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Since most legal documents are released in digital form nowadays it has become more and more important to 

be able to search these documents adequately. Metadata, such as the area of law a certain document is about, 

included with digital publications can help to find similar publications faster, however the included metadata 

are very often incomplete. Automatic document classification can supplement essential metadata in legal 

documents released from different sources, such that integrated legal content systems can offer uniform options 

for the selection of relevant documents. 
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1  Automatic classification of documents in heterogeneous content sets 

Let us discuss a basic implementation of a search engine in order to understand document classification. A 

simple search engine might work in the following way: By counting the number of times each specific word is 

used per webpage in combination with a few other factors (which pages link to the respective page, what is the 

subject of those linked pages, etc.), all pages can be indexed. Then, when a search query is executed by a user, 

the search engine returns the indexed pages that rank the highest on the query. Although already very useful, 

such an engine can be improved easily by allowing users to add requirements to the returned pages. For 

example, when searching for videos of cats, you would only want the search engine to return pages that include 

actual videos of cats, and not pages that mention the words “cat” and “video”. This behavior can be achieved 

by classifying all pages on the type of content they contain (pages could for example include videos, text and 

audio files). 

 Classification of text documents is in essence an elaborate version of the previously discussed procedure, 

where we are not looking to classify documents based on their type of content, but on the properties of the text 

they contain. In the previous example, our classes would have been types of content (text, video or audio), 

whereas now, classes of text properties could for example include a finite set of subjects (for instance if we 

know all documents to be about either cats, computers or law). By maintaining a set of positive examples for 

each class (the training set), we can start classifying new documents by assessing their similarity to each class 

on the assumption that all classes have a certain uniqueness that separates them from each other. Different 

algorithms exist that are designed to do this classifying automatically. Choosing between these algorithms is 

generally done based on the characteristics of the input data, since each algorithm responds differently to 

different circumstances, such as the size of the training set, the number of features per document and the 

independence of the features. Simpler models are usually preferred over more complex ones, since they provide 

greater insight into how classification comes about. However when trained sufficiently, complex models can 

generally outperform simpler models. Given the nature of an application in the legal field, we expect documents 

to show many great similarities within classes. Specifically since legal documents concerning the same area of 

law tend to use the same domain specific language, it is to be expected that a relatively simple model, such as 

a naïve Bayes, tree ensemble or k-nearest neighbors model will be sufficiently able to differentiate between 

classes. 

 A few similar applications already exist in very different fields. Perhaps surprisingly, a comparable 

application can be found in spam filtering, where the classifier is only provided with two classes, namely: spam, 

and not spam [1]. The classification is based on the fact that the content of any spam message shows high 

similarity to the content of other spam messages, such as the use of capital letters, or the use of specific sales 

related vocabulary. Other interesting applications of this classification technique include sentiment analysis 

and genre classification [2] [3]. In the first, documents are analyzed based on the general sentiment in the use 

of words, such that each document can be classified as being written in a, for example, happy, sad or angry 

tone. Secondly, genre classification automates distinguishing genres in documents such as library books, or 

song lyrics. 

 Based on the results of previously mentioned applications (accuracy of about 97% for spam filters and 66% 

for genre classifiers [2] [3]), it is to be expected that a classifier trained to classify legal documents can achieve 

a classification accuracy in a similar range as the genre classifier. A few challenges can be identified 

beforehand. Two of these are most noteworthy: incomplete training data and non-linear separability of classes. 

Firstly, the training data may turn out to be insufficiently homogeneous. It is imaginable to create a perfectly 

separated training set, but still end up with a classifier performing poorly, due to the fact that the data in each 

class in the training set are insufficiently similar. In this case, it is next to impossible for any classifier to create 

a well performing model. Possible countermeasures include leaving bad examples out of the training set, and 

adding more training data. Secondly, it is highly likely that certain words will be highly predictive for multiple 

classes when classifying legal documents, which can make it hard for a classifier to differentiate between these 

classes. The implementation of classification algorithms that are specifically designed to be able to handle non-

linearly separated input data can be a possible solution, as well as the application of preprocessing steps where 
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the importance of certain features is modified, such that they play a lesser role when a scenario as described 

occurs. 

2  Combining legal sources in integrated collections 

The amount of legal information available digitally has grown tremendously in the past two decades. 

Legislation, case law reports as well as legal comments and other legal literature can be retrieved from online 

databanks, which tend to replace traditional ‘paper’ library collections in whole or in part [4]. Publishers play 

an important role here. They usually provide these digital legal resources on a subscription basis, by means of 

their own retrieval systems. Governments and the judiciary also publish important legal content, for instance 

legislation texts and case law reports. Furthermore, most law firms have their own ‘internal’ document 

collections, which also can be searched. All in all, it is not uncommon for a lawyer to make use of up to ten, or 

even more, separate content collections, each of them with its own specific retrieval functionalities. For a single 

task, it might be necessary to consult a number of these, repeating the same query over and over again in 

different retrieval systems. 

 As that situation is far from optimal, we now see an increasing number of initiatives to combine online 

legal content collections and make them available through one single retrieval interface. This is sometimes 

referred to as ‘content integration’ or ‘content aggregation’ and it can be a very effective way to simplify 

information gathering and processing for legal professionals. For basic full text searching and for browsing the 

available documents in such an integrated system, usually no specific additions or adjustments to the content 

are necessary. But when collections grow in size, supplementary selection mechanisms, such as the addition of 

drill-down options to choose certain subsets of a previously retrieved set of documents, might become 

necessary to enable users to pinpoint the required content. Categories for drill-down are usually based on 

metadata, added to each document. Common ones are for instance the type of publication (article in a journal, 

official government publication, (chapter in a) book, report, etc.), the source name (name of the journal, book 

or collection a document is part of) and maybe the year of publication. Such drill-down categories can usually 

be attributed to each document in the collection in a uniform way, even if the documents have totally different 

origins. But other drill-down categories, potentially very useful for lawyers, such as for instance the area of 

law a document is on, are often more difficult to apply. The reason is that not all documents contain metadata 

relating to these categories. It is not uncommon that up to 40% of all documents in an integrated collection 

contain no useable metadata to establish the area of law they relate to. In that case, such documents would not 

be selected if the user of an integrated retrieval system would choose to activate a particular area-of-law drill-

down category, even if that area of law would definitely be applicable to them. The problem is often even more 

prominent in documents from private, ‘internal’ documents collections law firms maintain themselves, should 

such documents be part of the integrated collection that is queried. It is not uncommon that these internal 

document collections (for instance from ‘know how’ systems) only contain very limited metadata. 

 In order to avoid such problems, automatic classification of documents is a powerful addition to content 

collections in which not every document contains compatible metadata. Automatic classifiers have been around 

for quite some time now, but they are infamous for the need to be trained properly before they can be applied. 

Training a classifier for a particular category of documents could for instance involve the manual selection of 

a set of documents known to belong to that category, after which the classifier is able to select other documents 

for the same category by looking for certain ‘features’ obtained from the training documents. Although that 

approach might work, a major drawback is the effort needed for selecting the training documents, and possibly 

also to update the training set whenever the content collection changes (new types of documents added).  

 Integrating content collections and making these available to law firms now provides us with a powerful 

option to overcome these problems. For in such integrated collections, the probability is high that at least a 

certain number of documents contain metadata that attribute them to certain classes (for instance, a class 

representing a particular area of law). By using all documents containing the necessary metadata for a certain 

category as training documents for the automatic classifier of that category, and next applying that classifier to 

all documents lacking such metadata, manual training as well as manual updating of the training material can 



XX:4  K. Van Noortwijk & K. Van Noortwijk 

ICAIL 2017 – Workshop on AI in Legal Practice 

 

be effectively eliminated. When this is supplemented with a simple user feedback feature, which enables a 

lawyer using the system to indicate incorrect automatic classifications, the result would be that the entire 

content collection available to a certain law firm can be queried much more effectively, precisely and efficiently 

than would otherwise be possible. 
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