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Abstract— Echocardiographic determination of multicompo-
nent blood flow dynamics in the left ventricle remains a challenge.
In this paper, we compare contrast enhanced, high frame rate
(HFR) (1000 frames/s) echo-particle image velocimetry (ePIV)
against optical particle image velocimetry (oPIV, gold standard),
in a realistic left ventricular (LV) phantom. We find that ePIV
compares well to oPIV, even for the high velocity inflow jet
(normalized RMSE = 9% ± 1%). In addition, we perform the
method of proper orthogonal decomposition, to better qualify and
quantify the differences between the two modalities. We show that
ePIV and oPIV resolve very similar flow structures, especially
for the lowest order mode with a cosine similarity index of 86%.
The coarser resolution of ePIV does result in increased variance
and blurring of smaller flow structures when compared to oPIV.
However, both modalities are in good agreement with each other
for the modes that constitute the bulk of the kinetic energy.
We conclude that HFR ePIV can accurately estimate the high
velocity diastolic inflow jet and the high energy flow structures
in an LV setting.

Index Terms— Echo-particle image velocimetry (ePIV),
echocardiography, high frame rate (HFR) imaging, left ventric-
ular (LV) flow, ultrasound contrast agents (UCAs), ultrasound
imaging velocimetry (UIV).

I. INTRODUCTION

THE left ventricular (LV) diastolic filling vortex has
been suggested as a potential early-stage biomarker for

cardiac dysfunction [1]–[7]. At present, Doppler echocar-
diography and phase-contrast cardiovascular magnetic reso-
nance (PC-CMR) imaging are the primary techniques used for
clinical assessment of LV filling dynamics. However, Doppler
echocardiography is limited to assessing a single velocity com-
ponent along the beam axis; and whereas PC-CMR can resolve
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velocity components in 3-D, its temporal resolution is limited,
and acquisition is phase averaged over hundreds of cardiac
cycles, resulting in the blurring of cycle-to-cycle variation,
which may contain information of clinical importance [8].

Several ultrasonic techniques have emerged to measure
blood flow in 2-D or 3-D rather than along the beam direction.
Vector Doppler imaging (VDI, also known as multiangle
Doppler) is one such technique developed to measure both
the axial- and cross-beam flow component; this is achieved by
retrieving at least two Doppler measurements at a known angle
to each other, which can then be used to deduce the separate
flow components [9]. However, VDI requires a large aperture
for imaging deep structures, which is impractical in transtho-
racic echocardiography due to the small intercostal windows.

Transverse oscillation (TO) is a similar technique to VDI,
in that it splits the transducer aperture, but in this case it does
so synthetically by applying an apodization function in receive.
TO has been used to measure LV blood flow but is limited to
open-chest scanning only due to depth limitations [10], [11].
A recent variation of TO, named directional TO (DTO), is a
method to automatically calibrate the TO technique with depth.
DTO has shown reasonable accuracy at depths of up to
160 mm in pipe flow experiments, although its use in complex
flow environments has yet to be demonstrated [12].

Alternatively, in a more numerical approach, vector flow
mapping combines conventional 2-D color Doppler with track-
ing of the LV wall motion, and applies a mass-conservation
constraint (under the assumption of planar flow) to numerically
estimate the cross-beam velocity component at each point in
the velocity field [13]. A similar technique, referred to as echo
dynamography, estimates the cross-beam components utilizing
only color-Doppler measurements. It achieves this by splitting
the flow field (assumed to be laminar) into a nonvortical and
several vortical flow components; of which the axial- and
cross-beam velocity components can be derived [14].

Along an image-processing-based paradigm, blood speckle
tracking estimates the displacement of local distributions of
red blood cells (RBC) [15]. This technique has been used for
flow estimation in neonates [16] and pediatric patients [17].
However, for adult cardiac applications, this technique requires
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Fig. 1. LV phantom and experimental setup. (a) Diagrammatic representation of LV phantom. (b) Zoomed-in view of the compliant LV with aortic (AoV)
and mitral (MV) valves and the US transducer through its view port. ∗ Note the opaque joint region at the start of the aortic outflow tract. (c) Diagram of
experiment: control of laser, US, and pump are all performed with different computers and synchronization is achieved by a trigger pulse provided by the
pump control system. (d) Photograph of ePIV versus oPIV experimental setup.

a high signal-to-noise ratio (SNR) to retrieve sufficient signal
from the blood, after clutter filtration. Here ultrasound con-
trast agent (UCA) can be beneficial, providing a large SNR
improvement over the scattered signals from RBC. UCA has
widely been used in a similar technique to blood speckle
tracking named echo-particle image velocimetry (ePIV, also
known as ultrasound imaging velocimetry or UIV).

ePIV estimates the local displacement of a sparse distribu-
tion of microbubbles. However, when using focused transmis-
sion schemes, ePIV accuracy diminishes in the presence of fast
flow. This is due to the relatively large scatterer displacement,
and the associated speckle decorrelation, between frames [18].
The inability to resolve fast flows is especially detrimental to
investigating the effect of the diastolic filling vortex, where
the velocities inside the jet can exceed 1 m/s. Indeed, previous
LV flow phantom studies utilizing ePIV have both mentioned
the limitations of the method with regard to tracking the
high velocity transmitral jet [19], [20]. However, the recent
feasibility of high frame rate (HFR) US acquisitions, using
unfocussed transmit protocols, has offered a possible solution
to the dynamic range limitations of ePIV.

Indeed, our previously reported work [21] and a study by
Leow et al. [22] verified that the ultrafast ePIV could accu-
rately estimate high velocity flows in a blood vessel setting.
However, these experiments do not cover the transient and
multidimensional nature of intraventricular flow. Expanding
on our previous work, we have developed an acoustically and
optically transparent LV flow phantom to be used for optical
PIV and US.

In this paper, we investigate whether HFR ePIV can accu-
rately measure high velocity intraventricular flows. To do
so, we simultaneously acquire HFR US and time resolved
digital PIV (herein referred to as optical PIV, i.e., oPIV)
acquisitions at equivalent frame rates, allowing for frame-to-
frame comparison between the two modalities.

II. METHODS

A. Left Ventricular Phantom

A compliant, optically and acoustically transparent silicone
LV chamber [Fig. 1(b)], was manufactured by painting
four layers of silicone (HT 33 Transparente LT, Zhermack
SpA, Rome, Italy) onto a 3-D-printed mold of an LV. The
3-D-printed mold was modeled from the statistical mean (end
systolic phase) of a data set of segmented 4-D computed
tomography images of 150 patients [23], [24]. The silicone
LV was then fit with mitral [Fig. 1(b)—MV] and aortic
[Fig. 1(b)—AoV] Björk–Shiley valves.

The LV was encased in a transparent acrylic box and fit
with mitral and aortic valve ports, which were connected to an
atrial chamber and an aortic compliance chamber, respectively
(Fig. 1). The acrylic box had one open port, which was
connected to a programmable piston pump, which reciprocated
in a sinusoidal pattern at a frequency of 1 Hz with an 80-ml
stroke volume. The pump control system additionally provided
a trigger pulse for synchronized acquisition between the oPIV
and ePIV systems. The LV phantom design was inspired by
Gao et al. [19]; however, this phantom is also designed to be
MRI compatible for future research.

The LV housing had three flat and transparent surfaces
for laser/camera view access, as well as an US port on the
underside of the box, sealed with a thin film. The orientation
of the US and laser/camera ports allow for simultaneous
acquisition of oPIV and ePIV recordings.

The system works with two incompressible fluid systems:
1) the hydraulic fluid system, which is contained in the LV
enclosure and transfers energy from the pump to the LV and
2) the “blood” fluid system, which flows from the atrium
through the LV to the compliance chamber, slowly refilling
through the return lines. The two fluid systems do not mix
and the “blood” fluid system dynamically pumps in response



2224 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 65, NO. 12, DECEMBER 2018

to the compression and expansion of the silicone LV wall,
which follows the volume change in the hydraulic fluid system
induced by the piston pump.

Both fluids were 66% glycerol in water solutions (density =
1160 kg/m3 and viscosity = 0.0177 Pa · s) to allow for
correct optical index matching between the silicone of the
LV and the fluid. The mismatch in density and viscosity to
normal LV blood values means that the Reynolds number is
not matched to in vivo values. However, in this paper, we are
primarily interested in capturing the diastolic, transmitral jet
at similar velocities to those observed in vivo (∼1 m/s).

The pump control system was not optimal, in that the pump
stroke between acquisitions was not consistent. However,
as oPIV and ePIV were acquired simultaneously this did not
adversely affect the comparison.

B. Echo-Particle Image Velocimetry

1) Ultrasound Settings: US RF data were acquired with
a Verasonics Vantage 256 system (Verasonics Inc., Kirkland,
WA, USA) using a curvilinear (3 MHz, C5-2, and ATL) probe.
A single pulselength diverging wave, three-angled acquisition
protocol was used at a pulse repetition frequency of 3 kHz,
resulting in imaging at 1 kHz after correlation compounding
(see Section II-2). Data sets were acquired for 2 s, starting
when the trigger pulse from the pump controller was received,
allowing for two full heart cycles to be captured.

Before beamforming, a 70 Hz, eighth-order, high-pass But-
terworth filter was applied to the channel data in the slow-time
dimension to remove static clutter. The Verasonics Vantage
software (V.3.0.7, all postprocessing turned OFF) was used for
IQ reconstruction, and the envelope data were used as an input
for the ePIV algorithm.

An UCA(UCA, SonoVue, Bracco S.p.A) was used as a
tracer particle for ePIV tracking. The UCA was injected in
a 0.25-ml bolus injection, resulting in a concentration of
approximately 90 μl/l.

2) ePIV Settings: We used a modified version of
PIVlab [25] as an ePIV implementation in MATLAB (R2017a,
The MathWorks Inc., Natick, USA). This modified imple-
mentation performed block-wise cross correlation for each
corresponding angle (in this case three angles), averaging
their correlation maps before peak finding (Fig. 2). This was
performed to reduce the decorrelation effects of bubble motion
between angles.

An iterative scheme is employed where the interrogation
window is resized and deformed using the displacement
estimates from the previous iteration before performing the
next iteration of displacement estimation. Deformation was
performed using linear interpolation. Four iterations were
performed in total with the first two having a kernel size of
64 × 64 pixels (∼18 × 18 mm) and the last two refined to
32×32 pixels (∼9×9 mm), all with an overlap of 75%. Pixel
resolution was 280 μm (λ/2) and the final grid spacing was
2.3 mm × 2.3 mm. Cross correlation was performed in the
Fourier domain and to reduce the implicit bias toward zero
displacement (caused by loss of particle pairs) the correlation
maps were corrected by an appropriate window function [26].

Fig. 2. Illustration of the angle-wise cross correlation averaging technique
used for ePIV estimation. Corresponding angles between successive image
frames are used for cross correlation comparison and the mean correlation
map of all angles is used for peak finding. This process is repeated multiple
times per frame pair after interrogation window refinement and deformation.

For post-processing, both local median test [27] (ε = 0.05,
threshold = 3, and b = 1) and global standard deviation
(σ = 3) outlier tests were performed, replacing removed vec-
tors with interpolated values from surrounding data. Finally,
a moving average filter (five ensembles) was applied along
the time dimension of the data and a Gaussian convolution
filter (σ = 0.5 × 0.5 and span = 3 × 3) was used spatially.
Table I provides a summary of the implementation details and
parameters used for ePIV.

C. Optical Particle Image Velocimetry

The oPIV was used to measure the instantaneous
2-D velocity field in sync with ePIV, which was performed
at the same frame rate. The oPIV measurement plane was
aligned to the US plane and was positioned such that both
the AoV and MV would be visible in the plane, allowing
for both filling and ejection dynamics to be captured. The
oPIV setup is photographed in Fig. 1(d) and summarized
in Fig. 1(c) and Table I. Briefly, the oPIV setup consisted
of a high-speed CMOS camera (Imager Pro HS 4M, LaVision
Inc., Bicester, U.K.) equipped with a 100-mm focal length
lens arranged perpendicular to the measurement plane. Image
calibration was performed using a two-level calibration plate
(106-10, LaVision Inc.) placed in the desired measurement
plane.

The camera’s field of view was adjusted to narrowly include
the entire ventricle in an area of approximately 95 × 95 mm2

at a focal aperture of 5.6. The measurement plane was
illuminated by a high-speed dual cavity pulsed Nd:YLF laser
(526 nm, LDY304, Litron Lasers, Rugby, U.K.). The laser
sheet thickness was approximately 1 mm and the camera
depth of field was approximately 1.8 mm. The 2000 frames
were acquired over a 2-s interval following the trigger signal
received from the pump control system, thus synchronizing
the ePIV and oPIV acquisitions.

The hollow glass spheres used as oPIV tracers were not
visible in the US images, and the microbubbles used for ePIV
were not visible in the oPIV images.
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TABLE I

PIV PARAMETERS

Vector calculation was performed using the TRDPIV pack-
age in the Davis 8.4 (LaVision Inc., U.K.) software package.
This implementation used an iterative fast Fourier transform
cross-correlation scheme with interrogation window refine-
ment, ranging from 64 × 64 pixels down to 16 × 16 pixels
with 50% overlap throughout. Pixel resolution was 47 μm
and final grid spacing was 375 μm × 375 μm.

D. Comparison of oPIV and ePIV

The velocity profile of the primary inflow jet was used to
compare the two modalities. In addition, a technique widely
used for flow feature studies in oPIV and numerical analysis
called proper orthogonal decomposition (POD) was used for
comparison of the dominant flow features observed through
oPIV and ePIV [28]–[30]. Using a conventional vector-to-
vector analysis would require precise alignment between
the US and laser scanning planes which is impractical.
Using POD, the dominant flow structures observed in the two
data sets could reliably be compared.

Before comparison, the oPIV data set was spatially down
sampled (using a local mean) to match the grid spacing of the
ePIV data. This made for a more meaningful comparison to the
ePIV data which is an order of magnitude lower in resolution
than oPIV. It was also required for POD analysis, in order to
match the energy density between the two data sets.

E. Proper Orthogonal Decomposition (POD)

The POD technique (described in detail in [29] and [30])
has been extensively used and developed in the fluid dynamics
community but a brief description will be provided here.

POD analysis decomposes a time-sampled vector field into
a set of orthogonal basis vectors (modes), and a set of scalar
weighting coefficients (2). The utility of the method lies in
that the modes and their corresponding coefficients are ordered
in a descending manner by their energy contribution to the
observed data set. Thus, large (spatially and in magnitude)
and coherent flow structures are described in the low-order
modes; whereas small and incoherent flow structures are
shifted toward the high-order modes. A typical POD results
in the majority of energy being contained in a minority of
the low-order modes. Hence, a comparison of the first few
modes between decomposed data sets can reveal similar-
ity or differences between the two data sets, largely reducing
the dimensionality of the comparison problem [28], [32].

In this paper, the method of snapshots was used [33] which
provides a discrete approximation of the POD method in the
temporal domain. First, the velocity grids are reorganized into
a concatenated Casorati matrix U

U = [u1u2 . . . uN ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
x1 u2

x1 . . . uN
x M

...
...

. . .
...

u1
x M u2

x M . . . uN
x1

u1
y1 u2

y1 . . . uN
y1

...
...

. . .
...

u1
yM u2

yM . . . uN
yM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where ux and uy are the velocity components in the axial and
azimuth directions, respectively, N is the number of frames in
the sequence, and M is the number of vectors in the field per
frame.

POD decomposes U into a set of orthogonal spatial modes
� and a set of temporal weighting coefficients A

U = �A. (2)

To calculate � and A, the covariance matrix C is computed

C = U T U (3)

from which the eigenvalue equation can be solved

Cβ = λβ (4)

where the eigenvalues, λ, are ordered in decreasing amplitude.
The eigenvectors β are used to construct the POD modes ϕ i

ϕ i =
∑N

n=1 β i
nun

λi
, i = 1, . . . , N . (5)

The POD coefficients are calculated by projecting the velocity
components onto the POD modes

an = �T un (6)

where � = [ϕ1ϕ2 . . .ϕn] and A = [a1a2 . . . an]T
.

To ensure that modes between the two data sets were
comparable (i.e., shared), a combined decomposition was per-
formed. That is, the vectors of each data set were concatenated
before POD and then reconstituted afterward for comparison.
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Fig. 3. Vector field comparison between (a)–(d) oPIV and (e)–(h) ePIV during (a)–(c) and (e)–(g) filling and (d) and (h) ejection. Vorticity and streamline
comparison between (i)–(l) oPIV and (m)–(p) ePIV. ePIV is able to capture the high velocity inflow jet, and similar flow patterns are observed. (d) ∗ Note
that oPIV cannot resolve vectors in the vicinity of the opaque connection to the outflow tract [see Fig. 1(d)—∗]. (g) X: ePIV tracking errors due to transient
clutter artifact (see text). Black lines and dots represent the valve disks and seats, respectively (indicating a closed position when they overlap). A video

showing one full cycle is available at ht.tp://ieeexplore.ieee.org. AoV = aortic valve and MV = mitral valve.

Similarity between the POD modes of oPIV and ePIV was
quantitatively assessed using the cosine of the angle between
their vectors

R pi = (ϕ i
oP I V ,ϕ i

e P I V )

�ϕ i
oP I V � · �ϕ i

e P I V � (7)

where (, ) the two sets of basis functions and � · � denotes the
L2 norm.

III. RESULTS

A. Description of Flow
Three frames during filling and a frame during ejection are

shown in Fig. 3, where the first two columns (a)–(h) depict

http://dx.doi.org/10.1109/TUFFC.2017.2786340/mm1
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the velocity vector fields and the last two columns (i)–(p)
depict the calculated vorticity fields with overlaid streamlines.
In Fig. 3(a), (e), (i), and (m), the LV is imaged shortly
after MV opening. Due to the geometry of the Björk–Shiley
MV two jets develop on the lateral (right) and septal (left)
sides of the MV [Fig. 3(b) and (f)]. The primary (lateral)
jet has a higher velocity than the secondary (septal) jet,
and accompanying contra-rotating vortices, visible in both
the oPIV and ePIV measurements. This jet develops further
with the lateral (right) vortex moving slightly apically but
mostly remaining in the basal region (Fig. 3—second and third
rows). Concurrently, the septal (left) vortex migrates apically
before dissipating and splitting into smaller vortices. The
primary jet develops into a continuous stream over time while
simultaneously reducing in velocity magnitude. The secondary
jet only forms a clockwise vortex [Fig. 3(k) and (o)] on the
septal (left) side of the ventricle and dissipates much faster
than the primary jet. During ejection (Fig. 3—last row), fluid
is pushed toward the aortic outflow tract and fluid near the
septal wall is observed to move with a higher velocity than in
the center of the LV.

B. Qualitative Comparison

The similarity between ePIV and oPIV is visible in all
phases of Fig. 3, with the exception of the ejection period
where oPIV was not able to detect the velocities in the outflow
tract due to the opaque joint in the silicone [Fig. 3(d)—∗,
caused by the manufacturing procedure of the LV phantom,
see Fig. 1(b)—∗]. However, the velocities in the aortic outflow
tract region were resolvable by ePIV [Fig. 3(h)].

Two tracking errors of ePIV are observed in Fig. 3(f)
and (g)—X. Transient clutter caused by strong sidelobes of
stationary air bubbles (on the LV wall) obscures the marked
regions during the instances shown. The ePIV derived velocity
vectors showed more frame-to-frame fluctuation than those
derived from oPIV, especially in the basal region, which was
in the elevational far-field of the US image (>80-mm depth).

C. Quantitative Comparison

The ability of ePIV to capture the full range of velocities
present in the field is demonstrated in Fig. 4, where time
profiles (from three separate acquisitions) through the jet cross
section are plotted for both ePIV and oPIV. Note the high level
of agreement between the two temporal profiles regardless of
the variation in pump-induced flow profile. Indeed, the RMSE
for the three repeated profiles in Fig. 4 was 5.5 ± 0.1 cm/s
(9% ±1%). However, ePIV still slightly underestimates the
flow when compared to the oPIV, which is reflected in an
RMSE of 10 ± 1 cm/s (16% ± 2%), when only the high
velocity (|vmean| > 30 cm/s) portions of the cycle are taken
into account.

D. POD Qualitative Comparison

To assess the similarity of the flow features observed by
both modalities, a POD analysis was performed. The results
of this analysis are shown in Figs. 5–7. Vector plots of the five

Fig. 4. Maximum intensity projections of the (a) oPIV and (b) ePIV time
series. (c) Mean temporal velocity profiles in the jet region (of three repeated
experiments), denoted by the dotted lines in (a) and (b), for oPIV (blue dashed)
and ePIV (orange solid). Note that the good agreement between oPIV and
ePIV even though the pump-induced flow profile was inconsistent between
repetitions.

lowest order modes for ePIV and oPIV are shown in Fig. 5
(one row per mode). The POD coefficient profiles, in the
azimuthal and axial directions, of the five lowest order modes
are shown in Fig. 6. The minor underestimation of ePIV is
apparent in the POD analysis, which can be seen in the axial
coefficients of mode 1 (Fig. 6—region A), which for the most
part, describes the primary jet stream [Fig. 5(a) and (f)]. Note
that the secondary jet stream is not as prominent for ePIV as it
is for oPIV in mode 1 [Fig. 5(a) and (f)]. During ejection, oPIV
is not able to resolve flowthrough the opaque joint region (see
Fig. 1(b)—∗), whereas ePIV can; which is reflected in both
their POD modes [Fig. 5(c) and (h)] and their coefficients
(Fig. 6—∗).

It should be noted that the flow profiles generated by the
different modes are not necessarily real flow patterns that
can be observed in the original data sets, they are instead
the principal components of variation throughout the data set,
where the low-order modes are of interest due to their inherent
high kinetic energy. In the combined POD analysis, the first
53 modes (2.65% of the total number of modes) comprised
95% of the total energy in the decomposition.

E. POD Quantitative Comparison

Quantitative comparison of the two modalities can be seen
in Fig. 7(a), where the similarity index is plotted per mode
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Fig. 5. Vector map plots of the first five POD modes for (a)–(e) oPIV and
(f)–(j) ePIV. Good agreement is noted for all modes. Mode 1: the primary
jet is very similar, but the secondary jet is weaker in ePIV. Mode 2: vector
magnitude is more disperse for ePIV than oPIV. Mode 3: ejection dynamics
captured by ePIV but not oPIV, similar to that observed in Fig. 3(d) and (h).
Modes 4 and 5: POD starting to describe high-energy vortical structures,
similarly captured for both modalities. AoV = aortic valve and MV = mitral
valve.

along with the cumulative energy fraction (CEF). The similar-
ity is highest for the first few modes of variation but drops off
for higher order modes. The first five modes have a similarity
index (Rp) of above 0.5. These first five modes comprise

Fig. 6. First five POD coefficients for oPIV and ePIV in the azimuthal
and axial directions. Regions demarcated between vertical dotted lines refer
to periods associated with filling (A) and ejection (B). ∗ Large difference
corresponds to peak ejection period where oPIV estimate is obscured by joint
region [see Figs. 5(c) and 1(b)—∗].

already 72% of the energy within the data set and have an
average similarity index of 73%. The first mode’s similarity
index is 86%. A sharp dip in the similarity index is seen for
mode 3, which corresponds to a mode primarily associated
with ejection [Fig. 5(c) and (h)].

Fig. 7(b) shows a similar comparison to Fig. 7(a), except
the POD decomposition was performed during frames 1–500
(filling) and 501–1000 (ejection) separately. Note the stronger
similarity in filling than ejection, where there is disagreement
about the ejection dynamics.

IV. DISCUSSION

A. Transmitral Jet

Complex flow patterns, similar to those observed in LVs
in vivo, have been measured in an in vitro experimental setup
and a high degree of similarity was demonstrated between
ePIV and the industry gold standard oPIV. Most notably,
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Fig. 7. (a) Rp similarity index versus CEF per mode. 90% of the energy
is contained in the first 25 modes from a data set of 2000 snapshots. Rp
is strong for the first five modes, making up 72% of the combined energy,
but drops thereafter. (b) POD decompositions of filling (solid) and ejection
(dashed) phases separately. Note the superior similarity in filling versus
ejection. This is attributed to the unresolved velocity in the outflow track
for the oPIV measurements.

the use of HFR US imaging has enabled ePIV to resolve
high velocity flows of approximately 1 m/s; which was previ-
ously not possible with conventional scanning US acquisitions.
Figs. 3 and 4 demonstrate that ePIV is able to resolve the high
velocity transmitral jet. In similar LV phantom studies, where
conventional scanning US-based ePIV was used, the maximum
detectable velocities were no higher than 0.45 m/s [18], [19].

Although the flow profiles obtained by oPIV and ePIV
were similar, ePIV still slightly underestimated the transmitral
jet velocity when compared to oPIV. The underestimation of
ePIV is likely due to the order of magnitude reduction in
spatial resolution between oPIV and ePIV. The transmitral jet
is narrow relative to the lateral resolution of the US image and
the ePIV interrogation kernels, causing an averaging effect of
flow in the region. Thus the flows in the high velocity, narrow
jet region, are averaged with the adjacent low velocity flow
regions. The ePIV results were also noisier than the oPIV
results. The lower SNR of the US images is likely the cause
with a SNR of 18 ± 2 dB versus 30 ± 1 dB for the oPIV
images (signal measured inside and noise measured outside

the LV). The two tracking errors (Fig. 3(f) and (g)—X) are
caused by transient clutter originating from air bubbles on the
LV wall. These air bubbles were static but moved in and out
of the imaging plane with the motion of the LV wall resulting
in stationary but transient speckle patterns which obscured the
underlying flow.

B. POD

POD analysis was able to show a fair agreement between
oPIV and ePIV, as can be seen by their similar coefficient
vectors for low-order modes (Fig. 6). The slight underestima-
tion of ePIV is also highlighted in the axial coefficients of
the first POD mode (Fig. 6—mode 1 and A regions), which
constitutes the majority of the transmitral jet energy. However,
it can be seen that both ePIV and oPIV follow very similar
flow patterns as is attested by the strong similarity indices of
their low-order modes.

For mode 2, the flow patterns do show some disparity, where
the observed flow moving up the septal (left) wall is wider in
structure for ePIV than for oPIV. Also, more flow is present
near the outflow tract in the ePIV analysis, which is not present
in the oPIV analysis. It may be that, for ePIV, out-of-plane flow
is being registered as in-plane flow due to wider US elevational
beamwidth in the far-field.

Analyzing separate POD decompositions for the filling and
ejection phases show that the two modalities agreed more
during filling than ejection. This is due to opaque joint between
the outflow tract and the LV, which was a byproduct of the
manufacturing process used. The joint obscures the oPIV
signal in that region. The loss of similarity with increasing
mode number can be explained by a number of factors: first,
smaller flow structures are described by higher order modes,
where the high resolution of oPIV allows for more detailed
flow structures to be captured. Second, the US and laser planes
were not perfectly aligned, which would have more impact on
higher order modes (due to the smaller flow structures they
describe) than lower order modes. Finally, the ePIV estimates
were more erratic than the oPIV estimates; this would also
affect the higher order modes more than the lower order
modes, as the smaller, high-frequency variations would collect
in the higher order modes.

C. Correlation Compounding of Angled Acquisitions

Recently, HFR ultrasonic imaging has demonstrated value
in the study of microvascular flow, where HFRs have been
shown to improve Doppler sensitivity to slow flows [34], [35].
This paper uses HFR imaging for the opposite: to track high
velocity flows. In cardiac imaging, HFR US is required to
maintain speckle pattern coherence between frames, so that the
displacement of the microbubble distributions can be tracked.
A significant difference in ultrafast processing between the
two fields is that angular compounding cannot be performed
on the image data, as the speckle displacements are far too
large between frames. These large displacements cause loss of
coherence when performing spatial (coherent) compounding.
In this paper, we instead perform the compounding in the cor-
relation space (Fig. 2), which instead of assuming negligible



2230 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 65, NO. 12, DECEMBER 2018

Fig. 8. Effect of compounding angular acquisitions in the (a) correlation
domain and (b) spatial domain. When angles are averaged spatially after
beamforming (coherent compounding) fast moving scatterers decorrelate,
degrading the signal for ePIV analysis. AoV = aortic valve and MV = mitral
valve.

scatterer displacement between angles; assumes that there is
negligible scatterer acceleration between angles. Spatial com-
pounding results in severe underestimation of the transmitral
jet, whereas correlation compounding successfully estimates
the high velocity dynamics [Fig. 8, see Fig. 3(a) for the oPIV
estimate of the same frame]. The superior tracking accuracy
of correlation compounding over coherent compounding has
also been reported in [36], where it was shown that coherent
compounding failed to resolve fast flows where correlation
compounding succeeded.

Only three tilting angles were used in this paper, initially
as a compromise between speckle decorrelation and side-
lobe suppression. With the use of correlation compounding
more tilting angles may be viable without affecting speckle
decorrelation.

D. Smoothing
Limited temporal and spatial smoothing were performed

in this paper. This was in an attempt to preserve the high
velocity jet flow, which when smoothed, reduced the peak
velocities detected. Decreasing the size of the interrogation
windows (currently 9 mm × 9 mm for the finest iteration)
would help to reduce smoothing of the peak velocities in the
jet; however, we found that halving the interrogation window
size (4.5 mm × 4.5 mm) caused an increase in spurious
vector results. The bubble displacement in the jet peaks at
about 1.2 mm/frame, which violates the requirements of the
generally accepted “one-quarter rule” for interrogation window
size [25]. Alternatively, increasing the overlap percentage
(75% in this paper) would increase the final grid resolu-
tion, which would generate a spatially smoother vector field
(requiring less smoothing in postprocessing). However, this
is accompanied by a considerable computational cost. More
advanced velocity field regularization algorithms may prove
beneficial in preserving the high velocity flows while removing
noisy fluctuations in the velocity field. Gao et al. [19] used
a Navier–Stokes-based regularization scheme; however, this
method was sensitive to boundary conditions.

E. Limitations

Whereas great care was taken to align the US and laser
planes, the exact orientation of the US plane could not be
discerned by eye. These misalignments may mean that flow
in one modality is slightly out of plane in the other. This
can be alleviated by imaging in 3-D, using matrix transducers
for 3-D ePIV, which can be validated against time resolved
stereoscopic PIV. A 3-D imaging will also eliminate another
limitation of this paper which is that the velocities measured
are affected by out-of-plane motion, where scatterers leaving
the scanning plane will cause decorrelation between frames,
degrading the velocity estimates.

This paper assesses ePIV in an idealized in vitro circum-
stance. In vivo cardiac imaging will bring more challenges as
image quality is further reduced due to attenuation and clutter
from the ribs and lungs [37]. Furthermore, the large aperture,
curvilinear probe used in this paper would be impractical for
transthoracic imaging. The use of a phased array probe with
small aperture will bring its own challenges, such as lower
resolution and a changing point-spread function with depth
due to scan conversion. These issues can be alleviated by
performing the ePIV analysis in the polar domain, but this
will be explored in detail in the future studies.

Finally, the mechanical index of the transmission pulse
used in this paper was 0.09 (measured at a depth of 35 mm
in 22 °C water). Like in [38], this did not cause any visible
bubble disruption but may require optimization for in vivo
imaging, where physiological conditions are known to alter
bubble stability [39], [40].

V. CONCLUSION

This paper has shown that HFR ePIV can accurately esti-
mate the high velocity transmitral jet, in an in vitro LV setting.
We have also shown that the dominant flow patterns observed
by ePIV and oPIV are very similar.
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