Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017

Abstract

Purpose
Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management.

Methods
An expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review.

Results
Consensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy.

Conclusion
To our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA—a clinically heterogeneous disease.

Introduction
Prostate cancer (PCA) is the third leading cause of cancer-related death in US men, accounting for 26,730 deaths in 2017.1 There is increasing evidence that PCA has substantial inherited predisposition,2,3 with higher risks conferred by BRCA2 and BRCA1 (associated with hereditary breast and ovarian cancer [HBOC] syndrome), and HOXB13 (associated with hereditary prostate cancer [HPC]).4-24 Furthermore, BRCA2 mutations have been associated with poor PCA-specific outcomes.2-13 There is also emerging evidence of the link between PCA and Lynch syndrome.22,23

Author affiliations and support information (if applicable) appear at the end of this article.

Published at jco.org on December 13, 2017.

Corresponding author: Veda N. Giri, MD, Department of Urology, Thomas Jefferson University, 1025 Walnut St, Suite 1015, Philadelphia, PA 19107; e-mail: veda.giri@jefferson.edu.

Reprint requests: Leonard G. Gomella, MD, Department of Urology, Thomas Jefferson University, 1025 Walnut St, Suite 1102, Philadelphia, PA 19107; e-mail: leonard.gomella@jefferson.edu.

© 2017 by American Society of Clinical Oncology

0732-183X/18/3604w-414w/$20.00
and DNA mismatch repair (MMR) gene mutations (accounting for Lynch syndrome [LS]). Furthermore, inherited genetic mutations are being uncovered in up to 12% of men with metastatic PCA, primarily in DNA repair genes such as BRCA1, BRCA2, and ATM, with improved clinical outcomes by specific targeted agents. Identifying genetic mutations of inherited PCA, therefore, has implications for cancer risk assessment for men and their families, for precision treatment of metastatic disease, and is being incorporated into guidelines for individualized PCA screening strategies specifically for male BRCA1/2 mutation carriers.

However, no centralized guidelines exist regarding genetic counseling and genetic testing for PCA or optimal use and interpretation of multiple genes now available on commercial PCA gene panels (Table 1). At least three commercial laboratories have PCA multigene panels available that include BRCA1, BRCA2, HOXB13, DNA MMR genes, and multiple additional genes (such as ATM, CHEK2, and NBN; Table 1). Some of these genes provide actionable PCA risk information, whereas data for PCA risk is limited for other genes on these panels. Therefore, testing capability has created a dilemma regarding optimal application of genetic tests for counseling and evaluation of inherited PCA.

Genetic counseling is a dynamic process in which trained cancer genetic counseling professionals perform detailed intake of personal history and family cancer history, discuss genetic inheritance of cancer and genetic test options, address implications of genetic test results with patients and their families, and clarify patient preferences regarding genetic testing to make an informed decision for proceeding with testing. However, guidelines are limited regarding genetic counseling and genetic testing for PCA (Table 2) and focus only on BRCA1/2 testing. Current National Comprehensive Cancer Network (NCCN) Genetic/Familial High-Risk Assessment: Breast and Ovarian (Version 2.2017) guidelines address BRCA1/2 testing for men with a personal history of PCA limited to Gleason ≥ 7 and specific family history (FH) features. An additional criterion for germline genetic testing is BRCA1/2 mutation detected on somatic tumor testing. Although these expert panel guidelines begin to address BRCA1/2 testing for PCA, they exclude addressing other genes now available through multigene panels, several of which are implicated in PCA predisposition (Table 1).

Genetic testing has potential to inform PCA screening and targeted treatment, as exemplified in other cancers. NCCN guidelines (Genetic/Familial High-Risk Assessment: Breast and Ovarian) state that PCA screening should begin at age 45 years for male BRCA2 mutation carriers and to consider this recommendation for BRCA1 carriers. Current NCCN Prostate Cancer Early Detection Panel (Version 2.2016) agreed that men should be asked about the presence of known BRCA1/2 mutations in their families. The group added consideration of FH of BRCA1/2 mutations to the baseline discussion of risks and benefits of PCA screening but believed that data are insufficient to change screening and biopsy recommendations. Given increasing knowledge of genetic contribution to PCA (such as from HOXB13 and DNA MMR genes) and expanding availability of commercial multigene panels, there is a need for enhanced guidance on how multigene testing may be incorporated in PCA screening discussions.

Finally, precision medicine is catapulting the need for genetic testing to inform cancer treatment, particularly in the advanced-stage setting. Emerging studies report clinical activity of polyadenosine diphosphate-ribose polymerase (PARP) inhibitors in metastatic PCA, particularly for men with DNA repair mutations. Recent accelerated US Food and Drug Administration approval of immune checkpoint inhibitors for microsatellite instability-high and MMR-deficient cancers further highlights the increasing role of genetic testing in cancer treatment, with implications for PCA. Thus, comprehensive guidance for multigene testing for inherited PCA is now critical for cancer risk, screening, and treatment implications.

Because multigene testing capability for PCA is now a reality, a consensus conference was convened to address the clinical genetic evaluation spectrum for inherited PCA. The Philadelphia Prostate Cancer Consensus 2017 was held in Philadelphia, Pennsylvania on March 3 and 4, 2017 and focused on the role of genetic testing for inherited PCA risk as well as genetic counseling, screening, and management on the basis of genetic findings. The conference was attended by stakeholders involved in PCA early detection, treatment, research, and patient advocacy. This was the first centralized, multidisciplinary conference, to our knowledge, focused on addressing and developing a working framework for the comprehensive genetic evaluation of inherited PCA in the multigene testing era.

Table 1. Current Genes on PCA Multigene Panels, Evidence Summary for PCA Risk, and Guidelines Available

<table>
<thead>
<tr>
<th>Gene</th>
<th>Syndrome</th>
<th>Evidence Summary for Association to PCA Risk*</th>
<th>Guidelines for PCA Screening†</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>HBOC</td>
<td>A</td>
<td>x</td>
</tr>
<tr>
<td>BRCA2</td>
<td>HBOC</td>
<td>A+</td>
<td>x</td>
</tr>
<tr>
<td>DNA MMR</td>
<td>LS</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HOXB13</td>
<td>HPC</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>TP53</td>
<td>LFS</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>ATM</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CHEK2</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>PALB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBN</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RAD51D</td>
<td></td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Adapted from Giri et al to include consensus panel review. Detailed evidence review provided in Appendix Tables A2-A6.Abbreviations: HBOC, hereditary breast and ovarian cancer; HPC, hereditary prostate cancer; LFS, Li-Fraumeni syndrome; LS, Lynch syndrome; MMR, mismatch repair; PCA, prostate cancer.

*Grade of evidence for PCA is summarized as follows: (A) High-grade evidence: At least one prospectively designed study or three or more large validation studies or three or more descriptive studies; (B) Moderate-grade evidence: two cohort or case-control studies; (C) Emerging data: increasing data in support of association to PCA, but not yet moderate-grade evidence; (D) Low/insufficient: limited data or not studied in the context of PCA.

‡High-grade evidence for association to lethal/aggressive PCA.

METHODS

Panel Members

The panel included 71 experts from the United States, Canada, England, and the Netherlands. Panel selection criteria included consideration of stakeholders with expertise in PCA early detection, treatment, genetic counseling, clinical cancer genetics, research, bioethics, and advocacy, along with patient advocates (Appendix Table A1, online only).
Table 2. Gaps in Genetic Evaluation of Inherited PCA Addressed by Consensus Criteria

<table>
<thead>
<tr>
<th>Question</th>
<th>Current NCCN Guidelines</th>
<th>Consensus Criteria</th>
<th>Gaps Addressed by Consensus Criteria</th>
</tr>
</thead>
</table>
| Which men should be considered for genetic counseling and genetic testing?* | NCCN Genetic/Familial High-Risk Assessment: Breast and Ovarian (2017). An individual with a personal and/or family history of three or more of the following: breast, pancreatic, PCA (Gleason ≥ 7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatoic manifestations, macrocephaly, hamartomatous polyps of GI tract. | • Patients should engage in shared decision making for genetic testing for PCA (Consensus: 77%).
• All men with PCA from families meeting established testing or syndromic criteria for the following should be considered for genetic counseling and testing:
 - HBOC (Consensus: 93%)
 - HPG (Consensus: 95%)
 - LS (Consensus: 88%)
 - Men with PCA with two or more close blood relatives on the same side of the family with a cancer in the following syndromes (broader FH) should be considered for genetic counseling and testing
 - Post-consensus discussion included consideration of age cutoff for this criterion. A specific age cutoff will require further data, and age at diagnosis is important to inquire in the genetic counseling session with patients.
 - HBOC (Consensus: 93%)
 - HPC (Consensus: 86%)
 - LS (Consensus: 88%)
• All men with mCRPC should consider genetic testing (Consensus: 67%).
 - Post-consensus discussion also included consideration of testing men with metastatic, hormone-sensitive PCA to identify germline mutations to inform potential future treatment options and cascade testing in families.
• Men with tumor sequencing showing mutations in cancer-risk genes should be recommended for germline testing, particularly after factoring in additional personal and family history (Consensus: 77%). | • Consideration of features of familial and hereditary PCA
• Consideration of cancers in HBOC/LS spectrum
• Consideration of tumor sequencing results for referral
• FH information can be limited; therefore, criteria eliminated need to have Gleason information in relatives.
• Lowered threshold of number of relatives with cancers to consider genetic testing
• Considered mCRPC† |
<table>
<thead>
<tr>
<th>Question</th>
<th>Current NCCN Guidelines</th>
<th>Consensus Criteria</th>
<th>Gaps Addressed by Consensus Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which genes should be tested based on clinical and/or familial scenarios?</td>
<td>NCCN Genetic/Familial High-Risk Assessment: Breast and Ovarian (2.2017)</td>
<td>The following genes should be tested in males with PCA meeting criteria for the corresponding syndrome:</td>
<td>Considered testing for genes beyond BRCA1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Personal history of PCA (Gleason ≥ 7) at any age with one or more close blood relatives with ovarian carcinoma at any age or breast cancer ≤ 50 years or two relatives with breast, pancreatic, or PCA (Gleason ≥ 7) at any age</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BRCA1/2 mutation detected by tumor profiling in the absence of germline mutation analysis</td>
<td>Considered confirmatory germline testing for tumor sequencing results revealing mutations in PCA risk genes beyond BRCA1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addressed genetic testing for mCRPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The following genes should be tested in males with PCA meeting criteria for the corresponding syndrome:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--HOXB13 (Syndrome: HPC) (Consensus: 95%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--BRCA1/BRCA2 (Syndrome: HBOC) (Consensus: 97%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--DNA MMR genes (Syndrome: LS) (Consensus: 73%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following genes may be tested in men with PCA with two or more close blood relatives on the same side of the family with a cancer in the following hereditary cancer syndrome spectra (broader FH):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--BRCA1/BRCA2 (HBOC cancer spectrum: breast, ovarian, pancreatic, prostate cancers, and melanoma) (Consensus: 98%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--DNA MMR genes (LS cancer spectrum: colorectal, endometrial, upper GI tract, ovarian, pancreatic, prostate, and upper urinary tract cancers, along with sebaceous adenocarcinoma) (Consensus: 97%).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postconsensus discussion included consideration of age cutoff for this criterion. A specific age cutoff will require further data, and age at diagnosis is important to inquire in the genetic counseling session with patients.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--BRCA1/BRCA2 (HBOC cancer spectrum: breast, ovarian, pancreatic, prostate cancers, and melanoma) (Consensus: 98%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>--DNA MMR genes (LS cancer spectrum: colorectal, endometrial, upper GI tract, ovarian, pancreatic, prostate, and upper urinary tract cancers, along with sebaceous adenocarcinoma) (Consensus: 97%).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postconsensus discussion included the moderate nature of evidence of DNA MMR genes and PCA risk, with suggestions to institute IHC testing of prostate tumors for LS to select men with greater chance of carrying a germline DNA MMR mutation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Men with prostate tumor sequencing showing mutations in the following cancer-risk genes should have confirmatory germline genetic testing for PCA predisposition: BRCA1/BRCA2 (Consensus: 98%), DNA MMR genes (Consensus: 88%), HOXB13 (68%), ATM (61%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If men with mCRPC undergo genetic testing for treatment determination, the following genes should be tested: BRCA1/2 (Consensus: 88%), ATM (Consensus: 62%)</td>
<td></td>
</tr>
</tbody>
</table>

(continued on following page)
Table 2. Gaps in Genetic Evaluation of Inherited PCA Addressed by Consensus Criteria (continued)

<table>
<thead>
<tr>
<th>Question</th>
<th>Current NCCN Guidelines</th>
<th>Consensus Criteria</th>
<th>Gaps Addressed by Consensus Criteria</th>
</tr>
</thead>
</table>
| **How should genetic test results inform prostate career screening?** | NCCN Genetic/Familial High-Risk Assessment: Breast and Ovarian (2.2017) | • BRCA2 mutation status should be factored into PCA screening discussions (Consensus: 80%). - Screening strategy:
 • Baseline PSA at age 40 years or 10 years prior to youngest PCA diagnosed in family (Consensus: 56%).
 • Interval of screening yearly or determined by baseline PSA (Consensus: 76%). | • Expanded consideration of HOXB13 status in PCA screening.
• Proposed baseline PSA that factors in age at diagnosis of PCA in the family
• Proposed interval of PSA screening |
| | NCCN Prostate Cancer Early Detection Panel (2.2016) | • HOXB13 mutation status should be factored into PCA screening discussions (Consensus: 53%). - Screening strategy:
 • Baseline PSA at age 40 years or 10 years prior to youngest PCA diagnosed in family (Consensus: 52%).
 • Interval of screening yearly or determined by baseline PSA (Consensus: 75%).
 • For unaffected males at high risk for PCA based on FH of cancer or suspicion for hereditary cancer syndrome who test negative for mutations, PCA screening should follow NCCN PCA Early Detection Guidelines (Consensus: 84%). | |
| Should genetic test results inform management of early-stage localized PCA, advanced/high-risk PCA, or mCRPC? | Not addressed | • Of all genes on PCA multigene panels, the following should be factored into management discussion of early-stage localized PCA: BRCA2 (Consensus: 64%).
• Of all genes on PCA multigene panels, the following should be factored into management discussion of high-risk/advanced PCA: BRCA2 (Consensus: 97%), ATM (Consensus: 53%).
• The following genes should be factored into discussions of treatment of mCRPC: BRCA1 (Consensus: 83%), BRCA2 (Consensus: 88%), ATM (Consensus: 56%). | • Genetic testing to inform management discussions in localized PCA and advanced PCA
• Genetic testing for treatment decisions in mCRPC† |

Abbreviations: FDR, first-degree relative; FH, family history; HBOC, hereditary breast and ovarian cancer; HPC, hereditary PCA; IHC, immunohistochemistry; LS, Lynch syndrome; mCRPC, metastatic, castration-resistant PCA; MMRI, mismatch repair; NCCN, National Comprehensive Cancer Network; PCA, prostate cancer; PSA, prostate-specific antigen.

*Suggested genetic counseling referral criteria: Male with PCA with any one of the following: having an FDR diagnosed with PCA at age ≤ 55 years; a personal diagnosis of PCA at age ≤ 55 years and an FDR diagnosed with PCA at any age; having an FDR who died as a result of PCA at age younger than 60 years; having family history suggestive of HBOC, HPC, or LS; tumor sequencing showing mutations in hereditary cancer genes; metastatic, castration-resistant PCA. Unaffected males may be referred for genetic counseling on the basis of family history criteria above.

†NCCN Genetic/Familial High-Risk Assessment: Breast and Ovarian now includes metastatic PCA in BRCA1 and 2 testing criteria.
Consensus Model and Evidence Review

An expert opinion consensus model was used to address gaps in evidence-based guidelines for multigene testing for PCA. A modified Delphi model was followed, which incorporated elements of the Delphi process and prior expert opinion consensus conferences relevant to cancer risk and screening (Appendix Fig A1, online only). Literature was provided to panel members ahead of the meeting, with initial presentations focused on evidence review by experts. Grade of evidence was summarized as follows, with grade designations adapted from prior literature and consensus models34,45: (A) High-grade evidence: at least one prospectively-designed study, or three or more large validation studies, or three or more descriptive studies; (B) Moderate-grade evidence: two cohort or case-control studies; (C) Emerging data: increasing data in support of association to PCA but not yet moderate-grade evidence; (D) Low/Insufficient: limited data or not studied in the context of PCA (Table 1; Appendix Tables A2-A6, online only).

Development of Genetic Evaluation Framework

A conceptual framework was developed to address elements of genetic evaluation, including genetic counseling and genetic testing criteria, genes to test, and screening/management (Fig 1). FH criteria for genetic testing focused on established hereditary cancer syndromes in which PCA has been implicated, as well as broader FH to account for limitations in obtaining detailed FH information. Genetic testing consensus discussions focused on genes currently included on commercially available multigene panels (Table 1).

A series of questions were posed to address the genetic evaluation framework (Fig 1). The following overarching questions were addressed:

1. Which men should undergo genetic counseling and genetic testing for PCA (Fig 1A)? Principles and elements of genetic counseling were presented to panelists, including discussion of cancer genetics, benefits and limitations of genetic testing, financial considerations, implications for the patients and families, and genetic discrimination laws. Ethical considerations of genetic testing and the need to clarify patient preferences were also reviewed. Genetic testing criteria were based on various personal cancer and FH features. FH considerations included meeting established criteria for HBOC/LS/HPC. Furthermore, considering limitations of obtaining accurate FH information, these criteria included FH where at least two close blood relatives have cancers in the HBOC/LS/HPC spectrum as per the NCCN model. Finally, metastatic PCA and tumor sequencing were specifically addressed. This consensus statement also developed suggested genetic counseling referral criteria following the NCCN model (Table 2).

2. Which genes should be tested based on clinical and/or familial scenarios (Fig 1B)? These questions focused on genes present on current PCA multigene panels (Table 1; Appendix Tables A2-A6). Considerations regarding personal history of PCA included Gleason score, stage, and tumor sequencing results. FH considerations included meeting established criteria for HBOC/LS/HPC or having at least two close blood relatives with cancers in the HBOC/LS/HPC spectrum to address FH limitations. Tumor sequencing results were also considered.

3. How should genetic test results inform PCA screening (Fig 1C)? This set of criteria focused on genes that inform PCA risk and may be considered in PCA screening discussions. Risk for PCA was reviewed as well as association to aggressive PCA (Appendix Tables A2-A6). Baseline age to check prostate-specific antigen (PSA) and interval to screen based on genetic test results were adapted from other NCCN guidelines. PCA screening guidelines by various professional organizations were also reviewed. Finally, ongoing PCA screening studies incorporating genetic status were summarized.
Strength of Consensus
Votes were cast anonymously using an electronic audience response system. Postconsensus refinement process included readministering select questions where there was debate among panelists. Strength of expert opinion consensus was determined by percentage of agreement with an answer choice: ≥ 75% for strong consensus, 50% to 74% for moderate consensus, and < 50% for lack of consensus. Table 2 provides a comparison of current NCCN guidelines to consensus criteria and identifies the gaps in practice addressed by this consensus statement.

RESULTS

Evidence Review
Various studies were considered in review of evidence for specific genes on multigene panels and PCA risk, including tumor sequencing studies (Table 1; Appendix Tables A2-A6). Current evidence linking BRCA1 and BRCA2 mutations to PCA risk was considered high grade, with stronger association for BRCA2. Furthermore, BRCA2 mutations are associated with poor PCA-specific outcomes as well as poorer survival. Evidence linking HOXB13 mutations to PCA was considered high grade. Evidence of DNA MMR gene mutations to PCA risk was considered moderate grade. Data regarding ATM and NBN mutations and PCA risk are emerging in favor of association to PCA but are not yet at the level of moderate grade at this time. Other genes on panels have low/insufficient data for PCA risk (Appendix Tables A2-A6).

Consensus Responses
Responses are summarized by overarching questions addressing the genetic evaluation framework, focused on criteria that garnered strong to moderate consensus supported by high- to moderate-grade evidence (Table 2; Appendix Tables A2-A6). Additional considerations are provided to add context to the various criteria, to provide more details regarding discussion that did not make the cutoff for consensus, and to add considerations raised by panel members regarding need for additional discussion or research.

(1) Which men should undergo genetic counseling and genetic testing for prostate cancer (Fig 1A)?
Criteria. Men meeting any one of the following suggested criteria should undergo genetic counseling and genetic testing:
- All men with PCA from families meeting established testing or syndromic criteria for the following:
 - HBOC (Consensus: 93%)

(4) Should genetic test results inform management of early-stage/localized, advanced/high-risk, or metastatic, castration-resistant PCA (mCRPC; Fig 1D)? These questions overall focused on genes on current PCA multigene panels (Table 1) and if they should be factored into management discussions with patients in the setting of early-stage/localized disease, advanced/high-risk disease, or mCRPC. Evidence for PCA aggressiveness was of primary consideration, which was high grade for BRCA2, emerging for ATM, and limited for other genes on multigene panels (Appendix Tables A2-A6). Genetically informed treatments, such as PARP inhibition and immune checkpoint inhibition, were also considered.

Additional considerations.
- All men with mCRPC should consider genetic testing (Consensus: 67%). Postconsensus discussion also included consideration of testing men with metastatic, hormone-sensitive PCA to identify germline mutations to inform potential future treatment options and cascade testing in families.
- Men with tumor sequencing showing mutations in cancer-risk genes should be recommended for germline testing, particularly after factoring in additional personal history and FH (Consensus: 77%).
urinary tract cancers along with sebaceous adenocarcinomas) (Consensus: 97%). Postconceptus discussion included the moderate nature of evidence of DNA MMR genes and PCA risk, with suggestions to institute immunohistochemistry testing of prostate tumors for LS to select men with greater chance of carrying a germline DNA MMR mutation.

- Men with prostate tumor sequencing showing mutations in the following cancer-risk genes should have confirmatory germline genetic testing for PCA predisposition: BRCA1/BRCA2 (Consensus: 89%), DNA MMR genes (Consensus: 88%), HOXB13 (68%), ATM (61%).
- If men with mCRPC undergo genetic testing for treatment determination, the following genes should be tested: BRCA1/2 (Consensus: 88%), ATM (Consensus: 62%).

(3) How should genetic test results inform PCA screening (Fig 1C)?

Criteria. Criteria with highest consensus are as follows:
- BRCA2 mutation status should be factored into PCA screening discussions (Consensus: 80%).
 - Screening strategy:
 - Baseline PSA at age 40 years or 10 years prior to youngest PCA diagnosed in family (Consensus: 56%)
 - Interval of screening yearly or determined by baseline PSA (Consensus: 76%)
- HOXB13 mutation status should be factored into PCA screening discussions (Consensus: 53%).
 - Screening strategy:
 - Baseline PSA at age 40 years or 10 years prior to youngest PCA diagnosed in family (Consensus: 52%)
 - Interval of screening yearly or determined by baseline PSA (Consensus: 75%)

Additional considerations. Postconceptus opinion was to consider a lower age limit to begin PSA screening, perhaps no younger than 35 years. There was strong agreement to perform PSA testing yearly or as dictated by the baseline PSA. This consensus aligns with NCCN Breast and Ovarian guidelines but also expands on the testing yearly or as dictated by baseline PSA. This consensus aligns with NCCN Breast and Ovarian guidelines regarding consideration of baseline PSA at age 40 years or 10 years prior to youngest PCA diagnosed in family (Consensus: 56%) but also expands on the guideline to factor in age at diagnosis of an affected male with PCA in the family for screening initiation as is modeled in colorectal cancer guidelines. BRCA1 mutation status is part of the NCCN Breast and Ovarian guidelines regarding consideration of baseline PSA at age 45 years.

(4) Should genetic test results inform management of early-stage/localized PCA, advanced/high-risk PCA, and mCRPC (Fig 1D)?

Criteria. Criteria with highest consensus are as follows:
- BRCA2 mutation status should be factored into management discussion of early-stage/localized PCA: (Consensus: 64%).
- BRCA2 (Consensus: 97%) and ATM (Consensus: 59%) mutation status should be factored into management discussion of high-risk/advanced PCA.
- BRCA1 (Consensus: 83%), BRCA2 (Consensus: 88%), ATM (Consensus: 56%) mutation status should be factored into mCRPC treatment discussions.

DISCUSSION

To our knowledge, the Philadelphia Prostate Cancer Consensus 2017 was the first attempt to garner expert opinion consensus on key areas in the genetic evaluation continuum for inherited PCA. Increasing scientific insights into the genetic predisposition to inherited PCA, growing multigene testing capabilities, and limited guidelines necessitated expert consensus to address genetic counseling and genetic testing, PCA screening, and management. This conference brought together key stakeholders in PCA treatment, genetic counseling, research, and advocacy to consider the evidence and develop a working framework for genetic counseling, genetic testing, and management of inherited PCA in the multigene testing era. Of particular note was the strong urologic representation at this consensus.

The conference addressed critical gaps in guidelines relevant to genetic evaluation for PCA. These gaps include consideration of FH in cancer syndromes relevant to PCA, consideration of metastatic disease in multigene testing, tumor sequencing, and review of genes on multigene panels for application of genetic testing to PCA. Our conference focused on inherited PCA, which complements a recent consensus conference that addressed germline testing for advanced PCA as part of the overall proceedings. There was agreement in our consensus conference that men with FH meeting strict criteria for HBOC, HPC, or LS and men having FH of cancers in the spectrum of these cancer syndromes while not meeting strict syndromic criteria (broader FH) can be considered for genetic testing. This is an expansion on current NCCN High-Risk Assessment: Breast and Ovarian guidelines, reflects the growing evidence of genetic contribution to PCA beyond BRCA1 and BRCA2, and takes into account limitations of obtaining detailed FH information that could affect meeting criteria for hereditary cancer syndromes.

Genetic counseling for PCA will need focused development. Overall, the genetic counseling model should include shared decision making between provider and patient regarding genetic testing. The discussion should clarify patient values and preferences related to screening, risk assessment, and treatment choice. Counseling elements of genetic education; discussion of benefits, risks, and limitations of genetic testing for patients and families; financial implications; and genetic discrimination laws are also important to discuss. Optimal delivery of pretest genetic counseling to patients in the multigene testing era, particularly for genetic testing for advanced/metastatic cancers for targetable mutations, is an area under development. ASCO policy statement 2015 recognized the need for more research on delivery of pretest counseling, particularly in the settings of multigene testing and tumor sequencing, and emphasized the importance of patients to receive genetic education and clarify patient preferences. Furthermore, PCA germline multigene testing studies will help inform counseling discussions of potential results from genetic testing. A closer working relationship between PCA care providers, primary care providers, and cancer genetics specialists will need to be developed to address treatment and management needs while providing patients with optimal genetic education and counseling. Incorporating a genetic counseling and evaluation process into a multidisciplinary PCA clinic setting is one approach.
The mCRPC setting is a unique area that will likely drive a significant proportion of genetic testing for PCA. With emerging insights into targeted therapy for PCA and the promise of immunotherapy in MMR-deficient tumors, a greater percentage of patients with mCRPC will likely undergo tumor sequencing to uncover targetable mutations, which can have germline implications. The panel had moderate agreement to test all men with mCRPC, which may be strengthened pending future data of germline mutations and targeted agents in mCRPC. Furthermore, some panelists raised questions on testing all men with metastatic PCA and not limiting testing to the castration-resistance setting. Because most of the current data on germline mutations are in the castration-resistant setting, proposed criteria were focused on mCRPC, which may change over time. Postconsensus discussion also included the potential for broader scope of genetic testing criteria in the treatment setting versus the risk-assessment setting, which can be considered in future consensus updates. Greater information from this population regarding FH, age at diagnosis, and germline mutation spectrum will be crucial to advance and refine the understanding of genetic predisposition to lethal PCA.

Cost effectiveness of genetic testing for inherited PCA is an important consideration. Our consensus statement outlines targeted testing for selected individuals (in contrast to population-based screening) and is consistent with strategies for hereditary breast cancer testing of BRCA1/2. Research has shown that such targeted hereditary testing for a prevalent disease like breast cancer is cost effective under several different economic scenarios when directed at those at highest risk of carrying a mutation. For PCA, there is a need to build on the findings of these studies and model survival and quality-adjusted life-years for patients who are at high risk versus those at population risk for PCA. Thus, as we define who should undergo genetic counseling and testing for inherited PCA, we also call for renewed emphasis on the economic evaluation of different strategies to promote patient-centric, high-value genetic evaluation and cancer care.

There are some limitations to consider. Grading of evidence was based on prior consensus conferences, with a noted need for a greater evidence base to inform future criteria development. Our objective was to address the application of multigene testing for PCA through consensus review of existing literature and develop a genetic evaluation framework that can be modified in the future. Another consideration is that the panel consisted of experts and stakeholders engaged in PCA genetics, research, treatment, and advocacy, which may have affected agreement due to breadth of expertise. However, a strength of the consensus was the broad input from thought leaders in various disciplines engaged with PCA, which provided balanced views toward criteria development. The consensus highlighted key areas in need of research, including developing a working definition of HPC in a clinical setting, expanding insights into genetic contribution to aggressive/lethal PCA, developing genetic counseling and referral strategies that engage urologists and primary care providers, addressing the urgent need for focused studies of genetic testing for African American males, evaluating clinical use of genetic testing in PCA screening and management, and expanding health services research for optimized delivery of genetic education to broader populations.

Overall, this consensus conference was a first step to understand the issues confronting application of genetic testing to PCA and develop a meaningful framework using the best evidence available. The need to revise and optimize consensus criteria is noted, based on the dynamic nature of knowledge and progress in this field. Several consensus panel members are also members of NCCN guidelines panels, which may lead to consideration of consensus review and criteria for incorporation into respective NCCN guidelines regarding genetic testing for inherited PCA. NCCN Prostate Cancer Early Detection guidelines will likely include stronger consideration of BRCA mutation status in PCA screening discussions and may consider this consensus statement in future guideline updates.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Veda N. Giri, Karen E. Knudsen, William K. Kelly, Leonard G. Gomella
Collection and assembly of data: Veda N. Giri, Leonard G. Gomella
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors
Veda N. Giri, Karen E. Knudsen, William K. Kelly, Robert B. Den, Adam P. Dicker, Jean Hoffman-Censits, Mark D. Hurwit, Colette Hyatt, Grace Lu-Yao, Mark J. Mann, James R. Mark, Peter A. McCue, Ronald E. Myers, Stephen C. Peiper, Edouard J. Trabulsi, and Leonard G. Gomella, Jefferson Sidney Kimmel Cancer Center; Justin E. Bekelman, University of Pennsylvania Perelman School of Medicine; S. Bruce Malkowicz, University of Pennsylvania; Elias Obeid and Robert Uzzo, Fox Chase Cancer Center; Gordon F. Schwartz, Foundation for Breast and Prostate Health, Philadelphia; Mark S. Shahin, Hani Institute for Gynecologic Oncology, Abington Hospital-Jefferson Health, Abington, PA; Wassim Abida, Philip Kantoff, and Mark E. Robson, Memorial Sloan Kettering Cancer Center; Mitchell C. Benson, Columbia University, New York, NY; Gerald L. Andriole, Washington University School of Medicine, St Louis, MO; Chris H. Bangma, Erasmus Medical Center, Rotterdam, the Netherlands; Annie Blanco, and Matthew Cooperberg, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco; Christopher J. Kane, University of California San Diego, San Diego; Howard Sandler, Cedars-Sinai Medical Center, Los Angeles; Howard R. Soule, Prostate Cancer Foundation, Santa Monica, CA; Arthur Burnett, William B. Isaacs, Christian P. Pavlovich, and Patrick C. Walsh, Johns Hopkins Medical Institutions, Baltimore; Peter A. Pinto and Carol J. Weil, National Cancer Institute, Bethesda, MD; William J. Catalona and Edward Schaeffer, Northwestern University Feinberg School of Medicine; Scott Eggener, Sarah M. Nielsen, and Donald J. Vander Griend, University of Chicago, Chicago, IL; Kathleen A. Cooney, University of Utah School of Medicine, Salt Lake City, UT; David E. Crawford, University of Colorado, Aurora; Lawrence I. Karsh, The Urology Center of Colorado, Denver; Wendy Poage, Prostate Conditions Education Council, Elizabeth, CO; Neil Fleshner, University of Toronto Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Matthew L. Freedman, Kevin R. Loughlin, and Timothy R. Rebbeck, Dana Farber Cancer Institute, and Harvard TH Chan School of Public Health, Boston, MA; Freddie C. Hamdy, University of Oxford, Oxford, England; R. Jeffrey Karnes, Mayo Clinic, Rochester, MN; Eric A. Klein, Cleveland Clinic, Cleveland; Robert Pilarski, The Ohio State University, Columbus, OH; Daniel W. Lin, University of Washington, Seattle, WA; Martin M. Miner, Brown University, Providence, RI; Todd Morgan and Scott A. Tomlins, University of Michigan, Ann Arbor; Matt T. Rosenberg, Mid-Michigan Health Center, Jackson, MI; Judd W. Moul, Duke University, Duke Cancer Institute, Durham, NC; David F. Pensom, Vanderbilt University Medical Center, Nashville, TN; Daniel Petrylak and Brian Shuch, Yale University, New Haven, CT; Curtis A. Pettaway, The University of Texas MD Anderson Cancer Center, Houston; Ganesh V. Raj, University of Texas Southwestern Medical Center at Dallas, Dallas, TX; Oliver Sartor, Tulane University Medical School, New Orleans, LA; Neal D. Shore, Atlantic Urology Clinics/Carolina Urologic Research Center, Myrtle Beach, SC; and Richard Wender, American Cancer Society, Atlanta, GA.

Support

Supported by Janssen Pharmaceuticals, Astellas/Medivation/Pfizer, Bayer Pharmaceuticals, Ferring Pharmaceuticals, MDxHealth, Myriad Genetics, Roche Diagnostics, Ambry Genetics, GenomeDX, Genomic Health, Invitae, Onclive, and American HIFU.
Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Veda N. Giri
Stock or Other Ownership: Novopyxis (I)
Research Funding: Myriad Genetics

Karen E. Knudsen
Honoraria: Celgene
Consulting or Advisory Role: Sanofi
Research Funding: Celgene, Sanofi
Travel, Accommodations, Expenses: Sanofi

William K. Kelly
Consulting or Advisory Role: Sanofi, Janssen Pharmaceuticals
Research Funding: Sanofi (Inst), Novartis (Inst), Janssen Oncology (Inst)

Wassim Abida
Honoraria: CARET
Consulting or Advisory Role: Clovis Oncology
Research Funding: AstraZeneca, Zenith Epigenetics, Clovis Oncology
Travel, Accommodations, Expenses: GlaxoSmithKline

Gerald L. Andriole
Consulting or Advisory Role: Algeta/Bayer, 3D Biopsy, Augmenix

Chris H. Bangma
No relationship to disclose

Justin E. Bekelman
Consulting or Advisory Role: GLG

Mitchell C. Benson
Speakers’ Bureau: Janssen

Amie Blanco
Employment: Genentech (I)
Stock or Other Ownership: Genentech (I)

Arthur Burnett
No relationship to disclose

William J. Catalona
Consulting or Advisory Role: Beckman Coulter, OHMX
Research Funding: deCODE Genetcs, provides free genotyping and DNA extraction

Patents, Royalties, Other Intellectual Property: OHMX

Kathleen A. Cooney
Patents, Royalties, Other Intellectual Property: Patent on discovery of HOXB13 as prostate cancer susceptibility gene (Inst)

Matthew Cooperberg
Honoraria: Takeda Pharmaceuticals
Consulting or Advisory Role: Myriad Pharmaceuticals, Bayer, Astellas Pharma, Dendreon, Janssen, MDxHealth
Research Funding: Myriad Pharmaceuticals (Inst), Genomic Health (Inst), GenomeDx (Inst)

David E. Crawford
Employment: Dendreon (I)
Honoraria: Ferring Pharmaceuticals, Janssen, Astellas Pharma, MDxHealth
Speakers’ Bureau: Ferring Pharmaceuticals, Janssen
Research Funding: Janssen (Inst)
Travel, Accommodations, Expenses: Ferring Pharmaceuticals (I)

Robert B. Den
Consulting or Advisory Role: GenomeDx
Speakers’ Bureau: Bayer
Research Funding: Medivation/Astellas Pharma, GenomeDx
Travel, Accommodations, Expenses: GenomeDx

Adam P. Dicker
Honoraria: Merck KGaA, RedHill Biopharma
Consulting or Advisory Role: EMD Serono, Ferring Pharmaceuticals
Travel, Accommodations, Expenses: Merck KGaA, Ferring Pharmaceuticals

Other Relationship: NRG Oncology, Department of Defense Prostate Cancer Research Program

Scott Eggener
Consulting or Advisory Role: Janssen, MDxHealth, Profound Medical, InSightec
Speakers’ Bureau: OPKO Diagnostics
Research Funding: OPKO Diagnostics

Neil Fleshner
Leadership: Hybridyne Imaging Technologies
Honoraria: Amgen, AbbVie, Astellas Pharma, Bayer, Ferring Pharmaceuticals, Janssen, Sanofi, Hybridyne Imaging Technologies
Consulting or Advisory Role: AbbVie, Amgen, Astellas Pharma, Bayer, Ferring Pharmaceuticals, Janssen, Hybridyne Imaging Technologies
Research Funding: Ferring Pharmaceuticals (Inst), Astellas Pharma (Inst), Bavarian Nordic (Inst), Bayer (Inst), Janssen (Inst), Medivation (Inst), Nucleix (Inst), Progenics Pharmaceuticals (Inst), Sanofi (Inst), Spectacure (Inst)

Matthew L. Freedman
No relationship to disclose

Freddie C. Hamdy
Honoraria: Ferring Pharmaceuticals
Travel, Accommodations, Expenses: Ferring Pharmaceuticals

Jean Hoffman-Censits
Honoraria: Genentech
Consulting or Advisory Role: Genentech, Clovis Oncology, Foundation Medicine
Research Funding: Sanofi
Travel, Accommodations, Expenses: Genentech

Mark D. Hurwitz
Consulting or Advisory Role: NeoTherma Oncology
Speakers’ Bureau: Pyrexar Medical
Travel, Accommodations, Expenses: NeoTherma Oncology

Other Relationship: NeoTherma Oncology

Colette Hyatt
No relationship to disclose

William B. Isaacs
Research Funding: Tokai Pharmaceuticals
Patents, Royalties, Other Intellectual Property: DiagnoCure, MDxHealth

jco.org © 2017 by American Society of Clinical Oncology

Downloaded from ascopubs.org by Erasmus MC - Medische Bibliotheek on February 12, 2018 from 145.005.087.233
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.
Christopher J. Kane
Stock or Other Ownership: SNP Bio
Honoraria: Janssen Pharmaceutical Products, SNP Bio
Consulting or Advisory Role: SNP Bio, National Comprehensive Cancer Network
Speakers’ Bureau: Janssen Pharmaceutical Products
Research Funding: PCF
Travel, Accommodations, Expenses: MDxHealth

S. Bruce Malkowicz
Consulting or Advisory Role: Pacific Edge

Mark J. Mann
No relationship to disclose

James R. Mark
No relationship to disclose

Peter A. McCue
No relationship to disclose

Martin M. Miner
Expert Testimony: AbbVie

Todd Morgan
Consulting or Advisory Role: Myriad Genetics
Research Funding: Myriad Genetics (Inst), MDxHealth (Inst), GenomeDx (Inst)

Judd W. Moul
Stock or Other Ownership: Pfizer, Johnson & Johnson, Bavarian Nordic, Eli Lilly, Procter & Gamble, Walgreens, AstraZeneca, Novartis, Theraglobix
Honoraria: AbbVie, Bayer, Ferring Pharmaceuticals, Dendreon, Janssen, Astellas Pharma, Sanofi, Genomic Health, GenomeDx, Pfizer
Consulting or Advisory Role: AbbVie, Bayer, Theraglobix, Tolmar, Blue Earth Diagnostics
Speakers’ Bureau: Bayer, Ferring Pharmaceuticals, Dendreon, Janssen, Sanofi, Genomic Health, GenomeDx
Research Funding: Astellas Pharma (Inst), Pfizer (Inst)

Ronald E. Myers
No relationship to disclose

Sarah M. Nielsen
No relationship to disclose

Elias Obeid
Honoraria: Guidepoint Global
Consulting or Advisory Role: Merck Sharp & Dohme
Research Funding: Merck, Genentech, Myriad Genetics

Christian P. Pavlovich
Stock or Other Ownership: Intuitive Surgical, Pfizer, Amgen, Celgene, United Therapeutics, Aimmune Therapeutics, DaVita, Gilead Sciences, Prometic Life Sciences
Honoraria: Genomic Health, Spectrum Pharmaceuticals, Hospira, Apotex, Exact Imaging (formerly Imagistx), Hybridyne Imaging Technologies
Research Funding: Exact Imaging (formerly Imagistx) (Inst)
Expert Testimony: Intuitive Surgical (through Skadden, Arps & Meagher attorneys at law)
Other Relationship: DaVita dialysis centers (1)

Stephen C. Peiper
Patents, Royalties, Other Intellectual Property: St Jude Children’s Research Hospital
Travel, Accommodations, Expenses: Roche Diagnostics

David F. Penson
Consulting or Advisory Role: Astellas, Medivation, Dendreon, Janssen Pharmaceuticals

Giri et al

Lawrence I. Karsh
Stock or Other Ownership: Swan Valley Medical
Honoraria: Astellas Pharma, Bayer, Dendreon, Janssen, Medivation
Consulting or Advisory Role: Astellas Pharma, Bayer, Dendreon, Janssen, Medivation/Astellas Pharma
Speakers’ Bureau: Astellas Pharma, Bayer, Dendreon, Janssen, Medivation/Astellas Pharma
Research Funding: Astellas Pharma (Inst), Bayer (Inst), Dendreon (Inst), Janssen (Inst), Medivation/Astellas (Inst), Spectrum Pharmaceuticals
Travel, Accommodations, Expenses: Astellas Pharma, Bayer, Dendreon, Janssen, Medivation/Astellas, Spectrum Pharmaceuticals

Eric A. Klein
Consulting or Advisory Role: GenomeDx, Genomic Health
Speakers’ Bureau: Genomic Health

Daniel W. Lin
Consulting or Advisory Role: Astellas Pharma, Bayer, Myriad Genetics
Research Funding: Genomic Health (Inst), GenomeDx (Inst), MDxHealth (Inst)

Kevin R. Loughlin
Research Funding: Astellas Pharma

Grace Lu-Yao
Employment: Sun Pharmaceutical Industries (I)
Leadership: Sun Pharmaceutical Industries (I)
Stock or Other Ownership: Merck (I)
Genetic Testing for Prostate Cancer

Daniel Petrylak
Stock or Other Ownership: Bellicum Pharmaceuticals, Tyme Technologies
Honoria: Bayer, Bellicum Pharmaceuticals, Sanofi, Johnson & Johnson, Exelixis, Ferring Pharmaceuticals, Medivation, Pfizer, Genentech, Astellas Pharma, Progenics, Merck Serono, AstraZeneca/MedImmune, Pfizer

Consulting or Advisory Role: Bayer, Bellicum Pharmaceuticals, Dendreon, Sanofi, Johnson & Johnson, Exelixis, Ferring Pharmaceuticals, Millennium, Medivation, Pfizer, Tyme Technologies
Research Funding: Oncogenex, Progenics, Johnson & Johnson, Millennium, Dendreon, Sanofi, Endocyte, Genentech, Merck, Astellas, Medivation, Novartis, Eli Lilly/ImClone, Merck, Pfizer, Agensys
Expert Testimony: Celgene, Sanofi

Curtis A. Pettaway
Consulting or Advisory Role: Wolters Kluwer
Research Funding: Beckman Coulter
Travel, Accommodations, Expenses: Myriad Genetics

Robert Pieterski
No relationship to disclose

Peter A. Pinto
Patents, Royalties, Other Intellectual Property: Philips Healthcare and National Institutes of Health have licensing agreement for medical imaging that may result in royalties

Wendy Poage
Employment: Shire
Stock or Other Ownership: 3D Biopsy, Maximum Medical Solutions
Honoria: Janssen
Consulting or Advisory Role: MDxHealth
Travel, Accommodations, Expenses: Janssen, Astellas Pharma, Sanofi, MDxHealth

Ganesh V. Raj
Leadership: Gaudium Rx, C-Diagnostics, EtiraRx
Honoria: Bayer, Sanofi, Medivation, Astellas Pharma, Janssen
Consulting or Advisory Role: Janssen, Bayer
Speakers’ Bureau: Bayer, Medivation, Sanofi, Astellas Pharma, Janssen
Research Funding: Bayer
Patents, Royalties, Other Intellectual Property: Gaudium Rx, C-Diagnostics, EtiraRx

Timothy R. Rebeck
No relationship to disclose

Mark E. Robson
Honoria: AstraZeneca
Consulting or Advisory Role: McKesson, AstraZeneca
Research Funding: AstraZeneca (Inst), AbbVie (Inst), BioMarin Pharmaceutical (Inst), Medivation (Inst)
Travel, Accommodations, Expenses: AstraZeneca

Matt T. Rosenberg
Stock or Other Ownership: OPKO Diagnostics
Honoria: OPKO Diagnostics, Astellas Pharma
Consulting or Advisory Role: OPKO Diagnostics, Astellas Pharma
Speakers’ Bureau: OPKO Diagnostics, Astellas Pharma
Travel, Accommodations, Expenses: OPKO Diagnostics, Astellas Pharma

Howard Sandler
Stock or Other Ownership: Advanced Medical Isotope
Consulting or Advisory Role: Janssen, Blue Earth Diagnostics, Ferring Pharmaceuticals, Dendreon
Other Relationship: Caribou Publishing

Oliver Sartor
Consulting or Advisory Role: Bayer, Bellicum Pharmaceuticals, Johnson & Johnson, Medivation, Oncogenex, Sanofi, Tokai Pharmaceuticals, AstraZeneca (Inst), Progenics (Inst), Dendreon
Research Funding: Bayer (Inst), Johnson & Johnson (Inst), Sanofi (Inst), Dendreon (Inst), Endocyte (Inst), Innocrin Pharmaceuticals (Inst), Progenics (Inst), InVitae (Inst)
Travel, Accommodations, Expenses: Bayer, Bellicum Pharmaceuticals, Johnson & Johnson, Medivation, Oncogenex, Sanofi, Tokai Pharmaceuticals, AstraZeneca, Progenics

Edward Schaeffer
Consulting or Advisory Role: OPKO Diagnostics, AbbVie

Gordon F. Schwartz
No relationship to disclose

Mark S. Shahin
Honoria: AstraZeneca, Clovis Oncology, Tesaro, Merck
Consulting or Advisory Role: AstraZeneca, Clovis Oncology, Tesaro, Merck
Speakers’ Bureau: AstraZeneca, Clovis Oncology, Tesaro, Merck

Neal D. Shore
Consulting or Advisory Role: Bayer, Janssen Scientific Affairs, Dendreon, Sanofi, Takeda, Tolmar, Ferring Pharmaceuticals, Medivation/Astellas

Brian Shuch
No relationship to disclose

Howard R. Soule
Leadership: WindMIL Therapeutics
Consulting or Advisory Role: Compugen
Travel, Accommodations, Expenses: Compugen, Sanofi

Scott A. Tomlins
Leadership: Strata Oncology
Honoria: Astellas Medivation, Almac Diagnostics, Sanofi, Janssen
Consulting or Advisory Role: Strata Oncology
Research Funding: GenomeDx (Inst), Astellas Medivation (Inst)
Patents, Royalties, Other Intellectual Property: I am a coauthor on a patent issued to the University of Michigan on ETS gene fusions in prostate cancer. The diagnostic field of use has been licensed to Hologic/Gen-Probe, who has sublicensed some rights to Ventana Medical Systems/Roche.
Travel, Accommodations, Expenses: Thermo Fisher Scientific, Strata Oncology

Edouard J. Trabulsi
Consulting or Advisory Role: GenomeDx

Robert Uzzo
Consulting or Advisory Role: Johnson & Johnson, Myriad Genetics, Pfizer, Novartis, Genentech
Speakers’ Bureau: Janssen Oncology
Research Funding: Novartis

Donald J. Vander Griend
No relationship to disclose

Patrick C. Walsh
No relationship to disclose

jco.org © 2017 by American Society of Clinical Oncology

Downloaded from ascopubs.org by Erasmus MC - Medische Bibliotheek on February 12, 2018 from 145.005.087.233
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.
Acknowledgment

We thank the Foundation for Breast and Prostate Health for collaborating with the Sidney Kimmel Cancer Center at Jefferson on this consensus effort. We also thank our patient advocates and their family members who contributed their time and personal experiences to this consensus conference: John Buehler, Robin Cole, and Peter Kaye, Sr.

Appendix

<table>
<thead>
<tr>
<th>Define important areas and needs to address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel selection: experts in urology, medical oncology, radiation oncology, clinical cancer genetics, genetic counseling, molecular pathology, bioethics, gynecologic oncology, cancer biology, cancer epidemiology (n = 71 panel members)</td>
</tr>
<tr>
<td>Solicit questions to address</td>
</tr>
<tr>
<td>Circulate literature and questions to panel members</td>
</tr>
<tr>
<td>Revise and finalize questions</td>
</tr>
<tr>
<td>Philadelphia Prostate Cancer Consensus Conference (March 3-4, 2017) Voted on questions to generate level of consensus</td>
</tr>
<tr>
<td>Draft and circulate manuscript to all panel members</td>
</tr>
<tr>
<td>Manuscript revisions and final agreement from all panel members</td>
</tr>
<tr>
<td>Submit final manuscript for peer review</td>
</tr>
<tr>
<td>Disseminate consensus guidelines at national meetings and website (2017-2018)</td>
</tr>
</tbody>
</table>

Fig A1. Overall consensus model.
<table>
<thead>
<tr>
<th>Panel Member</th>
<th>Institution</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wassim Abida, MD, PhD</td>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>Medical Oncology</td>
</tr>
<tr>
<td>Chris H. Bangma, MD, PhD</td>
<td>Erasmus Medical Center, Rotterdam, the Netherlands</td>
<td>Urology</td>
</tr>
<tr>
<td>Mitchell C. Benson, MD</td>
<td>Columbia University</td>
<td>Urology</td>
</tr>
<tr>
<td>Amie Blanco, MS, LCGC</td>
<td>UCSF Helen Diller Family Comprehensive Cancer Center</td>
<td>Genetic Counseling</td>
</tr>
<tr>
<td>John Buehler</td>
<td>N/A</td>
<td>Patient Advocate</td>
</tr>
<tr>
<td>Arthur “Bud” Burnett, MD, MBA</td>
<td>Johns Hopkins Medical Institutions</td>
<td>Urology</td>
</tr>
<tr>
<td>William J. Catalona, MD</td>
<td>Northwestern University, Feinberg School of Medicine; R.H. Lurie Comprehensive Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>Robin Cole</td>
<td>N/A</td>
<td>Patient Advocate</td>
</tr>
<tr>
<td>Kathleen A. Cooney, MD</td>
<td>University of Utah School of Medicine</td>
<td>Medical Oncology/Genetics</td>
</tr>
<tr>
<td>Matthew Cooperberg, MD, MPH</td>
<td>UCSF Helen Diller Family Comprehensive Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>E. David Crawford, MD</td>
<td>University of Colorado, Denver</td>
<td>Urology</td>
</tr>
<tr>
<td>Robert B. Den, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Radiation Oncology</td>
</tr>
<tr>
<td>Adam P. Dicker, MD, PhD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Radiation Oncology</td>
</tr>
<tr>
<td>Scott eggener, MD</td>
<td>University of Chicago</td>
<td>Urology</td>
</tr>
<tr>
<td>Neil Fleshner, MD</td>
<td>University of Toronto, Princess Margaret Cancer Centre</td>
<td>Urology</td>
</tr>
<tr>
<td>Matthew L. Freedman, MD</td>
<td>Harvard Medical School/Dana-Farber Cancer Institute</td>
<td>Medical Oncology/Genetics</td>
</tr>
<tr>
<td>Veda N. Giri, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Medical Oncology/Genetic Oncology</td>
</tr>
<tr>
<td>Leonard G. Gomella, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>Jean Hoffman-Censits, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Medical Oncology</td>
</tr>
<tr>
<td>Mark D. Hurwitz, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Radiation Oncology</td>
</tr>
<tr>
<td>Colette Hyatt, MS, LCGC</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Genetic Counseling</td>
</tr>
<tr>
<td>William B. Isaacs, PhD</td>
<td>Johns Hopkins Medical Institutions</td>
<td>Genetics Research</td>
</tr>
<tr>
<td>Christopher J. Kane, MD</td>
<td>University of California San Diego</td>
<td>Urology</td>
</tr>
<tr>
<td>Philip Kantoff, MD</td>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>Medical Oncology</td>
</tr>
<tr>
<td>R. Jeffrey Kames, MD</td>
<td>Mayo Clinic, Rochester</td>
<td>Urology</td>
</tr>
<tr>
<td>Lawrence I. Karsh, MD</td>
<td>The Urology Center of Colorado</td>
<td>Urology</td>
</tr>
<tr>
<td>Peter Kaye, Sr</td>
<td>N/A</td>
<td>Patient Advocate</td>
</tr>
<tr>
<td>Wm. Kevin Kelly, DO</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Medical Oncology</td>
</tr>
<tr>
<td>Eric A. Klein, MD</td>
<td>Cleveland Clinic</td>
<td>Urology</td>
</tr>
<tr>
<td>Karen E. Krudsen, PhD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Oncology Research</td>
</tr>
<tr>
<td>Daniel W. Lin, MD</td>
<td>University of Washington</td>
<td>Urology</td>
</tr>
<tr>
<td>Kevin R. Loughlin, MD, MBA</td>
<td>Brigham and Women’s Hospital, Harvard Medical School</td>
<td>Urology</td>
</tr>
<tr>
<td>Grace Lu-Yao, PhD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Population Science</td>
</tr>
<tr>
<td>S. Bruce Malkowicz, MD</td>
<td>University of Pennsylvania</td>
<td>Urology</td>
</tr>
<tr>
<td>Mark J. Mann, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>J. Ryan Mark, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>Peter A. McCue, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Pathology</td>
</tr>
<tr>
<td>Martin M. Minner, MD</td>
<td>Brown University</td>
<td>Primary Care</td>
</tr>
<tr>
<td>Todd Morgan, MD</td>
<td>University of Michigan</td>
<td>Urology</td>
</tr>
<tr>
<td>Judd W. Moul, MD</td>
<td>Duke University, Duke Cancer Institute</td>
<td>Urology</td>
</tr>
<tr>
<td>Ronald E. Myers, PhD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Medical Decision Making</td>
</tr>
<tr>
<td>Sarah M. Nielsen, MS, CGC</td>
<td>The University of Chicago</td>
<td>Genetic Counseling</td>
</tr>
<tr>
<td>Elias Obeid, MD, MPH</td>
<td>Fox Chase Cancer Center</td>
<td>Medical Oncology/Genetics</td>
</tr>
<tr>
<td>Christian P. Pavlovich, MD</td>
<td>Johns Hopkins Medical Institutions</td>
<td>Urology</td>
</tr>
<tr>
<td>Stephen C. Peper, MD</td>
<td>Jefferson Sidney Kimmel Cancer Center</td>
<td>Pathology</td>
</tr>
<tr>
<td>David F. Penson, MD, MPH</td>
<td>Vanderbilt University Medical Center</td>
<td>Urology</td>
</tr>
<tr>
<td>Daniel Petryak, MD</td>
<td>Yale University</td>
<td>Medical Oncology</td>
</tr>
<tr>
<td>Curtis A. Pettaway, MD</td>
<td>The University of Texas MD Anderson Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>Robert Pilaraki, MS, LCG, MSW</td>
<td>The Ohio State University</td>
<td>Genetic Counseling</td>
</tr>
<tr>
<td>Peter A. Pinto, MD</td>
<td>National Cancer Institute</td>
<td>Urology</td>
</tr>
<tr>
<td>Wendy Poage, MHA</td>
<td>Prostate Conditions Education Council</td>
<td>Prostate Cancer Education/Advocacy</td>
</tr>
<tr>
<td>Ganesh V. Raj, MD, PhD</td>
<td>University of Texas Southwestern Medical Center at Dallas</td>
<td>Urology</td>
</tr>
<tr>
<td>Timothy R. Rebbeck, PhD</td>
<td>Dana Farber Cancer Institute and Harvard TH Chan School of Public Health</td>
<td>Genetics Research</td>
</tr>
<tr>
<td>Mark E. Robison, MD</td>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>Breast Oncology/Genetics</td>
</tr>
<tr>
<td>Matt T. Rosenberg, MD</td>
<td>Mid-Michigan Health Center</td>
<td>Primary Care</td>
</tr>
<tr>
<td>Howard Sandler, MD, MS</td>
<td>Cedars-Sinai Medical Center</td>
<td>Radiation Oncology</td>
</tr>
<tr>
<td>Oliver Sartor, MD</td>
<td>Tulane University School</td>
<td>Medical Oncology</td>
</tr>
<tr>
<td>Edward “Ted” Schaeffer, MD, PhD</td>
<td>Northwestern University, Feinberg School of Medicine; R.H. Lurie Comprehensive Cancer Center</td>
<td>Urology</td>
</tr>
<tr>
<td>Gordon F. Schwartz, MD</td>
<td>Foundation for Breast and Prostate Health</td>
<td>Breast Surgery</td>
</tr>
</tbody>
</table>

(continued on following page)
The following series of tables highlight the studies referenced by the consensus panel concerning grade of evidence for prostate cancer (PCA) risk by genes on PCA multigene panels. Grade of evidence is provided in the titles of Tables A2-A6. (A) High-grade evidence: At least one prospectively designed study or three or more large validation studies or three or more descriptive studies; (B) Moderate-grade evidence: two cohort or case-control studies; (C) Emerging data: increasing data in support of association to PCA, but not yet moderate-grade evidence; (D) Low/insufficient: limited data or not studied in the context of PCA.

The table below demonstrates the relationship between PCA risk and BRCA1 and BRCA2 genes:

<table>
<thead>
<tr>
<th>First Author</th>
<th>Population Description</th>
<th>PCA Risk (BRCA1)</th>
<th>PCA Risk (BRCA2)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLC</td>
<td>BLC included 173 BRCA-linked or mutation-positive families (3,728 individuals and 333 cancers)</td>
<td>Not assessed</td>
<td>Overall: RR, 4.65 (95% CI, 3.48 to 6.22)</td>
<td>Men younger than 65 years: RR, 7.33; 95% CI, 4.66 to 11.52</td>
</tr>
<tr>
<td>Thompson</td>
<td>BCLC family set that included 7,106 women and 4,741 men, among whom 2,245 were carriers of BRCA1 mutations, 1,106 were tested noncarriers, and 8,496 were not tested</td>
<td>Overall: RR, 1.07 (95% CI, 0.75 to 1.54)</td>
<td>Not assessed</td>
<td>Men younger than 65 years: RR, 1.82; 95% CI, 1.01 to 3.29</td>
</tr>
<tr>
<td>Mersch</td>
<td>Clinical genetics population at a single institution from 1997-2013. Compared cancer incidence to US Statistics Report by CDC for general population cancer incidence</td>
<td>SIR, 3.809 (95% CI, 0.766 to 11.13)</td>
<td>SIR, 4.89 (95% CI, 1.959 to 10.075)</td>
<td></td>
</tr>
<tr>
<td>Agalliu</td>
<td>290 men (white, n = 257; African American, n = 33) diagnosed with PCA at younger than 55 years and unselected for family history</td>
<td>Not assessed</td>
<td>RR, 7.8 (95% CI, 1.8 to 9.4)</td>
<td></td>
</tr>
<tr>
<td>Kote-Jara</td>
<td>1,832 men diagnosed with PCA between age 36 and 88 years who participated in the UK Genetic Prostate Cancer Study</td>
<td>Not assessed</td>
<td>RR, 8.6 (95% CI, 5.1 to 12.6)</td>
<td>MLPA was not used; therefore, the mutation frequency may be an underestimate, given the inability to detect large genomic rearrangements.</td>
</tr>
<tr>
<td>Leongarmomier</td>
<td>913 men with PCA who participated in the UK Genetic Prostate Cancer Study; included 821 cases diagnosed between age 36 and 65 years, regardless of family history, and 92 cases diagnosed at older than 65 years with a family history of PCA</td>
<td>RR, 3.75 (95% CI, 1.02 to 9.6)</td>
<td>Not assessed</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Adapted from the National Cancer Institute PDQ Genetics of Prostate Cancer Summary.7 Abbreviations: BCLC, Breast Cancer Linkage Consortium; CDC, Centers for Disease Control and Prevention; MLPA, multiplex ligation-dependent probe amplification; PCA, prostate cancer; RR, relative risk; SIR, standardized incidence ratio.

*Includes all cancers except breast, ovarian, and nonmelanoma skin cancers.
Table A3. Case-Control Studies of BRCA1 and BRCA2 and Survival Outcomes (Evidence: A for BRCA2)

<table>
<thead>
<tr>
<th>First Author</th>
<th>Cases</th>
<th>Controls</th>
<th>PCA-Specific Survival</th>
<th>Overall Survival</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryggvadottir</td>
<td>30 men diagnosed with PCA who were carriers of BRCA2 999del5 founder mutation (Icelandic population)</td>
<td>59 men with PCA matched by birth and diagnosis year and confirmed not to carry the BRCA2 999del5 mutation</td>
<td>BRCA2 999del5 mutation was associated with a higher risk of death from PCA (HR, 3.42; 95% CI, 2.12 to 5.51), which remained after adjustment for tumor stage and grade (HR, 2.35; 95% CI, 1.08 to 5.11)</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Edwards</td>
<td>21 men diagnosed with PCA who harbored a BRCA2 mutation: six with early-onset disease (<65 years) from a United Kingdom PCA study and 15 unselected for age at diagnosis from a United Kingdom clinical series</td>
<td>1,587 age- and stage-matched men with PCA</td>
<td>Not assessed</td>
<td>Overall survival was lower in carriers of BRCA2 mutations (4.8 years) than in noncarriers (8.5 years); HR, 2.14 (95% CI, 1.28 to 3.56; P = .003).</td>
<td></td>
</tr>
<tr>
<td>Gallagher</td>
<td>832 AJ men diagnosed with localized PCA between 1988 and 2007, of whom there were six carriers of BRCA1 mutations and 20 carriers of BRCA2 mutations</td>
<td>454 AJ men with no history of cancer</td>
<td>After adjusting for stage, PSA, Gleason score, and therapy received:</td>
<td>BRCA2 had increased risk of death (HR, 3.12; 95% CI, 1.64 to 6.14; P < .001), compared with noncarriers</td>
<td>The BRCA1 5382insC founder pathogenic variant was not tested in this series.</td>
</tr>
<tr>
<td>Thorne</td>
<td>40 men diagnosed with PCA who were carriers of BRCA2 mutations from 30 familial breast cancer families from Australia and New Zealand</td>
<td>97 men from 89 familial breast cancer families from Australia and New Zealand with PCA and no BRCA mutation found in the family</td>
<td>BRCA2 carriers had increased risk of PCA-specific mortality (HR, 4.5; 95% CI, 2.12 to 9.52; P < .001), compared with noncarrier</td>
<td>Not assessed</td>
<td>There were too few BRCA1 carriers available to include in the analysis.</td>
</tr>
<tr>
<td>Castro</td>
<td>2,019 men diagnosed with PCA from the United Kingdom, of whom 18 were carriers of BRCA1 mutations and 61 were carriers of BRCA2 mutations</td>
<td>1,940 men who were BRCA1/2 noncarriers</td>
<td>PCA-specific survival at 5 years:</td>
<td>Overall survival at 5 years:</td>
<td>For localized PCA, metastasis-free survival was also higher in controls than in mutation carriers (93% v 77%; HR, 2.7).</td>
</tr>
<tr>
<td>Castro</td>
<td>1,302 men from the United Kingdom with local or locally advanced PCA, including 67 carriers of BRCA1/2 mutations</td>
<td>1,235 men who were BRCA1/2 noncarriers</td>
<td>PCA-specific survival:</td>
<td>Not assessed</td>
<td>Multivariate analysis confirmed BRCA mutations as an independent prognostic factor for cause-specific survival: (HR, 2.17; 95% CI, 1.16 to 4.07; P = .016)</td>
</tr>
</tbody>
</table>

NOTES. Adapted from the National Cancer Institute PDQ Genetics of Prostate Cancer Summary. Rates of BRCA1/BRCA2 mutations in metastatic PCA described in the paper. Abbreviations: AJ, Ashkenazi Jewish; HR, hazard ratio; PCA, prostate cancer; PSA, prostate-specific antigen.
<table>
<thead>
<tr>
<th>First Author</th>
<th>Casesnation</th>
<th>Controlsnation</th>
<th>OR of PCA Risknation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewing14</td>
<td>94 unrelated patients from hereditary PCA families; four probands carried G84E mutation. Confirmation: 5,083 PCA cases (combination of hereditary, familial, early-onset, or localized PCA cases)</td>
<td>1,401 screened controls</td>
<td>Men with a positive family history of PCA: 2.2% v negative: 0.8% (OR, 2.8; 95% CI, 1.6 to 5.1; P < .001) Men younger than 55 years at diagnosis: 2.2% v older than 55 years: 0.8% (OR, 2.7; 95% CI, 1.6 to 4.7; P < .001) Men with a positive family history of PCA and younger than 55 years at diagnosis: 3.1% v a negative family history of PCA and age at diagnosis older than 55 years: 0.6% (OR, 6.1; 95% CI, 2.4 to 12.2; P < .001) Control subjects: 0.1%-0.2%</td>
</tr>
<tr>
<td>Xu15</td>
<td>2,443 PCA families from ICPCG. Among carrier families, cases included 382 men with PCA.</td>
<td>2,443 PCA families from ICPCG; among carrier families, controls included 137 men without PCA</td>
<td>OR, 4.42; 95% CI, 2.56 to 7.64</td>
</tr>
<tr>
<td>Akbari16</td>
<td>1,843 cases with PCA</td>
<td>2,225 control men without PCA</td>
<td>5.8; 95% CI, 1.3 to 26.5; P = .01</td>
</tr>
<tr>
<td>Breyer17</td>
<td>928 familial PCA probands</td>
<td>930 controls without personal or family history of PCA</td>
<td>7.9; 95% CI, 1.8 to 34.5; P = .0062; carrier rate was 1.9% among all familial case probands and 2.7% among probands of pedigrees with three or more affected with PCA</td>
</tr>
<tr>
<td>Karlsson18</td>
<td>5,003 population-based cases in Sweden (CAPS and Stockholm-1 studies)</td>
<td>4,693 population-based controls in Sweden (CAPS and Stockholm-1 studies)</td>
<td>CAPS: OR, 3.4; 95% CI, 2.2 to 5.4; Stockholm-1: OR, 3.5; 95% CI, 2.4 to 5.2 Young-onset: OR, 8.6; 95% CI, 5.1 to 14.0 Hereditary PCA: OR, 6.6; 95% CI, 3.3 to 12.0</td>
</tr>
<tr>
<td>Kluzniak19</td>
<td>3,515 patients with PCA in Poland</td>
<td>2,604 controls in Poland</td>
<td>OR, 5.0; 95% CI, 1.5 to 16.7; P = .008 Familial PCA: OR, 8.4; 95% CI, 1.9 to 37.7; P = .005</td>
</tr>
<tr>
<td>Laitinen20</td>
<td>4,000 PCA cases in Finland</td>
<td>5,000 controls in Finland</td>
<td>All cases and controls: OR, 7.1; 95% CI, 5.5 to 9.3 Hereditary PCA: OR, 8.8; 95% CI, 4.9 to 15.7</td>
</tr>
<tr>
<td>Stott-Miller21</td>
<td>1,310 population-based PCA cases from Seattle region</td>
<td>1,259 age-matched controls</td>
<td>Overall: OR, 3.3; 95% CI, 1.21 to 8.96</td>
</tr>
<tr>
<td>Gudmundsson22</td>
<td>9,988 PCA cases in Iceland, Chicago, Spain, Netherlands, Romania, United Kingdom</td>
<td>61,994 controls in Iceland, Chicago, Spain, Netherlands, Romania, United Kingdom</td>
<td>OR, 7.1; 95% CI, 4.62 to 10.78; P_comb < .001</td>
</tr>
<tr>
<td>Witte23</td>
<td>Family-based PCA study (647 cases); aggressive incident PCA (988 cases)</td>
<td>Family-based PCA study (477 controls); aggressiveness study (542 controls)</td>
<td>OR, 4.8; P = .01</td>
</tr>
</tbody>
</table>

Abbreviations: CAPS, Cancer of the Prostate in Sweden; ICPCG, International Consortium of Prostate Cancer Genetics; OR: odds ratio; PCA, prostate cancer; P_comb, combined P value.
<table>
<thead>
<tr>
<th>First Author</th>
<th>Population</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grindedal24</td>
<td>106 male DNA MMR mutation carriers from Norwegian Cancer Registry</td>
<td>Expected number of PCAs was 1.52 compared with nine observed ($P < .01$). Mean age of onset of PCA was 60.4 years compared with 66.6 expected ($P = .006$). No. of men with Gleason score between 8 and 10 was significantly higher than expected ($P < .001$).</td>
<td>Loss of MMR gene expression was found in seven of eight tumors.</td>
</tr>
<tr>
<td>Haraldsdottir25</td>
<td>Compared rates of PCA from Lynch syndrome families at academic institution to general population rates of PCA in SEER</td>
<td>PCA was observed in 11 of 188 males with Lynch syndrome. SIR, 4.87; 95% CI, 2.43 to 8.71</td>
<td>Impaired MMR expression and microsatellite instability were seen in one out of two PCA specimens available for testing.</td>
</tr>
<tr>
<td>Bauer26</td>
<td>95 individuals were identified as members of potential Lynch syndrome families from a hereditary PCA study; underwent radical prostatectomy and 35 tumors from 31 families underwent MSI analysis.</td>
<td>Two of 35 prostate tumors were MSI high, suggestive of germline DNA MMR mutation.</td>
<td>One patient had IHC loss that correlated with germline MMR mutation.</td>
</tr>
<tr>
<td>Raymond27</td>
<td>Two family cancer registries for total of 198 Lynch syndrome families</td>
<td>Cumulative lifetime risk of PCA (to age 80 years) was 30.0% in carriers of MMR gene mutations (95% CI, 16.54 to 41.30; $P = .07$), compared with 17.84% in the general population; HR (to age 80 years) for PCA in carriers of MMR gene mutations in the combined data set was 1.99 (95% CI, 1.31 to 3.03; $P = .0013$). HR, 2.48 (95% CI, 1.34 to 4.59; $P = .0038$) among men age 20 to 59 years.</td>
<td></td>
</tr>
<tr>
<td>Ryan28</td>
<td>Systematic review and meta-analysis that included 23 studies (six studies with molecular characterization and 18 risk studies, of which 12 studies quantified risk for PCA)</td>
<td>RR of PCA in carriers of MMR gene pathogenic variants was estimated to be 3.67 (95% CI, 2.32 to 6.67).</td>
<td>In the six molecular studies, 73% (95% CI, 57% to 85%) of PCAs in carriers of germline MMR mutations were MMR deficient.</td>
</tr>
<tr>
<td>Rosty29</td>
<td>32 PCA cases with germline MMR gene mutations from Colon Cancer Family Registry</td>
<td>RR of PCA was highest in carriers of MSH2 mutations (RR, 5.8; 95% CI, 2.6 to 20.9) RR of PCA in MLH1 mutation carriers: 1.7; 95% CI, 1.1 to 6.7 RR of PCA in MSH6 mutation carriers: 1.3; 95% CI, 1.1 to 5.3</td>
<td>Loss of MMR protein expression by IHC was observed in 22 tumors (69%), the pattern of loss of protein expression was 100% concordant with the germline mutation.</td>
</tr>
</tbody>
</table>

Abbreviations: HR, hazard ratio; IHC: immunohistochemistry; MMR, mismatch repair; MSI, microsatellite instability; PCA, prostate cancer; RR, relative risk; SIR, standardized incidence ratio.
Appendix References

Table A6. Additional Genes on Multigene Panels and Association to PCA

<table>
<thead>
<tr>
<th>Gene</th>
<th>Grade of Evidence</th>
<th>First Author</th>
<th>Population</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEK2</td>
<td>D</td>
<td>Cybulski</td>
<td>3,750 Polish men with PCA v 3,956 Polish men with no history of cancer</td>
<td>Any CHEK2 mutation: OR, 1.9; 95% CI, 1.8 to 2.2; P < .001 PCA diagnosed younger than 60 years: OR, 2.3; 95% CI, 1.8 to 3.1; P < .001 Familial PCA: OR, 2.7; 95% CI, 2.0 to 3.7; P < .001 10 of 534 metastatic PCAs had CHEK2 germline mutation (1.87%)</td>
</tr>
<tr>
<td>ATM</td>
<td>C</td>
<td>Pritchard</td>
<td>Metastatic PCA unselected for family history</td>
<td>11 of 692 (1.6%) metastatic PCAs had ATM germline mutation ATM + BRCA1 + BRCA2 associated with lethal PCA (P = .0001) and shorter survival ATM alone borderline association to lethal PCA (P = .06) Three of 49 (6.1%) had germline ATM mutations</td>
</tr>
<tr>
<td>NBN</td>
<td>C</td>
<td>Cybulski</td>
<td>Poland: Familial PCA = 56 Nonfamilial PCA = 305 Controls = 1,500</td>
<td>NBN founder mutation 657del6 presence: Familial PCA: five of 56 (9%; OR, 16; P < .001) Nonfamilial PCA: seven of 305 (OR, 3.9; P = .01) Controls: nine of 1,500 (0.6%) PCA: OR, 2.5; 95% CI, 1.5 to 4.0 Age diagnosis younger than 60 years: OR, 3.1; 95% CI, 1.5 to 6.4 Familial PCA: OR, 4.3; 95% CI, 2.0 to 9.0 Two of 692 (0.29%) metastatic PCAs had NBN germline mutation</td>
</tr>
<tr>
<td>PALB2</td>
<td>D</td>
<td>Pritchard</td>
<td>Metastatic PCA unselected for family history</td>
<td>Three of 692 (0.43%) metastatic PCAs had PALB2 germline mutation</td>
</tr>
<tr>
<td>RAD51D</td>
<td>D</td>
<td>Pritchard</td>
<td>Metastatic PCA unselected for family history</td>
<td>Three of 692 (0.43%) metastatic PCAs had RAD51D germline mutation</td>
</tr>
<tr>
<td>TP53</td>
<td>D</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Abbreviations: OR, odds ratio; PCA, prostate cancer.