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Abstract. Augmenting X-ray imaging with 3D roadmap to improve
guidance is a common strategy. Such approaches benefit from automated
analysis of the X-ray images, such as the automatic detection and track-
ing of instruments. In this paper, we propose a real-time method to
segment the catheter and guidewire in 2D X-ray fluoroscopic sequences.
The method is based on deep convolutional neural networks. The net-
work takes as input the current image and the three previous ones, and
segments the catheter and guidewire in the current image. Subsequently,
a centerline model of the catheter is constructed from the segmented
image. A small set of annotated data combined with data augmentation
is used to train the network. We trained the method on images from
182 X-ray sequences from 23 different interventions. On a testing set
with images of 55 X-ray sequences from 5 other interventions, a median
centerline distance error of 0.2 mm and a median tip distance error of
0.9 mm was obtained. The segmentation of the instruments in 2D X-ray
sequences is performed in a real-time fully-automatic manner.
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1 Introduction

Minimally invasive procedures are generally preferred over open surgery inter-
ventions, as these localized and accurate interventions lead to less trauma and
shorter recovery times than conventional procedures. Minimally invasive pro-
cedures require real-time imaging to visualize the relevant anatomy and the
instruments. Particularly, in catheterization procedures, a catheter 1 is inserted

1 For clarity, in the remainder of the paper, the word “catheter” also refers to the
micro-catheter and guidewire instruments. Although they have quite different ap-
pearances, they are handled altogether as one instrument in the proposed method.
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into the body via the vasculature and fluoroscopic imaging is used to contin-
uously visualize the catheter. The vasculature is only visible in X-ray images
when contrast agent is injected, and contrast agent is used sparingly because
of its toxic nature. Therefore, recent approaches for virtual roadmapping that
permit the visualization of a 3D vessel tree from pre-operative images have been
presented [1, 12]. Such methods benefit from automated extraction of the in-
struments from fluoroscopic images. The purpose of this work was therefore to
develop and evaluate a method that segments fully automatically the catheter
in 2D single-plane X-ray fluoroscopic sequences in real-time.

Automatic catheter segmentation is not straightforward, as the catheter is a
thin, moving structure with low contrast in noisy images. Segmentation meth-
ods for electrophysiology (EP) electrodes and EP catheter in 2D X-ray images
have been reported [3, 18]. EP electrodes are clearly visible, and their location
is often used to obtain a full segmentation of EP catheters. Segmentation of
catheters without features such as electrodes has been studied less frequently.
Most methods enhance the instruments with Hessian-based filters, which are
followed by a spline fitting approach, starting from the catheter shape of the
previous frame [2, 4, 5, 7, 13, 17]. These methods have two drawbacks: the first
frame of the fluoroscopic sequence has to be manually annotated and the cur-
vature and length of the catheter should not change much between frames. [4,7]
propose semi-automatic methods to segment the first frame. Recently, a fully
automatic method using directional noise reduction and path extraction, with
segments and similarity from the previous frame cost function, has been pro-
posed [16]. The method was evaluated on the last frame of 7 sequences from one
canine study on which it performs well; it is, however, not a real-time method.
We summarize in Table 1 the methods proposed in the literature in order to
show results they obtained. Note that the results, the accuracy metrics and
computation times cannot be directly compared but they give an idea of the
performances.

Table 1. Summary of the methods in the literature and the method of this paper.

References
Fully
Auto.

Time Accuracy Tip Accuracy

2003 Baert et al. [2] No 5 s mean 0.9 pxa mean < 2 mma

2007 Slabaugh et al. [13] No 175 ms - -
2009 Wang et al. [17] No 500 ms mean 2 px (0.4 mm) mean 5.4 px
2012 Heibel et al. [7] No 60 ms mean 0.8-3.9 px -
2016 Chang et al. [4] No - - -
2016 Chen et al. [5] No - mean 2.1 px (0.5 mm) -

2016 Wagner et al. [16] Yes > 1 min mean 0.5 mm -
This work Yes 125 ms median 0.2 mm median 0.9 mm

a The failed segmentations are not included in the evaluation



Our method utilizes deep convolutional neural networks (CNNs) for the seg-
mentation. CNNs have been demonstrated to be very effective in image clas-
sification and image segmentation [9], also in case of medical images with a
limited set of annotations [10,11]. Ronnerberger et al. [11] introduced an end-to-
end biomedical imaging segmentation network called U-net: a model with a fully
convolutional part (downsampling part) and a deconvolutional part (upsampling
part) which outputs after appropriate thresholding a binary segmented image.
Extensive data augmentation enables the neural network to generalize well, even
in case of small training sets. Several improvements w.r.t. the network and the
training process have been introduced more recently. The downsampling (resp.
upsampling) part has been shown to be more effective with strided convolution
(resp. transposed convolution) than with max pooling [10, 14]. Strided convo-
lution enables to learn how the features should be downsampled/upsampled.
Moreover, batch normalization [8] and residual learning [6] have been proposed
to improve training convergence.

2D X-ray fluoroscopic images are very noisy and are used in liver catheter-
ization procedures to guide catheter inside the liver vessel tree. The catheter
used does not have specific features, such as electrodes, nor specific shapes that
may facilitate their segmentation. The framerate is around 7Hz, so, during the
catheter manoeuvre, its shape and length may change considerably between two
consecutive frames. Tracking the catheter over time is therefore quite challeng-
ing. In this paper, we propose a fully automatic segmentation method based on
the U-net model combined with recent strategies to improve the training of the
network, such as batch normalization, residual learning and a data augmenta-
tion scheme to increase the size of the training dataset. The catheter centerline is
then extracted using skeletonization and linking of the extracted branches. Our
work differs from previous approaches in that we introduce a fully automatic
approach that can be run in real-time.

2 Method

The catheter is segmented using the CNN and then the centerline is extracted
from the result of the CNN using skeletonization and subsequent linking of
branches.

2.1 Data

A 2D X-ray image sequence is a set of s 2D images S = {I1, I2, . . . , Is}. Each
image Ii is associated with a binary image Bi where the catheter pixels have
a value of 1 and the background pixels 0. We also associate the output from
the neural network, the image prediction Bp

i , where each pixel is between 0 and
1, and a pixel closer to 1 is considered as a catheter pixel. Our neural network
model is trained to predict a mask Bp

i , given an image Ii as input.



2.2 CNN Model

The model is an adapted version of the well-known U-net model [11]. The input
of the model is the current image Ii and previous frames Ii−1, . . . Ii−3. The
output is the image prediction Bp

i . For the network topology, see Figure 1. To
improve convergence speed during training, we add batch normalization (BN)
after every convolution [8]. In order to also learn how to downsample/upsample
the features we use strided convolutions [10, 14]. To prevent overfitting we add
dropout at the end of the two last blocks in the downsampling part [15].

Fig. 1. Neural net-
work model (top):
Ii, Ii−1, . . . Ii−3 images
are fed into the model
and segmented image Bp

i

is predicted. The model is
composed of n-conv block
at each layer. An n-conv
block is n consecutive
convolutions of input
features (with f filters,
height h and witdh w)
with a residual connec-
tion to the output [6, 10]
(bottom).
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2.3 Training

The loss function is based on the Dice overlap metric [10] between the ground
truth mask Bi and the output image Bp

i of the model, defined as:

LDice(Bi, B
p
i ) = −

2
∑
k

BikB
p
i k∑

k

(Bik) +
∑
k

(Bp
i k)

(1)

where Bik and Bp
i k are respectively the pixels of the mask Bi and the output

image Bp
i .

In order to have more data to train and to generalize well, large data aug-
mentation is used during the training. Data augmentation is done on the fly. For
every image in the set of training images, there is a 50% probability to augment



the image. If the image is augmented, we apply all of the following transforma-
tions to both the X-ray image inputs and the corresponding binary image output:
50% probability on a horizontal and vertical flip, a random rotation (around the
image center) in a range of ±9 degrees, a random scale with a factor in a range
of 0.9 to 1.1, a random horizontal and vertical translation in a range of ±16%
of the image size, a random intensity shift with a factor in a range of ±0.07 (in
normalized image between 0 and 1) and a Gaussian noise with σ = 0.03.

2.4 Centerline extraction

The output of the neural network is first thresholded with a threshold α (between
0 and 1) and then skeletonized [19]. Next, the branches (ordered sets of pixels)
are determined based on connectivity. Connection points are created between
close branches. If the closest points between two branches are within a distance
Dmax pixels, we consider this to be a possible connection, and there can be only
one connection between two particular branches. Then, to link the branches,
three steps are done (Fig. 2). First, for each connection, we divide and merge
branches in order to have the longest branches. Second, loops are detected and
merged following the direction at the crossing point. We have a loop in a branch
when two points, within a distance Dmax pixels, have their distance along the
branch of at least Bmin pixels. Before the third step, the first and second steps are
repeated a second time with a distanceD′max superior toDmax. Finally, in the last
step, the remaining connected branches larger than Bmin pixels are considered
as incomplete loops or straight loops due to foreshortening. We process them
similarly as the second step by closing the two endpoints of their branch. When
all the potential links have been processed, we keep the longest connected set
of branches and choose amongst the two endpoints the farthest from the image
border as the tip of the catheter centerline. Finally, the centerline is smoothed
by fitting a spline.

longest branch extraction loop extraction incomplete loop extraction
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Fig. 2. The three steps for the branches linking. Branches are depicted with different
colors and connection points are in red. The red dash curve is the centerline after
spline smoothing. The first step links the longest branch parts, the second step links
and corrects the loops and the last step links the remaining branches longer than Bmin,
considered as an incomplete loop or a straight loop due to foreshortening.



3 Experiments and results

2D single plane X-ray fluoroscopic sequences have been acquired during 28 liver
catheterization procedures in three different hospitals (Erasmus MC, Rotterdam,
the Netherlands; Hôpitaux Universitaires Henri Mondor, Créteil, Paris, France;
and Ospedale di Circolo e Fondazione Macchi, Varese, Italy) with angiographic
C-arm systems (Xper Allura, Philips Healthcare, Best, the Netherlands). Every
image is normalized on the range [0, 1], mapping the intensities between the
2nd and the 98th percentile of the image histogram. In 182 sequences from 23
procedures, we manually segmented the catheter in four consecutive images by
annotating points and fitting a spline. From the catheter spline we constructed
the binary segmented image using a dilation operator with a 5× 5 pixel kernel.
These sequences were used as training data for the parameter optimization.
In 55 sequences from the other 5 procedures, we also segmented four frames
per sequence. These 55 sequences will be used as testing data after the model
optimization and training.

The loss function LDice of the model is optimized using stochastic gradient
descent with a learning rate of 0.01, a decay of 5.10−4 and a momentum of 0.99.
Following the training, we set the threshold α to 0.01, the maximum distance to
connect two branches during the first pass (resp. second pass) Dmax to 5 pixels
(resp. D′max to 20 pixels) and the minimum loop length Bmin to 30 pixels. Using
an Nvidia GTX 1080, the average time to segment one image was 125 ms which
is suitable for real-time processing. Our method is publicly available 2.

We evaluate using the tip distance error (i.e. the distance between the an-
notated catheter tip and the tip of the segmented catheter), and the average
distance between the manually segmented catheter and the automatically seg-
mented catheter. Figure 3 shows the tip and catheter distances results. We com-
pute the precision of the tip between consecutive frames. The median, average,
minimum and maximum of the standard deviation per sequence of the tip dis-
tance error are respectively 0.7 mm, 4.9 mm, 0.1 mm and 55.7 mm. Five examples
of segmentation are shown in Figure 4. In the third frame, the segmentation is
going too far and follows part of the vertebrae. The fourth frame misses the
proximal part of the catheter. The last frame is the only sequence with signif-
icant false positives. It is less noisy because it has been acquired with higher
radiation dose. The neural network was not trained for such sequence.

4 Discussion and conclusion

We proposed a fully automatic method to segment catheter on 2D X-ray fluo-
roscopic images using CNNs. The segmentation on testing data gives a median
tip distance error of 0.9 mm and a median centerline distance error of 0.2 mm
where 85% of the frames have less than 1 mm of centerline distance error. We
note that the distance errors are in mm at the X-ray detector scale. The real
distance errors at the patient scale are smaller.

2 Available at https://github.com/pambros/CNN-2D-X-Ray-Catheter-Detection



Fig. 3. Tip distance error,
ground truth to segmented
centerline distance error
and segmented centerline to
ground truth distance error (in
mm) on the test set: 4 frames
per sequence on 55 sequences. Tip Ground truth

to segmentation
Segmentation to
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Fig. 4. 5 segmented frames of the test set. The segmented centerline (dilated for visual
purpose) appears from red (tip) to rose. The ground truth (thicker) appears in white.
The windows show the original image and the output of the neural network.

Very few images have false positives after the CNN segmentation. Therefore,
we can use simple criteria to extract the catheter centerline from the CNN seg-
mentation. The results show that it works well and can handle self-intersections.
The main problem in the extracted catheters are sometimes large gaps in the
segmentation due to false negatives. As a consequence, occasionally the proximal
part of the catheter is missing. With a larger training set, the model is expected
to generalize better.

Previous studies show a higher success rate, probably because they manu-
ally initialize the tracking process. We, in contrast, do not employ a tracking
approach. Whereas it is clear that a stronger incorporation of the time dimen-
sion (beyond using consecutive frames in the segmentation) may provide a more
robust result, our current results demonstrate that even without tracking good
results can be obtained. A major advantage of not utilizing tracking is that the
method is not hampered by previously incorrectly segmented frames, and thus
automatically can recover from previous failures.

The catheter and guidewire have different thickness and appear quite dif-
ferently on fluoroscopic images. Whereas we trained one network that segments
both, it could be interesting to use two different models and retrospectively com-
bine their results to obtain a more accurate segmentation. The current model is
using the previous images to segment the catheter but it could also be useful to
use the previous segmentation in the model. Both strategies are future work.

To conclude, we developed and evaluated a CNN-based-approach to fully au-
tomatically segment catheters in live fluoroscopic images. With execution times
within 125 ms, this method is promising for use in real-time catheter detection.

Conflict of interest. The authors declare that they have no conflict of interest.
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