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1 Introduction

The non-stationary gamma process is a monotone continuous-time non-homogeneous Markov pro-
cess with independent increments. The increments are gamma distributed with time-dependent
shape function and an identical scale parameter. It is a jump process and the number of jumps in
any time interval is infinite with probability one ([12]). These properties make the gamma process

a suitable candidate to model the temporal variability in monotone phenomena. A recent paper
by Van Noortwijk (2006) ([22]) gives an overview of the application of gamma processes within
maintenance. Within this field these processes are used to describe time-dependent degradation
such as wear, creep and corrosion. Another application of the gamma process outside the field of
maintenance, is the aggregate claim process within insurance mathematics [8].

The review by Van Noortwijk ([22]) indicates that many authors have studied the first time
a gamma process exceeds a fixed threshold value. However, only a few consider the first time a
random threshold value is exceeded. In the remainder of this paper such a time is called a ran-
domized hitting time. The first to propose a randomized hitting time within maintenance was
Abdel-Hameed (1975) [2]. He uses the gamma process to model degradation, in particular wear,
and the associated randomized hitting time serves as a model for the lifetime of a device. This
means that the cumulative distribution function (cdf) of the lifetime of the device is the cdf of a
randomized hitting time associated with a given gamma process. However, as indicated by Van
Noortwijk, authors proposing this randomized hitting time model do mostly not perform numerical
experiments. This is probably due to the complicated structure of the cdf being a two-dimensional
integral. Since computing the cdf of this randomized hitting time is a subprocedure, which for
some maintenance optimization models needs to be repeated under different parameters, the nu-
merical optimization of such a model is mostly time-consuming. Hence there is a need for a fast
numerical procedure giving reliable numerical outcomes for this cdf. As an example we mention
a model using randomized hitting times introduced by Nicolai and Frenk ([13]; [14]). They model
the duration between two maintenance actions by the time at which the gamma process (represent-
ing the deterioration process of a steel structure) exceeds a random reduction resulting from the
last imperfect maintenance action. The problem of selecting maintenance actions resulting in the
lowest expected cost over a finite horizon is then formulated as a stochastic dynamic programming
model. For this model the optimal policy needs to be computed. Due to the above considerations
the main purpose of this paper is to investigate in detail the cdf of a randomized hitting time of a
(non-)stationary gamma process.

First of all, we show in Section 2 that without loss of generality we may restrict ourselves
to the cdf of a randomized hitting time associated with a so-called standard gamma process. In
this section we also study in detail the cdf of the fractional and integer part of a randomized
hitting time and extend one of the results discussed in [18]. At the same time we simplify the
proof technique for this result. Applying now the theoretical results of this section we propose
in Section 3 two approximations for the cdf of a randomized hitting time. The first one is based
on the approximative assumption that the fractional and the integer part of the randomized hitting



time are independent and that the cdf of the fractional part is uniformly distribut¢d, din To

justify these approximative assumptions (especially the latter one) we apply the results derived
in Section 2. The second approximation is based on the assumption that the sample path of a
stationary gamma process can be replaced by a piecewise linear sample path that coincides with
the original sample path at integer points. As in both approximations the true cdf at integer time
points is required, we also give a method for computing these probabilities. In Section 4 we
derive for some random thresholds having a gamma-type cdf elementary formulas for the cdf of
the associated randomized hitting times. Finally, in Section 5 numerical experiments are done to
assess the quality of both approximations proposed in Section 3. We also compare the computation
time for the construction of the approximations and the true cdf’s.

2 Onrandomized hitting times of a non-stationary gamma process

In this section we derive some properties of the hitting time of a non-stationary gamma process
exceeding a nonnegative random threshold value. To introduce the definition of a gamma process
we first observe ([19]) that a gamma density with scale parameter0 and shape parameter
£ > 0is given by
f(z) = F(ﬁ)_l)\ﬁxﬁ_l exp(—Az)1 (g 00) ()
with -
I'p) = / 2P exp(—z)dz
0

the well-known gamma function. In the rest of this paper such a cdf is denoted by g&mina(
Also we mean byX ~ F' that the random variabX has cdfF.

Definition 1 Let\ > 0 andv : [0,00) — R an increasing, right-continuous function satisfying
v(0) = 0. The stochastic process, » = {X, x(t) : t > 0} is called a gamma process with shape
functionv and scale parametex > 0 if

1. X, 1(0) = 0 with probability 1 andX, ) is a cadlag process.
2. The stochastic process, » has independent increments.

3. The random variabl&X,, »(s) — X, A(t), s > t has a gamma distribution with shape pa-
rameterv(s) — v(t) and scale parametex > 0.

If the functionv is linear a gamma process, ) is called stationary, otherwise it is called
non-stationary. A stationary gamma process withaving slopel and scale parameterequal
to 1 is called standard and denoted Ky For any (non-stationary) gamma process we are now
interested in the so-called hitting tirf, »(r) of levelr > 0 given by

Ty a(r) :=inf{t > 0: X, \(t) > r}. 1)
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If the gamma process is standard the hitting time in (1) is denotéB(by. In [14] one is inter-

ested in the randomized hitting tink, (R) with R a nonnegative random variable independent

of the (non-stationary) gamma process. This random variable represents the random duration
between two imperfect maintenance actions. In particular, the (non-stationary) gamma process
models the deterioration of the structure under consideration and the random vRribbieng

a non-defective cdfir satisfyingGgr(0) = 0 denotes the random reduction in damage due to

an imperfect maintenance action. We assume throughout this paper that the random Raigable
independent of the deterioration procéss,. To relate the properties of the (randomized) hitting
time to the hitting time of a standard gamma process we observe by Definition 1 that

X (t) £ A1 X1 (8) £ ATIX(0(1)) 2)

whereZ is used to indicate that two random variables have the same cdf. Using relation (2) the
next result holds.

Lemma2 If A > 0 and the shape function is strictly increasing and continuous satisfying
v(0) = 0 andv(oc0) = oo, then
d
Ty A(R) = v (T(AR)) 3)

wherev ™ denotes the inverse functionaf
Proof. By relations (1) and (2) we obtain
T, A(R) £ inf{t > 0: X(v(t)) > AR} (4)

Since the function is strictly increasing and continuous with ran@eco) its inversev is also
strictly increasing and continuous and satisfi€s(v(¢)) = t for everyt > 0. This shows by
relation (4) that

T, A(R) 4 inf{v™ (¢) : X(¢) > AR} = v (inf{t > 0: X(¢) > AR})
and we have verified the result. O

For a gamma process with continuous shape function it is well-known that it is an increasing
jump process with a countably infinite number of jumps over any finite interval (see e.g. [12] or
[5]) and so the overshoot at any given level is a non-degenerate random variable. If the overshoot
W,.a(r) of levelr of a non-stationary gamma process is given by

W’U,)\(T) = XU,)\<TU,)\(T)) -r (5)

we obtain by Lemma 2 and relation (2) that

W,A(R) £ A 'X(T(AR)) - R = A" 'W(AR) (6)

3



with W (AR) the overshoot of a standard gamma process beyond\&/ehs for the randomized
hitting time this shows that the overshoot of a non-stationary gamma process can also be reduced
to the overshoot of a standard gamma process.
To investigate in detail the cdf of the hitting tini, » (R) it follows by Lemma 2 introducing
Hg(t) :=P{T(R) < t} that

P{T, \(R) < t} = Hxr(v(?)). (7)

Hence, to compute or approximate the cdf of the random variBplg(R ) for any non-stationary
gamma process, it is therefore sufficient to compute or approximate ttiécdBy relation (7) it
is clear forA g : [0,00) — [0, 1] an approximation of the cdf éf'(AR) that the approximation
A, » of the cdf of the random variabl®, »(R) is given by

Apa(t) == Axr(v(t)). (8
Forv continuous and increasing satisfyinff)) = 0 andv(cc) = oo relation (8) implies
[Avx = Hyalloo = [[Axr — HARloo ©)

with H,, , denoting the cdf off', \(R) and |||« := supg<;<o |2(t)| the well-known supnorm.
Since the nonnegative random variaRds by definition independent of the gamma process and
its cdf satisfies7g (0) = 0 it follows by conditioning on the random variadRe that

Hy(t) = P{T(R) < 1} = B{X(t) > R} = /0 TB{X(1) > r}dGr(r)  (10)

for everyt > 0. Moreover, by conditioning on the random variaBd€t¢) with cdf F; we obtain
for Gr continuous the equivalent representation

Ha(0) = [ PIR < }dFi (o) = B(GR(X() (11)

Since the gamma process is increasing and continuous in probability relation (10) and a standard
application of Lebesque’s dominated convergence theorem (see e.qg. [6]) imply that fiig if
continuous. Using relation (11) one can also derive for random vari&gblesving a gamma type
cdf an elementary formula for the cdfg. This will be done in Section 4. For general cdf’s this
is not possible and so we propose in the next section two elementary approximations. To justify
these approximations we first investigate some properties of random variables related to the hitting
time.

Let | =] be the largest integer not exceedinér anyx > 0 and denote by (x) its fractional
part given byF(z) := x — | z]. Clearly

T(R) = |T(R)] + F(T(R)). (12)

For the integer partT(R) ]| it is easy to show the following result.
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Lemma3 If N := {N(¢) : t > 0} is a Poisson process with arrival rate then | T(R)] 4
N(R).

Proof. Since for a standard gamma process

d n+1
X(n+1)= Zk:l Y,

with Y, 1 < k < n + 1 independent and exponentially distributed with scale paramener
obtain by the continuity of the cdf of the random varialiieR ) that

P{|IT(R)| <n} = P{T(R)<n+1}=P{T(R) <n+1}
(13)
= P{X(n+1) >R} =P{N(R) < n}.
Hence the desired result follows. O

By the independence of the random variaBlend the standard gamma proc&ssve obtain
by Lemma 3 and the well-known properties of a Poisson process that

P(IT(R)| =n} = - E(R"exp(~R)). (14)

for everyn € NU{0}. In the next lemma we give an expression for the cdFOT'(R)). For this
expression we introduce the functiops (0,00) — R, 0 < ¢t < 1 given by

q(r) :=1— Fi(r) — /OO 1 — Fy(x)dx. (15)

Lemma 4 If R is a nonnegative random variable with cffz satisfyingGr(0) = 0 and this
random variable is independent of the standard gamma praXesisen

P{F(T(R)) < t} =t +E (¢(R))
for every0 < ¢ < 1.
Proof. By the definition of the random variabJ(T(R)) we obtain
{FIT(R)) <t} = Upo{k < T(R) <k +1}. (16)

Since the cdf ofl'(R) is continuous and sk < T(R) < k+t} ¥ {k < T(R) < k + t} it
follows for everyk € NU {0} that

{(E<TR)<k+t} L {X(k) <R < X(k+1)}



This yields by relation (16)
{F(T(R)) < 1} = U {X(k) <R < X(k +1)}

and conditioning orR implies

P{F(T(R)) <t} = /OOO P{UZo{X (k) <r < X(k+t)}}dGR(r). a7)

SinceX(k + t) L X(k) + Y (t) with Y a standard gamma process independeiX ahd the cdf
F}, of X (k) is thek-fold convolutionF**of an exponential distribution with scale parameteve
obtain for everyr > 0

PURZo{X(k) <r <X(k+1)}} = 2o P{X(k) <r <X(k) + Y(1)}
(18)
= 1—-F(r)+ fg (1= Fi(r—=z))dU(x)
with U(x) = >_32, F**(z) = z the renewal function associated with a Poisson process having
arrival ratel. Using now
/ 1— Fy(z)de =E(X(t) =t
0
and relations (17) and (18) the desired result follows. O

To rewrite the representation of the functigninto a more suitable form we introduce a beta
cdf on(0, 1) with parametersy, 3 > 0. Its density is given by

F(a + /6) a—1

bap(z) == Wx (1—2) 1 () (19)

and the cdf itself is denoted by béta 3). If 3 > « > 0 andr, A > 0 it is shown on page61 of
[23] (see also [17]) that

<AiT> - r@)ﬁ?— o) /01 ()\ ; m>ﬁ e ayT s 0

and this result leads to a well-known probabilistic interpretation of a random variable having a
gamma cdf with non-integer shape parameter. Although this result seems to be well-known (see
e.g. [7], [19] or [15] for the special cage= 1) we could not find a detailed proof of this. Hence

in the next lemma we list a short proof based on relation (20).

Lemmab5 If 0 < ¢t < 1 andY andV are independent nonnegative random variables With-
gammdgs, \), 3 > 0andV ~ betdts, (1 — t)3), thenVY ~ gammdts, \).



Proof. For everyr > 0 it follows by the independence &f andY that

1
NG )II“((Bl)—t) )/ E(exp(fTvY))vt’B_l(lfv)(l_tw_ldv

(
I3 )11:(( )_ 18) /1 (A_:\7_U>ﬁvtﬂ_1(1—v)ﬂ—tﬂ—ldv

Applying relation (20) we obtain using = t3 < g thatE(exp(—7VY)) = ()\+ )% and this is
the probability Laplace-Stieltjes transform (pLSt) of a gamma distribution with scale parameter
and shape parametg?. O

E (exp(—7VY)) =

To rewriteE (¢;(R)) in a more suitable form we also introduce a Pareto distributiofpso)
with parametes > 0. Observe a Paret@) cdf on(0, co) with parametefs > 1 has density ([19])

Fl@)=(8=1)(1+2) g0 (2) (21)
and this cdf is denoted by p@t).

Lemma 6 Forevery0 < t < 1 it follows for any nonnegative random variatfeandZ ~ par(2)
independent oR that

E(¢(R)) = 7 'sin(nt)E (exp(-R(Z + 1))Z' ") .
Proof. It is sufficient to show that

q:(r) = w1 sin(rt) /OOO exp(—r(z + 1))z 711 + 2) " 2dz. (22)

for every0 < t < 1. SinceX(t) ~ gammat, 1) it follows by relation (15) and Lemma 5 (take
B =1and\ = 1) that

q(r) =P{VY >r} — /00 P{VY > z}dx (23)

with Y ~ gammal, 1) andV ~ betdt, 1 — t) independent random variables. By Tonelli's
theorem ([11])

[FPVY > a}de = [ fol P{vY > x}b; 1+ (v)dvdz

= Jo [ZPY > a}dabyy(v)do

and this implies by relation (23) that
1 oo
q(r) = / (IP’{UY >r}— / P{vY > x}dm) be.1—¢(v)dv. (24)
0 r
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SinceY ~ gammdl, 1) it follows
P{vY > r} — / P{vY > 2}dx = (1 —v) exp(—rv!)

for every0 < v < 1 and so by by relations (19) and (24) we obtain

@) = Tt Jo v (= o) exp(—roYdv
= r‘(t)rl(li) [ exp(—rz)(z — 1)1tz 7%dz (25)

= roraoy Jo. ep(—r(z + 1)) (1 + 2)"%dz.

Using now Euler’s reflection formula for the gamma function (see pageof [3]) or [23]) given
by [ (#)I'(1 —t) = w(sin7t)~! for 0 < ¢ < 1 the desired representation fg(r) listed in relation
(22) is shown. O

Combining Lemma 4 and 6 we immediately obtain
P{F(T(R)) <t} =t + 7 'sin(rt)E(exp(~R(Z + 1))Z' ). (26)

We will now show that the last nonnegative term in relation (26) is smalEfexp(—R))
small. Hence we may conclude in this case that the random vat@¥R)) is approximately
uniformly distributed. We will use this observation in the next section to justify an approximation
for the cdf of T(R). SinceZ andR are random variables di, co) it follows that

exp(—R(Z + 1))Z"" < exp(—-R)Z' .
By the independence @& andR andZ ~ par(2) this implies for every) < ¢ < 1 that
E(exp(—R(Z + 1))Z'™") < E(exp(—R))E(Z'™") = E(exp(—R))O(t™ ).
Hence by (26) we obtain

0 <P{F(TR)) <t} —t=0 (Smgt)) E(exp(—R)). 27)

A related upperbound fdR a degenerate random variable is derived in [18] using a completely
different technique. This upperbound can be derived considering relation (22). In [18] the in-
version formula for Laplace transforms is used together with an appropriate choice of the closed
contour in the associated complex contour integral. To compute the integer momg&itE(@t ))

we need to evaluate for evekyc N U {0} the function)M}, : R — R given by

1
Mi(a) ::/ exp(at)t* sin(rt)dt. (28)
0

In the next lemma the functiol/_; denotes the zero function.



Lemma 7 It follows My(a) = 2= (exp(a) + 1) and

mexp(a) 2ka kE(k—1)
_ M. _
a2 +n2 a2+q2 " (@) a? + w2

My (a) = My _2(a) (29)

for everyk € N.

Proof. It is easy to check by differentiation that the antiderivative of the functiom—
exp(at) sin(mt) on (0, o0) is given by the function

exp(at)
a? + 2

(asin(mt) — 7w cos(nt)).

and so the expression far(a) is verified. To check the recurrence relation (29) we observe by
the first part that

m(exp(a) + 1) = (a® + %) Mo(a). (30)
Since for every: € N it follows that My (a) = ék)(a) with Mo(k) denoting the:th derivative of
the functionM, we obtain by differentiation of the identity in (30) the desired result. O

Using a package such as Maple and the above recurrence relation it is possible to give an
analytical expression fa¥/y(a). In the next lemma we give an expression for the first moment of
F(T(R)).

Lemma 8 If R is a nonnegative random variable with cffz satisfyingGr(0) = 0 and this
random variable is independent of the standard gamma praXesisen

1 exp(—R(Z+1))(Z +1)
P < (n(Z))? + 2 >

E(F(T(R)) =

with Z independent oR andZ ~par(2).

Proof. Since for any random variab on (0, 1) it is well-known thatE(Y) = fol P{Y > t}dt
we obtain by relation (26)

E(F(T(R)) = % g /O sin(rt)E( exp(—R(Z + 1)Z} 1) dt. (31)

Applying Tonelli’'s theorem and relation (28) yields

/1 sin(mt)E( exp(—R(Z + 1)Z 1) dt = E (exp(—R(Z + 1))ZMo(—In(Z)))  (32)
0



and by Lemma 7 the desired result follows. O
By relation (12) and Lemma 3 we immediately obtain

exp(—R(Z +1))(Z + 1)>
(in(Z)? + 2

E(T(R)) =ER)+ - — E ( (33)

To derive a simple upper and lower bound on the expectatidh(#) or 7(T(R)) we observe
for any nonnegative random variat#ethat (In(Z))? 4 =% > «2. This shows by Lemma 8 that
1

5 — 7 E(exp(-R(Z+1))(Z +1)) < E(F(T(R))) <

: (34)

N |

A similar inequality can be derived for the expectatiodR ). If we want to give a more precise
evaluation of these moments we first observe by the inverse transformation method ([16]) and
Z ~ par(2) that

zLU ' -1

with U a standard uniform random variable. Hence, if it is easy to generate a realization of the
random variabldR,, we can always use Monte Carlo simulation to give an more accurate estimate
of the expression (see Lemma 8)

exp(-R(Z+1))(Z+1)
. ( (W(Z))? + 2 >

If we are interested in higher integer momeHt&7 (T (R))**!) for somek € N we observe that

E <}'(T(R))k“> =(k+1) / 1 t*P{F(T(R)) > t}dt. (35)

By the same technique as in Lemma 8 we obtain from relation (35) that

E (F(D(R)M) = L B (exp(—R(Z + 1)) ZM(— In(Z))) . (36)

k42

Applying the recurrence relation in Lemma 7 we can again use Monte Carlo integration to estimate
the integral in relation (36). In the next section we will apply our findings(T(R)) and
| T(R)| to justify the first proposed approximation.

3 Approximating the cdf of a randomized hitting time
Since in [14] we use dynamic programming to construct an optimal policy and for such a procedure

it is too time-consuming to evaluate the cdf of the randomized hitting Timg(R) exactly (e.g.
via numerical integration), we derive in this section two simple approximations of this cdf. By

10



relation (7) it is sufficient to give an approximation of the ddf of the hitting timeT'(R) listed
in relation (10). To justify our first approximation we observe by relation (12) that

Hr(t) = P{T(R) <t}

= P{T(R)-F(TR)) <t—-F(T(R))}

- (37)
= P{{TR)| <t-F(TR))}
for everyt > 0. It is shown in [18] that
cov(T(r), F(T(r))) = O(exp(—r)) (38)

and this implies for every nonnegative random variaRléendependent of the standard gamma
process that
covo(T(R), F(T(R)) = O(E(exp(—R))). (39)

Hence forE(exp(—R)) small the random variabléb(R) and 7(T(R)) are practically uncor-
related. Also by the analysis in the previous section we have showi(&p (—R.)) small that

the random variablé¢s(T(R.)) has approximately a uniform distribution ¢f, 1). Although un-
correlated random variables are in general not independent (equivalence only holds for normal
distributed random variables), it seems by the above observations reasonable (for the purpose to
obtain easy expressions) to introduce the following approximation assumption. A similar approx-
imation assumption is also introduced in [18] for a different purpose.

Approximation assumption 1. The random variable¥'(R) and (T (R)) are independent
andF(T(R)) is uniformly distributed or{0, 1).

Before investigating the consequence of approximation assumptioa list the following
result.

Lemma 9 If the nonnegative random variab¥ is independent af (Y ), then|Y | is also inde-
pendent ofF (Y).

Proof. Since| Y| = > % n1{,<y<nt1} @nd hencdY | is a function of the random variabhé
the desired result follows. O

If approximation assumptioh holds we obtain by relation (37) and Lemma 9 that
Hgr(t) = P{|T(R)] <t-U} (40)
with U a uniformly distributed random variable independent®fR))|. Introducing now

P{|T(R)] < -1}:=0

11



and using the independence@fand | T(R)| it follows for everyt > 0 that

PUTR)| <t -U} =F(#)P{ITR)| < [t]} + (1 - F@O)P{[T(R)] < [t] —1}. (41)
Also by the continuity of the cdffgr we obtain for every > 0 that

P{TR)| < [t]} =P{T(R) < [t] + 1} = Hr([t] +1).
This implies by relation (41)
P{TR)] <t -U} = FO)Hr([t] + 1)+ (1 - F(t))Hr([t])
and so by relation (40) we obtain
Hr(t) = F(O)Hr([t] +1) + (1 - F (1)) Hr([t])- (42)

This shows under approximation assumptidhat the cdfiig seems to be well approximated by
a linear interpolation of{g at the integer points.
To evaluate the continuous céifg on its integer points we know by relation (14) that

HR(n + 1) — HR(n) = IP){TL < T(R) <n+ 1}
= P{|T(R)| =n} (43)
= LER"exp(-R))

for everyn € N U {0}. Alternatively, if Gr () := E(exp(—7R)) is the probability Laplace
Stieltjes transform (pLSt) of the cdfgr, then relation (43) is the same as

—1)" ~n
Hg(n +1) — Hr(n) = <m>a;>(1> (44)
for everyn € N U {0} with G\, n € N denoting thenth derivative ofGg andG\y := Gg. If
the derivatives ofzr are elementary functions we can directly apply relation (44) as shown in the
next example foR uniformly distributed ona, a + b). For convenience introduce the sequence
pn, € NU {0} given by

pn i= Hr(n +1) — Hr(n) = P{|T(R)| = n}. (45)

Example 10 If the random variabl@R is uniformly distributed ofia, a 4+ b) witha > 0 andb > 0
or R £ ¢ + bU with U a standard uniformly distributed random variable we obtain

~

Gr(7) = E(exp(—7(a + bU))) = b_l(ha(T) — hats(T)) (46)

12



with the functiongi : [0, 00) — R, d > 0 given byh,(7) := 7~ exp(—7d). If we introduce the
functione,, : [0,00) — R given by ([3])

n
en(@) = ijo gt

it is easy to check using Leibniz formula for the differentiation of the product of two functions that
for any positived and

(1) (7)

exp(—rd) Yp_o (7 d/r ==+ (n — j)!
= nlexp(-7d) 377, %T‘<n_j+1) (47)
= nlr~ () exp(—7d)e, (7d)
with hfj”) (1) denoting thenth derivative of the functioh, evaluated inr. This implies
(1) (1) = nlexp(—d)en(d). (48)
Hence by relations (44), (45), (46) and (48) we obtain for eversyN U {0}
pa = b7 (exp(—a)en(a) — exp(—(a+ b))en(a + b))
= b7 (P{N(a) < n} ~ P{N(a +b) < n}) (49)
= b 'P{N(a) <n,N(a+b) >n}
with N a Poisson process with arrival rate For n = 0 this reduces to
po = b 'P{N(a) =0,N(a+b)—N(a) > 0}
= b 'P{N(a) = 0}P{N(b) > 0}
= exp(—a)b~! (1 —exp(-b)).

Using relation (49) we also obtain for evenye N U {0} the recurrence relation

exp(~a)a™!  exp(—(a+b))(a+ ”)"H) . (50)

n = Pn b_l
Pri1 =Pnt ( (n+1)! (n+1)!

If we consider the special cage= 0 it follows by relation (49) for every, € N U {0} that

pn = b 'P{N(b) > n}

13



Hence the recurrence relation in (50) reduces to
bn

Pn+1 = Pn — | exp(—b) (51)

(n+1)
with po = b= (1 — exp(—b)).
In some cases we have to use a numerical procedure to ev@u@e}. However, as shown by

the following example, it is still possible to write down a recurrence relation for the probabilities
Pn-

Example 11 If the random variableR 2 puUe for someb,a > 0 and U standard uniformly
distributed then clearly the domain B is (0, b) and

1

PR<z}=P{U< (b '2)* '} = (b '2)"
for every0 < x < b. By relation (43) we obtain

pn = ZE(U exp(-bU%))

= U lgan exp(—bx®)dx (52)

n! Jo

_ a v 1l p—14a !

- Jo ¥ exp(—by)dy.

Applying Tonelli's theorem it follows for evegy> 0
Jo v exp(=by)dy = ¢ [y [ 2~ dw exp(—by)dy
= Cfol fxl exp(—by)dyz*dx
= b i¢ fol exp(—bx)z¢~tdx — b~ exp(—b).
By this recurrence relation and relation (52) it is easy to see for ewesyN U {0} that

n+a! a~lp
nt1 " et )

Pnil = exp(—b) (53)

and so fora = 1 we recover relation (51). To compute the valpgsve first need to compute
po = E (exp(-bU*"))
and this can be done by some numerical integration method (see e.qg. [20]).

A generalization of a uniformly distributed random variaRes given in the following exam-
ple.

14



Example 12 Let Gr be a concave cdf. It is well-known ([19]) that a odf of a nonnegative

random variableR is concave o0, oo) if and only if R 2 UY with U a standard uniformly
distributed random variabl€Y a nonnegative random variable afdlandY independent. Using
this representation we obtain for every> 0 that

Gr(r) = /0 R (exp(—7bU)) dGy (b)

and so by relations (44), (45) and (50) (take= 0) it follows py = E(exp(—UY)) and

1

WE(Y” exp(—Y)) (54)

Pn+1 = Pn —

for everyn € NU {0}. If we introduce the sequence
= P{|T(Y)] =n}
we obtain by relations (14) and (54) that

1

Pn+1 = Pn — mrn‘

This shows that one can evalud@é| T(UY)| = n} once itis possible to compute the probabili-
tiesP{|T(Y)| =n}.

If R ~ gammag, p) we obtain by relation (44) and (45) the recurrence relation

B+n
pn+1:(

mpn, n € NU {0}, (55)

with starting valueyy = (ﬁ)ﬂ. In the next example we discuss the casBRdfaving an infinitely
divisible distribution thus generalizinB. having a gamma distribution. A cdfr on (0, c0) is
called infinitely divisible if for everyn € N there exists a sequence of independent, identically

distributed and nonnegative random varialRgs1 < ¢ < n such that

RLIR,+...+R,

Examples of infinitely divisible cdf’s 010, co) are discussed in [19] and include gamma distri-
butions and scale mixtures of gamma distributions with shape paramete?. It is also shown

in [19] that all infinitely divisible cdf’s on(0, cc) can be obtained as weak limits of compound-
Poisson distributions.
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Example 13 Let the cdfGr satisfyingGr(0) = 0 be infinitely divisible. Necessarily the non-
degenerate random variabR has unbounded support (cf. [19]) and so this excludes nonnegative
random variableR with bounded support. Also by Theordm0 on paged5 and Theoremt.14

on page97 of [19] it follows thatGg satisfyingGr (0) = 0 is an infinitely divisible cdf if and only

if there exists some (Laplace-Stieltjes transform) LSt-able functiofthe so-called canonical
function) satisfyingf(ovoo) r~'dK (x) = oo such that

/Ox rdGr(r) = (Gr * K)(x) (56)

for everyx > 0 with % the well-known convolution operator. A functiéghis called a LSt-able
function ([19]) if K is right continuous and non-decreasing wih(z) = 0 for x < 0 and

K(r) = /OO exp(—7z)dK (x)

is finite for everyr > 0. By Tonelli’s theorem and the binomial theorem applie¢ito- v)"~! we
obtain forn € N using relations (43), (45) and (56) that

nlpn = [y exp(—r)r"dGr(r)
= Jo exp(=r)r"~td(Gr * K)(r)

= Jay exp(—(u-+ ) (u + )" dCR (1) () 7
= Z;:ol (”]_.1) Iy~ exp(—u)w! dGr(u) [y~ exp(—v)o™ " IdK (v)

= (n—l)‘Z] o Wp] fo exp(—v)v ”_1_de(v).

Introducing the constants

1 oo

= z¥ exp(—x)dK (z), k e NU{0}

this implies by relation (57) and (43) that

~ 1 n—1
Py = GR(l) andpn = E ijo Pjrp—1—j, N € N. (58)

From relation (56) it is easy to see (see also [19]) that

~GR/ ()
Gr(r)
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and so by relation (58) one can evaluatg, n € N U {0} if it is possible to compute the con-
stantsry, k € N. Examples are given by Gamma distributions with shape paranseded scale
parameterp. For this case the canonical functidsd has derivativek(x) = [ exp(—pz) and so
rn = Blp+ 1)~ n € NU{0}. This yieldsp, = £ 37" p;(p+1)~("9, n € N, with
po = (?’)p)ﬁ. This actually defines the same sequence as relation (55) does.

__ Finally, if itis not possible to derive elementary expressions fortiederivative of the pLSt
Gr We observe by relation (14) that the generating function {gBjthe sequence,, n € NU{0}
is given by

P(z):=E <zLT(RJ)) = /000 exp(—r) ZOO (Z;)n dGr(r) = Gr(1 - 2) (59)

n=0

for everyz € C with |z| < 1. Hence we can apply the (numerical) FFT method ([1]) to evaluate
the sequencg,,, n € N.

A second approximation of the cdfgr is motivated by the following idea. Replace (see
Figure 1) each sample path of the standard gamma process by a piecewise linear sample path
coinciding with the original sample path at integer points and consider this stochastic pXocess
instead of the original standard gamma prod&s<€learly by construction

Xa(n) = X(n)
and
Xa(n+s)=X(n)+s(X(n+1) —X(n))

for every everyn € NU {0} and0 < s < 1. Moreover, it follows thatt(X,(t)) = E(X(¢))
for everyt > 0 and so this new stochastic process has the same expectation at each point as the
original one. Alternatively by Lemma 5 we know for every non-integer 0 that

4

X(t) = X([t) + VrpnY (60)

with V£ ~ beta(F(t),1 — F(t)), Y ~ gammdl, 1), X(|t|) ~ gamma(t|, 1) independent
random variables. Replacing now in relation (60) the random varisipig) by its expectation
F(t) we obtain the proposed stochastic procKss= {X,(t) : t > 0}. We now introduce the
following approximation assumption.

Approximation assumption 2. Hg (t) = P{X(¢) > R} =~ P{X,(¢t) > R}.
To evaluate the probabilitf{X,(¢) > R} we first need the following result.

Lemma 14 For every non-integet > 1 andz > 0

(1= F()P{Xa(t) < 2} = P{Xa([t]) <2} = FOP{Xa(t - 1) < 2}

17
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Figure 1: Piecewise linear sample path of the process

Proof. If 1 < t < 2 thenX,(?) g X(1) + F(t)Y1 with the random variableX (1) andY;
independent and both exponentially distributed with paramieteifter some calculations this
implies for everyzr > 0 that

(1-F)P{Xu(t) <z} = (1—-F@)P{X(1)+F@)Y1 <z} -
1
= P{X(1) <z} -FO)P{F(t)Y; <z}

Since
X, (t—1) L F¢)Y, andX (1) = X,(1)

we have verified the desired formula fox ¢ < 1. To verify the formula for arbitrary non-integer
t > 2 it follows by the definition of the proces§, that

X, (1) = Xo([t]) + FOY1 £ X, ([t] — 1) + X(1) + F() Y, (62)

with the random variableX (1), Y; andX,(|¢] — 1) independent an&X (1), Y, exponentially
distributed with parametdr. This implies by relations (62) and (61) that

(1 FOIPXo(t) S} = (- FOB{Xa(|t] - 1)+ X(1) + FO)Y, < 2}
= P{X,([t] - 1)+ X(1) < 2} — FOPX,([t] — 1) + F()Yy < o},

18



SinceX,([t]) 4 Xa([t] —1)+X(1) andX,(t— 1) = X, (|t] — 1)+ F(t) Y1, the desired result
follows. O

By Lemma 14 it follows forR independent of the standard gamma proc€sand hence
independent oX, that

(1=F@)P{Xa(t) < R} = P{X,([t]) <R} = F(t)P{X,(t — 1) < R}. (63)
This implies the recurrence relation
(1 —=F(@))P{X,(t) > R} =P{X,(|t]) > R} = F()P{X,(t — 1) > R}. (64)

To compute in relation (63) the probabiliB{ X, ([t|) < R} we observe by the continuity dig
andX,([t]) = X(t) that

P{Xa([t]) > R} = P{T(R) < [t]} = P{|T(R)| < [t] -1}
and this implies by relations (43) and (45) that

P(X([1]) > Ry = 3 ERIeD(ZR)) _ gt

=0 4!

o Di (65)

fort > 1. Finally, for0 < ¢ < 1, we obtain usingX, () 4 F(t)Y1 with'Y; ~ gammdl, 1) that
P{Xa(t) > R} = E(exp(—F (1) 'R)) = Gr(F(1) ). (66)

By relation (64) up to (66) we can compute recursively the v&8{X,(t) > R} in case the pLSt

of the random variabl® is an elementary expression. In Appendix A an algorithm for computing
P{X,(t) > R} for ¢t > 0 is given. In the next section we consider some special cases for which
the cdf ofT(R) has an elementary expression.

4 On the cdf of the randomized hitting time for some special cases

In this section we consider some special cases for which one can give an analytical and/or a simpler
probabilistic interpretation of the cdfg. We start with the simplest caseRfhaving a degenerate
distribution atr > 0, i.e. the threshol® is not random but deterministic.

Example 15 If R has a degenerate distribution at> 0, then
L(t,r)
NG

whereT'(a,z) = [° 2% exp(—z)dz is the incomplete gamma function fer> 0 andz > 0.
It follows that

Hg(t) = P{X(t) = 1} = (67)

L(v(t),TA) .

(68)
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Another simple case occurs whBnhas an exponential distribution.

Example 16 If the random variableR has an exponential cdf with scale parameger 0 given
by Gr(r) =1 — exp(—pr), r > 0 then by relation (11)

Hr(t) =1—E(exp(—pX(t))) =1- (1 +p) " (69)
This implies v
d

with Y exponentially distributed with parametér Since the random variabl&R has an expo-
nential cdf with scale parameten\—! it follows by Lemma 2 and relation (69) that

d Y
ToAlR) =v (ln(l n p)\_1)> : (71)
and this shows
P{T,\(R) <t} =1—(1+px")~"0.

For the power function(t) = ¢4, ¢ > 0 we obtain that (u) = u? " and so by relation (71) this
yields
-1

Y4
(1 +pr D))o ™

SinceY is exponentially distributed with parameteand hencéy" is Weibull distributed with
shape parameteq and scale parameter ([4]) we obtain thatT, (R) is a Weibull distributed

random variable with shape parametgand scale parameteiiog(1 + p)\‘l))q_l.

TU,)\(R) i

A generalization of the exponential distribution is given in the following example.

Example 17 If the positive random variabl® has density functiogg on (0, o) belonging to
the classC'M of completely monotone densitigsi.e. g is nonnegative and—1)"g(™ (z) > 0
for z > 0 andn € N with ¢((.) denoting thenth derivative ofg, then by Bernstein’s theorem
([9, 19]) we obtain

gr(r) = /OooyeXp(—yr)dG(y), r>0

for some cdiz on (0, 00). This showgyg € CM if and only ifR 4 7Y with Y exponentially
distributed with parametet, Z a nonnegative random variable ar#l independent ofY. By
relation (70) andzY has an exponential distribution with scale parametet this yields

d Y

R T

(72)
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and so forR having a mixture of exponential distributions also the éfif has a mixture of
exponential distributions. In general it is not possible to give a nice analytical expression for the
cdf Hr unless the cdfrr has a finite mixture of exponential distributions given by

Gr(r) =D pr(l = exp(~Aer))

with0 < Ay < ... < Agandp; > 0, Zizlpk = 1. This means that the discrete distributionZof
is given by
P{Z = \.'} = ps.

and by relation (72) we obtain

He(t) =Y p(l-(1+X)")=1->"

k=1

q

PR )T (73)

Similarly it follows by Lemma 2\R 2 \ZY and relation (72) that
d Y
T o —m———— 74
v (B) =0 <1n(1 + (AZ)—1)> (74)

and this implies fow(t) = ¢4, ¢ > 0 that

1

d Y7
S In(1+ (\Z)"hye

T, \(R)

As before foR having a finite mixture of exponential distributions it is easy to check that the cdf
Hg has a nice analytical expression given by a finite mixture of Weibull distributions. Moreover,
if it is possible to generate a realization of the random variabl€ is easy by relation (74) to
estimate the cdf ¢f’, \(R) by Monte Carlo simulation.

If the positive random variablR has a gamma distribution with shape parameter 5 < 1
and scale parametdrit follows by Lemma 5 thafR has a completely monotone density. In
particular one can show the following.

Example 18 If the random variabl@R has a gamma distribution with shape paramdtet 3 < 1
and scale parametelr, then by Lemma 5 we obtain that

RL7ZY

with Y andZ independenty ~ gammdl, 1) andZ ~ betg 3,1 — /3). Hence by relation (72) we

obtain
d Y

TR = iz

(75)
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SinceZ ~ beta 3,1 — ) itis well-known ([10], [24]) thatZ 4 Zs(Zs+Z1—5) L withZs, Z1_5
independent andg ~ gamma, 1) andZ;_g ~ gammal — 3, 1). This implies by relation (75)

that
Y

111(2 + Zl_gz/gl) )

T(R) £

By Lemma 2 it follows similarly

Ty a(R) £ v X
v =v
i In(1 + A+ Z1_3Z5") — In(A)

and so foru(t) = t4, ¢ > 0 we obtain

—1

Y4
(ln(l +A+ZypZ5") - ln()\)>

d
T, A(R) < —

Another generalization of the exponential cdf is given by the following.

Example 19 If the positive random variabl®. follows a gamma distribution with shape param-
eterm € N and scale parameter > 0 we obtain

Gr(r) =1—exp(—pr) Z;:Ol (pjr')J
Hence by relation (11) it follows that
He() =1- 3" ZEX (1) exp(—pX(1))). (76)

j=0 !

To evaluate the expressions in relation (76) we observe Usiftg ~ gammadt, 1) that

E(X(t)? exp(—pX(t))) = L ] /OOO exp(—(1 4+ p)z)z/ Tt tdx (77)

0]

It is now easy to show by its relation with a gamma distribution with scale parametef and
shape parametef + ¢ that

1 [ . T(j+1t) thj—1\. .
- _ JHt-1g. . 2\ T8 (G+1) 7
j!F(t)/O exp(—=Ar)r dr O < ; A (78)
with -
I (k— .
) { T e
j 1 j=

22



for everyA > 0,¢ > 0 andj € NU {0}. Hence it follows for every € {0, ...,m — 1}

E(X(t) exp(—pX (1)) = j! <t +§_ 1) (14 p)-+

and this implies using relation (76) that

HR(t)zl—(1+p)—tZT:—()1 <t+§—1> (15;1)3’. (79)

Moreover, since\R has a gamma distribution with shape parametere N and scale parameter
A~1p we obtain by relation (79) that

ot () 55

and applying lemma 2 yields

PTa®) <0 = 1- 0 30 (M) (2 )

j=0 J A+p

5 Numerical study

This section presents the computational results of the two proposed approximations of the random-
ized hitting times discussed in Section 3. We first focus on the accuracy of the approximations of
the cdf of the random variabl&(R). Next we also compare the computing time of the approx-
imations and the exact (numerical) evaluation of the cdI'gfy(R). To serve our purposes we

have written a computer program usiKigTLAB 7.2 on a Pentium 1112 GHz personal computer.

In our first experiments we consider four distributions for the random varb#nd these
are given in Table 1. The discrete mixture of two exponentials in Table 1 is also referred to as a
hyperexponentia?-with balanced means ([21]). For these four distributions analytical expressions
for the cdf Hr exist and this enables us to assess the accuracy of the approximations.

The accuracy of the approximations is measured by the maximum absolute difference between
the approximative and the true cdf on its entire domain. By relation (9) we only have to focus on
the accuracy of the used approximation of the Hgi. To give an approximation of the supnorm
error we first evaluate the true cdfyg and the used approximation for valuestobn a grid
{ih}i:1,27..‘7]\[, with 2 = 0.005 and

N =inf{n e N: P{T(AR) < [nh]} >1—10""}.

Subsequently, the right-hand side of (9) is estimated by the maximum absolute difference between
the approximations and the true cdf on this grid, i.e.

maXN |A)\R(Zh) — H)\R(ih)|, h > 0.

i=1,2,...,
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Distribution Parameters

Deterministic (det) r>0
Uniform (unif) a,a+b, a,b>0
Erlang (erlang) meN, p>0
Mixture of two exponentials (hyp-2) p1, A1, p2, Ao > 0, p1 + p2 = 1, % = %

Table 1: The four distributions fdR under consideration.

Since for the first proposed approximation we have to compute the cBfRf at integer points
and then interpolate, it is straightforward to obtain the approximation of this cdf at non-integer
points. The algorithms presented in Appendix A are implemented to compute the second approx-
imation of Hg. Since it is possible to vary the scale parametef a stationary gamma process
in such a way that the first hitting time &t can take a wide range of values we fix the value of
the expectation oR to 100. This means for a degenerate random variablesthat100. Next,
we vary the coefficient of variationg of R, given bycg = (Var(R))'/? / E(R), from0 (R
deterministic) tol.2 (R mixture of two exponentials) by steps@®. The parameters of the three
non-degenerate distributions are now determined by means of a two-moment fit ([21]). The coef-
ficient of variation of a uniform random variable is bounded from above/By3. The discrete
mixture of two exponentials with balanced means has only two free parameters and its coefficient
of variation is bounded from below by The coefficient of variation of the Erlang distribution can
take any value greater tha@n

In Table 2 the maximum absolute differences between the approximations and the true cdf
of T(AR) are shown for a range of values bf The higher the value of the higher the accu-
racy of the approximations. Both methods appear to be quite accuratefan.05. Since fori
increasing the expectatidiexp(—AR)) becomes smaller this is to be expected from our theo-
retical results in Section 2. The smaller this expectation the more the fractional (A dfas
a uniform cdf and at the same time the correlation between the fractional and integer’Bagt of
vanishes. This makes our approximative assumption more accurate. The effect of the coefficient
of variation of the random variablB on precision is not unambiguous. In Figure 2 the accuracy
of the approximations is plotted agairisfon a double-logarithmic scale) fi&t Erlang distributed
with cg = 1.2. We observe that the maximum absolute error is smaller @@infor A > 0.02.
In Figure 3 the exact and approximative cdf'sSBfAR) are plotted against timefor uniformly
distributedR with cg = 0.2 and\ = 0.02. It appears that the left tail of the distribution is not
approximated very well.

We have seen that the scale parameter of the gamma process rules the accuracy of the approx-
imations. However, the computing time of the true cdf of the random variBplg R ) is affected
by both the shape function and the scale parameter. In order to assess this effect, we focus on
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A

R cr  Approx  0.0005 0.005 0.05 0.5 5

Deterministic 0 1 2.85E-01 4.32E-02 7.31E-03 6.35E-04 6.14E-05
2 3.98E-01 5.57E-02 7.83E-03 6.38E-04 6.15E-05

Uniform 0.2 1 2.86E-01 4.24E-02 6.66E-03 2.52E-04 7.97E-06
2 3.98E-01 5.53E-02 7.12E-03 2.53E-04 7.97E-06

0.4 1 2.92E-01 3.98E-02 5.72E-03 1.84E-04 5.81E-06

2 3.98E-01 5.96E-02 6.52E-03 1.86E-04 5.81E-06
Erlang 0.4 1 2.96E-01 4.08E-02 6.33E-03 1.19E-04 1.32E-06
2 4.05E-01 6.41E-02 6.74E-03 1.20E-04 1.33E-06

0.6 1 2.90E-01 3.67E-02 6.09E-03 8.43E-05 8.85E-07

2 3.87E-01 5.88E-02 6.46E-03 8.44E-05 8.87E-07

0.8 1 2.79E-01 3.45E-02 5.14E-03 1.11E-04 1.21E-06

2 3.61E-01 5.07E-02 5.32E-03 1.11E-04 1.21E-06

Hyp-2 1 1 3.24E-01 9.01E-02 3.80E-03 4.85E-05 4.99E-07

2 4.04E-01 9.43E-02 3.80E-03 4.85E-05 4.99E-07

1.2 1 3.31E-01 1.01E-01 5.35E-03 7.40E-05 7.67E-07

2 4.13E-01 1.07E-01 5.36E-03 7.40E-05 7.67E-07

Table 2: The maximum absolute difference between the approximation and the true
cdf for different values of\ and various choices of the random variaBRle
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R OHyp-2 with Cov(R) = 1.2

approx 1
approx 2

max abs diff

0

10 10

Figure 2: Maximum absolute difference betw@T'(AR) < ¢} and the two approx-
imations for different values of andR ~ hyp-2 with cg = 1.2.

non-standard gamma proces3€s, having a shape function proportional to a power of time,
i.e.v(t) = vt? with v > 0, and scale parametar> 0. We set the value of the powgat0.5, 1, 2

and4 and thus cover concave as well as convex shape functions. The mean of the non-stationary
gamma process at timg is fixed atz = A~'vt{ = 100 and fort, we consider the values), 20,

50 and100. The coefficient of variation of the gamma process at tignis varied from0.1 t0 0.7

by steps of).2. For given values of, ¢ andc = cx, , ) = v~ /*to~%/?, the parameters and

A are now determined by a two-moment fit. This yields- ¢%¢,;¢ and\ = ¢2z~!. Observe a
high value ofc implies a small value aok. Therefore, the approximation of the cdf of a randomized
hitting time associated with non-stationary gamma processe is accurate whenever the variability
of the gamma process is not too high. For obvious reasons we are only interested in the computing
times of good approximations. In the scenarios defined by the experimental settings in Table 3
the value ofA ranges fron0.020 (¢ = 0.7) to 1 (¢ = 0.1) and hence by our previous findings the
approximations are accurate.

The computing time is defined as the time needed to evaluate or approximate the cdf of
T, A(R) on a grid{ih};—1 2. ~, Wwhereh = 0.02 and N is the first integer such that the cdf
in the integer poinfuv(NNh)] exceed$).999. We only focus orR deterministic andR uniform,
since for these random variables the cdfiyf\ (R) has no nice analytical expression.

In Table 4 the computing times of the approximations and the true cdf are given for one par-
ticular scenario of Table 3. Note that the value)ois constant and so the hitting times of the
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P{T(\R) < t} for R Ounif with E(R) = 100, Cov(R) = 0.2 and A = 0.02

1 ———

=

exact
0.9 7 ——approx 1
— — —approx 2

I

0.4r 1

0.3F 1

01t 4 g

Figure 3: Exact and approximative cumulative distribution functionsT'oAR),
whereR ~ unif with cg = 0.2 and\ = 0.02.

SettingsX,, » Values
to = {t > 0:E(X,(t)) =100} 10, 20, 50, 100 time units
q 0.5,1,2,4
X, 1 (to) 0.1,0.3,0.5,0.7

Table 3: Experimental settings.
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R cr Evaluation 0.5 1 2 4

Deterministic 0 exact 414 1.86 1.23 1.04
approxl 1.10E-02 3.80E-03 2.94E-03 5.99E-03
approx2  9.63E-02 4.24E-02 5.58E-02 5.68E-02

Uniform 0.2 exact 19.07 8.06 5.20 417
approx1 3.64E-02 2.87E-02 2.75E-02 3.15E-02
approx2 1.99E-01 1.39E-01 1.46E-01 1.46E-01

Uniform 0.4 exact 24.14 8.89 5.60 4.55
approxl  4.84E-02 3.69E-02 3.60E-02 3.96E-02
approx2 2.29E-01 1.40E-01 1.48E-01 1.89E-01

Table 4: Computing times for different valuesgénd different random variablds.

Here,to = 50 andex | ¢) = 0.3 yielding A = §.

(non-stationary) gamma processes are all related to the same random VE(igBlg The results

show that the efforts of obtaining both approximations is much less than the effort of computing
the true cdf. In all cases the first approximation can be obtained faster than the second approxima-
tion. Also, increasing values gfare negative related to the effort of computing the true cdf. This

is caused by the fact that the right tail of the hitting time distribution is smaller for larger values
of ¢. Thus for fixed values dE(R) andcg the cdf is computed in fewer points forarge. This

effect is not that apparent for the approximations since their computing times are mainly affected
by the number ointegertime points in which the cdf needs to be computed and this again depends
on the value of\. The experiments with the other scenarios yield similar results and are available
upon request.

6 Conclusions

The gamma process plays an important role in maintenance optimization. In particular, the first
time at which this process exceeds a random threshold is often used to model the lifetime of
structures subject to degradation. In this article we have investigated in detail the cdf of this
random variable. We have first shown that the cdf of a randomized hitting time associated with
a non-stationary gamma processes is easily derived from the cdf of a similar hitting time of a
standard gamma process. Secondly, we have extended an existing result on the cdf of the fractional
part of a randomized hitting time.

Explicit formulas for the cdf of a randomized hitting time have been derived for some special
cases. In general however, the evaluation of the cdf of a randomized hitting time for a standard
gamma process is time-consuming. Therefore, we have proposed two approximations having a
clear probabilistic interpretation. The first approximation comes down to a linear interpolation of
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the exact hitting time cdf at integer points and it is justified by above-mentioned result on the cdf
of the fractional part of the hitting time. We have shown that due to the structure of a standard
gamma process it is possible to compute the probability distribution of a randomized hitting time
at integer time points. The second approximation is obtained by replacing each sample path of
a standard gamma process by a piecewise linear sample path coinciding with the original sample
path at integer points.

Numerical experiments show that both approximation formulas are quite accurate when the
random threshold is not too small and the variability of the (non-stationary) gamma process is not
too high. The second approximation method may be somewhat prohibitive from a numerical point
of view. On the other hand, the first approximation is quite efficient and appears to be a good
replacement for the exact distribution in time-consuming optimization algorithms.
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A Algorithm for approximation 2

The algorithm below computé®{ X, (¢t) > R} fort > 0.

Algorithm 20 (Forward approximation algorithm)
Input: timet > 0. Output: P{X,(¢) > R}.

(1) Fork =0to |t]
Let cdfint(k)= Z;‘?;é P, Wherezj_:l0 pj =0 (cdfint(k)= P{X,(k) > R}).
Next k
Herep; is computed using the right-hand side@#). If 7(¢) = 0, then return cdfinf ).
Otherwise, proceed with step (2).

(2) Letcdf= Gr(F(t)™!) (cdf =P{X,(F(t)) > R}).

(3) Forj=1to [t]
Let cdf= (cdfint(j) — cdf- F(¢))/(1 — F(t)) (cdf =P{X,(t) >R}, j <t <j+1).
Next j
Return cdf.

Unfortunately, when the values of cdf and cdfint are closeé amd 7 (¢) > 0.5, the repeated
subtraction in step (3) leads to loss of precisiontfor 1. These numerical difficulties are circum-
vented by employing a backward version of algorithm 20.

Algorithm 21 (Backward approximation algorithm)
Input: timet > 1 with F(¢) > 0.5. Output: P{X,(¢) > R}.
Let M be a large integer, say/ = 100.

(1) Fork=0to [t + M| +1
Let cdfint(k)= Y"%—] p;, where3" ) = 0 (cdfint(k)= P{X,(k) > R}).
Next k
Herep; is computed using expressi¢id).

(2) Let cdf=cdfint|t + M| + 1)F(¢t)+ cdfint[¢t + M |)(1 — F(t)). (cdf here represents the
approximate value of the cdf at tindé + F(¢) according to method).

(3) Forj = [t| + C'to [t| + 1 step(—1)
Let cdf= (cdfint(j) — cdf- (1 — F(¢)))/F(t) (cdf=P{X,(t) >R}, j <t <j+1).
Next j
Return cdf.

In step (2) we estimate the cdf at timé + F(¢) by linear interpolation at the surrounding integers
(approximation method). The estimate does not even have to be very accurate, because the
backwards algorithm gains precision in every step (as opposed to the forward algorithm).
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Finally, note that in order to compute the @¥fX,(¢) > R} one needs to compute the cdf at
time pointsF(¢t), F(t) +1,...,t — 1 (forward algorithm) oM + F(t), M — 1+ F(t),...,t+1
(backward algorithm). So, if one wants to compute the cdf at equidistant paints=1,..., N,
for someN € N andh > 0, one only has to compute the cdf at the greatest (smallest) time
points with different fractional parts in the forward (backward) algorithm. The other cdf values
are obtained for free.
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