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Abstract

There is a vast literature on the selection of gur@priate index of income inequality and on
what desirable properties such a measure (or iref@9ld contain. The Gini index is, of course,
the most popular. There is a concurrent literatonethe use of hypothetical statistical
distributions to approximate and describe an ofeskmlistribution of incomes. Pareto and
others observed early on that incomes tend to &eleight-tailed in their distribution. These
asymmetries led to approximating the observed imcahstributions with extreme value
hypothetical statistical distributions, such as tRareto distribution. But these income
distribution functions (IDFs) continue to be deked with a single index (such as the Gini)
that poorly detect the extreme values present énuiiderlying empirical IDF. This paper
introduces a new inequality measure to supplenberitnot to replace, the Gini that measures
more accurately the inherent asymmetries and egtremtues that are present in observed
income distributions. The new measure is basedlbinckorder term of a Legendre polynomial
from the logarithm of a share function (or Lorenzve). We advocate using the two measures
together to provide a better description of inefpaiherent in empirical income distributions
with extreme values.
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l. I ntroduction

Income inequality research has experienced a resoegafter losing some
momentum in the late 1990s and the first decadinefTwenty-first Century.
Piketty (1995, 2014) and Boushey et al. (2017 )iéagl some interest in the field;
Piketty did so with his 2014 tome on “polarizatiohhere is a vast literature on
the measurement of income inequality, cf. CowelD1® for an excellent
bibliography of much of this work. This literaturentains hundreds of papers on
an appropriate index of income inequality and omtnesirable properties such
a measure (or index) should possess. We presenteaelv some of this
discussion below.

There is also a concurrent literature on the udeypbthetical statistical
distributions to approximate and describe an olesknistribution of incomes.
Pareto (1896and others observed early on that incomes tend teehvily right-
tailed in their distribution. These asymmetries ledearchers to approximating
the observed income distributions with extreme &ahypothetical statistical
distributions, such as the Pareto distributiontiStaians have done considerable
work on extreme value distributions in other apgiiens. The generalized
extreme value distribution (GEV) and its family mmars, including the Weibull,
Gumbel, Frechet and others, have been extensixplgred by statisticians and
inequality researchers alike (cf. Coles (2001) @odvell and Flachaire (2007)).
James McDonald has been a leading researcher arg¢heof functional forms of
hypothetical statistical distributions to descriieFs for a long time (cf.
McDonald (1984), McDonald et al. (2013) and Sloffje87)).

Interestingly, even with the recognition of the tfdahat incomes are
distributed with asymmetric higher moments, inefuahdices constructed to
capture the level of inequality inherent in thebsearved income distributions

(with a single number) are generally based on tearmand variance of the



observed data. Cowell and Flachaire (2002, 200hei®nly work that seems to
discuss the two concepts (that is, extreme valudsel IDF and detecting it with
an inequality index) in the same place. They doinwbduce a new index or
measure to deal with the issue, but note thatwleerost popular classes of
measures, the Gini and Entropy-based measuresdifBarent sensitivities to the
problem in their first paper (cf. Cowell and Flarbg2002)).

In their second paper, the authors are primarilgceoned about how
sensitive commonly used inequality measures arextoeme values in the
underlying distributions, and suggest some senmapatric specifications of the
commonly used measures to account for the extreshees (cf. Cowell and
Flachaire (2007)). The Gini coefficient and Thedistropy measure (frequently
generalized) are two very popular inequality indj@mong others, that have not
always performed well in describing some of theti@havior in observed income
distributions. Specifically, both measures fall shm detecting changes in
various group’s share (cf. Ryu(2013) and Ryu amdtjsl(2017)).

Another way to approach the problem is to reallzg there are many
income distribution functions which will produceetlsame value of a Gini
coefficient. The overall shape of the income slianetion may be well described
by the Gini coefficient (or by Theil’s entropy meas), but the poorest group’s
share and the precise details of the richest gsospare generally are not
described well by these measures. In this papsecand inequality measure is
introduced and added to the Gini coefficient toctiée movements of the
extreme values and asymmetries of observed incastrédtions as they change

over time.

5 See Maasoumi (1986, 1989) for excellent work @ngéneralized entropy class of
measures.



In the next section we discuss desirable propeateimequality measure should
possess. In Section 3 and 4 we introduce the neagumne, which is based on the
expansion of the logarithm of the share function l(lorenz curve) with a
Legendre polynomial expansion. Section 5 of theepajscusses an application
by fitting the new measure to CPS data. Sectioonglades the paper.

I1. Desirable Properties of an | ncome I nequality Index, I (y)®

There is significant consensus among inequalitgaeshers that any income
inequality index, I(y), should possess statistipabperties that allow it to
reasonably describe the inequality inherent in &seoved IDF. Given the
inherent difficulty in describing the characte@stiof an entire IDF with one

number, the following properties are desirable:

. Anonymity or symmetry

The inequality measure should not depend on howvithehls in an
observed distribution are labeled. Another worddpesn’'t matter who
receives the income, all that matters is the d¢hstion of income. This is

generally expressed mathematically as:

L(P(Y))=1(Y) (1)

whereP(y) is any permutation of income y;

6 This list is a collection whose individual propestare discussed in many places, including
Cowell (2011), Ryu and Slottje (1998), Basmann 8lattje (1987), and Basmann, Hayes and
Slottje (1991), among others.



Scale independence or homogeneity

As Cowell (2011, p. 63) notes, the measured ingyual the slices of the

cake should not depend on the size of the cakeas prboperty says that if
(say) every person’s income in an economy is irsgédy some constant,
then the overall metric of inequality should noacbe. This may be

stated as:

I @y) = 1(y) (2)

whereais a positive real number.
Population independence

Similarly, the inequality measure should be indelee of the level of
population. Cowell (2011, p. 63) notes the ineifuabf the cake
distribution should not depend on the number okeadceivers. This is

generally written as:

I(yOy)=1(y) (3)

where [ is the union ok with itself.
Transfer principle

The Pigou-Dalton, or transfer principle, statesitsnweak form, that if
income is transferred from a rich person to a poperson, while still
preserving the order of income ranks, then the uakty measurement
should not increase. In its strong form, the trangfrinciple says the

measured level of inequality should decrease. W@ shown below in



our paper, our new second measure satisfies thglitcan if it is
considered together with the Gini coefficient (HeeAppendix for proof).

- Non-negativity
The inequality index(y) must be greater than or equal to zero.
- Egalitarian zero

The indexl(y) is zero when everyone has the same income, meaning

when all values;yare equal.
- Bounded above by maximum inequality

The indexl(y) attains its maximum value of one, reflecting thexrmum

level of inequality (ally are zero except one).

In the discussion to follow, we introduce a new suga that will be shown to

satisfy these properties.

[11. New Measure of Inequality that Supplementsthe Gini Coefficient

Given our objective to find a new income inequalitgasure which is sensitive
to extreme values, we propose to describe the iacdistribution with two

summary measures rather than a single measureGitieoefficient, Theil's

entropy measure, and other well-known measuresisetul in describing the
overall state of income inequality, but these messulo not provide precise
information about the presence of extreme valuasiinnderlying IDF, or in how
change in the extreme values over time impactawel lof inequality as reflected

in the summary index over time.



In this paper, we conceptualize a complete seistfilbutions all having
the same Gini value. A function derived using ailg Gini coefficient will be
called the basic model in the paper. This basicahigdknown to be imprecise in
describing the presence of extreme values. A seawmeguality measure will
supplement the Gini, and is designed to describentbvements of the poorest
group’s income share and the extreme values aithest income group.

The choice of the second inequality measure ity important. The
basic model can be derived using the first inetyatieasure, such as the Gini
coefficient, Theil's entropy measure, and otherse Dasic model used in this
paper is the Gini coefficient-based model. Whenstheond inequality measure
Is added, it is desirable to derive the functidoain corresponding to this second
measure and to add this part to the basic modehdrapplications section, the
income distribution of the basic model and therifistion of the extended model
will be compared.

To introduce the second inequality measure, twatfanal forms are
considered in this paper. The first functional forsnthe expansion of the
logarithm of the share function in terms of the &éedre polynomial series. The
second functional form is the expansion of the bareurve in terms of the
Legendre polynomial series. For the first functicioam, the parameter of the
first order polynomial term can be derived from @@&i coefficient, and the
parameter of the third order polynomial term wélised as the second inequality
measure. Note that the second-order term of therndrg polynomial series is a
symmetric function, so that it cannot be used iscdbing the monotonic
increasing function. Both forms will be explainesldow.

For the second functional form where the Lorenz/eus expanded in
Legendre polynomials, the parameter of the zerbetpendre polynomial term
corresponds to the Gini coefficient, and the patamef the first Legendre
polynomial term can be used as the second ineyuaétsure.



3.1 Orthonormal basis expansion of the logarithm of income share function
For the given income observations, there are maayswo approximate the
functional form of the data generating model. If @thonormal basis (ONB)
expansion is applied, the parameter calculatiamesffected by the size of the
series. In comparison, the estimated parametetheobrdinary least squares
regression method change their values when a mewigeadded in the regression

series.

The addition of higher-order terms in the seriedl vallow the
approximated function to converge to the data geimay model. These functions
with different series lengths form a complete sétirmome distributions
corresponding to the basic model derived from the efficient. Orthonormal
basis expansion allows us to superpose new ternteeohasic model without
disturbing the basic model.

Suppose we have a continuous share funct@) for o<z<1, where

the poorest person is located at-o0 and the richest atz=1. We can

approximate the logarithm of the share functiorhveitsequence of orthonormal
functions, P,(2, P(2, P(2, R(2, ..... Arfken (1985) presents an explanation of

the ONB method:
N
log 5(2=) a R (4)
n=1

An orthonormal sequence satisfies:



[R(2R(2 d=4,, n 01,2 )

where 5 _=1 if n=m and zero otherwise. The parameters of (4) camedf

with:
a,=[P.(2 log s ¥ dz | Jﬁ()%i_ @f)} < (6)

(see Ryu (1993) for the continuous version of OlIBJ Ryu and Slottje (1996)
and Milne (1949) for a discussion of the discregesion of ONB). The orthogonal

sequence{P} inthe spacel?(z) is called complete if there is no elemeh#0

of L?(z) which is orthogonal to all the elements Bf If:

If(z)Pn(z) dz=0 for 0,12 7

it follows f(2=0 for almost all zo z.

Suppose the Legendre polynomials are usethfof<1:
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R(2=1

R(2=v3(22-)

R(2)=5(67-621

P(2=7(207-302+ 122 }

P,(2)=/9(707 -1402+ 902~ 20z )1

R(2) =+11(2527 - 630 + 5602- 2102+ 30z )

(8)

Fig.1 showsPR,(z is flat and P(2) is a linear function butP,(z has n-1 peak

values. To approximate the logarithm of the shamection, the Legendre
polynomials with degrees of even numbers seem tedseuseful because they
have peak values ai = 0. Those functions with degrees of odd numbershbell
useful as they have their lowest valueszato and their largest values at=1.

Consider the following basic model, which can bewéel from the given

Gini coefficient:

log 8,(2=3+ aR ¥ or Sem (2 =exp[a + a B 7] 9)

Yitzhaki (2013) has shown that knowledge of thei Goefficient is equivalent to
knowledge of the first moment of the share functiimfind the parameters of (9)
from the Gini coefficient, consider:

a,+aR(9d=a+ av/3(22z1)= 3g-+/3 a+ 2/3az A B (20)
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,ul:J.zs(z)dz:I Zxp[A+ B} dz

=[ BB }J.zexp[Bz] dz:1+Glnl (D
e -1

where the parameteris removed with normalization of the share function

Knowledge of the Gini allows us to finé, a, and a of (10). Therefore, the

basic model is derived from the given Gini coeéri.
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Fig.1 Plots of Legendre Polynomials
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To consider the extreme values at the fat rigttafaihe share function,
the following extended functional forms can be &apl

Basic model: log s,,(2=3+ aR ¥ (12)
Second order: logs(2=a+aR + aR ) (13)
Third order: log s(9=a+al ¥+ aR )z ap) (14)
Fourth order: log s,(2=a+aR ¥+ aR)x aP)z af) (15)
Fifth order: logs(2d=a+al y+ aR)» aP)z aP)z AP (16)

The parameters can be found with:

3,=[ (2 log $( ¥ d (17)

The parameter values calculated by (17) do notrttepe the length of the series.
For example, thea, parameters of (13), (14), (15), and (16) are #mes This
Is the benefit of the orthonormal function expansidn comparison, the
parameters estimated using a least squares metibduetuate when we
increase the length of series. Therefore, we caqerpose another function
derived with the additional parameter to the b&id model without damaging

the basic model.

We have assumed knowledge of a continuous functgg and

expanded the logarithmic transformation with amanormal basis (4), so that
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the parameters were found with (6) using the omhadity of the Legendre
functions. As an alternative method, suppose waeadd&now the functional form
of the underlying share functisf?. If nothing is known, the share function can

be assumed to be a flat function. Suppose the misneéhe share function are

known, as follows:
Mn:Iz’“ g2 d for m=0,1,2,...N (18)
Then the following moments can be calculated base(®):
A :J.Pm(z) {3 d for m=0,12,..N (19)

Zellner and Highfield (1988) and Ryu (1993) sohaed entropy maximization
problem:

MaxW=~[ ¢ 3log ¢ ) c (20)
satisfying:

A :jpm(z) g 2 d: for m=0,12,...N (19)

Then:
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n=0

s(z):exp|:i G Iﬁ'(z)} satisfying A, :ij(z) g2 d for m=0,12,..N (21)

If the Gini coefficient is known, this is equivateie knowledge of4, and 2, ,

and so we have:

s(2=exp[¢ R(2+ ¢ P (22)

which is equivalent to (12). The parameters of (@&) be determined from the
given Gini coefficient, as derived in Ryu and S®it2017b). Two alternative
methods to approximate the share function are ngamed. The first method

assumes knowledge of the continusus, which is expanded with a Legendre
series. The second method does not assume thaofumictorm of (2 but

maximizes entropy subject to known values of momente derived functional

forms are the same, but the parameter calculatethads are different.

As we add more terms to the series, the approxahfatection approaches

logs, (2):

flog saf a= |3 s Ry oz v far fwev i @

Using 2016 CPS data (which will be discussed betodetail), we have:
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a2 =27.921, a’= 1.190, a?= 0.0376,a>= 0.1340,a°= 0.0146¢= 0.0 (24)

where g, is used for normalization and is the slope term corresponding to

the Gini coefficient. If we have to choose a teénmddition to the basic model,
then we can choose a term with the largest paraisgtared value. In our case,

a2 has the largest value among the remaining terms.

Now suppose we wish to introduce a second inequaltasure as a
supplement to the Gini coefficient. There are a fdwices suitable for this
purpose. Consider the following:

Typical model: log sh,(2= g+ aR ¥+ @ R ) (25)
Basic model: log s,,(2=3+ aR ¥ (12)
Second order model: logs(2=a+aR + aR ) (13)
Third order model: log sh(2=a+ aR x+ ap ) (26)
Fourth order model: log sh(2=a+ aR x+ aPR ) (27)
Fifth order model: log sh(2=a+ aR ¥+ ap ) (28)

An approximated share function with the additiotmatd-order term will be a
monotonic increasing function if its slope is nogatve for the given values of

positive a, and a,:
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alOQGSQ(Z) _03+ §Ra)2+ ak)z 23 a,++/7a, (607 - 60z+ 12§ | (29)
Z z

If a monotonicity test is passed for (26), then tihied-order parameter, can

be used as the second inequality measure. A simiarotonicity test can be

performed for (28):

ologsh(9 _dg+ aR ¥+ QK)Z>O (30)
0z 0z

I V. Lorenz dominance and expansion of the basic model

Another way to understand the intuition behind mew measure is to think about
it in terms of Lorenz dominance. There are manyeha curves which can

generate the same Gini coefficient. If we expanel torenz curve with a

Legendre polynomial series, the zero-th order patantan be determined from
the Gini coefficient. The basic model will be thecsnd-order Legendre
polynomial series with three parameters, which bandetermined from two

boundary conditions,L(z=0)=0 and L(z=1)=1, and the Gini coefficient.

Inclusion of higher-order Legendre functions wilbdify the basic Lorenz curve,
but all these Lorenz functions will have the samai Goefficient due to the

orthogonality of the Legendre series. A relateawssion can be found in Choo
and Ryu (1994).

Suppose the Lorenz curve can be expanded througgnbdee functions:

L= 18R (31)
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The parameters can be found from the followingtieha

b,=[P.(2 Ly(2 d= | E:(){Z pm% c (32)
The Gini coefficient determines the zero-th ordargmeter:

1-Gini
2

:jL(z)dsz L, (2 dz & (33)

Notice the above relation does not depend on the @i the seriesv and all

L,(2 will share the same Gini coefficient. The Lorenzve should satisfy two

boundary conditions:
L,(z=0)=0 and L, =11 (34)
Now using:
Piz=0)=(-1v2n+1 and P (= 1FV 2+ (35)

the second-order polynomial series, which we lakahe basic model, is given
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as follows:
L(2=hR(J+ h ¥+ DR ) (36)

Suppose the Gini coefficient is known, that kg, is known. Using the boundary
conditions L,(z=0)=0 and L,(z=1)=1, the parametersb, and b, can be

calculated for the given Gini coefficient:

= R(3=3Giniz'+ (1~ 3Gin) (37)

L(2)= (1 Glnlj Gml

This function becomes a nonnegative convex fundafi@ini < 1/3 because the

convexity is satisfied ifo’L,(z)/aZ =0 for all z.

() If the Gini coefficient is greater than 1/3, (37)lwot be a convex function.
(i) If the Gini coefficient is zero,L(2) = z

(i) If the Gini coefficient is 1/3, thern_(z) = 7

The third-order polynomial series is:
L(2=bR(2+ hE ¥+ bR )z bP) (38)

If we apply the boundary conditions,(z=0)=0 and L,(z=1)=1, we have the

following
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1—GiniJ Gini 1-2/3b)

L3(z):( 5 +tlpl(2)+2—\/§|§(?+2—\/—7 R ¥ (39)

if B=(@-2/30)/2, rewrite (39) as:
L,(2) = (1- 3Gini+ 5B)z+ 3(Gini- 5B)Z + 10B% (40)
Sufficient conditions to make (40) a positive conwenction are:
B>0, Gini=5B, 1~ 3Gini+ B> ( (41)

These conditions can be simplified as:

0<5B < Gini< l+358 (42)

This condition limits the range 0d<B<0.1 and Ging O.. If the given data do
not satisfy the above conditions, then the Loranxe derived by (40) may not
be a nonnegative convex function. If the Gini coefht is 0.5 andB = 0.1, then

L(z)=Z.
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V. Applications

In order to illustrate the usefulness of the nevasuee, we present examples
using Current Population Survey (CPS) data from022016. The CPS is
sponsored jointly by the U.S. Bureau of the Cersusthe U.S. Bureau of the
Census. The CPS produced a technical paper, TH86h wescribes the design
and methodology of the CPS, cf. www.bls.censusapesip66.htm.

We use CPS household income data disaggregated¢entdes for the
years 2000-2016.The distribution of the data for each year casim@marized
by the Gini index. Now using the logarithmic shéraction given in (26), we

can calculate a secondary measure to suppleme@Ginthedex.

In Fig.2, the approximated function converges te tibserved income
shares for 2016 as we increase the number of eixgquatesms. The Gini-based
model in (12) is a basic model, and it performsrjyoi@r the very richest income
group. Even-order polynomials of the second-ondét3) and fourth-order in
(15) performed badly because the even power tefriteed_egendre polynomial
terms are symmetric functions, and do not fit wielt the monotonically
increasing function. The third-order model in ($4ems to perform well, but the
fifth-order model in (16) produced minor fluctuat®in the middle range of the
IDF.

’ We are grateful to Martha Starr for providing thesta to us.
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Fig.2 Converg. of Legendre polynomials to obs. log shares
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In Fig.3, the Gini-based model produced a straigi and could not
approximate the share values for the very poovanglrich groups properly. In
comparison, if the third-order term is added, (@®wed an improved result for
the poorest and very richest group. In the middiges, slight improvements

were observed.
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Fig.3 Approx. log shares with Gini and third order models

—o— Gini based model
—+— Legendre third order model (26)
—— Observed log share

In Fig. 4, the performance of the third-order moofe{26) is shown. Except for
the very rich group, this model provided a reldingood performance. In Fig. 5,
the performance of the fifth-order model of (283®wn. Here, there is a small
fluctuation aroundz=0.7, but it produced a better performance for theasth

group.



Fig.4 Approximated observed shares with third order model
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Fig.5 Approximate observed shares with fifth order model
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In Fig. 6, we used the CPS data from the year 20@Gxamined the performance
of the Legendre polynomial series expansion oLinenz curve. To impose the
convexity of an approximated Lorenz curve of adtorder polynomial series,
the Gini coefficient should not be larger than @$ stated below (42). The Gini
coefficient for CPS data in 2000 is 0.490. The @B for the years 2012~2016
have Gini coefficients greater than 0.5. If the i@mefficient is larger than 0.5,
we need a higher-order Legendre polynomial sesiparsion instead of relying
only on (39). In comparison, to impose the conweatitthe approximated Lorenz
curve of the second-order, the Gini coefficientidtide less than 1/3, as stated
below (37).

Fig.6 Approximate the Lorenz Curve for 2000

1.0

—— Observed Lorenz Curve for 2000
—o— Approximated Lorenz Curve for 2000
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Fig.7 Comparison of Gini and richest 5% movements
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In Fig. 7, the movements of the Gini coefficientlancome shares of the richest
5% are compared. They move more or less in the saeeions, though the gap
between the two curves decreased after 2012. Téasthe Gini coefficient is

not as sensitive to extreme movement in the higiersentiles of income earners.
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Fig.8 Comparison of a3(ONB), rich 5P, and poor 5P

.45 .0044
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Fig. 8 shows the third order parametey) of an ONB expansion of the log share
in (26). This parametera) moves in an opposite direction relative to the

movements of the poorest 5 percent of income eapeor 5P) curve. In 2015,
the poorest 5P faced a significant loss in incona@esbut recovered in 2016. The

parameter 4,) shows the opposite movements, indicating morquakty as the

poorest group suffered a loss in income share nkmrement of the richest 5P

and parameterd), a similar trend is observed but more refinedatketare
different. Here, thed) measure goes up as the richest share increasgoas

down as the richest share decreases.
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Fig.9 Compare Gini, Theil, a3(ONB), Rich 5P, and Poor 5P
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Fig.9 shows the usefulness of the Gini coefficidgil’'s entropy measure, and

the third order parametes,] in describing the movements of the poorest 5P and

the richest 5P.

The Gini coefficient and Theil's measure are martess the same in that
they are both are reasonably good at describingnthveement of the richest 5P.

As explained in the discussion of Fig. 7, the tipedameter4,) was stronger in

describing the movement of the poorest 5P grouyses
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To check the performance of the Gini, Theil, aneltthird parametex;, a curve-

fitting exercise is performed where least squaséisnation results are compared:

P5=0.01124, 107662~ 0-01618 o014 Gini+y , R = 0.89: (43)

P5=0.004793 4000562~ 0-01523 o176 TheHu , , RZ=  0.83: (44)

P5 = 0.008385, gy044s0~ 0-00741f 401100 Gimi 0.01025,0,,68 U 5 ,RE= 0.98

(45)
R5=-0.3677, 01400t 1.2824, 5650, Gini+y, , R*= 0.99% (46)
R5=0.1371003105* 1.2544) 0,105 The#u o, R®= 0.99¢ (47)

RS = =0.4111 o156, 1.4158, 3476 Gint 0.1559 .8 +U ., R = 0.99 (48)

Equations (45) and (48) show that the poorest gemapthe richest group are
both described well if the Gini coefficient and thed parametess are used

simultaneously, as these combinations provide #s¢ fit of the data.

VI. Conclusion

This paper introduced a new inequality measureipplement the better known
Gini Index, where the new measure is sensitivéagéoalsymmetries and extreme
values in the underlying IDF that the index is imtted to measure. The inequality
measurement literature contains hundreds of papeen appropriate index of
income inequality, and on what desirable propesigsh a measure (or index)
should contain.
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There is a concurrent literature on the use of thgtecal statistical
distributions to approximate and describe an oleskedistribution of incomes.
Even with the recognition by some of the fact tinebmes are distributed with
asymmetric higher moments, inequality indices amased to capture the level
of inequality inherent in these observed incomdritigtions (with a single
number) are generally based on the mean and variahthe observed data.
This paper introduced a new inequality measurepplement, but not to replace,
the Gini coefficient that measures more accurdtedyinherent asymmetries and
extreme values that are present in observed inclstr@butions.

The new measure is based in a third-order termLegendre polynomial
from the logarithm of a share function (or a fiosster term of a Lorenz curve).
In this paper, we advocated using the two meagoggsher to provide a better
description of inequality inherent in empirical ame distributions with extreme
values.

We applied the new measure to examine inequality8$ CPS household
income data for 2000-2016 in income centiles. Té& measure was shown to
be an excellent supplement to the Gini coefficidiite Gini index provides an
intuitive overall measure of the inequality inhdrienan IDF. Changes in the level
of inequality inherent in the empirical IDF (pattiarly for the extreme portions
of the IDF) were detected more accurately by the measure than by simply

calculating the Gini index alone.
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Appendix: Pigou-Dalton Principle (PDP) for model (26)

The logarithm of the share function can be expamadide Legendre series:
log (2= g B+ aPr a b+ aP-+ @ (4)

Suppose we want to summarize income inequality oatly a Gini coefficient.
This corresponds to taking a basic Gini model (b2rause higher-order

Legendre polynomials do not influence the choiceapfand a;:
Basic model: log s,,(2=3+ aR ¥ (12)

The Gini coefficient can be determined froan and vice-versa, as discussed in
(11).Even if we include higher-order terms of (4, will be the same in (4) and
(12).

Now to prove the PDP condition holds for our nevasee, supposéx< j
and s(z) < 7). After a transfer of small income share) from the | person to
the " person, new income shares of these two people Eecgm) +A and

s(z)-A. This means the slope dbgs(2 is now lower. Thusa, and the Gini
coefficient are lower, anq”[log sN(z)]2 dz has decreased. If[log scim(z)]z d: isa

good approximation ofj[log s ( z)]2 dz, a¢+a’ will decrease because we have:

[[log 8(2] dz= 4+ & (A1)
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In the standard discussion, income transfers framhaperson to a poor person

is described with a lower value of the Gini coeffit, but here the same effect is

represented with lower values cﬁlog Sni z)]2 d: and a?+a’.

Similarly, if the logarithm of the share functiomapproximated with the
first-order and third-order Legendre polynomialgrt the logarithm of the share

function is summarized with the ONB parameteysand a,.

For the Third-order model:

log sh(2= g+ al ¥+ ap ) (26)

The parameters, of (12) and (26) are the same, and can be defro@d the

given Gini coefficient. If the income share tramsn‘ecreasesj [log sN(z)]z dz, and
if [[log sh(2] dzis a good approximation of[log 5,(3] dz, then the income

share transfer lowerg; +& + &

[[log sh(3] d= &+ A+ ? (A2)

Therefore, the PDP will have a decreasespfa’ +a which completes the proof.



