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Abstract 

 

The Principal Component Regression is often used to forecast macroeconomic variables 

when there are many predictors. In this letter, we argue that it makes sense to pre-whiten the 

predictors before including these in a PCR. With simulation experiments, we show that 

without such pre-whitening, spurious principal components can appear, and that these can 

become spuriously significant in a PCR. With an illustration to annual inflation rates for five 

African countries, we show that non-spurious principal components can be genuinely relevant 

in empirical forecasting models.  
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Introduction and motivation  

 

The Principal Component Regression (PCR) is a frequently considered model to forecast 

macroeconomic variables when there are many predictors, see Stock and Watson (1999, 

2002), Bernanke, Boivin and Eliasz (2005), Heij, van Dijk, and Groenen (2011) and many 

others. The idea of the PCR is that the predictors are summarized in a few Principal 

Components, and that these new variables enter as explanatory variables in a regression 

model. When summarizing the predictors, it is typical practice to consider growth rates of the 

predictors in case of unit roots, but otherwise the variables are usually included as they are. In 

this letter, we recommend to pre-whiten all predictors, that is, to fit for example 

autoregressive models to the data, and use the residuals as the new predictors in Principal 

Components Analysis (PCA). When the PCA results for raw and pre-whitened data are 

similar, one may well have found non-spurious Principal Components. 

 We base our recommendation on a few simulation experiments, which show that 

without such pre-whitening one runs the risk of finding spurious Principal Components, and 

finding spuriously significant newly created regressors in the PCR. The arguments why one 

can obtain spurious effects are the same as those echoed in Yule (1926), Ames and Reiser 

(1961) and, of course, Granger and Newbold (1974).  

 An illustration of how a PCR can look like in case of spurious and non-spurious 

Principal Components is also given.  

  

Simulation experiments 

 

Consider the creation of four time series variables, using the Data Generating Process (DGP): 
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Hence, there are four independent variables, each generated as a first order autoregression.  

The error terms are all independent draws from a standard normal distribution. The starting 

values are always equal to 0. In the simulations, t will run from 1 to 50, or 100, or 500.  

 First, we create Principal Components for the variables �� , �� , ���	��, which is done 

based on the correlation matrix of these three variables. This implies that the sum of the 

eigenvalues is equal to 3. If the three variables each would be a white noise process, then the 

estimated eigenvalues should all be about equal to 1. However, when the autoregressive 

parameter deviates further away from 0 and approaches 1, we may expect that there will 

appear spurious non-zero correlations across the variables, as already demonstrated in Yule 

(1926), and hence we may expect that the first eigenvalue will deviate away from 1.  

 A confirmation of these expectations is summarized in Table 1. The cells in the first 

panel present the average value of the first eigenvalue and the standard deviation, across 

10000 replications. It is clear that the larger the autoregressive parameter gets, the larger is 

the first eigenvalue. When the sample size increases, the deviation away from 1 gets smaller, 

but not that much. In the second panel, we report the frequency of 5% significant parameters,  

associated with the first principal component in the PCR. There, we additionally have that  

 

�� = ������ + 	�
� ,						�

�~
(0,1), 

 

with �� = � like the other three variables, and where the PCR is  

 

�� = � + ����� + ������ + 	�, 

 

with ����� denoting the first lag of the first principal component. Clearly, there are more than 

5% significant � parameters, but the spurious effects tend to disappear as we let the sample 

size increase. 

 Table 2 presents similar information as Table 1, although now all variables have been 

pre-whitened, that is, for all variables we first estimate a first order autoregression, and then 

we proceed with the residuals. Hence, we now first run the regressions 
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and we store the !�
�, !�

� and !�
� and estimate the first Principal Component for these 

residuals. From the cells in Table 2 we learn that per-whitening makes the spurious results 

disappear, not only for the eigenvalues and Principal Components, also for the PCR.  

 

Illustration  

 

What is it that we recommend to practitioners so that they can recognize non-spurious 

Principal Components? We recommend comparing the eigenvalues before and after pre-

whitening. In case of non-spurious results, these eigenvalues should be similar.  

Consider as an illustration the three annual inflation rates for France, Japan and the 

USA, see Franses and Janssens (2017) for data and graphs on these data and the others below. 

If we fit a first order autoregression to each of these variables, the estimated autoregressive 

coefficients obtain values of 0.931, 0.776 and 0.823, respectively. These values are all 

approaching 1, and we therefore should be wary for similar issues as have been observed in 

the simulation experiments above. 

 When we apply Principal Components Analysis (PCA) on the correlation matrix, we 

obtain for the raw data the eigenvalues 2.425, 0.446 and 0.129, and for the residuals after 

fitting country-specific autoregressive models of order 1, the eigenvalues 2.359, 0.418 and 

0.223. Hence, in both situations there clearly is a single dominant principal component, with 

0.808 and 0.786 percent of the variation explained, respectively. The weights in the first 

principal components are 0.610, 0.535 and 0.584 for the raw data, and 0.600, 0.553 and 0.578 

for the pre-whitened data. Not only are the eigenvalues very similar, also the weights are 

clearly very similar.  

 Consider now the five annual inflation rates for the North African countries Algeria, 

Egypt, Libya, Morocco, and Tunisia. The first order autocorrelation are 0.772, 0.704, 0.248, 

0.654, and 0.096, respectively. The first eigenvalue obtained from PCA for the raw data is 

2.348 and the first principal component covers 0.470 of the total variance. The weights are 

0.379, 0.421, 0.539, 0.433 and 0.448. When we fit first order autoregressions, and apply PCA 

to the residuals, we get a first eigenvalue of 1.870, which is associated with only 0.374 of the 

total variance. The weights have become 0.404, 0.213, 0.628, 0.212 and 0.594, which seem 

markedly different from those for the raw data. Hence, we may have found a spurious 

principal component here.  
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 In Table 3, we report the estimation results for inflation in Botswana and Lesotho, two 

countries that are quite far away from North Africa, but for which inflation may resonate with 

worldwide inflation (which we assume is the first principal component for France, Japan and 

USA). Each first row shows that the North African principal component seems significant at 

close to a 5% level, while each second row shows that the World based principal component 

is significant at a level much less than 5%. The forecast performance of the model including 

the non-spurious principal component is clearly better. When we include both principal 

components in a single PCR, we obtain p values of 0.168 and 0.186 for the North African 

components, respectively. The correlation between the two principal components is only 

0.335, so the low p values are not due to high correlation between these two variables. Hence, 

the non-spurious principal component makes the spurious component obsolete.  

 This illustration shows that comparing PCA outcomes for raw and pre-whitened data 

can be useful to diagnose non-spurious Principal Components.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

Table 1: The Data Generating Process is  
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where it is assumed that �� = �� = �� = �. The cells in the first panel present the average 

value of the first eigenvalue and the standard deviation, across 10000 replications. In the 

second panel, we report the frequency of significant parameters (5% level) associated with 

the first principal component in the PCR. There, we additionally have that  �� = ������ +

	�
� ,						�

�~
(0,1), whereas the PCR is �� = � + ����� + ������ + 	�, with ����� denoting 

the first lag of the first principal component.  

 
 
     Sample size 
   50   100   500  
� 
 
0.5   1.288 (0.127)  1.205 (0.090)  1.091 (0.041) 
0.8   1.448 (0.196)  1.328 (0.147)  1.150 (0.067) 
0.9   1.567 (0.242)  1.448 (0.194)  1.219 (0.097) 
0.95   1.656 (0.275)  1.568 (0.247)  1.305 (0.135) 
0.99   1.786 (0.325)  1.738 (0.306)  1.572 (0.245) 
 
 
� 
 
0.5   6.8%   5.9%   5.6% 
0.8   9.5%   6.8%   5.4% 
0.9   13.4%   9.7%   5.9% 
0.95   17.1%   13.5%   6.7% 
0.99   19.6%   18.7%   13.0% 
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Table 2: The Data Generating Process is  
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where it is assumed that �� = �� = �� = �. The cells in the first panel present the average 

value of the first eigenvalue and the standard deviation, across 10000 replications, when 

applied to the !�
�, !�

� and !�
� , where these are the estimated residuals from  

 

�� = �� +  ����� + !�
� 

�� = �� +  ����� + !�
� 

�� = �� +  ����� + !�
� 

 

In the second panel, we report the frequency of significant parameters (5% level) associated 

with the first principal component in the PCR. There, we additionally have that  �� =

������ + 	�
� ,						�

�~
(0,1), whereas the PCR is �� = � + ����� + ������ + 	�, with 

����� denoting the first lag of the first principal component.  

 

     Sample size 
   50   100   500  
� 
 
0.5   1.229 (0.102)  1.160 (0.071)  1.071 (0.032) 
0.8   1.230 (0.102)  1.159 (0.071)  1.070 (0.031) 
0.9   1.233 (0.103)  1.159 (0.070)  1.071 (0.031) 
0.95   1.233 (0.104)  1.161 (0.072)  1.071 (0.032) 
0.99   1.232 (0.103)  1.161 (0.072)  1.070 (0.031) 
 
 
� 
 
0.5   5.5%   5.0%   5.5% 
0.8   5.5%   5.4%   5.3% 
0.9   5.8%   5.5%   5.2% 
0.95   6.4%   5.4%   5.1% 
0.99   6.3%   5.6%   5.3% 
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Table 3: Estimation results and evaluation of one-step-ahead forecasts, sample 1961-2015 

 

Model I:  "�#$�%"&�� = � + �	"�#$�%"&���� + �	'()*+�,	-.+/01,��� + 	� 

Model II:  "�#$�%"&�� = � + �	"�#$�%"&���� + 	�	'(2*+34,��� + 	�	 

 

The data are obtained from Franses and Janssens (2017). Standard errors are given between 

brackets. 

 

 

Country Model  Parameter estimates    
    �  �   RMSPE MAE 
 
Botswana I  0.536 (0118) 0.364 (0.191)  1.892  1.449 
  II  0.482 (0.128) 0.498 (0.189)  1.838  1.383 
 
Lesotho I  -0.074 (0.141) 1.101 (0.514)  5.493  3.645 
  II  -0.092 (0.138) 1.336 (0.501)  5.373  3.644  
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