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Abstract Recently, a Competitive Exception Learning Algorithm (CELA) was introduced [1, 2]. This
algorithm establishes an optimal mapping from a (continuous) M-dimensional input sample
space to an N-dimensional (continuous) output sample space. CELA is aimed to discover
regimes (i.e. local behavior in the input sample space) for which the conditional probability
distribution in the output sample space systematically deviates from the average unconditional
distribution. Previous papers on CELA dealt with the introduction of the algorithm by sketching
its background and by describing the algorithmic sub-steps. The algorithm was tested
successfully on both simulated and real world data, mainly in the field of financial markets.
However, until now a precise and firm theoretical foundation of CELA is still lacking. The current
paper resolves this imperfection. The contribution to be made here is twofold. First, we present,
in section 2, a probability theory and statistics of fuzzy sets which in itself is interesting. Second,
we re-formulate, in section 3, the CELA-algorithm within the probabilistic fuzzy framework
introduced. We finalize with a discussion and outlook.
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1 Introduction

Recently, a Competitive Exception Learning Algorithm (CELA) was introduced [1, 2]. This algorithm es-

tablishes an optimal mapping from a (continuous)M -dimensional input sample space to anN -dimensional

(continuous) output sample space. CELA is aimed to discover regimes (i.e. local behavior in the input

sample space) for which the conditional probability distribution in the output sample space systemat-

ically deviates from the average unconditional distribution. Previous papers on CELA dealt with the

introduction of the algorithm by sketching its background and by describing the algorithmic sub-steps.

The algorithm was tested successfully on both simulated and real world data, mainly in the �eld of �nan-

cial markets. However, until now a precise and �rm theoretical foundation of CELA is still lacking. The

current paper resolves this imperfection. The contribution to be made here is twofold. First, we present,

in section 2, a probability theory and statistics of fuzzy sets which in itself is interesting. Second, we

re-formulate, in section 3, the CELA-algorithm within the probabilistic fuzzy framework introduced. We

�nalize with a discussion and outlook.

2 Probability Theory and Statistics on Fuzzy Sets

In this section, we introduce the theory needed to be able to explain the background of the CELA in the

next session. The theory introduced here is strongly related to the approach presented in the seminal
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paper [3]. We made further use of several standard works, namely on probability theory [4], mathematical

statistics [5], and fuzzy set theory [6]. We only explain the theory for one-dimensional spaces. However,

this can easily be extended to multi-dimensional spaces.

2.1 The discrete case

2.1.1 Classical probability theory

Let us start considering classical probability theory de�ned on crisp sets. More speci�cally, we consider

a random variable x
�
de�ned on a discrete sample space X = fx1; x2; : : :g with sample points x1; x2; : : :.

Then the probability of sample point xi is often written as

Pr(x
�
= xi) = f(xi) (1)

with various properties, for example,
P

i f(xi) = 1. A set A � X of sample points xi, denoted as

A = fxi; xj ; : : :g, is often called an event [4]. The probability Pr(A) of such an event is de�ned as the

sum of the probabilities of all sample points in it, so

Pr(A) =
X
xi2A

f(xi): (2)

We also shall make use of the characteristic function �B(x) which de�nes a set B as follows:

�B(x) =

8<
:

1 if x 2 B

0 if x 62 B.
(3)

We next consider the special events Si consisting of just one single sample point, so 8i : Si = fxig. We

call these events singleton events. From (3) we conclude that

�Si(x) =

8<
:

1 if x = xi

0 otherwise.
(4)

By applying equations (1), (2) and (4), we conclude that

Pr(Si) = Pr(x
�
= xi) = f(xi) = �Si(xi)f(xi) =

X
xk2X

�Si(xk)f(xk): (5)

Note that
P

xk2X
means that we sum over all sample points xk in X . Similarly and more generally, we

derive that the probability of an arbitrary event A = fxi; xj ; : : :g in our sample space can be written as

Pr(A) =
X
xi2A

f(xi) =
X
xk2X

�A(xk)f(xk) = E(�A(x
�
)) (6)

where E(x
�
) is the classical mean or mathematical expectation of x

�
. It should further be clear that the

characteristic function �A(x
�
) is a stochastic variable: this is a direct consequence of the fact that x

�
is

stochastic.

2.1.2 Probability theory on fuzzy sets

The above-given theory can easily be generalized to a probability theory on fuzzy sets (also called a

probabilistic fuzzy set theory). We �rst introduce the notion of a fuzzy singleton event : like a single
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(crisp) event Si = fxig of X can be characterized by its corresponding characteristic function �Si(x) as

de�ned by (4), so a fuzzy singleton event can be described by a membership function �Si(x�
)

�Si(x) =

8<
:

mSi(xi) if x = xi

0 if x = xj with j 6= i,
(7)

where 0 � mSi(xi) � 1. In addition and more generally, a discrete fuzzy event A can be characterized by

the membership function �A(x):

8xk 2 X : �A(xk) = mA(xk); (8)

with 8xk : 0 � mA(xk) � 1.

The probability of a discrete fuzzy singleton event can be de�ned by generalizing expression (5): we

simply replace the characteristic function �Si() by �Si() and get

Pr(Si) = �Si(xi)f(xi) =
X
xk2X

�Si(xk)f(xk): (9)

More generally, the probability of a discrete fuzzy event A is de�ned by

Pr(A) =
X
xk2X

�A(xk)f(xk) = E(�A(x
�
)): (10)

Hence, the probability of a fuzzy event equals the mathematical expectation of the membership function

describing this fuzzy event. Note that here the membership function �A(x
�
) is stochastic.

2.1.3 Well-de�ned fuzzy sample spaces

Next, we consider the case that various fuzzy events Ac (c = 1; : : : ; C) are de�ned on our discrete sample

space conform de�nition (8), so

8Ac8xk 2 X : �Ac
(xk) = mAc

(xk): (11)

So, every sample point xk corresponds to a vector of membership values (�A1
(xk); �A2

(xk); : : : ; �AC
(xk)).

Within this setting, we interpret each xk as a `fuzzy sample point' or, shortly, a fuzzy sample. To explain,

in a crisp sample space, any sample xk does belong to an event A or it does not belong to that event. In

a fuzzy sample space however, each xk belongs to several di�erent fuzzy events to a certain degree. As

will be explained below, we are interested in a very special sample space X of fuzzy events, namely one

for which the membership values of each fuzzy sample point sum up to one, so that Ac; c = 1; : : : ; C form

a fuzzy partition [7] of X . In mathematical terms, we suppose that

8xk :
X
Ac

�Ac
(xk) = 1: (12)

If the last equation holds, we can proof an interesting property of a discrete fuzzy sample space.

Theorem 2.1 Let a set of fuzzy events A1; A2; : : : ; Ac; : : : be given where each event Ac is described by

its membership function �Ac
(x). Let in addition, the membership values of each fuzzy sample xk comply

with condition (12), then the sum of all probabilities of fuzzy events Ac equals one, or, in mathematical

terms X
Ac

Pr(Ac) = 1 (13)
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Proof Using de�nition (10) and condition (12), we conclude that

X
Ac

Pr(Ac) =
X
Ac

X
xk2X

�Ac
(xk)f(xk) =

X
xk2X

f(xk)
X
Ac

�Ac
(xk) =

X
xk2X

f(xk) = 1: (14)

�

Theorem (2.1) shows that condition (12) guarantees that the probabilities on the fuzzy events in the

fuzzy sample space, sum up to precisely one. In other words, these conditions guarantee what we shall

term a well-de�ned sample space.

2.2 The continuous case

2.2.1 Classical probability theory

Again we start considering classical probability theory de�ned on crisp sets. More speci�cally, we consider

a random variable x
�
de�ned on a continuous sample space X . Within X, an interval Ii = [xi�1; xi] de�nes

an event and the probability of event Ii can be described as

Pr(Ii) = Pr(xi�1 � x
�
� xi) =

Z xi

xi�1

f(x)dx =

Z xi

xi�1

�Ii(x)f(x)dx =

Z 1
�1

�Ii(x)f(x)dx; (15)

where f(x) is a probability density function. Next, we consider the more general event A consisting of

the union of several disjunct (crisp) intervals Ii; Ij ; : : :, so

A = Ii
S
Ij
S

: : : ; where 8i 6= j : Ii
T
Ij = ;: (16)

Using this de�nition it is not very diÆcult to proof that

�A(x) =
X
Ii�A

�Ii(x): (17)

Using (15) and (17), the probability of the crisp event A can be expressed as

Pr(A) = Pr(Ii
S
Ij
S

: : :) =
X
Ii�A

Pr(Ii) =
X
i

Pr(xi�1 � x
�
� xi) = (18)

X
Ii�A

Z 1
�1

�Ii(x)f(x)dx =

Z 1
�1

(
X
Ii�A

�Ii(x))f(x)dx =

Z 1
�1

�A(x)f(x)dx = E(�A(x
�
)): (19)

2.2.2 Probability theory on fuzzy sets

Like in the discrete case, the theory of classical probability theory as explained in subsection 2.2.1 can

easily be generalized. For an arbitrary fuzzy interval Ii de�ned on X by its membership function �Ii(x),

we generalize (15) by replacing �A() by �A() and get

Pr(Ii) =

Z xi

xi�1

�Ii(x)f(x)dx =

Z 1
�1

�Ii(x)f(x)dx: (20)

Similarly, for a fuzzy event A, de�ned on X by its membership �A(x), we generalize (18) and get

Pr(A) =

Z 1
�1

�A(x)f(x)dx = E(�A(x
�
)): (21)

Like in the discrete case, the probability of a fuzzy event equals the mathematical expectation of the

stochastic membership function describing this fuzzy event.
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2.2.3 Well-de�ned fuzzy sample spaces

Theorems (2.1) also holds in the continuous case:

Theorem 2.2 Let a set of fuzzy events A1; A2; : : : ; Ac; : : : be given where each event Ac is described by

its membership function �Ac
(x). Let in addition, the membership values of each fuzzy sample x comply

with condition (12), then the sum of all probabilities of fuzzy events Ac equals one, or, in mathematical

terms X
Ac

Pr(Ac) = 1 (22)

Proof Using the above-given probability de�nitions and condition (12), we �nd

X
Ac

Pr(Ac) =
X
Ac

Z 1
�1

�Ac
(x)f(x)dx =

Z 1
�1

f(x)
X
Ac

�Ac
(x)dx =

Z 1
�1

f(x)dx = 1: (23)

�

Again condition (12) guarantees that the corresponding sample space is well-de�ned in the sense that the

sum of the probabilities of the fuzzy events Ac equals precisely 1.

2.3 The statistical part

Having a set of P representative sample data xp, p = 1; : : : ; P , from a continuous sample space with a

probability density function f(x), then discrete mathematical statistics can be used to assess probabilities,

both in the crisp and in the fuzzy case.

2.3.1 Assessing unconditional probabilities

In the crisp case of assessing probabilities, the domain of X is partitioned in a �nal set of (crisp) classes

Ac = [xc�1; xc]. Let ~fAc
denote the relative frequency and fAc

the absolute frequency of sample points

xp 2 Ac, then the probability of fuzzy class Ac can be assessed conform

Pr(Ac) � ~fAc
=

fAc

P
=

1

P

X
xp

�Ac
(xp) = �̂Ac

; (24)

where �̂Ac
represents the average characteristic function. The vector ( ~fA1

; ~fA2
; : : : ; ~fAc

) describes an

assessment of the probability distribution over all classes Ac and forms in this way an empirical charac-

terization of the sample space X .

In the fuzzy case, we can easily generalize the approach. This time, the domain of X is fuzzily

partitioned in a �nal set of fuzzy classes Ac. This is here done in such a way that condition (12) concerning

the membership functions �Ac
(x), holds. This guarantees that X is a well-de�ned sample space. Let in

this case ~fAc
denote the relative frequency and fAc

the absolute frequency of the contributions of the

fuzzy samples xp to the fuzzy class Ac (remember that each fuzzy sample belongs to each fuzzy class to

a certain degree), then the probability of fuzzy class Ac can be assessed conform

Pr(Ac) � ~fAc
=
fAc

P
=

1

P

X
xp

�Ac
(xp) = �̂Ac

; (25)
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Comparing (21) and (25), we see that the mathematical mean E(�Ac
(x
�
)) of a fuzzy class or event Ac can

be assessed by the empirical mean �̂Ac
. Finally we observe that the vector ( ~fA1

; ~fA2
; : : : ; ~fAc

) describes

an assessment of the probability distribution over all fuzzy classes Ac and forms in this way an empirical

characterization of the fuzzy sample space X .

2.3.2 Assessing conditional probabilities

In the crisp case, conditional probabilities Pr(AcjAb) can be assessed conform

Pr(AcjAb) =
Pr(Ac

T
Ab)

Pr(Ab)
�

~f
Ac

T
Ab

~fAb

=

P
xp
�
Ac

T
Ab
(xp)P

xp
�Ab

(xp)
=

P
xp
�Ab

(xp)�Ac
(xp)P

xp
�Ab

(xp)
(26)

where we use the property that �
Ac

T
Ab
(xp) = �Ab

(xp)�Ac
(xp). Interpreting the frequencies used in

the formulas as fuzzy frequencies, we can generalize (26) to

Pr(AcjAb) =
Pr(Ac

T
Ab)

Pr(Ab)
�

~f
Ac

T
Ab

~fAb

=

P
xp
�
Ac

T
Ab
(xp)P

xp
�Ab

(xp)
=

P
xp
�Ab

(xp)�Ac
(xp)P

xp
�Ab

(xp)
: (27)

3 Competitive Exception Learning

In this section, we re-formulate the Competitive Exception Learning Algorithm (CELA) within the prob-

abilistic and statistical fuzzy framework introduced in the previous section. The extra assumption needed

is that this framework also holds in multi-dimensional spaces.

3.1 Goal of CELA

The CELA tries to learn a mapping from a (continuous) M -dimensional input sample space X to an

N -dimensional (continuous) output sample space Y . To do so, a representative set of fuzzy samples

(xp; yp); (p = 1; 2; : : : ; P ) is available generated by a probabilistic fuzzy data source, where xp 2 X and

yp 2 Y . It is assumed that the fuzzy samples yp in Y are usually generated conform a certain probability

distribution independent on the generation of the corresponding samples xp in X . However, under certain

special conditions called `regimes', related to special values xp observed in X , the fuzzy sample values

yp are generated conform a di�erent probability distribution. In other words, the process of generating

output fuzzy samples is assumed to be (more or less) conditional on the process of generating input

fuzzy samples. It is the main task of CELA to learn the regimes (i.e., the values x in X) for which the

conditional probability distribution in Y deviates exceptionally (i.e., at most) from the average (i.e., the

unconditional) probability distribution in Y .

3.2 Fuzzy classes

In order to achieve the described goal of CELA, a set of B classes Ab within X , and a set of C classes Ac

in Y is de�ned. Each class Ab and each class Ac has a parameter (called the class center) which should

be assessed during execution of CELA. After assessing this parameter (for class Ab denoted as �xb, for

class Ac denoted as �yc), the corresponding class is �xed. The idea behind the way of �xing of the output
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classes Ac is to facilitate a compact, close assessment of the unconditional probability distribution in Y

(details will follow below). The �xation of the input classes Ab serves a completely di�erent goal: after

�xation, an input class Ab is assumed to coincide with a regime (the above-introduced notion) after which

the exceptional conditional probability distribution can be assessed quite easily (again, details will follow

below).

The membership functions �Ab
(�Ac

) describing the fuzzy classes Ab (Ac) should meet several re-

quirements. First, they should be de�ned locally, i.e., class Ab (Ac) should have high membership values

for x-values (y-values) near class center �xb (�yc) and low membership values for x-values (y-values) near

other class centers. Second, the membership functions should meet condition (12) in order to guarantee

that the fuzzy sample space X (Y ) is `well-de�ned' (see sections 2.1.3 and 2.2.3). These requirements

motivated us to de�ne the membership functions as follows:

�Ab
(x) =

d
�q

b (x)PB

k=1 d
�q

k (x)
and �Ac

(y) =
d�qc (y)PC

k=1 d
�q

k (y)
: (28)

The letter `d' in these de�nitions represent a distance measure where db(x) represents the (e.g., Euclidean)

distance between x and center �xb in X and where dc(y) represents the distance between y and center �yc

in Y . For the power q used in (28), we normally choose the value 2.

It is easy to show that the above-given de�nitions indeed imply compliance with the requirements

for the membership functions. More particularly we observe that, irrespective the concrete class center

locations �xb and �yc, the fuzzy classes Ab and Ac have the important property (12), i.e.,

8xp :
X
Ab

�Ab
(xp) = 1 and 8yp :

X
Ac

�Ac
(yp) = 1: (29)

As a consequence of this, the probability density functions are functions on `well-de�ned' fuzzy sample

spaces X and Y , in the sense as explained in subsections 2.1.3 and 2.2.3.

3.3 The CELA-algorithm

We next re-formulate CELA within the general framework introduced in the previous section. For much

more details than given below, we refer to [1, 2].

3.3.1 Step 1: Fixing the output classes

In order to get a concise characterization of the output space, the output classes Ac should be �xed by

calculating appropriate locations of all fuzzy class centers in Y . This is done in the �rst step of CELA

using a fuzzy clustering heuristic. Actually, we identify each fuzzy class Ac here with a fuzzy cluster

and, in line with that, each class center �yc with a cluster centro��d. In the original approach, competitive

learning was applied but other clustering algorithms might be useful as well.

The �nal result of the clustering is a fuzzy partitioning of Y such that each class center �yc of the fuzzy

class Ac is situated in the center of a `cloud' of fuzzy sample points yp. This also �xes the membership

functions �Ac
(y) describing the output classes Ac.
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3.3.2 Step 2: Assessing the unconditional output probability distribution

Since the sample space Y is well-de�ned, the probability of each fuzzy class can be assessed properly by

means of the approach introduced in subsection 2.3.1. To �nd the probability of the fuzzy classes Ac,

the membership values of all data points yp with respect to these fuzzy classes are summed up conform

equation (25). This yields the probability vector

( ~fA1
; ~fA2

; : : : ; ~fAC
); with 8Ac : ~fAc

=
1

P

PX
p=1

�Ac
(xp) = �̂Ac

� Pr(Ac): (30)

The probability vector ( ~fA1
; ~fA2

; : : : ; ~fAC
), which can also be written as (�̂A1

; �̂A2
; : : : ; �̂AC

), characterizes

the unconditional behaviour in the output space. In [1], this approximation was called the `unconditional

output cluster membership distribution' (UOD).

3.3.3 Step 3: Fixing the input classes

In order to make an assessment of the conditional output distributions, the class centers �xb in the input

space should be �xed �rst. It is the most tricky part of CELA. Again a (fuzzy) competitive learning

heuristic is used (although other approaches are conceivable). We only sketch the essentials concentrating

on aspects related to the mathematical framework introduced. For every fuzzy sample point xp, we

calculate the `winning cluster' Ab in X indicating which of the input clusters contributes at most to an

exceptional sample point yp. The `output exception' OE(p) of the corresponding output sample yp is

quanti�ed using a `membership distance measure' (something like a fuzzy Hamming distance) between the

vector of membership values (�A1
(yp); �A2

(yp); : : : ; �AC
(yp)) of yp and the vector of average membership

values (�̂A1
; �̂A2

; : : : ; �̂AC
) as de�ned by equation (30):

OE(p) =

vuut CyX
c=1

(�Ac
(yp)� �̂Ac

)2: (31)

The competitive learning heuristic used, maximizes an `exception �tness function' (based on a summation

of `winning' output exceptions) by changing the class center locations �xb in X . The net e�ect of it is that

all class centers �xb are �xed near those input clusters (of samples xp) which correspond to the clusters of

most exceptional data points yp.

So after having performed this step, all classes Ab in the input space are �xed as well through the

determination of the class center values of the corresponding membership functions (29).

3.3.4 Step 4: Assessing the conditional probability distributions

Using the given set of fuzzy sample pairs (xp; yp) and applying conditional mathematical statistics for

fuzzy sets, we can calculate the conditional probabilities Pr(AcjAb) conform equation (27).

For each `regime' Ab; (b = 1; : : : ; B), the vector (Pr(A1jAb);Pr(A2jAb); : : : ;Pr(AcjAb)) gives a statis-

tical characterization of exceptional conditional behaviour in the output space. In [1], we termed such a

characterization a `conditional output cluster membership distribution' (COD). Finally, we have found

B exceptions, each one conditional on a regime described by one fuzzy event Ab.
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3.3.5 Step 5: Deriving a fuzzy rule base

By comparing the various CODs found to the UOD as found in step 2 of CELA, we can determine

the most exceptional relationships, i.e., the regimes for which the deviations from the UOD are most

exceptional. The fuzzy distance measure as applied in (31), is useful here. Next, we try to express the

most exceptional fuzzy relationships in a fuzzy rule base. For each regime, the deviations from the UOD

can be expressed in linguistic terms. It could be helpful to exploit knowledge from experts working in

the domain where CELA is applied. For a nice example on how such a fuzzy rule base is set up, we refer

to [8].

4 Conclusions and future research

Let us �rst draw some conclusions on what we have achieved in this paper. The mathematical framework

introduced in section 2, shows how probability theory and mathematical statistics can be combined with

fuzzy set theory in order to introduce a clear mathematical framework. In domains where sample spaces

should be de�ned using fuzzy sets and where, in addition, a `well-de�ned' (in the sense as introduced)

probability distribution is needed to describe the probabilistic fuzzy events of that domain, this framework

might be helpful. A simple example shows how natural the framework can be applied to make a model of

reality: calculating `the probability that a Dutch adult man is long'. If we choose randomly an arbitrary

adult man, probability is clearly part of the modeling. In addition, a fuzzy set can be used to model the

notion of `long'. Having a representative sample of P Dutch adult men, an assessment of the probability

desired can rapidly be made using equation (25).

It has also been shown how the CELA-algorithm beautifully �ts in this framework. Using notions like

fuzzy classes and (un)conditional probability distributions, we get a deep understanding of how CELA

actually works and also clari�es a lot of the assumptions behind this algorithm. For example, it has

become clear now that we have indeed to do with an assessment of probability distributions de�ned on

fuzzy sample spaces.

In future research, we want to continue along this line of research. E.g., it is interesting to analyze

how certain choices as made in the implementation of CELA (like the clustering heuristics, the number

of fuzzy classes chosen, and the general form of the membership functions) a�ect its performance. This

can be analyzed both experimentally and mathematically. At the same time, we should continue to apply

CELA in various domains. This can also help to get a better feeling of and insight in what this interesting

algorithm is actually able to do. The insights obtained may in turn yield inspiration for the theoretical

work to be done.
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