus the inverse Hessian) by a multipli-

cation factor 1.5, which provides reasonable acceptance rates in our examples. Alternative

methods include importance sampling (developed by Hammersley and Handscomb (1964)

and introduced into econometrics and statistics by Kloek and Van Dijk (1978), and the

random walk Metropolis(-Hastings) method of Metropolis et al. (1953). All these meth-

ods require only evaluations of the censored posterior density kernel in (7), so that the

evaluation of the denominator in (8),
∫
p(θ)pcs(y1:T |θ)dθ, is not required for investigating

the censored posterior for a given model. In this paper, Student’s t candidate distribu-

tion performs well in the sense of reasonably high acceptance rates in the independence

chain Metropolis-Hastings method and reasonably low variance of the importance sam-

pling weights (in the application of importance sampling for the evaluation of marginal

and predictive likelihoods, which is discussed below). If Student’s t-distribution would be

a poor approximation of the posterior and lead to poor results – i.e., very low acceptance

rates in the independence chain Metropolis-Hastings method, large or even infinite vari-

ance of the importance weights in importance sampling – then we recommend to change to

the Mixture of t by Importance Sampling weighted Expectation Maximization (MitISEM)

method of Hoogerheide et al. (2012a), which can be adopted to have a specific focus on
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the left tail by combining it with the algorithm of Hoogerheide and Van Dijk (2010).

In Bayesian analysis of a model with a regular, ‘uncensored’ posterior, the predictive

density of the variable yT+1, given the data y1:T = {y1, . . . , yT} up to time T , is given by:

p(yT+1|y1:T ) =
∫

p(yT+1|y1:T , θ)p(θ|y1:T )dθ, (9)

which is typically approximated by

p(yT+1|y1:T ) ≈
1

N

N∑
j=1

p(yT+1|y1:T , θ(j)), (10)

where θ(j) (j = 1, . . . , N) are draws from the posterior p(θ|y1:T ). In a similar fashion, in

our case of a censored posterior we have the censored predictive density

pcs(yT+1|y1:T ) =
∫

p(yT+1|y1:T , θ)pcs(θ|y1:T )dθ, (11)

which is approximated by

pcs(yT+1|y1:T ) ≈
1

N

N∑
j=1

p(yT+1|y1:T , θ(j)), (12)

where θ(j) (j = 1, . . . , N) are draws from the censored posterior pcs(θ|y1:T ).

3. Bayesian Model Averaging and the censored predictive likelihood

Since the seminal article of Bates and Granger (1969) several papers have shown that

combinations of forecasts can outperform individual forecasts in terms of loss functions.

For example, Stock and Watson (2004) find that for predicting output growth in seven

countries forecast combinations generally perform better than forecasts based on single

models. Marcellino (2004) has extended this analysis to a large European data set with

broadly the same conclusion. In a Bayesian framework, Madigan and Raftery (1994)

revitalize the concept of Bayesian Model Averaging (BMA). Geweke andWhiteman (2006)

propose a BMA scheme based on the idea that a model is as good as its predictions, using

predictive likelihoods instead of marginal likelihoods. Billio et al. (2013) make use of a

Bayesian combination scheme with time-varying model weights.

In the case of Bayesian Model Averaging, where one considers m models Mi (i =

1, . . . ,m), the predictive density of the variable yT+1, given the data y1:T = {y1, . . . , yT}
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up to time T , is computed by averaging over the conditional predictive densities:

p(yT+1|y1:T ) =
m∑
i=1

p(yT+1|y1:T ,Mi) P (Mi|y1:T ), (13)

where p(yT+1|y1:T ,Mi) is the conditional predictive density given data y1:T and model

Mi, and P (Mi|y1:T ) is the posterior probability for model Mi. The conditional predictive

density given data y1:T and model Mi is

p(yT+1|y1:T ,Mi) =

∫
p(yT+1|y1:T , θi,Mi) p(θi|y1:T ,Mi) dθi, (14)

where θi is the parameter vector in model Mi. The posterior probability for model Mi is

P (Mi|y1:T ) =
p(y1:T |Mi)P (Mi)∑m

k=1 p(y1:T |Mk)P (Mk)
, (15)

where P (Mi) is the prior probability for modelMi and p(y1:T |Mi) is the marginal likelihood

for model Mi given by

p(y1:T |Mi) =

∫
p(y1:T |θi,Mi) p(θi|Mi) dθi (16)

with p(θi|Mi) the prior density for the parameters θi in modelMi. The integral in equation

(16) can be evaluated analytically in the case of linear models, but typically not for more

complex model specifications. Ardia et al. (2012) provide a comparative study of several

Monte Carlo methods for marginal likelihood evaluation, and find that the importance

sampling estimator is a computationally efficient and accurate estimator (on the condition

that the importance density provides a reasonable approximation of the posterior). In

this paper we use importance sampling, where the importance density is the same as the

candidate density in the independence chain Metropolis-Hastings method. If there is no a

priori preference for one of the models, then one typically specifies the prior probabilities

as P (Mi) = 1/m (i = 1, . . . ,m).

If one possesses highly informative, tight priors p(θi|Mi), then BMA will result in

well-defined marginal likelihoods in (16) and usable posterior model probabilities in (15).

If not, then BMA may result in unreliable posterior model probabilities. The reason of

this phenomenon is known in the statistical literature as Bartlett’s paradox, see Lindley

(1957) and Bartlett (1957). Bartlett’s paradox may be interpreted as the fact that if

we spread too much prior probability mass in the prior of model i, p(θi|Mi), over ‘silly’
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values, i.e., we make the prior very wide as compared to the prior densities in the other

models p(θk|Mk) (k ̸= i), we can typically make the marginal likelihood p(y1:T |Mi) in (16)

and the posterior probability P (Mi|y1:T ) in (15) as small as we want, independent of the

information in the data y1:T . Therefore, another method is needed to compute posterior

model probabilities if no highly informative priors are available for all the models under

consideration. One alternative is to use the predictive likelihood instead of the marginal

likelihood.

3.1. BMA using the predictive likelihood

If one desires to perform BMA in case of weakly informative or even improper prior

densities, then one possible approach is to make use of the predictive likelihood, see

Gelfand and Dey (1994) and Eklund and Karlsson (2007), who provide an overview of

several definitions of predictive likelihoods including the specifications corresponding with

the fractional Bayes factor of O’Hagan (1995) and the intrinsic Bayes factor of Berger and

Pericchi (1996). We use the specification where the predictive likelihood for model Mi is

given by

p(yr+1:T |y1:r,Mi) =

∫
p(yr+1:T |θi, y1:r,Mi) p(θi|y1:r,Mi) dθi, (17)

with training sample y1:r = {y1, . . . , yr} and hold-out sample yr+1:T = (yr+1, . . . , yT ). The

predictive likelihood in (17) can be considered as a marginal likelihood where the posterior

density p(θi|y1:r,Mi) after the first r observations (forming the training sample) plays the

role of the prior density, and where the observations in the hold-out sample yr+1:T play

the role of ‘the data set’. Bayes’ rule implies that this posterior density p(θi|y1:r,Mi) is

given by

p(θi|y1:r,Mi) =
p(y1:r|θi,Mi)p(θi|Mi)∫
p(y1:r|θi,Mi)p(θi|Mi)dθi

. (18)

Substituting (18) into (17) yields

p(yr+1:T |y1:r,Mi) =

∫
p(yr+1:T |θi, y1:r,Mi)p(y1:r|θi,Mi)p(θi|Mi)dθi∫

p(y1:r|θi,Mi)p(θi|Mi)dθi
, (19)

which is equal to

p(yr+1:T |y1:r,Mi) =

∫
p(y1:T |θi,Mi)p(θi|Mi)dθi∫
p(y1:r|θi,Mi)p(θi|Mi)dθi

. (20)
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From (20) it is clear that the predictive likelihood is simply given by the ratio of the

marginal likelihood of all observations over the marginal likelihood for the first r obser-

vations in the training sample. Roughly stated, the first r observations are used to delete

the completely silly values from the original non-informative prior p(θi|Mi). The poste-

rior density p(θi|y1:r,Mi) after the training sample should not be crucially affected by the

choice between different non-informative priors p(θi|Mi). Using the predictive likelihood

the posterior model probabilities in the BMA can now be defined as

P (Mi|y1:T ) =
p(yr+1:T |y1:r,Mi)P (Mi)∑m

k=1 p(yr+1:T |y1:r,Mk)P (Mk)
. (21)

For the evaluation of the two integrals, the two marginal likelihoods, in the numerator and

denominator of (20) we make use of importance sampling, where for each case a fat-tailed

Student’s t-density around the mode is used as the importance density.

One remaining issue when using the predictive likelihood is how to divide the data in

a training sample y1:r and a hold-out sample yr+1:t. Gelfand and Dey (1994) and Eklund

and Karlsson (2007) give an overview of different options. We simply use the equal sample

split r = T/2, which should assure that both the training and the hold-out sample contain

enough data to obtain reliable posterior model probabilities. A sensitivity analysis with

respect to the choice of r is left as a topic for further research. Alternative choices include

small values of r for which the hold-out sample yr+1:T is as large as possible and small

values of T − r for which the training sample contains almost the same information as the

whole data set y1:T .

3.2. BMA using the censored predictive likelihood

In BMA using either the marginal likelihood or the predictive likelihood, the entire

predictive density p(yT+1|y1:T ) is considered as equally important. There is no particular

focus on a particular part of the predictive density such as the left tail. For this purpose,

we propose the censored predictive likelihood, which results by substituting the likelihood

p(yr+1:T |θi, y1:r,Mi) in (17) with the censored likelihood

pcs(yr+1:T |θi, y1:r,Mi) =
T∏

t=r+1

pcs(yt|y1, . . . , yt−1, θ) (22)
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with pcs(yt|y1, . . . , yt−1, θ) in (6). That is, the censored predictive likelihood is given by:

pcs(yr+1:T |y1:r,Mi) =

∫
pcs(yr+1:T |θi, y1:r,Mi) p(θi|y1:r,Mi) dθi. (23)

Substituting (18) into (23) yields

pcs(yr+1:T |y1:r,Mi) =

∫
pcs(yr+1:T |θi, y1:r,Mi) p(y1:r|θi,Mi) p(θi|Mi) dθi∫

p(y1:r|θi,Mi) p(θi|Mi) dθi
. (24)

We evaluate the two integrals in (24) – the numerator and the marginal likelihood in the

denominator – by importance sampling using fat-tailed Student’t t importance densities.

Remark: We do not define the censored predictive likelihood as

pcs(yr+1:T |y1:r,Mi) =

∫
pcs(yr+1:T |θi, y1:r,Mi) p

cs(θi|y1:r,Mi) dθi (25)

=

∫
pcs(yr+1:T |θi, y1:r,Mi) p

cs(y1:r|θi,Mi) p(θi|Mi) dθi∫
pcs(y1:r|θi,Mi) p(θi|Mi) dθi

(26)

=

∫
pcs(y1:T |θi, y1:r,Mi) p(θi|Mi) dθi∫

pcs(y1:r|θi,Mi) p(θi|Mi) dθi
(27)

where the posterior p(θi|y1:r,Mi) in (23) is substituted by the censored posterior pcs(θi|y1:r,Mi),

for several reasons. First, one of the purposes of the training data is to make sure that the

model probabilities do not crucially depend on which non-informative priors are specified.

For this purpose, there is no need to prefer the censored posterior over the posterior. In

fact, the posterior is arguably more capable to ‘delete’ the effect of ‘silly’ parameter values

included in the non-informative prior p(θi|Mi) than the censored posterior (for a given

data window y1:r). Second, the censored likelihood pcs(y1:r|θi,Mi) would be included in

both the numerator and denominator of (26), so that it is anyway canceled in a certain

sense; that is, the use of the censored likelihood pcs(y1:r|θi,Mi) (instead of the likelihood

p(y1:r|θi,Mi)) would not increase the focus on a particular part of the predictive density

such as the left tail.

Using the censored predictive likelihood the posterior model probabilities in BMA are

defined as

P cs(Mi|y1:T ) =
pcs(yr+1:T |y1:r,Mi)P (Mi)∑m

k=1 p
cs(yr+1:T |y1:r,Mk)P (Mk)

. (28)
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If one has specified highly informative priors for each model that is included in BMA,

and if one is particularly interested in a particular part of the predictive density such as

the left tail, then one can obviously also make use of the censored marginal likelihood,

defined as

pcs(y1:T |Mi) =

∫
pcs(y1:T |θi,Mi) p(θi|Mi) dθi, (29)

which is simply the censored predictive likelihood in (23) with r = 0.

The concepts of the censored posterior and the censored predictive likelihood imply

that we have 2 × 2 = 4 alternatives, if we perform BMA with predictive likelihoods.

First, one needs to choose between (1) the (uncensored) posterior and (2) the censored

posterior. Second, one needs to choose between (a) the (uncensored) predictive likelihood

and (b) the censored predictive likelihood. We will mainly focus on the two most plau-

sible choices, the approaches (1+a) and (2+b), in which censoring is not used or fully used.

4. Application: simulated data sets from GARCH(2,2) model

In order to investigate the quality of our proposed methods in an application involving

left tail prediction, we perform a very extensive simulation experiment, where we analyze

S = 100 data sets of T̃ = 1000 observations that are simulated from the GARCH(2,2)

model (see Bollerslev (1986))

yt = σt εt (t = 1, . . . , T̃ ), (30)

σ2
t = β0 + α1y

2
t−1 + α2y

2
t−2 + β1 σ

2
t−1 + β2 σ

2
t−2, (31)

where the i.i.d. εt have a Student’s t-distribution with ν degrees of freedom. For the

true parameters of the GARCH(2,2) model in (30)-(31) we specify β0 = β1 = β2 =

α1 = α2 = 0.07 and ν = 8 degrees of freedom. We estimate this GARCH(2,2) model,

as well as GARCH(1,1), GARCH(1,2), and GARCH(2,1) models that result by setting

β2 = 0 and/or α2 = 0 in (31). In the Bayesian estimation of each model, we specify

non-informative, proper Gaussian prior densities p(θi|Mi) (i = 1, 2, 3, 4) and equal prior
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model probabilities P (Mi) = 1/4. For each estimation, 10000 candidate draws are used in

the Metropolis-Hastings algorithm and importance sampling; in the Metropolis-Hastings

algorithm the first 1000 draws are discarded as a burn-in.

For each simulated data set, we consider one-period-ahead prediction of the 1%, 2%,

. . ., 10% percentiles, i.e., the one-period-ahead 99%, 98%, . . ., 90% Value at Risk. We use

a moving estimation window of T = 500 observations, i.e., the data set used for predicting

the percentiles of ys+500 (s = 1, 2, . . . , 500) is given by {ys, ys+1, . . . , ys+499}. This implies

that for each estimation window both the training sample {ys, ys+1, . . . , ys+249} and hold-

out sample {ys+250, ys+251, . . . , ys+499} in the predictive likelihood approach contain 250

observations.

Note that the simulation experiment requires 200000 estimations (100 data sets × 500

estimation windows × 4 models) for both the posteriors and censored posteriors, and for

the predictive likelihoods another 200000 estimations are required for the training sample.

Therefore, even though computationally efficient C++ code has been used, an enormous

amount of computing time was required. In future research, we will consider the parallel

implementation on graphics processing units (GPUs), for which this experiment with

many independent simulations and estimations is a natural application.

As mentioned before, we use a Student’s t-distribution (with low degrees of freedom) in

the independence chain Metropolis-Hastings method for the evaluation of the (censored)

posterior and in the importance sampling method for the evaluation of the marginal

likelihoods (and the denominator of the censored predictive likelihood in (24)), leading to

reasonably high acceptance rates and reasonably low variances of the importance sampling

weights.

For the censoring we consider the region of interest At = {yt|yt ≤ Rt} where the

constant value Rt = R is either the 20% or 30% percentile of the estimation window

in case of the censored posterior, or the 20% or 30% percentile of the hold-out sample

in case of the censored predictive likelihood. These choices ensure that a reasonable

number of observation is uncensored: 100 or 150 observations in the estimation window

for the censored posterior, 50 or 75 observations in the hold-out sample for the censored

predictive likelihood. We consider two choices to investigate the sensitivity of our results
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with respect to the particular boundary value Rt. As an alternative one could choose Rt

time-varying, such as a percentile of the conditional distribution of yt given {y1, . . . , yt−1}

in a certain model M . One disadvantage of that approach would be that the choice for a

particular model M (upon which the conditional distribution’s percentile is based) may

affect the performance of the different models. We leave this as a topic for future research.

To investigate the quality of the predicted 1%, 2%, . . ., 10% percentiles from the differ-

ent models and the different predictive BMA approaches, we consider a simple measure,

the root mean squared error (RMSE), where for each simulated data set the ‘error’ is

the difference between the observed fraction of ‘violations’ (realizations yt that are more

negative than the predicted percentile) and the desired value of 1%, 2%, . . ., 10%. The

mean is taken over the S = 100 data sets (if a particular percentile is considered), or over

both the S = 100 data sets and the 10 percentiles. Alternatively, we could have consid-

ered a Diebold-Mariano type test using the censored likelihood based scoring rule of Diks

et al. (2011). However, we consider our simple measure more fair in our experiments,

since our proposed methods – that are based on the censored likelihood – may be more

easily favored by a measure that is also based on the censored likelihood. Table 1 shows

the results. We draw the following conclusions. First, obviously, the GARCH(2,2) model

has the lowest RMSE, since the data are simulated from a GARCH(2,2) model. For the

GARCH(2,2) model, the uncensored posterior yields slightly lower RMSE (on average

over the 10 percentiles) than the censored posterior. Making use of the independence

across the S = 100 simulated data sets, we perform a one-sided t-test to assess whether in

the GARCH(2,2) model the uncensored posterior performs significantly better than the

censored posterior (on average over the 10 percentiles), where we bootstrap the distribu-

tion under the null hypothesis of equal performance (see Efron and Tibshirani (1993)).

The p-value is 0.0405 (0.0614) in the test whether the uncensored posterior performs bet-

ter than the censored posterior using the 20% (30%) percentile as the boundary value, so

that the performance of the uncensored posterior is significantly better at a significance

level of 5% (10%). In the true model, it is optimal to fully use all observations in order to

estimate the parameters as accurately as possible. However, in practice it is not a priori

known what the true model is for an empirical data set. Moreover, one often faces the
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situation where the true model is not included in the set of models under consideration.

Second, disappointingly, the censored posterior yields similar results to the uncensored

posterior for each false model (GARCH(1,1), GARCH(1,2), and GARCH(2,1)). The RM-

SEs are close; the differences are not significant in a t-test. Third, a very interesting

result is found for the BMA approach based on predictive likelihoods. Here the censored

posterior and censored predictive likelihood perform much better than the uncensored

posterior and uncensored predictive likelihood. That is, the focus on the left tail during

the estimation and combination of the models clearly pays off in terms of a higher quality

of the left tail of the predictive density. The p-value is 0.0001 (0.0001) in the test whether

the censored posterior using the 20% (30%) percentile as the boundary value performs

better than the uncensored posterior, so that the performance of the censored posterior

is significantly better at a significance level of 0.01%.

Fourth, if we would use the GARCH(2,2) model with the true parameters, rather

than the estimated parameters, then the number of violations (for the 100p% percentile)

would have a binomial distribution with 500 trials and probability of ‘success’ equal to p.

Therefore the RMSE of the fraction of violations would be equal to the standard deviation√
p(1− p)/500, which is an increasing function of p. A comparison of the results for the

estimated GARCH(2,2) model and the true GARCH(2,2) model (in the bottom row of

Table 1) shows that the harmful effect of the estimation errors on the quality of (the left

tail of) the predictive density is huge.

Fifth, just like for the true model, for each estimated model and for each BMA ap-

proach, the RMSE is typically larger for larger percentiles. To perform a fair comparison

of the relative performance between different percentiles, we consider the ratios of the

RMSE and the RMSE under the true model. These ratios, reported by Table 2, show

that for the false models (GARCH(1,1), GARCH(1,2), and GARCH(2,1)) the perfor-

mance is worse for lower percentiles that are deeper in the left tail. This also holds true

for the uncensored BMA approach. Arguably, the latter is caused by the problem that

the predictive likelihood may still suffer from Bartlett’s paradox, as the training sample

may be too small; the data set y1:250 may be too small to yield a good predictive density

for y251:500 in the GARCH(2,2) model. In future research we will perform similar exper-
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Table 1: Simulation experiment using 100 simulated data sets from GARCH(2,2) models. The table

shows 100× the root mean squared error (RMSE), where for each simulated data set the ‘error’ is the

difference between the observed fraction of ‘violations’ (realizations yt that are more negative than the

predicted percentile) and the desired value of 1%, 2%, . . ., 10%. The mean is taken over the S = 100

data sets (in the first 10 columns), or over both the S = 100 data sets and the 10 percentiles (in the last

column). BMA refers to Bayesian Model Averaging based on the predictive likelihood, either using the

(uncensored) posterior and the (uncensored) predictive likelihood or using the censored posterior and the

censored predictive likelihood. The theoretical value of the true model (with true parameter values) refers

to 100 times the theoretical RMSE, i.e., 100 times the standard deviation
√

p(1− p)/500 for the 100p%

percentile.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%-10%

GARCH(1,1) uncensored 8.26 12.30 12.34 12.28 13.20 13.46 13.79 13.82 13.71 13.38 12.75

GARCH(1,1) censored (20%) 8.76 12.54 12.53 12.61 13.41 13.56 13.86 13.81 14.17 13.86 13.00

GARCH(1,1) censored (30%) 8.64 12.49 12.75 12.60 13.38 13.55 13.73 13.77 13.80 13.57 12.91

GARCH(1,2) uncensored 2.35 4.09 3.87 3.45 4.55 5.39 6.14 6.18 6.94 6.53 5.15

GARCH(1,2) censored (20%) 2.57 4.08 4.10 3.70 4.17 4.65 5.44 5.67 6.16 5.88 4.77

GARCH(1,2) censored (30%) 2.34 3.98 3.75 3.43 4.26 4.95 5.84 5.86 6.45 6.07 4.87

GARCH(2,1) uncensored 5.66 8.11 7.96 7.81 8.69 9.39 9.49 9.70 10.06 9.56 8.73

GARCH(2,1) censored (20%) 5.60 7.98 7.79 7.53 8.62 9.30 9.40 9.82 10.12 9.75 8.69

GARCH(2,1) censored (30%) 5.38 7.87 7.78 7.52 8.42 9.10 9.39 9.70 9.96 9.52 8.57

GARCH(2,2) uncensored 1.57 2.21 2.41 2.59 3.09 3.32 3.58 4.00 4.54 4.64 3.34

GARCH(2,2) censored (20%) 1.60 2.11 2.26 2.50 2.90 3.34 3.95 4.21 4.57 4.76 3.39

GARCH(2,2) censored (30%) 1.64 2.29 2.44 2.59 3.04 3.41 3.84 4.28 4.64 4.83 3.45

BMA uncensored 8.55 12.81 12.85 12.89 13.79 14.20 14.54 14.55 14.39 14.13 13.38

BMA censored (20%) 2.25 3.59 3.46 3.46 4.15 4.68 5.19 5.65 6.10 6.30 4.66

BMA censored (30%) 2.30 3.22 3.24 3.38 4.09 4.78 5.07 5.42 5.93 6.17 4.53

true model 0.44 0.63 0.76 0.88 0.97 1.06 1.14 1.21 1.28 1.34

iments with larger estimation windows and larger training samples. On the other hand,

the performance is approximately equally good for the different percentiles (including the

deeper left tail) for the censored BMA approach; this stresses that the focus on the left

tail during the estimation and combination of the models is very beneficial. This conclu-

sion can also be drawn from Table 3 which shows the ratio of the RMSE in Table 1 over

the RMSE for the uncensored posterior in the corresponding model or the corresponding

uncensored BMA approach.
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Table 2: Simulation experiment using 100 simulated data sets from GARCH(2,2) models. The table shows

the ratio of the RMSE in Table 1 over the RMSE for the true model.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

GARCH(1,1) uncensored 18.56 19.65 16.18 14.02 13.54 12.68 12.08 11.39 10.71 9.98

GARCH(1,1) censored (20%) 19.69 20.02 16.43 14.39 13.76 12.77 12.15 11.39 11.07 10.33

GARCH(1,1) censored (30%) 19.42 19.95 16.71 14.38 13.73 12.76 12.03 11.35 10.78 10.11

GARCH(1,2) uncensored 5.28 6.53 5.07 3.94 4.67 5.07 5.38 5.09 5.42 4.87

GARCH(1,2) censored (20%) 5.78 6.52 5.37 4.23 4.28 4.38 4.77 4.68 4.82 4.38

GARCH(1,2) censored (30%) 5.26 6.35 4.92 3.92 4.37 4.66 5.12 4.83 5.04 4.52

GARCH(2,1) uncensored 12.72 12.96 10.44 8.91 8.91 8.84 8.31 7.99 7.86 7.13

GARCH(2,1) censored (20%) 12.59 12.74 10.21 8.60 8.84 8.75 8.24 8.10 7.91 7.27

GARCH(2,1) censored (30%) 12.09 12.57 10.20 8.59 8.64 8.57 8.23 7.99 7.78 7.09

GARCH(2,2) uncensored 3.53 3.52 3.16 2.95 3.17 3.12 3.14 3.29 3.55 3.46

GARCH(2,2) censored (20%) 3.60 3.36 2.97 2.86 2.98 3.14 3.46 3.47 3.57 3.55

GARCH(2,2) censored (30%) 3.70 3.65 3.20 2.95 3.12 3.21 3.36 3.53 3.63 3.60

BMA uncensored 19.21 20.45 16.85 14.71 14.15 13.37 12.74 11.99 11.25 10.54

BMA censored (20%) 5.06 5.74 4.54 3.95 4.25 4.41 4.55 4.65 4.76 4.70

BMA censored (30%) 5.18 5.14 4.25 3.86 4.20 4.50 4.45 4.47 4.64 4.60

true model 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Simulation experiment using 100 simulated data sets from GARCH(2,2) models. The table shows

the ratio of the RMSE in Table 1 over the RMSE for the uncensored posterior in the corresponding model

or the corresponding uncensored BMA approach.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%-10%

GARCH(1,1) censored (20%) 1.06 1.02 1.02 1.03 1.02 1.01 1.01 1.00 1.03 1.04 1.02

GARCH(1,1) censored (30%) 1.05 1.02 1.03 1.03 1.01 1.01 1.00 1.00 1.01 1.01 1.01

GARCH(1,2) censored (20%) 1.10 1.00 1.06 1.07 0.92 0.86 0.89 0.92 0.89 0.90 0.92

GARCH(1,2) censored (30%) 1.00 0.97 0.97 1.00 0.94 0.92 0.95 0.95 0.93 0.93 0.94

GARCH(2,1) censored (20%) 0.99 0.98 0.98 0.96 0.99 0.99 0.99 1.01 1.01 1.02 1.00

GARCH(2,1) censored (30%) 0.95 0.97 0.98 0.96 0.97 0.97 0.99 1.00 0.99 1.00 0.98

GARCH(2,2) censored (20%) 1.02 0.95 0.94 0.97 0.94 1.01 1.10 1.05 1.01 1.03 1.02

GARCH(2,2) censored (30%) 1.05 1.04 1.01 1.00 0.98 1.03 1.07 1.07 1.02 1.04 1.04

BMA censored (20%) 0.26 0.28 0.27 0.27 0.30 0.33 0.36 0.39 0.42 0.45 0.35

BMA censored (30%) 0.27 0.25 0.25 0.26 0.30 0.34 0.35 0.37 0.41 0.44 0.34
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5. Application: empirical data sets of stock index returns

We perform a similar experiment as in the previous section, using two empirical data

sets of daily returns on the S&P 500 and Nikkei 225 stock indices. Again, we consider

T̃ = 1000 observations (the trading days from March 6 2007 to February 7 2011), where

again a moving window of 500 observations is used for the estimation and combination

of the models, where the purpose is the accurate one-day-ahead prediction of the left

tail of the returns distribution. There are two main differences with the experiment using

simulated data sets in the previous section. First, since a leverage effect – the phenomenon

that a negative return has a larger effect on the variance of tomorrow’s return than

a positive return of the same size – is observed for many returns on stocks and stock

indices, we consider the Threshold GARCH (TGARCH(p, q, s)) model of Glosten et al.

(1993)

yt = σt εt (t = 1, . . . , T̃ ), (32)

σ2
t = β0 + α1y

2
t−1 + . . .+ αqy

2
t−q

+γ1I{yt−1 < 0}y2t−1 + . . .+ γsI{yt−s < 0}y2t−s

+β1 σ
2
t−1 + . . .+ βp σ

2
t−p, (33)

where the i.i.d. εt have a Student’s t-distribution with ν degrees of freedom. We consider

the 80 (= 4 × 4 × 5) TGARCH(p, q, s) models with p = 1, 2, 3, 4, q = 1, 2, 3, 4, s =

0, 1, 2, 3, 4. Another reason for including more models than in the previous section, next

to the leverage effect that is often observed for stock index returns, is that we investigate

only two empirical data sets, instead of 100 simulated sets. For the simulation experiment

in the previous section, the computing time was already enormous in the case of four

models. The second difference is that we also consider the ‘semi censored’ predictive BMA

approaches, where only the posterior or the predictive likelihood is censored, whereas the

other remains ‘uncensored’.

Tables 4 - 6 show the results for the S&P 500. Tables 7 - 9 show the results for the

Nikkei 225. We observe the following findings for both data sets. First, the worst results

– in the sense of the highest RMSE over the 10 percentiles – are obtained by the uncen-

sored predictive BMA approach, where both the posterior and the predictive likelihood
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Table 4: Empirical application to daily returns on S& P 500 using TGARCH models. The table shows

100× the root mean squared error (RMSE), where for each simulated data set the ‘error’ is the difference

between the observed fraction of ‘violations’ (realizations yt that are more negative than the predicted

percentile) and the desired value of 1%, 2%, . . ., 10%. For the individual percentiles the RMSE reduces

to the absolute error (in the first 10 columns); for the RMSE in the last column the mean is taken over

the 10 percentiles. We make use of Bayesian Model Averaging based on the predictive likelihood, using

the uncensored or censored posterior and the uncensored or censored predictive likelihood. The theoretical

value of the true model (with true parameter values) refers to 100 times the theoretical RMSE, i.e., 100

times the standard deviation
√

p(1− p)/500 for the 100p% percentile.

predictive

posterior likelihood 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%-10%

uncensored uncensored 0.80 1.60 2.40 3.00 3.20 4.00 5.00 5.20 5.60 6.00 4.04

uncensored censored (20%) 1.00 1.60 2.00 2.60 3.60 3.80 4.20 4.20 5.00 5.80 3.68

uncensored censored (30%) 1.00 1.60 2.00 2.60 3.60 3.80 4.00 4.20 5.20 5.80 3.69

censored (20%) uncensored 1.00 1.80 2.40 3.00 3.60 4.60 4.40 4.60 5.20 6.20 3.99

censored (30%) uncensored 1.00 1.80 2.20 2.80 3.60 4.20 4.40 4.40 5.20 6.00 3.86

censored (20%) censored (20%) 1.00 1.40 2.20 2.80 3.20 3.80 4.20 4.60 4.80 5.40 3.62

censored (30%) censored (30%) 1.00 1.60 2.40 2.40 3.00 3.20 4.00 4.60 5.40 6.20 3.73

true model 0.44 0.63 0.76 0.88 0.97 1.06 1.14 1.21 1.28 1.34

remain uncensored. Second, the best results are obtained by the approach where both the

posterior and the predictive likelihood are censored, where the ‘censoring boundary’ Rt is

taken equal to the 20% percentile of the observations. Third, the results are quite robust

with respect to the choice of this ‘censoring boundary’ Rt: the results are similar for the

approach where Rt is equal to the 30% percentile. Fourth, the censoring of the predictive

likelihood is more beneficial than the censoring of the posterior: the approach where only

the posterior is censored performs worse than the approach where only the predictive

likelihood is censored. The latter’s performance is close to the performance of the method

where both the posterior and the predictive likelihood are censored. Fifth, Tables 5 and

8 show that for our data window the relative performance, the ratio of the absolute error

over the standard deviation of the error in a theoretical true model, typically becomes

better for the lower percentiles in the deep tail.
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Table 5: Empirical application to daily returns on S& P 500 using TGARCH models. The table shows

the ratio of the RMSE in Table 4 over the RMSE for the true model.

predictive

posterior likelihood 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

uncensored uncensored 1.80 2.56 3.15 3.42 3.28 3.77 4.38 4.29 4.38 4.47

uncensored censored (20%) 2.25 2.56 2.62 2.97 3.69 3.58 3.68 3.46 3.91 4.32

uncensored censored (30%) 2.25 2.56 2.62 2.97 3.69 3.58 3.51 3.46 4.06 4.32

censored (20%) uncensored 2.25 2.87 3.15 3.42 3.69 4.33 3.86 3.79 4.06 4.62

censored (30%) uncensored 2.25 2.87 2.88 3.20 3.69 3.95 3.86 3.63 4.06 4.47

censored (20%) censored (20%) 2.25 2.24 2.88 3.20 3.28 3.58 3.68 3.79 3.75 4.02

censored (30%) censored (30%) 2.25 2.56 3.15 2.74 3.08 3.01 3.51 3.79 4.22 4.62

true model 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Empirical application to daily returns on S& P 500 using TGARCH models. The table shows

the ratio of the RMSE in Table 4 over the RMSE for the uncensored posterior and uncensored predictive

likelihood.

predictive

posterior likelihood 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%-10%

uncensored censored (20%) 1.25 1.00 0.83 0.87 1.13 0.95 0.84 0.81 0.89 0.97 0.91

uncensored censored (30%) 1.25 1.00 0.83 0.87 1.13 0.95 0.80 0.81 0.93 0.97 0.91

censored (20%) uncensored 1.25 1.13 1.00 1.00 1.13 1.15 0.88 0.88 0.93 1.03 0.99

censored (30%) uncensored 1.25 1.13 0.92 0.93 1.13 1.05 0.88 0.85 0.93 1.00 0.96

censored (20%) censored (20%) 1.25 0.88 0.92 0.93 1.00 0.95 0.84 0.88 0.86 0.90 0.90

censored (30%) censored (30%) 1.25 1.00 1.00 0.80 0.94 0.80 0.80 0.88 0.96 1.03 0.92

Table 7: Empirical application to daily returns on Nikkei 225 using TGARCH models. The table shows

100× the root mean squared error (RMSE), where for each simulated data set the ‘error’ is the difference

between the observed fraction of ‘violations’ (realizations yt that are more negative than the predicted

percentile) and the desired value of 1%, 2%, . . ., 10%. For the individual percentiles the RMSE reduces

to the absolute error (in the first 10 columns); for the RMSE in the last column the mean is taken over

the 10 percentiles. We make use of Bayesian Model Averaging based on the predictive likelihood, using

the uncensored or censored posterior and the uncensored or censored predictive likelihood. The theoretical

value of the true model (with true parameter values) refers to 100 times the theoretical RMSE, i.e., 100

times the standard deviation
√

p(1− p)/500 for the 100p% percentile.

predictive

posterior likelihood 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%-10%

uncensored uncensored 0.80 1.20 2.00 3.00 3.20 4.00 4.60 4.80 5.40 6.20 3.91

uncensored censored (20%) 0.60 1.20 2.00 2.60 3.40 3.60 3.60 4.00 4.60 4.80 3.32

uncensored censored (30%) 0.80 1.20 2.00 2.60 3.40 3.80 3.60 4.00 4.60 4.80 3.35

censored (20%) uncensored 0.80 1.40 2.20 3.00 3.60 4.40 4.60 4.60 4.80 5.40 3.79

censored (30%) uncensored 0.80 1.40 2.20 3.00 3.60 4.40 4.20 4.40 4.60 5.20 3.66

censored (20%) censored (20%) 1.00 1.40 2.00 2.20 2.80 3.20 3.40 4.00 4.80 5.40 3.31

censored (30%) censored (30%) 0.40 1.40 1.80 2.40 2.40 3.00 4.00 4.40 5.00 5.00 3.34

true model 0.44 0.63 0.76 0.88 0.97 1.06 1.14 1.21 1.28 1.34
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Table 8: Empirical application to daily returns on Nikkei 225 using TGARCH models. The table shows

the ratio of the RMSE in Table 7 over the RMSE for the true model.

predictive

posterior likelihood 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

uncensored uncensored 1.80 1.92 2.62 3.42 3.28 3.77 4.03 3.96 4.22 4.62

uncensored censored (20%) 1.35 1.92 2.62 2.97 3.49 3.39 3.15 3.30 3.59 3.58

uncensored censored (30%) 1.80 1.92 2.62 2.97 3.49 3.58 3.15 3.30 3.59 3.58

censored (20%) uncensored 1.80 2.24 2.88 3.42 3.69 4.14 4.03 3.79 3.75 4.02

censored (30%) uncensored 1.80 2.24 2.88 3.42 3.69 4.14 3.68 3.63 3.59 3.88

censored (20%) censored (20%) 2.25 2.24 2.62 2.51 2.87 3.01 2.98 3.30 3.75 4.02

censored (30%) censored (30%) 0.90 2.24 2.36 2.74 2.46 2.82 3.51 3.63 3.91 3.73

true model 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 9: Empirical application to daily returns on Nikkei 225 using TGARCH models. The table shows

the ratio of the RMSE in Table 7 over the RMSE for the uncensored posterior and uncensored predictive

likelihood.

predictive

posterior likelihood 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%-10%

uncensored censored (20%) 0.75 1.00 1.00 0.87 1.06 0.90 0.78 0.83 0.85 0.77 0.85

uncensored censored (30%) 1.00 1.00 1.00 0.87 1.06 0.95 0.78 0.83 0.85 0.77 0.86

censored (20%) uncensored 1.00 1.17 1.10 1.00 1.13 1.10 1.00 0.96 0.89 0.87 0.97

censored (30%) uncensored 1.00 1.17 1.10 1.00 1.13 1.10 0.91 0.92 0.85 0.84 0.94

censored (20%) censored (20%) 1.25 1.17 1.00 0.73 0.88 0.80 0.74 0.83 0.89 0.87 0.85

censored (30%) censored (30%) 0.50 1.17 0.90 0.80 0.75 0.75 0.87 0.92 0.93 0.81 0.85
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6. Conclusion

We have introduced two novel concepts, the censored posterior and the censored pre-

dictive likelihood, that offer a specific focus on a particular part such as the left tail of the

predictive density for Bayesian forecasting of the Value at Risk. Extensive experiments

are reported, involving simulated and empirical data. The obtained results show the

ability of these innovative approaches to outperform the standard posterior and the tra-

ditional Bayesian Model Averaging techniques in applications of Value at Risk prediction

in GARCH models. Especially, we find that the censored predictive likelihood provides

significantly and substantially better results than the (uncensored) predictive likelihood.

Multiple suggestions for further research have already been mentioned throughout

the paper. In any case, the use of parallel computations on Graphics Processing Units

(GPUs) should be considered to reduce the enormous computing time of the experi-

ments, especially when applying our computationally intensive method to large numbers

of (simulated) data sets. Moreover, we intend to investigate multivariate models (e.g., the

Dynamic Conditional Correlation (DCC) model of Engle (2002), and different univariate

models (e.g., GARCH models with different variance equations such as the EGARCH

model of Nelson (1991) and with different distributions for the standardized error terms,

or stochastic volatility models). Further, we intend to analyze other data sets (e.g., ex-

change rates), larger estimation windows, different values for the ‘censoring boundary

percentile’ (e.g., the 10% percentile of a larger estimation window), and different tests

such as the tests proposed by Hoogerheide et al. (2012b) who comment on the forecast

rationality tests of Patton and Timmermann (2012). As an alternative to the model com-

bination framework involving the predictive likelihood, the concept of censoring can be

introduced within the forecast combination framework of Hoogerheide et al. (2010), which

involves a certain type of time-varying model weights.
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Ardia, D., Baştürk, N., Hoogerheide, L. F., Van Dijk, H. K., 2012. A comparative study

of Monte Carlo methods for efficient evaluation of marginal likelihood. Computational

Statistics & Data Analysis 56 (11), 3398–3414.

Bartlett, M. S., 1957. A comment on D.V. Lindley’s statistical paradox. Biometrika

44 (3/4), 533–534.

Bates, J. M., Granger, C. W. J., 1969. Combination of forecasts. Operational Research

Quarterly 20, 451–468.

Berger, J., Pericchi, L., 1996. The intrinsic Bayes factor for model selection and prediction.

Journal of the American Statistical Association 91 (433), 109–122.

Billio, M., Casarin, R., Ravazzolo, F., Van Dijk, H. K., 2013. Time-varying combinations

of predictive densities using nonlinear filtering. Journal of Econometrics, forthcoming.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics 31 (3), 307–327.

Diks, C., Panchenko, V., Van Dijk, D., 2011. Likelihood-based scoring rules for comparing

density forecasts in tails. Journal of Econometrics 163, 215–230.

Efron, B., Tibshirani, R., 1993. An Introduction to Bootstrap. Chapman and Hall, New

York, USA.

Eklund, J., Karlsson, S., 2007. Forecast combination and model averaging using predictive

measures. Econometric Reviews 26, 329–363.

Engle, R., 2002. Dynamic Conditional Correlation: A simple class of multivariate gen-

eralized autoregressive conditional heteroskedasticity models. Journal of Business &

Economic Statistics 20, 339–350.

Gelfand, A., Dey, D., 1994. Bayesian model choice: Asymptotics and exact calculations.

Journal of the Royal Statistical Society Series B 56 (3), 501–514.

23



Geweke, J., Whiteman, C., 2006. Bayesian forecasting. In: Elliot, G., Granger, C. W. J.,

Timmermann, A. (Eds.), Handbook of Economic Forecasting. North-Holland: Amster-

dam, pp. 3–80.

Glosten, L. R., Jaganathan, R., Runkle, D. E., 1993. On the relation between the expected

value and the volatility of the nominal excess return on stocks. Journal of Finance 48 (5),

1779–1801.

Hammersley, J., Handscomb, D., 1964. Monte Carlo Methods, 1st Edition. Methuen,

London.

Hastings, W. K., 1970. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57, 97–109.

Hoogerheide, L. F., Kleijn, R., Ravazzolo, F., Van Dijk, H. K., Verbeek, M., 2010. Fore-

cast accuracy and economic gains from Bayesian Model Averaging using time varying

weights. Journal of Forecasting 29, 251–269.

Hoogerheide, L. F., Opschoor, A., van Dijk, H. K., 2012a. A class of adaptive importance

sampling weighted EM algorithms for efficient and robust posterior and predictive sim-

ulation. Journal of Econometrics 171 (2), 101–120.

Hoogerheide, L. F., Ravazzolo, F., Van Dijk, H. K., 2012b. Comment on forecast ratio-

nality tests based on multi-horizon bounds. Journal of Business & Economic Statistics

30 (1), 30–33.

Hoogerheide, L. F., Van Dijk, H. K., 2010. Bayesian forecasting of value at risk and

expected shortfall using adaptive importance sampling. International Journal of Fore-

casting 26 (2), 231–247.

Hoogerheide, L. F., Van Dijk, H. K., Van Oest, R. D., 2009. Simulation based Bayesian

econometric inference: Principles and some recent computational advances. In: Belsley,

D. A., Kontoghiorghes, E. (Eds.), Handbook of Computational Econometrics. Wiley,

pp. 215–280.

24



Kloek, T., Van Dijk, H. K., 1978. Bayesian estimates of equation system parameters: An

application of integration by Monte Carlo. Econometrica 46, 1–20.

Lindley, D. V., 1957. A statistical paradox. Biometrika 44 (1/2).

Madigan, D., Raftery, A., 1994. Model selection and accounting for model uncertainty in

graphical models using occam’s window. Journal of the American Statistical Association

89, 1335–1346.

Marcellino, M., 2004. Forecasting pooling for short time series of macroeconomic variables.

Oxford Bulletin of Economic and Statistics 66, 91–112.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E., 1953.

Equations of state calculations by fast computing machines. Journal of Chemical

Physics 21, 1087–1092.

Nelson, D. B., 1991. Conditional heteroskedasticity in asset returns: A new approach.

Econometrica 59 (2), 347–370.

O’Hagan, A., 1995. Fractional Bayes factors for model comparison. Journal of the Royal

Statistical Society Series B 57 (1), 99–138.

Patton, A. J., Timmermann, A., 2012. Forecast rationality tests based on multi-horizon

bounds. Journal of Business & Economic Statistics 30 (1), 1–17.

Stock, J. H., Watson, M., 2004. Combination forecasts of output growth in a seven-country

data set. Journal of Forecasting 23, 405–430.

25


