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General introduction

| HEMATOPOIETIC STEM CELL GENE THERAPY (HSCGT)

(HSCs) are

multipotent stem cells with dual functional

Hematopoietic stem cells

attributes  of  self-renewal to retain
the stem cell pool and to differentiate into
cells of the immune system and blood
through hematopoiesis."? The bone marrow
(BM) niche is the microenvironment where
HSCs

occurs, and from which HSCs mobilize into

quiescent reside, hematopoiesis
the periphery and home to and engraft after
BM transplantation. Primary stromal cells are
involved in these processes, in which adhesion
molecules, chemokines, and cytokines
play a major role (reviewed in Lapidot T
et al. 2002, 2005).>* This forms the basis
of hematopoietic stem cell transplantation
(HSCT). HSCT is

procedure to reconstitute the hematopoietic/

a common clinical

immune system after conditioning by
radiation or chemotherapeutic regimens.
Allogeneic HSCT involves the transplantation
of donor matched-BM, mobilized peripheral
blood, or umbilical cord blood (UCB)-
derived HSCs, and is the therapy of choice for
a variety of (non-) malignant hematological
and non-hematological conditions.® Graft
versus host disease, graft failure, and toxicity
of the preparative regimens are common
complications related to allogeneic HSCT.
Autologous hematopoietic stem cell gene
therapy (HSCGT), the ex vivo transfer of
a functional copy of a gene (therapeutic
gene) into the patient’s own hematopoietic
stem/progenitor cells (HSPCs), is another
application of HSCT.

The family of retroviruses contains two
members that form the basis of viral vectors
used in clinical trials: i.e. gammaretrovirus
(y-RV) and lentivirus (LV), which have been

successfully used for HSCGT due to their
ability to permanently integrate their DNA
into the host HSPCs’ genomic DNA. LV vectors
offer several advantages over y-RV vectors.
First, LVs possess a central polypurine tract
(cPPT) element which significantly improves
nuclear import of the pre-integration
complex,® therefore LV vectors can transduce
non-dividing quiescent HSCs. The capacity
to transduce non-dividing HSCs significantly
reduces the need for excessive ex vivo HSPCs
cytokine stimulation to proliferate compared
with y-RV vectors, which is detrimental for
the long term repopulation of gene modified
HSCs in vivo.” Second, insertional oncogenesis
has been observed in clinical trials for
X-linked SCID, Wiskott-Aldrich syndrome,
and chronic granulomatous disease using
y-RV.#12 In contrast, animal studies showed
that the LV integration profiles are relatively
safe compared to y-RV as demonstrated
with adrenoleukodystrophy.”” Due to these
HSCGT has

applied successfully in several hematological,

advantages, recently been
immunological and metabolic disorders."
The rationale for using HSCGT to target
metabolic diseases relies on the capacity of
the gene modified HSPCs and their progeny
to act as a factory of the therapeutic proteins.
The protein’s substrate can be converted in
the gene modified cells or the protein excreted
through
HSCs’ self-renewal capacity and the highly

and delivered cross-correction.
proliferative progenitors mediate the long
lasting effects of HSCGT. The rationale for
and the clinical procedure of autologous
LV-based HSCGT are presented in Figure 2A,
Chapter 2.
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Chapter 1

| MITOCHONDRIAL NEUROGASTROINTESTINAL
ENCEPHALOMYOPATHY (MNGIE)

MNGIE is a rare metabolic disease caused by
mutations in the TYMP gene, which results
in defective thymidine phosphorylase (TP)
enzyme activity and subsequent increase in its
nucleoside substrates, deoxyribonucleosides
(dThd) and
(dUrd). This consequently results in altered
DNA (mtDNA). Due to
the limited therapeutic efficacy of the available

thymidine deoxyuridine

mitochondrial

treatments and the severe toxicity related

to allogeneic HSCT, gene therapy emerged
as an attractive alternative for treatment of
MNGIE. The experiments performed in this
thesis were designed to evaluate the efficiency
and safety of LV based HSCGT for MNGIE.
defects,
diagnosis, pathogenesis, current treatments,

Genetic clinical manifestations,

pre-clinical studies, and future directions in
MNGIE research are discussed in Chapter 2.



Scope and outline of this thesis

| SCOPE AND OUTLINE OF THIS THESIS

To cure rare inherited diseases, HSCGT has
emerged as a promising platform for numerous
hematological, immunological, and metabolic
disorders! (reviewed in Naldini, 2015)."
The currently investigated treatment options
for MNGIE often only provide temporary
restoration of biochemical homeostasis that
lacks long-term improvement of clinical
phenotypes, such as infusion of platelets and
peritoneal dialysis. Allogeneic HSCT could be
apotential curative treatment, but is associated
with substantial morbidity and mortality
(discussed in Chapter 2). A recent approach
to performing liver transplantation has
obvious drawbacks, such as life-long immune
suppression and graft failure. Alternative
therapies that provide life-long effective
biochemical and phenotypic correction
with acceptable adverse effects are an urgent
medical need. The studies performed in this
thesis were designed to evaluate the potential
application of LV based HSCGT as a safe and
efficient treatment for MNGIE.

(i) Optimization of culture
conditions for highly efficient

LV transduction of HSPCs

without compromising long term
repopulation efficiency and gene
marking in vivo.

Most HSPC transduction protocols use
multiple rounds of LV vector incubations with
high vector doses, yielding many integrated
LV copies per genome, and as a consequence,

a relatively high genotoxicity risk. Also,

! https://clinicaltrials.gov

high concentrations of multiple cytokines
are used to induce HSPC proliferation and
enhance transduction efficiency. Therefore,
the development of highly efficient LV
HSPCs are

necessary. Optimizing parameters such as

transduction protocols for

the duration of the transduction, reducing
the number of integrations per cell, and
restriction of growth factors, would increase
the number of patients that could be treated
per LV vector stock, thereby reducing
the costs substantially. Furthermore, this
could potentially also improve long-term
therapeutic outcomes. To address these points,
the following experiments were designed
as described in Chapter 3. First, lineage-
depleted (Lin-) mouse BM cells, rhesus BM
CD34+ cells, and human peripheral blood and
BM CD34+ progenitor cells, were transduced
overnight at an increasing cell density with
a proportional increase of transducing units
in order to increase their physical contact.
Second, lin- cells and human umbilical
cord blood CD34+ cells were transduced
overnight under varying concentrations of
selected growth factors either singularly or in
combinations. The repopulation capacity and
stable gene marking in vivo was assessed by
the transplantation of lin- cells into sublethally

irradiated wild type recipient mice.

(ii) Efficiency assessment of LV based
HSCGT for MNGIE
Initial attempts demonstrated correction

of the biochemical phenotype in a mouse

13
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model of MNGIE following LV based
HSCGT,"” encouraging its further pre-clinical
development as a treatment option for
MNGIE. We aimed at addressing the efficiency
in depth, particularly on neurological and
intestinal phenotypes which are otherwise
unresponsive to allogeneic HSCT. We tested
third generation self-inactivating LV vectors
with a backbone similar to those applied in
clinical trials with a modified Woodchuck
post-transcriptional  regulatory  element,
and the cellular human phosphoglycerate
kinase (hPGK) promoter to drive the human
(T'YMP) or codon optimized (TYMPco)
cDNA sequences (Figure 1A, Chapter 4).
The efficacy of HSCGT was tested in Tymp
"UppI” for up to 8 - 11 months. Dose
scaling of LV vectors and transplanted gene
modified cells was performed to establish
the minimum required VCN/cell sufficient
for biochemical correction. The evaluation
(Chapter 4)

of (a) molecular

of therapeutic outcomes
involved assessments
chimerism and integrated LV vector copies;
(b) biochemical phenotype in urine, blood,
brain, intestine, liver, and muscle tissues;
(c) neurological phenotypes by performing

memory and motor function assessments,

brain MRI and immunohistochemistry; and
in Chapter 5 (d) we assessed the pathology of
the small intestine of mice receiving HSCGT
as well as MNGIE patients treated with
allogeneic HSCT.

(iii) Safety assessment of LV based
HSCGT for MNGIE

To address any potential side effects related to
TP overexpression or LV- related genotoxicity,
we performed experiments as described in
Chapters 4 and 6: (a) Tymp” Uppl’ mice
transplanted with gene modified HSPCs
bearing LV vectors with a strong promoter/
enhancer derived from spleen focus forming
virus (LV-SF) were monitored long term.
(b) Long term follow up was performed on
Tymp”-Uppl”’- mice recipients of HSPCs
transduced with a therapeutic vector
containing the PGK promoter. Both under
(a) and (b) the discomfort was monitored
and hematological analysis was performed
to exclude hematological abnormalities. (c)
Secondary transplantations were performed
to assess tumor incidence up to 11 months.
(d) LV integration sites were retrieved by
LAM-PCR on genomic DNA of lin- cells and

in BM cells after transplantation.
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Chapter 2

| ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic
disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results
in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine
(dUrd). In these patients, clinical features include mental regression, ophthalmoplegia and
fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances
in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (ANTPs), which may play
a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact
underlying mechanism remains unknown. The available therapeutic approaches include dialysis
and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance.
Allogeneic hematopoietic stem cell transplantation (AHSCT) is shown to be able to restore
normal enzyme activity and improve clinical manifestations in MNGIE patients. However,
transplant related complications and disease progression result in a high mortality rate. New
therapeutic approaches, such as adeno-associated viral (AAV) vector and hematopoietic stem
cell gene therapy have been tested in Tymp~” Uppl” mice, a murine model for MNGIE.

This review provides background information on disease manifestations of MNGIE
with a focus on current management and treatment options. It also outlines the pre-clinical

approaches towards future treatment of the disease.

Key words: mitochondrial neurogastrointestinal encephalomyopathy; MNGIE; thymidine
phosphorylase; metabolic disease; HSCT; HSCGT; lentiviral vector



Pathogenesis, current and prospective treatments for MNGIE

| INTRODUCTION

Mitochondrial
a genetically and clinically heterogeneous

diseases represent
group of disorders caused by mutations in
mitochondrial DNA (mtDNA), that affect
synthesis and function of mitochondrial
proteins, such as tRNA (in MELAS disease)
and NDI, 4, 6 (responsible for the majority
of cases in LHON disease) (DiMauro, 2004).
Another group is caused by mutations in
nuclear DNA (nDNA) that lead to defects
in nuclear encoded mitochondrial proteins.
Part of these proteins exert their effect on
mtDNA maintenance, thus known as nuclear-
mitochondrial communication disorders.
A subtype of the latter is mitochondrial
DNA depletion syndrome (MDS); a group
of mainly autosomal recessive disorders
caused by defects in nuclear genes involved
in mtDNA replication (e.g. POLG and PEOI

causing hepatocerebal MDS), or genes crucial

for maintenance of mtDNA including TK2
(responsible for myopathic MDS), RRM2B
(encephalomypathic MDS) and thymidine
phosphorylase (TYMP) gene
associated with MNGIE (El-Hattab and
Scaglia, 2013). MNGIE, initially described
in 1976 by Okamura (Okamura et al., 1976)

is a fatal rare inherited metabolic disorder

mutations

without genetic or ethnic predisposition
(Gamez et al., 2005). The estimated rate of
occurrence is 1-9:1,000,000!, and as of 2011
fewer than 200 cases have been described in
the medical literature (Halter et al., 2011). Due
to its variable clinical presentations, MNGIE
can be easily overlooked or misdiagnosed
as Crohn’s disease, psychiatric disorder,
anorexia nervosa or
(Rickards et al., 1994;Teitelbaum et al., 2002;
Marti et al., 2004).

myasthenia gravis

| GENETIC DEFECTS, CLINICAL MANIFESTATIONS AND

DIAGNOSIS

Genetic defects

MNGIE is an autosomal recessive inherited
disease that is caused by mutations in
the nuclear gene TYMP (previously known
as ECGFI). TYMP codes for the TP enzyme
(EC 2.4.2.4.) and is located on chromosome
22q13.33 (Stenman et al, 1992).TP is
a cytoplasmic enzyme expressed in most
human tissues, including gastrointestinal
tract, central and peripheral nervous
system, spleen, liver, bladder, leukocytes
and in platelets which account for most of

the TP activity in human blood (Fukami

! http://www.orpha.net/consor/cgi-bin/index.php

and Salganicoff, 1973;Shaw et al, 1988).
In contrast, TP is present at low levels in
muscles and is lacking in kidney, aorta
and fat tissues (Fox et al., 1995;Valentino
et al., 2007). MNGIE is caused by a variety
of pathogenic homozygous or compound
heterozygous mutations in the exons or
flanking regions of the TYMP gene. Various
mutations are reported to date (Stenson et al.,
2014) including deletions, single nucleotide
insertions (Nishino et al., 1999), splice site
(Kocaefe et al., 2003;Szigeti et al., 2004b) and
frameshift mutations (Blazquez et al., 2005)
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Chapter 2

and a homozygous duplication mutation in
exon 8 of the TYMP gene (Gamez et al., 2005).
The majority of these mutations are loss of
function mutations. Heterozygous mutation
carriers are asymptomatic with approximately
35% residual TP activity, although the plasma
nucleoside levels are similar to healthy
controls (Marti et al., 2004).

In addition, non-pathogenic
polymorphisms have been described in
the TYMP gene. The A465T polymorphism
(c.1393G>A) was reported both in subjects
with  MNGIE like features and control
subjects (Vissing et al., 2002;Martin et al,,
2004). In some MNGIE cases there is no or
mild clinical involvement of gastrointestinal
tract or skeletal muscle, despite the presence
of mutations in the TYMP gene leading to
marked reduction in TP activity, probably
indicating that environmental factors
contribute to the severity of the clinical
symptoms (Martin et al., 2004;Szigeti et
al., 2004b). Apart from late-onset forms of
the disease (Marti et al.,, 2005;Massa et al.,
2009;Etienne et al., 2012), most patients
display typical MNGIE features before the age
of 20 years (Nishino et al., 2000;Teitelbaum

et al., 2002).

Clinical manifestations

Gastrointestinal and ocular involvement are
usually the first complications in this disease,
although neuropathy and hearing loss have
been reported as primary symptoms in some
cases (Garone et al., 2011). Clinical symptoms

are summarized in Table 1.

Diagnosis

Detailed patient history, thorough clinical
examination, particular findings on magnetic
resonance imaging (MRI) of the brain
(Figure 1), genomic DNA screening for
mutations in TYMP gene and biochemical
analysis all contribute to the diagnosis of
MNGIE. Biochemical diagnosis of MNGIE
includes at least one of the following
parameters (Marti et al., 2004): (1) Increased
blood plasma levels of dThd and dUrd
(>3pumol/L and >5pmol/L respectively). (2)
Severely reduced TP enzyme activity in buffy
coat leukocytes (<8% of healthy controls;
healthy control mean TP activity equivalent
to 634 nmol thymine formed /hr/mg protein).
Biochemical analysis reduces the risk of
missing the diagnosis in case of non-identified
mutation sites (Nishino et al., 2000) or in case
of unclassified variants (UV). Additionally,
biochemical  diagnosis  contributes to
the confirmation or exclusion of the the role
of a UV as a cause for MNGIE. Similarly,
biochemical assessment is preferred over
clinical diagnosis since some of the classical
symptoms of MNGIE can be absent. Other
frequently observed findings in MNGIE
patients include metabolic abnormalities such
as lactic acidosis, deficiency of mitochondrial
respiratory chain enzymes, mainly complex I
and IV (Hirano et al., 1994) (Debouverie et al.,
1997), urinary Thd and dUrd accumulation
(Fairbanks et al., 2002;Spinazzola et al., 2002;1a
Marca et al., 2006) and elevated protein levels
in CSF (Bedlack et al., 2004). Infrequently,
skeletal muscle biopsies may reveal ragged
red fibers, and mtDNA analysis may reveal
acquired deletions,
mutations (Teitelbaum et al., 2002;Nishigaki

depletions or point

et al., 2003).



Pathogenesis, current and prospective treatments for MNGIE

Figure 1. Brain MRI findings in MNGIE. MRI of MNGIE patient at age 16 with “ typical” MNGIE
phenotype . (A) T1 weighted sagital image shows cerebellar vermis atrophy (arrow) and normal
gyral pattern. (B) Axial T2 with hyperintensities in the dorsal pons and mesencephalon (arrow). (C
coronal flair image, D axial T2) show extensive signal abnormalities in the cerebral white matter.
The external capsule is involved as is the inner blade of the corpus callosum (arrow C, D). (E, F)
Extensive white matter involvement with sparing of the U-fibers (arrow).

| PATHOGENESIS

The TP enzyme converts mitochondrial
dThd and dUrd to the nucleotide bases
thymine and uridine respectively and 2-deoxy
ribose 1-phosphate (Friedkin and Roberts,
1954). This occurs in de novo synthesis or
via the salvage pathway. dThd and dUrd
are homogeneously present in cellular and
plasma compartments and they translocate
between compartments through nucleoside
transporters (NTs). In humans two unrelated
protein families have been described (Young
2013),
transporters (CNTs), an active transport

et al, concentrative nucleoside

system, and equilibrative nucleosides
transporters (ENTs) responsible for passive
facilitated diffusion.

The bidirectional ENTs, mainly ENTI,
are ubiquitously present on almost all cell
types and mediate the uptake and efflux of
nucleosides (Figure 2B). Therefore they are
important for cells that rely on the salvage
pathway for supply of nucleosides, including
bone marrow cells, erythrocytes and
leukocytes, brain and muscles (Young et
al., 2008). Although TP is not expressed in

all tissues, the TP expressed in circulating
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Table 1. Common and rare clinical symptoms in MNGIE patients.

Complication

Symptoms

Pathophysiology

Gastrointestinal

Ocular

Auditory

CNS

PNPs

Skeletal muscle

Others

Appetite loss, satiety
Weight loss

Digestive features: Chronic
diarrhea, abdominal pain,
cramps, nausea, colonic
distension, dysphagia
External ophthalmoplegia,
ptosis, retinal pigmentary
changes, glaucoma, optic
nerve atrophy

Deafness

Mental changes, subcortical
loss of cognitive functions,
memory impairment

Numbness and paraesthesia

Proximal myopathy

Endocarditis

Spontaneous abdominal
esophageal perforation

Short stature
Cardiomyopathy
Psoriasis

Myogenic (visceral smooth muscle):

atrophy in the muscularis propria of the stomach and
small intestines.

Neurogenic (enteric nervous system): loss of
the interstitial cells of Cajal.

Mixed myo-neurogenic causes

Dysfunction of cranial nerve and auditory cortex.
Atrophy of the stria vascularis in the cochlea

leukencephalopathy

Demyelinating sensorimotor type: reduced sensory
motor conduction, loss of myelin sheaths in lumbar
and brachial plexus.

mtDNA molecular alterations and abnormal respiratory
chain enzymes in skeletal muscles

CIPO, Chronic intestinal pseudo obstruction; CPEO, Chronic progressive external ophthalmoplegia;

CNS, central nervous system; PNPs, polyneuropathies
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Remarks Study

A major cause of death and survival is generally related  (Granero Castro et al., 2010),(Garone et al.,

to the severity of these symptoms. 2011),(Giordano et al., 2008),(Zimmer et al.,
Can lead to severe denutrition, anaemia and eventually ~ 2009) ,(Perez-Atayde et al., 1998) ,(Blondon et
the necessity for nutritional supportive treatments. al., 2005),(Chapman et al., 2014).

CIPO in the early disease course is under recognized.

CPEO phenotype is often present. Recovered upon HSCT  (Threlkeld et al., 1992),(Barboni et al.,

transplantation compared to untreated patient. 2004),(Vinciguerra et al., 2015)
Hearing loss is common among patients (Hirano et al., 1994), (Yasumura et al., 2003),
(in 61% of patients). (Li et al., 2011), (Mattman et al., 2011)

Satisfactory results were obtained soon following

cochlear implantation in MNGIE patients.

MNGIE is an example of an adult mitochondrial disorder (Millar et al., 2004),(Barragan-Campos et al.,
in which leukodystrophy is observed. 2005),(Scaglia et al., 2005) ,(Schupbach et al.,
Patients presenting the characteristic multisystem 2007),(Schiffmann and van der Knaap, 2009)
symptoms of MNGIE have a unique pattern on brain MRI .(Scarpelli et al., 2013),(Carod-Artal et al.,
indicative of vasogenic oedema and glial cell dysfunction. 2007;Salsano et al., 2013)

To date, it is debatable whether or not the extent of

these brain MRI signal alterations, correlates with age,

clinical severity, CNS involvement or the biochemical and

genetic profiles of MNGIE patients.

Neuropathy usually is not among the first symptoms of ~ (Simon et al., 1990),(Hirano et al.,

the disease. 1994),(Bedlack et al., 2004),(Menezes and
Some MNGIE cases are misdiagnosed with chronic Ouvrier, 2012),(Pupe et al., 2012)
inflammatory demyelinating polyneuropathy.

Two cases with classical clinical presentation of MNGIE,  (Papadimitriou et al., 1998),(Hirano et al., 2004),
were reported without skeletal muscle involvement. (Szigeti et al., 2004b;Cardaioli et al., 2010;
Both cases showed identical homozygous splice-acceptor Bax et al., 2013)

site mutation in TYMP gene (c.215-1G>C), which may

suggest a genotype-phenotype correlation.

Rare complications (Hirano et al., 1994),(Yolcu et al.,

Short stature as seen in many mitochondrial diseases and 2014),(Kalkan et al., 2015)

partly as a complication of failure to thrive
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Figure 2. Schematic representation of autologous hematopoietic stem cell based gene
therapy for MNGIE and possible mechanism of biochemical correction by gene modified
HSCs. (A) Autologous bone marrow (BM) aspirates or apheresis of peripheral blood HSCs (PBSCs)
after treatment with rh-G-CSF or plerixafor are collected from MNGIE patient. HSCs are ex vivo
transduced by GMP grade lentiviral vectors containing the human TYMP transgene. Before infusion
of the transduced cells, MNGIE patients are pre-treated with non-myeloablative conditioning to
allow minimal engraftment of gene modified HSCs. (Selection and ex vivo expansion of gene
modified HSCs allows for transplantation of large numbers of gene modified HSCs to obviate
the need for myeloablative pre-conditioning and allows (to some degree) for assessment of safety of
the gene modified HSCs prior to transplantation, for example by lentiviral vector integration analysis
(reviewed in (Watts et al., 2011). (B) The enzyme thymidine phosphorylase (TP) is deficient in all
tissues of MNGIE patients, which leads to accumulation of the nucleoside substrates dThd and dUrd
and depletion of the nucleotide dCTP and finally mtDNA depletion and deletion (Gonzalez-Vioque
etal., 2011). Following transplantation of gene modified HSCs and homing to bone marrow, these
cells differentiate into all types of blood cells, LV genome and human TYMP transgene are integrated
in leukocyte DNA ensuring stable expression of TP. TP catalyzes the chemical reaction which
breaks down the nucleosides. This process eventually leads to reduction of systemic nucleosides
accumulation. Nucleoside transporters mediate nucleosides transfer via passive facilitated diffusion
(ENTs) and active transport (CNTs), the ubiquitous bidirectional ENTs are depicted (Young et al.,
2013). In addition, some gene modified HSCs differentiate into monocytes and may migrate to
the brain giving rise to microglia which act as a TP reservoir and cross correct the other cells in CNS.
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platelets and leukocytes and some other
tissues is essential to degrade the excess
amounts of dThd and dUrd nucleosides which
are secreted into the blood (Lara et al., 2007).

The molecular pathological mechanism in
MNGIE involves imbalanced nucleosides and
nucleotide pools. Initially, loss of function
mutations in TYMP gene were identified
resulting in reduced TP activity (Nishino et
al., 1999) leading to accumulation of access
amounts of the nucleoside substrates in
blood plasma, urine and almost all tissues
(Spinazzola et al., 2002;Valentino et al., 2007).
It has been hypothesized that this biochemical
disturbs the

intra-mitochondrial

imbalance equilibrium  of
deoxyribonucleoside
triphosphates (ANTPs) pools (Spinazzola et
al., 2002) and hence is responsible for mtDNA
depletion, multiple deletions and point
mutations associated with MNGIE (Hirano
et al, 1994;Papadimitriou et al., 1998)
(Nishino et al., 2000;Nishigaki et al., 2003).
Therefore, recent studies have addressed
the relationship between biochemical and
dNTP pool imbalances and subsequent
mtDNA abnormalities in MNGIE. In vitro,
mtDNA point mutations

similar to those detected in MNGIE patients

and deletions,

were reported in cultured Hela cells after
long time culture in the presence of high
levels of thymidine in the culture medium.
These mtDNA alterations were attributed
to expanded levels of deoxythymidine
triphosphate (dTTP) and deoxyguanosine
triphosphate (dGTP) and reduced levels
of deoxycytidinetriphosphate (dCTP) and
(dATP).
However, no mtDNA depletion was observed
in these HeLa cells (Song et al., 2003). Further

investigation revealed that this increase in

deoxyadenosine  triphosphate

dTTP, under similar culture conditions,

was more pronounced in non-cycling skin
and lung fibroblasts leading to depletion in
mtDNA in a dThd dose and time dependent
manner (Pontarin et al., 2006). Interestingly,
mtDNA levels were recovered upon removal
of the dThd from the culture medium. In order
to understand the influence of metabolites
accumulation on the creation of mtDNA
alterations, an in organelle experimental
model was used. Excess amounts of dThd
were responsible for the significant increase
in mitochondrial levels of dTTP, together
leading to secondary TK2 inhibition mediated
reduction of dCTP nucleotides (Gonzalez-
Vioque et al., 2011). Subsequent studies
confirmed these findings in in vitro fibroblast
cultures and in vivo in the Tymp” Uppl”
mouse model and suggest that the inadequate
availability of dCTP accounts for the mtDNA
depletion observed in MNGIE (Gonzalez-
Vioque et al., 2011;Camara et al., 2014;Torres-
Torronteras et al., 2014).

Altogether, these studies demonstrate
that indeed it is the nucleoside accumulation
dCTP

nucleotides, rather than the deficiency of

and subsequent reduction of
TP per se, that accounts for the molecular
and phenotypic alterations in MNGIE. An
excellent illustration of this observation
is the fact that TP expression in skeletal
muscles is absent, nonetheless, some but not
all MNGIE cases were reported with skeletal
muscle mtDNA deletions, histological and
oxidative  phosphorylation abnormalities
(Papadimitriou et al, 1998Hirano et
al., 2004).

When

analysis of postmortem MNGIE samples is

available, although limited,
relevant and beneficial to gain knowledge
about the molecular and pathological basis

of the disease. Severe intestinal dysmotility,
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also known as chronic intestinal pseudo

obstruction (CIPO), and weight loss
are principle presentations of MNGIE.
Histopathological analysis of MNGIE

gastrointestinal samples revealed depletion in
mtDNA and mitochondrial proliferation, and
consequently cell atrophy in the muscularis
propria layer of the stomach and small
intestines (Giordano et al., 2006;Giordano
et al., 2008). Additionally, loss of interstitial
cells of Cajal and morphologically abnormal
muscularis propria and ganglion cells have
been reported (Zimmer et al, 2009). On
the other hand, the study of brain tissues of
2 MNGIE patients revealed no pathological
proliferation of glial cells nor neuronal
loss. However, the study suggested a role
of TP deficiency in impairment of blood
brain barrier, which could contribute to
the observed hyperintense T2 signals on brain
MRI scans (Szigeti et al., 2004a).

Nucleoside accumulation is detrimental

probably during the early course of

the disease, because nucleoside clearance
did not improve mtDNA content per cell
or reduce COX deficient fibers after liver
transplantation (De Giorgio et al,, 2016).
Mitochondrial DNA instability is a hallmark
for diseases caused by defective nuclear genes
essential for mtDNA replication and repair
(such as PEOI, POLGI1,2) or maintenance
of ANTP pools (such as ANTI, TYMP) or
others involved in mtDNA homeostasis (such
as FBXL4) (Young and Copeland, 2016).
Mutations in PEOI, POLG and ANT1 underlie
the autosomal dominant form of progressive
(adPEO),
a very well characterized mtDNA disorder

external ophthalmoplegia
involving stalling of mtDNA replication
(Van Goethem et al,, 2001;Goffart et al,
2009). Therefore, stalling of Twinkle helicase
or DNA polymerase y could be a common
pathological mechanism underlying mtDNA
instability in MNGIE, PEO and mtDNA
depletion syndrome (Hirano et al., 2001;Liu
et al., 2008).

| CURRENT TREATMENTS FOR MNGIE

In general, treatment of mitochondrial

diseases is mainly based on symptom
management and supportive care (Pfeffer
et al, 2013). Vitamin and amino acid
supplements (Tanaka et al., 1997) and exercise
therapy (Taivassalo et al., 1998) aiming
to improve mitochondrial functions are
recommended for mitochondrial myopathies.
of MNGIE

consists of nutritional support (Wang et al.,

Symptomatic management
2015), prevention of infections and pain relief
including interventions such as celiac plexus
neurolysis and blockage of the splenic nerve
(Teitelbaum et al., 2002;Celebi et al., 2006).

Since the metabolicand mtDNA abnormalities

are attributed to the systemic nucleoside
imbalances, clinical interventions focus on
direct removal of these metabolites to restore
the balance or by introducing the deficient

enzyme to reduce the metabolites.

Hemodialysis and peritoneal dialysis
The first hemodialysis aiming to remove
the excess amounts of nucleosides from
the circulation was performed in 2002
(Spinazzola et al., 2002) in two MNGIE
patients followed by another in 2006. In
the first two patients, significantly reduced
thymidine levels were observed shortly

after hemodialysis, however this effect was
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transient as thymidine levels returned to
pre-dialysis levels 3 hours after dialysis
(Spinazzola et al., 2002). A progressive
reduction in Thd levels below the basal
levels was observed after repetitive dialysis
treatments in the third case (la Marca
et al, 2006). A MNGIE patient who had
peritoneal dialysis showed an improvement in
gastrointestinal symptoms (such as vomiting,
anorexia, abdominal pain and diarrhea)
during the continuing peritoneal dialysis for
three years with body weight gain, although
other major symptoms including ocular and
neurological abnormalities and brain MRI
signals did not change (Yavuz et al., 2007).
Another case report noted improvement
of the gastrointestinal and neurological
symptoms, mainly the mitigation of numbness
in the hands, until nucleoside levels increased
again 15 months after continuous ambulatory

peritoneal dialysis (Ariaudo et al., 2014).

Enzyme Replacement Therapy (ERT)

Initially, platelet infusions were performed in
two MNGIE patients to restore TP enzyme
activity in the blood. This approach showed
efficient recovery of functional TP enzyme
and correction in nucleoside imbalances,
however, like dialyses, these improvements
were temporary requiring multiple treatment
sessions for long-term responses. ERT is
a reliable, well-tolerated approach to replace
the deficient enzyme in a variety of lysosomal
storage disorders including Gaucher, Pompe
and Fabry disease and Sly syndrome (Wilcox
et al., 2004;Burrow et al., 2007). For MNGIE,
approaches were developed to encapsulate TP
in order to prolong the half-life of circulatory
TP enzyme and reduce the immunogenic
These  include

reactions. polymeric

nanoparticles (De Vocht et al, 2009) and
erythrocytes as they are permeable and
affect the plasma metabolites, such as in
adenosine deaminase deficiency (Bax et al.,
2000;Moran et al., 2008). The erythrocyte
encapsulated TP (EE-TP) concept is under
clinical development as an orphan ERT
for MNGIE with the first attempt carried
out in a MNGIE patient in 2008 (Moran
et al., 2008). In this approach, autologous
erythrocytes were isolated from patients and
loaded with recombinant E.Coli TP enzyme
in vitro via hypo osmotic dialysis. Significant
clinical improvements were observed such as
the ability to walk and climb and the recovery
of sensation and the mitigation of numbness
in hands and feet, even after 23 months after
termination of multiple cycles of EE-TP (Bax
etal., 2013). When using the EE-TP approach,
there is a high risk that an immunological
reaction is triggered against the bacterial TP,
especially if the infusions are repeated several
times, although this has not been observed
(Levene et al., 2013).

Orthotopic liver transplantation
(OLT)

Liver transplantation is a new ERT strategy
for treatment of MNGIE patients. TP protein
levels are high in healthy human liver tissues
and significantly higher than in bone marrow
cells (Boschetti et al., 2014). Recently, OLT
was successfully applied in a severely affected,
25-years old MNGIE patient (De Giorgio et
al., 2016). Steady state nucleoside balance was
observed up tol3 months post OLT. Slight
improvements in lower limb strength and
brain metabolism (reduced lactate levels) and
structure (reduced cerebellar mean diffusivity

values at diffusion MRI), improved quality of
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life scores and nutritional parameters, but not
body weight (40 kg), were observed up to six
monthsafter OLT. When ileostomy closure was
performed, the gastrointestinal (GI) functions
and body weight declined at 13 months (37
kg). Therefore, it remains uncertain whether
the mild restoration of GI function was due
to the decompressive ileostomy, instead of
the OLT. In addition, skeletal muscle mtDNA
content per cell was slightly increased after
OLT. The study suggests that the damage
in post mitotic tissues during late stages of
the disease is irreversible despite recovery of
nucleoside balance. Therefore, biochemical
correction should probably be achieved prior
to irreversible damage, preferably before
the intestinal symptoms appear. Preoperative
conditioning for OLT is not required.
However, this approach requires matched
organ donors (which are limited), involves
transplantation related risks and requires
long-term immunosuppression which all can

further affect the quality of life of the patients.

Hematopoietic stem cell

transplantation (HSCT)

Another possibility to restore TP enzyme
activity in the circulation is by HSCT. Recently,
aretrospective analysis of all HSC transplanted
MNGIE patients between 2005-2011 showed
that only nine out of 24 patients were alive up
to four years after transplantation. All nine
survivors had normalized TP activity in their
blood while seven of them showed improved
body mass index, gastrointestinal symptoms
and peripheral neuropathy. On the other

hand, nine MNGIE patients died mainly due
to transplant-related causes such as GVHD
and graft failure, including recipients of HLA-
mismatched unrelated cord blood transplants,
while the remaining six patients died of disease
progression. The recommendations of this
study included transplantation of a sufficient
number of cells, because in some patients
the graft was rejected, and to consider more
closely HLA matched donor cells, because
of the large number of GVHD observed in
this retrospective study, and to transplant
at an earlier age before major organ damage
has occurred (Halter et al., 2011;Halter et
al,, 2015).

The poor physical state of MNGIE patients
when they enroll HSCT trials increases the risk
for transplantation related complications
caused by conditioning regimens and
immune-suppressants. Other problems may
arise from the drugs used in HSCT which are
potentially harmful to mitochondria such as
cyclophosphamide (Mariana Ponte Cardoso
et al., 2015). Therefore, MNGIE patients are
treated with Busulfan and fludarabine prior
to HSCT, following the recommendations
of MNGIE consensus meeting in 2011
(Halter et al., 2011). For MNGIE patients
who develop liver cirrhosis, AHSCT should
be contraindicated and OLT would be
the treatment of choice (Finkenstedt et al.,
2013). Pre-existing liver cirrhosis complicates
liver failure which may develop after AHSCT
due to multiple factors such as viral infections
in immunocompromised recipients or due to

hepatotoxic conditioning drugs.
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| PRE-CLINICAL EXPERIMENTAL APPROACHES

TOWARDS THERAPY
Models of MNGIE

In organello experiments and human MNGIE
fibroblasts were used for highlighting parts
of the molecular mechanism of MNGIE
(Gonzalez-Vioque et al.,, 2011;Camara et al,,
2014). To study therapeutic interventions,
such as gene therapy, in vivo models are
required. A mouse model was developed by
targeted disruption of exon 4 of the TYMP
gene to generate Tp” mice. In contrast to
human TP, murine TP degrades both dThd
and dUrd; Tp” mice were crossed with
Uppl” to generate the Tymp” Uppl”’ mice,
which are currently the only relevant in vivo
animal model (Haraguchi et al., 2002;Lopez
2009).
increased levels of the purine nucleosides
dThd and dUrd in plasma and tissues.
Diffuse leukoencephalopathy manifests late

et al, Tymp”-Uppl”- mice show

during the lifetime of these animals, around
the age of 22 months (Lopez et al., 2009).
Other symptoms associated with MNGIE,
such as decreased motor coordination and
gastrointestinal features have not been
reported in this mouse model. Brain mtDNA
depletion was not consistently found in this
mouse model (Lopez et al, 2009;Torres-
2011;Camara et al,

2014). Therefore, high doses of exogenous

Torronteras et al,
nucleosides were administered to exacerbate
the mitochondrial phenotype (Garcia-Diaz et
al., 2014), an approach that was rationalized
by the lower nucleoside levels in Tymp”-Upp1”
mice compared to MNGIE patients. Mice were
on an exogenous dThd and dUrd diet for along
time (24 months) before pronounced mtDNA
depletion, diffuse leukoencephalopathy and

motor abnormalities were observed.

Experimental approaches have been
explored for treatment of MNGIE; among
which experiments performed by Camara et
al which suggest that modulation of dNTP
metabolism through increasing the availability
of dCTP or inhibition of its catabolism can
indeed reverse and prevent, at least, dCtd
imbalance. A strategy that can be applied for
other similar mitochondrial disorders that
are caused by altered nucleosides and dNTP
metabolism, for example in disorders caused
by mutations in TK2 or DGUOK deficiency
(Camara et al., 2014).

Gene Therapy

The Tymp”-Uppl” mouse model has also been
used for testing potential curative treatments.
A recently investigated strategy is the use of
gene therapy. Both lentiviral (LV) and adeno-
associated viral (AAV) vector mediated
TYMP gene transfer have been evaluated in
pre-clinical studies for treatment of MNGIE.

AAV-mediated liver directed gene
therapy

AAV vector gene therapy has been explored
in clinical trials for a variety of inherited
(Naldini, 2015).

The main limitation of this approach is

and acquired diseases

the human immune response to AAV capsid,
as demonstrated in hemophilia B trials. In
one of the first AAV trials targeting the liver,
therapeutic levels of coagulation factor IX
(FIX) were achieved at a high vector dose
(2x10' vector genomes per kilogram of
body weight, vg/kg). Nonetheless, this high
vector dose was associated with an early

decline of FIX (~8 weeks after treatment)
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due to T-cell immunity against AAV capsid
antigens eliminating transduced hepatocytes
(Manno et al., 2006).

The hybrid vector AAV2/8 with modified
molecular configuration (packaged double
stranded genome) and improved cassette
design (codon optimized hFIX) to enhance
transduction and translational efficiency was
explored in a hemophilia B trial (Nathwani et
al.,2006). Stable FIX expression diminished use
of the costly FIX concentrate and importantly,
clinical improvement was achieved in
a dose dependent manner. The least bleeding
episodes were seen in recipients of the highest
AAV dose (steady state 5% of normal levels
at a single vector peripheral vein infusion of
2x10" vg/kg up to four years) (Nathwani et
al., 2014). For MNGIE, an AAV2/8 expressing
human TYMP under the control of hepatic
promoter was used for treatment of Tymp”
Upp1”- mice (Torres-Torronteras et al., 2014).
Low AAV doses (2x10" vg/kg ) were sufficient
to reduce nucleoside imbalances to normal
levels in liver, skeletal muscle and brain for up
to eight months, while higher doses reduced
nucleosides below detection levels. However,
only at higher doses (>2x10'vg/kg) TP
activity was increased in the liver (but not in
skeletal muscle or brain).

Inlightofthe clinical data of the hemophilia
B trial which shows that clinical improvement
was AAV dose dependent (Nathwani et al.,
2014), the question for MNGIE is whether
or not the low AAV dose would be sufficient
to reverse a clinical phenotype beyond
MNGIE mouse
studies failed to report any relevant clinical
in  Tymp”Uppl”

biochemical correction.

phenotype mice, and
therefore the potential or required dosage to
cure it has not been demonstrated (Torres-

Torronteras et al., 2011;Torres-Torronteras et

al., 2014). Importantly, upon AAV treatment
nucleosides accumulation was not reduced in
the intestine of treated mice at the highest dose
(10" vg/kg) administered. Since the intestines
are heavily affected in MNGIE patients it is
important to obtain evidence of correction in
this organ. Preclinical studies in hemophilic
dogs and non-human primates could predict
the therapeutic dose in human trials (Manno
et al, 2006;Nathwani et al., 2014) if that
is the case for MNGIE too, biochemical
correction in the intestine might require
improved expression cassettes to enhance
protein production, targeting the expression
to major affected organs, or the less favorable
option of using higher AAV doses (>10" vg/
kg). High doses, for example 7.2 x 10 vg/
mouse were sufficient to transduce 100%
of mouse hepatocytes (Nakai et al., 2005).
Such high doses might be required for gene
therapy of systemic diseases, i.e. when non
hepatic tissues are also affected, as in MNGIE.
However, these high AAV doses are likely to
cause hepatocellular toxicity, biodistribution
to other unwanted organs and shedding of
the AAV, enhanced risk of eliciting immunity
towards the viral capsid and increased costs
of virus production. Immunity against
ectopic TP might be an additional concern
for MNGIE patients, therefore prophylactic
immunosuppression might be required.
Additional pre-clinical studies have to address
the possibility of an immune response against
ectopic TP in previously untreated patients.
In addition to increased liver TP activity
correlating with vector dose, an unexpected
increase in liver dGTP of Tymp”Uppl” mice
was observed in a dose depend manner as well,
although the consequences of this increase

are unknown. Together these findings suggest
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that studies into optimal dosing of AAV may
be required for clinical application.

Human AAYV trials should be carried out
cautiously as they can reveal complications
that were not observed during preclinical
studies. An example is the early decline in
FIX expression (Manno et al, 2006) and
hepatotoxicity observed in 4/6 recipients of
a high AAV dose (2x10" vg/kg) (Nathwani
et al., 2014), due to immunity against AAV
capsid. MNGIE patients are often > 12 years
and probably have been pre-exposed to AAV
and consequently can mount strong immune
responses to AAV. Therefore, individuals
with neutralizing antibodies to AAV should
be excluded from clinical trials to avoid an
immune response towards AAV. Another
concern is the durability of transgene
expression considering the longer lifespan
of humans, compared with the animals in
preclinical studies, and the potential need for
recurrent AAV injections, especially at lower
vector doses. In this respect hematopoietic
stem cell gene therapy (HSCGT) would
provide a preferable option as a single, long
lasting intervention method. Additional
concerns related to AAV mediated gene
therapy include purity of AAV preparations
and manufacturing costs (Mingozzi and
High, 2013).

LV-mediated hematopoietic stem cell
gene therapy (HSCGT)

The encouraging therapeutic outcomes and
favorable safety profile renders LV-HSCGT
an attractive therapeutic approach for
a variety of hereditary metabolic disorders
2014), and is potentially
advantageous over AHSCT for
selected diseases (Naldini, 2015). Proof of

concept of HSC gene therapy was obtained

(Wagemaker,

certain

in Tymp”Uppl” mice (Torres-Torronteras
et al., 2011) using a phosphoglycerate kinase
promoter driving native human TYMP
c¢DNA and a GFP reporter in hematopoietic
cells resulting in biochemical correction
blood
et al., 2011). More recently, we developed

in peripheral (Torres-Torronteras
clinically applicable LVs that carry human
TYMP cDNA, and demonstrated long-term
biochemical correction in Tymp”Uppl”
mice at low vector copy number (VCN). Our
data demonstrates the feasibility to further
develop clinical protocols for HSCGT for
MNGIE (Yadak et al., 2015). Similar results in
a long-term follow up of 20 months confirms
the correction of biochemical imbalances
which was maintained at low vector copy
number and chimerism (Torres-Torronteras
et al., 2016).

In HSCGT for MNGIE, HSCs are isolated
from MNGIE patients, transduced ex vivo
by LV vectors carrying a functional copy
of TYMP and infused back into the patient
(Figure 2A). The newly formed HSCs and
its progenitors produce TP which catabolize
the excess amounts of nucleosides (Figure
2B). Since the patients own stem cells are
used, GVHD is not a concern. However, mild
prophylactic ~immunosuppression maybe
required to prevent possible immune reaction
against the TP transgene.

Myeloablative pre-conditioning might
be necessary for high levels of engraftment
in other metabolic disorders, such as
metachromatic leukodystrophy (MLD), due
to lack of selective advantage of gene modified
cells. In particular, busulfan myeloablative
conditioning is used in MLD patients for
depletion of endogenous microglia and
mobility of gene modified monocytes through

the blood brain barrier (BBB) (Capotondo et
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al., 2012). The contribution of gene modified
microglia to correct biochemical imbalances
has never been explored in MNGIE. However,
murine gene therapy studies using LV and
AAV vectors implicate reversal of nucleoside
imbalance at low or possibly no increase
in brain TP activity (Torres-Torronteras et
al., 2014;Torres-Torronteras et al., 2016). In
liver directed AAV2/8 gene therapy, it is not
expected that brain cells will be transduced.
In HSCGT, gene modified monocytes are
expected to migrate to brain and differentiate
into microglia. Nonetheless, the results of
the HSCGT MNGIE mouse study do not
rule out the potential that gene modified
microglia can contribute to correction
of brain biochemistry and phenotype,
although this might not be necessary if
ectopic expression outside the brain is high
When
is high enough, significant TP activity

enough. transduction  efficiency
can be measured in the brain, indicating
that transduced microglia might reside
in the brain after long-term follow-up. To
that end, two potential mechanisms might
act synergistically to normalize the brain
nucleoside levels, a systemic ectopic source
and one local contribution of gene-modified
cells (Figure 2B).

Potential options and future research
for application in MNGIE patients include
alternative conditioning strategies to obviate
the cytotoxicity related to myeloablative
conditioning and strategies to enhance
the quality of infused gene modified HSCs.
One approach is to mobilize endogenous
HSCs into peripheral blood in order to
create (space) in the bone marrow for
the infused donor HSCs to engraft (Chen
et al., 2006). Human granulocyte colony

stimulating factor (G-CSF) was sufficient in

immunocompromised mice (Huston et al,
2014), probably due to the selective advantage
of the gene modified cells, however more
stringent agents might be required in normal
immunocompetent mice. A possibility is
G-CSF in combination with the more potent
HSCs mobilizer plerixafor (a specific CXCR4
antagonist) or the selectins inhibitor fucoidan.
Such regimens probably require additional
mild chemotherapeutics, in particular if
the gene corrected TP-expressing HSCs lack
selective growth advantage to overcome
host cells. These HSCs mobilizers act via
different mechanisms, therefore parameters
such as the optimal dose and time frame for
transplantation after mobilization need to be
established in relevant pre-clinical models.
Alternatively, targeting specific endogenous
hematopoietic populations might reduce
the off-target toxicity related to the common
non-specific conditioning (Aiuti and Naldini,
2016). Examples include inhibiting c-kit,
a HSC tyrosine kinase cell surface antigen
(Xue et al., 2010) and the recently developed
immunotoxin against hematopoietic stem
cells (CD45-SAP) (Palchaudhuri et al., 2016).

Strategies such as ex vivo expansion of
gene modified HSCs can improve the quality
of the infused gene modified cells and enhance
the outcome of gene therapy (Watts et al.,
2011). In particular when combined with
additional approaches to enrich for HSCs,
preserve stemness of- and enhance homing
and engraftment ability of gene modified
HSCs (Psatha et al., 2016). Ultimately, this
approach combined with improved mild pre-
conditioning protocols, could benefit patients
in poor health condition at transplantation,
such as in MNGIE patients.

A risk of HSC gene therapy is insertional
mutagenesis. The first HSC gene therapy
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trials used gammaretrovirus (y-RV) based
vectors for treatment of X-linked severe
immunodeficiency (SCID-X1)
(Gaspar et al., 2004;Hacein-Bey-Abina et al,,
2010), adenosine deaminase (ADA-SCID)
(Aiuti et al., 2002), chronic granulomatous
disease (CGD) (Ott et al, 2006) and
Wiskott-Aldrich syndrome (WAS) (Boztug
et al., 2010). Although efficient correction
of immunodeficiency was achieved in most
patients in SCID-X1, CGD and WAS trials,
lympho-proliferative (Hacein-
Bey-Abina et al., 2003a;Hacein-Bey-Abina
et al., 2003b;Hacein-Bey-Abina et al,
2008;Howe et al., 2008;Braun et al., 2014) and
myelodysplasia (Stein et al., 2010) developed

combined

disorders

secondary to y-RV vector integrations within
or nearby proto-oncogenes. In addition to
the preferred integration profiles over y-RV
vector (Deichmann et al., 2007;Gabriel et
al., 2012;Cattoglio et al., 2007), LV efficiently
transduce non-cycling primitive HSCs and
under minimum culture conditions (Naldini
et al.,, 1996;Guenechea et al., 2000). Therefore,
attention was focused on development of
LV as a relatively safer approach, leading
third-
generation self-inactivating HIV derived-
vectors (SIN-LV) (Dull et al., 1998;Zufferey
et al., 1998). Several pre-clinical studies

eventually to development of

indicate the reduced genotoxicity of SIN-LV
vectors compared with y-retroviral vectors,
in particular SIN-LV common integration
sites  (CIS)
integration near proto-oncogenes (Montini
et al., 2006;Modlich et al.,, 2009;Romero et
al., 2013;Zhou et al., 2013;Biffi et al., 2011).
Since then, SIN-LV vectors have been applied

revealed no preference of

successfully in ongoing clinical trials for
a variety of metabolic (Cartier et al., 2009;Bifh

et al., 2013) and immunodeficiency disorders

(Aiuti et al., 2013), and no adverse events have
yet been reported in these trials. Moreover,
the therapeutic benefits without toxicity
related to transgene expression and biosafety
of SIN-LV vectors has been further validated
through a growing body of recent preclinical
studies supporting the initiation of clinical
trials, for example for B-thalassemia (Negre
et al, 2015) and mucopolysaccharidosis I
disease (Visigalli et al., 2016).

Furthermore, selective advantage for
growth and differentiation conferred by
the therapeutic transgene expression increases
the potential risk for proliferative disorders,
this was reported in some immunodeficiency
conditions (Aiuti and Roncarolo, 2009). For
metabolic disorders, for instance lysosomal
storage disorders , however, most studies show
that enzyme positive cells have no selective
advantage (Bernardo and Aiuti, 2016), which
is most likely the case in MNGIE as well. To
improve safety, technologies such as ex vivo
expansion of gene modified HSCs may permit
for safety assessment (to some degree) prior to
transplantation, by analysis of LV integration
sites (Watts et al., 2011) (Figure 2A).

AAV mediated GT or HSCGT?

Regardless of the type of viral vector used
for gene therapy, the chosen strategy should
provide long-term expression of the gene of
interest without side effects in the host. It is
important to apply a well-defined vector dose
that is sufficient to reverse the biochemical
and nucleotide imbalance without any
potential side effects. In particular, abnormal
overexpression of the TP enzyme is detected in
different tumor types, including non-small cell
lung-, colorectal-, breast-, gastrointestinal-,

and hepatic cancers (Koukourakis et al.,
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1997;Mori et al, 2000;Ikeguchi et al,
2001;Nakayama et al., 2005;Mitselou et al.,
2012) and correlates with a worse prognosis
in colorectal cancer patients (Takebayashi
et al., 1996). Besides, disturbance of dNTP
pools can be a trigger for cell cycle arrest
and apoptosis (Oliver et al., 1996) (Kumar et
al,, 2010).

| CONCLUDING REMARKS

The lack of mitochondrial histone protection,
the limited repair capacity and oxidized
dNTPs contributing to mismatch errors
(Alexeyev et al., 2013) all make mitochondria
more susceptible than nuclear DNA to
mutagenesis. It has become evident that it
is the systemic accumulation of nucleosides
in MNGIE (Di Meo et al., 2015) that causes
imbalances in mitochondrial dNTP pools.
However, the mechanism by which it
causes mtDNA alterations is still unknown.
Although the current treatments focus on
restoration of TP enzyme activity and/ or
elimination of accumulating metabolites,
further understanding of cellular mechanisms
involved in maintenance of mtDNA integrity
and copy number can provide targets for
clinical intervention for MNGIE and possibly
other mitochondrial disorders.

Platelet
dialysis and erythrocyte encapsulated TP

infusions, hemato/peritoneal
enzyme replacement therapy could be used
to provide biochemical correction. AAV gene
therapy and lentiviral HSCGT are potential
curative options as evidenced by the promising
pre-clinical results in Tymp”Uppl” mice
. OLT is a promising emerging treatment

and should currently be the treatment of

The medical condition of the patient can
also influence the choice of the vector system
for clinical application. For terminally ill
patients, the AAV approach could be most
suitable to avoid the risks associated with
the pre-conditioning for transplantation in
autologous HSC gene therapy or if a suitable
HSCs donor for AHSCT is lacking.

choice for MNGIE patients with pre-existing
liver failure. Allogeneic HSCT has risks
of graft failure, GVHD and conditioning-
related toxicity. Milder conditioning may be
applicable in HSCGT, and treatment should
preferably be applied at an early age. Novel
strategies are being explored to improve
the safety and efficiency of viral based gene
therapy, ultimately for MNGIE patients as
well. These include strategies to enhance
transduction, improve engraftment of gene
modified HSCs and limit transplantation
related toxicity, and others to overcome
the limitation of AAV capsid triggered
immunity by means of novel serotypes and
improved transcription cassettes.

MNGIE patients should receive suitable
treatment promptly before permanent
damage occurs, which can be challenging,
as MNGIE patients are often diagnosed late
during disease progression in a poor health
condition. Because TP activity and nucleoside
levels can be routinely measured in blood
samples, MNGIE should be considered to be
included in newborn screening programs,
similar to other (neuro) metabolic disorders
for early diagnosis and treatment (Carlson,
2004;McHugh et al,, 2011).



Pathogenesis, current and prospective treatments for MNGIE
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AAV: adeno-associated virus; ADA-SCID:
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type 1; BBB: blood brain
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barrier;

chronic intestinal pseudo obstruction; CIS:
common integration site; CNT: concentrative
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nucleoside transporter; chronic
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growth
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endothelial cell
factor; EE-TP: erythrocyte encapsulated TP;
ENT: equilibrative nucleosides transport;

ERT: enzyme replacement therapy; FBXL4:

F-box and leucine-rich repeat protein
4; FIX: IX; G-CSE:

granulocyte colony stimulating factor; y-RV:

coagulation factor

gammaretrovirus; GVHD: graft versus host
HSCT:

transplantation;

disease; hematopoietic stem cell
HSCGT:

stem cell gene therapy; LHON: Leber’s

hematopoietic

hereditary optic neuropathy; LV: lentivirus;

MDS:  mitochondrial DNA  depletion
syndrome; MNGIE: mitochondrial
neurogastrointestinal  encephalomyopathy;

MELAS: mitochondrial encephalomyopathy,
lactic acidosis, and stroke-like episodes; NT:
nucleoside transporter; OLT: orthotopic liver
transplantation; PEO: progressive external
ophthalmoplegia; POLG: DNA polymerase
subunit gamma; RRM2B: Ribonucleotide
Reductase M2 B; SCID- X1: X-linked severe
combined immunodeficiency; SIN-LV: self-
inactivating LV; TK2: thymidine kinase 2;
TYMP: thymidine phosphorylase; WAS:
Wiskott-Aldrich Syndrome.
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General discussion

| LENTIVIRAL VECTOR GENE TRANSFER INTO
HEMATOPOIETIC STEM CELLS

Hematopoietic stem cell gene therapy
(HSCGT) has been successfully used in
clinical trials for a wide range of inherited
hematological, metabolic, and immune
deficiency disorders.! Recently, the first ex
vivo HSCGT drug (Strimvelis) was approved
for marketing in Europe for the treatment
of adenosine deaminase severe combined
immunodeficiency (ADA-SCID). The product
is made of autologous
(HSCs)

a gammaretroviral (y-RV) vector containing

hematopoietic
stem  cells transduced  with
ADA, therefore an excellent personalized
treatment of ADA-SCID patients for whom
a matched donor is lacking. Due to the highly
proliferative capacity of hematopoietic stem
and progenitor cells (HSPCs), RVs have been
employed in HSC gene transfer protocols
for their capacity to integrate into the host’s
genomic DNA and propagate transgene
expression into progenitors and mature cells.
Pre-clinical studies resulted in sufficient proof
of concept ** to move towards clinical trials
for primary immunodeficiencies using y-RV
vectors. These trials showed the efficacy of
this gene therapy approach demonstrating
phenotypic  correction  and  clinical
improvements following the restoration of
the cellular, and in some, also the humoral
immunity.** However, a large proportion of
the X-linked SCID and Wiskott Aldrich y-RV
trials reported hematological malignancies
related to the upregulation of proto-
oncogenes close to the vector insertion
were directed
third

generation self-inactivating (SIN) lentiviral

sites.®!! Therefore, efforts

towards the development of

(LV) vectors as an alternative vector system for
reducing the risk of insertional oncogenesis."

Another advantage of using LV vectors is
that the proliferation of HSPCs during gene
transfer is not a requirement, in contrast to
y-RV vectors.” The current protocols using
RV (both y-RV and LV) employ two rounds
of transduction, high vector doses (MOI
100), and relatively high concentrations of
cytokines."*!* These

however, could affect the efficacy and safety

multiple conditions,
outcomes of HSCGT, by increasing the risk of
insertional mutagenesis of the genes involved
in cell-cycling and by compromising
the long-term repopulation capacity of gene
modified HSCs. Our findings show efficient
gene transfer into HSPCs during a short
transduction time by increasing the target
cell density with a proportional increase of
LV particles. Addition of thrombopoietin
(TPO) alone was sufficient in maintaining
the in vivo repopulation capacity and ensuring
efficient transduction at the same time. Our
evaluation of human HSPCs was limited to
in vitro assessments, and further experiments
might be required to estimate the efficacy of
prolonged gene marking and repopulation
through
the humanized mouse model.’* Additionally,

capacity transplantation  into

of interest is the application of this protocol

in mouse models of human diseases
to evaluate the contribution towards
phenotypic  correction; performance of

the transductions in microfluid-based
transduction system, wherein the probability
of infection is increased;'” and combination

with prostaglandin E2 stimulation leading
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to effective LV transduction of HSCs during
short culture time (less than 38hrs).!'

These
a clinically viable and feasible protocol for LV

transduction of HSPCs could be combined

advancements at generating

with strategies to enhance the expansion of
gene modified HSPCs. Ex vivo expansion
would support the maintenance of the (stem-
ness) of the gene modified HSPCs, enable
selection of HSPCs with integrated LV
vector copies and transgene expression prior
to transplantation, and the evaluation of
LV-integration site profiles. In that regard,
biomolecules such as neurotrophic factors
represent novel candidates for enhancing
the expansion and survival of HSPCs, '* while
the pyrimidoindole derivative UM171 was
recently successfully employed for the ex vivo
expansion of LV transduced human mobilized
peripheral blood HSCs with long term
repopulation

capacity.® The therapeutic

outcomes can be further enhanced by
the integration of approaches aiming at
improving the homing and engraftment
of gene modified HSPCs. These strategies
include inhibition of CD26% peptidase that
negatively affects the levels of the chemokine
stromal cell-derived factor 1 (SDF-1) and
priming of HSCs with prostaglandin E2 prior

to transplantation.'®2"?

HSCGT: an efficient and safe
treatment for MNGIE?

Allogeneic HSCT for treatment of MNGIE
is associated with a high mortality rate and
the therapeutic outcomes are transient and
limited.”* As a result of the encouraging
therapeutic outcomes and incremental
improvements related to LV vector design,

HSCGT holds promise as a safe and effective

treatment for multiple

diseases, including MNGIE.
Development of a LV vector-mediated

HSCGT protocol for the treatment of MNGIE

would require (i) a clinically relevant mouse

life-threatening

model, (ii) a clinically applicable LV vector,
(iii) assessment of therapeutic outcomes,
biochemical

beyond correction of the

phenotype, and (iv) assessment and
minimizing the risks related to pre-transplant
conditioning, transgene expression and
LV vectors.

The studies performed in this thesis
address these points, but clinical translation
requires additional studies to provide HSCGT
as a cure for MNGIE patients.

(i) The generation of Tymp” Uppl’ mice
was instrumental to enhance the development
of alternative treatments to cure MNGIE
Tymp”-Uppl™”- exhibit
a biochemical phenotype similar to MNGIE
patients (elevated dThd and dUrd), however,

only 218 month old mice demonstrate mild

patients.” mice

neurological phenotypes. The lack of other
relevant similarities to MNGIE such as
alterations of mitochondrial DNA (mtDNA)
and pronounced motor dysfunctions, limits
the evaluation of the therapeutic outcomes
beyond the biochemical phenotype.?s*® To
enforce these phenotypes the nutritional
diet can be changed, consisting of increased
dThd and dUrd amounts, but mice still need
to be maintained for very long periods (up to
24 months).” These limitations challenged
the suitability of Tymp”-Uppl”’- mice to model
MNGIE. We therefore carefully characterized
the brain and intestinal phenotypes at an
earlier age to evaluate HSCGT efficacy. First,
we carefully examined the neurological aspects
of Tymp”Uppl” mice which confirmed

the previously reported white matter changes
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in brain MRI and histology,”® but at an
earlier age, and additionally demonstrated
an abnormal phenotype of brain astrocytes.
Further experiments are required to elucidate
the nature ofthe cellularand molecular changes
observed in brain astrocytes morphology and
the altered mtDNA replication, and how that
relates to unbalanced nucleosides levels. In
this regard, experiments to evaluate ion-water
homeostasis are relevant. Specifically, we
observed an increase in the thickness of
the astrocytes processes in Tymp” Uppl”
mice. This is similar to megalencephalic
(MLC)
mice models (Mlcl-null and Glialcam-null

leukoencephalopathy =~ with cysts
mice). These studies provide evidence that
defective astrocytic fluid volume regulation
underlies the pathomechanism of MLC. **!
Future studies could be performed to
investigate the status of volume regulated
(VRAC)

regulated volume decrease in astrocytes

anion channel currents and
of Tymp”Uppl” mice. Additionally, we
report abnormalities in the myogenic and
neurogenic compartments of the intestine
of Tymp”Uppl” mice. However the mice
did not develop profound cachexia, unlike
MNGIE patients, perhaps due to ad libitum
feeding, or that the mice are double knock
out for two genes unlike in MNGIE patients,
or the physiological differences between
mice and man. Nonetheless, the intestinal
pathology of Tymp”Uppl” mice occurs at
an early age and is similar to the pathology
in MNGIE patients.

potential treatments in the mouse model

Therefore, testing
may still predict the therapeutic response in
MNGIE patients.

(ii) Our results indicate that the developed
therapeutic LV vectors (PGK-TP(co) could
efficiently correct MNGIE phenotypes with

the following minor modifications: (a)
The physiological promoter (hPGK) led to
lower levels of TP expression which were
sufficient for phenotypic correction, without
the increased risk of transactivation of nearby
oncogenes as compared with the strong
promoter of the spleen focus forming virus
(SF); (b) at low VCN/cell (median < 2.3, MOI
10); and (c) at moderate levels of engraftments
(median, 77 %, PGK-TP(co)). Altogether,
these results indicate that the therapeutic
LV-PGK-TP and TPco vectors
thereby

the necessity for further enhancement of

mediate
efficient correction, abrogating
the vector performance. Although codon
optimization of TYMP did not enhance
TYMP transcription or protein levels, unlike
in the case of other disease models,**** other
algorithms might be investigated to still
improve protein production per VCN.

In order to control transgene expression,
enhance the biodistribution of- and
improve the reconstitution of- transduced
hematopoietic cells, numerous modifications
could be implemented. Cell specific targeted
transgene expression could be achieved
through the incorporation of cell specific
promoters or enhancers such as GP1BA,
ITGA2B, and PF4 megakaryocyte-specific
gene promoters * to selectively drive moderate
levels of TYMP expression in platelets, a rich
source of TP in healthy people. Tropism of LV
vectors can be altered through modifications
of LV

repopulating stem cells, or the expression

envelopes to target long-term
restricted to certain cell types via miRNA
de-targeting (reviewed in Goyvaerts C, et
al. 2013).% This would allow for strong and
prolonged expression levels in target stem
cells, without the toxicity on nontarget cells.

Alternatively, targeted gene editing of HSCs
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with artificial endonucleases such as Zinc-
Finger (ZFNs),
Activator Like Effector Nucleases (TALENS)
and Clustered Regularly Interspaced Short
Repeats/ CRISPR-associated
(CRISPR/Cas) could reduce the risk of
insertional oncogenesis through the direct

Nucleases Transcription

Palindromic

integration into pre-determined genomic loci.
In this regard, protocols are developed for
efficient gene targeting of HSCs by using ZFN,
augmented with adapted culture conditions.?
The delayed culture timing prior to gene
targeting and the presence of StemRegenin
1 and prostagandin E2 to preserve stemness
permitted for efficient targeted integration
in human HSCs with long term repopulation
in immunodeficient mice. The functionality
of this approach was proven by targeted
integration of the corrective ¢cDNA into
IL2RG in HSCs from a SCID-X1 patient.
3-11% GFP+ were detected in the BM CD34+
subpopulations isolated from the patient after
targeting for IL2RG correction. For MNGIE,
probably higher efficiency are required,
since TYMP gene corrected cells, in contrast
with IL2RG corrected cells, might not confer
a selective advantage.

In contrast to ZFNs, TALENS targeting
the same site of CCR5 were reported to
have a reduced off-target activity.** TALENs
were successfully used for targeting
the human B-globin locus; i.e. correction of
the pathological mutations in iPSCs from
patients of (-thalassemia® and sickle cell
anemia,® to express normal b-globin in
the differentiated hematopoietic progenitors
and erythroblast. This is probably also

feasible for correction of TYMP as well.

The CRISPR/Cas9 system can be used for
efficient gene editing of primary murine and
human HSPCs,* or patient-derived induced
pluripotentstem cells (iPSCs).Inthisapproach,
CRISPR/Cas9 is applied for correction of
the disease underlying mutation in patient-
iPSCs,

afterwards to, for instance, hematopoietic

derived which are differentiated

progenitor cells, for transplantation in
patients. The majority of lysosomal storage
diseases are candidate targets for treatment
with this approach, because of the monogenic
mutations and the ability of gene corrected
cells to excrete the deficient enzyme.** These
advancements and progress towards clinical
trials (e.g. treatment of HIV infection’, and
mucopolysaccharidosis I and II?) render
therapeutic gene editing an attractive
treatment option, feasible for application in
MNGIE patients as well. However, several
limitations need to be considered prior
to the clinical application of iPSCs. These
include the large-scale manufacturing steps
such as the genetic re-programming and
in vitro expansion, increased incidence of
deletions or changes in DNA copy number
and thereby tumorigenesis, which is also
underlined by the use of integrating viruses
and oncogenes, and risks of immune response
or graft rejection. Furthermore, translation
of gene editing strategies into clinical
settings requires further enhancements of
the delivery, efficiency and specificity of
the gene correction machinery. First, in
vivo gene editing is usually performed with
AAV,*" which imposes challenges including
off-target editing related to the constitutively

expressed nucleases, and immunity against

https://clinicaltrials.gov/ (2017) '(NCT01252641), > (NCT02702115, NCT03041324)
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certain serotypes. On the other hand, for
ex vivo gene targeting of HSCs, transient
expression of the nuclease is sufficient and can
be achieved through electroporation or non-
integrating LV vectors.?** In order to avoid
excessive expression of nucleases and off-
target editing integrating LV vectors are not
preferred. Second, the efficiency of targeted
gene correction could be enhanced by
modulation of double strand break pathways,
which are dependent on the target cell cycle.
Modulation of ex vivo cell culture conditions
could be useful to control the cell cycle.?

In addition, several approaches can be
applied in order to achieve above normal
TYMP

in iii) including the targeted integration

expression levels (as discussed
of an expression cassette with a strong
promoter in a pre-selected safe harbor such
as AAVS], or fusion of the open reading
frame of TYMP with the mRNA of a highly
expressed endogenous gene such as CD45
in HSPCs. As in the case for the treatment
of hemophilia B, in vivo genome editing by
using ZFNs and AAV2/6 was successfully
used for the insertion of a therapeutic copy
of human factor 9 into the albumin locus in
liver hepatocytes, leading to the production of
therapeutic levels of human factor 9 (>1% of
normal) in mice and non-human primates.*
Finally, off-target gene editing and
constitutively expressed nucleases could result
in undesired alterations of cancer-related
genes or lead to loss of function, therefore
the specificity of CRISPR/Cas9 targeting can
be enhanced by selection of the nucleases
used,” or by using truncated guide RNA,
guide RNA Cas9
RNA-guided FokI-dCas9 nucleases, or

engineered Cas9. *

extension, nickases,

(iii) Above-normal TP activity was
required for restoration of neurological and
intestinal phenotypes and was achieved
with LV-PGK-TP(co) at a moderate LV dose
(MOI 10). This is similar to findings in other
metabolic disorders, where above-normal
expression of the therapeutic enzyme led to
correction of disease phenotypes which are
otherwise not responsive to traditional HSCT.
This includes the amelioration of neurological
phenotypes in mucopolysaccharidose IT ** and
globoid cell leukodystrophy mice* (reviewed
in Biffi A, et al. 2017).*” Only the highest dose
used in our studies in Tymp” Uppl” mice,
an MOI of 10, resulted in above-normal
levels of TP activity in blood (range, 68-188
nmol/h/mg protein), was just sufficient at
normalizing intestinal TP activity and rescued
the pathology after HSCGT, while HSCT in
MNGIE patients did not rescue the intestinal
pathology despite biochemical correction
as demonstrated in Chapters 4 and 5 and
by Halter et al. (range, 262-1285 nmol/h/mg
protein).”* Graft versus host disease or graft
rejection following allogeneic HSCT, timing
of treatment (HSCGT was administered at
the same age when the intestinal pathology
was minor, versus MNGIE patients who are
usually treated at a late stage of the disease),
or interspecies differences could also explain
the contrasting responses of human and mice
to treatments.

In contrast to using LV-mediated HSCGT,
above-normal TP levels in blood were not
achieved through AAV2/8-mediated liver
directed gene therapy in Tymp” Uppl” mice,
even with high vector dose (>2x10" vg/kg).
Importantly, nucleoside accumulation was
not reduced in the intestine of these mice.?’
AAV gene therapy for MNGIE is an attractive

treatment option because it does not require
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pre-conditioning or a suitable HSCs donor.
However, compared with clinical trials for
hemophilia B, in which a small proportion
of transduced hepatocytes is sufficient to
convert a severe patient into a moderate
phenotype, it is speculated that an effective
treatment for MNGIE would require an
improved expression cassette, targeted
expression in affected organs or a higher AAV
vector dose. A higher dose increases the risk
of eliciting immunity towards the viral capsid
and liver toxicity. The pros and cons of AAV-
and LV-based gene therapy approaches are
discussed in more detail in Chapter 2.

In addition to the above-normal TP
levels, the timing of treatment is critical for
the resolution of the intestinal phenotypes.
HSCGT was administered prior to detectable
pathological appearance (at 2 months of
age), MNGIE patients

HSCT usually when symptomatic (i.e. after

whereas receive
development of a clinical phenotype). To that
end, early diagnosis through genetic screening
of newborns is critical. Nonetheless, vector
and transplanted gene modified cell dose
escalation experiments involving a large group
of mice is required to establish the minimal
dose sufficient for phenotypic correction
and without cellular or molecular toxicity
before translation into a clinical protocol for
treatment of MNGIE patients.

albeit
the biochemical, neurological, and intestinal

Moreover, correction of
phenotypes we were unable to evaluate
the contribution of HSCGT to recovery of
apparent clinical phenotypes such as motor
function and cachexia, due to their absence
in the Tymp”-Upp1” mice. Tymp”-Uppl’ mice
fed with a diet consisting of dThd and dUrd
in order to induce the clinical phenotypes #
could be used to assess the effects of HSCGT

on recovery of apparent phenotypes such
as motor dysfunction. (iv) Adverse events
could occur that are related to toxicity of
the pre-transplant conditioning, transgene
over expression or immunity against
the transgene product, or genotoxicity of
integrated LV vectors. In this thesis, we
addressed these points in relation to HSCGT
for MNGIE. Prior to HSCT, a relatively mild
conditioning consisting of busulfan and
fludarabine or in combination with anti T
cell antibodies, is usually applied. * However,
an alternative mild conditioning could be
preferred for treatment of MNGIE patients
who are usually in a very poor condition.
Novel

approaches have been successful in preclinical

non-cytoreductive  conditioning
studies, including the administration of
HSC mobilizing cytokines such as human
granulocyte colony stimulating factor,”® or
antagonists of endogenous HSC markers such
as anti c-kit ¥ or anti CD45.”° Our results
show that following sub-lethal total body
irradiation of Tymp” Uppl’ mice, moderate
levels of engraftment were sufficient for
disease correction. Therefore, application of
the novel non-cytoreductive pre-transplant
conditioning may be adequate to achieve
sufficient levels of donor cell chimerism for
disease correction, and avoid toxicity and
further deterioration of mtDNA, in particular
when combined with the advancements
of gene transfer protocols and the ex vivo
expansion. In order to assess any potential
TYMP over

expression, further in depth experiments

phenotoxicity related to
are required. In this regard, it is important
to evaluate if HSCGT sufficiently restores
the depleted dCTP levels and investigate
any potential negative effects of TP over

expression on dNTPs pool homeostasis,
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mtDNA
and apoptosis.

The results of this thesis indicate that
HSCGT for MNGIE can be performed

with low risks of in vivo mutagenesis or

replication, cell cycle arrest,

51,52

integration nearby oncogenes. Follow up
of primary and secondary recipients of LV-
PGK-TP(co) for 22 months revealed no
detectable hematological abnormalities and
the LAM-PCR demonstrated benign vector
integration patterns. No differences in
the frequency of integration near oncogenes
were observed between the control and gene
therapy treated groups, or classified based
on the promoter (PGK vs. SF) or transgene
(therapeutic vs. GFP) used and were also
similar to those obtained for different
inherited diseases such as in Il2rg” and
Gaa” mice. Two secondary recipients in
the PGK-TP-GFP treatment group developed
B cell lymphoma; the clone contained a single
dominant integration site in gene Zfp207.
Zfp207 is required for proper chromosome
alignment>® and therefore, interruption
by for instance, a LV insertion could have
augmented oncogenesis. This requires further
experiments to elucidate the role of Zfp 207 as
a potential tumor related gene. For example,

DNA and RNA sequencing can be performed

in order to profile altered signaling pathways
or changes in the mitotic checkpoint protein
Budding Uninhibited by Benzimidazoles 3
(BUB3), the main target for Zfp207, as well
as functional studies that entitle knockdown
of Zfp207 in vitro or ex vivo to determine
the effect on cycling HSCs, and to determine
its role in the contribution of oncogenesis.

In conclusion, LV vector-mediated
HSCGT for MNGIE patients is a feasible
treatment option which can successfully
reverse the biochemical, neurological, and
Tymp” Uppl™”
mice without apparent toxicity. Clinical
application of HSCGT for the treatment
of MNGIE patients would require further

intestinal ~ phenotypes in

experiments to assess the minimal LV dose
for the correction of clinical phenotypes
such as motor function or cachexia, and
additional evaluation of potential toxicity
related to TYMP over expression. Future
advancements could involve strategies to
direct and control transgene expression in
target cells, and strategies for improving
the HSCGT procedure such as enhanced LV
transduction of HSPCs and ex vivo expansion
and selection of gene modified cells prior to
transplantation, in addition to the application

of non-cytoreductive preconditioning.
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Summary

| SUMMARY

Hematopoietic stem cell gene therapy
(HSCGT) is an attractive treatment option
for a wide range of disorders. The initial
clinical trials for X- linked severe combined
immunodeficiency (SCID-X1) and
ADA-SCID applied y-RV vectors successfully,
but hematological malignancies occurred
in SCID-X1

and transactivation of nearby oncogenes.

due to vector integration

Therefore, efforts were directed towards
finding alternative viral vector systems
leading, eventually, to the development

of the new 3" generation self-inactivating
(SIN) lentiviral (LV) vectors with enhanced
efficiency and benign integration profiles.
Mitochondrial
encephalomyopathy (MNGIE) is currently

neurogastrointestinal

treated with allogeneic hematopoietic stem
HSCT).

reverses

cell transplantation
HSCT
the biochemical phenotype. However, HSCT

(allogeneic
Allogeneic successfully
is associated with high mortality rates,
requires the availability of matched donor
hematopoietic stem and progenitor cells
(HSPCs) while knowledge about the long
term therapeutic outcome is limited. LV-
mediated HSCGT uses autologous cells, may
require lower pre-conditioning regimens and
is expected to provide long-term systemic
disease correction as discussed in Chapter 2.

In Chapter 3, we optimized the ex vivo
culture conditions of LV vector mediated gene
transfer into HSPCs to achieve efficient gene
marking within a short transduction time
period, with a minimal number of integrated
vector copies, and minimal cytokine additions.
The results indicate the feasibility to improve
gene transfer by increasing the density of

mouse, rhesus, or human HSPCs target

cells. Additionally, overnight transduction
of mouse and human HSPCs in stem cell
medium with addition of thrombopoietin
(TPO)
sufficiently for in vivo purposes. The addition
of the growth factors SCF, TPO, Flt3-L
at relatively low concentrations provided
the most efficient gene transfer (> 60% GFP

marking) while maintaining progenitor and

only enhanced transduction

stem cells repopulation capacity. Altogether,
these findings open intriguing possibilities for
overcoming the limitations of the current gene
transfer protocols: an enhanced efficiency and
improved safety of gene correction, minimal
ex vivo manipulation during a short culture
period, and the added economic value of using
small amounts of clinical grade lentiviral
vectors and cytokines.

Chapters 4 and 5 focus on the evaluation
of the efficiency and safety of LV vector-
mediated HSCGT as a treatment for MNGIE
in  Tymp”Uppl”
applicable SIN

containing  the

mice. Therapeutically

LV vectors were used

physiological ~ human
phosphoglycerate kinase (hPGK) promoter
for ubiquitous expression of native or codon
optimized human TYMP c¢cDNA (PGK-TP
LV-SE-TPco

bearing the strong spleen focus forming

or PGK-TPco, respectively).

virus (SF) promoter was used for safety
evaluation to highly express TP, and to assess
potential genotoxicity. The results in Chapter
4 demonstrated persistent TP activity and
clearance of nucleosides in the brain of treated
Tymp”-Uppl” mice at relatively low vector
copy numbers (PGK-TP(co): MOI 10, range;
0.2-3.6 VCN/cell). Here, we showed that this
resulted also in reversal of the phenotypic

alterations apparent in brain astrocytes of
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Tymp”Uppl” mice, as well as reduction of
white matter edema demonstrated by brain
MRI and immunohistological analysis. Long
term follow up of recipients of HSCGT
revealed no side effects from the procedure:
(i) Graft failure or toxicity related to sub-lethal
total body irradiation was not observed. (ii)
Survival curves of mice in the PGK-TP(co)
treatment groups did not differ significantly
from controls. (iii) LV- related insertional
mutagenesis or hematopoietic transformation
were not observed after a total of 22 months
follow up of primary and secondary recipients
of HSCs transduced by therapeutic LV vectors
PGK-TP(co). (iv) LAM-PCR and sequencing
demonstrated a polyclonal integration pattern
and no bias towards integration near or
selection of proto-oncogenes.
Gastrointestinal ~ manifestations  are
prominent and the main cause of death
among MNGIE patients. In Chapter 5 we
examined the pathology of the small intestine
of MNGIE patients and Tymp” Uppl™”
mice and the impact of allogeneic HSCT
or gene therapy, respectively. Our findings
confirmed the previously reported atrophy
of the muscularis propria and absence of
interstitial cells of Cajal in MNGIE patients.
HSCT did not resolve these pathological
characteristics in the short period
studied post transplantation. This might
explain the repeatedly reported persistent
gastrointestinal manifestationsafter treatment.
In contrast, HSCGT rescued the atrophic
muscularis propria of the small intestine in
treated Tymp” Uppl”’- mice 10 months after
treatment. This suggests that the myogenic

changes can be reversed when gene therapy

is provided early in life. Finally, in Chapter 6:
we further evaluated in depth the LV vectors
integration profiles in gene modified human,
rhesus or murine HSCs cultured in vitro, and
in vivo after transplantation in disease models
of SCID, Pompe, MNGIE and healthy mice.
The integration patterns were similar in all
species studied, and were not skewed based on
the type of promoter (SF versus PGK, RAG1p,
TCRPp, UCOE and ycPr), or transgene used (
GFP versus II2rg, Ragl, Rag 2, Gaa and Tymp).

In conclusion, the results presented in this
thesis demonstrate efficient and persistent
correction of the biochemical phenotype
in affected organs of Tymp” Uppl’ mice,
(white

matter edema and astrocytes morphology),

brain neurological phenotypes

and intestinal myopathy (atrophy of
the muscularis propria), at relatively low
LV-PGK-TP(co) vector copy number per
cell and without obvious vector or disease
related phenotoxicity or genotoxicity. Due to
the lack of some of the major neurological or
gastrointestinal clinical phenotypes in Tymp™"-
Upp1”- mice (such as motor dysfunction or
cachexia) we should be cautious in translating
our findings from mice to MNGIE patients.
Nonetheless, it is recommended to perform
more studies before clinical application,
evaluating HSCGT

clinically relevant models that mimic human

including in more
MNGIE disease (e.g. Tymp”-Uppl” mice fed
with a diet to enforce the phenotypes), dosing
of LV vector and transplanted gene modified
cells, and more thorough assessment of vector
biodistribution and safety studies addressing
potential phenotoxicity and genotoxicity
in depth.



Samenvatting (Dutch summary)

| SAMENVATTING (DUTCH SUMMARY)

Hematopoietische
(HSCGT) is een

behandelingsoptie voor een breed scala

stamcelgentherapie
aantrekkelijke

van aandoeningen. Bij de eerste klinische
studies naar X-linked ernstig gecombineerde
immunodeficiéntie (SCID-X1) en adenosine
deaminase (ADA)-SCID heeft men y-RV
vectoren met succes toegepast, maar bij
SCID-X1

maligniteiten als gevolg van vectorintegratie

ontstonden hematologische
en transactivatie van nabije oncogenen.
Daarom werd gezocht naar alternatieve
virale vectorsystemen. Dit leidde uiteindelijk
tot de ontwikkeling van de nieuwe, derde
generatie zelf-inactiverende (SIN) lentivirale
(LV) vectoren met verbeterde efficiéntie en

goedaardige integratieprofielen.

Mitochondriéle  neurogastrointestinale
encefalomyopathie (MNGIE) wordt
momenteel  behandeld met allogene
hematopoietische stamceltransplantatie

(allogene HSCT). Deze therapie leidt tot
reversie van het biochemische fenotype, maar
is geassocieerd met hoge sterftecijfers. Verder
dienen matchted donor hematopoietische
(HSPCs)
beschikbaar te zijn, en er is nog weinig

stam- en  voorlopercellen
bekend over de uitkomst op de lange termijn.
LV-gemedieerde HSCGT maakt gebruik van
autologe cellen, kan mogelijk toe met lagere
pre-conditioneringsregimes en kan naar
verwachting systemische ziekte op termijn
corrigeren, zoals besproken in Hoofdstuk 2.
In Hoofdstuk 3 optimaliseerden we
de ex wivo kweekomstandigheden van
LV-vector gemedieerde genoverdracht in
hematopoietische stam en voorloper cellen
(HSVC’s). Het doel hiervan was om efficiénte

transductie te bereiken binnen een korte

incubatietijd, met een minimaal aantal
geintegreerde vectorkopieén en minimale
cytokine toevoegingen. De resultaten geven
aan dat het haalbaar is de genoverdracht te
verbeteren door het verhogen van de dichtheid
van muizen-, rhesus- of humane HSVC-cellen.
Ook zagen we dat de overnacht transductie van
muis- en humane HSVC’s in stamcelmedium
(TPO)

was toegevoegd als cytokine, significant

waaraan alleen trombopoétine
verbeterde transductie opleverde voor in
vivo doeleinden. Toevoeging van relatief
lage concentraties van de groeifactoren
SCE, TPO, Flt3-L gaf de meest efficiénte
genoverdracht (60% GFP-markering) met
behoud van de mogelijkheid tot repopulatie
van voorloper- en stamcellen. Alles bij
elkaar genomen bieden deze bevindingen
mogelijkheden om de beperkingen van
de huidige genoverdrachtprotocollen te
verbeteren door een verhoogde efficiéntie en
minder veiligheidsrisicos m.b.t. insertionele
mutagenese, met minimale ex vivo manipulatie
gedurende een korte kweekperiode en
de toegevoegde commerciéle waarde van het
gebruik van kleine hoeveelheden klinische
lentivirale vectoren en cytokines.

In de Hoofdstukken 4 en 5 lag de nadruk
op de evaluatie van de efficiéntie en veiligheid
van LV vector-gemedieerde hematopoietische
stam en voorloper cel gentherapie (HSVGT)
als een behandeling voor MNGIE in Tymp
Uppl - muizen. Hierbij werden therapeutisch
toepasbare SIN LV-vectoren gebruikt met de
fysiologische humane fosfoglyceraatkinase
(hPGK) promotor om algemene expressie van
oorspronkelijk- of codon-geoptimaliseerd
humaan TYMP cDNA te bewerkstelligen

(respectievelijk PGK-TP of PGK-TPco).
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Voor evaluatie van de veiligheid werd de
LV-SE-TPco gebruikt met de sterke milt-
focusvormende viruspromotor waarbij een
hoge TP-expressie wordt verkregen om
de mogelijke genotoxiciteit te beoordelen.
De resultaten in Hoofdstuk 4 wezen op
persisterende TP-activiteit en klaring van
nucleosiden in de hersenen van behandelde
Tymp” Uppl” muizen bij relatief lage
aantallen vector-kopieén (PGK-TP(co): MOI
10, bereik, 0,2-3,6 VCN /cel). Dit resulteerde
niet alleen in de correctie van de fenotypische
waren in
Uppl1™”

muizen, maar ook in vermindering van

veranderingen die te zien

de hersenastrocyten van Tymp”

oedeem in de witte stof, zoals aangetoond
met hersen-MRI en immunohistochemie.
Bij de lange termijn follow-up van de van
behandelde HSCGT muizen

nadelige bijwerkingen van de procedure

zijn geen

gezien: (i) Falen van donormateriaal of
toxiciteit door de subletale bestraling van
het gehele lichaam zijn niet waargenomen.
(ii) De overlevingscurven van de muizen in
de PGK-TP(co) behandelingsgroepen waren
statistisch niet significant verschillend van
de overlevingscurven van de controledieren.
(iii)  LV-gerelateerde

of hematopoietische transformatie werden

insertiemutagenese

niet waargenomen na in totaal 22 maanden
follow-up van de primaire en secundaire
ontvangers van door therapeutische LV-
(PGK-TP(co)) getransduceerde
HSC’s. (iv) LAM-PCR en sequencing lieten

een polyclonaal integratiepatroon zien zonder

vectoren

bias naar integratie in de nabijheid van of in
proto-oncogenen.

Gastrointestinale aandoeningen komen
veelvoor enzijn debelangrijkste doodsoorzaak
bij MNGIE-patiénten. In Hoofdstuk 5 hebben

we onderzoek gedaan naar de pathologie van

de dunne darm van MNGIE-patiénten en
Tymp” Uppl” muizen en de effecten van
respectievelijk allogene HSCT of gentherapie.
Onze bevindingen bevestigden de al eerder
gerapporteerde atrofie van de muscularis
propria en afwezigheid van interstitiéle
cellen van Cajal bij MNGIE-patiénten.
HSCT liet geen effect zien in de korte tijd
tot enkele maanden na transplantatie. Dit
kan de herhaaldelijk gemelde aanhoudende
gastrointestinale klachten na de behandeling
verklaren. Daarentegen herstelde HSCGT
de atrofische muscularis propria van de dunne
darm in behandelde Tymp” Upp1” muizen 10
maanden na de behandeling. Dit suggereert
dat de myogene veranderingen omgekeerd
kunnen worden wanneer gentherapie vroeg
in het leven wordt Tenslotte,
Hoofdstuk 6 betreft

evaluatie van de LV vector integratieprofielen

gegeven.

een diepgaandere

in gen-gemodificeerde humane, rhesus of
muizen HSVC’s, gekweekt in vitro en in vivo
na transplantatie in ziektemodellen van SCID,
Pompe, MNGIE en in gezonde muizen. De
integratiepatronen waren vergelijkbaar in alle
onderzochte species en niet athankelijk van
het type promotor (SF versus PGK, RAGlp,
TCRPp, UCOE en ycPr) of het gebruikte
transgen (GFP versus IL2RG, RAG-1, Rag 2,
Gaa en Tymp).

Concluderend blijkt uit de resultaten in
dit proefschrift een effectieve en aanhoudende
correctie van het biochemische fenotype
in aangedane organen van Tymp” Uppl”
muizen, hersen- fenotypes (witte stof oedeem
en astrocyten morfologie) en intestinale
myopathie (atrofie van de muscularis propria),
LV-PGK-TP(co)

vector copien per cel en zonder duidelijke

bij een relatief aantal

vector- of ziekte gerelateerde fenotoxiciteit of

genotoxiciteit. Door het ontbreken van enkele



Samenvatting (Dutch summary)

belangrijke neurologische of gastrointestinale
klinische fenotypes in Tymp” Uppl”’- muizen
(zoals motor dysfunctie of magerzucht)
moeten we terughoudend zijn bij het vertalen
van onze bevindingen bij de muizen naar
MNGIE-patiénten. Het is aan te bevelen meer
onderzoek te doen voordat dit klinisch kan
worden toegepast. Zoals het evalueren van

HSCGT in meer klinisch relevante modellen

van humane MNGIE-muizen (bijvoorbeeld
Tymp™ Uppl”-muizen die dieetvoedingkrijgen
om de fenotypen te forceren), de dosering
van LV vector en getransplanteerde gen-
gemodificeerde cellen, en verdere diepgaande
evaluatie van de biodistributie van vectors
alsmede grondiger veiligheidsstudies naar

de mogelijke fenotoxiciteit en genotoxiciteit.
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gl Aoy A A Y dla) Tymp” Uppl” 4
ol o (allogeneic HSCT) 4sedall LA alaal)
&) gt s Il e (gene therapy) sl
Uimall 5 s Cupany Aaplll SleleaY) L) Ula s
(atrophy of the muscularis propria) ix gaill
s (Cajal) JalS g5 e AA IS (6f a5ms 2
) iy ol (MNGIE) aie gy gnbadl
oaibaddl oda da & (HSCT) dpedadl LIAIL
eha) an lu & Al spadll 358 Pl sl
hasll i oF Al sded Sa Aell Alee
i e Y1 o () paagll Dleadl G salkal)
lly e oy g Bl A 2ny papal) sal ) S
(HSCGT) 4ysedll edall DAL i) 230 s
elaa) (3 daapaddl Bl s QUi 8 Cand
el Vo Tymp” Upp 1735 o o)yl sl 488)
oo Say ol ) il oda i 8 Lzl Al
gOall slhe) 3 Jla & Jumall oo 23500 cyusil)
dadl) 3 chaals slad) e 5% Aaje 8 sl
all bl lee ST cilayis elaly Ldd ¢ ualead)
Gidpa ) K a1 (LV) 2dad) <l il Aasije
S apall 30N S Ol e A L gl
Al (B Atine QLA e pall A3 Sl dpedal) DA
Ol (8 Ae))3l Alee ey (gl lansll (85 Ay sl
«(SCID) 22l i€l e lidll sall (e dlicadl)
axs (Pompe) (S Laall cpa K ol ol
Llal el dagls oh ) dila) (MNGIE) aie
Ay iy 5 Al Qe ses o) dgliie z LY
SF) aatid) Jesall g e el bl of selay
ol Sl «(PGK, RAG1p, TCRBp, UCOE, ycPr
-(GFP 1I2rg, Ragl, Rag 2, Gaa, Tymp) a3l
ekt ALyl oda 8 saylel) bl ol sl b

& Shall allall hall jdivey Jlad maa
Tymp” Uppl” 448 (pa oyiall Lladll sliacy)

(TP) Cpaali alyysiud (g S5 32 Al
3)lsll i) 5l A5 dan dgas AlS) (520 ails
TP ooy dualsio Ll 25a A @bl Juadll 3
Tymp” Uppl” oLl § Ly A Claws oIS i) ol
Lo Lmidie g 23y clldy cdallaall Cammd )
VCN ¥,71-+,Y il {MOI 10 :PGK-TP(co))
Ll s 13 o S lelaly L ol (A8 (90
LAl 8 cilias 1) dgyedaall clppaill e 8
Tymp 348 e olyaall ¢ Leal (astrocytes) dpexill
ot Lol WS dallaall cmd AN “Uppl”
(white matter edema) slaull 3alall 4.l (il
G (MRI) aslaliaall i)l 3y5m & Capela )
Lol Aamglsig)) clbal Jallas ¢ laall Cuyal
Aayliall ekl . (immunohistological analysis)
doedall LOAW sl #30dl AL day 2l ALl
il gabel gl a5a5 are (HSCGT) dyswen)
s gl 5l Ao )3l (a8 A &y o () sddend
A () ABE 4k L LY aall ay e @l
vie Jigale JS5 slall i o ol ciliaie cabiag
oe PGK-TP(CO) alasiuly Liallae casi ) o)yl
sl Al @il of Aaadle ol (7) - ekl gl
(LV) Akl cibag il Aasipe pal) chliga & )yt
Osliieall Lasliall (e Tyeed YY) ciliag 5aa e
Lebisas a3 (Sl Ao ball LAY o sslilly ol sY)
(3) -PGK-TP(co) oadall ¢ dadl (g nldll aladsinly
353y Jubudll cOUlasy LAM-PCR sy <okl
Gisan gl Sl gl 050 e Jlall aaeie zlex) Laas
cemsl) o) Anllal pans gl 1 e ks Lex)
a3y bl caagdl Slead) 3 a0V jallie aes

s Onleanll (il ol 3Ll )
andy Ll Gualdl) Juadl) 3 .(MNGIE) as
) ol Al cleaY) 3 spallall (el Jiag
O QLA saly (MNGIE) (oaie plases Onladl)



u=ils (Arabic summary)

sad L lSgnd) clila) e A aally dig ulall
30l DA e clial) JB st Aleld ) i)
Do) aall LSl gl 5 Aedall DAY Al
Lol S mall 33l S cohaall e Al
O Al alnadl Ji ddee Gl el e 50
Al pall LSl Aludly dpedall LAY lainy 4l
Aila) ae dpedall LAY Gitiie (& Glasls o)l
Ji Alee Gaead B Gt b (TPO) Giissses
(in Adalal) 45) 8 Al (aley 4l saladl
5 «TPO 5 SCF saill Julse ddLa) ) .vivo)
Glial) J8 3 o L domidie @3Sy FI3-L
«(GFP ise o %60 J (555 dpsy) SSY) 50 LIl
LAl Ledall WA £ ) sale) 38 e Lliall s
Y lia) w8 ) oda delud (Jlaa) b . Ald)
CYsSsism oo gl Al sl Jlaadl alaadl )b
Ll (s2e b ety el 50 LS il i) Ji
Ol e (A1 sl ) dil) Jall maal)
Aally 3yl i 5y18 Pl Al A0 e
i) vie Lele Juans Al diliadll Aplatiay)
S gy Apdad) Gl Wl e Bypua Gl
sl gualddl Juallly gl Juadll 4 S5l
b Al g el Ll dayas 50 LiS aw ands
(LV vector- dsenll dedall LBAL )l 23l
(MNGIE) >is (=4l #2028 mediated HSCGT)
TympUppl” 44d G ohadll e lgipdad sie
Jebaall i3 (LV) Aiglarll cilag il alasiu) o3
@sind Ally (badle Gukill LU ((SIN) Gl
Ipasall caslordll ciliale sl LS Sise e
oe _wall Jal e (hPGK promoter) olusyl
sl (PGK-TP) LY human TYMP cDNA
Abad) Gl pldl) aladiul & ((PGK-TPco) Jaxdll
e aill (SF) sidine Jead iy (LV-SF-TPco

uadls (Arabic summary)|
Jba (HSCGT) aedall AN il 23 2y
el el GlihhaY) e paall jre ade
ALl (il ol ouyal A Y1 Ayl oplaill i
&l (ADA-SCID) 5 (SCID-X1) aadll ¢l il
Lels g5 e Apdl) dpus il JB5l) pe ey 8150
Cilias &pal) 45 gaal) e\)ﬂ\ oty «(y-RV vectors)
(SCID-X1) aa&ll dyisall deliall (ats Vs 3
anil) Qi) Aglee s Ajigl) g il 7 ladi) o
i aggall 35 A cadles 3)slaa) dilajuad) iliall
G eiladd) dulgs (B el Ay Fauy pld Aadil alay
@l (LV) 2l Olas,dl e IR Juall 0k
gt Ally 4lal) 50 @y (SIN)  SWH) Jalawl
Baen zlexs) SOy A Aol

(MNGIE) i (e zhe oy ¢ Jall cdgll 4
Ledal LML alaall plasd o))y Baph (e
plaall gl de)yy ddee zati . (allogeneic HSCT)
V) L PShaSsll gl bl (Say dedall WAL
Lop delall WAL alal) plas del)) lle o
T g e 25 allats by Adle by iy
capall ae (HSPCs) 4uiludl olMAs dedall oLDA
A basane Y1 Al Ladlall millly A jeall of LS
(HSCGT) 4ysedll Ledall LIAL il 2300 s
L DA Hasia) A8da ) el plal) plassul
Glehaly clikie ) Gladlal) o3 zlias 3, Lial)
O sl (s plaal) glas ey 8 L Ganyall U4
o e s LS () il anje gramast Jlaa
LA il

ex vivo) fuyla Ay g Lad (SIE Juall) 3
e Gluall Ja allead 408 (culture conditions
Lludly e dall LAY ) Adadl @l plall Pla
Dl cliall Ji 3.6 Glacal (HSPCs) pall 43 &4l

i) e San a0 Ji alasiulyy oyl Cani by

173



174

Appendix

iy Jasi of e ogpmdl Gukill ol Ji ddla)
Ledall LA ial) #l) ddels (50 auii Lyl
S Ldle ST Ayppe 3iy 8 (HSCGT) dysed)
Jw) (MNGIE) aie (aye clbadl glal) s
e pUail daall Tymp” Uppl™” 384 e )y
g el Jalas Geyag o(dpallall Bl jaay
o) L) clia Alsaall ey 5al) LAY (LV) sk
gl aglol)l apsll e ST Clasi olya)
Sipan Ay 3k lae ST bl ) dila)
Grebe x5 5l (phenotoxicity) ius aans

.(genotoxicity) als

salall 4adg) Aymanll ¢ Leall DA dpallall Lla¥ls
elaa) & el eV 1y o(dpaaidll LA ¢ Lagll
Sl se P e dlly (apadall Alasll ga)
Ge da J<I LV-PGK-TP(co) dule gl luws
ol grelia s 5 ua aend gl Jpean g0
Al Bl aal e 2ae (3 all apay i
Ge obail g2l aagll Sleall Talall S Zpuaal
Lall Casllagll & sy Ji) Tymp” Uppl ™ 4%
0sS o Lo a4l o((Aed) o) sl
by die L) bhag Al mll ey die ()da
e paye Opbadl papdl o Lk gladll
Gl ehal man Wl @3 e a2l .(MNGIE)
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|LIST OF TERMS AND ABBREVIATIONS

AAV
ADA-SCID

ANT-1

BBB
BFU-E
BM

CD
cDNA
CFU-GM

CGD
CIPO

CIS
CNT

CPEO

cPPT
CRISPR/Cas

dCTP
dTTP
DNA
dANTP
dThd
dUrd
ECGF1

EE-TP
ENT

ERT
FIX
FACS

adeno-associated virus
adenosine  deaminase-severe
combined immunodeficiency
adenine nucleotide translocase
type 1

blood brain barrier

burst forming unit-erythroid
bone marrow

cluster of differentiation
complimentary DNA

colony forming

unit- granulocyte monocyte
chronic granulomatous disease
chronic  intestinal  pseudo
obstruction

common integration sites
concentrative nucleoside
transporter

chronic progressive external
ophthalmoplegia

central polypurine tract
clustered regularly interspaced
short  palindromic
CRISPR-associated

Deoxycytidinetriphosphate

repeats/

deoxythymidine triphosphate
deoxyribonucleic acid
deoxyribonucleoside triphosphates
thymidine

deoxyuridine

platelet-derived endothelial cell
growth factor

erythrocyte encapsulated TP
equilibrative

nucleosides transport

enzyme replacement therapy
coagulation factor IX
fluorescence activated

cell sorting

Flt3-L

G-CSF

GFAP
GFP
Y-RV
GVHD
Gy
H&E
HIV

HLA
hPGK

HSCs
HSCT

HSCGT
HSPCs
iPSCs
IRES
LAM-PCR
LHON
Lin-

LV
LVIS
MBP
MDS
MNGIE

MOI
mRNA

FMS-like tyrosine kinase
3-ligand

granulocyte colony
stimulating factor

glial fibrillary acidic protein
green fluorescent protein
gammaretrovirus

graft versus host disease
Gray (irradiation dose unit)
hematoxylin-Eosin

human

immunodeficiency virus
human leukocyte antigen
human

phosphoglycerate kinase
hematopoietic stem cells
hematopoietic stem

cell transplantation
hematopoietic stem cell
gene therapy

hematopoietic stem and
progenitor cells

induced pluripotent stem cells
internal ribosome entry site
linear amplification
mediated PCR

Leber’s hereditary

A

optic neuropathy
lineage negative
lentivirus

lentiviral integration sites
myelin basic protein
mitochondrial DNA
depletion syndrome
mitochondrial
neurogastrointestinal
encephalomyopathy
multiplicity of infection
messenger RNA
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mtDNA
NT
OLT
PCR
PEO

PLP

PTAH
qPCR

RAG -SCID

RNA
RRE
SCF
SCID- X1

mitochondrial DNA
nucleoside transporter
orthotopic liver transplantation
polymerase chain reaction
progressive

external ophthalmoplegia
proteolipid protein
phosphotungstic acid-hematoxylin
quantitative PCR
recombination activating gene
1 and 2 severe

combined immunodeficiency
ribonucleic acid

Rev response element

stem cell factor

X-linked severe

combined immunodeficiency

SF
SIN-LV
TALENs

TP

TPO
TYMP
TYMPco
UCB
VCN
VRAC
WAS
WPRE

ZFNs

spleen focus forming virus
self-inactivating LV
transcription activator-like
effector nucleases

thymidine

phosphorylase enzyme
thrombopoietin

thymidine phosphorylase gene
codon optimized TYMP gene
umbilical cord blood

vector copy number

volume regulated anion channel
Wiskott-Aldrich Syndrome
woodchuck hepatitis
posttranscriptional

regulatory element

zinc-finger nucleases
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= ® The results presented in this PhD thesis demonstrate the efficient
and persistent correction of the biochemical phenotype in
affected organs of Tymp”Upp1” mice, brain neurological
phenotypes (white matter edema and astrocytes morphology),
and intestinal myopathy (atrophy of the muscularis propria), at
relatively low vector copy numbers and without obvious vector or
disease-related phenotoxicity or genotoxicity. Due to the lack of
some of the major neurological or gastrointestinal clinical
phenotypes in Tymp”Upp1” mice (such as motor dysfunction or
cachexia), researchers should be cautious in translating our
findings from mice to MNGIE patients. Nonetheless, it is
recommended to perform more studies before clinical
application, including evaluating HSCGT in more clinically-
relevant models that mimic human MNGIE disease, the dosing of
LV vector and transplanted gene modified cells, and a more
thorough assessment of vector biodistribution and safety studies
addressing potential phenotoxicity and genotoxicity.?
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