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In view of the interactions of vitamin D and the estrogen
endocrine system, we studied the combined influence of poly-
morphisms in the estrogen receptor (ER) � gene and the vi-
tamin D receptor (VDR) gene on the susceptibility to osteo-
porotic vertebral fractures in 634 women aged 55 yr and older.
Three VDR haplotypes (1, 2, and 3) of the BsmI, ApaI, and TaqI
restriction fragment length polymorphisms and three ER�
haplotypes (1, 2, and 3) of the PvuII and XbaI restriction frag-
ment length polymorphisms were identified. We captured 131
nonvertebral and 85 vertebral fracture cases during a mean
follow-up period of 7 yr. ER� haplotype 1 was dose-depen-
dently associated with increased vertebral fracture risk (P <
0.001) corresponding to an odds ratio of 1.9 [95% confidence
interval (CI), 0.9–4.1] per copy of the risk allele. VDR haplo-

type 1 was overrepresented in vertebral fracture cases. There
was a significant interaction (P � 0.01) between ER� haplo-
type 1 and VDR haplotype 1 in determining vertebral fracture
risk. The association of ER� haplotype 1 with vertebral frac-
ture risk was only present in homozygous carriers of VDR
haplotype 1. The risk of fracture was 2.5 (95% CI, 0.6–9.9) for
heterozygous and 10.3 (95% CI, 2.7–40) for homozygous carri-
ers of ER� haplotype 1. These associations were independent
of bone mineral density. In conclusion, interaction between
ER� and VDR gene polymorphisms leads to increased risk of
osteoporotic vertebral fractures in women, largely indepen-
dent of bone mineral density. (J Clin Endocrinol Metab 88:
3777–3784, 2003)

OSTEOPOROSIS IS CHARACTERIZED by low bone
mineral density (BMD), deterioration of the micro-

architecture of bone, and subsequent increased fracture (1, 2).
Twin and family studies have suggested that BMD has a
strong genetic component, besides being influenced by nu-
tritional and lifestyle factors (3–6). Osteoporosis is regarded
as a complex genetic trait, which means that variants of
several genes underlie the variability of the phenotype.
Among the candidate genes in relation to BMD are the genes
for collagen type I�1 (COLI�1), the VDR, and the estrogen
receptor (ER) � (7–11). Polymorphisms in the genes for the
VDR and the ER� have been examined in relation to BMD.
Although contrary reports have been published, two meta-
analyses have shown a weak relation between the VDR gene
and BMD (12, 13). We and others have found a significant
association between VDR polymorphisms and fracture risk
(11, 14), although other studies could not confirm such an
association (15, 16). Also, contrary reports regarding the con-
tribution of polymorphisms in the ER� gene to BMD and
fracture risk have been published (17–26). A recent meta-
analysis, however has shown a relation between the ER�
gene and BMD and fracture risk (27).

The VDR gene and the ER� are interesting because the
encoded proteins are important transcription factors as key
players in the respective signal transduction pathways. In-

deed, several interactions between the vitamin D and estro-
gen endocrine system have been described. 1,25-Dihy-
droxyvitamin D3 (1,25-(OH)2D3) and 17�-estradiol (E2) have
a mutual effect on their biosynthesis (28–30) and receptor
expression (31, 32). Also, some genetic studies found an
interaction between ER� and VDR genotypes with respect to
BMD (33–35). Suarez et al. (36) found an interactive effect of
ER� and VDR gene polymorphisms on growth in infants.

So far, most genetic studies on osteoporosis have focused
on BMD as the primary end point and not on the clinically
more relevant end point of fractures. In the current study, we
focus on the interaction between ER� and VDR genotypes in
relation to the most typical osteoporotic fracture, the verte-
bral fracture.

Subjects and Methods
Study subjects

All women included in this study were part of a population-based
cohort study of subjects aged 55 yr or older, living in the Ommoord
district of the city of Rotterdam in The Netherlands. The objective of the
study is to document the occurrence of disease in the elderly in relation
to several potential determinants (37). A total of 10,275 persons were
invited for baseline examination in 1990. Of those, 7,983 (61.1% women)
participated, bringing the overall response rate to 78%. The baseline
assessments included the measurement of anthropometric characteris-
tics, femoral and lumbar spine BMD. Subjects were excluded according
to the following criteria: age 80 yr or older; use of a walking aid; use of
estrogen or hormone replacement therapy, diuretic, thyroid hormone, or
cytostatics; or known diabetes mellitus. After genotyping, women with
the rare VDR haplotypes 4 and 5 (n � 16) were excluded. Anthropo-
metric data, DNA samples, and genotype data for both loci were finally

Abbreviations: ANCOVA, Analysis of covariance; BMD, bone min-
eral density; BMI, body mass index; CI, confidence interval(s); E2, 17�-
estradiol; ER, estrogen receptor; 1,25-(OH)2D3, 1,25-dihydroxyvitamin
D3; OR, odds ratio; RFLP, restriction fragment length polymorphisms;
VDR, vitamin D receptor.
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available in a sample of 1062 women. Data on incident vertebral frac-
tures were available for a subgroup of 634 women.

Measurements

At baseline, height and weight were measured. BMD (in grams per
square centimeter) was measured at the femoral neck and lumbar spine
by dual energy x-ray absorptiometry (Lunar DPX-L densitometer, Lunar
Corp., Madison, WI), as reported earlier (38). Body mass index (BMI) was
computed as weight in kilograms divided by height in square meters.
Age at menopause was assessed by questionnaire. Dietary intake for
calcium (milligrams per day) and vitamin D (milligrams per day) were
assessed by food frequency questionnaire and adjusted for energy in-
take. Both at baseline, between 1990 and 1993, and at the follow-up visit,
between 1997 and 1999, radiographs of the spine were taken from the
fourth thoracic to the fifth lumbar vertebrae. All follow-up photos were
analyzed for the presence of vertebral fractures by the McCloskey/Kanis
method (39). The occurrence of nonvertebral fractures was recorded,
confirmed, and classified by a physician. All nonvertebral fractures were
reported by general practitioners in the research area (covering 80% of
the cohort) by means of a computerized system. Information from gen-
eral practitioners outside the research area was obtained by regular
checking of the patient records by research physicians. All reported
events were verified by research physicians who independently re-
viewed and coded the information subsequently. All coded nonvertebral
fractures were reviewed by a medical expert in the field for final
classification.

Determination of VDR and ER� genotypes

For genotyping, we determined haplotypes of the BsmI, ApaI, and
TaqI restriction fragment length polymorphisms (RFLPs) at the 3� end of
the VDR gene and haplotypes of the PvuII and XbaI RFLPs in the first
intron of the ER� gene by direct molecular haplotyping methods as
described previously (9). Three frequent VDR haplotypes are discerned
and encoded 1 (baT), 2 (BAt), and 3 (bAT) (Fig. 1). The less frequent
haplotypes 4 and 5 were excluded from the analysis (n � 16). Women
carrying these genotypes represent 1.5% of the population. For direct
molecular haplotyping of the PvuII and XbaI RFLPs, a 346-bp PCR
fragment was generated by a forward primer (ER-F, 5�-GATATC-
CAGGGT TATGTGGCA-3�) and a reverse primer (ER-R, 5�-AGGTGT-
TGCCTATTATATTAACCTTGA-3�) in a reaction mixture of 10 �l con-
taining 20 ng genomic DNA, 50 mm KCl, 10 mm Tris-HCl (pH 8.3), 1.5
mm MgCl2, 0.2 mm deoxy-nucleoside triphosphate, 2 pm of each primer,
and 0.2 U Super Taq polymerase (HT Biotechnology Ltd., Cambridge,

UK). The reactions were performed in 384-well format in a thermocycler
(MJ-Tetrad, MJ Research, Incline Village, NV) with a cycling protocol of
94, 60, and 72 C for 45 sec each for 30 cycles. Ten microliters of PCR
product were digested by simultaneous addition of 5 �l digestion mix-
ture containing 5 U PvuII, 7 U XbaI restriction enzyme (MBI Fermentas,
Hanover, MD), and 1.5 �l ReactBuffer 2 (Life Technologies, Breda, The
Netherlands) and incubating for 90 min at 37 C. The digestion products
were analyzed by electrophoresis in a 3% agarose gel in 0.5� TBE
(1� TBE � 89 mm Tris, 89 mm boric acid, 2 mm Na2 EDTA) for 80 min
at 125 V. Separation patterns were documented with a digital camera
(DC120, Eastman Kodak, Rochester, NY) under UV illumination (302 nm).
Three ER� haplotype alleles are identified, encoded 1 (px/T-A), 2 (PX/
C-G), and 3 (Px/C-A) combining to six genotypes 11, 12, 13, 22, 23, and
33 (Fig. 2). We did not observe the fourth possible haplotype (pX;
�397int1T and �351int1G) in our population.

Statistical analysis

Differences in mean age at baseline between the study group and the
Rotterdam study were evaluated by means of ANOVA. All other dif-
ferences in baseline characteristics were compared by analysis of co-
variance (ANCOVA) testing with age to adjust for possible confounding
effects. Differences in baseline characteristics between the different ge-
notype groups of the ER� gene were compared as follows. We grouped
subjects by allele copy number (0, 1, 2) for the haplotype alleles of
interest. We allowed for three possible models to explain differences
between groups, i.e. an allele dose effect, a dominant effect or a recessive
effect. Allele dose was defined as the number of copies of a certain allele
in the genotype. In case of a consistent trend reflected as an allele dose
effect, we performed a (multiple) linear or logistic regression analysis to
quantify the association. In case of a dominant or recessive effect of the
test allele, ANOVA and ANCOVA tests were performed. For dominant
effects, we compared test-allele carriers vs. noncarriers, whereas for
recessive effects, subjects homozygous for the test allele were compared
with heterozygous carriers and noncarriers.

Odds ratios (ORs) with 95% confidence intervals (CI) were calculated
by (multiple) logistic regression analyses to estimate the relative risk of
fractures at baseline by genotypes of the risk allele, with no copies of the
risk allele as the reference group. First, we calculated crude ORs, and,
secondly, we adjusted for potentially confounding factors (age, BMI,
BMD, and age at menopause). We used SPSS version 9.0 (SPSS Inc.,
Chicago, IL) for all our analyses.

FIG. 1. VDR gene: direct molecular haplotyping. For details, see Materials and Methods.
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Results
Baseline characteristics

The study population (n � 1062) was on average 67.0
(sd 6.9) yr old, had an average BMI of 26.1 (sd 3.7) kg/m2,
and age at menopause at 48.7 (sd 4.9) yr. Dietary calcium and
vitamin D intake were on average 1093 (sd 326) mg/d
and 1.96 (sd 1.15) mg/d, respectively. Lumbar spine BMD
was on average 1.01 (sd 0.17) g/cm2, and femoral neck BMD
was on average 0.81 (sd 0.12) g/cm2, respectively. All women
were living independently. In our study population, 85 of 634
[13.4%; mean follow-up period is 6.5 (sd 0.4) yr; range, 2.7–
8.4 yr] incident vertebral fractures were captured, whereas
131 of 1062 [12.3%; mean follow-up period is 7.0 (sd 2.0)
years; range, 0.2–10.1 yr] subjects had a nonvertebral.

Table 1 shows allele and genotype frequencies for ER� and
VDR polymorphisms. The genotype distribution was found
to be in Hardy Weinberg equilibrium. When we analyzed for
known risk factors for osteoporosis by ER� and VDR geno-
types, no differences were shown apart from ER� haplotype
1 that appeared to be dose dependently associated with later
onset of menopause, as we have reported earlier (40) (Table
2). Similar data were found for the subgroup of 634 women
participating in the analysis for vertebral fractures (data not
shown).

Association of ER� and VDR with BMD

In Table 3 women are grouped according to carrier status
for the ER� and VDR haplotypes as homozygous carriers
(consisting of genotype 11) and heterozygous carriers (in-
cluding the genotypes 12 and 13) of the ER� haplotype 1 and
VDR haplotype 1, respectively, and women not carrying
these haplotypes (reference group, including genotypes 22,
23, and 33).

ER� haplotype 1 was dose dependently associated with

decreased lumbar spine BMD corresponding with 0.1 sd per
copy ER� haplotype 1 (Table 3, Total column). No association
was found with femoral neck BMD (Table 3, Total column).
ER� haplotype 2 was associated with increased lumbar
BMD, corresponding with 0.1 sd per copy ER� haplotype 2
(data not shown). These associations did not change after
adjustment for potential confounders such as age, BMI, and
age at menopause. No associations were found between ER�
haplotype 3 and lumbar spine or femoral neck BMD (data not
shown). On the basis of these data, ER� haplotype 1 was
considered as risk allele. In the sample of 634 women in
whom data on incident vertebral fractures were available, the
association between ER� haplotype 1 and lumbar spine BMD
showed a similar trend (P � 0.11).

On the basis of our previous analyses (11), we selected
VDR haplotype 1 as risk allele. In the present study, no
association between VDR haplotype 1 and lumbar spine or
femoral neck BMD was observed (Table 3, Total rows).

TABLE 1. Genotype and allele frequencies of ER� and VDR
polymorphisms in the study population

ER� VDR

Genotype
11 297 (28.0) 271 (25.5)
12 409 (38.5) 401 (37.8)
13 124 (11.7) 105 (9.9)
22 138 (13.0) 183 (17.2)
23 82 (7.7) 89 (8.4)
33 12 (1.1) 13 (1.2)
Total 1062 (100) 1062 (100)
P value HWE 0.81 0.13

Haplotype
1 1127 (53.1) 1048 (49.3)
2 767 (36.1) 856 (40.3)
3 230 (10.8) 220 (10.4)
Total 2124 (100) 2124 (100)

Data represent number (%). HWE, Hardy Weinberg equilibrium.

FIG. 2. ER� gene: direct molecular haplotyping. For details, see Materials and Methods.
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Interaction of ER� and VDR genotypes with respect to BMD

When the association of ER� haplotype 1 with BMD was
analyzed according to the carrier status for VDR haplotype
1, there was a significant allele-dose effect of ER� haplotype
1 being associated with decreased lumbar spine BMD only
for women homozygous for VDR haplotype 1 (Table 3, ho-
mozygotes column; P � 0.001). This association was not
influenced by age, BMI, and age at menopause. When age,
BMI, ER� genotype, and VDR genotype were taken together
in a multivariate regression model, there appeared to be a
borderline significant interaction between ER� haplotype 1
and VDR haplotype 1 (P � 0.09 for the interaction term). In
the subgroup of 634 women, in which data on incident ver-
tebral fractures were available, similar associations were
found (data not shown). No interaction between ER� and
VDR genotypes was found for femoral neck BMD (Table 3;
P � 0.13 for the interaction term).

Association of ER� and VDR with fracture

When we analyzed the distribution of fractures in women
according to the ER� genotype, we observed an overrepre-
sentation of vertebral fractures in women carrying the ER�
haplotype 1 (Table 4). Figure 3 shows separately the distri-
bution of vertebral fractures according to the ER� haplotype
1 and VDR haplotype 1 status. Vertebral fractures were over-
represented in women carrying ER� haplotype 1. This as-
sociation appeared to be dose dependent, with 6.4% in non-
carriers of ER� haplotype 1, 12% vertebral fractures (OR, 1.9;
95% CI, 0.9–4.1) in women heterozygous for ER� haplotype
1, and 21% vertebral fractures (OR, 3.9; 95% CI, 1.7–8.2) in
women homozygous for ER� haplotype 1. For women car-
rying ER� haplotype 2, there was an allele dose association
with decreased vertebral fracture risk (P � 0.001), whereas
for ER� haplotype 3 no differences were observed (P � 0.53)
(data not shown).

TABLE 3. Lumbar spine BMD and femoral neck BMD (mean � SD) according to combined ER� haplotype 1 genotype and VDR haplotype
1 genotype

ER� haplotype 1a Total
VDR haplotype 1b

Reference Heterozygotes Homozygotes P value

Lumbar spine
BMD
Total 1.01 � 0.29 (1062)c 1.00 � 0.17 (285) 1.02 � 0.16 (506) 1.02 � 0.16 (271) NS
Reference 1.04 � 0.17 (232) 1.01 � 0.16 (59) 1.04 � 0.16 (111) 1.05 � 0.16 (62) NS
Heterozygotes 1.02 � 0.16 (533) 1.00 � 0.16 (134) 1.02 � 0.16 (260) 1.03 � 0.17 (139) NS
Homozygotes 0.99 � 0.16 (297) 0.99 � 0.16 (92) 1.01 � 0.16 (135) 0.95 � 0.16 (70) 0.05d

P value 0.003e NS NS �0.001f 0.09f

Femoral neck
BMD
Total 0.81 � 0.23 (1062) 0.80 � 0.12 (285) 0.81 � 0.11 (506) 0.81 � 0.12 (271) NS
Reference 0.81 � 0.11 (232) 0.79 � 0.12 (59) 0.82 � 0.12 (111) 0.81 � 0.11 (62) NS
Heterozygotes 0.81 � 0.12 (533) 0.80 � 0.12 (134) 0.80 � 0.11 (260) 0.82 � 0.12 (139) NS
Homozygotes 0.80 � 0.12 (297) 0.81 � 0.12 (92) 0.80 � 0.12 (135) 0.78 � 0.12 (70) NS
P value NS NS NS NS 0.13g

Values are adjusted for age, BMI; P values as tested by ANCOVA. NS, Not significant.
a Reference includes ER� genotypes 22, 23, and 33; heterozygotes include 12 and 13; homozygote includes 11.
b Reference includes VDR genotypes 22, 23, and 33; heterozygotes include 12 and 13; homozygote includes 11.
c No. of women.
d P � 0.02 for recessive association as analyzed by ANCOVA.
e P � 0.001 for allele dose association as analyzed by linear regression analysis.
f P � 0.001 for allele dose association as analyzed by linear regression analysis.
g P value for the interaction term ER� haplotype 1*VDR haplotype 1.

TABLE 2. Characteristics of 1062 postmenopausal women according to ER� haplotype 1 and VDR haplotype 1

Reference Heterozygotes Homozygotes

ER� haplotype 1 characteristicsa (n � 232) (n � 533) (n � 297)
Age (yr) 67.6 � 7.1 66.9 � 6.9 66.8 � 6.9
BMI (kg/m2) 26.2 � 3.8 26.1 � 3.5 26.1 � 4.0
Age at menopause (yr) 47.9 � 5.1 48.7 � 5.0 49.2 � 4.6b

Dietary calcium intake (mg/d) 1098 � 364 1097 � 319 1081 � 306
Dietary vitamin D intake (mg/d) 2.04 � 1.32 1.96 � 1.08 1.89 � 1.12

VDR haplotype 1 characteristicsa (n � 285) (n � 506) (n � 271)
Age (yr) 66.6 � 6.6 67.3 � 7.0 67.0 � 6.8
BMI (kg/m2) 26.0 � 3.4 26.2 � 3.7 26.3 � 4.1
Age at menopause (yr) 48.9 � 4.8 48.3 � 5.1 49.0 � 4.7
Dietary calcium intake (mg/d) 1078 � 334 1104 � 331 1086 � 306
Dietary vitamin D intake (mg/d) 2.03 � 1.26 1.91 � 1.08 1.97 � 1.17

Data shown are means � SD.
a Reference includes ER� or VDR genotypes 22, 23, and 33; heterozygotes include 12 and 13; homozygotes include 11.
b P � 0.02 (allele-dose association, tested by linear regression analysis).
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In a previous study, VDR haplotype 1 was found to be
associated with increased fracture risk (11). When women
were grouped by VDR haplotype 1 genotype also, an allele
dose association was observed (Fig. 3). Noncarriers of VDR
haplotype 1 had 11% vertebral fractures, women heterozy-
gous for VDR haplotype 1 had 13% vertebral fractures (OR,
1.3; 95% CI, 0.7–2.3), whereas women homozygous for VDR
haplotype 1 had 18% fractures (OR, 1.9; 95% CI, 1.0–3.7).
VDR haplotypes 2 and 3 were not associated with vertebral
fracture risk (data not shown).

When the risk for incident nonvertebral fractures was an-
alyzed, no genotype-dependent effects could be observed
(Table 5).

Interaction of ER� and VDR with respect to fracture risk

When we further stratified by VDR haplotype 1 genotype,
we observed the ER� haplotype 1 association to be modified
by VDR haplotype 1 genotype (Fig. 4). Significant ER� hap-
lotype 1 genotype-dependent differences were only ob-
served in women homozygous for VDR haplotype 1. Logistic
regression analysis showed that, compared with the double
reference group, within the group of VDR genotype [1, 1]
women have a 2-fold (95% CI, 0.5–7.9) and 10-fold (95% CI,
2.7–38) increased risk for vertebral fractures when being
heterozygous or homozygous for ER� haplotype 1, respec-

tively. In noncarriers and heterozygous carriers of VDR hap-
lotype 1, no significant ER� haplotype 1 genotype-depen-
dent differences were observed. When age, BMI, ER�
genotype, and VDR genotype were taken together in a mul-
tivariate regression model, there appeared to be a significant
interaction between ER� haplotype 1 and VDR haplotype 1
(P � 0.01 for the interaction term). After adjustment for
lumbar spine BMD and age at menopause, the results did not
change (data not shown).

Discussion

The current study in postmenopausal women demon-
strates for the first time interaction of polymorphisms in the
VDR and ER� gene in relation to the risk of incident vertebral
fracture risk. Women homozygous for both the VDR hap-
lotype 1 and ER� haplotype 1 had a 10 times higher vertebral
fracture risk than noncarriers and a three to four times higher
risk than carriers of either one of the risk haplotypes.

So far, most association studies focused on single genes.
Two metaanalyses showed a weak association of VDR ge-
notypes with BMD, which supported our own findings in a
sample of 2000 men and women from the Rotterdam study
(9, 12, 13). A recent metaanalysis showed an association
between ER� genotypes and lumbar and femoral BMD (27).
Most genetic association studies for osteoporosis have been
performed with BMD as the end point, whereas the clinically
more relevant end point of osteoporosis is fracture. A limited
number of studies have yet been able to address the asso-
ciation of specific gene polymorphisms with fractures. Pre-
viously, we have shown that VDR haplotype 1 is the risk
allele for osteoarthritis and for vertebral and nonvertebral
fractures (11, 41). Ioannidis et al. (27) showed in a metaanaly-
sis that the x-allele of the XbaI polymorphism (and not the
PvuII polymorphism) was associated with increased com-
bined risk for vertebral and nonvertebral fractures. In the
present study, we used direct haplotyping methods to in-
crease genetic resolution. We demonstrate an association of
ER� haplotype 1 with lumbar spine BMD and vertebral frac-
ture risk. Haplotype 1 corresponds to px, which includes the
x-allele found in the metaanalyses to be associated with low
BMD and increased fracture risk. Also, at the lumbar spine
a synergistic interaction between ER� and VDR genotype for
BMD and fractures was detected. No interaction effect be-
tween ER� and VDR genotypes was found for femoral neck
BMD and for nonvertebral fracture risk. This is in line with
previous data, which show a higher response to hormonal
replacement therapy at the lumbar spine in contrast to the
femoral neck (42–45). The ER� effect may be more pro-
nounced in the spine, which contains more trabecular bone,
resulting in a higher rate of bone turnover compared with
cortical bone, as present for example in the femoral neck.

We and others previously observed that ER� genotype is
associated with differences in age at menarche (46) and age
at menopause (40). However, in our current analyses age of
menopause did not influence the interaction we observed.
This suggests that differences in the age of menopause are
small and do not explain the interaction. However, because
of the relatively small effect, such influences might only be
observed in studies of sufficient power.

TABLE 4. Number of women with vertebral fractures according
to ER� genotype

ER� genotype No. with fracture/total no. (%)

11 40/187 (21.4)
12 26/236 (11.0)
13 10/71 (14.1)
22 3/79 (3.8)
23 6/53 (11.3)
33 0/8 (0)
x2 19.2

P value 0.002

FIG. 3. ORs and numbers of vertebral fractures according to ER�
haplotype 1 and VDR haplotype 1 genotype. Reference includes ER�
and VDR genotypes 22, 23, and 33. Hetero includes 12 and 13 geno-
types. Homo includes 11 genotype. **, P � 0.001 for allele dose as-
sociation of ER� haplotype 1. *, P � 0.06 for allele dose association
of VDR haplotype 1.
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An interesting observation was that the association of both
ER� and VDR genotypes with vertebral fracture incidence
was independent of BMD. This indicates the significance of
other bone characteristics for the risk of fracture. But it also
pointed to the involvement of ER� and VDR genes in path-
ways (e.g. bone matrix synthesis and bone turnover) other
than those directly reflected in BMD, and which also deter-
mine strength of bone and thereby fracture risk (47, 48). For
example, estrogen deficiency may increase the numbers of
remodeling sites with deeper resorption lacunae, resulting in
a higher chance of perforating trabeculae with loss of con-
nectivity and ultimately an increased risk for fractures (49).

A limitation of the present study may be health selection
bias. However, genotype and allele frequencies are similar to
those observed in other Caucasian study populations and so
health (apart from the risk for fractures) seems not to be
genotype dependent and, therefore, we do not expect this to
influence the results. Furthermore, potential selection bias
was avoided by deriving cases and noncases from the same
source population. Despite the relatively large number of
subjects in our study population, the number of fractures is
relatively small, and therefore the power to detect interaction
is still limited. Consequently, the point estimates could be
unstable as is reflected in the relatively wide 95% CI. There-
fore, additional larger studies are required to substantiate the

present findings and determine more accurate point
estimates.

An aspect that should be realized is that the polymor-
phisms in the ER� and VDR are anonymous. There is no
direct known functional consequence for the ER� and VDR
protein. Therefore, when association is found, it is assumed
that allele(s) of these single nucleotide polymorphisms are in
linkage disequilibrium with one or more of the truly func-
tional polymorphisms elsewhere in the gene. These func-
tional polymorphisms could alter VDR (50, 51) or ER� pro-
tein structure or might affect the activity of the VDR and ER�
5� promoter and 3� untranslated region, leading to the ex-
pression of altered quantities of VDR47 and ER� proteins (52)
under physiological conditions. Differential transcriptional
activity of the VDR and ER� receptor proteins could then
preferentially modulate subsets of target genes in vitamin D
and estrogen responsive pathways.

Although the mechanism(s) for the gene-gene interaction
we observe is so far unknown, it is conceivable from a phys-
iological point of view. 1,25-(OH)2D3 is an important factor
in estrogen biosynthesis (25) and might thus influence local
equilibrium between estrogens and androgens. Furthermore,
1,25-(OH)2D3 regulates ER expression in osteoblast-like cells
(31). In this way 1,25-(OH)2D3 might regulate the effect of E2

on bone metabolism. In vitro and in vivo studies have shown
that several biological responses to treatment with vitamin D,
such as intestinal calcium absorption and osteocalcin pro-
duction, are VDR genotype dependent (53–56). If 1,25-
(OH)2D3 influences the effect of E2 on bone metabolism, this
effect might also be VDR genotype dependent.

On the other hand, E2 influences vitamin D metabolism
and VDR expression. Sex hormone replacement therapy in-
creases total and free serum 1,25-(OH)2D3 levels (29, 30). In
human fetal osteoblasts, E2 up-regulates VDR expression
(57). Also, in rat duodenal mucosa E2 increases VDR expres-
sion and bioresponse (32). In this way, E2 might influence
vitamin D-regulated processes, like intestinal calcium ab-
sorption and osteocalcin production in bone. Several studies
have demonstrated that the response to hormonal replace-
ment therapy is ER� genotype dependent (19, 25, 58). There-
fore, the effect of estrogen replacement on vitamin D-regu-
lated processes might also be ER� genotype dependent.

In conclusion, the present study shows an interlocus in-
teraction in relation to BMD and fractures between two im-
portant candidate genes in osteoporosis. Recently, we also
demonstrated an interaction between VDR and another can-
didate gene, the COLIA1 gene, with respect to fracture risk
(11). Together, these findings underscore the polygenic char-

TABLE 5. Number of women with nonvertebral fractures according to ER� genotype and VDR genotype

ER� genotype No. with fracture/total no. (%) VDR genotype No. with fracture/total no. (%)

11 32/297 (10.8) 11 35/271 (12.9)
12 61/409 (14.9) 12 55/401 (13.7)
13 13/124 (10.5) 13 13/105 (12.4)
22 10/138 (7.2) 22 16/183 (8.7)
23 14/82 (17.1) 23 9/89 (10.1)
33 1/12 (8.3) 33 3/13 (23.1)

x2 8.8 x2 4.8
P value 0.12 P value 0.45

FIG. 4. ORs compared with the double reference group and numbers
of vertebral fractures according to combined ER� and VDR genotypes.
Reference includes ER� and VDR genotypes 22, 23, and 33. Het-
erozygotes include 12 and 13. Homozygote includes 11. *, P � 0.001
for allele dose association of ER� haplotype 1 in VDR haplotype 1
homozygous carriers. P � 0.01 for the interaction term.
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acter of osteoporosis and the importance of the contribution
of gene interactions in determining fracture risk. At the same
time, our findings highlight the necessity of large (multi-
center) studies to achieve sufficient statistical power to fur-
ther elucidate the complex, multigenic character of
osteoporosis.
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