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Introduction

We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-

control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome 

microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples 

using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were 

used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We 

observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a 

protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, 

MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, 

MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/

p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD 

susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and 

highlight an immune-related protein-protein interaction network enriched for previously identified 

AD risk genes. These genetic findings provide additional evidence that the microglia-mediated 

innate immune response contributes directly to AD development.

Late-onset AD (LOAD) has a significant genetic component (h2=58-79%1). Nearly 30 

LOAD susceptibility loci2-12 are known, and risk is significantly polygenic13. However, 

these loci explain only a proportion of disease heritability. Rare variants also contribute to 

disease risk14-17. Recent sequencing studies identified a number of genes that have rare 

variants associated with AD9-11,18-24. Our approach to rare-variant discovery is to genotype 

a large sample with micro-arrays targeting known exome variants with follow-up using 

genotyping and imputed genotypes in a large independent sample. This is a cost-effective 

alternative to de novo sequencing25-29.
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We applied a 3-stage design (Supplementary Figure 1) using subjects from the International 

Genomics of Alzheimer’s Project (IGAP)(Table 1, Supplementary Tables 1 & 2). In stage 1, 

16,097 LOAD cases and 18,077 cognitively normal elderly controls were genotyped using 

the Illumina HumanExome microarray. Data from multiple consortia were combined in a 

single variant meta-analysis (Online Methods) assuming an additive model. In total, 241,551 

variants passed quality-control (Supplementary Table 3). Of these 203,902 were 

polymorphic, 26,947 were common (minor allele frequency (MAF)≥5%), and 176,955 were 

low frequency or rare (MAF<5%). We analyzed common variants using a logistic regression 

model in each sample cohort and combined data using METAL30. Rare and low frequency 

variants were analyzed using the score test and data combined with SeqMeta31 

(Supplementary Figure 2).

We reviewed cluster plots for variants showing association (P<1×10-4) and identified 43 

candidate variants (Supplementary Table 4) exclusive of known risk loci (Supplementary 

Table 5). Stage 2 tested these for association in 14,041 LOAD cases and 21,921 controls, 

using de novo and imputation derived genotypes (Online Methods). We carried forward 

single nucleotide variants (SNVs) with GWS associations and consistent directions of effect 

to stage 3 where genotypes for 6,652 independent cases and 8,345 controls were imputed 

using the Haplotype Reference Consortium resource32,33 (Online Methods, Supplementary 

Table 6).

We identified four rare coding variants with GWS association signals with LOAD 

(P<5×10-8)(Table 2, Supplementary Tables 7 & 8). The first is a missense variant p.P522R 

(P=5.38×10-10, OR=0.68) in Phospholipase C Gamma 2 (PLCG2)(Table 2, Figure 1a, 

Supplementary Table 9, Supplementary Figure 3). This variant is associated with decreased 

risk of LOAD, showing a MAF of 0.0059 in cases and 0.0093 in controls. The reference 

allele (p.P522) is conserved across several species (Supplementary Figure 4). Gene-wide 

analysis showed nominal evidence for association at P=1.52×10-4 (Supplementary Tables 10 

& 11) and we found no other independent association at this gene (Supplementary Figure 5).

The second novel association is a missense change p.S209F (P=4.56×10-10, OR=1.43) in B3 
domain-containing transcription factor ABI3 (ABI3). The p.F209 variant shows consistent 

evidence for increasing LOAD risk across all stages, with a MAF of 0.011 in cases and 

0.008 in controls (Table 2, Figure 1b, Supplementary Table 12, Supplementary Figure 6). 

The reference allele is conserved across multiple species (Supplementary Figure 7). Gene-

wide analysis showed nominal evidence of association (P=5.22×10-5)(Supplementary Tables 

10 & 11). The B4GALNT2 gene, adjacent to ABI3, contained an independent suggestive 

association (Supplementary Figure 8), but this failed to replicate in subsequent stages 

(Pcombined=1.68×10-4)(Supplementary Table 7).

Following reports of suggestive association with LOAD34,35, we report the first evidence for 

GWS association at TREM2 coding variant p.R62H (P=1.55×10-14, OR=1.67), with a MAF 

of 0.0143 in cases and 0.0089 in controls (Table 2, Figure 1c, Supplementary Table 13, 

Supplementary Figures 9 & 10). We also observed evidence for the previously reported9,11 

TREM2 rare variant p.R47H (Table 2). These variants are not in linkage disequilibrium 

(Supplementary Table 14) and conditional analyses confirmed that p.R62H and p.R47H are 
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independent risk variants (Supplementary Figure 11). Gene-wide analysis of TREM2 
showed a GWS association (PSKAT=1.42×10-15)(Supplementary Tables 10 & 11). Removal 

of p.R47H and p.R62H variants from the analysis diminished the gene-wide association but 

the signal remains interesting (PSKAT-O=6.3×10-3, PBurden=4.1×10-3). No single SNV was 

responsible for the remaining gene-wide association (Supplementary Table 13, 

Supplementary Figure 11) suggesting that there are additional TREM2 risk variants in 

TREM2. We previously reported a common variant LOAD association near TREM2, in a 

GWAS of cerebrospinal fluid tau and P-tau36. We also observed a different suggestive 

common variant signal in another LOAD case-control study (P=6.3×10-7)2.

We previously identified 8 gene pathway clusters significantly enriched in AD-associated 

common variants36. To test whether biological enrichments observed in common variants 

are also present in rare variants we used the rare-variant data (MAF<1%) to reanalyze these 

eight AD-associated pathway clusters (Online Methods, Supplementary Table 15). We used 

Fisher’s method to combine gene-wide p-values for all genes in each cluster. After 

correction for multiple testing, we observed enrichment for immune response (P=8.64×10-3), 

cholesterol transport (P=3.84×10-5), hemostasis (P=2.10×10-3), Clathrin/AP2 adaptor 

complex (P=9.20×10-4) and protein folding (P=0.02). We also performed pathway analyses 

on the rare variant data presented here using all 9,816 pathways used previously. The top 

pathways are related to lipoprotein particles, cholesterol efflux, B-cell differentiation and 

immune response, areas of biology also enriched when common variants are 

analyzed37(Supplementary Table 16).

Previous analysis of normal brain co-expression networks identified 4 gene modules that are 

enriched for common variants associated with LOAD risk2,3711. These 4 modules are 

enriched for immune response genes. We identified 151 genes present in 2 or more of these 

4 modules and these showed a strong enrichment for LOAD-associated common variants 

(P=4.0×10-6)36 and for rare variants described here (MAF<1%)(Supplementary Table 

15P=1.17×10-6). We then used a set of high-quality protein-protein interactions37 to 

construct, from these 151 genes, an interaction network containing 56 genes, including 

PLCG2, ABI3 and TREM2 (Figure 2)(Online Methods). This subset is strongly enriched for 

association signals from both the previous common variant analysis (P=5.0×10-6, 

Supplementary Table 17) and this rare variant gene-set analysis (P=1.08×10-7, 

Supplementary Table 15). The remaining 95 genes only have nominally-significant 

enrichment for either common or rare variants (Supplementary Tables 15 & 17), suggesting 

that the 56-gene (Supplementary Table 18) network is driving the enrichment.

TREM2, ABI3 and PLCG2 have a common expression pattern in human brain cortex, with 

high expression in microglia cells and limited expression in neurons, oligodendrocytes, 

astrocytes and endothelial cells (Supplementary Figure 12)38. Other known LOAD loci with 

the same expression pattern include SORL1, the MS4A gene cluster, and HLA-DRB1. 
PLCG2, ABI3, and TREM2 are up-regulated in LOAD human cortex and in two APP mouse 

models. However, when corrected for levels of other microglia genes, these changes in 

expression appear to be related to microgliosis (Supplementary Tables 19 & 20).
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PLCG2 (Supplementary Figure 13) encodes a transmembrane signaling enzyme (PLCγ2) 

that hydrolyses the membrane phospholipid PIP2 (1-phosphatidyl-1D-myo-inositol 4,5-

bisphosphate) to secondary messengers IP3 (myo-inositol 1,4,5-trisphosphate) and DAG 

(diacylglycerol). IP3 is released into the cytosol and acts at the endoplasmic reticulum where 

it binds to ligand-gated ion channels to increase cytoplasmic Ca2+. DAG remains bound to 

the plasma membrane where it activates two major signaling molecules, protein kinase C 

(PKC) and Ras guanyl nucleotide-releasing proteins (RasGRPs), which initiate the NF-κB 

and mitogen-activated protein kinase (MAPK) pathways. While the IP3/DAG/Ca+2 

signaling pathway is active in many cells and tissues, in brain, PLCG2 is primarily expressed 

in microglial cells. PLCG2 variants also cause Antibody Deficiency and Immune 

Dysregulation (PLAID) and Autoinflammation and PLAID (APLAID)39. Genomic deletions 

(PLAID) and missense mutations (APLAID) affect the cSH2 autoinhibitory regulatory 

region. The result is a complex mix of loss and gain of function in cellular signalling39.

Functional annotation (Supplementary Table 21) suggests ABI3 (Supplementary Figure 14) 

plays a role in the innate immune response via interferon-mediated signaling40. ABI3 is co-

expressed with INPP5D (P=2.2×10-10), a gene previously implicated in LOAD risk2. ABI3 

plays a significant role in actin cytoskeleton organization through participation in the 

WAVE2 complex41, a complex that regulates multiple pathways leading to T-cell 

activation42.

TREM2 encodes a transmembrane receptor present in the plasma membrane of brain 

microglia (Supplementary Figure 15). TREM2 protein forms an immune-receptor-signaling 

complex with DAP12. Receptor activation results in activation of Syk and ZAP70 signaling 

which in turn activates PI3K activity and influences PLCγ2 activity43. In microglia, 

TREM2-DAP12 induces an M2-like activation44 and participates in recognition of 

membrane debris and amyloid deposits resulting in microglial activation and 

proliferation45-47. When TREM2 knockout (KO) or TREM2 heterozygous KO mice are 

crossed with APP-transgenics that develop plaques, the size and number of microglia 

associated with plaques are markedly reduced46,47. TREM2 risk variants are located within 

exon 2, which is predicted to encode the conserved ligand binding extracellular region of the 

protein. Any disruption in this region may attenuate or abolish TREM2 signaling, resulting 

in the loss or decrease in TREM2 function47.

The 56-gene interaction network identified here is enriched in immune response genes and 

includes TREM2, PLCG2, ABI3, SPI1, INPP5D, CSF1R, SYK and TYROBP (Figure 2). 

SPI1 is a central transcription factor in microglial activation state that has a significant gene-

wide association with AD5 and is in the proximity of GWS signals identified by IGAP2. 

Loss-of function mutations in CSF1R cause hereditary diffuse leukoencephalopathy with 

spheroids, a white matter disease related to microglial dysfunction48. Activated microglial 

cells surround plaques49,50, a finding consistently observed in AD brain and AD transgenic 

mouse models51. In AD mouse model brain, synaptic pruning associates with activated 

microglial signalling52. Pharmacological targeting of CSF1R inhibits microglial 

proliferation and shifts the microglial inflammatory profile to an anti-inflammatory 

phenotype in murine models53. SYK regulates Aβ production and tau 

hyperphosphorylation54, is affected by the INPP5D/CD2AP complex55 encoded by two 
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LOAD associated genes2, and mediates phosphorylation of PLCG256. Notably, the anti-

hypertensive drug Nilvadipine, currently in a phase III AD clinical trial, targets SYK as well 

as TYROBP, a hub gene in an AD-related brain expression network38, that encodes the 

TREM2 complex protein DAP12.

We identified three rare coding variants in PLCG2, ABI3 and TREM2 with GWS 

associations with LOAD that are part of a common innate immune response. This work 

provides additional evidence that the microglial response in LOAD is directly part of a 

causal pathway leading to disease and is not simply a downstream consequence of 

neurodegeneration46,47,57,58. Our network analysis supports this conclusion. In addition, 

PLCγG2, as an enzyme, represents the first classically drug-able target to emerge from 

LOAD genetic studies. The variants described here account for a small portion of the 

‘missing heritability of AD’. The remaining heritability may be due to a large number of 

common variants of small effect size. For rare variants, there may be additional exonic sites 

with lower MAF or effect size, and/or intronic and intergenic sites. Complete resolution of 

AD heritability will be facilitated by larger sample sizes and more comprehensive sequence 

data.

Data Availability

Summary statistics for the 43 genetic associations identified are provided in Supplementary 

Table 6.

Stage 1 data (individual level) for the GERAD exome chip cohort can be accessed by 

applying directly to Cardiff University. Stage 1 ADGC data is deposited in NIAGADS and 

NIA/NIH sanctioned qualified access data repository. Stage 1 CHARGE data is accessible 

by applying to dbGaP for all US cohorts, and to ERASMUS University for Rotterdam data. 

AGES primary data are not available due to Icelandic laws. Stage 2 and stage 3 primary data 

is available upon request.

A detailed description of the Mayo Clinic RNAseq data is available to all qualified 

investigators through the Accelerating Medicines Partnership in Alzheimer’s Disease (AMP-

AD) knowledge portal that is hosted in the Synapse software platform from Sage 

Bionetworks (Synapse IDs: syn3157182 and syn3435792 (mouse data), and syn3163039 

(human data)).

Online Methods

Genotyping and Quality Control

Stage 1

GERAD/PERADES: Genotyping was performed at Life and Brain, Bonn, Germany, with 

the Illumina HumanExome BeadChip v1.0 (N=247,870 variants) or v1.1 (N=242,901 

variants). Illumina’s GenTrain version 2.0 clustering algorithm in GenomeStudio or zCall1 

was used for genotype calling. Quality control (QC) filters were implemented for sample 

call rate excluding samples with >1% missingness, excess autosomal heterozygosity 

excluding outliers based on <1% and >1% minor allele frequency (MAF) separately, gender 
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discordance, relatedness excluding one of each pair related with IBD ≥ 0.125 (the level 

expected for first cousins), and population outliers (i.e. non European ancestry). Variants 

were filtered based on call rate excluding variants with >1% missingness, genotype cluster 

separation excluding variants with a separation score < 0.4 and Hardy-Weinberg equilibrium 

(HWE) excluding variants with PHWE < 1×10-4. Ten principal components (PCs) were 

extracted using EIGENSTRAT, including the first three PCs as covariates had the maximum 

impact on the genomic control inflation factor, λ2. After QC 6,000 LOAD cases and 2,974 

elderly controls (version 1.0; 4,093 LOAD cases and 1,599 controls, version 1.1; 1,907 

LOAD cases and 1,375 controls) remained. The version 1.0 array had 244,412 variants 

available for analysis and 239,814 remained for the version 1.1 array.

CHARGE: All four CHARGE cohorts were genotyped for the Illumina HumanExome 

BeadChip v1.0. To increase the quality of the rare variant genotype calls, the genotypes for 

all four studies were jointly called with 62,266 samples from 11 studies at the University of 

Texas HSC at Houston3. Quality control (QC) procedures for the genotype data were 

performed both centrally at UT Houston and at each study. The central QC procedures have 

been described previously3. Minimum QC included: 1) Concordance checking with GWAS 

data and removal of problematic samples, 2) Removal of individuals with low genotype 

completion rate (<90%), 3) Removal of variants with low genotype call rate (<95%), 4) 

Removal of individuals with sex-mismatches, 5) Removal of one individual from duplicate 

pairs, 6) Removal of first-degree relatives based on genetically calculated relatedness (IBS > 

0.45), with cases retained over controls, 7) Removal of variants not called in over 5% of the 

individuals and those that deviated significantly form the expected Hardy-Weinberg 

Equilibrium proportions (P<1×10-6).

ADGC: Genotyping was performed in subsets at four centers: NorthShore, Miami, WashU, 

and CHOP (“CHOP” and “ADC7” datasets) on the Illumina HumanExome BeadChip v1.0. 

One variant rs75932628 (p.R47H) in TREM2 clustered poorly across all ADGC cohorts, and 

was therefore re-genotyped using a Taqman assay. Data on all samples underwent standard 

quality control procedures applied to genome-wide association studies (GWAS), including 

excluding variants with call rates <95%, and then filtering samples with call rate <95%. 

Variants with MAF>0.01 were evaluated for departure from HWE and any variants for 

PHWE<10-6 were excluded. Population substructure within each of the five subsets 

(NorthShore, Miami, WashU, CHOP, and ADC7) was examined using PC analysis in 

EIGENSTRAT4, and population outliers (>6 SD) were excluded from further analyses; the 

first three PCs were adjusted for as covariates in association testing. Prior to analysis we 

harmonized the alternate and reference alleles over all datasets. See Supplementary Table 3 

for an overview of cohort genotype calling and quality control procedures. All sample 

genotyping and quality control was performed blind to participant’s disease status.

Stage 2—Twenty-two variants successfully designed for replication genotyping on the 

Agena Bioscience MassARRAY® platform. Genotyping was performed at Life and Brain, 

Bonn, Germany, and the Centre National de Génotypage (CNG), Paris, France. Twenty-one 

variants were successfully genotyped, with one variant (rs147163004 in ASTN2) failing 

visual cluster plot inspection. An additional nine variants were successfully genotyped using 
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the Agena Bioscience MassARRAY® platform or Thermo FisherTaqMan® assay at the 

CNG, Paris, France in a subset of the replication samples N=16,850 (7,755 cases, 9,095 

controls).

GERAD/PERADES and ACE QC: Filters were implemented for sample call rate, 

excluding samples with >10% missingness, and excess autosomal heterozygosity via visual 

inspection. Variants were filtered based on call rate excluding variants with >10% 

missingness and HWE excluding variants with PHWE<1×10-5 in either cases or controls.

IGAP and EADI QC: Variants were genotyped in 3 different panels and QC was performed 

in each panel separately. Samples with more than 3 missing genotypes were excluded, as 

were males heterozygous for X-Chromosome variants present within the genotyped panels. 

Variants were excluded based on missingness >5%, HWE (in cases and controls separately) 

<1×10-5, and differential missingness between cases and controls <1×10-5, for each Country 

cohort. All variants passed quality control. PCs were determined using previously described 

methods19.

Stage 3—Replication was performed using genotypes from 23 ADGC datasets as 

described above. Genotyping arrays used have been described in detail before for most 

datasets, except for the CHAP, NBB, TARCC, and WHICAP datasets. CHAP and WHICAP 

datasets were genotyped on the Illumina OmniExpress-24 array, while NBB was genotyped 

on the Illumina 1M platform. TARCC first wave subjects were genotyped using the 

Affymetrix 6.0 microarray chip, while subjects in the second wave (172 cases and 74 

controls) were genotyped using the Illumina HumanOmniExpress-24 beadchip. Second 

wave TARCC subjects (TARCC2) were genotyped together with 84 cases and 115 controls 

from second wave samples ascertained at the University of Miami and Vanderbilt University. 

All samples used in stage 3 were imputed to the HRC haplotype reference panel5,6, which 

includes 64,976 haplotypes with 39,235,157 SNPs that allows imputation down to an 

unprecedented MAF=0.00008.

Prior to imputation, all genotype data underwent QC procedures that have been described 

extensively elsewhere7,8. Imputation was performed on the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/) running MiniMac39,10. Genotypes from genome-

wide, high-density SNP genotyping arrays for 16,175 AD cases and 17,176 cognitive-

normal individuals were imputed. Across all samples 39,235,157 SNPs were imputed, with 

the actual number of SNPs imputed for each individual varying based on the regional 

density of array genotypes available. As a subset of these samples had also been genotyped 

as part of stage 1, we examined the imputation quality for critical variants by comparing 

imputed genotypes to those directly genotyped by the exome array; overall concordance was 

>99%, while concordance among alternate allele genotypes (heterozygotes and alternate 

allele homozygotes) was >88.5% on average (N=13,000 samples). Concordance between 

Stage 3 imputed genotypes and exome chip genotypes for replicated SNPs is reported in 

Supplementary Table 6.
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Analysis

Stage 1—We tested association with LOAD using logistic regression modelling for 

common and low frequency variants (MAF>1%) and implementing maximum likelihood 

estimation using the score test and ‘seqMeta’ package for rare variation (MAF≤1%). 

Analyses were conducted globally in the GERAD/PERADES consortium, and for each 

contributing centre in the CHARGE and ADGC consortia under two models (1) an 

‘unadjusted’ model, which included minimal adjustment for possible population 

stratification, using Country of origin and the first three principal components from PCA, 

and (2) an ‘adjusted’ model, which included covariates for age, and sex, as well as Country 

of origin and the first three principal components. Age was defined as the age at onset of 

clinical symptoms for cases, and the age at last interview for cognitively normal controls.

Meta-analysis for common and low frequency variants were undertaken in METAL using a 

fixed-effects inverse variance-weighted meta-analysis. Rare variants were meta-analysed in 

the SeqMeta R package. In the SeqMeta pipeline, cohort-level analyses generated score 

statistics through the function ‘prepScores()’ which were captured in *. Rdata objects. These 

*. Rdata objects contain the necessary information to meta-analyse SKAT analyses: the 

individual SNP scores, MAF, and a covariance matrix for each unit of aggregation. Using the 

‘singlesnpMeta()’ and ‘skatOmeta()’ functions of SeqMeta, the *. Rdata objects for 

individual studies were meta-analysed. The seqMeta coefficients and standard errors can be 

interpreted as a ‘one-step‘ approximation to the maximum likelihood estimates. 

Monomorphic variants in individual studies were not excluded as they contribute to the 

minor allele frequency information. Three independent analysts confirmed the meta-analysis 

results.

In the GERAD/PERADES consortium 1,740 participants (888 LOAD cases and 852 

controls) did not have age information available and were excluded from the adjusted 

analyses. Therefore, 16,160 cases and 17,967 controls were included in the unadjusted 

analyses and 15,272 cases and 17,115 controls were included in the adjusted analyses. The 

primary analysis utilized the unadjusted model given the larger sample size this provided. 

See Supplementary Figure 2 for QQ plots of unadjusted and adjusted analyses.

Stage 2—We tested association with LOAD using the score test and ‘seqMeta’ package. 

Analyses were conducted under the two models described above, in the analysis groups 

indicated in Supplementary Table 2. Analyses were undertaken globally in the GERAD/

PERADES cohort and by Country in the IGAP cohorts, with the EADI1 cohort only 

including French participants and the ACE cohort including only Spanish participants. 

Following the format of the IGAP mega meta-analysis7, four PCs were included for the 

EADI1 dataset, and one in the Italian and Swedish IGAP clusters. Meta-analysis was 

undertaken in the SeqMeta R package.

Stage 3—Association analyses performed followed Stage 1 and Stage 2 analytical 

procedures described below, and only variants in ABI3, PLCG2 and TREM2 were 

examined. For gene-based testing, 10 variants in ABI3, 35 in PLCG2, and 13 in TREM2 
were examined.
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Pathway/Gene-set Enrichment Analysis

The eight biological pathway clusters previously identified as enriched for association in the 

IGAP dataset11 were tested for enrichment in this rare variation study (Supplementary Table 

15) in order to test whether the biological enrichments observed in common variants also 

apply to rare variants. Genes were defined without surrounding genomic sequence, as this 

yielded the most significant excess of enriched pathways in the common variation dataset11. 

Gene-wide SKAT-O P-values for the variants of interest were combined using the Fisher’s 

combined probability test. Given the low degree of LD12 between rare variants our primary 

analyses did not control for LD between pathway genes. However, as a secondary analysis, 

the APOE region was removed, and for each pair of pathway genes within 1Mb of each 

other, the gene with the more significant SKAT-O P-value was removed. This highly 

conservative procedure removes any potential bias in the enrichment test both from LD 

between the genes, and also from dropping less significant genes from the analysis.

We also performed pathway analyses on the rare variant data presented here using all 9,816 

pathways used previously. The top pathways are related to lipoprotein particles, cholesterol 

efflux, B-cell differentiation and immune response, and closely parallel the common variant 

results (Supplementary Table 16).

Protein interaction Analysis

Previous analysis of normal brain co-expression networks identified 4 gene modules that 

were enriched for common variants associated with AD risk in the IGAP GWAS. Each of 

these 4 modules was also found to be enriched for immune-related genes. The 151 genes 

present in 2 or more of these 4 modules were particularly strongly enriched for IGAP GWAS 

association41. This set of 151 co-expressed genes thus contains genes of relevance to AD 

aetiology. To identify these genes, and clarify biological relationships between them for 

future study, protein interaction analysis was performed. First, a list of high-confidence 

(confidence score >0.7) human protein-protein interactions was downloaded from the latest 

version (v10) of the STRING database (http://string-db.org). Then, protein interaction 

networks were generated as follows:

1. Choose a gene to start the network (the “seed” gene)

2. For each remaining gene in the set of 151 genes, add it to the network if its 

corresponding protein shows a high-confidence protein interaction with a protein 

corresponding to any gene already in the network.

3. Repeat step 2 until no more genes can be added

4. Note the number of genes in the network

5. Repeat, choosing each of the 151 genes in turn as the seed gene.

The largest protein interaction network resulting from this procedure resulted in a network 

of 56 genes connected by high-confidence protein interactions. To test whether this network 

was larger than expected by chance, given the total number of protein-protein interactions 

for each gene, random sets of 151 genes were generated, with each gene chosen to have the 

same total number of protein-protein interactions as the corresponding gene in the actual 

Sims et al. Page 9

Nat Genet. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://string-db.org


data. Protein networks were generated for each gene as described above, and the size of the 

largest such network compared to the observed 56-gene network. 1000 random gene sets 

were generated, and none of them yielded a protein interaction network as large as 56 genes. 

Note that the procedure for generating the protein interaction network relies only on protein 

interaction data, and is agnostic to the strength of GWAS or rare-variant association for each 

gene. Thus the strength of genetic association in the set of 56 network genes can be tested 

relative to that in the original set of 151 genes without bias.

Gene-set enrichment analysis of the protein network

The set of 56 network genes was tested for association enrichment in the IGAP GWAS using 

ALIGATOR13, as was done in the original pathway analysis, using a range of p-value 

thresholds for defining significant SNPs (and thus the genes containing those SNPs). The 

same analysis was also performed on the 95 genes in the module overlap but not the protein 

interaction network (Supplementary Table 17). It can be seen that the 56 network genes 

account for most of the enrichment signal observed in the set of 151 module overlap genes.

The set of 56 network genes, the set of 151 module overlap genes, and the set of 95 genes in 

the module overlap but not the network were tested for enrichment of association signal in 

variants with MAF<1% using the gene set enrichment method described above in section 11. 

Both the set of 151 genes (P=1.17×10-6) and the subset of 56 genes (P =1.08×10-7) show 

highly significant enrichment for association in the rare variants with MAF<1%. It can be 

seen that the 56 network genes account for most of the enrichment signal observed in the set 

of 151 module overlap genes (Supplementary Table 17). Again, the subset of 56 genes 

accounts for most of the enrichment signal observed in the set of 151 genes, as the 

remaining 95 genes have only nominally-significant enrichment (P=0.043). Both the set of 

151 genes (P=5.15×10-5) and the subset of 56 genes (P=2.98×10-7) show significant 

enrichment under a conservative analysis excluding the APOE region and correcting for 

possible LD between the genes (Supplementary Table 17). Thus, the rare variants show 

convincing replication of the biological signal observed in the common variant GWAS, and 

furthermore, the protein network analysis has refined this signal to a set of 56 interacting 

genes. Given that TREM2 has a highly significant gene-wide p-value (P=1.01×10-13) among 

variants with MAF<1%, enrichment analyses were run omitting it. Both the set of 151 genes 

(P=2.78×10-3) and the subset of 56 genes (P=0.010) (Supplementary Table 18) still showed 

significant enrichment of signal, suggesting that the contribution of rare variants to disease 

susceptibility in these networks is not restricted to TREM2. Biological follow-up of genetic 

results is labour-intensive and expensive. It is therefore important to concentrate such work 

on the genes that are most important to AD susceptibility. Thus, the rationale for reducing 

the gene set is that it defines a network of genes that are not only related through co-

expression and protein interaction, but also show enrichment for genetic association signal. 

These genes are therefore strong candidates for future biological study.

Gene Expression

We examined mRNA expression of the novel genes PLCG2 and ABI3 in 

neuropathologically characterized brain post-mortem tissue (508 persons): they are 

expressed at low levels in the dorsolateral prefrontal cortex of subjects from two studies of 
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aging with prospective autopsy (ranked 12,965th out of 13,484 expressed genes)14. 

However, ABI3 and PLCG2 were more highly expressed in purified microglia/macrophage 

from the cortex of 11 subjects from these cohorts (1740th and 2600th respectively out of the 

11,500 expressed genes)(unpublished data). These findings are consistent with the high 

levels of expression of both PLCG2 and ABI3 in peripheral monocytes, spleen, and whole 

blood reported by the ROADmap project and in microglia as reported by Zhang et al15. 

From the same brain tissue, we examined methylation (n=714)16 and H3K9ac acetylation 

(n=676) data and found differential methylation at four CpG sites and lower acetylation at 

two H3K9ac sites adjacent to PLCG2 and ABI3 in relation to increased global neuritic 

plaque and tangle burden (FDR < 0.05). Similarly, high TREM2 expression has been shown 

to correlate with increasing neuritic plaque burden17.

AMP-AD Gene Expression Data—RNA sequencing was used to measure gene 

expression levels in the temporal cortex of 80 subjects with pathologically confirmed AD 

and 76 controls without any neurodegenerative pathologies obtained from the Mayo Clinic 

Brain Bank and the Banner Sun Health Institute. The human RNA sequencing data is 

deposited in the Accelerating Medicines Partnership-AD (AMP-AD) knowledge portal 

housed in Synapse (https://www.synapse.org/#!Synapse:syn2580853/wiki/66722). After QC, 

our postmortem human cohort has 80 subjects with pathologically confirmed AD and 76 

controls without any neurodegenerative pathologies. Assuming two samples of 100 per 

group, two-sample t-test, same standard deviation, we will have 80% power to detect effect 

sizes of 0.40, 0.49 and 0.59 at p<0.05, 0.01 and 0.001, respectively, where effect size is the 

difference in means between two groups divided by the within-group standard deviation. 

The human RNA sequencing data overview, QC and analytic methods are available at the 

following Synapse pages, respectively: syn3163039, syn6126114, syn6090802. 

Multivariable linear regression was used to test for association of gene expression levels 

with AD diagnosis (Dx) using two different models: In the Simple model, we adjust for age 

at death, sex, RNA integrity number (RIN), tissue source, and RNAseq flowcell. In the 

Comprehensive model, we adjust for all these covariates, and brain cell type markers for five 

cell-specific genes (CD68 (microglia), CD34 (endothelial), OLIG2 (oligodendroglia), GFAP 
(astrocyte), ENO2 (neuron)) to account for cell number changes that occur with AD 

neuropathology. TREM2, PLCG2 and ABI3 are significantly higher in AD temporal cortex 

prior to correcting for cell types (Simple model), but this significance is abolished after 

adjusting for cell-specific gene counts (Comprehensive model). This suggests that these 

elevations are likely a consequence of changes in cell types that occur with AD, most likely 

microgliosis given that TREM2, PLCG2 and ABI3 are microglia-enriched genes15 

(Supplementary Table 19, Supplementary Figure 12).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association plots of PLCG2, ABI3, and TREM2. (a) Regional plot of identified association 

at the PLCG2 locus. Top hit rs72824905 indicated in purple. Data presented for rs72824905 

includes stage 1, stage 2 and stage 3 (N=84,905). (b) Regional plot of identified association 

at the ABI3 locus. Top hit rs616338 indicated in purple. Data presented for rs616338 

includes stage 1, stage 2 and stage 3 (N=84,493). (c) Regional plot of identified association 

at the TREM2 locus. Top hit rs75932628 indicated in purple. Data presented for rs75932628 

and rs143332484 includes stage 1, stage 2 and stage 3 (N=80,733 and 53,042, respectively). 

SNVs with missing LD information are shown in grey.
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Figure 2. 
Protein-protein interaction network (using high-confidence human interactions from the 

STRING database) of 56 genes enriched for both common and rare variants associated with 

AD risk. Colours of edges refer to the type of evidence linking the corresponding proteins: 

red=gene fusion, dark blue = co-occurrence, black = co-expression, magenta = experiments, 

cyan=databases, light green = text mining, mauve = homology. TREM2, PLCG2 and ABI3 
highlighted by red circles, SYK, CSF1R and TYROBP highlighted by blue circles, and 

INPP5D, SPI1 and CD33 identified as common variant risk loci2,5-7, highlighted by black 

circles.
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Table 1

Summary of the consortium data sets used for stages 1, 2 and stage 3. Data are from the Genetic and 

Environmental Risk for Alzheimer’s Disease (GERAD)/Defining Genetic, Polygenic and Environmental Risk 

for Alzheimer’s Disease (PERADES) Consortium, the Alzheimer’s Disease Genetic Consortium (ADGC), the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and the European Alzheimer’s 

disease Initiative (EADI)(Supplement 1).

Consortium N Controls N Cases N Total

Stage 1 GERAD/PERADES 2974 6000 8974

ADGC 7002 8706 15708

CHARGE 8101 1391 9492

Total 18077 16097 34174

Stage 2 GERAD/PERADES genotype 5049 4049 9098

CHARGE-genotype 1839 1434 3273

CHARGE-in silico 3246 722 3968

EADI-genotype 11787 7836 19623

Total 21921 14041 35962

Stage 3 ADGC-in silico 8345 6652 14997

Stage 1 + 2 + 3

Total 48402 37022 85133
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Table 2

Summary of stage 1, 2, 3 and combined meta-analysis results for SNVs at P<5×10-8. Data includes p-values, 

odds ratios (OR), minor allele frequency (MAF) in cases and controls and number of subjects included in each 

analytical stage. For OR 95% confidence intervals see Supplementary Table 7.

SNV rs75932628 rs143332484 rs72824905 rs616338

Chr 6 6 16 17

Position 41129252 41129207 81942028 47297297

Protein Variation R47H R62H P522R S209F

Gene TREM2 TREM2 PLCG2 ABI3

Effect Allele T T G T

Stage 1

P 3.02E-12 3.48E-09 1.19E-05 2.16E-05

OR 2.46 1.58 0.65 1.42

MAF Cases 0.003 0.015 0.006 0.013

MAF Controls 0.001 0.010 0.011 0.010

N 30018 33786 33786 33786

Stage 2

P 4.38E-08 3.66E-07 1.35E-04 8.37E-05

OR 2.37 3.97 0.70 1.41

MAF Cases 0.004 0.014 0.006 0.010

MAF Controls 0.002 0.006 0.008 0.008

N 35831 3968 35831 35831

Stage 3

P 1.23E-06 2.45E-03 2.48E-02 1.75E-02

OR 2.58 1.55 0.69 1.58

MAF Cases 0.006 0.012 0.006 0.010

MAF Controls 0.003 0.008 0.007 0.008

N 14884 15288 15288 14876

Stage1, 2 and 3 Meta-Analysis

P 5.38E-24 1.55E-14 5.38E-10 4.56E-10

OR 2.46 1.67 0.68 1.43

MAF Cases 0.004 0.014 0.006 0.011

MAF Controls 0.002 0.009 0.009 0.008

N 80733 53042 84905 84493

Note: Concordance for alternate allele carrier genotypes between imputed versus called SNPs in Stage 3 was 75.2% for rs75932628, 91.1% for 
rs143332484, 95.7% for rs72824905, and 81.9% for rs616338 (Online Methods and Supplementary Table 6).
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